
ROGUE WAVE SOFTWARE WWW.ROGUEWAVE.COM

TOTALVIEW® FOR HPC REFERENCE GUIDE

Version 2016.06

Rogue Wave Software, Inc.

Product Information: (303) 473-9118 (800) 487-3217
Fax: (303) 473-9137
Web: http://www.roguewave.com

Use of the Documentation and implementation of any of its processes or techniques are the sole responsibility of the client, and Rogue Wave
Software, Inc., assumes no responsibility and will not be liable for any errors, omissions, damage, or loss that might result from any use or mis-
use of the Documentation

ROGUE WAVE SOFTWARE, INC., MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THE DOCUMENTA-
TION. THE DOCUMENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. ROGUE WAVE
SOFTWARE, INC., HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS WITH REGARD TO THE DOCUMEN-
TATION, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING WITHOUT LIMITATION ANY
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGE-
MENT. IN NO EVENT SHALL ROGUE WAVE SOFTWARE, INC., BE LIABLE, WHETHER IN CONTRACT, TORT, OR
OTHERWISE, FOR ANY SPECIAL, CONSEQUENTIAL, INDIRECT, PUNITIVE, OR EXEMPLARY DAMAGES IN CON-
NECTION WITH THE USE OF THE DOCUMENTATION.

The Documentation is subject to change at any time without notice.

ACKNOWLEDGMENTS

ROGUEWAVE.COM

Copyright © 2010-2016 by Rogue Wave Software, Inc. All rights reserved.
Copyright © 2007-2009 by TotalView Technologies, LLC
Copyright © 1998–2007 by Etnus LLC. All rights reserved.
Copyright © 1996–1998 by Dolphin Interconnect Solutions, Inc.
Copyright © 1993–1996 by BBN Systems and Technologies, a division of BBN Corporation.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means,
electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Rogue Wave Soft-
ware, Inc. ("Rogue Wave").
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the
Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.
Rogue Wave has prepared this manual for the exclusive use of its customers, personnel, and licensees. The information
in this manual is subject to change without notice, and should not be construed as a commitment by Rogue Wave. Rogue
Wave assumes no responsibility for any errors that appear in this document.
TotalView and TotalView Technologies are registered trademarks of Rogue Wave Software, Inc. TVD is a trademark of
Rogue Wave.
Rogue Wave uses a modified version of the Microline widget library. Under the terms of its license, you are entitled to use
these modifications. The source code is available at http://kb.roguewave.com/kb/.
All other brand names are the trademarks of their respective holders.

http://kb.roguewave.com/kb/

 Contents iii

About this Guide
Overview . 1
Resources . 1

Part 1: CLI Commands

Chapter 1 CLI Command Summary 4

Chapter 2 CLI Commands 16
Command Overview . 16

General CLI Commands . 16
CLI Initialization and Termination Commands 16
Program Information Commands . 17
Execution Control Commands . 18
Action Points . 18
Platform-Specific CLI Commands . 19
Other Commands . 19

alias . 20
capture . 22
dactions . 24
dassign . 29
dattach . 31
dbarrier . 34
dbreak . 39
dcache . 43
dcalltree . 44
dcheckpoint . 48
dcont . 50
dcuda . 52
ddelete . 57

Contents

Contents iv

ddetach . 59
ddisable . 61
ddlopen . 63
ddown . 66
denable . 68
dexamine . 70
dflush . 73
dfocus . 76
dga . 79
dgo . 81
dgroups . 83
dhalt . 88
dheap . 89
dhistory . 91
dhold . 95
dkill . 97
dlappend . 98
dlist . 99
dload . 102
dmstat . 105
dnext . 108
dnexti . 111
dout . 114
dprint . 117
dptsets . 123
drerun . 126
drestart . 129
drun . 131
dsession . 134
dset . 135
dstatus . 138
dstep . 142
dstepi . 146
dunhold . 149
dunset . 151
duntil . 152

Contents v

dup . 155
dwait . 157
dwatch . 158
dwhat . 161
dwhere . 165
dworker . 168
exit . 169
help . 170
quit . 171
spurs . 172
stty . 177
unalias . 178

Chapter 3 CLI Namespace Commands 178
Command Overview . 178

Accessor Functions . 178
Helper Functions . 179

actionpoint . 180
dec2hex . 183
dll . 184
errorCodes . 186
expr . 188
focus_groups . 190
focus_processes . 191
focus_threads . 192
group . 193
hex2dec . 195
process . 196
read_symbols . 200
respond . 201
scope . 202
source_process_startup . 204
symbol . 205
thread . 218
type . 221
type_transformation . 224

Contents vi

Chapter 4 Batch Debugging Using tvscript 234
Overview . 234
tvscript Command Syntax . 235

tvscript Options . 239
tvscript External Script Files . 245

Logging Functions API . 245
Process Functions API . 245
Thread Functions API . 245
Action Point API . 245
Event API . 246
Example tvscript Script File . 247

Chapter 5 TotalView Variables 251
Overview . 251
Top-Level (::) Namespace . 252
TV:: Namespace . 260
TV::MEMDEBUG:: Namespace . 296
TV::GUI:: Namespace . 298

Chapter 6 Creating Type Transformations 306
Overview . 306
Why Type Transformations . 307
Creating Structure and Class Transformations . 309

Transforming Structures . 309
build_struct_transform Function . 311
Type Transformation Expressions . 311
Using Type Transformations . 315

C++View . 317
Writing a Data Display Function . 318

TV_ttf_type_ascii_string . 318
TV_ttf_type_int . 318

Templates . 320
Precedence - Searching for TV_ttf_display_type 321
TV_ttf_add_row . 321

TV_ttf_ec_ok . 322
TV_ttf_ec_not_ active . 322
TV_ttf_ec_invalid_characters . 322
TV_ttf_ec_buffer_exhausted . 322

Return values from TV_ttf_display_type . 322

Contents vii

TV_ttf_format_ok . 322
TV_ttf_format_ok_elide . 322
TV_ttf_format_ failed . 322
TV_ttf_format_ raw . 323
TV_ttf_format_ never . 323

Elision . 323
Other Constraints . 324
Safety . 324
Memory Management . 325
Multithreading . 325
Tips and Tricks . 326
Core Files . 326
Using C++View with ReplayEngine . 326
C . 328
Fortran . 329
Compiling and linking tv_data_display.c . 333
C++View Example Files . 334
Limitations . 335
Licensing . 335

Part 2: Running TotalView

Chapter 7 TotalView Command Syntax 337
Overview . 337
Command-Line Syntax . 338
Command-Line Options . 339

Chapter 8 TotalView Debugger Server Command Syntax 351
Overview . 351
The tvdsvr Command and Its Options . 352

Description . 352
Options . 352

Replacement Characters . 355

Part 3: Platforms and Operating Systems

Chapter 9 Platforms and Compilers 359
Overview . 359
Compiling with Debugging Symbols . 360

Apple Running Mac OS X . 360
IBM AIX on RS/6000 Systems . 360

Contents viii

IBM Blue Gene . 362
IBM Power Linux . 362
Linux Running on an x86 Platform . 362
Linux Running on an x86-64 Platform . 363
Linux Running on an Itanium Platform . 364
Sun Solaris . 364

Using gnu_debuglink Files . 365
Total View Command-Line Options and CLI State Variables . . 365
Searching for the gnu_debug_link File . 366

Linking with the dbfork Library . 367
dbfork on IBM AIX on RS/6000 Systems . 367

Linking C++ Programs with dbfork . 367
Linux or Mac OS X . 368
SunOS 5 SPARC . 368

Chapter 10 Operating Systems 370
Operating Systems . 370
Supported Operating Systems . 371
Troubleshooting Mac OS X Installations . 372

Problem Description . 372
For Mac OS X Versions 10.8 (Mountain Lion) or Later 372
For Mac OS X Versions 10.11 (Capitan) or Later 372
Remotely Debugging without Console Access 373

Mounting the /proc File System . 374
Mounting /proc with SunOS 5 . 374

Swap Space . 375
Swap Space on IBM AIX . 375
Swap Space on Linux . 375
Swap Space on SunOS 5 . 376

Shared Libraries . 377
Changing Linkage Table Entries and LD_BIND_NOW 377

Debugging Your Program’s Dynamically Loaded Libraries 379
dlopen Options for Scalability . 381

Filtering dlopen Events . 381
Handling dlopen Events in Parallel . 383

Known Limitations . 384
Remapping Keys . 385
Expression System . 386

Expression System on IBM AIX-Power and Blue Gene/Q 386

Contents ix

Chapter 11 Architectures 387
Overview . 387
AMD and Intel x86-64 . 388

x86-64 General Registers . 388
x86-64 Floating-Point Registers . 389
x86-64 FPCR Register . 390

Using the x86-64 FPCR Register . 391
x86-64 FPSR Register . 391
x86-64 MXCSR Register . 392

Power Architectures . 393
Power General Registers . 393
Blue Gene Power Registers . 395
Blue Gene/Q QPX Floating-Point Registers 396
Power MSR Register . 396
Power Floating-Point Registers . 397
Power FPSCR Register . 397

Using the Power FPSCR Register . 399
Intel IA-64 . 400

Intel IA-64 General Registers . 400
IA-64 Processor Status Register Fields (PSR) 401
Current Frame Marker Register Fields (CFM) 402
Register Stack Configuration Register Fields (RSC) 403
Previous Function State Register Fields (PFS) 403
Floating Point Registers . 404
Floating Point Status Register Fields . 404

Intel x86 . 406
Intel x86 General Registers . 406
Intel x86 Floating-Point Registers . 407
Intel x86 FPCR Register . 408

Using the Intel x86 FPCR Register . 409
Intel x86 FPSR Register . 409
Intel x86 MXCSR Register . 409

Sun SPARC . 411
SPARC General Registers . 411
SPARC PSR Register . 412
SPARC Floating-Point Registers . 412
SPARC FPSR Register . 413

Using the SPARC FPSR Register . 414

Contents x

Part 4: Appendices

Appendix A MPI Startup . 416
Overview . 416
Customizing Your Parallel Configuration . 417

TotalView . 417
Standalone MemoryScape . 418

Example Parallel Configuration Definitions . 419

Index . 424

About this Guide 1

About this Guide

Overview

The information in this guide is organized in parts:

• Part I, “CLI Commands,” on page 3 contains descriptions of all the CLI commands, the variables
that you can set using the CLI, and other CLI-related information.

• Part II, “Running TotalView,” on page 336 documents all possible command-line options as
well as those that customize the behavior of the tvdsvr.

• Part III, “Platforms and Operating Systems,” on page 358 provides general information on
compilers, runtime environments, operating systems, and supported architectures.

• Part IV, “Appendices,” on page 415 includes Appendix A which describes how to create startup
profiles for environments that TotalView does not define.

Resources
Please see Appendix C in the user guide for information on:

• TotalView family differences, which details the differences among TotalView Enterprise,
TotalView Team, and TotalView Individual

• a complete list of TotalView documentation

About this Guide / Resources 2

• conventions used in the documentation

• contact information

 3

PART I

CLI Commands

This part of the reference guide describes the TotalView Command Line Interface (CLI).

Chapter 1, “CLI Command Summary,” on page 4
Summarizes all CLI commands.

Chapter 2, “CLI Commands,” on page 16
Describes all commands in the CLI’s unqualified (top-level) namespace. These are the commands that you use
day-in and day-out, and those that are most often used interactively.

Chapter 3, “CLI Namespace Commands,” on page 178
Describes commands found in the TV:: namespace. These commands are seldom used interactively, as they
are most often used in scripts.

Chapter 4, “Batch Debugging Using tvscript,” on page 234
Discusses how to create batch scripts that run TotalView unattended.

Chapter 5, “TotalView Variables,” on page 251
Describes all TotalView variables, including those uses to set GUI behaviors. These variables reside in three
namespaces: unqualified (top-level), TV:: and TV::GUI. For the most part, you set these variables to alter To-
talView behaviors.

Chapter 6, “Creating Type Transformations,” on page 306
Discusses how to customize data display using CLI routines. This is useful if you do not wish to see all the mem-
bers of a class or structure or would like to alter the way TotalView displays these elements.

CLI Command Summary 4

Chapter 1

CLI Command Summary

This chapter contains a summary of all TotalView debugger CLI commands. The commands are described in
detail in Chapter 2, “CLI Commands,” on page 16 and Chapter 3, “CLI Namespace Commands,” on
page 178.

actionpoint
Gets and sets action point properties

TV::actionpoint action [object-id] [other-args]

alias
Creates a new user-defined pseudonym for a command

alias alias-name defn-body

Views previously defined aliases
alias [alias-name]

capture
Returns a command’s output as a string

capture [-out | -err | -both] [-f filename] command

dactions
Displays information about action points

dactions [ap-id-list] [-at source-loc]
 [-enabled | -disabled]
 [-enabled_blocks | -disabled_blocks]
 [-block_images]
 [-block_lines]

Saves action points to a file

CLI Command Summary / 5

dactions -save [filename]

Loads previously saved action points
dactions -load [filename]

dassign
Changes the value of a scalar variable

dassign target value

dattach
Brings currently executing processes under TotalView control

dattach [-g gid] [-r hname]
 [-ask_attach_parallel | -no_attach_parallel]
 [-replay | -no_replay]
 [-go | -halt] [-rank num]
 [-c { core-file | recording-file }]
 [-e] executable [pid-list]
 [-parallel_attach_subset subset_specification]

dbarrier
Creates a barrier breakpoint at a source location

dbarrier breakpoint-expr [-stop_when_hit { group | process | none }]
 [-stop_when_done { group | process | none }] [-pending]

Creates a barrier breakpoint at an address
dbarrier -address addr [-stop_when_hit { group | process | none }]
 [-stop_when_done { group | process | none }] [-pending]

dbreak
Creates a breakpoint at a source location

dbreak breakpoint-expr [-p | -g | -t] [[-l lang] -e expr] [-pending]

Creates a breakpoint at an address
dbreak -address addr [-p | -g | -t] [[-l lang] -e expr] [-pending]

dcache
Clears the remote library cache

dcache -flush

dcalltree
Displays parallel backtrace data

[-data pbv_data_array] [-show_details] [-sort columns] [-hide_backtrace]
[-save_as_csv filename] [-save_as_dot filename]

CLI Command Summary / 6

dcheckpoint
Creates a checkpoint on IBM AIX

dcheckpoint [-delete | -halt]

dcont
Continues execution and waits for execution to stop

dcont

dcuda
Manages NVIDIA® CUDA™ GPU threads, providing the ability to inspect them, change the focus, and display
their status.

dcuda

ddelete
Deletes some action points

 ddelete action-point-list

Deletes all action points
ddelete -a

ddetach
Detaches from the processes

ddetach

ddisable
Disables some action points

ddisable action-point-list [-block number-list]

Disables all action points
ddisable -a

ddlopen
Loads a shared object library

ddlopen [-now | -lazy] [-local | -global] [-mode int] filespec

Displays information about shared object libraries
ddlopen [-list dll-ids...]

ddown
Moves down the call stack

ddown [num-levels]

CLI Command Summary / 7

dec2hex
Converts a decimal number into hexadecimal

TV::dec2hex number

denable
Enables some action points

denable action-point-list

Enables all disabled action points in the current focus
denable -a

dexamine
Display memory contents

dexamine [-column_count cnt] [-count cnt] [-data_only]
 [-show_chars] [-string_length len] [-format fmt]
 [-memory_info] [-wordsize size] variable_or_expression

dflush
Removes the top-most suspended expression evaluation

dflush

Removes all suspended dprint computations
dflush -all

Removes dprint computations preceding and including a suspended evaluation ID
dflush susp-eval-id

dfocus
Changes the target of future CLI commands to this P/T set

dfocus p/t-set

Executes a command in this P/T set
dfocus [p/t-set command]

dga
Displays global array variables

dga [-lang lang_type] [handle_or_name] [slice]

dgo
Resumes execution of target processes

dgo

dgroups
Adds members to thread and process groups

CLI Command Summary / 8

dgroups -add [-g gid] [id-list]

Deletes groups
dgroups -delete [-g gid]

Intersects a group with a list of processes and threads
dgroups -intersect [-g gid] [id-list]

Prints process and thread group information
dgroups [-list] [pattern-list]

Creates a new thread or process group
dgroups -new [thread_or_process] [-g gid] [id-list]

Removes members from thread or process groups
dgroups -remove [-g gid] [id-list]

dhalt
Suspends execution of processes

dhalt

dheap
Shows Memory Debugger state

dheap [-status]

Applies a saved configuration file
dheap -apply_config { default | filename }

Shows information about a backtrace
dheap -backtrace [subcommands]

Compares memory states
dheap -compare subcommands [optional_subcommands]
 [process | filename [process | filename]]

Enables or disables the Memory Debugger
dheap { -enable | -disable }

Enables or disables event notification
dheap -event_filter subcommands

Writes memory information
dheap -export subcommands

Specifies which filters the Memory Debugger uses
dheap -filter subcommands

Writes guard blocks (memory before and after an allocation)
dheap -guard [subcommands]

CLI Command Summary / 9

Enables and disables the retaining (hoarding) of freed memory blocks
dheap -hoard [subcommands]

Displays Memory Debugger information
dheap -info [-backtrace] [start_address [end_address]]

Indicates whether an address is within a deallocated block
dheap -is_dangling address

Locates memory leaks
dheap -leaks [-check_interior]

Enables or disables Memory Debugger event notification
dheap -[no]notify

Paints memory with a distinct pattern
dheap -paint [subcommands]

Enables and disables the ability to catch bounds errors and use-after-free errors retaining freed memory
blocks

dheap -red_zones [subcommands]

Enables and disables allocation and reallocation notification
dheap -tag_alloc subcommand start_address [end_address]

Displays the Memory Debugger’s version number
dheap -version

dhistory
Displays information about the state of the program as it is being replayed. If you have received a timestamp,
you can go back to the line that was executing at that time.

dhistory [-info] [-get_time] [-go_time time] [-go_live]
 [-enable] [-disable]

dhold
Holds processes

dhold -process

Holds threads
dhold -thread

dkill
Terminates execution of target processes

dkill [-remove]

dlappend
Appends list elements to a TotalView variable

CLI Command Summary / 10

dlappend variable-name value [...]

dlist
Displays code relative to the current list location

dlist [-n num-lines]

Displays code relative to a named location
dlist breakpoint-expr [-n num-lines]

Displays code relative to the current execution location
dlist -e [-n num-lines]

dll
Manages shared libraries

TV::dll action [dll-id-list] [-all]

dload
Loads debugging information

dload [-g gid] [-mpi starter_value] [-r hname]
 [-replay | -noreplay]
 [-env variable=value] ... [-e] executable
 [-parallel_attach_subset subset_specification]

dmstat
Displays memory use information

dmstat

dnext
Steps source lines, stepping over subroutines

dnext [-back] [num-steps]

dnexti
Steps machine instructions, stepping over subroutines

dnexti [-back] [num-steps]

dout
Executes until just after the place that called the current routine

dout [-back] [frame-count]

dprint
Prints the value of a variable or expression

dprint [-nowait] [-slice slice_expr] [-stats [-data]] variable_or_expression

CLI Command Summary / 11

dptsets
Shows the status of processes and threads in an array of P/T expressions

dptsets [ptset_array] ...

drerun
Restarts processes

drerun [cmd_arguments] [< infile]
 [> [>][&] outfile]
 [2> [>] errfile]

drestart
Restarts a checkpoint on AIX

drestart [-halt] [-g gid] [-r host] [-no_same_hosts]

Restarts a checkpoint on SGI
drestart [process-state] [-no_unpark] [-g gid] [-r host]
 [-ask_attach_parallel | -no_attach_parallel]
 [-no_preserve_ids] checkpoint-name

drun
Starts or restarts processes

drun [cmd_arguments] [< infile]
 [> [>][&] outfile]
 [2> [>] errfile]

dsession
Loads a session

dsession [-load session_name]

dset
Creates or changes a CLI state variable

dset debugger-var value

Views current CLI state variables
dset [debugger-var]

Sets the default for a CLI state variable
dset -set_as_default debugger-var value

dstatus
Shows current status of processes and threads

dstatus

CLI Command Summary / 12

dstep
Steps lines, stepping into subfunctions

dstep [-back] [num-steps]

dstepi
Steps machine instructions, stepping into subfunctions

dstepi [-back] [num-steps]

dunhold
Releases a process

dunhold -process

Releases a thread
dunhold -thread

dunset
Restores a CLI variable to its default value

dunset debugger-var

Restores all CLI variables to their default values
dunset -all

duntil
Runs to a line

duntil [-back] line-number

Runs to an address
duntil [-back] -address addr

Runs into a function
duntil proc-name

dup
Moves up the call stack

dup [num-levels]

dwait
Blocks command input until the target processes stop

dwait

dwatch
Defines a watchpoint for a variable

dwatch variable [-length byte-count] [-p | -g | -t]
 [[-l lang] -e expr] [-t type]

CLI Command Summary / 13

Defines a watchpoint for an address
dwatch -address addr -length byte-count [-p | -g | -t]
 [[-l lang] -e expr] [-t type]

dwhat
Determines what a name refers to

dwhat symbol-name

dwhere
Displays locations in the call stack

dwhere [-level level-num] [num-levels] [-args] [-locals] [-registers]
 [-noshow_pc][-noshow_fp][-show_image]

Displays all locations in the call stack
dwhere -all [-args] [-locals] [-registers]
 [-noshow_pc][-noshow_fp][-show_image]

dworker
Adds or removes a thread from a workers group

dworker { number | boolean }

errorCodes
Returns a list of all error code tags

TV::errorCodes

Returns or raises error information
TV::errorCodes number_or_tag [-raise [message]]

exit
Terminates the debugging session

exit [-force]

expr
Manipulates values created by dprint -nowait

TV::expr action [susp-eval-id] [other-args]

focus_groups
Returns a list of groups in the current focus

TV::focus_groups

focus_processes
Returns a list of processes in the current focus

TV::focus_processes [-all | -group | -process | -thread]

CLI Command Summary / 14

focus_threads
Returns a list of threads in the current focus

TV::focus_threads [-all | -group | -process | -thread]

group
Gets and sets group properties

TV::group action [object-id] [other-args]

help
Displays help information

help [topic]

hex2dec
Converts to decimal

TV::hex2dec number

process
Gets and sets process properties

TV::process action [object-id] [other-args]

quit
Terminates the debugging session

quit [-force]

read_symbols
Reads symbols from libraries

TV::read_symbols -lib lib-name-list

Reads symbols from libraries associated with a stack frame
TV::read_symbols -frame [number]

Reads symbols for all frames in the backtrace
TV::read_symbols -stack

respond
Provides responses to commands

TV::respond response command

scope
Gets and sets internal scope properties

TV::scope action [object-id] [other-args]

CLI Command Summary / 15

source_process_startup
“Sources” a .tvd file when a process is loaded

TV::source_proccess_startup process_id

spurs
Manages threads using commands modeled after the GDB SPU Runtime System (SPU) library.

spurs add [directory directory-list ...]

stty
Sets terminal properties

stty [stty-args]

symbol
Returns or sets internal TotalView symbol information

TV::symbol action [object-id] [other-args]

thread
Gets and sets thread properties

TV::thread action [object-id] [other-args]

type
Gets and sets type properties

TV::type action [object-id] [other-args]

type_transformation
Creates type transformations and examines properties

TV::type_transformation action [object-id] [other-args]

unalias
Removes an alias

unalias alias-name

Removes all aliases
unalias -all

CLI Commands 16

Chapter 2

CLI Commands

Command Overview
This chapter lists all of CLI commands with a brief description.

General CLI Commands
These commands provide information on the general CLI operating environment:

• alias: Creates or views pseudonyms for commands and arguments.

• capture: Sends output to a variable for commands that print information

• dlappend: Appends list elements to a TotalView variable.

• dset: Changes or views values of TotalView variables.

• dunset: Restores default settings of TotalView variables.

• help: Displays help information.

• stty: Sets terminal properties.

• unalias: Removes a previously defined alias.

CLI Initialization and Termination Commands
These commands initialize and terminate the CLI session, and add processes to CLI control:

CLI Commands / Command Overview 17

• dattach: Brings one or more processes currently executing in the normal runtime environment
(that is, outside TotalView) under TotalView control.

• ddetach: Detaches TotalView from a process.

• ddlopen: Dynamically loads shared object libraries.

• dgroups: Manipulates and manages groups.

• dkill: Kills existing user processes, leaving debugging information in place.

• dload: Loads debugging information about the program into TotalView and prepares it for
execution.

• drerun: Restarts a process.

• drun: Starts or restarts the execution of user processes under control of the CLI.

• dsession: Loads a session into TotalView.

• exit, quit: Exits from TotalView, ending the debugging session.

Program Information Commands
The following commands provide information about a program’s current execution location, and support brows-
ing the program's source files:

• dcalltree: Displays parallel backtrace data.

• ddown: Navigates through the call stack by manipulating the current frame.

• dexamine: Displays memory contents.

• dflush: Unwinds the stack from computations.

• dga: Displays global array variables.

• dlist: Browses source code relative to a particular file, procedure, or line.

• dmstat: Displays memory usage information.

• dprint: Evaluates an expression or program variable and displays the resulting value.

• dptsets: Shows the status of processes and threads in a P/T set.

• dstatus: Shows the status of processes and threads.

• dup: Navigates through the call stack by manipulating the current frame.

• dwhat: Determines what a name refers to.

• dwhere: Prints information about the thread’s stack.

CLI Commands / Command Overview 18

Execution Control Commands
The following commands control execution:

• dcont: Continues execution of processes and waits for them.

• dfocus: Changes the set of processes, threads, or groups upon which a CLI command acts.

• dgo: Resumes execution of processes (without blocking).

• dhalt: Suspends execution of processes.

• dhistory (replay): Provides information for ReplayEngine and supports working with timestamps.

• dhold: Holds threads or processes.

• dnext: Executes statements, stepping over subfunctions.

• dnexti: Executes machine instructions, stepping over subfunctions.

• dout: Runs out of current procedure.

• dstep: Executes statements, moving into subfunctions if required.

• dstepi: Executes machine instructions, moving into subfunctions if required.

• dunhold: Releases held threads.

• duntil: Executes statements until a statement is reached.

• dwait: Blocks command input until processes stop.

• dworker: Adds or removes threads from a workers group.

Action Points
The following action point commands define and manipulate the points at which the flow of program execution
should stop so that you can examine debugger or program state:

• dactions: Views information on action point definitions and their current status; this command also
saves and restores action points.

• dbarrier: Defines a process barrier breakpoint.

• dbreak: Defines a breakpoint.

• ddelete: Deletes an action point.

• ddisable: Temporarily disables an action point.

• denable: Re-enables an action point that has been disabled.

CLI Commands / Command Overview 19

• dwatch: Defines a watchpoint.

Platform-Specific CLI Commands
• dcuda: Manages NVIDIA® CUDA™ GPU threads, providing the ability to inspect them, change the

focus, and display their status.

• spurs: Manages threads using commands modeled after the GDB SPU Runtime System (SPU)
library.

Other Commands
The commands in this category do not fit into any of the other categories:

• dassign: Changes the value of a scalar variable.

• dcache: Clears the remote library cache.

• dcheckpoint: Creates a file that can later be used to restart a program.

• dheap: Displays information about the heap.

• drestart: Restarts a checkpoint.

CLI Commands / alias 20

alias Creates or views pseudonyms for commands

Format
Creates a new user-defined pseudonym for a command

alias alias-name defn-body

Views previously defined aliases
alias [alias-name]

Arguments
alias-name

The name of the command pseudonym being defined.

defn-body

The text that Tcl substitutes when it encounters alias-name.

Description
The alias command associates a specified name with some defined text. This text can contain one or more com-
mands. You can use an alias in the same way as a native TotalView or Tcl command. In addition, you can include
an alias as part of the definition of another alias.

If you do not enter an alias-name argument, the CLI displays the names and definitions of all aliases. If you specify
only an alias-name argument, the CLI displays the definition of the alias.

Because the alias command can contain Tcl commands, defn-body must comply with all Tcl expansion, substitu-
tion, and quoting rules.

The TotalView global startup file, tvdinit.tvd, defines a set of default one or two-letter aliases for all common
commands. To see a list of these commands, type alias with no argument in the CLI -window.

You cannot use an alias to redefine the name of a CLI-defined command. You can, however, redefine a built-in CLI
command by creating your own Tcl procedure. For example, the following procedure disables the built-in dwatch
command. When a user types dwatch, the CLI executes this code instead of the built-in CLI code.
proc dwatch {} {
 puts "The dwatch command is disabled"
}

NOTE >> Be aware that you can potentially create aliases that are nonsensical or incorrect because the
CLI does not parse defn-body (the command’s definition) until it is used. The CLI detects errors
only when it tries to execute your alias.

When you obtain help for any command, the help text includes any TotalView predefined aliases.

To delete an alias, use the unalias command.

CLI Commands / alias 21

Examples
alias nt dnext

Defines a command called nt that executes the dnext -command.
alias nt

Displays the definition of the nt alias.
alias

Displays the definitions of all aliases.
alias m {dlist main}

Defines an alias called m that lists the source code of function main().
alias step2 {dstep; dstep}

Defines an alias called step2 that does two dstep commands. This new command applies to the focus that
exists when this alias is used.

alias step2 {s ; s}

Creates an alias that performs the same operations as that in the previous example, differing in that it uses the
alias for dstep. You could also create the following alias which does the same thing: alias step2 {s 2}.

alias step1 {f p1. dstep}

Defines an alias called step1 that steps the first user thread in process 1. All other threads in the process run
freely while TotalView steps the current line in your program.

RELATED TOPICS

Initializing TotalView in the TotalView for HPC User Guide
unalias Command

CLI Commands / capture 22

capture Returns a command’s output as a string

Format
capture [-out | -err | -both] [-f filename] command

Arguments
-out

Captures only output sent to stdout.

-err

Captures only output sent to stderr.

-both

Captures output sent to both stdout and stderr. This is the default.

-f filename

Sends the captured output to filename. The file must be a writable Tcl file descriptor.

command

The CLI command (or commands) whose output is being captured. If you specify more than one command, you
must enclose them within braces ({ }).

Description
The capture command executes command, capturing in a string all output that would normally go to the console.
After command completes, it returns the string. This command is analogous to the UNIX shell’s back-tick feature
(`command`). The capture command obtains the printed output of any CLI command so that you can assign it to
a variable or otherwise manipulate it.

Examples
set save_stat [capture st]

Saves the current process status to a Tcl variable.
set arg [capture p argc]

Saves the printed value of argc into a Tcl variable.
set vbl [capture {foreach i {1 2 3 4} \
 {p int2_array($i)}}]

Saves the printed output of four array elements into a Tcl variable. Here is sample output:
int2_array(1) = -8 (0xfff8)
int2_array(2) = -6 (0xfffa)
int2_array(3) = -4 (0xfffc)
int2_array(4) = -2 (0xfffe)

Because the capture command records all information sent to it by the commands in the foreach loop, you
do not have to use a dlist command.

CLI Commands / capture 23

exec cat << [capture help commands] > cli_help.txt

Writes the help text for all CLI commands to the cli_help.txt file.
set ofile [open cli_help.txt w]
capture -f $ofile help commands
close $ofile

Also writes the help text for all CLI commands to the cli_help.txt file. This set of commands is more efficient
than the previous command because the captured data is not -buffered.

RELATED TOPICS

drun Command
drerun Command

CLI Commands / dactions 24

dactions Displays information, and saves and reloads action points

Format
Displays information about action points.

dactions [ap-id-list] [-at source-loc] [-enabled | -disabled] [-enabled_blocks |-disabled_blocks]
 [-block_images | -block_lines]

Saves action points to a file.
dactions -save [filename]

Loads previously saved action points.
dactions -load [filename]

Suppresses or unsuppresses action points.
dactions [-suppress | -unsuppress]

Arguments
ap-id-list

A list of action point identifiers. If you specify individual action points, the information that appears is limited to
these points.

Do not enclose this list within quotes or braces. See the examples at the end of this section for more informa-
tion.

Without this argument, the CLI displays summary information about all action points in the processes in the fo-
cus set. If you enter one ID, the CLI displays full information for it. If you enter more than one ID, the CLI displays
just summary information for each.

-at source-loc

Displays the action points at source-loc. See dbreak for the details on the form of source-loc.

-enabled

Shows only enabled action points.

-disabled

Shows only disabled action points.

-suppress

Effectively disables all existing action points. If the code is run, threads will not stop at any action points. Al-
though you can create new action points (and delete existing ones), the new actions points too will be effectively
disabled.

-unsuppress

Restores all action points to the state they were in when suppressed. Any new action points added are set as en-
abled.

CLI Commands / dactions 25

-enabled_blocks

When displaying the full information for an action point, only shows the enabled address blocks. (See example
below.)

-disabled_blocks

When displaying the full information for an action point, only shows the disabled address blocks. (See example
below.)

-block_images

When displaying the full information for an action point, shows the image name of each address block.

-block_lines

When displaying the full information for an action point, shows the source line of each address block.

-full

Forces the display of full information.

-save

Writes information about action points to a file.

-load

Restores action point information previously saved in a file.

filename

The name of the file into which TotalView reads and writes action point information. If you omit this file name, To-
talView writes action point information to a file named program_name.TVD.v3breakpoints, where pro-
gram_name is the name of your program.

Description
The dactions command displays information about action points in the processes in the current focus. If you do
not indicate a focus, the default focus is at the process level. The information is printed; it is not returned.

Using the Action Point Identifier

To get the action point identifier, just enter dactions with no arguments. You need this identifier to delete,
enable, and disable action points.

The identifier is returned when TotalView creates the action point. The CLI prints this ID when the thread stops at
an action point.

You can include action point identifiers as arguments to the command when more detailed information is
needed. The -enabled and -disabled options restrict output to action points in one of these states.

You cannot use the dactions command when you are debugging a core file or before TotalView loads
executables.

CLI Commands / dactions 26

Saving and Loading Action Points

The -save option writes action point information to a file so that either you or TotalView can restore your action
points later. The -load option immediately reads the saved file. Using the filename argument with either option
writes to or reads from this file. If you do not use this argument, TotalView names the file pro-

gram_name.TVD.v3breakpoints (where program_name is the name of your program), and writes it to the directory
in which your program resides.

The information saved includes expressions associated with the action point and whether the action point is
enabled or disabled. For example, if your program’s name is foo, TotalView writes this information to
foo.TVD.v3breakpoints.

NOTE >> TotalView does not save information about watchpoints.

If a file with the default name exists, TotalView can read this information when it starts your program. When
TotalView exits, it can create the default. For more information, see the File > Preference Action Points Page
information in the TotalView for HPC online Help.

Suppressing and Unsuppressing Action Points

Suppress effectively disables all existing action points. If the code is run, threads will not stop at any action points.
Although you can create new action points (and delete existing ones), the new action points too will be effectively
disabled. Unsuppress restores all action points to the state they were in when suppressed. Any new action points
added are set as enabled.

Command alias

Examples
ac -at 81

Displays information about the action points on line 81. (This example uses the alias instead of the full com-
mand name.) Here is the output from this command:
ac -at 81
1 shared action point for group 3:

1 addr=0x10001544 [arrays.F#81] Enabled
Share in group: true
Stop when hit: group

dactions 1 3

Displays information about action points 1 and 3, as follows:
2 shared action points for process 1:

Alias Definition Description

ac dactions Displays all action points

CLI Commands / dactions 27

 1 addr=0x100012a8 [arrays.F#56] Enabled
 3 addr=0x100012c0 [arrays.F#57] Enabled

If you have saved a list of action points as a string or as a Tcl list, you can use the eval command to process the
list’s elements.

For example:
d1.<> dactions
2 shared action points for group 3:
 3 [global_pointer_ref.cxx#52] Enabled
 4 [global_pointer_ref.cxx#53] Enabled
d1.<> set group1 "3 4"
3 4
d1.<> eval ddisable $group1
d1.<> ac
2 shared action points for group 3:
 3 [global_pointer_ref.cxx#52] Disabled
 4 [global_pointer_ref.cxx#53] Disabled

dfocus p1 dactions

Displays information about all action points defined in process 1.
dfocus p1 dactions -enabled

Displays information about all enabled action points in process 1
dactions n [-enabled_blocks|-disabled_blocks]

This extended example demonstrates the use of these two options.

Set a break point:
d1.<> b {bar<std::vector<int, std::allocator<int> > >::bar(int)}
Incorporating 10079 bytes of DWARF '.debug_info' information for tx_test2.cxx
(linenumber)...done
1

Entering dactions reports on only the top-level action point associated with this action point number:
d1.<> dactions
1 shared action point for group 3:
 1 [bar<std::vector<int,\ std::allocator<int>\ >\ >::bar(int)] Enabled

Entering dactions n reports on all action point instances (the address block) associated with this action point
number:
d1.<> dactions 1
1 shared action point for group 3:
 1 [bar<std::vector<int,\ std::allocator<int>\ >\ >::bar(int)] Enabled
 Address 0: [Enabled] bar<std::vector<int,std::allocator<int> > >::bar+0x12
(0x004013d2)
 Address 1: [Enabled] bar<std::vector<int,std::allocator<int> > >::bar+0x84
(0x00401444)

CLI Commands / dactions 28

 Address 2: [Disabled] bar<std::vector<double,std::allocator<double> >
>::bar+0x12 (0x00401496)
 Address 3: [Disabled] bar<std::vector<double,std::allocator<double> >
>::bar+0x86 (0x0040150a)
 Share in group: true
 Stop when hit: process

Using -enabled_blocks reports on only enabled action point instances (the address block) associated with
this action point number:
d1.<> dactions 1 -enabled_blocks
1 shared action point for group 3:
 1 [bar<std::vector<int,\ std::allocator<int>\ >\ >::bar(int) Enabled
 Address 0: [Enabled] bar<std::vector<int,std::allocator<int> > >::bar+0x12
(0x004013d2)
 Address 1: [Enabled] bar<std::vector<int,std::allocator<int> > >::bar+0x84
(0x00401444)
 Share in group: true
 Stop when hit: process

Using -disabled_blocks reports on only disabled action point instances (the address block) associated with
this action point number:
d1.<> dactions 1 -disabled_blocks
1 shared action point for group 3:
 1 [bar<std::vector<int,\ std::allocator<int>\ >\ >::bar(int)] Enabled
 Address 2: [Disabled] bar<std::vector<double,std::allocator<double> >
>::bar+0x12 (0x00401496)
 Address 3: [Disabled] bar<std::vector<double,std::allocator<double> >
>::bar+0x86 (0x0040150a)
 Share in group: true
 Stop when hit: process
d1.<>

You could use this information, for example, to enable the currently disabled action point addresses:
d1.<> denable -block 2 3

RELATED TOPICS

Setting Action Points in the TotalView for HPC User Guide
Saving Actions Points to a File in the TotalView for HPC User Guide
Action Point > Enable in the TotalView online Help
Action Point > Disable in the TotalView online Help
Action Point > Load All in the TotalView online Help
Action Point > Save All in the TotalView online Help
Action Point > Save As in the TotalView online Help
TV::auto_save_breakpoints Variable

CLI Commands / dassign 29

dassign Changes the value of a scalar variable

Format
dassign target value

Arguments
target

The name of a scalar variable in your program.

value

A source-language expression that evaluates to a scalar value. This expression can use the name of another
variable.

Description
The dassign command evaluates an expression and replaces the value of a variable with the evaluated result.
The location can be a scalar variable, a dereferenced pointer variable, or an element in an array or structure.

The default focus for the dassign command is thread. If you do not change the focus, this command acts upon the
thread of interest (TOI). If the current focus specifies a width that is wider than t (thread) and is not d (default), -
dassign iterates over the threads in the focus set and performs the assignment in each. In addition, if you use a
list with the dfocus command, the dassign command iterates over each list member.

The CLI interprets each symbol name in the expression according to the current context. Because the value of a
source variable might not have the same value across threads and processes, the value assigned can differ in
your threads and processes. If the data type of the resulting value is incompatible with that of the target location,
you must cast the value into the target’s type. (Casting is described in the TotalView for HPC User Guide.)

 Assigning Characters and Strings

• If you are assigning a character to a target, place the character value within single-quotation marks;
for example, ‘c’.

• You can use the standard C language escape character sequences; for example, \n and \t. These
escape sequences can also be in a character or string assignment.

• If you are assigning a string to a target, place the string within quotation marks. However, you must
escape the quotation marks so they are not interpreted by Tcl; for example, \"The quick brown
fox\".

If value contains an expression, the TotalView expression system evaluates the expression. See “Using the Evaluate
Window” in the TotalView for HPC User Guide for more information.

CLI Commands / dassign 30

Command alias

Examples
dassign scalar_y 102

Stores the value 102 in each occurrence of variable scalar_y for all processes and threads in the current set.

dassign i 10*10

Stores the value 100 in variable i.

dassign i i*i

Does not work and the CLI displays an error message. If i is a simple scalar variable, you can use the following
statements:

set x [lindex [capture dprint i] 2]
dassign i [expr $x * $x]

f {p1 p2 p3} as scalar_y 102

Stores the value 102 in each occurrence of variable scalar_y contained in processes 1, 2, and 3.

RELATED TOPICS

Changing the Value of Variables in the TotalView for HPC User Guide
Changing a Variable’s Data Type in the TotalView for HPC User Guide

Alias Definition Description

as dassign Changes a scalar variable’s value

CLI Commands / dattach 31

dattach Brings currently executing processes under TotalView control

Format
dattach [-g gid] [-r hname]

[-ask_attach_parallel | -no_attach_parallel]
[-replay | -no_replay]
[-go | -halt] [-rank num]
[-e] executable [pid-list]
[-c core-file | recording-file]
[-parallel_attach_subset subset-specification]

Arguments
-g gid

Sets the control group for the processes being added to group gid. This group must already exist. (The CLI
GROUPS variable contains a list of all groups. See “GROUPS” on page 255 for more information.)

-r hname

The host on which the process is running. The CLI launches a TotalView Server on the host machine if one is not
already running. See the Setting Up Parallel Debugging Sessions chapter of the TotalView for HPC User Guide for
information on the launch command used to start this server.

Setting a host sets it for all PIDs attached to in this command. If you do not name a host machine, the CLI uses
the local host.

-ask_attach_parallel

Specifies that TotalView should ask before attaching to parallel processes of a parallel job. The default is to auto-
matically attach to processes. For additional information, see the Parallel Page in the File > Preferences Dialog
Box in the in-product help.

-no_attach_parallel

Does not attach to any additional parallel processes in a parallel job. For additional information, see the Paral-
lel Page in the File > Preferences Dialog Box in the in-product help.

-replay | -no_replay

Enables or disables the ReplayEngine the next time the program is restarted.

-go | -halt

Specifies to explicitly continue or halt target execution after attaching. The default is to leave the target's run
state as it was before the attach.

-rank num

Specifies the rank associated with the executable being loaded. While this can be used independently, this op-
tion is best used with core files.

-e

Tells the CLI that the next argument is an executable file name. You need to use -e if the executable name begins
with a dash (-) or consists of only numeric characters. Otherwise, you can just provide the executable file name.

CLI Commands / dattach 32

executable

The name of the executable. Setting an executable here sets it for all PIDs being attached to in this
command. If you do not include this argument, the CLI tries to determine the executable file from the
process. Some architectures do not allow this to occur.

pid-list

A list of system-level process identifiers (such as a UNIX PID) naming the processes that TotalView
controls. All PIDs must reside on the same system, and they are placed in the same control group.

If you need to place the processes in different groups or attach to processes on more than one system, you
must use multiple dattach commands.

-c core-file | recording-file

Loads the core file core-file or the ReplayEngine recording-file, which restores a previous ReplayEngine debugging
session. If you use this option, you must also specify an executable name (executable).

-parallel_attach_subset subset_specification

Defines a list of MPI ranks to attach to when an MPI job is created or attached to. The list is space-separated;
each element can have one of three forms:

rank: specifies that rank only
rank1-rank2: specifies all ranks between rank1 and rank2, inclusive
rank1-rank2:stride: specifies every strideth rank between rank1 and rank2
A rank must be either a positive decimal integer or max (the last rank in the MPI job).
A subset_specification that is the empty string ("") is equivalent to 0-max.
For example:
dattach -parallel_attach_subset {1 2 4-6 7-max:2} mpirun

attaches to ranks 1, 2, 4, 5, 6, 7, 9, 11, 13,....

Description
The dattach command attaches to one or more processes, making it possible to continue process execution
under TotalView control.

NOTE >> TotalView Individual: You can attach only to processes running on the computer upon which
you installed TotalView Individual.

This command returns the TotalView process ID (DPID) as a string. If you specify more than one process in a com-
mand, the dattach command returns a list of DPIDs instead of a single value.

TotalView places all processes to which it attaches in one dattach command in the same control group. This lets
you place all processes in a multiprocess program executing on the same system in the same control group.

If a program has more than one executable, you must use a separate dattach command for each one.

If you have not loaded executable already, the CLI searches for it. The search includes all directories in the
-EXECUTABLE_PATH CLI variable.

CLI Commands / dattach 33

The process identifiers specified in the pid-list must refer to existing processes in the runtime environment.
TotalView attaches to the processes, regardless of their execution states.

Command alias

Examples
dattach mysys 10020

Loads debugging information for mysys and brings the process known to the run-time system as PID 10020
under TotalView control.

dattach -e 123 10020

Loads file 123 and brings the process known to the run-time system by PID 10020 under TotalView control.
dattach -g 4 -r Enterprise myfile 10020

Loads myfile that is executing on the host named Enterprise into group 4, and brings the process known to
the run-time system by PID 10020 under TotalView control. If a TotalView Server (tvdsvr) is not running on
Enterprise, the CLI will start it.

dattach my_file 51172 52006

Loads debugging information for my_file and brings the processes corresponding to PIDs 51172 and 52006
under TotalView control.

set new_pid [dattach -e mainprog 123]
dattach -r otherhost -g $CGROUP($new_pid) -e slave 456

Begins by attaching to mainprog running on the local host; then attaches to slave running on the otherhost
host and inserts them both in the same control group.

RELATED TOPICS

Using the Root Window in the TotalView for HPC User Guide
Attaching to Processes in the TotalView for HPC User Guide
Examining Core Files in the TotalView for HPC User Guide
File > New Program Command in the online Help
ddetach Command
TV::parallel_attach Variable

Alias Definition Description

at dattach Brings the process under TotalView control

CLI Commands / dbarrier 34

dbarrier Defines a process or thread barrier breakpoint

Format
Creates a barrier breakpoint at a source location

dbarrier breakpoint-expr [-stop_when_hit width][-stop_when_done width] [-pending]

Creates a barrier breakpoint at an address
dbarrier -address addr [-stop_when_hit width][-stop_when_done width] [-pending]

Arguments
breakpoint-expr

This argument can be entered in more than one way, usually using a line number or a pathname containing a file
name, function name, and line number, each separated by # characters (for example, file#line). For more infor-
mation, see Chapter 9, “Qualifying Symbol Names” in the TotalView for HPC User Guide.

For more information on breakpoint expressions, see dbreak on page 39, particularly Breakpoint Expres-
sions.

-address addr

The barrier breakpoint location as an absolute address in the address space of the program.

-stop_when_hit width

Identifies, using the width argument, any additional processes or threads to stop when stopping the thread that
arrives at a barrier point.

If you do not use this option, the value of BARRIER_STOP_ALL indicates what to stop.

The argument width may have one of the following three values:

group

Stops all processes in the control group when the execution reaches the barrier point.

process

Stops the process that hit the barrier.

none

Stops only the thread that hit the barrier; that is, the thread is held and all other threads continue
running. If you apply this width to a process barrier breakpoint, TotalView stops the process that hit
the breakpoint.

-stop_when_done width

After all processes or threads reach the barrier, releases all processes and threads held at the barrier. (Released
means that these threads and processes can run.) Setting this option stops additional threads contained in the
same group or process.

If you do not use this option, the value of BARRIER_STOP_WHEN_DONE indicates any other processes or
threads to stop.

CLI Commands / dbarrier 35

Use the width argument indicates other stopped processes or threads. You can enter one of the following three
values:

group

Stops the entire control group when the barrier is satisfied.

process

Stops the processes that contain threads in the satisfaction set when the barrier is satisfied.

none

Stops the satisfaction set. For process barriers, process and none have the same effect. This is the
default if the BARRIER_STOP_WHEN_DONE variable is none.

-pending

If TotalView cannot find a location to set the barrier, adding this option creates the barrier anyway. As shared li-
braries are read, TotalView checks to see if it can be set in the newly loaded library. For more information on this
option, see dbreak on page 39.

Description
The dbarrier command sets a process or thread barrier breakpoint that triggers when execution arrives at a
location. This command returns the ID of the newly created breakpoint.

The dbarrier command is most often used to synchronize a set of threads. The P/T set defines which threads the
barrier affects. When a thread reaches a barrier, it stops, just as it does for a breakpoint. The difference is that
TotalView prevents—that is, holds—each thread that reaches the barrier from responding to resume commands
(for example, dstep, dnext, and dgo) until all threads in the affected set arrive at the barrier. When all threads
reach the barrier, TotalView considers the barrier to be satisfied and releases these threads. Note that they are just
released, not continued. That is, TotalView leaves them stopped at the barrier. If you continue the process, those
threads stopped at the barrier also run along with any other threads that were not participating with the barrier.
After the threads are released, they can respond to resume commands.

If the process is stopped and then continued, the held threads, including the ones waiting on an unsatisfied bar-
rier, do not run. Only unheld threads run.

The satisfaction set for the barrier is determined by the current focus. If the focus group is a thread group,
TotalView creates a thread barrier:

• When a thread hits a process barrier, TotalView holds the thread’s process.

• When a thread hits a thread barrier, TotalView holds the thread; TotalView might also stop the
thread’s process or control group. While they are stopped, neither is held.

TotalView determines the default focus width based on the setting of the SHARE_ACTION_POINT variable. If it is
set to true, the default is group. Otherwise, it is process.

TotalView determines the processes and threads that are part of the satisfaction set by taking the intersection of
the share group with the focus set. (Barriers cannot extend beyond a share group.)

CLI Commands / dbarrier 36

The CLI displays an error message if you use an inconsistent focus list.

NOTE >> Barriers can create deadlocks. For example, if two threads participate in two different barriers,
each could be left waiting at different barriers that can never be satisfied. A deadlock can also
occur if a barrier is set in a procedure that is never invoked by a thread in the affected set. If a
deadlock occurs, use the ddelete command to remove the barrier, since deleting the barrier
also releases any threads held at the barrier.

The -stop_when_hit option specifies if other threads should stop when a thread arrives at a barrier.

The -stop_when_done option controls the set of additional threads that are stopped when the barrier is finally
satisfied. That is, you can also stop an additional collection of threads after the last expected thread arrives, and
all the threads held at the barrier are released. Normally, you want to stop the threads contained in the control
group.

If you omit a stop option, TotalView sets the default behavior by using the BARRIER_STOP_ALL and
BARRIER_STOP_WHEN_DONE variables. For more information, see the dset command.

Use the none argument for these options to not stop additional threads.

• If -stop_when_hit is none when a thread hits a thread barrier, TotalView stops only that thread; it
does not stop other threads.

• If -stop_when_done is none, TotalView does not stop additional threads, aside from the ones that
are already stopped at the barrier.

TotalView places the barrier point in the processes or groups specified in the current focus, as follows:

• If the current focus does not indicate an explicit group, the CLI creates a process barrier across the
share group.

• If the current focus indicates a process group, the CLI creates a process barrier that is satisfied
when all members of that group reach the barrier.

• If the current focus indicates a thread group, TotalView creates a thread barrier that is satisfied
when all members of the group arrive at the barrier.

The following example illustrates these differences. If you set a barrier with the focus set to a control group (the
default), TotalView creates a process barrier. This means that the -stop_when_hit value is set to process even
though you specified thread.
d1.<> dbarrier 580 -stop_when_hit thread
2
d1.<> ac 2
1 shared action point for group 3:
 2 addr=0x120005598 [../regress/fork_loop.cxx#580] Enabled (barrier)
 Share in group: true

CLI Commands / dbarrier 37

 Stop when hit: process
 Stop when done: process
 process barrier; satisfaction set = group 1

However, if you create the barrier with a specific workers focus, the stop when hit property remains set to thread:
1.<> baw 580 -stop_when_hit thread
1
d1.<> ac 1
1 unshared action point for process 1:
 1 addr=0x120005598 [../regress/fork_loop.cxx#580]
 Enabled (barrier)
 Share in group: false
 Stop when hit: thread
 Stop when done: process
 thread barrier; satisfaction set = group 2

Command alias

Examples
dbarrier 123

Stops each process in the control group when it arrives at line 123. After all processes arrive, the barrier is sat-
isfied, and TotalView releases all processes.

dfocus {p1 p2 p3} dbarrier my_proc

Holds each thread in processes 1, 2, and 3 as it arrives at the first executable line in procedure my_proc. After
all threads arrive, the barrier is satisfied and TotalView releases all processes.

dfocus gW dbarrier 642 -stop_when_hit none

Sets a thread barrier at line 642 in the workers group. The process is continued automatically as each thread
arrives at the barrier. That is, threads that are not at this line continue running.

Alias Definition Description

ba dbarrier Defines a barrier.

baw {dfocus pW dbarrier
-stop_when_done process}

Creates a thread barrier across the worker threads in the
process of interest (POI). TotalView sets the set of threads
stopped when the barrier is satisfied to the process that
contains the satisfaction set.

BAW {dfocus gW dbarrier
-stop_when_done group}

Creates a thread barrier across the worker threads in the
share group of interest. The set of threads stopped when
the barrier is satisfied is the entire control group.

CLI Commands / dbarrier 38

RELATED TOPICS

Setting Breakpoints and Barriers in the TotalView for HPC User Guide
Barrier Points in the TotalView for HPC User Guide
Using Groups, Processes, and Threads in the TotalView for HPC User Guide
Creating a Satisfaction Set in the TotalView for HPC User Guide
Holding and Releasing Processes and Threads in the TotalView for HPC User Guide
Action Point > Set Barrier Command in the online Help
dactions Command
dbreak Command
denable Command
ddisable Command

CLI Commands / dbreak 39

dbreak Defines a breakpoint

Format
Creates a breakpoint at a source location

dbreak breakpoint-expr [-p | -g | -t] [[-l lang] -e expr] [-pending]

Creates a breakpoint at an address
dbreak -address addr [-p | -g | -t] [[-l lang] -e expr] [-pending]

Arguments
breakpoint-expr

This argument can be entered in more than one way, usually using a line number or a pathname containing a file
name, function name, and line number, each separated by # characters (for example, file#line). For more infor-
mation, see Chapter 9, “Qualifying Symbol Names” in the TotalView for HPC User Guide.

Breakpoint expressions are discussed later in this section.

-address addr

The breakpoint location specified as an absolute address in the address space of the program.

-p

Stops the process that hit this breakpoint. You can set this option as the default by setting the STOP_ALL vari-
able to process. See dset on page 135 for more information.

-g

Stops all processes in the process’s control group when execution reaches the breakpoint. You can set this op-
tion as the default by setting the STOP_ALL variable to group. See dset on page 135 for more information.

-t

Stops the thread that hit this breakpoint. You can set this option as the default by setting the STOP_ALL variable
to thread. See dset on page 135 for more information.

-l lang

Sets the programming language used when you are entering expression expr. Enter either: c, c++, f7, f9, or asm
(for C, C++, FORTRAN 77, Fortran 9x, and assembler, respectively). If you do not specify a language, TotalView as-
sumes the language in which the routine at the breakpoint was written.

-e expr

When the breakpoint is hit, TotalView evaluates expression expr in the context of the thread that hit the break-
point. The language statements and operators you can use are described in Chapter 8, “Setting Action Points” in
the TotalView for HPC User Guide.

-pending

If TotalView cannot find a location to set the breakpoint, adding this option creates the breakpoint anyway. As
shared libraries are read, TotalView checks to see if it can be set in the newly loaded library.

CLI Commands / dbreak 40

Description
The dbreak command defines a breakpoint or evaluation point triggered when execution arrives at the specified
location, stopping each thread that arrives at a breakpoint. This command returns the ID of the new breakpoint. If
a line does not contain an executable statement, the CLI cannot set a breakpoint.

If you try to set a breakpoint at a line at which TotalView cannot stop execution, it sets one at the nearest follow-
ing line where it can halt execution.

Specifying a procedure name without a line number sets an action point at the beginning of the procedure. If you
do not name a file, the default is the file associated with the current source location.

The -pending Option

If, after evaluating the breakpoint expression, TotalView determines the location represented by the expression
does not exist, it can still set a breakpoint if you use the -pending option. This option checks shared libraries that
are subsequently loaded to see if a breakpoint can be set. If a location is found, it is set. Stated in a different way,
TotalView normally creates and sets a breakpoint at the same time. The option tells it to separate these two
actions.

When the displaying information on a breakpoint’s status, the CLI displays the location where execution actually
stops.

A stop group Breakpoint

If the CLI encounters a stop group breakpoint, it suspends each process in the group as well as the process that
contains the triggering thread. The CLI then shows the identifier of the triggering thread, the breakpoint location,
and the action point identifier.

Default Focus Width

TotalView determines the default focus width based on the setting of the SHARE_ACTION_POINT variable. If set
to true, the default is group. Otherwise, it is process.

Breakpoint Expressions

Breakpoint expressions, also called breakpoint specifications, are used in both breakpoints and barrier points, so
this discussion is relevant to both.

One possibly confusing aspect of using expressions is that their syntax differs from that of Tcl. This is because you
need to embed code written in Fortran, C, or assembler in Tcl commands. In addition, your expressions often
include TotalView built-in functions. For example, if you want to use the TotalView $tid built-in function, you need
to type it as \$tid.

A breakpoint expression can evaluate to more than one source line. If the expression evaluates to a function that
has multiple overloaded implementations, TotalView sets a breakpoint on each of the overloaded functions.

CLI Commands / dbreak 41

Set a breakpoint at the line specified by breakpoint-expr or the absolute address addr. You can enter a breakpoint
expression that are sets of addresses at which the breakpoint is placed, and are as follows:

• [[##image#]filename#]line_number

Indicates all addresses at this line number.

• A function signature; this can be a partial signature.

Indicates all addresses that are the addresses of functions matching signature. If parts of a function signature
are missing, this expression can match more than one signature. For example, “f” matches “f(void)” and
“A::f(int)“. You cannot specify a return type in a signature.

• class class_name

Specifies that the breakpoint should be planted in all member functions of class class_name.

• virtual class::signature

Specifies that the breakpoint should be planted in all virtual member functions that match signature and are
in the class or derived from the class.

Command alias

Examples
For all examples, assume that the current process set is d2.< when the breakpoint is defined.
dbreak 12

Suspends process 2 when it reaches line 12. However, if the STOP_ALL variable is set to group, all other pro-
cesses in the group are stopped. In addition, if SHARE_ACTION_POINT is true, the breakpoint is placed in every
process in the group.

dbreak -address 0x1000764

Suspends process 2 when execution reaches address 0x1000764.
b 12 -g

Suspends all processes in the current control group when execution reaches line 12.
dbreak 57 -l f9 -e {goto $63}

Causes the thread that reaches the breakpoint to transfer to line 63. The host language for this statement is
Fortran 90 or Fortran 95.

dfocus p3 b 57 -e {goto $63}

In process 3, sets the same evaluation point as the previous example.

Alias Definition Description

b break Sets a breakpoint

bt {dbreak t} Sets a breakpoint only on the thread of interest

CLI Commands / dbreak 42

RELATED TOPICS

Action Point > Properties Command in the online Help
Action Point > At Location Command in the online Help
Setting Breakpoints and Barriers in the TotalView User Guide
Defining Evaluation Points and Conditional Breakpoints in the TotalView User Guide
Using Groups, Processes, and Threads in the TotalView for HPC User Guide
dactions Command
dbreak Command
denable Command
ddisable Command

CLI Commands / dcache 43

dcache Clears the remote library cache

Format
dcache -flush

Arguments
-flush

Deletes all files from the library cache that are not currently being used.

Description
The dcache -flush command removes the library files that it places in your cache, located in the .TotalView/lib_-
cache subdirectory in your home directory.

When you are debugging programs on remote systems that use libraries that either do not exist on the host or
whose version differ, TotalView copies the library files into your cache. This cache can become large.

TotalView automatically deletes cached library files that it hasn't used in the last week. If you need to reclaim addi-
tional space at any time, use this command to remove files not currently being used.

RELATED TOPICS

Initializing TotalView in the TotalView for HPC User Guide

CLI Commands / dcalltree 44

dcalltree Displays parallel backtrace data

Format
dcalltree [-data pbv_data_array] [-show_details] [-sort columns] [-hide_backtrace] [-save_as_csv filename] [-
save_as_dot filename]

Arguments
-data pbv_data_array

Captures the data from calling dcalltree in an associative Tcl array rather than writing the data to the console.

-show_details

Displays the data with all processes and threads displayed.

-hide_backtrace

Displays the data with only root and leaf nodes displayed.

-sort column

Sorts the data display based on the data in a particular column. The possible arguments are Processes, Location,
PC, Host, Rank, ID, and Status.

-save_as_csv filename

Saves the backtrace data as a file of comma-separated values under the name filename.

-save_as_dot filename

Saves the backtrace data as a dot file under the name filename. Dot is a plain text graph description language.

Description
The TotalView GUI has a Parallel Backtrace View window that displays the state of every process and thread in a
parallel job. The dcalltree command makes this same data available either in the console window, or, with the -
data switch, as a Tcl associative array.

The associative array has the following format:
{
 {
 Key <value>
 Level <value>
 Processes <value>
 Location <value>
 PC <value>
 Host <value>
 Rank <value>
 ID <value>
 Status <value>
 }
 {
 ...
 }

CLI Commands / dcalltree 45

}

The -show_details and -hide_backtrace switches pull in opposite directions. The -show_details switch shows
the maximum data, including all processes and threads. The -hide_backtrace command hides any intermediate
nodes, displaying only the root and leaf nodes. If used together, this results in a display of root and leaf nodes
and all threads. This reduction can help to de-clutter the data display if the number of processes and threads is
large.

Examples
dfocus group dcalltree

This example first changes the focus to the group using dfocus, then calls dcalltree with no switches. Note
that the ID column is a compressed ptlist describing process and thread count, range, and IDs. See Com-
pressed List Syntax (ptlist) for more information.

Processes Location PC Host Rank ID Status
--------- -------- -- ---- ---- -- ------
12 / ... <local> -1 4:12[p1-4.1-3] ...
 4 _start 0x004011b9 <local> -1 4:4[p1-4.1] ...
 4 __libc_start_main 0x2b3425358184 <local> -1 4:4[p1-4.1] ...
 4 main 0x004035bf <local> -1 4:4[p1-4.1] ...
 4 fork_wrapper 0x00402790 <local> -1 4:4[p1-4.1] ...
 4 forker 0x0040274b <local> -1 4:4[p1-4.1] ...
 4 snore 0x00401c11 <local> -1 4:4[p1-4.1] ...
 1 snore#681 0x00401c05 <local> -1 2.1 - 47502964801120 Stopped
 1 snore#705 0x00401c9b <local> -1 4.1 - 47502964801120 Breakpoint
 2 wait_a_while 0x00401a09 <local> -1 2:2[p1.1, p3.1] Stopped
 2 __select_nocancel 0x2b34253f56e2 <local> -1 2:2[p1.1, p3.1] Stopped
 8 start_thread 0x2b3424db1143 <local> -1 4:12[p1-4.1-3] ...
 8 snore_or_leave 0x004021cb <local> -1 4:8[p1-4.2-3] ...
 8 snore ... <local> -1 4:8[p1-4.2-3] ...
 1 snore#681 0x00401c05 <local> -1 1.2 - 1082132800 Breakpoint
 1 snore#681 0x00401c05 <local> -1 1.3 - 1090525504 Stopped
 1 snore#705 0x00401c9b <local> -1 2.2 - 1082132800 Breakpoint
 1 snore#681 0x00401c05 <local> -1 2.3 - 1090525504 Stopped
 1 snore#681 0x00401c05 <local> -1 4.2 - 1082132800 Stopped
 1 snore#681 0x00401c05 <local> -1 4.3 - 1090525504 Stopped
 2 wait_a_while ... <local> -1 1:2[p3.2-3] ...

dcalltree -show_details

By adding the -show_details, switch, you get more complete output:
Processes Location PC Host Rank ID Status
--------- -------- -- ---- ---- -- ------
12 / ... <local> -1 4:12[p1-4.1-3] ...
 4 _start 0x004011b9 <local> -1 4:4[p1-4.1] ...
 4 __libc_start_main 0x2b3425358184 <local> -1 4:4[p1-4.1] ...

CLI Commands / dcalltree 46

 4 main 0x004035bf <local> -1 4:4[p1-4.1] ...
 4 fork_wrapper 0x00402790 <local> -1 4:4[p1-4.1] ...
 4 forker 0x0040274b <local> -1 4:4[p1-4.1] ...
 4 snore 0x00401c11 <local> -1 4:4[p1-4.1] ...
 1 snore#681 0x00401c05 <local> -1 2.1 - 47502964801120 Stopped
 1 snore#705 0x00401c9b <local> -1 4.1 - 47502964801120 Breakpoint
 2 wait_a_while 0x00401a09 <local> -1 2:2[p1.1, p3.1] Stopped
 2 __select_nocancel 0x2b34253f56e2 <local> -1 2:2[p1.1, p3.1] Stopped
 1 __select_nocancel 0x2b34253f56e2 <local> -1 1.1 - 47502964801120 Stopped
 1 __select_nocancel 0x2b34253f56e2 <local> -1 3.1 - 47502964801120 Stopped
 8 start_thread 0x2b3424db1143 <local> -1 4:12[p1-4.1-3] ...
 8 snore_or_leave 0x004021cb <local> -1 4:8[p1-4.2-3] ...
 8 snore ... <local> -1 4:8[p1-4.2-3] ...
 1 snore#681 0x00401c05 <local> -1 1.2 - 1082132800 Breakpoint
 1 snore#681 0x00401c05 <local> -1 1.3 - 1090525504 Stopped
 1 snore#705 0x00401c9b <local> -1 2.2 - 1082132800 Breakpoint
 1 snore#681 0x00401c05 <local> -1 2.3 - 1090525504 Stopped
 1 snore#681 0x00401c05 <local> -1 4.2 - 1082132800 Stopped
 1 snore#681 0x00401c05 <local> -1 4.3 - 1090525504 Stopped
 2 wait_a_while ... <local> -1 1:2[p3.2-3] ...
 1 __select_nocancel 0x2b34253f56e2 <local> -1 3.3 - 1090525504 Stopped
 1 wait_a_while#580 0x004019e9 <local> -1 3.2 - 1082132800 Breakpoint

dcalltree -show_details -hide_backtrace

Adding the -hide_backtrace switch reduces the clutter somewhat:
Processes Location PC Host Rank ID Status
--------- -------- -- ---- ---- -- ------
12 / ... <local> -1 4:12[p1-4.1-3] ...
 1 __select_nocancel 0x2b34253f56e2 <local> -1 3.3 - 1090525504 Stopped
 1 __select_nocancel 0x2b34253f56e2 <local> -1 1.1 - 47502964801120 Stopped
 1 __select_nocancel 0x2b34253f56e2 <local> -1 3.1 - 47502964801120 Stopped
 1 snore#681 0x00401c05 <local> -1 2.1 - 47502964801120 Stopped
 1 snore#705 0x00401c9b <local> -1 4.1 - 47502964801120 Breakpoint
 1 snore#681 0x00401c05 <local> -1 1.2 - 1082132800 Breakpoint
 1 snore#681 0x00401c05 <local> -1 1.3 - 1090525504 Stopped
 1 snore#705 0x00401c9b <local> -1 2.2 - 1082132800 Breakpoint
 1 snore#681 0x00401c05 <local> -1 2.3 - 1090525504 Stopped
 1 snore#681 0x00401c05 <local> -1 4.2 - 1082132800 Stopped
 1 snore#681 0x00401c05 <local> -1 4.3 - 1090525504 Stopped
 1 wait_a_while#580 0x004019e9 <local> -1 3.2 - 1082132800 Breakpoint

Here is code to get the location of all threads that are at a breakpoint:
dcalltree -data pbv_data_array -show_details
foreach { data_record } [array get pbv_data_array] {

CLI Commands / dcalltree 47

 set print_location 0
 set break_location
 foreach {title value} $data_record {
 if {$title == "Location"} {
 set break_location $value
 }
 if {$value == "Breakpoint"} {
 set print_location 1
 }
 if {1 == $print_location} {
 puts stdout "Breakpoint found at $break_location"
 set print_location 0
 }
 }
}

RELATED TOPICS

Parallel Backtrace View in the TotalView User Guide

CLI Commands / dcheckpoint 48

dcheckpoint Creates a checkpoint image of processes (IBM RS6000 only)

Format
Creates a checkpoint on IBM RS6000 machines.

dcheckpoint [-by process_set] [-delete | -halt]

Arguments
-by process_set

This option can take two possible values:

pe

Checkpoint the Parallel Environment job. This value is the default.

pid

Checkpoint the focus process.

-delete

Processes exit after the checkpoint occurs.

-halt

Processes halt after the checkpoint occurs.

Description
The dcheckpoint command saves program and process information to a file. This information includes process
and group IDs. Later, use the drestart command to restart the program.

NOTE >> This command does not save TotalView breakpoint information. To save breakpoints, use the
dactions command.

By default, TotalView checkpoints the Parallel Environment job. To checkpoint a particular process, make that pro-
cess the focus and use the pid argument to -by. If the focus is a group that contains more than one process, the
CLI displays an error -message.

By default, the checkpointed processes stop, allowing you to investigate a -program’s state at the checkpointed
position. You can modify this behavior with the -delete and -halt options.

When you request a checkpoint:

• TotalView temporarily stops (that is, parks) the processes that are being checkpointed. Parking
ensures that the processes do not run freely after a dcheckpoint or drestart operation. (If they
did, your code would begin running before you could control it.)

• The CLI detaches from processes before they are checkpointed. After checkpointing, the CLI
automatically reattaches to them.

CLI Commands / dcheckpoint 49

Examples
dcheckpoint

Checkpoints the Parallel Environment job. All associated processes stop.
f3 dcheckpoint -by pid

Checkpoints process 3. Process 3 stops.
dcheckpoint -by pe -halt

Checkpoints the Parallel Environment job. All associated processes halt.

RELATED TOPICS

Tools > Create Checkpoint Command in the online Help
Tools > Restart Checkpoint Command in the online Help
drestart Command

CLI Commands / dcont 50

dcont Continues execution and waits for execution to stop

Format
dcont

Arguments
This command has no arguments

Description
The dcont command continues all processes and threads in the current focus, and then waits for all of them to
stop.

This command is a Tcl macro, with the following definition:
proc dcont {args} {uplevel dgo; "dwait $args" }

You often want this behavior in scripts. You seldom want to do interactively.

NOTE >> You can interrupt this action using Ctrl+C to stop process execution.

A dcont command completes when all threads in the focus set of processes stop executing. If you do not indi-
cate a focus, the default focus is the process of interest (POI).

Command alias

Examples
dcont

Resumes execution of all stopped threads that are not held and which belong to processes in the current
focus. (This command does not affect threads that are held at barriers.) The command blocks further input
until all threads in all target processes stop. After the CLI displays its prompt, you can enter additional com-
mands.

dfocus p1 dcont

Resumes execution of all stopped threads that are not held and that belong to process 1. The CLI does not
accept additional commands until the process stops.

dfocus {p1 p2 p3} co

Resumes execution of all stopped threads that are not held and that belong to processes 1, 2, and 3.

Alias Definition Description

co dcont Resume

CO {dfocus g dcont} Resume at group-level

CLI Commands / dcont 51

CO

Resumes execution of all stopped threads that are not held and that belong to the current group.

RELATED TOPICS

Starting Processes and Threads in the TotalView for HPC User Guide
dgo Command
dwait Command

CLI Commands / dcuda 52

dcuda Manages GPU threads

Format
dcuda block [(Bx,By,Bz)]
dcuda thread [(Tx,Ty, Tz)]
dcuda kernel
dcuda device [<n>]
dcuda sm [<n>]
dcuda warp [<n>]
dcuda lane [<n>]
dcuda info-system
dcuda info-device
dcuda info-sm
dcuda info-warp
dcuda info-lane
dcuda focus (Bx,By,Bz),(Tx,Ty, Tz)
dcuda hwfocus <D/S/W/L>

Arguments
Bx,By, Bz

The x, y and z block indices

Tx, Ty, Tz

The x,y, and z thread indices

D/S/W/L

The coordinates defining the physical space of the hardware:

D: device number
S: streaming multiprocessor (SM)
W: warp (WP) number on the SM
L: lane (LN) number on the warp

Description
The dcuda commands allow you to manage and view GPU threads, in either the logical coordinate space of block
and thread indices (<<<(Bx,By,Bz),(Tx,Ty,Tz)>>>) or the physical coordinate space that defines the hardware (the
device number, the streaming multiprocessor number on the device, the warp number on the SM, and lane num-
ber on the warp).

dcuda block [(Bx,By,Bz)]

• With no arguments, shows the current CUDA block

• With a block argument of the form (Bx,By,Bz), changes the CUDA focus to that block. Omitted
parameters (i.e., Bz) are unchanged.

CLI Commands / dcuda 53

dcuda thread [(Tx,Ty,Tz)]

• With no arguments, shows the current CUDA thread.

• With a thread argument of the form (Tx,Ty,Tz), changes the CUDA focus to that thread. Omitted
parameters (i.e., Ty and Tz, or just Tz) are unchanged.

dcuda kernel

Displays the logical and hardware coordinates of the current CUDA context.

dcuda device [<n>]

• With no arguments, shows the current CUDA device.

• With a numeric argument, changes the CUDA device focus to that device.

dcuda sm [<n>]

• With no arguments, shows the current CUDA SM (streaming multiprocessor).

• With a numeric argument, changes the CUDA SM focus to that SM.

dcuda warp [<n>]

• With no arguments, shows the current CUDA warp.

• With a numeric argument, changes the CUDA warp focus to that warp.

dcuda lane [<n>]

• With no arguments, shows the current CUDA lane.

• With a numeric argument, changes the CUDA lane focus to that lane.

dcuda info-system

Displays the CUDA devices in the system.

dcuda info-device

Displays currently running SMs in the current device.

dcuda info-sm

Displays valid warps in the current SM.

dcuda info-warp

Displays valid lanes in the current warp.

dcuda info-lane

Displays the current lane.

CLI Commands / dcuda 54

dcuda focus (Bx,By, Bz),(Tx,Ty,Tz)

Changes the focus via CUDA logical coordinates of the form <<<(Bx,By,Bz),(Tx,Ty,Tz)>>>.

The following abbreviations are also accepted:
<<<Tx>>>
<<<(Tx)>>>
<<<(Tx,Ty)>>>
<<<(Tx,Ty,Tz)>>>
<<<(Bx),(Tx)>>>
<<<(Bx),(Tx,Ty)>>>
<<<(Bx),(Tx,Ty,Tz)>>>
<<<(Bx,By),(Tx)>>>
<<<(Bx,By),(Tx,Ty)>>>
<<<(Bx,By),(Tx,Ty,Tz)>>>
<<<(Bx,By,Bz),(Tx)>>>
<<<(Bx,By,Bz),(Tx,Ty)>>>
<<<(Bx,By,Bz),(Tx,Ty,Tz)>>>

Angle brackets are optional, but must be balanced.

dcuda hwfocus <D/S/W/L>

Changes the focus via CUDA hardware coordinates of the form D/S/W/L, S/W/L, W/L, or L.

Command alias

Examples

Displaying device information
dcuda info-device

Output:
DEV: 0/1 Device Type: gt200 SM Type: sm_13 SM/WP/LN: 30/32/32 Regs/LN: 128
SM: 0/30 valid warps: 0x0000000000000001

dcuda info-sm

Output:
DEV: 0/1 Device Type: gt200 SM Type: sm_13 SM/WP/LN: 30/32/32 Regs/LN: 128
SM: 0/30 valid warps: 0x0000000000000001
WP: 0/32 valid/active/divergent lanes: 0x0000000f/0x0000000f/0x00000000 block:
(0,0,0)

dcuda info-warp

Output:

Alias Definition Description

cuda dcuda Writes out the focus thread, as in dcuda kernel.

CLI Commands / dcuda 55

DEV: 0/1 Device Type: gt200 SM Type: sm_13 SM/WP/LN: 30/32/32 Regs/LN: 128
SM: 0/30 valid warps: 0x0000000000000001
WP: 0/32 valid/active/divergent lanes: 0x0000000f/0x0000000f/0x00000000 block:
(0,0,0)
LN: 0/32 pc=0x000000001ef2efa8 thread: (0,0,0)
LN: 1/32 pc=0x000000001ef2efa8 thread: (1,0,0)
LN: 2/32 pc=0x000000001ef2efa8 thread: (0,1,0)
LN: 3/32 pc=0x000000001ef2efa8 thread: (1,1,0)

dcuda info-lane

Output:
DEV: 0/1 Device Type: gt200 SM Type: sm_13 SM/WP/LN: 30/32/32 Regs/LN: 128
SM: 0/30 valid warps: 0x0000000000000001
WP: 0/32 valid/active/divergent lanes: 0x0000000f/0x0000000f/0x00000000 block:
(0,0,0)

Displaying the focus
dcuda warp sm

Output:
sm 0 warp 0

dcuda lane device

Output:
device 0 lane 3

dcuda thread

Output:
thread (1,1,0)

dcuda kernel

Output:
device 0, sm 0, warp 0, lane 3, block (0,0,0), thread (1,1,0)

Changing the focus

In these commands, note that TotalView assigns CUDA threads a negative thread ID. In the examples here, the
CUDA thread is labeled "1.-1".

dcuda thread (1,1,0)

Changes the CUDA focus to the thread represented by logical coordinates 1,1,0.

CLI Commands / dcuda 56

New CUDA focus (1.-1): device 0, sm 0, warp 0, lane 3, block (0,0,0), thread
(1,1,0)

dcuda lane 2

Changes the CUDA focus to lane 2.
New CUDA focus (1.-1): device 0, sm 0, warp 0, lane 2, block (0,0,0), thread
(0,1,0)

dcuda lane 1 sm 0

Changes the CUDA focus to lane 1 and to SM 0.
New CUDA focus (1.-1): device 0, sm 0, warp 0, lane 1, block (0,0,0), thread
(1,0,0)

dcuda thread 0,0,0

Changes the CUDA focus to thread 0,0,0.
New CUDA focus (1.-1): device 0, sm 0, warp 0, lane 0, block (0,0,0), thread
(0,0,0)

dcuda thread 1

Changes the CUDA focus to thread 1,0,0.
New CUDA focus (1.-1): device 0, sm 0, warp 0, lane 1, block (0,0,0), thread
(1,0,0)

RELATED TOPICS

Using the CUDA Debugger in the TotalView for HPC User Guide

CLI Commands / ddelete 57

ddelete Deletes action points

Format
Deletes the specified action points

ddelete action-point-list

Deletes all action points
ddelete -a

Arguments
action-point-list

A list of the action points to delete.

-a

Deletes all action points in the current focus.

Description
The ddelete command permanently removes one or more action points. If you delete a barrier point, the CLI
releases the processes and threads held at it.

 If you do not indicate a focus, the default focus is the process of interest (POI).

Command alias

Examples
ddelete 1 2 3

Deletes action points 1, 2, and 3.
ddelete -a

Deletes all action points associated with processes in the current focus.
dfocus {p1 p2 p3 p4} ddelete -a

Deletes all the breakpoints associated with processes 1 through 4. Breakpoints associated with other threads
are not affected.

dfocus a de -a

Deletes all action points known to the CLI.

Alias Definition Description

de ddelete Deletes action points

CLI Commands / ddelete 58

RELATED TOPICS

Action Point > Delete All Command in the online Help

CLI Commands / ddetach 59

ddetach Detaches from processes

Format
ddetach

Arguments
This command has no arguments.

Description
The ddetach command detaches the CLI from all processes in the current focus. This undoes the effects of attach-
ing the CLI to a running process; that is, the CLI releases all control over the process, eliminates all debugger state
information related to it (including action points), and allows the process to continue executing in the normal run-
time environment.

You can detach any process controlled by the CLI; the process being detached need not have been loaded with a
dattach command.

After this command executes, you are no longer able to access program variables, source location, action point
settings, or other information related to the detached process.

If a single thread serves as the set, the CLI detaches the process that contains the thread. If you do not indicate a
focus, the default focus is the process of interest (POI).

Command alias

Examples
ddetach

Detaches the process or processes that are in the current focus.
dfocus {p4 p5 p6} det

Detaches processes 4, 5, and 6.
dfocus g2 det

Detaches all processes in the control group associated with process 2.

Alias Definition Description

det ddetach Detaches from processes

CLI Commands / ddetach 60

RELATED TOPICS

Detaching from Processes in the TotalView for HPC User Guide
dattach Command

CLI Commands / ddisable 61

ddisable Temporarily disables action points

Format
Disables the specified action points

ddisable action-point-list [-block number-list]

Disables all action points
ddisable -a

Arguments
action-point-list

A list of the action points to disable.

-block number-list

If you set a breakpoint on a line that is ambiguous, use this option to identify the instances to disable. Obtain a
list of these numbers using the dactions command.

-a

Disables all action points.

Description
The ddisable command temporarily deactivates action points. To delete an action point, use ddelete.

You can explicitly name the IDs of the action points to disable or you can disable all action points.

 If you do not indicate a focus, the default focus is the process of interest (POI).

Command alias

Examples
ddisable 3 7

Disables the action points with IDs 3 and 7.
di -a

Disables all action points in the current focus.
dfocus {p1 p2 p3 p4} ddisable -a

Disables all action points associated with processes 1 through 4. Action points associated with other processes
are not affected.

Alias Definition Description

di ddisable Temporarily disables action points

CLI Commands / ddisable 62

di 1 -block 3 4

Disables the action points associated with blocks 3 and 4. That is, one logical action point can map to more
than one actual action point if you set the action point at an ambiguous location.

ddisable 1 2 -block 3 4

Disables the action points associated with blocks 3 and 4 in action points 1 and 2.

RELATED TOPICS

Action Point > Disable Command in the online Help

CLI Commands / ddlopen 63

ddlopen Dynamically loads shared object libraries

Format
Dynamically loads a shared object library

ddlopen [-now | -lazy] [-local | -global] [-mode int] filespec

Displays information about shared object libraries
ddlopen [-list { dll-ids...}]

Arguments
-now

Includes RTLD_NOW in the dlopen command’s mode argument. (Now immediately resolves all undefined
symbols.)

-lazy

Includes RTLD_LAZY in the dlopen command’s mode argument. (Lazy tries to resolve unresolved symbols as
code is executed, rather than now.)

-local

Includes RTLD_GLOBAL in the dlopen command’s mode argument. (Local makes library symbols unavailable
to libraries that the program subsequently loads.) This argument is the default.

-global

Includes RTLD_LOCAL in the dlopen command’s mode argument. (Global makes library symbols available to li-
braries that the program subsequently loads.)

-mode int

The integer arguments are ORed into the other mode flags passed to the dlopen() function. (See your operat-
ing system’s documentation for information on these flags.)

filespec

The shared library to load.

-list

Displays information about the listed DLL IDs. If you omit this option or use the -list without a DLL ID list, To-
talView displays information about all DLL IDs.

dll-ids

A list of one or more DLL IDs.

Description
The ddlopen command dynamically loads shared object libraries, or lists the shared object libraries loaded using
this or the Tools > Debugger Loaded Libraries command.

For a filespec argument, TotalView performs a dlopen operation on this file in each process in the current P/T set.
On the IBM AIX operating system, you can add a parenthesized library module name to the end of the filespec
argument.

CLI Commands / ddlopen 64

NOTE >> dlopen(3), dlerror(3), and other related routines are not part of the default runtime libraries
on AIX, Solaris, and Red Hat Linux. Instead, they are in the libdl system library. Consequently,
you must link your program using the -ldl option if you want to use the ddlopen command.

The -now and -lazy options indicate whether dlopen immediately resolves unresolved symbol references or
defers resolving them until the target program references them. If you don’t use either option, TotalView uses
your operating system’s default. (Not all platforms support both alternatives. For example, AIX treats RTLD_LAZY
the same as RTLD_NOW).

The -local and -global options determine if symbols from the newly loaded library are available to resolve refer-
ences. If you don’t use either option, TotalView uses the target operating system's default. (Linux supports only
the -global option; if you don’t specify an option, the default is the -local option.)

After entering this command, the CLI waits until all dlopen calls complete across the current focus. The CLI then
returns a unique dll-id and displays its prompt, which means that you can enter additional CLI commands. How-
ever, if an event occurs (for example, a $stop, a breakpoint in user function called by static object constructors, a
SEGV, and so on), the ddlopen command throws an exception that describes the event. The first exception sub-
code in the errorCode variable is the DLL ID for the suspended dlopen() function call.

If an error occurs while executing the dlopen() function, TotalView calls the dlerror() function in the target pro-
cess, and then prints the returned string.

A DLL ID describes a shareable object that was dynamically loaded by the ddlopen command. Use the TV:dll
command to obtain information about and delete these objects. If all dlopen() calls return immediately, the
ddlopen command returns a unique DLL ID that you can also use with the TV::dll command.

Every DLL ID is also a valid breakpoint ID, representing the expressions used to load and unload DLLs; you can
manipulate these breakpoints using the TV::expr command.

If you do not use a filespec argument or if you use the -list option without using a DLL ID argument, TotalView
prints information about objects loaded using ddlopen. If you do use a DLL ID argument, TotalView prints infor-
mation about DLLs loaded into all processes in the focus set; otherwise, TotalView prints information about just
those DLLs. The ddlopen command prints its output directly to the console.

The ddlopen command calls the dlopen() function and it can change the string returned by the dlerror() func-
tion. It can also change the values returned to the application by any subsequent dlerror() call.

Examples
ddlopen "mpistat.so"

Loads mpistat.so library file. The returned argument lists the process into which TotalView loaded the library.
dfocus g ddlopen "mpistat.so(mpistat.o)"

Loads the module mpistat.o in the AIX DLL library mpistat.so into all members of the current process’s con-
trol group.

CLI Commands / ddlopen 65

ddlopen -lazy -global "mpistat.so"

Loads mpistat.so into process 1, and does not resolve outstanding application symbol requests to point to
mpistat. However, TotalView uses the symbols in this library if it needs them.

ddlopen

Prints the list of shared objects dynamically loaded by the ddlopen command.

RELATED TOPICS

Preloading Shared Libraries in the TotalView for HPC User Guide
Tools > Debugger Loaded Libraries Command in the online Help
TV::dll Command

CLI Commands / ddown 66

ddown Moves down the call stack

Format
ddown [num-levels]

Arguments
num-levels

Number of levels to move down. The default is 1.

Description
The ddown command moves the selected stack frame down one or more levels and prints the new frame’s num-
ber and function name.

Call stack movements are all relative, so using the ddown command effectively moves down in the call stack. (If
up is in the direction of the main() function, then down is back to where you were before you moved through
stack frames.)

Frame 0 is the most recent—that is, the currently executing—frame in the call stack, frame 1 corresponds to the
procedure that invoked the currently executing frame, and so on. The call stack’s depth is increased by one each
time a procedure is entered, and decreased by one when it is exited.

The command affects each thread in the focus. That is, if the current width is process, the ddown command acts
on each thread in the process. You can specify any collection of processes and threads as the target set.

In addition, the ddown command modifies the current list location to be the current execution location for the
new frame; this means that a dlist command displays the code that surrounds this new location.

The context and scope changes made by this command remain in effect until the CLI executes a command that
modifies the current execution location (for example, the dstep command), or until you enter either a dup or
ddown command.

If you tell the CLI to move down more levels than exist, the CLI simply moves down to the lowest level in the stack,
which was the place where you began moving through the stack frames.

Command alias

Examples
ddown

Moves down one level in the call stack. As a result, for example, dlist commands that follow refers to the pro-
cedure that invoked this one. The following example shows what prints after you enter this command:

Alias Definition Description

d ddown Moves down the call stack

CLI Commands / ddown 67

0 check_fortran_arrays_ PC=0x10001254,
 FP=0x7fff2ed0 [arrays.F#48]

d 5

Moves the current frame down five levels in the call stack.

RELATED TOPICS

dup Command

CLI Commands / denable 68

denable Enables action points

Format
Enables some action points

denable action-point-list [-block number-list]

Enables all disabled action points in the current focus
denable -a

Arguments
action-point-list

The identifiers of the action points being enabled.

-a

Enables all action points.

-block number-list

If you set a breakpoint on a line that is ambiguous, this option names which instances to enable. Use the
dactions command to obtain a list of these numbers.

Description
The denable command reactivates action points that you previously disabled with the ddisable command. The -
a option enables all action points in the current focus.

If you did not save the ID values of disabled action points, use dactions to obtain a list of this information.

If you do not indicate a focus, the default focus is the process of interest (POI).

Command alias

Examples
denable 3 4

Enables two previously identified action points.
dfocus {p1 p2} denable -a

Enables all action points associated with processes 1 and 2. This command does not affect settings associated
with other processes.

en -a

Enables all action points associated with the current focus.

Alias Definition Description

en denable Enables action points

CLI Commands / denable 69

f a en -a

Enables all actions points in all processes.
en 1 -block 3 4

Enables the action points associated with blocks 3 and 4. That is, one logical action point can map to more than
one actual action point if you set the action point at an ambiguous location.

denable 1 2 -block 3 4

Enables the action points associated with blocks 3 and 4 in action points 1 and 2.

RELATED TOPICS

Enabling Action Points in the TotalView for HPC User Guide
Action Points > Enable Command in the online Help
ddisable Command
dbarrier Command
dbreak Command
dwatch Command

CLI Commands / dexamine 70

dexamine Displays memory contents

Format
dexamine [-column_count cnt] [-count cnt] [-data_only] [-show_chars] [-string_length len] [-format fmt]
[-memory_info] [-wordsize size] variable_or_expression

Arguments
-cols cnt
-column_count cnt

Specifies the number of columns to display. Without this option, the CLI determines this number of columns
based on the data’s wordactid size and format.

-c cnt
-count cnt

Specifies the number of elements to examine. Without this option, the CLI displays the entire object. This num-
ber is determined by the object’s datatype. If no type is available, the default value for cnt is 1 element.

-d
-data_only

Does not display memory values with a prefixed address: field or address annotations. This option is incompati-
ble with -memory_info.

-f fmt
-format fmt

Specifies the format to use when displaying memory. The default format is hex. You can abbreviate each of
these to the first character in the format’s name.

address

Interprets memory as addresses; the word size is always the size of a pointer

binary

Binary; this can also be abbreviated to t

char

Unsigned character

dec

Signed decimal value of size 1, 2, 4, or 8 bytes

float

Signed float value, either 4 or 8 byte word size

hex

Unsigned hexadecimal value of size 1, 2, 4, or 8 bytes

instruction

Sequence of instructions

CLI Commands / dexamine 71

oct

Unsigned octal value of size 1, 2, 4, or 8 bytes

string

String

-m
-memory_info

Shows information about the type of memory associated with the address. Without this option, the CLI does not
display this information. This argument is incompatible with -data_only. When you use this option, the CLI an-
notates address each line in the dump as follows:

[d]: .data
[t]: .text
[p]: .plt
[b]: .bss
[?]: Another type of memory (such as stack address)

If you have enabled memory debugging, the following annotations can also appear:

[A]: Allocated block of memory
[D]: Deallocated block of memory
[G]: Address is a guard region
[C]: Address is a corrupted guard region

If the address being examined is within an allocated block, this option tells the Memory Debugger to automati-
cally include the pre-guard region if the user specified guards in the memory debugging configuration.

-sc
-show_chars

Shows a trailing character dump for each line. Without this option, the CLI does not show the trailing characters.

-sl len
-string_length len

Specifies the maximum size string to display. Without this option, the length is all characters up to the first null
character.

-w size
-wordsize size

Specifies the “word size” to apply to the format. The default word size is '1' for most formats. For 'address' format,
the word size is always the size of a target pointer. The values can be 1, 2, 4, 8 or one of the following: b (byte), h
(half word), w (word), or g (giant).

variable_or_expression

A variable or an expression that can be resolved into a memory address.

Description
Examines memory at the address of the specified variable or the address resulting from the evaluation of an
expression. If you specify an expression, the result of the evaluation must be an lvalue.

CLI Commands / dexamine 72

In most cases, you will enclose the expression in {} symbols.

NOTE >> Instead of using the listed dexamine options, you can instead use the gdb examine command
syntax.

Command alias

Alias Definition Description

x dexamine Examines (dumps) memory

CLI Commands / dflush 73

dflush Unwinds stack from suspended computations

Format
Removes the top-most suspended expression evaluation.

dflush

Removes the computation indicated by a suspended evaluation ID and all those that precede it
dflush susp-eval-id

Removes all suspended computations
dflush -all

Arguments
susp-eval-id

The ID returned or thrown by the dprint command or which is printed by the dwhere command.

-all

Flushes all suspended evaluations in the current focus.

Description
The dflush command unwinds the stack to eliminate frames generated by suspended computations. Typically,
these frames can occur when using the dprint -nowait command. Other possibilities are if an error occurred in a
function call in an eval point, in an expression in a Tools > Evaluate window, or if you use a $stop function.

Use this command as follows:

• If you don’t use an argument, the CLI unwinds the top-most suspended evaluation in all threads in
the current focus.

• If you use a susp-eval-id, the CLI unwinds each stack of all threads in the current focus, flushing all
pending computations up to and including the frame associated with the ID.

• If you use the -all option, the CLI flushes all suspended evaluations in all threads in the current
focus.

If no evaluations are suspended, the CLI ignores this command. If you do not indicate a focus, the default focus is
the thread of interest.

Examples
The following example uses the dprint command to place five suspended routines on the stack. It then uses the
dflush command to remove them. This example uses the dflush command in three different ways.
#
Create 5 suspended functions
#
d1.<> dprint -nowait nothing2(7)

CLI Commands / dflush 74

7
Thread 1.1 hit breakpoint 4 at line 310 in "nothing2(int)"
d1.<> dprint -nowait nothing2(8)
8
Thread 1.1 hit breakpoint 4 at line 310 in "nothing2(int)"
d1.<> dprint -nowait nothing2(9)
9
Thread 1.1 hit breakpoint 4 at line 310 in "nothing2(int)"
d1.<> dprint -nowait nothing2(10)
10
Thread 1.1 hit breakpoint 4 at line 310 in "nothing2(int)"
d1.<> dprint -nowait nothing2(11)
11
Thread 1.1 hit breakpoint 4 at line 310 in "nothing2(int)"
...

#
The top of the call stack looks like:
#
d1.<> dwhere 0 nothing2 PC=0x00012520, FP=0xffbef130 [fork.cxx#310]
 1 ***** Eval Function Call (11) ****************
 2 nothing2 PC=0x00012520, FP=0xffbef220 [fork.cxx#310]
 3 ***** Eval Function Call (10) ****************
 4 nothing2 PC=0x00012520, FP=0xffbef310 [fork.cxx#310]
 5 ***** Eval Function Call (9) ***************
 6 nothing2 PC=0x00012520, FP=0xffbef400 [fork.cxx#310]
 7 ***** Eval Function Call (8) ****************
 8 nothing2 PC=0x00012520, FP=0xffbef4f0 [fork.cxx#310]
 9 ***** Eval Function Call (7) ****************
 10 forker PC=0x00013fd8, FP=0xffbef648 [fork.cxx#1120]
 11 fork_wrap PC=0x00014780, FP=0xffbef6c8 [fork.cxx#1278] ...
#
Use the dflush command to remove the last item pushed
onto the stack. Notice the frame associated with "11"
is no longer there.
#
d1.<> dflush
d1.<> dwhere
 0 nothing2 PC=0x00012520, FP=0xffbef220 [fork.cxx#310]
 1 ***** Eval Function Call (10) ****************
 2 nothing2 PC=0x00012520, FP=0xffbef310 [fork.cxx#310]
 3 ***** Eval Function Call (9) ****************
 4 nothing2 PC=0x00012520, FP=0xffbef400 [fork.cxx#310]
 5 ***** Eval Function Call (8) ****************
 6 nothing2 PC=0x00012520, FP=0xffbef4f0 [fork.cxx#310]
 7 ***** Eval Function Call (7) ****************
 8 forker PC=0x00013fd8, FP=0xffbef648 [fork.cxx#1120]
 9 fork_wrap PC=0x00014780, FP=0xffbef6c8 [fork.cxx#1278]

CLI Commands / dflush 75

#
Use the dflush command with a suspened ID argument to remove
all frames up to and including the one associated with
suspended ID 9. This means that IDs 7 and 8 remain.
#
d1.<> dflush 9
Top of call stack after dflush 9
d1.<> dwhere
 0 nothing2 PC=0x00012520, FP=0xffbef400 [fork.cxx#310]
 1 ***** Eval Function Call (8) ****************
 2 nothing2 PC=0x00012520, FP=0xffbef4f0 [fork.cxx#310]
 3 ***** Eval Function Call (7) ****************
 4 forker PC=0x00013fd8, FP=0xffbef648 [fork.cxx#1120]
 5 fork_wrap PC=0x00014780, FP=0xffbef6c8 [fork.cxx#1278]
#
Use dflush -all to remove all frames. Only the frames
associated with the program remain.
#

d1.<> dflush -all
Top of call stack after dflush -all
d1.<> dwhere
 0 forker PC=0x00013fd8, FP=0xffbef648 [fork.cxx#1120]
 1 fork_wrap PC=0x00014780, FP=0xffbef6c8 [fork.cxx#1278]

RELATED TOPICS

Tools > Evaluate Command in the online Help
Built-In Statements in the TotalView for HPC User Guide

CLI Commands / dfocus 76

dfocus Changes the current (Process/Thread P/T) set

Format
Changes the target of future CLI commands to this P/T set or returns the value of the current P/T set

dfocus [p/t-set]

Executes a command in this P/T set
dfocus p/t-set command

Arguments
p/t-set

A set of processes and threads to be the target of subsequent CLI commands.

command

A CLI command that operates on its own local focus.

Description
The dfocus command changes the set of processes, threads, and groups upon which a command acts. This com-
mand can change the focus for all commands that follow, or just the command that immediately follows.

The dfocus command always expects a P/T value as its first argument. This value can be either a single arena
specifier or a list of arena specifiers. The default focus is d1.<, which selects the first user thread. The d (for
default) indicates that each CLI command is free to use its own default width.

If you enter an optional command, the focus is set temporarily, and the CLI executes the command in the new focus.
After the command executes, the CLI restores focus to its original value. The command argument can be a single
command or a list.

If you use a command argument, the dfocus command returns the result of this command’s execution. If you do
not enter use a command argument, the dfocus command returns the focus as a string value.

NOTE >> Instead of a P/T set, you can enter a P/T set expression. These expressions are described in
“Using P/T Set Operators” in the TotalView for HPC User Guide.

Command alias

Examples
dfocus g dgo

Continues the TotalView group that contains the focus process.

Alias Definition Description

f dfocus Changes the object upon which a command acts

CLI Commands / dfocus 77

dfocus p3 {dhalt; dwhere}

Stops process 3 and displays backtraces for each of its threads.
dfocus 2.3

Sets the focus to thread 3 of process 2, where 2 and 3 are TotalView process and thread identifier values. The
focus becomes d2.3.

dfocus 3.2
dfocus .5

Sets and then resets command focus. A focus command that includes a dot and omits the process value uses
the current process. Thus, this sequence of commands changes the focus to process 3, thread 5 (d3.5).

dfocus g dstep

Steps the current group. Although the thread of interest (TOI) is determined by the current focus, this command
acts on the entire group that contains that thread.

dfocus {p2 p3} {dwhere ; dgo}

Performs a backtrace on all threads in processes 2 and 3, and then tells these processes to execute.
f 2.3 {f p w; f t s; g}

Executes a backtrace (dwhere) on all the threads in process 2, steps thread 3 in process 2 (without running
any other threads in the process), and continues the process.

dfocus p1

Changes the current focus to include just those threads currently in process 1. The width is set to process. The
CLI sets the prompt to p1.<.

dfocus a

Changes the current set to include all threads in all processes. After you execute this command, your prompt
changes to a1.<. This command alters CLI behavior so that actions that previously operated on a thread now
apply to all threads in all processes.

dfocus gW dstatus

Displays the status of all worker threads in the control group. The width is group level and the target is the
workers group.

dfocus pW dstatus

Displays the status of all worker threads in the current focus process. The width is process level and the target
is the workers group.

f {breakpoint(a) | watchpoint(a)} st

Shows all threads that are stopped at breakpoints or watchpoints.
f {stopped(a) - breakpoint(a)} st

Shows all stopped threads that are not stopped at breakpoints.

 Chapter 21 of the TotalView for HPC User Guide contains additional dfocus examples.

CLI Commands / dfocus 78

RELATED TOPICS

Using Groups, Processes, and Threads in the TotalView for HPC User Guide

CLI Commands / dga 79

dga Displays Global Array variables

Format
dga [-lang lang_type] [handle_or_name] [slice]

Arguments
-lang

Specifies the language conventions to use. Without this option, TotalView uses the language used by the thread
of interest (TOI).

lang_type

Specifies the language type to use when displaying a global array. The type must be either “c” or “f”.

handle_or_name

Displays an array. This can be either a numeric handle or the name of the array. Without this argument, To-
talView displays a list of all Global Arrays.

slice

Displays only a slice (that is, part of an array). If you are using C, you must place the array designators within
braces {} because square brackets ([]) have special meaning in Tcl.

Description
The dga command displays information about Global Arrays.

If the focus includes more than one process, TotalView prints a list for each process in the focus. Because the
arrays are global, each list is identical. If there is more than one thread in the focus, the CLI prints the value of the
array as seen from that thread.

In almost all cases, you should change the focus to d2.< so that you don’t include a starter process such as prun.

Examples
dga

Displays a list of Global Arrays, for example:
lb_dist

Handle -1000
Ghosts yes
C type $double[129][129][27]
Fortran Type \

 $double_precision(27,129,129)

bc_mask
Handle -999
Ghosts yes
C type long[129][129]
Fortran Type $integer(129,129)

CLI Commands / dga 80

dga bc_mask (:2,:2)

Displays a slice of the bc_mask variable, for example:
bc_mask(:2,:2) = {

(1,1) = 1 (0x00000001)
(2,1) = 1 (0x00000001)
(1,2) = 1 (0x00000001)
(2,2) = 0 (0x00000000)

}

dga -lang c -998 {[:1]{:1]}

Displays the same bc_mask variable as in the previous example in C format. In this case, the command refers
to the variable by its handle.

RELATED TOPICS

Tools > Global Arrays Command in the online Help
Debugging Global Arrays Applications in the TotalView for HPC User Guide

CLI Commands / dgo 81

dgo Resumes execution of processes

Format
dgo

Arguments
-back

(ReplayEngine only) Runs the nonheld process in the current focus backward until it hits some action point or
the beginning of recorded Replay history. This option can be abbreviated to --b.

Description
The dgo command resumes execution of all nonheld processes and threads in the current focus. If the process
does not exist, this command creates it, passing it the default command arguments. These can be arguments
passed into the CLI, or they can be the arguments set with the drerun command. If you are also using the
TotalView GUI, you can set this value by using the Process > Startup Parameters command.

If a process or thread is held, it ignores this command.

You cannot use a dgo command when you are debugging a core file, nor can you use it before the CLI loads an
executable and starts executing it.

If you do not indicate a focus, the default focus is the process of interest (POI).

Command alias

Examples
dgo

Resumes execution of all stopped threads that are not held and which belong to processes in the current
focus. (Threads held at barriers are not affected.)

G

Resumes execution of all threads in the current control group.
f p g

Continues the current process. Only threads that are not held can run.
f g g

Continues all processes in the control group. Only processes and threads that are not held are allowed to run.
f gL g

Continues all threads in the share group that are at the same PC as the thread of interest (TOI).

Alias Definition Description

g dgo Resumes execution

G {dfocus g dgo} Resumes group

CLI Commands / dgo 82

f pL g

Continues all threads in the current process that are at the same PC as the TOI.
f t g

Continues a single thread.

RELATED TOPICS

Starting Processes and Threads in the TotalView for HPC User Guide
Process > Go Command in the online Help
Thread > Go Command in the online Help
dcont Command

CLI Commands / dgroups 83

dgroups Manipulates and manages groups

Format
Adds members to thread and process groups

dgroups -add [-g gid] [id-list]

Deletes groups
dgroups -delete [-g gid]

Intersects a group with a list of processes and threads
dgroups -intersect [-g gid] [id-list]

Prints process and thread group information
dgroups [-list] [pattern-list]

Creates a new thread or process group
dgroups -new [thread_or_process] [-g gid] [id-list]

Removes members from thread or process groups
dgroups -remove [-g gid] [id-list]

Arguments
-g gid

The group ID on which the command operates. The gid value can be an existing numeric group ID, an existing
group name, or, if you are using the -new option, a new group name.

id-list

A Tcl list that contains process and thread IDs. Process IDs are integers; for example, 2 indicates process 2.
Thread IDs define a pid.tid pair and look like decimal numbers; for example, 2.3 indicates process 2, thread 3. If
the first element of this list is a group tag, such as the word control, the CLI ignores it. This makes it easy to in-
sert all members of an existing group as the items to be used in any of these operations. (See the dset com-
mand’s discussion of the GROUP(gid) variable for information on group designators.) These words appear in
some circumstances when the CLI returns lists of elements in P/T sets.

pattern-list

A pattern to be matched against group names. The pattern is a Tcl regular expression.

thread_or_process

Keywords that create a new process or thread group. You can specify one of the following arguments: t, thread,
p, or process.

Description
The dgroups command supports the following functions:

• Adding members to process and thread groups.

• Creating a group.

CLI Commands / dgroups 84

• Intersecting a group with a set of processes and threads.

• Deleting groups.

• Displaying the name and contents of groups.

• Removing members from a group.

dgroups -add

Adds members to one or more thread or process groups. The CLI adds each of these threads and processes to
the group. If you add a:

• Process to a thread group, the CLI adds all of its threads.

• Thread to a process group, the CLI adds the thread’s parent process.

You can abbreviate the -add option to -a.

The CLI returns the ID of this group.

You can explicitly name the items being added by using an id-list argument. Without an id-list argument, the CLI
adds the threads and processes in the current focus. Similarly, you can name the group using the -g option. With-
out the -g option, the CLI uses the groups in the current focus.

If the id-list argument contains processes, and the target is a thread group, the CLI adds all threads from these
processes. If it contains threads and the target is a process group, the CLI adds the parent process for each
thread.

NOTE >> If you specify an id-list argument and you also use the -g option, the CLI ignores the focus. You
can use two dgroups -add commands instead.

If you try to add the same object more than once to a group, the CLI adds it only once.

You cannot use this command to add a process to a control group. Instead, use the CGROUP(dpid) variable; for
example:
dset CGROUP($mypid) $new_group_id

dgroups -delete

Deletes the target group. You can delete only groups that you create; you cannot delete groups that TotalView
creates.

dgroups -intersect

Intersects a group with a set of processes and threads. If you intersect a thread group with a process, the CLI
includes all of the process’s threads. If you intersect a process group with a thread, the CLI uses the thread’s
process.

CLI Commands / dgroups 85

After this command executes, the group no longer contains members that were not in this intersection.

You can abbreviate the -intersect option to -i.

dgroups -list

Prints the name and contents of process and thread groups. If you specify a pattern-list as an argument, the CLI
only prints information about groups whose names match this pattern. When entering a list, you can specify a
pattern. The CLI matches this pattern against the list of group names by using the Tcl regex command.

NOTE >> If you do not enter a pattern, the CLI displays only groups that you have created with nonnu-
meric names.

You can abbreviate -list to -l.

dgroups -new

Creates a new thread or process group and adds threads and processes to it. If you use a name with the -g
option, the CLI uses that name for the group ID; otherwise, it assigns a new numeric ID. If the group you name
already exists, the CLI replaces it with the newly created group.

The CLI returns the ID of the newly created group.

You can explicitly name the items being added with an id-list argument. If you do not use an id-list argument, the
CLI adds the threads and processes in the current focus.

If the id-list argument contains processes, and the target is a thread group, the CLI adds all threads from these
processes. If it contains threads and the target is a process group, TotalView adds the parent process for each
thread.

NOTE >> If you use an id-list argument and also use the -g option, the CLI ignores the focus.You can use
two dgroups -add commands instead.

If you are adding more than one object and one of these objects is a duplicate, The CLI adds the nonduplicate
objects to the group.

You can abbreviate the -new option to -n.

dgroups -remove

Removes members from one or more thread or process groups. If you remove a process from a thread group,
The CLI removes all of its threads. If remove a thread from a process group, The CLI removes its parent process.

You cannot remove processes from a control group. You can, however, move a process from one control group
to another by using the dset command to assign it to the CGROUP(dpid) variable group.

Also, you cannot use this command on read-only groups, such as share groups.

CLI Commands / dgroups 86

You can abbreviate the -remove option to -r.

Command alias

Examples
dgroups -add
f tW gr -add

Adds the focus thread to its workers group.
dgroups -add

Adds the current focus thread to the current focus group.
set gid [dgroups -new thread ($CGROUP(1))]

Creates a new thread group that contains all threads from all processes in the control group for process 1.
f $a_group/9 dgroups -add

Adds process 9 to a user-defined group.
dgroups -delete
gr -delete -g mygroup

Deletes the mygroup group.
dgroups -intersect
dgroups -intersect -g 3 3.2

Intersects thread 3.2 with group 3. If group 3 is a thread group, this command removes all threads except 3.2
from the group; if it is a process group, this command removes all processes except process 3 from it.
f tW gr -i

Intersects the focus thread with the threads in its workers group.
f gW gr -i -g mygroup

Removes all nonworker threads from the mygroup group.
dgroups -list
dgroups -list

Displays information about all named groups; for example:
ODD_P: {process 1 3}
EVEN_P: {process 2 4}

gr -l *

Displays information about groups in the current focus.
1: {control 1 2 3 4}
2: {workers 1.1 1.2 1.3 1.4 2.1 2.2 2.3 2.4 3.1

3.2 3.3 3.4 4.1 4.2 4.3 4.4}

Alias Definition Description

gr dgroups Manipulates a group

CLI Commands / dgroups 87

3: {share 1 2 3 4}
ODD_P: {process 1 3}
EVEN_P: {process 2 4}

dgroups -new
gr -n t -g mygroup $GROUP($CGROUP(1))

Creates a new thread group named mygroup that contains all threads from all processes in the control group
for process 1.
set mygroup [dgroups -new]

Creates a new process group that contains the current focus process.
dgroups -remove
dgroups -remove -g 3 3.2

Removes thread 3.2 from group 3.
f W dgroups -add

Marks the current thread as being a worker thread.
f W dgroups -r

Indicates that the current thread is not a worker thread.

RELATED TOPICS

Using the Group Editor in the TotalView for HPC User Guide
Using Groups, Processes, and Threads in the TotalView for HPC User Guide
Setting Group Focus in the TotalView for HPC User Guide
Group > Edit Group Command in the online Help

CLI Commands / dhalt 88

dhalt Suspends execution of processes

Format
dhalt

Arguments
This command has no arguments

Description
The dhalt command stops all processes and threads in the current focus.

If you do not indicate a focus, the default focus is the process of interest (POI).

Command alias

Examples
dhalt

Suspends execution of all running threads belonging to processes in the current focus. (This command does
not affect threads held at barriers.)

f t 1.1 h

Suspends execution of thread 1 in process 1. Note the difference between this command and f 1.< dhalt. If
the focus is set as thread level, this command halts the first user thread, which is probably thread 1.

RELATED TOPICS

Stopping Processes and Threads in the TotalView for HPC User Guide
Updating Process Information in the TotalView for HPC User Guide
Group > Halt Command in the online Help
Process > Halt Command in the online Help
Thread > Halt Command in the online Help

Alias Definition Description

h dhalt Suspends execution

H {dfocus g dhalt} Suspends group execution

CLI Commands / dheap 89

dheap Controls heap debugging

Format
Shows Memory Debugger state

dheap [-status]

Applies a saved configuration file
dheap -apply_config { default | filename }

Shows information about a backtrace
dheap -backtrace [subcommands]

Compares memory states
dheap -compare subcommands [optional_subcommands]
[process | filename [process | filename]]

Enables or disables the Memory Debugger
dheap { -enable | -disable }

Enables or disables event notification
dheap -event_filter subcommands

Writes memory information
dheap -export subcommands

Specifies the filters the Memory Debugger uses
dheap -filter subcommands

Writes guard blocks (memory before and after an allocation)
dheap -guard [subcommands]

Enables or disables the retaining (hoarding) of freed memory blocks
dheap -hoard [subcommands]

Displays Memory Debugger information
dheap -info [subcommands]

Indicates whether an address is in a deallocated block
dheap -is_dangling address

Locates memory leaks
dheap -leaks [-check_interior]

Enables or disables Memory Debugger event notification
dheap -[no]notify

Paints memory with a distinct pattern
dheap -paint [subcommands]

CLI Commands / dheap 90

Enables or disables the ability to catch bounds errors and use-after-free errors retaining freed memory blocks
dheap -red_zones [subcommands]

Enables or disables allocation and reallocation notification
dheap -tag_alloc subcommand [start_address [end_address]]

Displays the Memory Debugger version number
dheap -version

Description
The dheap command is described in the Batch Scripting section of “Locating Memory Problems” in the
MemoryScape documentation.

CLI Commands / dhistory 91

dhistory Performs actions upon ReplayEngine

Format
Enable or disable recording mode

dhistory { -enable | -disable }

Get information about the current state of Replay
dhistory -info

Create a bookmark so you can return to a point in the execution history. The command returns an ID for refer-
encing the bookmark.

dhistory { -create_bookmark [comment]|-cb [comment] }

Go to a bookmark
dhistory { -goto_bookmark ID | -gb ID }

Return to the live execution point, that is, the end of the current recording, and continue recording
dhistory -go_live

List the bookmarks currently set, with IDs and comments
dhistory { -show_bookmarks | -sb }

Remove a bookmark, or all bookmarks
dhistory { { -delete_bookmark ID | -db ID } | -clear_bookmarks }

Save a recording file
dhistory -save [recording-file]

Deprecated arguments for setting and going to a bookmark (use the new ‘bookmark’ arguments)
dhistory { -get_time | -go_time time }

Arguments
-enable

Enables ReplayEngine, starting the history.

-disable

Disables ReplayEngine, ending the history.

-info

Writes ReplayEngine information including the current time, the live time, and whether the process is in Replay
or Record mode. If you enter dhistory without arguments, -info is the default.

-create_bookmark comment

Creates a Replay bookmark at the current execution location so you can return to it later. You can specify an op-
tional comment to this command and it will be stored with the bookmark for display when you use the
show_bookmarks command. A bookmark is created with a unique numeric ID, which is the return value.

CLI Commands / dhistory 92

-goto_bookmark ID

Goes to the bookmark with the specified ID. This returns the focus process to the execution location where the
bookmark was first created.

-go_live

Returns the process to the PC and back into Record mode. You can resume your “regular” debugging session.

-show_bookmarks

Displays all Replay bookmarks. This command shows the bookmark ID along with information about what line
number, PC and function the bookmark is on. If you added a comment to help you remember the significance of
the bookmark, it displays this as well.

-delete_bookmark ID

Deletes the bookmark with the given ID.

-clear_bookmarks

Deletes all Replay bookmarks.

-save recording-file

Saves the current replay history to a file. There is an optional argument to specify the name of the file to save to.
The file specification can be a path or a simple file name, in which case it is saved in the current working direc-
tory. If no file is specified, the recording is saved in the current working directory with the file name
replay_pid_hostname.recording.

To reload the recording file, use one of the following commands based on the functionality for loading core files.
TotalView recognizes the recording file for what it is and acts appropriately.

To reload a recording at startup:

To reload a recording file when TotalView is running:

dattach filename -c recording-file

The recording-file argument can be either a path or a simple file name, in which case the current working direc-
tory is assumed.

-get_time — deprecated: use create_bookmark

Returns an integer value representing the program execution location at the current time. The integer value is a
virtual timestamp. This virtual timestamp does not refer to the exact point in time; it has a granularity that is typ-
ically a few lines of code.

-go_time time — deprecated: use goto_bookmark

Places the process back to the virtual time specified by the time integer argument. The time argument is a virtual
timestamp as reported by dhistory -get_time. You cannot use this command to move to a specific instruction
but you can use it to get to within a small block of code (usually within a few lines of your intended point in exe-
cution history). This command is typically used either for roughly bookmarking a point in code or for searching
execution history. It may need to be combined with stepping and duntil commands to return to an exact posi-
tion.

CLI Commands / dhistory 93

Description
The dhistory command displays information about the current process either by default or when using the -info
argument. In addition, options to this command can obtain a debugging time, which can be stored in a variable to
go back to a particular time.

In addition, you can enable and display ReplayEngine as well as put it back into regular debugging mode using the
-go_live option. You’ll need to do this after your program is placed into replay mode. This occurs whenever you
use any GUI or CLI command that moves to replay mode. For example, in the CLI, this can occur when you exe-
cute such commands as dnext or dout.

Command alias

Examples
dhistory [-info]

Typing dhistory with no arguments or with the -info argument displays the following information:
History info for process 1

 Live time: 421 0x80485d6
 Current time: 421 0x80485d6
 Live PC: 0x80485d6
 Record Mode: True
 Replay Wanted: True
 Stop Reason: Normal result [waitpid, search, or goto_time
 Temp directory: /tmp/replay_jsm_local/replay_session_pZikY9
 Event log mode: circular
 Event log size: 268435456

replay -create_bookmark “This is where the crash occurs”
3

Creates a bookmark at the current execution location and returns an ID. The comment appears in the list of
bookmarks displayed with -show_bookmarks (see below). Note the use of the replay alias for this com-
mand, which might be easier to remember than dhistory.

replay -show_bookmarks

Displays a list of the currently defined bookmarks:
bookmark: 1: pc: 0x004005df, function: main, line: 59, comment:
bookmark: 2: pc: 0x004006b6, function: main, line: 69, comment:
bookmark: 3: pc: 0x004006fb, function: main, line: 75, comment: This is where the
crash occurs

Alias Definition Description

replay dhistory Performs actions upon ReplayEngine.

CLI Commands / dhistory 94

replay -delete_bookmark 2
deleted bookmark: 2

Deletes the bookmark with the given ID, and returns a confirmation of the deleted bookmark.

CLI Commands / dhold 95

dhold Holds threads or processes

Format
Holds processes

dhold -process

Holds threads
dhold -thread

Arguments
-process

Holds processes in the current focus. Can be abbreviated to -p.

-thread

Holds threads in the current focus. Can be abbreviated to -t.

Description
The dhold command holds the threads and processes in the current focus.

NOTE >> You cannot hold system manager threads. In all cases, holding threads that aren’t part of your
program always involves some risk.

Command alias

Examples
f W HT

Holds all worker threads in the focus group.
f s HP

Holds all processes in the share group.
f $mygroup/ HP

Holds all processes in the group identified by the contents of mygroup.

Alias Definition Description

hp {dhold -process} Holds the focus process

HP {f g dhold -process} Holds all processes in the focus group

ht {f t dhold -thread} Holds the focus thread

HT {f g dhold -thread} Holds all threads in the focus group

htp {f p dhold -thread} Holds all threads in the focus process

CLI Commands / dhold 96

RELATED TOPICS

Group > Hold Command in the online Help
Process > Hold Command in the online Help
Thread > Hold Command in the online Help
Group > Release Command in the online Help
Process > Release Threads Command in the online Help
dunhold Command

CLI Commands / dkill 97

dkill Terminates execution of processes

Format
dkill [-remove]

Arguments
-remove

Removes all knowledge of the process from its internal tables. If you are using TotalView Team, this frees a token
so that you can reuse it.

Description
The dkill command terminates all processes in the current focus.

Because the executables associated with the defined processes are still loaded, using the drun command
restarts the processes.

The dkill command alters program state by terminating all processes in the affected set. In addition, TotalView
destroys any spawned processes when the process that created them is killed. The drun command can restart
only the initial process.

If you do not indicate a focus, the default focus is the process of interest (POI). If, however, you kill the primary
process for a control group, all of the slave processes are killed.

Command alias

Examples
dkill

Terminates all threads belonging to processes in the current focus.
dfocus {p1 p3} dkill

Terminates all threads belonging to processes 1 and 3.

RELATED TOPICS

Starting Your Program in the CLI in the TotalView for HPC User Guide
Restarting and Deleting Programs in the TotalView for HPC User Guide
Group > Delete Command in the online Help
Group > Restart Command in the online Help

Alias Definition Description

k dkill Terminates a process’s execution

CLI Commands / dlappend 98

dlappend Appends list elements to a TotalView variable

Format
dlappend variable-name value [...]

Arguments
variable-name

The variable to which values are appended.

value

The values to append.

Description
The dlappend command appends list elements to a TotalView variable. This command performs the same func-
tion as the Tcl lappend command, differing in that dlappend does not create a new debugger variable. That is,
the following Tcl command creates a variable named foo:
lappend foo 1 3 5

In contrast, the CLI command displays an error message:
dlappend foo 1 3 5

Examples
dlappend TV::process_load_callbacks my_load_callback

Adds the my_load_callback function to the list of functions in the TV::process_load_callbacks variable.

RELATED TOPICS

dset Command

CLI Commands / dlist 99

dlist Displays source code lines

Format
Displays source code relative to the current list location

dlist [-n num-lines]

Displays source code relative to a named place
dlist breakpoint-expr [-n num-lines]

Displays source code relative to the current execution location
dlist -e [-n num-lines]

Arguments
-n num-lines

Displays this number of lines rather than the default number. (The default is the value of the MAX_LIST variable.)
If num-lines is negative, the CLI displays lines before the current location, and additional dlist commands show
preceding lines in the file rather than following lines.

This option also sets the value of the MAX_LIST variable to num-lines.

breakpoint-expr

The location at which the CLI begins displaying information. In most cases, specify this location as a line number
or as a string that contains a file name, function name, and line number, each separated by # characters; for ex-
ample: file#func#line.

For more information, see Chapter 9, “Qualifying Symbol Names” in the TotalView for HPC User Guide. The CLI
creates defaults if you omit parts of this specification.

If you enter a different file, it is used for future display. This means that if you want to display information relative
to the current thread’s execution point, use the -e option to dlist.

If the breakpoint expression evaluates to more than one location, TotalView chooses one.

For other ways to enter these expressions, see “Breakpoint Expressions” on page 40. If you name more than
one address, TotalView picks one.

-e

Sets the display location to include the current execution point of the thread of interest (TOI). If you use dup and
ddown commands to select a buried stack frame, this location includes the PC (program counter) for that stack
frame.

Description
The dlist command displays source code lines relative to a source code location, called the list location. The CLI
prints this information; it is not returned. If you do not specify source-loc or -e, the command continues where the
previous list command stopped. To display the thread’s execution point, use the dlist -e command.

If you enter a file or procedure name, the listing begins at the file or procedure’s first line.

CLI Commands / dlist 100

The default focus for this command is thread level. If your focus is at process level, TotalView acts on each thread
in the process.

The first time you use the dlist command after you focus on a different thread—or after the focus thread runs
and stops again—the location changes to include the current execution point of the new focus thread.

Tabs in the source file are expanded as blanks in the output. The TAB_WIDTH variable controls the tab stop width,
which defaults to 8. If TAB_WIDTH is set to -1, no tab processing is performed, and the CLI displays tabs using
their ASCII value.

All lines appear with a line number and the source text for the line. The following symbols are also used:

@

An action point is set at this line.

>

The PC for the current stack frame is at the indicated line and this is the leaf frame.

=

The PC for the current stack frame is at the indicated line and this is a buried frame; this frame has called an-
other function so that this frame is not the active frame.

These correspond to the marks shown in the backtrace displayed by the dwhere command that indicates the
selected frame.

Here are some general rules:

• The initial display location is main().

• The CLI sets the display location to the current execution location when the focus is on a different
thread.

If the source-loc argument is not fully qualified, the CLI looks for it in the directories named in the CLI EXECUT-
ABLE_PATH variable.

Command alias

Examples
The following examples assume that the MAX_LIST variables equals 20, which is its initial value.
dlist

Displays 20 lines of source code, beginning at the current list location. The list location is incremented by 20
when the command completes.

Alias Definition Description

l dlist Displays lines

CLI Commands / dlist 101

dlist 10

Displays 20 lines, starting with line 10 of the file that corresponds to the current list location. Because this uses
an explicit value, the CLI ignores the previous command. The list location is changed to line 30.

dlist -n 10

Displays 10 lines, starting with the current list location. The value of the list location is incremented by 10.
dlist -n -50

Displays source code preceding the current list location; shows 50 lines, ending with the current source code
location. The list location is decremented by 50.

dlist do_it

Displays 20 lines in procedure do_it. Changes the list location to be the 20th line of the procedure.
dfocus 2.< dlist do_it

Displays 20 lines in the do_it routine associated with process 2. If the current source file is named foo, you can
also specify this as dlist foo#do_it, naming the executable for process 2.

dlist -e

Displays 20 lines starting 10 lines above the current execution location.
f 1.2 l -e

Lists the lines around the current execution location of thread 2 in process 1.
dfocus 1.2 dlist -e -n 10

Produces essentially the same listing as the previous example, differing in that it displays 10 lines.
dlist do_it.f#80 -n 10

Displays 10 lines, starting with line 80 in file do_it.f. Updates the list location to line 90.

CLI Commands / dload 102

dload Loads debugging information

Format
dload [-g gid] [-r hname]
 [{ -np | -procs | -tasks } num]
 [-nodes num]
 [-replay | -no_replay]
 [-mpi starter]
 [-starter_args argument]
 [-env variable=value] ...
 [-e executable]
 [-parallel_attach_subset subset_specification]

Arguments
-g gid

Sets the control group for the process being added to the group ID specified by gid. This group must already ex-
ist. (The CLI GROUPS variable contains a list of all groups.)

-r hname

The host on which the process will run. The CLI launches a TotalView Debugger Server on the host machine if
one is not already running there. (See “Setting Up Remote Debugging Sessions” in the TotalView for HPC User
Guide for information on the server launch commands.)

{ -np | -procs | -tasks } num

Indicates the number of processes or tasks that the starter program creates.

-nodes num

Indicates the number of nodes upon which your program will execute.

-replay | -no_replay

These options enable and disable the ReplayEngine the next time the program is restarted.

-starter_args argument

Indicates additional arguments to be passed to the starter program.

-env variable=value

Sets a variable that is added to the program’s environment.

-e

Indicates that the next argument is an executable file name. You need to use -e if the executable name begins
with a dash (-) or consists of only numeric characters. Otherwise, just provide the executable file name.

executable

A fully or partially qualified file name for the file corresponding to the program.

CLI Commands / dload 103

-parallel_attach_subset subset_specification

Defines a list of MPI ranks to attach to when an MPI job is created or attached to. The list is space-separated;
each element can have one of three forms:

rank: specifies that rank only

rank1-rank2: specifies all ranks between rank1 and rank2, inclusive

rank1-rank2:stride: specifies every strideth rank between rank1 and rank2

A rank must be either a positive decimal integer or max (the last rank in the MPI job).

A subset_specification that is the empty string ("") is equivalent to 0-max.

For example:
dload -parallel_attach_subset {1 2 4-6 7-max:2} mpirun

will attach to ranks 1, 2, 4, 5, 6, 7, 9, 11, 13,...

Description
The dload command creates a new TotalView process object for the executable file and returns its TotalView ID.

NOTE >> Your license limits the number of processes that you can run at the same time. For example,
the maximum number of processes for TotalView Individual is 16. As some systems and run
time environments create threads to manage a process, you may not be able to get this many
processes running at the same time. (Only TotalView Individual counts threads against your
license. TotalView Enterprise and Team allows an unlimited number of threads to run at the
same time.)

Command alias

Examples
dload do_this

Loads the debugging information for the do_this executable into the CLI. After this command completes, the
process does not yet exist and no address space or memory is allocated to it.

dload -mpi POE -starter_args "hfile=~/my_hosts" \
 -np 2 -nodes

Loads an MPI job using the POE configuration. Two processes will be used across nodes. The hfiles starter
argument is used.

lo -g 3 -r other_computer do_this

Loads the debugging information for the do_this executable that is executing on the other_computer
machine into the CLI. This process is placed into group 3.

Alias Definition Description

lo dload Loads debugging information

CLI Commands / dload 104

f g3 lo -r other_computer do_this

Does not do what you would expect it to do because the dload command ignores the focus command.
Instead, this does exactly the same thing as the previous example.

dload -g $CGROUP(2) -r slowhost foo

Loads another process based on image foo on machine slowhost. The CLI places this process in the same
group as process 2.

dload -env DISPLAY=aurora:0.0
 -env STARTER=~/starter myprog

Sets up two environment variables $DISPLAY and $STARTER for the program myprog and loads myprog's
debugging information.

RELATED TOPICS

Loading Executables in the TotalView for HPC User Guide
File > New Program Command in the online Help
dattach Command
drun Command

CLI Commands / dmstat 105

dmstat Displays memory use information

Format
dmstat

Arguments
This command has no arguments

Description
The dmstat command displays information on your program’s memory use, returning information in three parts:

• Memory usage summary: The minimum and maximum amounts of memory used by the text and
data segments, the heap, and the stack, as well as the virtual memory stack usage and the virtual
memory size.

• Individual process statistics: The amount of memory that each process is currently using.

• Image information: The name of the image, the image’s text size, the image’s data size, and the
set of processes using the image.

The following table describes the displayed columns:

Column Description

text The amount of memory used to store your program’s machine code instructions. The text
segment is sometimes called the code segment.

data The amount of memory used to store initialized and uninitialized data.

heap The amount of memory currently used for data created at run time; for example, calls to
the malloc() function allocate space on the heap while the free() function releases it.

stack The amount of memory used by the currently executing routine and all the routines in its
backtrace. If this is a multithreaded process, TotalView shows only information for the
main thread’s stack. Note that the stacks of other threads might not change over time on
some architectures. On some systems, the space allocated for a thread is considered part
of the heap. For example, if your main routine invokes function foo(), the stack contains
two groups of information—these groups are called frames. The first frame contains the
information required for the execution of your main routine, and the second, which is the
current frame, contains the information needed by the foo() function. If foo() invokes the
bar() function, the stack contains three frames. When foo() finishes executing, the stack
contains only one frame.

CLI Commands / dmstat 106

Examples
dmstat

dmstat is sensitive to the focus. Note this four-process program:
process: text data heap stack [stack_vm] vm_size
 1 (9271): 1128.54K 16.15M 9976 10432 [16384]

image information:
 image_name text data dpids
 ry/forked_mem_exampleLINUX 2524 16778479 1
 /lib/i686/libpthread.so.0 32172 27948 1
 /lib/i686/libc.so.6 1050688 122338 1
 /lib/ld-linux.so.2 70240 10813 1

dfocus a dmstat

The CLI prints the following for a four-process program:
 process: text data heap stack [stack_vm] vm_size
 1 (9979): 1128.54K 16.15M 14072 273168 [278528] 17.69M
 5 (9982): 1128.54K 16.15M 9976 10944 [16384] 17.44M
 6 (9983): 1128.54K 16.15M 9976 10944 [16384] 17.44M
 7 (9984): 1128.54K 16.15M 9976 10944 [16384] 17.44M

maximum:
 1 (9979): 1128.54K 16.15M 14072 273168 [278528] 17.69M
minimum
 5 (9982): 1128.54K 16.15M 9976 10944 [16384] 17.44M

image information:
 image_name text data dpids
....ry/forked_mem_exampleLINUX 2524 16778479 1 5 6 7
 /lib/i686/libpthread.so.0 32172 27948 1 5 6 7
 /lib/i686/libc.so.6 1050688 122338 1 5 6 7
 /lib/ld-linux.so.2 70240 10813 1 5 6 7

stack_vm The logical size of the stack is the difference between the current value of the stack pointer
and the address from which the stack originally grew. This value can differ from the size of
the virtual memory mapping in which the stack resides. For example, the mapping can be
larger than the logical size of the stack if the process previously had a deeper nesting of
procedure calls or made memory allocations on the stack, or it can be smaller if the stack
pointer has advanced but the intermediate memory has not been touched. The stack_vm
value is this size difference.

vm_size The sum of the sizes of the mappings in the process’s address space.

Column Description

CLI Commands / dmstat 107

RELATED TOPICS

Generate a Memory Usage Report in the MemoryScape in-product help
Opening MemoryScape to examine memory usage in the “Creating Programs for Memory Debugging” chap-

ter of Debugging Memory Problems with MemoryScape™

CLI Commands / dnext 108

dnext Steps source lines, stepping over subroutines

Format
dnext [-back] [num-steps]

Arguments
-back

(ReplayEngine only) Steps to the previous source line, stepping over subroutines. This option can be abbreviated
to -b.

num-steps

An integer greater than 0, indicating the number of source lines to be executed.

Description
The dnext command executes source lines; that is, it advances the program by steps (source line statements).
However, if a statement in a source line invokes a routine, the dnext command executes the routine as if it were
one statement; that is, it steps over the call.

The optional num-steps argument defines how many dnext operations to perform. If you do not specify num-steps,
the default is 1.

The dnext command iterates over the arenas in its focus set, performing a thread-level, process-level, or group-
level step in each arena, depending on the width of the arena. The default width is process (p).

For more information on stepping in processes and threads, see dstep on page 141.

CLI Commands / dnext 109

Command alias

Examples
dnext

Steps one source line.
n 10

Steps ten source lines.
N

Steps one source line. It also runs all other processes in the group that are in the same lockstep group to the
same line.

f t n

Steps the thread one statement.
dfocus 3. dnext

Steps process 3 one step.

Alias Definition Description

n dnext Runs the thread of interest (TOI) one statement, while allowing other threads
in the process to run.

N {dfocus g dnext} A group stepping command. This searches for threads in the share group
that are at the same PC as the TOI, and steps one such aligned thread in
each member one statement. The rest of the control group runs freely.

nl {dfocus L dnext} Steps the process threads in lockstep. This steps the TOI one statement and
runs all threads in the process that are at the same PC as the TOI to the
same statement. Other threads in the process run freely. The group of
threads that is at the same PC is called the lockstep group.This alias does
not force process width. If the default focus is set to group, this steps the
group.

NL {dfocus gL dnext} Steps lockstep threads in the group. This steps all threads in the share
group that are at the same PC as the TOI one statement. Other threads in
the control group run freely.

nw {dfocus W dnext} Steps worker threads in the process. This steps the TOI one statement, and
runs all worker threads in the process to the same (goal) statement. The
nonworker threads in the process run freely. This alias does not force pro-
cess width. If the default focus is set to group, this steps the group.

NW {dfocus gW dnext} Steps worker threads in the group. This steps the TOI one statement, and
runs all worker threads in the same share group to the same statement. All
other threads in the control group run freely.

CLI Commands / dnext 110

RELATED TOPICS

Creating a Process by Single Stepping in the TotalView for HPC User Guide
Stepping and Setting Breakpoints in the TotalView for HPC User Guide
Creating a Process by Single Stepping in the TotalView for HPC User Guide
Stepping and Setting Breakpoints in the TotalView for HPC User Guide
Using Stepping Commands in the TotalView for HPC User Guide
Group > Next Command in the online Help
Process > Next Command in the online Help
Thread > Next Command in the online Help
dnexti Command
dstep Command
dfocus Command

CLI Commands / dnexti 111

dnexti Steps machine instructions, stepping over subroutines

Format
dnexti [-back] [num-steps]

Arguments
-back

(ReplayEngine only) Steps a machine instruction back to the previous instruction, stepping over subroutines.
This option can be abbreviated to -b.

num-steps

An integer greater than 0, indicating the number of instructions to be executed.

Description
The dnexti command executes machine-level instructions; that is, it advances the program by a single instruc-
tion. However, if the instruction invokes a subfunction, the dnexti command executes the subfunction as if it
were one instruction; that is, it steps over the call. This command steps the thread of interest (TOI) while allowing
other threads in the process to run.

The optional num-steps argument defines how many dnexti operations to perform. If you do not specify num-steps,
the default is 1.

The dnexti command iterates over the arenas in the focus set, performing a thread-level, process-level, or group-
level step in each arena, depending on the width of the arena. The default width is process (p).

For more information on stepping in processes and threads, see dstep on page 141.

CLI Commands / dnexti 112

Command alias

Examples
dnexti

Steps one machine-level instruction.
ni 10

Steps ten machine-level instructions.
NI

Steps one instruction and runs all other processes in the group that were executing at that instruction to the
next instruction.

f t n

Steps the thread one machine-level instruction.
dfocus 3. dnexti

Steps process 3 one machine-level instruction.

Alias Definition Description

ni dnexti Runs the TOI one instruction while allowing other threads in the process to
run.

NI {dfocus g dnexti} A group stepping command. This searches for threads in the share group
that are at the same PC as the TOI, and steps one such aligned thread in
each member one instruction. The rest of the control group runs freely.

nil {dfocus L dnexti} Steps the process threads in lockstep. This steps the TOI one instruction,
and runs all threads in the process that are at the same PC as the TOI to
the same statement. Other threads in the process run freely. The group of
threads that is at the same PC is called the lockstep group.This alias does
not force process width. If the default focus is set to group, this steps the
group.

NIL {dfocus gL dnexti} Steps lockstep threads in the group. This steps all threads in the share
group that are at the same PC as the TOI one instruction. Other threads in
the control group run freely.

niw {dfocus W dnexti} Steps worker threads in the process. This steps the TOI one instruction,
and runs all worker threads in the process to the same (goal) statement.
The nonworker threads in the process run freely. This alias does not force
process width. If the default focus is set to group, this steps the group.

NIW {dfocus gW dnexti} Steps worker threads in the group. This steps the TOI one instruction, and
runs all worker threads in the same share group to the same statement. All
other threads in the control group run freely.

CLI Commands / dnexti 113

RELATED TOPICS

Creating a Process by Single Stepping in the TotalView for HPC User Guide
Stepping and Setting Breakpoints in the TotalView for HPC User Guide
Using Stepping Commands in the TotalView for HPC User Guide
Process > Next Instruction Command in the online Help
Thread > Next Instruction Command in the online Help
dnexti Command
dstep Command
dfocus Command

CLI Commands / dout 114

dout Executes until just after the place that called the current routine

Format
dout [-back] [frame-count]

Arguments
-back

(ReplayEngine only) Returns to the function call that placed the PC into the current routine. This option can be
abbreviated to -b.

frame-count

An integer that specifies that the thread returns out of this many levels of subroutine calls. Without this number,
the thread returns from the current level.

Description
The dout command runs a thread until it returns from either of the following:

• The current subroutine

• One or more nested subroutines

When you specify process width, TotalView allows all threads in the process that are not running to this goal to
run free. (Specifying process width is the default.)

CLI Commands / dout 115

Command alias

For additional information on the different kinds of stepping, see the dstep on page 141 command information.

Examples
f t ou

Runs the current TOI out of the current -subroutine.
f p dout 3

Unwinds the process in the current focus out of the current subroutine to the routine three levels above it in
the call stack.

RELATED TOPICS

Executing to the Completion of a Function in the TotalView User Guide

Alias Definition Description

ou dout Runs the thread of interest (TOI) out of the current function, while allow-
ing other threads in the process to run.

OU {dfocus g dout} Searches for threads in the share group that are at the same PC as the
TOI, and runs one such aligned thread in each member out of the cur-
rent function. The rest of the control group runs freely. This is a group
stepping command.

oul {dfocus L dout} Runs the process threads in lockstep. This runs the TOI out of the cur-
rent function, and also runs all threads in the process that are at the
same PC as the TOI out of the current function. Other threads in the
process run freely. The group of threads that is at the same PC is called
the lockstep group.This alias does not force process width. If the default
focus is set to group, this steps the group.

OUL {dfocus gL dout} Runs lockstep threads in the group. This runs all threads in the share
group that are at the same PC as the TOI out of the current function.
Other threads in the control group run freely.

ouw {dfocus W dout} Runs worker threads in the process. This runs the TOI out of the current
function and runs all worker threads in the process to the same (goal)
statement. The nonworker threads in the process run freely. This alias
does not force process width. If the default focus is set to group, this
steps the group.

OUW {dfocus gW dout} Runs worker threads in the group. This runs the TOI out of the current
function and also runs all worker threads in the same share group out
of the current function. All other threads in the control group run freely.

CLI Commands / dout 116

Group > Out Command in the online Help
Process > Out Command in the online Help
Thread > Out Command in the online Help

CLI Commands / dprint 117

dprint Evaluates and displays information

Format
Prints the value of a variable

dprint [-nowait] [-slice "slice_expr"] variable

Prints the value of an expression
dprint [-nowait] [-slice "slice_expr"] [-stats [-data]] expression

Arguments
-nowait

Tells TotalView to evaluate the expression in the background. Use TV::expr to obtain the results, as they are not
displayed.

-slice "slice_expr"

Defines an array slice—that is, a portion of the array—to print. If the programming language is C or C++, use a
backslash (\) when you enter the array subscripts. For example, "\[100:110\]".

-stats

Displays statistical data about an array. When using this switch, the expression provided to dprint must resolve
to an array. The -slice switch may be used with -stats to select a subset of values from the array to calculate sta-
tistics on.

-data

Returns the results of dprint -stats as data in the form of a Tcl nested associative array rather than as output to
the console. See the description section for the structure of the array.

Note: This switch can be used only in conjunction with the --stats switch.

variable

A variable whose value is displayed. The variable can be local to the current stack frame or it can be global. If the
displayed variable is an array, you can qualify the variable’s name with a slice that displays a portion of the array,

expression

A source-language expression to evaluate and print. Because expression must also conform to Tcl syntax, you
must enclose it within quotation marks it if it includes any blanks, and in braces ({}) if it includes brackets ([]), dol-
lar signs ($), quotation marks ("), or other Tcl special characters.

Description
The dprint command evaluates and displays a variable or an expression. The CLI interprets the expression by
looking up the values associated with each symbol and applying the operators. The result of an expression can be
a scalar value or an aggregate (array, array slice, or structure).

If an event such as a $stop, SEGV, breakpoint occurs, the dprint command throws an exception that describes
the event. The first exception subcode returned by TV::errorCodes is the susp-eval-id (a suspension-evaluation-ID).
You can use this to manipulate suspended evaluations with the dflush and TV::expr -commands. For example:

CLI Commands / dprint 118

dfocus tdpid.dtid TV::expr get susp-eval-id

NOTE >> If the expression calls a function, the focus must not specify more than one thread for each
process.

If you use the -nowait option, TotalView evaluates the expression in the background. It also returns a susp-eval-id
that you can use to obtain the results of the evaluation using TV::expr.

As the CLI displays data, it passes the data through a simple more processor that prompts you after it displays
each screen of text. At this time, you can press the Enter key to tell the CLI to continue displaying information.
Entering q stops printing.

Since the dprint command can generate a considerable amount of output, you might want to use the capture
on page 22 command to save the output to a variable.

Structure output appears with one field printed per line; for example:
sbfo = {
 f3 = 0x03 (3)
 f4 = 0x04 (4)
 f5 = 0x05 (5)
 f20 = 0x000014 (20)
 f32 = 0x00000020 (32)
}

Arrays print in a similar manner; for example:
foo = {
 [0][0] = 0x00000000 (0)
 [0][1] = 0x00000004 (4)
 [1][0] = 0x00000001 (1)
 [1][1] = 0x00000005 (5)
 [2][0] = 0x00000002 (2)
 [2][1] = 0x00000006 (6)
 [3][0] = 0x00000003 (3)
 [3][1] = 0x00000007 (7)
}

You can append a slice to the variable’s name to tell the CLI to display a portion of an array; for example:
d.1<> p -slice "\[10:20\]" random
random slice:(10:30) = {
 (10) = 0.479426
 (11) = 0.877583
 (12) = 0.564642
 (13) = 0.825336
 (14) = 0.644218
 (15) = 0.764842
 (16) = 0.717356
 (17) = 0.696707

CLI Commands / dprint 119

 (18) = 0.783327
 (19) = 0.62161
 (20) = 0.841471
}

The following is an another way of specifying the same slice:
d.1<> set my_var \[10:20\]
d.1<> p -slice $my_var random
random slice:(10:30) = {

The following example illustrates the output from dprint -stats command:
d1.<> dprint -stats twod_array

Count: 2500
Zero Count: 1
Sum: 122500
Minimum: 0
Maximum: 98
Median: 49
Mean: 49
Standard Deviation: 20.4124145231932
First Quartile: 34
Third Quartile: 64
Lower Adjacent: 0
Upper Adjacent: 98

NaN Count: N/A
Infinity Count: N/A
Denormalized Count: N/A

Checksum: 41071

By adding the -data switch,

d1.<> dprint -stats -data twod_array

the statistics are returned in a Tcl nested associative array, which has the following structure:
{
 <dpid.dtid>
 {
 Count <value>
 ZeroCount <value>
 Sum <value>
 Minimum <value>
 Maximum <value>
 Median <value>
 Mean <value>
 StandardDeviation <value>
 FirstQuartile <value>

CLI Commands / dprint 120

 ThirdQuartile <value>
 LowerAdjacent <value>
 UpperAdjacent <value>
 NaNCount <value>
 InfinityCount <value>
 DenormalizedCount <value>
 Checksum <value>
 }
 <dpid.dtid>
 {
 ...
 }
}

To access data for a single process/thread, use the following Tcl commands:
 array set stats_data [dprint -stats -data <arrayexpression>]
 array set stats $stats_data([lindex [array names stats_data] 0])
 puts "Array Sum: $stats(Sum)"

The CLI evaluates the expression or variable in the context of each thread in the target focus. Thus, the overall
format of dprint output is as follows:
first process or thread:
 expression result

second process or thread:
 expression result
...

last process or thread:
 expression result

TotalView lets you cast variables and cast a variable to an array. If you are casting a variable, the first array address
is the address of the variable. For example, assume the following declaration:
float bint;

The following statement displays the variable as an array of one integer:
dprint {(int \[1\])bint:

If the expression is a pointer, the first addresses is the value of the pointer. Here is an array declaration:
float bing[2], *bp = bint;

TotalView assumes the first array address is the address of what bp is pointing to. So, the following command dis-
plays the array:
dprint {(int \[2\])bp}

You can also use the dprint command to obtain values for your computer’s registers. For example, on most
architectures, $r1 is register 1. To obtain the contents of this register, type:
dprint \$r1

CLI Commands / dprint 121

NOTE >> Do not use a $ when asking the dprint command to display your program’s variables.

Command alias

Examples
dprint scalar_y

Displays the values of variable scalar_y in all processes and threads in the current focus.
p argc

Displays the value of argc.
p argv

Displays the value of argv, along with the first string to which it points.
p {argv[argc-1]}

Prints the value of argv[argc-1]. If the execution point is in main(), this is the last argument passed to main().
dfocus p1 dprint scalar_y

Displays the values of variable scalar_y for the threads in process 1.
f 1.2 p arrayx

Displays the values of the array arrayx for the second thread in process 1.
for {set i 0} {$i < 100} {incr i} {p argv\[$i\]}

If main() is in the current scope, prints the program’s arguments followed by the program’s environment
strings.

f {t1.1 t2.1 t3.1} dprint {f()}

Evaluates a function contained in three threads. Each thread is in a different process:
Thread 1.1:
f(): 2 Thread 2.1:
f(): 3
Thread 3.1:
f(): 5

f {t1.1 t2.1 t3.1} dprint -nowait {f()}
1

Evaluates a function without waiting. Later, you can obtain the results using TV::expr. The number displayed
immediately after the command, which is “1”, is the susp-eval-id. The following example shows how to get this
result:
f t1.1 TV::expr get 1 result
2

Alias Definition Description

p dprint Evaluates and displays information

CLI Commands / dprint 122

f t2.1 TV::expr get 1 result
Thread 1.1:
f(): 2
Thread 2.1:
f(): 3
Thread 3.1:
f(): 5
3
f t3.1 TV::expr get 1 result
5

RELATED TOPICS

Examining and Editing Data and Program Elements in the TotalView for HPC User Guide
Examining Arrays in the TotalView for HPC User Guide
Evaluating Expressions in the TotalView for HPC User Guide
Tools > Evaluate Command in the online Help
TV::errorCodes Command
TV::expr Command

CLI Commands / dptsets 123

dptsets Shows the status of processes and threads

Format
dptsets [ptset_array] ...

Arguments
ptset_array

An optional array that indicates the P/T sets to show. An element of the array can be a number or it can be a
more complicated P/T expression. (For more information, see “Using P/T Set Operators” in Chapter 21, “Group,
Process, and Thread Control” of the TotalView for HPC User Guide.)

Description
The dptsets command shows the status of each process and thread in a Tcl array of P/T expressions. These array
elements are P/T expressions (see “Using P/T Set Operators” in Chapter 21, “Group, Process, and Thread Control”
of the TotalView for HPC User Guide, and the elements’ array indices are strings that label each element's section in
the output.

If you do not use the optional ptset_array argument, the CLI supplies a default array that contains all P/T set desig-
nators: error, existent, held, running, stopped, unheld, and watchpoint.

Examples
The following example displays information about processes and threads in the current focus:
d.1<> dptsets
unheld:
1: 808694 Stopped [fork_loopSGI]
 1.1: 808694.1 Stopped PC=0x0d9cae64
 1.2: 808694.2 Stopped PC=0x0d9cae64
 1.3: 808694.3 Stopped PC=0x0d9cae64
 1.4: 808694.4 Stopped PC=0x0d9cae64

existent:
1: 808694 Stopped [fork_loopSGI]
 1.1: 808694.1 Stopped PC=0x0d9cae64
 1.2: 808694.2 Stopped PC=0x0d9cae64
 1.3: 808694.3 Stopped PC=0x0d9cae64
 1.4: 808694.4 Stopped PC=0x0d9cae64

watchpoint:

running:

held:

error:
 stopped: 1: 808694 Stopped [fork_loopSGI]

CLI Commands / dptsets 124

 1.1: 808694.1 Stopped PC=0x0d9cae64
 1.2: 808694.2 Stopped PC=0x0d9cae64
 1.3: 808694.3 Stopped PC=0x0d9cae64
 1.4: 808694.4 Stopped PC=0x0d9cae64
...

The following example creates a two-element P/T set array, and then displays the results. Notice the labels in this
example.
d1.<> set set_info(0) breakpoint(1)
breakpoint(1)
d1.<> set set_info(1) stopped(1)
stopped(1)
d1.<> dptsets set_info
0:
1: 892484 Breakpoint [arraySGI]
 1.1: 892484.1 Breakpoint PC=0x10001544, [array.F#81]

1:
1: 892484 Breakpoint [arraySGI]
 1.1: 892484.1 Breakpoint PC=0x10001544, [array.F#81]

The array index to set_info becomes a label identifying the type of information being displayed. In contrast, the
information within parentheses in the breakpoint and stopped functions identifies the arena for which the func-
tion returns -information.

If you use a number as an array index, you might not remember what is being printed. The following very similar
example shows a better way to use these array indices:
d1.<> set set_info(my_breakpoints) breakpoint(1)
breakpoint(1)
d1.<> set set_info(my_stopped) stopped(1)
stopped(1)
d1.<> dptsets set_info
my_stopped:
1: 882547 Breakpoint [arraysSGI]
 1.1: 882547.1 Breakpoint PC=0x10001544, [arrays.F#81]

my_breakpoints:
1: 882547 Breakpoint [arraysSGI]
 1.1: 882547.1 Breakpoint PC=0x10001544, [arrays.F#81]

The following commands also create a two-element array. This example differs in that the second element is the
difference between three P/T sets.
d.1<> set mystat(system) a-gW
d.1<> set mystat(reallystopped) \
 stopped(a)-breakpoint(a)-watchpoint(a)
d.1<> dptsets t mystat
system:
Threads in process 1 [regress/fork_loop]:

CLI Commands / dptsets 125

1.-1: 21587.[-1] Running PC=0x3ff805c6998
1.-2: 21587.[-2] Running PC=0x3ff805c669c
...
Threads in process 2 [regress/fork_loop.1]:
2.-1: 15224.[-1] Stopped PC=0x3ff805c6998
2.-2: 15224.[-2] Stopped PC=0x3ff805c669c
...

reallystopped:
2.2 224.2 Stopped PC=0x3ff800d5758
2.-1 5224.[-1] Stopped PC=0x3ff805c6998
2.-2: 15224.[-2] Stopped PC=0x3ff805c669c
...

CLI Commands / drerun 126

drerun Restarts processes

Format
drerun [cmd_args] [in_operation]
 [out_operations]
 [error_operations]

Arguments
cmd_args

The arguments to be used for restarting a process.

in_operation

Names the file from which the CLI reads input.

< infile

Reads from infile instead of stdin. infile indicates a file from which the launched process reads infor-
mation.

out_operations

Names the file to which the CLI writes output. In the following, outfile indicates the file into which the launched
processes writes information.

> outfile

Sends output to outfile instead of stdout.

>& outfile

Sends output and error messages to outfile instead of stdout and stderr.

>>& outfile

Appends output and error messages to outfile.

>> outfile

Appends output to outfile.

error_operations

Names the file to which the CLI writes error output. In the following, errfile indicates the file into which the
launched processes writes error information.

2> errfile

Sends error messages to errfile instead of stderr.

2>>errfile

Appends error messages to errfile.

CLI Commands / drerun 127

Description
The drerun command restarts the process that is in the current focus set from its beginning. The drerun com-
mand uses the arguments stored in the ARGS(dpmid)and ARGS_DEFAULTvariables. These are set every time you
run the process with different arguments. Consequently, if you do not specify the arguments that the CLI uses
when restarting the process, it uses the arguments you used when the CLI previously ran the process. (See drun
on page 131 for more information.)

The drerun command differs from the drun command in that:

• If you do not specify an argument, the drerun command uses the default values. In contrast, the
drun command clears the argument list for the program. This means that you cannot use an
empty argument list with the drerun command to tell the CLI to restart a process and expect that it
does not use any arguments.

• If the process already exists, the drun command does not restart it. (If you must use the drun
command, you must first kill the process.) In contrast, the drerun command kills and then restarts
the process.

The arguments to this command are similar to the arguments used in the Bourne shell.

Issues When Using Starter Programs

Starter programs such as poe or aprun and the CLI can interfere with one another because each believes that it
owns stdin. Because the starter program is trying to manage stdin on behalf of your processes, it continually
reads from stdin, acquiring all characters that it sees. This means that the CLI never sees these characters. If your
target process does not use stdin, you can use the -stdinmode none option. Unfortunately, this option is incom-
patible with poe -cmdfile option that is used when specifying -pgmmodel mpmd.

If you encounter these problems, try redirecting stdin within the CLI; for example:
drun < in.txt

Command alias

Examples
drerun

Reruns the current process. Because it doesn’t use arguments, the process restarts using its previous values.
rr -firstArg an_argument -aSecondArg a_second_argument

Reruns the current process. The CLI does not use the process’s default arguments because replacement argu-
ments exist.

Alias Definition Description

rr {drerun} Restarts processes

CLI Commands / drerun 128

RELATED TOPICS

Starting Processes and Threads in the TotalView for HPC User Guide
Command Arguments in the TotalView for HPC User Guide
Process > Startup Parameters in the online Help
drun Command
dgo Command
capture Command

CLI Commands / drestart 129

drestart Restarts a checkpoint (IBM RS6000 machines only)

Format
Restarts a checkpoint on IBM AIX

drestart [-halt] [-g gid] [-r host] [-no_same_hosts]

Arguments
-halt

TotalView stops checkpointed processes after it restarts them.

-g gid

Names the control group into which TotalView places all created processes.

-r host

Names the remote host upon which the restart occurs.

-no_same_hosts

Restart can use any available hosts. If you do not use this option, the restart occurs on the same hosts upon
which the program was executing when the checkpoint file was made. If these hosts are not available, the restart
operation fails.

Description
The drestart command restores and restarts all of the checkpointed processes. The CLI attaches to the base
process, and if there are parallel processes related to this base process, TotalView then attaches to them.

Restarting using LoadLeveler

If you checkpointed a LoadLeveler POE job, you cannot restart it with this command. You must resubmit the pro-
gram as a LoadLeveler job to restart the checkpoint. You also need to set the MP_POE_RESTART_SLEEP
environment variable to an appropriate number of seconds. After you restart POE, start TotalView and attach to
POE. POE tells TotalView when it is time to attach to the parallel task so that it can complete the restart operation.

NOTE >> When attaching to POE, parallel tasks will not have been created yet, so you should avoid try-
ing to attach to them. Therefore, use the -no_attach_parallel option when using the dattach
command to attach to POE.

Examples
drestart

Restarts the checkpointed processes. The CLI automatically attaches to parallel processes.
drestart -halt -no_same_hosts

Restarts the checkpointed processes using available hosts. Stops checkpointed processes after restoring
them.

CLI Commands / drestart 130

RELATED TOPICS

dcalltree Command
Tools > Create Checkpoint Command in the online Help
Tools > Restart Checkpoint Command in the online Help

CLI Commands / drun 131

drun Starts or restarts processes

Format
drun [cmd_arguments][in_operation infile] [out_operations outfile]

 [error_operations errfile]

Arguments
cmd_arguments

The argument list passed to the process.

in_operation

Names the file from which the CLI reads input.

< infile

Reads from infile instead of stdin. infile indicates a file from which the launched process reads infor-
mation.

out_operations

Names the file to which the CLI writes output. In the following, outfile indicates the file into which the launched
processes writes information.

> outfile

Sends output to outfile instead of stdout.

>& outfile

Sends output and error messages to outfile instead of stdout and stderr.

>>& outfile

Appends output and error messages to outfile.

>> outfile

Appends output to outfile.

error_operations

Names the file to which the CLI writes error output. In the following, errfile indicates the file into which the
launched processes writes error information.

2> errfile

Sends error messages to errfile instead of stderr.

2>>errfile

Appends error messages to errfile.

Description
The drun command launches each process in the current focus and starts it running. The CLI passes the com-
mand arguments to the processes. You can also indicate I/O redirection for input and output information. Later
in the session, you can use the drerun command to restart the program.

CLI Commands / drun 132

The arguments to this command are similar to the arguments used in the Bourne shell.

In addition, the CLI uses the following variables to hold the default argument list for each process:

ARGS_DEFAULT

The CLI sets this variable if you use the -a command-line option when you started the CLI or TotalView. (This op-
tion passes command-line arguments that TotalView uses when it invokes a process.) This variable holds the de-
fault arguments that TotalView passes to a process when the process has no default arguments of its own.

ARGS(dpmid)

An array variable that contains the command-line arguments. The index dpid is the process ID. This variable
holds a process’s default arguments. It is always set by the drun command, and it also contains any arguments
you used when executing a drerun command.

If more than one process is launched with a single drun command, each receives the same command-line
arguments.

In addition to setting these variables by using the -a command-line option or specifying cmd_arguments when you
use this or the drerun command, you can modify these variables directly with the dset and dunset commands.

You can only use this command to tell TotalView to execute initial processes, because TotalView cannot directly
run processes that your program spawns. When you enter this command, the initial process must have termi-
nated; if it was not terminated, you are told to kill it and retry. (You could, use the drerun command instead
because the drerun commands first kills the process.)

The first time you use the drun command, TotalView copies arguments to program variables. It also sets up any
requested I/O redirection. If you re-enter this command for processes that TotalView previously started—or use it
when you use the dattach command to attach to a process—the CLI reinitializes your program.

Issues When Using Starter Programs

Starter programs such as poe or aprun and the CLI can interfere with one another because each believes that it
owns stdin. Because the starter program is trying to manage stdin on behalf of your processes, it continually
reads from stdin, acquiring all characters that it sees. This means that the CLI never sees these characters. If your
target process does not use stdin, you can use the -stdinmode none option. Unfortunately, this option is incom-
patible with poe -cmdfile option that is used when specifying -pgmmodel mpmd.

If you encounter these problems, try redirecting stdin within the CLI; for example:
drun < in.txt

CLI Commands / drun 133

Command alias

Examples
drun

Begins executing processes represented in the current focus.
f {p2 p3} drun

Begins execution of processes 2 and 3.
f 4.2 r

Begins execution of process 4. This is the same as f 4 drun.
dfocus a drun

Restarts execution of all processes known to the CLI. If they were not previously killed, you are told to use the
dkill command and then try again.

drun < in.txt

Restarts execution of all processes in the current focus, setting them up to get standard input from in.txt file.

RELATED TOPICS

Starting Processes and Threadsin the TotalView for HPC User Guide
Command Arguments in the “Using the Command Line Interface (CLI)” chapter in the TotalView for HPC User

Guide
Process > Startup Parameters in the online Help
drerun Command
dgo Command

Alias Definition Description

r drun Starts or restarts processes

CLI Commands / dsession 134

dsession Loads a session

Format
Loads a session.

dsession [-load session_name]

Arguments
 -load session_name

Loads the session with the given session_name.

Description

Loads a previously created session. The session attributes are applied to the TotalView process object created for
the executable named in the session. Returns the TotalView ID for the new object as a string value. A session_name
that contains a space must be surrounded by quotes.

Sessions that attach to an existing process cannot be loaded this way; use the dattach command instead.

RELATED TOPICS

Loading a Session Using the Sessions Manager in the TotalView for HPC User Guide
Managing Sessions in the TotalView for HPC User Guide
dattach Command

CLI Commands / dset 135

dset Changes or views CLI variables

Format
Changes a CLI variable

dset debugger-var value

Views current CLI variables
dset [debugger-var]

Sets the default for a CLI variable
dset -set_as_default debugger-var value

Arguments
debugger-var

Name of a CLI variable.

value

Value to be assigned to debugger-var.

-set_as_default

Sets the value to use as the variable’s default. This option is most often used by system administrators to set site-
specific defaults in the global .tvdrc startup script. Values set using this option replace the CLI built-in default.

Description
The dset command sets the value of CLI debugger variables. CLI and TotalView variables are described in Chap-
ter 5, “TotalView Variables,” on page 251.

If you use the dset command with no arguments, the CLI displays the names and current values for all CLI vari-
ables in the global namespace. If you use only one argument, the CLI returns and displays that variable’s value.

The second argument defines the value that replaces a variable’s previous value. You must enclose it in quotation
marks if it contains more than one word.

If you do not use an argument, the CLI only displays variables in the current namespace. To show all variables in a
namespace, enter the namespace name immediately followed by a double colon; for example, TV::.

You can use an asterisk (*) as a wildcard character to tell the CLI to match more than one string; for example,
TV::g* matches all variables in the TV:: namespace beginning with g. For example, to view all variables in the TV::
namespace, enter the following:
dset TV::

or:
dset TV::GUI::

CLI Commands / dset 136

You need to type the double colons at the end of this example when obtaining listings for a namespace. Without
them, Tcl assumes that you are requesting information on a variable. For example, dset TV::GUI looks for a vari-
able named GUI in the TV namespace.

Using -set_as_default

When you press a default button within a File > Preferences dialog box, TotalView reinitializes some settings to
their original values. However, what happens if you set a value in your tvdrc file when you press a default button?
In this case, setting a variable doesn't change what TotalView thinks the default is, so it still changes the setting
back to its defaults.

The next time you invoke TotalView, TotalView will again use the value in your tvdrc.

You can tell TotalView that the value set in your tvdrc file is the default if you use the -set_as_default option. Now
when you press a default button, it will use your value instead of its own.

If your TotalView administrator sets up a global .tvdrc file, TotalView reads values from that file and merges them
with your preferences and other settings. If the value in the .tvdrc file changes, TotalView ignores the change
because it has already set a value in your local preferences file. If the administrator uses the -set_as_default
option, you can be told to press the default button to get the changes. If, however, the administrator doesn't use
this option, the only way to get changes is by deleting your preferences file.

Examples
dset PROMPT "Fixme% "

Sets the prompt to Fixme% followed by a space.
dset *

Displays all CLI variables and their current settings.
dset VERBOSE

Displays the current setting for output verbosity.
dset EXECUTABLE_PATH ../test_dir;$EXECUTABLE_PATH

Places ../test_dir at the beginning of the previous value for the executable path.
dset -set_as_default TV::server_launch_string \

{/use/this/one/tvdsvr}

Sets the default value of the TV::server_launch_string. If you change this value, you can later select the
Defaults button within the File > Preferences Launch String page to reset it to its original value.

dset TV::GUI::fixed_font_size 12

Sets the TotalView GUI to display information using a 12-point, fixed-width font. Commands such as this are
often found in a startup file.

CLI Commands / dset 137

RELATED TOPICS

dlappend Command

CLI Commands / dstatus 138

dstatus Shows current status of processes and threads

Format
dstatus

dstatus [-g]
dstatus [-group_by process_state | replay | pheld | thread_state | pc, | function | line |apid | theld | stop_reason]

Arguments
-g

Alias for -group_by.

-group_by

Reduces the display based on the following process-level or thread-level arguments. The reduction is shown us-
ing either a compressed process list for process-level properties (plist) or a compressed thread list for thread-
level properties (ptlist). See Compressed List Syntax (ptlist) for a description of a ptlist.

Process level:

process_state

Limits the display to the state of the process.

replay

Groups by replay mode. A process can be in three replay states: Replay Unavailable, Replay, or
-Record.

pheld

Groups the processes as either Held or UnHeld.

Thread level:

thread_state

The state of the thread

pc

The Program Counter of the thread

function

The function where the thread’s pc is currently.

line

The line number for the current thread’s pc

apid

The action point identifier that the thread’s pc is on. If the thread is not at an action point, it will be
grouped as ap(none).

theld

Threads grouped as either Held or UnHeld.

CLI Commands / dstatus 139

stop_reason

The stop code and stop message for a stopped thread.

-pcount

Alias for the -ptlist_element_count argument

-ptlist_element_count number

Displays, at maximum, number elements (comma separated plists or ptlists) in the process/thread compressed
list that is shown in a reduced dstatus display. If a reduction results in exceeding the ptlist_element_count,
an ellipsis is appended. For instance, if ptlist_element_count is set to 5:

[p1-4.1, p2.2, p3-4.3, p5.4, p6.1-2, ...]

To change the default value, use the TotalView State variable ptlist_element_threshold. For example:
dset TV::ptlist_element_threshold 10

-levels

The number of levels to show for a set of properties. If no levels are specified, then each property is reduced on
a new line with indentation. If the number of levels is less than the number of specified properties, then the re-
maining properties are shown in a single reduction on one line.

-v

Show verbose output in the reduced display. Without -v, full paths of filenames and line numbers are not dis-
played.

-detail

Force full detailed information for the current state of each process and thread in the current focus. This option
affects the amount of information displayed from grouping by function.

Description
With the -group_by option, the dstatus command displays an aggregated view of the process and thread state in
the current focus. To make the display more useful, you can reduce it based on specific properties, provided as
arguments as described above. The full detail shows the current state of each process and thread in the current
focus. ST is aliased to dfocus g dstatus and acts as a group-status command. Type help ptset for more
information.

If you have not changed the focus, the default is process. In this case, the dstatus command shows the status for
each thread in process 1. In contrast, if you set the focus to g1.<, the CLI displays the status for every thread in
the control group. When you limit thread state display by certain properties, the output is displayed as a com-
pressed thread list, or ptlist.

Compressed List Syntax (ptlist)

A compressed ptlist consists of a process and thread count, followed by square-bracket-enclosed list of process
and thread ranges separated by dot (.). If the thread range is missing, it's merely a compressed list of processes
and it is referred to as a plist.

If the process range starts with the letter p, the process IDs are TotalView DPIDs (debugger unique process iden-
tifiers); otherwise, they are the MPI rank for the process, MPI_COMM_WORLD.

CLI Commands / dstatus 140

The thread IDs are always TotalView DTIDs (debugger unique thread identifiers). For example, the compressed
ptlist 5:13[0-3.1-3, p1.1] indicates that there are five processes and 13 threads in the list. The process and
thread range 0-3.1-3 indicates MPI rank processes 0 through 3, each with DTIDs 1 through 3. The process
range p1.1 indicates process DPID 1 and thread DTID 1, normally the MPI starter process named mpirun.

Command alias

Examples
dstatus

Displays the status of all processes and threads in the current focus; for example:
1: 42898 Breakpoint [arraysAIX]

1.1: 42898.1 Breakpoint \
PC=0x100006a0,[./arrays.F#87]

f a st

Displays the status for all threads in all processes.
f p1 st

Displays the status of the threads associated with process 1. If the focus is at its default (d1.<), this is the same
as typing st.

ST

Displays the status of all processes and threads in the control group having the focus process; for example:
1: 773686 Stopped [fork_loop_64]
1.1:773686.1 Stopped PC=0x0d9cae64
1.2:773686.2 Stopped PC=0x0d9cae64
1.3:773686.3 Stopped PC=0x0d9cae64
1.4:773686.4 Stopped PC=0x0d9cae6

2: 779490 Stopped [fork_loop_64.1]
2.1:779490.1 Stopped PC=0x0d9cae64
2.2:779490.2 Stopped PC=0x0d9cae64
2.3:779490.3 Stopped PC=0x0d9cae64
2.4:779490.4 Stopped PC=0x0d9cae64

f W st

Shows status for all worker threads in the focus set. If the focus is set to d1.<, the CLI shows the status of each
worker thread in process 1.

f W ST

Alias Definition Description

st dstatus Shows current status

ST {dfocus g dstatus} Shows group status

CLI Commands / dstatus 141

Shows status for all worker threads in the control group associated with the current focus.

In this case, TotalView merges the W and g specifiers in the ST alias. The result is the same as if you had
entered f gW st.

f L ST

Shows status for every thread in the share group that is at the same PC as the thread of interest (TOI).
d1.<> dfocus g dstatus -group_by thread_state, function

First reduces the focus by thread_state, then further breaks down and reduces the results according to the func-
tion the threads are in within each thread state. This call might output this reduced display:
Focus: 4:20[p1-4.1-5]
 Breakpoint : 4:4[p1.2, p3-4.2, p2.3]
 snore : 4:4[p1.2, p3-4.2, p2.3]
 Stopped : 4:16[p1-4.1, p2.2, p1.3, p3-4.3, p1-4.4-5]
 .___newselect_nocancel : 4:13[p1-4.1, p2.2, p3-4.3, p1.4]
 snore : 2:3[p1.3, p2.4-5]

The above output displays the reduction produced by the group_by command as a series of ptlists. (See
above, Compressed List Syntax (ptlist)).

dfocus group dwhere -group_by function

This dwhere call output shows that all the processes have the first three frames in their backtrace but then
they diverge and one process is in function rank0 while the other three processes are in rankn.
+/ : 10:10[0-9.1]
+_start
 +__libc_start_main
 +main
 +rank0 : 1:1[0.1]
 +rankn : 3:3[1.1, 5.1, 8.1]

RELATED TOPICS

Using the Root Window in the TotalView for HPC User Guide
Viewing Process and Thread State in the TotalView for HPC User Guide
The Root Window in the online Help
dwhat Command
dwhere Command

CLI Commands / dstep 142

dstep Steps lines, stepping into subfunctions

Format
dstep [-back] [num-steps]

Arguments
-back

(ReplayEngine only) Steps to the previous source line, moving into subroutines that called the current function.
This option can be abbreviated to -b.

num-steps

An integer greater than 0, indicating the number of source lines to execute.

Description
The dstep command executes source lines; that is, it advances the program by steps (source lines). If a statement
in a source line invokes a subfunction, the dstep command steps into the function.

The optional num-steps argument defines the number of dstep operations to perform. If you do not specify num-

steps, the default is 1.

The dstep command iterates over the arenas in the focus set by doing a thread-level, process-level, or group-
level step in each arena, depending on the width of the arena. The default width is process (p).

If the width is process, the dstep command affects the entire process that contains the thread being stepped.
Thus, although the CLI is only stepping one thread, all other threads in the same process also resume executing.
In contrast, the dfocus t dstep command steps only the thread of interest (TOI).

NOTE >> On systems having identifiable manager threads, the dfocus t dstep command allows the
manager threads as well as the TOI to run.

The action taken on each term in the focus list depends on whether its width is thread, process, or group, and on
the group specified in the current focus. (If you do not explicitly specify a group, the default is the control group.)

If some thread hits an action point other than the goal breakpoint during a step operation, that ends the step.

Group Width

The behavior depends on the group specified in the arena:

Process group

TotalView examines that group and identifies each process having a thread stopped at the same location as the
TOI. TotalView selects one matching thread from each matching process. TotalView then runs all processes in
the group and waits until the TOI arrives at its goal location; each selected thread also arrives there.

CLI Commands / dstep 143

Thread group

The behavior is similar to process width behavior except that all processes in the program control group run,
rather than just the process of interest (POI). Regardless of which threads are in the group of interest, TotalView
only waits for threads that are in the same share group as the TOI. This is because it is not useful to run threads
executing in different images to the same goal.

Process Width (default)

The behavior depends on the group specified in the arena. Process width is the default.

Process group

TotalView allows the entire process to run, and execution continues until the TOI arrives at its goal location. To-
talView plants a temporary breakpoint at the goal location while this command executes. If another thread
reaches this goal breakpoint first, your program continues to execute until the TOI reaches the goal.

Thread group

TotalView runs all threads in the process that are in that group to the same goal as the TOI. If a thread arrives at
the goal that is not in the group of interest, this thread also stops there. The group of interest specifies the set of
threads for which TotalView waits. This means that the command does not complete until all threads in the
group of interest are at the goal.

Thread Width

Only the TOI is allowed to run. (This is not supported on all systems.)

CLI Commands / dstep 144

Command alias

Examples
dstep

Executes the next source line, stepping into any procedure call it encounters. Although the CLI only steps the
current thread, other threads in the process run.

s 15

Executes the next 15 source lines.
f p1.2 dstep

Steps thread 2 in process 1 by one source line. This also resumes execution of all threads in process 1; they
halt as soon as thread 2 in process 1 executes its statement.

f t1.2 s

Steps thread 2 in process 1 by one source line. No other threads in process 1 execute.

Alias Definition Description

s dstep Runs the TOI one statement, while allowing other threads in the pro-
cess to run.

S {dfocus g dstep} Searches for threads in the share group that are at the same PC as the
TOI, and steps one such aligned thread in each member one statement.
The rest of the control group runs freely. This is a group stepping
command.

sl {dfocus L dstep} Steps the process threads in lockstep. This steps the TOI one statement,
and runs all threads in the process that are at the same PC as the TOI to
the same (goal) statement. Other threads in the process run freely. The
group of threads that is at the same PC is called the lockstep group.This
alias does not force process width. If the default focus is set to group,
this steps the group.

SL {dfocus gL dstep} Steps lockstep threads in the group. This steps all threads in the share
group that are at the same PC as the TOI one statement. Other threads
in the control group run freely.

sw {dfocus W dstep} Steps worker threads in the process. This steps the TOI one statement,
and runs all worker threads in the process to the same (goal) state-
ment. The nonworker threads in the process run freely. This alias does
not force process width. If the default focus is set to group, this steps
the group.

SW {dfocus gW dstep} Steps worker threads in the group. This steps the TOI one statement,
and runs all worker threads in the same share group to the same (goal)
statement. All other threads in the control group run freely.

CLI Commands / dstep 145

RELATED TOPICS

Creating a Process by Single Stepping in the TotalView for HPC User Guide
Stepping and Setting Breakpoints in the TotalView for HPC User Guide
Using Stepping Commands in the TotalView for HPC User Guide
Group > Step Command in the online Help
Process > Step Command in the online Help
Thread > Step Command in the online Help
dstepi Command
dnext Command
dfocus Command

CLI Commands / dstepi 146

dstepi Steps machine instructions, stepping into subfunctions

Format
dstepi [-back] [num-steps]

Arguments
-back

(ReplayEngine only) Steps to the previous instruction, moving into subroutines that called the current function.
This option can be abbreviated to -b.

num-steps

An integer greater than 0, indicating the number of instructions to execute.

Description
The dstepi command executes assembler instruction lines; that is, it advances the program by single instructions.

The optional num-steps argument defines the number of dstepi operations to perform. If you do not specify num-

steps, the default is 1.

For more information, see dstep on page 141.

CLI Commands / dstepi 147

Command alias

Examples
dstepi

Executes the next machine instruction, stepping into any procedure call it encounters. Although the CLI only
steps the current thread, other threads in the process run.

si 15

Executes the next 15 instructions.
f p1.2 dstepi

Steps thread 2 in process 1 by one instruction, and resumes execution of all other threads in process 1; they
halt as soon as thread 2 in process 1 executes its instruction.

f t1.2 si

Steps thread 2 in process 1 by one instruction. No other threads in process 1 execute.

Alias Definition Description

si dstepi Runs the thread of interest (TOI) one instruction while allowing other
threads in the process to run.

SI {dfocus g dstepi} Searches for threads in the share group that are at the same PC as the
TOI, and steps one such aligned thread in each member one instruction.
The rest of the control group runs freely. This is a group stepping
command.

sil {dfocus L dstepi} Steps the process threads in lockstep. This steps the TOI one instruction,
and runs all threads in the process that are at the same PC as the TOI to
the same instruction. Other threads in the process run freely. The group
of threads that is at the same PC is called the lockstep group.This alias
does not force process width. If the default focus is set to group, this
steps the group.

SIL {dfocus gL dstepi} Steps lockstep threads in the group. This steps all threads in the share
group that are at the same PC as the TOI one instruction. Other threads in
the control group run freely.

siw {dfocus W dstepi} Steps worker threads in the process. This steps the TOI one instruction,
and runs all worker threads in the process to the same (goal) statement.
The nonworker threads in the process run freely. This alias does not
force process width. If the default focus is set to group, this steps the
group.

SIW {dfocus gW dstepi} Steps worker threads in the group. This steps the TOI one instruction, and
runs all worker threads in the same share group to the same statement.
All other threads in the control group run freely.

CLI Commands / dstepi 148

RELATED TOPICS

Creating a Process by Single Stepping in the TotalView for HPC User Guide
Stepping and Setting Breakpoints in the TotalView for HPC User Guide
Using Stepping Commands in the TotalView for HPC User Guide
Group > Step Instruction Command in the online Help
Process > Step Instruction Command in the online Help
Thread > Step Instruction Command in the online Help
dstep Command
dnext Command
dfocus Command

CLI Commands / dunhold 149

dunhold Releases a held process or thread

Format
Releases a process

dunhold -process

Releases a thread
dunhold -thread

Arguments
-process

Releases processes in the current focus. You can abbreviate the -process option argument to -p.

-thread

Releases threads in the current focus. You can abbreviate the -thread option to -t.

Description
The dunhold command releases the threads or processes in the current focus. You cannot hold or release sys-
tem manager threads.

Command alias

Examples
f w uhtp

Releases all worker threads in the focus process.
htp; uht

Holds all threads in the focus process except the TOI.

RELATED TOPICS

Holding and Releasing Processes and Threads in the TotalView for HPC User Guide
Starting Processes and Threads in the TotalView for HPC User Guide
Group > Release Command in the online Help

Alias Definition Description

uhp {dfocus p dunhold -process} Releases the process of interest (POI)

UHP {dfocus g dunhold -process} Releases the processes in the focus group

uht {dfocus t dunhold -thread} Releases the thread of interest (TOI)

UHT {dfocus g dunhold -thread} Releases all threads in the focus group

uhtp {dfocus p dunhold -thread} Releases the threads in the current -process

CLI Commands / dunhold 150

Process > Release Threads Command in the online Help
Thread > Hold Command in the online Help
dhold Command

CLI Commands / dunset 151

dunset Restores default settings for variables

Format
Restores a CLI variable to its default value

dunset debugger-var

Restores all CLI variables to their default values
dunset -all

Arguments
debugger-var

Name of the CLI variable whose default setting is being restored.

-all

Restores the default settings of all CLI variables.

Description
The dunset command reverses the effects of any previous dset commands, restoring CLI variables to their
default settings. See Chapter 5, “TotalView Variables,” on page 251 for information on these variables.

Tcl variables (those created with the Tcl set command) are not affected by this command.

If you use the -all option, the dunset command affects all changed CLI variables, restoring them to the settings
that existed when the CLI session began. Similarly, specifying debugger-var restores that one variable.

Examples
dunset PROMPT

Restores the prompt string to its default setting; that is, {[dfocus]>}.
dunset -all

Restores all CLI variables to their default settings.

RELATED TOPICS

dset Command

CLI Commands / duntil 152

duntil Runs the process until a target place is reached

Format
Runs to a line

duntil [-back] line-number

Runs to an address
duntil [-back] -address addr

Runs into a function
duntil [-back] proc-name

Arguments
-back

(ReplayEngine only) Steps to the previous instruction, moving into subroutines that called the current function.
This option can be abbreviated to -b.

line-number

A line number in your program.

-address addr

An address in your program.

proc-name

The name of a procedure, function, or subroutine in your -program.

Description
The duntil command runs the thread of interest (TOI) until execution reaches a line or absolute address, or until
it enters a function.

If you use a process or group width, all threads in the process or group not running to the goal are allowed to
run. If a secondary thread arrives at the goal before the TOI, the thread continues running, ignoring this goal. In
contrast, if you specify thread width, only the TOI runs.

The duntil command differs from other step commands when you apply it to a group, as follows:

Process group

Runs the entire group, and the CLI waits until all processes in the group contain at least one thread that has ar-
rived at the goal breakpoint. This lets you sync all the processes in a group in preparation for group-stepping
them.

Thread group

Runs the process (for p width) or the control group (for g width) and waits until all the running threads in the
group of interest arrive at the goal.

There are some differences in the way processes and threads run using the duntil command and other stepping
commands:

CLI Commands / duntil 153

• Process Group Operation: TotalView examines the TOI to see if it is already at the goal. If it is,
TotalView does not run the POI. -Similarly, TotalView examines all other processes in the share
group, and runs only processes without a thread at the goal. It also runs members of the control
group not in the share group.

• Group-Width Thread Group Operation: TotalView identifies all threads in the entire control group
that are not at the goal. Only those threads run. Although TotalView runs share group members in
which all worker threads are already at the goal, it does not run the workers. TotalView also runs
processes in the control group outside the share group. The duntil command operation ends
when all members of the focus thread group are at the goal.

• Process-Width Thread Group Operation: TotalView identifies all threads in the entire focus
process not already at the goal. Only those threads run. The duntil command operation ends
when all threads in the process that are also members of the focus group arrive at the goal.

Command alias

Examples
UNW 580

Runs all worker threads to line 580.
un buggy_subr

Runs to the start of the buggy_subr routine.

Alias Definition Description

un duntil Runs the TOI until it reaches a target, while allowing other threads in the
process to run.

UN {dfocus g duntil} Runs the entire control group until every process in the share group has at
least one thread at the goal. Processes that have a thread at the goal do
not run.

unl {dfocus L duntil} Runs the TOI until it reaches the target, and runs all threads in the process
that are at the same PC as the TOI to the same target. Other threads in the
process run freely. The group of threads that is at the same PC is called the
lockstep group. This does not force process width. If the default focus is set
to group, this runs the group.

UNL {dfocus gL duntil} Runs lockstep threads in the share group until they reach the target. Other
threads in the control group run freely.

unw {dfocus W duntil} Runs worker threads in the process to a target. The nonworker threads in
the process run freely. This does not force process width. If the default
focus is set to group, this runs the group.

UNW {dfocus gW duntil} Runs worker threads in the same share group to a target. All other threads
in the control group run freely.

CLI Commands / duntil 154

RELATED TOPICS

Executing to a Selected Line in the TotalView for HPC User Guide
Using Groups, Processes, and Threads in the TotalView for HPC User Guide
Using Run To and duntil Commands in the TotalView for HPC User Guide
Group > Run To Command in the online Help
Process > Run to Command in the online Help
Thread > Run To Command in the online Help

CLI Commands / dup 155

dup Moves up the call stack

Format
dup [num-levels]

Arguments
num-levels

Number of levels to move up. The default is 1.

Description
The dup command moves the current stack frame up one or more levels. It also prints the new frame number
and function.

Call stack movements are all relative, so dup effectively “moves up” in the call stack. (“Up” is in the direction of
main().)

Frame 0 is the most recent—that is, currently executing—frame in the call stack; frame 1 corresponds to the pro-
cedure that invoked the currently executing frame, and so on. The call stack’s depth is increased by one each time
a program enters a procedure, and decreases by one when the program exits from it. The effect of the dup com-
mand is to change the context of commands that follow. For example, moving up one level allows access to
variables that are local to the procedure that called the current routine.

Each dup command updates the frame location by adding the appropriate number of levels.

The dup command also modifies the current list location to be the current execution location for the new frame,
so a subsequent dlist command displays the code surrounding this location. Entering the dup 2 command (while
in frame 0) followed by a dlist command, for instance, displays source lines centered around the location from
which the current routine’s parent was invoked. These lines are in frame 2.

Command alias

Examples
dup

Moves up one level in the call stack. As a result, subsequent dlist commands refer to the procedure that
invoked this one. After this command executes, it displays information about the new frame; for example:
1 check_fortran_arrays_ PC=0x10001254,

FP=0x7fff2ed0 [arrays.F#48]

dfocus p1 u 5

Alias Definition Description

u dup Moves up the call stack

CLI Commands / dup 156

Moves up five levels in the call stack for each thread involved in process 1. If fewer than five levels exist, the CLI
moves up as far as it can.

RELATED TOPICS

ddown Command

CLI Commands / dwait 157

dwait Blocks command input until the target processes stop

Format
dwait

Arguments
This command has no arguments

Description
The dwait command waits for all threads in the current focus to stop or exit. Generally, this command treats the
focus the same as other CLI -commands.

If you interrupt this command—typically by entering Ctrl+C—the CLI manually stops all processes in the current
focus before it returns.

Unlike most other CLI commands, this command blocks additional CLI input until the blocking action is complete.

Examples
dwait

Blocks further command input until all processes in the current focus have stopped (that is, none of their
threads are still running).

dfocus {p1 p2} dwait

Blocks command input until processes 1 and 2 stop.

CLI Commands / dwatch 158

dwatch Defines a watchpoint

Format
Defines a watchpoint for a variable

dwatch variable [-length byte-count] [-g | -p | -t] [[-l lang] -e expr] [-t type]

Defines a watchpoint for an address
dwatch -address addr -length byte-count [-g | -p | -t] [[-l lang] -e expr] [-t type]

Arguments
variable

A symbol name corresponding to a scalar or aggregate identifier, an element of an aggregate, or a dereferenced
pointer.

-address addr

An absolute address in the file.

-length byte-count

The number of bytes to watch. If you enter a variable, the default is the variable’s byte length.

If you are watching a variable, you need to specify only the amount of storage to watch if you want to override
the default value.

-g

Stops all processes in the process’s control group when the watchpoint triggers.

-p

Stops the process that hit this watchpoint.

-t

Stops the thread that hit this watchpoint.

-l lang

Specifies the language in which you are writing an expression. The values you can use for lang are c, c++, f7, f9,
and asm, for C, C++, FORTRAN 77, Fortran-9x, and assembler, respectively. If you do not use a language code,
TotalView picks one based on the variable's type. If you specify only an address, TotalView uses the C language.

Not all languages are supported on all systems.

-e expr

When the watchpoint is triggered, evaluates expr in the context of the thread that hit the watchpoint. In most
cases, you need to enclose the expression in braces ({ }).

-t type

The data type of $oldval/$newval in the expression. If you do not use this option, TotalView uses the variable’s
datatype. If you specify an address and you also use an expression, you must use this option.

CLI Commands / dwatch 159

Description
The dwatch command defines a watchpoint on a memory location where the specified variables are stored. The
watchpoint triggers whenever the value of the variable changes. The CLI returns the ID of the newly created
watchpoint.

NOTE >> Watchpoints are not available on Macintosh computers running OS X, and IBM PowerPC com-
puters running Linux Power.

The value set in the STOP_ALL variable indicates which processes and threads stop executing.

The watched variable can be a scalar, array, record, or structure object, or a reference to a particular element in
an array, record, or structure. It can also be a dereferenced pointer variable.

To obtain a variable’s address if your application demands that you specify a watchpoint with an address instead
of a variable name:

• dprint &variable

• dwhat variable

The dprint command displays an error message if the variable is in a register.

See Chapter 8, “Using Watchpoints” in the TotalView for HPC User Guide for additional information on watchpoints.

If you do not use the -length option, the CLI uses the length attribute from the program’s symbol table. This
means that the watchpoint applies to the data object named; that is, specifying the name of an array lets you
watch all elements of the array. Alternatively, you can watch a certain number of bytes, starting at the named
location.

NOTE >> In all cases, the CLI watches addresses. If you specify a variable as the target of a watchpoint,
the CLI resolves the variable to an absolute address. If you are watching a local stack variable,
the position being watched is just where the variable happened to be when space for the vari-
able was allocated.

The focus establishes the processes (not individual threads) for which the watchpoint is in effect.

The CLI prints a message showing the action point identifier, the location being watched, the current execution
location of the triggering thread, and the identifier of the triggering threads.

One possibly confusing aspect of using expressions is that their syntax differs from that of Tcl. This is because you
need to embed code written in Fortran, C, or assembler within Tcl commands. In addition, your expressions often
include TotalView built-in functions.

CLI Commands / dwatch 160

Command alias

Examples
For these examples, assume that the current process set at the time of the dwatch command consists only of
process 2, and that ptr is a global variable that is a pointer.
dwatch *ptr

Watches the address stored in pointer ptr at the time the watchpoint is defined, for changes made by process
2. Only process 2 is stopped. The watchpoint location does not change when the value of ptr changes.

dwatch {*ptr}

Performs the same action as the previous example. Because the argument to the dwatch command contains
a space, Tcl requires you to place the argument within braces.

dfocus {p2 p3} wa *ptr

Watches the address pointed to by ptr in processes 2 and 3. Because this example does not contain either a -p
or -g option, the value of the STOP_ALL variable lets the CLI know if it should stop processes or groups.

dfocus {p2 p3 p4} dwatch -p *ptr

Watches the address pointed to by ptr in processes 2, 3, and 4. The -p option indicates that TotalView only
stops the process triggering the watchpoint.

wa * aString -length 30 -e {goto $447}

Watches 30 bytes of data beginning at the location pointed to by aString. If any of these bytes change, execu-
tion control transfers to line 447.

wa my_vbl -type long
 -e {if ($newval == 0x11ffff38) $stop;}

Watches the my_vbl variable and triggers when 0x11ffff38 is stored in it.
wa my_vbl -e {if (my_vbl == 0x11ffff38) $stop;}

Performs the same function as the previous example. This example tests the variable directly rather than by
using the $newval variable.

RELATED TOPICS

Using Watchpoints in the TotalView for HPC User Guide
Writing Code Fragments in the TotalView for HPC User Guide
 Tools > Watchpoint Command in the online Help
dactions Command

Alias Definition Description

wa dwatch Defines a watchpoint

CLI Commands / dwhat 161

dwhat Determines what a name refers to

Format
dwhat symbol-name

Arguments
symbol-name

Fully or partially qualified name specifying a variable, procedure, or other source code symbol.

Description
The dwhat command displays the name and description of a named entity in a program.

NOTE >> To view information on CLI variables or aliases, use the dset or alias -commands.

The focus constrains the query to a particular context.

The default width for this command is thread (t).

Command alias

Examples
The following examples the CLI display for various commands.
dprint timeout
timeout = {

tv_sec = 0xc0089540 (-1073179328)
tv_usec = 0x000003ff (1023)

}

dwhat timeout

In thread 1.1:
Name: timeout; Type: struct timeval; Size: 8 bytes; Addr: 0x11fffefc0

Scope: #fork_loop.cxx#snore \
(Scope class: Any) Address class: auto_var \
(Local variable)

wh timeval
In process 1: Type name: struct timeval; Size: 8 bytes; \

Category: Structure
Fields in type:
{ tv_sectime_t(32 bits)

Alias Definition Description

wh dwhat Determines what a name refers to

CLI Commands / dwhat 162

tv_usecint(32 bits)
}

dlist
20 float field3_float;
21 double field3_double;
22 en_check en1;
23
24 };
25
26 main ()
27 {
28 en_check vbl;
29 check_struct s_vbl;
30 vbl = big;
31 s_vbl.field2_char = 3;
32 return (vbl + s_vbl.field2_char);
33 }

p vbl
vbl = big (0)

wh vbl

In thread 2.3:
Name: vbl; Type: enum en_check; \

Size: 4 bytes; Addr: Register 01
Scope: #check_structs.cxx#main \
(Scope class: Any)
Address class: register_var (Register \

variable)

wh en_check

In process 2:
Type name: enum en_check; Size: 4 bytes; \

Category: Enumeration
Enumerated values:

big = 0
little = 1
fat = 2
thin = 3

p s_vbl
s_vbl = { field1_int = 0x800164dc (-2147392292) field2_char = '\377' (0xff, or -1)
field2_chars = "\003" <padding> = '\000' (0x00, or 0) field3_int = 0xc0006140 (-
1073716928) field2_uchar = '\377' (0xff, or 255) <padding> = '\003' (0x03, or 3)
<padding> = '\000' (0x00, or 0) <padding> = '\000' (0x00, or 0)

CLI Commands / dwhat 163

field_sub = {
field1_int = 0xc0002980 (-1073731200)
<padding> = '\377' (0xff, or -1)
<padding> = '\003' (0x03, or 3)
<padding> = '\000' (0x00, or 0)
<padding> = '\000' (0x00, or 0)
field2_long = 0x0000000000000000 (0)

...
}

wh s_vbl

In thread 2.3
Name: s_vbl; Type: struct check_struct; \

Size: 80 bytes; Addr: 0x11ffff240
Scope: #check_structs.cxx#main \

Scope class: Any)
Address class: auto_var (Local variable)

wh check_struct

In process 2:
Type name: struct check_struct; \

Size: 80 bytes; Category: Structure
Fields in type:
{
field1_intint(32 bits)
field2_charchar(8 bits)
field2_chars$string[2](16 bits)
<padding>$char(8 bits)
field3_intint(32 bits)
field2_uchar unsigned char(8 bits)
<padding>$char[3](24 bits)
field_substruct sub_st(320 bits){

field1_intint(32 bits)
<padding>$char[4](32 bits)
field2_longlong(64 bits)
field2_ulongunsigned long(64 bits)
field3_uintunsigned int(32 bits)
en1enum en_check (32 bits)
field3_doubledouble(64 bits)

}
...
}

CLI Commands / dwhat 164

RELATED TOPICS

View > Lookup Variable Command in the online Help
dstatus Command
dwhere Command

CLI Commands / dwhere 165

dwhere Displays the current execution location and call stack

Format
Displays locations in the call stack

dwhere [-level level-num] [num-levels] [-args] [-locals] [-registers] [-noshow_pc][-noshow_fp][-
show_image][-group_by property]

Displays all locations in the call stack
dwhere -all [-args] [-locals] [-registers] [-noshow_pc][-noshow_fp][-show_image]

Arguments
-all

Shows all levels of the call stack. This is the default.

-level level-num

Sets the level at which dwhere starts displaying information.

num-levels

Restricts output to this number of levels of the call stack. By default, all levels are shown.

-args

Displays argument names and values in addition to program location information. By default, the arguments are
not shown.

-locals

Displays each frame’s local variables. By default, the local variable information is not shown.

-noshow_pc

Does not show the PC. By default, the PC value is shown.

-noshow_fp

Does not show the FP. By default, the FP value is shown.

-registers

Displays each frame’s registers. By default, the register information is not shown.

-show_image

Shows the executable name as well as the file name. By default, dwhere displays the associated image informa-
tion if the source line cannot be found.

-group_by property

Aggregates stack backtraces of the focus threads, outputting a compressed ptlist that identifies the processes
and threads containing equivalent stack frames in the backtrace. For information on the ptlist syntax, see Com-
pressed List Syntax (ptlist).

This option requires a property argument to control the “equivalence” relationship of stack frames across the
threads. See The -group_by Option for more information.

CLI Commands / dwhere 166

Description
The dwhere command prints the current execution locations and the call stacks—or sequences of procedure
calls—that led to that point. The CLI shows information for threads in the current focus; the default shows infor-
mation at the thread level.

Arguments control the amount of command output in two ways:

• The num-levels argument determines how many levels of the call stacks are displayed, counting
from the uppermost (most recent) level. Without this argument, the CLI shows all levels in the call
stack, which is the default.

• The -a option displays procedure argument names and values for each stack level.

A dwhere command with no arguments or options displays the call stacks for all threads in the target set.

The MAX_LEVELS variable contains the default maximum number of levels displayed when you do not use the

num-levels argument.

Output is generated for each thread in the target focus. The output is printed directly to the console.

The -group_by Option

The -group_by option requires a property argument, which controls the “equivalence” relationship of stack frames
across the threads. When you use the --group_by option, dwhere aggregates the stack frames of each of the
focus threads, forming a tree of equivalent stack frames.

Starting at the base of the stack (closest to main() or the thread's start function), the dwhere command assigns
each frame a distance from a synthetic root frame indicated by /. Two frames are equivalent only if all of the fol-
lowing apply:

• Their distance from the root is equal.

• They have the same parent frame.

• The selected property of frames is equivalent.

The following property values are supported, with their abbreviations in parentheses:

• function (f): Equivalence based on the name of the function containing the PC for the frame.

• function+line (f+l): Equivalence based on the name of the function and the file and line number
containing the PC for the frame.

• function+offset (f+o): Equivalence based on the name of the function containing the PC for the
frame and offset from the beginning of the function to the PC for the frame.

CLI Commands / dwhere 167

Looking at backtraces purely by the function property is the most coarse grained grouping of threads. Choosing a
more fine grained grouping, such as a line number within the function, provides more detail about where in the
code a given thread is executing, but it may also result in a much larger set of equivalent frames.

The dwhere command displays the current execution location(s) and the backtrace(s) for the threads in the cur-
rent focus. If backtraces for multiple threads are requested, the stack displays are aggregated.

Lines denoting evaluation frames for compiled expressions or interpreted function calls are labeled with a sus-
pended evaluation id. This id can be used to manipulate suspended evaluations with dflush and TV::expr.

Command alias

Examples
dwhere

Displays the call stacks for all threads in the current focus.
dfocus 2.1 dwhere 1

Displays just the most recent level of the call stack corresponding to thread 1 in process 2. This shows just the
immediate execution location of a thread or threads.

f p1.< w 5

Displays the most recent five levels of the call stacks for all threads involved in process 1. If the depth of any
call stack is less than five levels, all of its levels are shown.

This command is a slightly more complicated way of saying f p1 w 5 because specifying a process width tells
the dwhere command to ignore the thread indicator.

w 1 -a

Displays the current execution locations (one level only) of threads in the current focus, together with the
names and values of any arguments that were passed into the current process.

RELATED TOPICS

dwhat Command
dstatus Command

Alias Definition Description

w dwhere Displays the current location in the call stack

CLI Commands / dworker 168

dworker Adds or removes a thread from a workers group

Format
dworker { number | boolean }

Arguments
number

If positive, marks the thread of interest (TOI) as a worker thread by inserting it into the workers group.

boolean

If true, marks the TOI as a worker thread by inserting it into the workers group. If false, marks the thread as a
nonworker thread by removing it from the workers group.

Description
The dworker command inserts or removes a thread from the workers group.

If number is 0 or false, this command marks the TOI as a nonworker thread by removing it from the workers group.
If number is true or is a positive value, this command marks the TOI as a worker thread by inserting it in the work-
ers group.

Moving a thread into or out of the workers group has no effect on whether the thread is a manager thread. Man-
ager threads are threads that are created by the pthreads package to manage other threads; they never execute
user code, and cannot normally be controlled individually. TotalView automatically inserts all threads that are not
manager threads into the workers group.

Command alias

RELATED TOPICS

Organizing Chaos in the TotalView for HPC User Guide
Creating Groups in the TotalView for HPC User Guide
Setting Group Focus in the TotalView for HPC User Guide
dgroups Command

Alias Definition Description

wof {dworker false} Removes the focus thread from the workers group

wot {dworker true} Inserts the focus thread into the workers group

CLI Commands / exit 169

exit Terminates the debugging session

Format
exit [-force]

Arguments
-force

Exits without asking permission. This is most often used in scripts.

Description
The exit command ends the debugging session.

After you enter this command, the CLI confirms that you wish to exit, then exits. If you entered the CLI from the
TotalView GUI, this command also closes the GUI window.

NOTE >> If you invoked the CLI from within the TotalView GUI, pressing Ctrl+D closes the CLI window
without exiting from TotalView.

TotalView destroys all processes and threads that it makes. Any processes that existed prior to the debugging
session (that is, TotalView attached to them because you used the dattach command) are detached and left
executing.

The exit and quit commands are interchangeable and do the same thing.

Examples
exit

Exits TotalView, leaving any attached processes running.

RELATED TOPICS

File > Exit Command in the online Help
quit Command

CLI Commands / help 170

help Displays help information

Format
help [topic]

Arguments
topic

A CLI topic or command.

Description
The help command prints information about the specified topic or command. With no argument, the CLI displays
a list of the topics for which help is available.

If the CLI needs more than one screen to display the help information, it fills the screen with data and then dis-
plays a more prompt. Press Enter to see more data or q to return to the CLI prompt.

When you enter a topic name, the CLI attempts to complete an entry. You can also enter one of the CLI built-in
aliases; for example:
d1.<> he a
Ambiguous help topic "a". Possible matches:
 alias accessors arguments addressing_expressions
d1.<> he ac
"ac" has been aliased to "dactions":
dactions [bp-ids ...] [-at <source-loc>] [-disabled | \

-enabled]
Default alias: ac

...
d1.<> he acc

The following commands provide access to the properties
of TotalView objects:
...

Use the capture command to place help information into a variable.

Command alias

Examples
help help

Prints information about the help command.

Alias Definition Description

he help Displays help information

CLI Commands / quit 171

quit Terminates the debugging session

Format
quit [-force]

Arguments
-force

Closes all TotalView processes without asking permission.

Description
The exit command terminates the TotalView session.

After you enter this command, the CLI confirms that you wish to exit, then exits. If you entered the CLI from the
TotalView GUI, this command also closes the GUI window.

NOTE >> If you invoked the CLI from within the TotalView GUI, pressing Ctrl+D closes the CLI window
without exiting from TotalView.

TotalView destroys all processes and threads that it makes. Any processes that existed prior to the debugging
session (that is, TotalView attached to them because you used the dattach command) are detached and left
executing.

The exit and quit commands are interchangeable and do the same thing.

Examples
quit

Exits TotalView, leaving any attached processes running.

RELATED TOPICS

File > Exit Command in the online Help
exit Command

CLI Commands / spurs 172

spurs Returns information on the spurs library use

Format
Displays help information

spurs [help]

Adds directories to the OBJECT_SEARCH_PATH variable
spurs add [directory directory ...]

Creates an image-qualified breakpoint
spurs break [spu-image-name spu-source-location-expression]

Deletes breakpoints
spurs delete breakpoint-id ...

Shows the directories in which TotalView searches for SPURS SPU ELF executables
spurs info [directory | break]

Prints information about the kernel, the taskset, tasks, and other SPURS objects
spurs print [kernel [eaSpurs] |
 barrier eaBarrier |

event_flag eaEventFlagSet |
lfqueue eaLFQueue |
queue eaQueue |

 semaphore eaSemaphore |
 taskset [eaTaskset] |
 task eaTaskset taskID]

Scans for information—this is a no-op
spurs scan

Arguments
directory

The directory or directories to be added to the CLI’s OBJECT_SEARCH_PATH variable. For example:
spurs add directory directory1 directory2

Notice that directory names are separated by space characters.

spu-image-name

The name of the image that is or will be loaded by TotalView

spu-source-location-expression

An expression that resolves to a specific line in the image. For information on location expressions, see dbreak
on page 39.

breakpoint-id

The action point ID to delete

CLI Commands / spurs 173

eaSpurs

The kernel context at this PPU address

eaBarrier

The barrier object at this PPU address

eaEventFlagSet

The event flag object at this PPU address

eaLFQueue

The lfqueue object at this PPU address

eaQueue

The queue object at this PPU address

eaSemaphore

The semaphore object at this PPU address

eaTaskset

The taskset at this PPU address

taskID

The task at this index

Description
Modeled after the GDB “spurs” command, the spurs command was created so that developers who are familiar
the GDB command have a similar set of commands in TotalView. However, not all GDB “spurs” commands are
implemented.

TotalView supports the SPURS library. Here’s this library’s description in the SPURS documentation:
libspurs is a user-level thread library for SPUs. In a SPURS environment (SPU Runtime System), SPU threads are
managed by SPUs. For this reason, thread switching is more efficient than under PPU management and requires no
PPU resources. Using SPURS also makes it easier to synchronize threads and adjust the load balance on multiple
SPUs. SPURS is furthermore highly extensible and allows users to define their own thread models as necessary.

spurs [help]

To access help on the spurs command:

• Enter spurs to return a one-line description of its commands.

• Enter spurs help to display more information about each spurs subcommand.

spurs add [directory directory ...]

Displays either a one-line description of this command or adds directories to search when TotalView looks for
SPURS SPU executables.

• spurs add writes a one-line description of this command.

CLI Commands / spurs 174

• spurs add directory directory adds a directory or directories to the CLI’s OBJECT_SEARCH_PATH
variable. This variable contains the path used when searching for SPU ELF executable files. The
directories are placed at the beginning of the list in the order in which they are named. If a directory
is already in the list, the previously named directory is removed.

This command returns the modified OBJECT_SEARCH_PATH variable.

spurs break [spu-image-name spu-source-location-expression]

Displays either a one-line description of this command or adds a breakpoint.

• spurs break returns a one-line description of this command.

• spurs break spu-image-name spu-source-loc-expression creates an image-qualified breakpoint path.
This is identical to the following CLI command:

dbreak -pending ##spu-image-name#source-loc-expr

This command creates a pending breakpoint that is located only with the image you name. However, if the image
has already been loaded, TotalView sets an ordinary breakpoint rather than a pending breakpoint. The focus
must be on an SPU thread.

This command returns the action point ID of the created breakpoint. You can use this ID with other CLI com-
mands that act upon breakpoints; for example, dactions. ddelete, ddisable, denable, and others.

spurs delete breakpoint-id ...

Permanently removes one or more action points. The argument defines which action points to delete. Unlike
spurs break, this command does not require that the command focus be set to an SPU thread.

spurs info [directory | break]

• spurs info returns a one-line description of this command.

• spurs info directory prints the OBJECT_SEARCH_PATH state variable

• spurs info break prints action point information about action points in the thread in the current
focus.

spurs print

The spurs print command can be used in the following ways:
spurs print [kernel [eaSpurs] |

barrier eaBarrier |
 event_flag eaEventFlagSet |
 lfqueue eaLFQueue |

queue eaQueue |
 semaphore eaSemaphore |

taskset [eaTaskset] |
 task eaTaskset taskID]

CLI Commands / spurs 175

spurs print

Displays one line of information on using this command.

spurs print kernel

Displays the kernel context for the SPU threads in the current or named focus. The focus must be one or more
SPU threads.

cell_spurs_print_kernel is an alias for this command.

spurs print kernel eaSpurs

Displays the kernel context at PPU address eaSpurs. The command focus must be one or more PPU threads.

cell_spurs_print_kernel is an alias for this command.

spurs print barrier eaBarrier

Displays the barrier object at PPU address eaBarrier. The command focus must be one or more PPU threads.

cell_spurs_print_barrier_info is an alias for this command.

spurs print event_flag eaEventFlagSet

Displays the event flag object at PPU address eaEventFlagSet. The command focus must be one or more PPU
threads.

cell_spurs_print_event_flag_info is an alias for this command.

spurs print lfqueue eaLFQueue

Displays the lfqueue object at PPU address eaLFQueue. The command focus must be one or more PPU threads.

cell_spurs_print_lfqueue_info is an alias for this command.

spurs print queue eaQueue

Displays the queue object at PPU address eaQueue. The command focus must be one or more PPU threads.

cell_spurs_print_queue_info is an alias for this command.

spurs print semaphore eaSemaphore

Displays the semaphore object at PPU address eaSemaphore. The command focus must be one or more PPU
threads.

cell_spurs_print_semaphore_info is an alias for this command.

spurs print taskset

Prints the taskset for the focus SPU threads. The command focus must be one or more SPU threads.

cell_spurs_print_taskset is an alias for this command

spurs print taskset eaTaskset

Prints the taskset at PPU address eaTaskset. The command focus must be one or more SPU threads.

cell_spurs_print_taskset is an alias for this command

spurs print task eaTaskset taskID

Prints the task at index taskID in the taskset at PPU address eaTaskset. The command focus must be one or more
PPU threads.

CLI Commands / spurs 176

cell_spurs_print_task is an alias for this command.

spurs scan

This command is for compatibility with GDB. Unlike the GDB command, this command is a no-op as TotalView has
no need to scan for SPU executables because searches for SPU executables happen dynamically.

CLI Commands / stty 177

stty Sets terminal properties

Format
stty [stty-args]

Arguments
stty-args

One or more UNIX stty command arguments as defined in the man page for your operating system.

Description
The CLI stty command executes a UNIX stty command on the tty associated with the CLI window, allowing you
to set all your terminal’s properties. However, this is most often used to set erase and kill characters.

If you start the CLI from a terminal using the totalviewcli command, the stty command alters this terminal’s envi-
ronment. Consequently, the changes you make using this command are retained in the terminal after you exit.

If you omit the stty-args argument, the CLI returns help information on your current settings.

The output from this command is returned as a string.

Examples
stty

Prints information about your terminal settings, equivalent to having entered stty while interacting with a shell.
stty -a

Prints information on all your terminal settings.
stty erase ^H

Sets the erase key to Backspace.
stty sane

Resets the terminal’s settings to values that the shell thinks they should be. For problems with command-line
editing, use this command. (The sane argument is not available in all environments.)

CLI Commands / unalias 178

unalias Removes a previously defined alias

Format
Removes an alias

unalias alias-name

Removes all aliases
unalias -all

Arguments
alias-name

The name of the alias to delete.

-all

Removes all aliases.

Description
The unalias command removes a previously defined alias. You can delete all aliases using the -all option. Aliases
defined in the tvdinit.tvd file are also deleted.

Examples
unalias step2

Removes the step2 alias; step2 is undefined and can no longer be used. If step2 was included as part of the
definition of another command, that command no longer works correctly. However, the CLI only displays an
error message when you try to execute the alias that contains this removed alias.

unalias -all

Removes all aliases.

RELATED TOPICS

alias Command

CLI Namespace Commands 178

Chapter 3

CLI Namespace Commands

Command Overview
This chapter lists all of CLI commands that are not in the top-level mainspace.

Accessor Functions
The following functions, all within the TV:: namespace, access and set TotalView properties:

• actionpoint: Accesses and sets action point properties.

• expr: Manipulates values created by the dprint -nowait command.

• focus_groups: Returns a list containing the groups in the current focus.

• focus_processes: Returns a list of processes in the current focus.

• focus_threads: Returns a list of threads in the current focus.

• group: Accesses and sets group properties.

• process: Accesses and sets process properties.

• scope: Accesses and sets scope properties.

• symbol: Accesses and sets symbol properties.

• thread: Accesses and sets thread properties.

• type: Accesses and sets data type properties.

• type_transformation: Accesses and defines type transformations.

CLI Namespace Commands / Command Overview 179

Helper Functions
The following functions, all within the TV:: namespace, are most often used in scripts:

• dec2hex: Converts a decimal number into hexadecimal format.

• dll: Manages shared libraries.

• errorCodes: Returns or raises TotalView error information.

• hex2dec: Converts a hexadecimal number into decimal format.

• read_symbols: Reads shared library symbols.

• respond: Sends a response to a command.

• source_process_startup: Reads and executes a .tvd file when TotalView loads a process.

CLI Namespace Commands / actionpoint 180

actionpoint Sets and gets action point properties

Format
TV::actionpoint action [object-id] [other-args]

Arguments
action

The action to perform, as follows:

commands

Displays the subcommands that you can use. The CLI responds by displaying these four action sub-
commands. There are no arguments to this subcommand.

get

Retrieves the values of one or more action point properties. The other-args argument can include one
or more property names. The CLI returns values for these properties in a list whose order is the same
as the names you enter.

If you use the -all option instead of the object-id, the CLI returns a list containing one (sublist) element
for each object.

properties

Lists the action point properties that TotalView can access. There are no arguments to this subcom-
mand.

set

Sets the values of one or more properties. The other-args argument contains property name and value
pairs.

object-id

An identifier for the action point.

other-args

Arguments that the get and set actions use.

Description
The TV::actionpoint command lets you examine and set the following action point properties and states:

address

The address of the action point.

block_count

The number of addresses associated with an actionpoint.

A single line of code can generate multiple instruction sequences. For example, there may be several entry
points to a subroutine, depending on where the caller is. This means that an actionpoint can be set at many ad-
dresses even if you are placing it on a single line.

Internally, a block represents one of these addresses.

CLI Namespace Commands / actionpoint 181

block_enabled

Each individual actionpoint block is an instruction that TotalView may replace with a trap instruction. (When a
trap instruction is encountered, the operating system passes control to the debugger.)

Each block can be enabled or disabled separately. This property type returns a list with in which 1 indicates if the
block is enabled and 0 if it is disabled.

This is the only property that can be set from within TotalView. All others are read-only

conflicted

Indicates that another action point shares at least one of the action point blocks. If this condition exists, the
block is conflicted. If a block is conflicted, TotalView completely disables the action point.

The conflicted property is 1 if the actionpoint is conflicted, and 0 if it is not.

context

A string that totally identifies an action point.

The location of every action point is represented by a string. Even action points set by clicking on a line number
are represented by strings. (In this case, the string is the line number.)

Sometimes, this string is all that is needed. Usually, however, more context is needed. For example, a line num-
ber needs a file name.

enabled

A value (either 1 or 0) indicating if the action point is enabled. A value of 1 means enabled. (settable)

expression

The expression to execute at an action point. (settable)

id

The ID of the action point.

language

The language in which the action point expression is written.

length

The length in bytes of a watched area. This property is only valid for watchpoints. (settable)

line

The source line at which the action point is set. This property is not valid for watchpoints.

satisfaction_group

The group that must arrive at a barrier for the barrier to be satisfied. (settable)

share

A value (either 1 or 0) indicating if the action point is active in the entire share group. A value of 1 means that it is.
(settable)

stop_when_done

A value that indicates what is stopped when a barrier is satisfied (in addition to the satisfaction set). Values are
process, group, or none. (settable)

CLI Namespace Commands / actionpoint 182

stop_when_hit

A value that indicates what is stopped when an action point is hit (in addition to the thread that hit the action
point). Values are process, group, or none. (settable)

type

The object’s type. (See type_values for a list of possible types.)

type_values

Lists values that can TotalView can assign to the type property: break, eval, process_barrier, thread_bar-
rier, and watch.

Examples
TV::actionpoint set 5 share 1 enable 1

Shares and enables action point 5.
f p3 TV::actionpoint set -all enable 0

Disables all the action points in process 3.
foreach p [TV::actionpoint properties] {
 puts [format “%20s %s” $p: \
 [TV::actionpoint get 1 $p]]

Dumps all the properties for action point 1. Here is what your output might look like:

RELATED TOPICS

dactions Command

address: 0x1200019a8
enabled: 0
expression:
id: 1
language:
length:
line: /temp/arrays.F#84
satisfaction_group:
satisfaction_process:
satisfaction_width:
share: 1
stop_when_done:
stop_when_hit: group
type: break
type_values: break eval pro-

cess_barrier

thread_barrier

watch

CLI Namespace Commands / dec2hex 183

dec2hex Converts a decimal number into hexadecimal

Format
TV::dec2hex number

Arguments
number

A decimal number to convert.

Description
The TV::dec2hex command converts a decimal number into hexadecimal. This command correctly manipulates
64-bit values, regardless of the size of a long value on the host system.

RELATED TOPICS

hex2dec Command

CLI Namespace Commands / dll 184

dll Manages shared libraries

Format
TV::dll action [dll-id-list] [-all]

Arguments
action

The action to perform, as follows:

close

Dynamically unloads the shared object libraries that were dynamically loaded by the ddlopen com-
mands corresponding to the list of dll-ids.

If you use the -all option, TotalView closes all of the libraries that it opened.

commands

Displays the subcommands that you can use. The CLI responds by displaying these four action sub-
commands. There are no arguments to this subcommand.

get

Retrieves the values of one or more TV::dll properties. The other-args argument can include one or
more property names.

If you use the -all option as the dll-id-list, the CLI returns a list containing one (sublist) element for
each object.

properties

Lists the TV::dll properties that TotalView can access. There are no arguments to this subcommand.

resolution_urgency_values

Returns a list of values that this property can take. This list is operating-system specific, but always in-
cludes {lazy now}.

symbol_availability_values

Returns a list of values that this property can take. This list is operating system specific, but always in-
cludes {lazy now}.

dll-id-list

A list of one or more dll-ids. There are the IDs returned by the ddlopen command.

-all

Closes all shared libraries that you opened using the ddlopen command.

Description
The TV::dll command either closes shared libraries that were dynamically loaded with the ddlopen command or
obtains information about loaded shared libraries.

CLI Namespace Commands / dll 185

Examples
TV::dll close 1

Closes the first shared library that you opened.

RELATED TOPICS

ddlopen Command

CLI Namespace Commands / errorCodes 186

errorCodes Returns or raises TotalView error information

Format
Returns a list of all error code tags

TV::errorCodes

Returns or raises error information
TV::errorCodes number_or_tag [-raise [message]]

Arguments
number_or_tag

An error code mnemonic tag or its numeric value.

-raise

Raises the corresponding error. If you append a message, TotalView returns this string. Otherwise, TotalView uses
the human-readable string for the error.

message

An optional string used when raising an error.

Description
The TV::errorCodes command lets you manipulate the TotalView error code information placed in the Tcl
errorCodes variable. The CLI sets this variable after every command error. Its value is intended to be easy to
parse in a Tcl script.

When the CLI or TotalView returns an error, errorCodes is set to a list with the following format:

TOTALVIEW error-code subcodes... string

where:

• The first list element is always TOTALVIEW.

• The second list element is always the error code.

• The subcodes argument is not used at this time.

• The last list element is a string describing the error.

With a tag or number, this command returns a list containing the mnemonic tag, the numeric value of the tag,
and the string associated with the error.

The -raise option raises an error. If you add a message, that message is used as the return value; otherwise, the
CLI uses its textual explanation for the error code. This provides an easy way to return errors from a script.

CLI Namespace Commands / errorCodes 187

Examples
foreach e [TV::errorCodes] {
 puts [eval format {"%20s %2d %s"} \
 [TV::errorCodes $e]]}

Displays a list of all TotalView error codes.

RELATED TOPICS

dprint Command
TV::expr Command

CLI Namespace Commands / expr 188

expr Manipulates values created by the dprint -nowait command

Format
TV::expr action [susp-eval-id] [other-args]

Arguments
action

The action to perform, as follows:

commands

Displays the subcommands that you can use. The CLI responds by displaying the subcommands
shown here. Do not use additional arguments with this subcommand.

delete

Deletes all data associated with a suspended ID. If you use this command, you can specify an other-
args argument. If you use the -done option, the CLI deletes the data for all completed expressions;
that is, those expressions for which TV::expr get susp-eval-id done returns 1. If you specify -all, the CLI
deletes all data for all expressions.

get

Gets the values of one or more expr properties. The other-args argument can include one or more val-
ues. The CLI returns these values in a list whose order is the same as the property names.

If you use the -all option instead of susp-eval-id, the CLI returns a list containing one (sublist) element
for each object.

properties

Displays the properties that the CLI can access. Do not use additional arguments with this option.

susp-eval-id

The ID returned or thrown by the dprint command, or printed by the dwhere command.

other-args

Arguments required by the delete subcommand.

Description
The TV::expr command, in addition to showing you command information, returns and deletes values returned
by a dprint -nowait command. You can use the following properties for this command:

done

TV::expr returns 1 if the process associated with susp-eval-id has finished in all focus threads. Otherwise, it re-
turns 0.

expression

The expression to execute.

focus_threads

A list of dpid.dtid values in which the expression is being -executed.

CLI Namespace Commands / expr 189

id

The susp-eval-id of the object.

initially_suspended_process

A list of dpid IDs for the target processes that received control because they executed the function calls or com-
piled code. You can wait for processes to complete by entering the following:

dfocus p dfocus [TV::expr get \
susp-eval-id \
initially_suspended_processes] dwait

result

A list of pairs for each thread in the current focus. Each pair contains the thread as the first element and that
thread’s result string as the second element; for example:

d1.<> dfocus {1.1 2.1} TV::expr \
get susp-eval-id result

{{1.1 2} {2.1 3}} d1.<>

The result of expression susp-eval-id in thread 1.1 is 2, and in thread 2.1 is 3.

status

A list of pairs for each thread in the current focus. Each pair contains the thread ID as the first element and that
thread’s status string as the second element. The possible status strings are done, suspended, and {error
diag}.

For example, if expression susp-eval-id finished in thread 1.1, suspended on a breakpoint in thread 2.1, and re-
ceived a syntax error in thread 3.1, that expression’s status property has the following value when TV::expr is fo-
cused on threads 1.1, 2.1, and 3.1:

d1.<> dfocus {t1.1 t2.1 t3.1} \
TV::expr get 1 status

{1.1 done} {2.1 suspended} {3.1 {error {Symbol nothing2 not found}}}
d1.<>

RELATED TOPICS

dprint Command

CLI Namespace Commands / focus_groups 190

focus_groups Returns a list of groups in the current focus

Format
TV::focus_groups

Arguments
This command has no arguments

Description
The TV::focus_groups command returns a list of all groups in the current focus.

Examples
f d1.< TV::focus_groups

Returns a list containing one entry, which is the ID of the control group for process 1.

RELATED TOPICS

Using Groups, Processes, and Threads in the TotalView for HPC User Guide
focus_processes Command
focus_threads Command
dfocus Command

CLI Namespace Commands / focus_processes 191

focus_processes Returns a list of processes in the current focus

Format
TV::focus_processes [-all | -group | -process | -thread]

Arguments
-all

Changes the default width to all.

-group

Changes the default width to group.

-process

Changes the default width to process.

-thread

Changes the default width to thread.

Description
The TV::focus_processes command returns a list of all processes in the current focus. If the focus width is some-
thing other than d (default), the focus width determines the set of processes returned. If the focus width is d, the
TV::focus_processes command returns process width. Using any of the options changes the default width.

Examples
f g1.< TV::focus_processes

Returns a list containing all processes in the same control as process 1.

RELATED TOPICS

focus_processes Command
focus_threads Command
dfocus Command
Using Groups, Processes, and Threads in the TotalView for HPC User Guide

CLI Namespace Commands / focus_threads 192

focus_threads Returns a list of threads in the current focus

Format
TV::focus_threads [-all | -group | -process | -thread]

Arguments
-all

Changes the default width to all.

-group

Changes the default width to group.

-process

Changes the default width to process.

-thread

Changes the default width to thread.

Description
The TV::focus_threads command returns a list of all threads in the current focus. If the focus width is something
other than d (default), the focus width determines the set of threads returned. If the focus width is d, the
TV::focus_threads command returns thread width. Using any of the options changes the default width.

Examples
f p1.< TV::focus_threads

Returns a list containing all threads in process 1.

RELATED TOPICS

focus_processes Command
focus_threads Command
dfocus Command
Using Groups, Processes, and Threads in the TotalView for HPC User Guide

CLI Namespace Commands / group 193

group Sets and gets group properties

Format
TV::group action [object-id] [other-args]

Arguments
action

The action to perform, as follows:

commands

Displays the subcommands that you can use. The CLI responds by displaying these four action sub-
commands. Do not use additional arguments with this subcommand.

get

Gets the values of one or more group properties. The other-args argument can include one or more
property names. The CLI returns the values for these properties in a list in the same order as you en-
tered the property names.

If you use the -all option instead of object-id, the CLI returns a list containing one (sublist) element for
each group.

properties

Displays the properties that the CLI can access. Do not use additional arguments with this option.

set

Sets the values of one or more properties. The other-args argument is a sequence of property name
and value pairs.

object-id

The group ID. If you use the -all option, TotalView executes this operation on all groups in the current focus.

other-args

Arguments required by the get and set subcommands.

Description
The TV::group command lets you examine and set the following group properties and states:

actionpoint_count

The number of shared action points planted in the group. This is only valid for share groups and shared action
points that are associated with the share group containing the process, rather than with the process itself.

When you obtain the results of this read-only value, the number may not look correct as this number also in-
cludes “magic breakpoints”. These are breakpoints that TotalView sets behind the scene; they are not usually vis-
ible. In addition, these magic breakpoints seldom appear when you use the dactions command.

canonical_execution_name

The absolute file name of the program being debugged. If you had entered a relative name, TotalView finds this
absolute name.

CLI Namespace Commands / group 194

count

The number of members in a group.

executable

Like canonical_execution_name, this is the absolute file name of the program being debugged. It differs in
that it contains symbolic links and the like that exist for the program.

id

The ID of the object.

member_type

The type of the group’s members, either process or thread.

member_type_values

A list of all possible values for the member_type -property. For all groups, this is a two-item list with the first be-
ing the number of proess groups and the second being the number of thread groups. In many ways, this is re-
lated to the type_values property, which is a list values the type property may take.

members

A list of a group’s processes or threads.

type

The group’s type. Possible values are control, lockstep, share, user, and workers.

type_values

A list of all possible values for the type property.

Examples
TV::group get 1 count

Returns the number of objects in group 1.

RELATED TOPICS

focus_groups Command
dworker Command
process Command
thread Command
Using Groups, Processes, and Threads in the TotalView for HPC User Guide

CLI Namespace Commands / hex2dec 195

hex2dec Converts a hexadecimal number to decimal

Format
TV::hex2dec number

Arguments
number

A hexadecimal number to convert.

Description
The TV::hex2dec command converts a hexadecimal number to decimal. You can type 0x before this value. The
CLI correctly manipulates 64-bit values, regardless of the size of a long value.

RELATED TOPICS

dec2hex Command

CLI Namespace Commands / process 196

process Sets and gets process properties

Format
TV::process action [object-id] [other-args]

Arguments
action

The action to perform, as follows:

commands

Displays the subcommands that you can use. The CLI responds by displaying these four action sub-
commands. Do not use other arguments with this subcommand.

get

Gets the values of one or more process properties. The other-args argument can include one or more
property names. The CLI returns these property values in a list whose order is the same as the names
you enter. If you use the -all option instead of object-id, the CLI returns a list containing one (sublist)
element for each object.

properties

Displays the properties that the CLI can access. Do not use other arguments with this subcommand.

set

Sets the values of one or more properties. The other-args arguments contains pairs of property names
and values.

object-id

An identifier for a process. For example, 1 represents process 1. If you use the -all option, the operation exe-
cutes upon all objects of this class in the current focus.

other-args

Arguments required by the get and set subcommands.

Description
The TV::process command lets you examine and set process properties and states, as the following list
describes:

cannonical_executable_name

The full pathname of the current executable.

clusterid

The ID of the cluster containing the process. This is a number uniquely identifying the TotalView server that owns
the process. The ID for the cluster TotalView is running in is always 0 (zero).

data_size

The size of the process’s data segment.

CLI Namespace Commands / process 197

duid

The internal unique ID associated with an object.

executable

Like canonical_execution_name, this is the absolute file name of the program being debugged. It differs in
that it contains an symbolic links and the like that exist for the program.

heap_size

The amount of memory currently being used for data created at runtime. Stated in a different way, the heap is
an area of memory that your program uses when it needs to dynamically allocate memory. For example, calls to
the malloc() function allocate space on the heap while the free() function releases the space.

held

A Boolean value (either 1 or 0) indicating if the process is held. (1 means that the process is held.)

hia_guard_max_size

The value set for the maximum size for guard blocks that surround a memory allocation. See the Debugging
Memory Problems with MemoryScape™ for information on what this size represents.

hia_guard_payload_alignment

The number of bits the guard block is aligned to.

hia_guard_pre_pattern

The numerical value of the bit pattern written into the guard block preceding an allocated memory block.

hia_guard_pre_size

The number of bits into which the guard block preceding an allocated memory block is written.

hia_guard_post_pattern

The numerical value of the bit pattern written into the guard block following an allocated memory block.

hia_guard_post_size

The number of bits into which the guard block following an allocated memory block is written.

hia_paint_pattern_width

Deprecated

hostname

A name of the process’s host computer and operating system (if needed); for example, linux-x86 would be re-
turned if the program is running on a 32-bit linux system.

is_parallel

Contains a value indicating if the current process is a parallel process. If it is, its value is 1. Otherwise, its value is
0.

id

The process ID.

image_ids

A list of the IDs of all the images currently loaded into the process both statically and dynamically. The first ele-
ment of the list is the current executable.

CLI Namespace Commands / process 198

is_parallel

Contains a value indicating if the current process is a parallel process. If it is, its value is 1. Otherwise, its value is
0.

nodeid

The ID of the node upon which the process is running. The ID of each processor node is unique within a cluster.

parallel_attach_subset

Contains the specification for MPI ranks to be attached to when an MPI job is created or attached to. See
-parallel_attach_subset subset_specification.

proc_name

The name of the process currently being executed.

rank

The rank of the currently selected process.

stack_size

The amount of memory used by the currently executing block or routines, and all the routines that have invoked
it. For example, if your main routines invokes the foo() function, the stack contains two groups of information—
these groups are called frames. The first frame contains the information required for the execution of your main
routine and the second, which is the current frame, contains the information needed by the foo() function. If
foo() invokes the bar() function, the stack contains three frames. When foo() finishes executing, the stack only
contains one frame.

stack_vm_size

The logical size of the stack is the difference between the current value of the stack pointer and the address
from which the stack originally grew. This value can be different from the size of the virtual memory mapping in
which the stack resides. For example, the mapping can be larger than the logical size of the stack if the process
previously had a deeper nest of procedure calls or made memory allocations on the stack, or it can be smaller if
the stack pointer has advanced but the intermediate memory has not been touched.

The stack_vm_size value is this difference in size.

state

Current state of the process. See state_values for a list of states.

state_values

A list of all possible values for the state property: break, error, exited, running, stopped, or watch.

syspid

The system process ID.

target_architecture

The machine architecture upon which the current process is executing.

target_byte_ordering

The bit ordering of the current machine. This is either little_endian or big_endian.

CLI Namespace Commands / process 199

target_processor

The kind of processor upon which the program is executing. For example, this could be x86 or x86-64.

text_size

The amount of memory used to store your program’s machine code instructions. The text segment is some-
times called the code segment.

threadcount

The number of threads in the process.

threads

A list of threads in the process.

vm_size

The sum of the mapping sizes in the process’s address space.

Examples
f g TV::process get -all id threads

For each process in the group, creates a list with the process ID followed by the list of threads; for example:
{1 {1.1 1.2 1.4}} {2 {2.3 2.5}} {3 {3.1 3.7 3.9}}

TV::process get 3 threads

Gets the list of threads for process 3; for example:
1.1 1.2 1.4

TV::process get 1 image_ids

Returns a list of image IDs in process 1; for example:
1|1 1|2 1|3 1|4

RELATED TOPICS

Using Groups, Processes, and Threads in the TotalView for HPC User Guide
focus_processes Command
group Command
thread Command

CLI Namespace Commands / read_symbols 200

read_symbols Reads shared library symbols

Format
Reads symbols from libraries

TV::read_symbols -lib lib-name-list

Reads symbols from libraries associated with a stack frame
TV::read_symbols -frame [number]

Reads symbols for all stack frames in the backtrace
TV::read_symbols -stack

Arguments
-lib [lib-name-list]

Tells TotalView to read symbols for all libraries whose names are contained within the lib-name-list argument.
Each name can include the asterisk (*) and question mark (?) wildcard characters.

This command ignores the current focus; libraries for any process can be affected.

-frame [number]

Tells TotalView to read the symbols for the library associated with the current stack frame. If you also enter a
frame number, TotalView reads the symbols for the library associated with that frame.

-stack

Reads the symbols for every frame in the backtrace. This is the same as right-clicking in the Stack Trace Pane and
selecting the Load All Symbols in Stack command. If, while reading in a library, TotalView may also need to
read in the symbols from additional libraries.

Description
The TV::read_symbols command reads debugging symbols from one or more libraries that TotalView has
already loaded but whose symbols have not yet been read. They are not yet read because the libraries were
included within either the TV::dll_read_loader_symbols_only or TV::dll_read_no_symbols lists.

For more information, see “Preloading Shared Libraries” in the TotalView for HPC User Guide.

CLI Namespace Commands / respond 201

respond Provides responses to commands

Format
TV::respond response command

Arguments
response

The response to one or more commands. If you include more than one response, separate the responses with
newline -characters.

command

One or more commands that the CLI executes.

Description
The TV::respond command executes a command. The command argument can be a single command or a list of
commands. In most cases, you place this information in braces ({}). If the CLI asks questions while command is exe-
cuting, you are not asked for the answer. Instead, the CLI uses the characters in the response string for the
argument. If more than one question is asked and strings within the response argument have all been used, The
TV::respond command starts over at the beginning of the response string. If response does not end with a newline,
the TV::respond command appends one.

Do not use this command to suppress the MORE prompt in macros. Instead, use the following command:
dset LINES_PER_SCREEN 0

The most common values for response are y and n.

NOTE >> If you are using the TotalView GUI and the CLI at the same time, your CLI command might
cause dialog boxes to appear. You cannot use the TV::respond command to close or interact
with these dialog boxes.

Examples
TV::respond {y} {exit}

Exits from TotalView. This command automatically answers the “Do you really wish to exit TotalView” question
that the exit command asks.

set f1 y
set f2 exit
TV::respond $f1 $f2

A way to exit from TotalView without seeing the “Do you really wish to exit TotalView” question. This example
and the one that preceded are not really what you would do as you would use the exit -force command.

CLI Namespace Commands / scope 202

scope Sets and gets internal scope properties

Format
TV::scope action [object-id] [other-args]

Arguments
action

The action to perform, as follows:

cast

Attempts to find or create the type named by the other-args argument in the given scope.

code_unit_by_soid

Look up loader symbols by using a regular expression to match the base name. For example:

TV::scope lookup $scope_id \
 loader_sym_by_regexp \
 "regular expression"

commands

Displays the subcommands that you can use. The CLI responds by displaying the subcommands
shown here. Do not use additional arguments with this subcommand.

create

Allows you to create blocks, enum_type, named_constant, typedef, upc_shared_type, and variable
symbols. The type of symbol determines the properties you meed to specify. In all cases, you must
specify the kind property. If you are creating a located symbol such as a block, you need to provide a
location. If you are creating a upc_shared_type, you need a target_type index.

dump

Dump all properties of all symbols in the scope and in the enclosed scope.

get

Returns properties of the symbols whose soids are specified. Specify the kinds of properties using
the other-args argument.

If you use the -all option instead of object-id, the CLI returns a list containing one (sublist) element for
each object.

lookup

Look up a symbol by name. Specify the kind of lookup using the other-args argument. The values you
can enter are:

by_language_rules: Use the language rules of the language of the scope to find a single name.

by_path: Look up a symbol using a pathname.

by_properties [proptery_regexp_pair]: TotalView recurses down the scope tree after it visits a sym-
bol. This means TotalView will search for matching symbols in the specified scope and any nested
scope. The walk property shows an example.

by_type_index: Look up a symbol using a type index.

CLI Namespace Commands / scope 203

in_scope: Look up a name in the given scope and in all enclosing scopes, and in the global scope.

lookup_keys

Displays the kinds of lookup operations that you can perform.

properties

Displays the properties that the CLI can access. Do not use additional arguments with this option.
The arguments displayed are those that are displayed for the scope of all types. Additional properties
also exist but are not shown.(Only the ones used by all are visible.) For more information, see
TV::symbol.

walk

Walk the scope, calling Tcl commands at particular points in the walk. The commands are named us-
ing the following options:

by_properties [proptery_regexp_pair]: TotalView recurses down the scope tree after it visits a sym-
bol. This means TotalView will search for matching symbols in the specified scope and any nested
scope. For example:

TV::scope walk $scope_id by_properties \
kind typedef base_name "^__BMN_.*$"

-pre_scope tcl_cmd: Names the commands called before walking a scope.
-pre_sym tcl_cmd: Names the commands called before walking a symbol.
-post_scope tcl_cmd: Names the commands called after walking a scope.
-post_symbol tcl_cmd: Names the commands called after walking a symbol.
tcl_cmd: Names the commands called for each symbol.

object-id

The ID of a scope.

other-args

Arguments required by the get subcommand.

Description
The TV::scope command lets you examine and set a scope’s properties and states.

Examples
TV::scope create $scope kind [kind] \
 [required_property_regexp_pair]...
 [non-required_property_regexp_pair]...

This is the general specification for creating a symbol
TV::scope create 1|31 kind block location {ldam 0x12}

Create a block. A block should have a length. However, you can set the length later using the set property.

CLI Namespace Commands / source_process_startup 204

source_process_startup Reads, then executes a .tvd file when a process is loaded

Format
TV::source_proccess_startup process_id

Arguments
process_id

The PID of the current process.

Description
The TV::source_process_startup command loads and interprets the .tvd file associated with the current pro-
cess. That is, if a file named executable.tvd exists, the CLI reads and then executes the commands in it.

RELATED TOPICS

Initializing TotalView in the TotalView for HPC User Guide

CLI Namespace Commands / symbol 205

symbol Gets and sets symbol properties

Format
TV::symbol action [object-id] [other-args]

Arguments
action

The action to perform, as follows:

code_unit_by_soid

Returns the containing scope of a line number. For example:

TV::symbol code_unit_by_soid $start_line
commands

Displays the subcommands that you can use. The CLI responds by displaying the subcommands
shown here. Do not use additional arguments with this subcommand.

dump

Dumps all properties of the symbol whose soid (symbol object ID) is named. Do not use additional
arguments with this command.

get

Returns properties of the symbols whose soids are specified here. The other-args argument names
the properties to be returned.

properties

Displays the properties that the CLI can access. Do not use additional arguments with this option.
These properties are discussed later in this section.

read_delayed

Only global symbols are initially read; other symbols are only partially read. This command forces
complete symbol processing for the compilation units that contain the named symbols.

resolve_final

Performs a sequence of resolve_next operations until the symbol is no longer undiscovered. If you
apply this operation to a symbol that is not undiscovered, it returns the symbol itself.

resolve_next

Some symbols only serve to hold a reference to another symbol. For example, a typedef is a refer-
ence to the aliased type, or a const-qualified type is a reference to the non-consts qualified type.
These reference types are called undiscovered symbols. This operation, when performed on an undis-
covered symbol, returns the symbol the type refers to. When this is performed on a symbol, it re-
turns the symbol itself.

rebind

Changes one or more structural properties of a symbol. These operations can crash TotalView or
cause it to produce inconsistent results. The properties that you can change are:

address: the new address:

CLI Namespace Commands / symbol 206

base_name: the new base name. The symbol must be a base name.
line_number: the new line number. The symbol must be a line number symbol.
loader_name: the new loader name and a file name.
scope: the soid of a new scope owner.
type_index: the new type index, in the form <n, m, p>. The symbol must be a type.

set

Sets a symbol’s property. Not all properties can be set. Determine which properties can be set using
the writable_properties property. For example,

TV::symbol set $new_upc_type \
type_index $old_idx

writable_properties

Returns a list of writable properties. For example:

TV::symbol writable_properties $symbol_id

object-id

The ID of a symbol.

other-args

Arguments required by the get subcommand.

Description
The TV::symbol command lets you examine and set the symbol properties and states.

Symbol Properties

Table 1 lists the properties associated with the symbols information that TotalView stores. Not all of this informa-
tion will be useful when creating transformations. However, it is possible to come across some of these
properties and this information will help you decide if you need to use it in your transformation. In general, the
properties used in the transformation files that Rogue Wave Software provided will be the ones that you will use.

Table 1: Symbol Properties

Symbol
Kind

Has
base_
name

Has
type_
index Property

aggregate_-
type

X X aggregate_kind
artificial
external_name

full_pathname
id
kind

length
logical_scope_owner
scope_owner

array_type X X artificial
data_addressing
element_addressing
external_name
full_pathnameid

index_type_index
kind
logical_scope_owner
lower_bound
scope_owner
stride_bound

submembers
target_type_index
upper_bound
validator

CLI Namespace Commands / symbol 207

block X address_class
artificial
full_pathname

id
kind
length

location
logical_scope_owner
scope_owner

char_type X X artificial
external_name
full_pathname

id
kind
logical_scope_owner

scope_owner
target_type_index

code_type X X artificial
external_name
full_pathname

id
kind
logical_scope_owner

scope_owner

ds_ undis-
covered_
type

X X artificial

id

kind
logical_scope_owner
scope_owner

target_type_index

enum_type X X artificial
enumerators
external_name

full_pathname
id
kind

logical_scope_owner
scope_owner
value_size

file X artificial
compiler_kind
delayed_symbol
demangler

full_pathname
idkind
language

logical_scope_owner
scope_owner

float_type X X artificial
external_name
full_pathname

id
kind
length

logical_scope_owner
scope_owner

function_-
type

X X artificial
external_name
full_pathname

id
kind
logical_scope_owner

scope_owner

image X artificial
full_pathname

id kind

int_type X X artificial
external_name
full_pathname

id
kind
length

logical_scope_owner
scope_owner

label X address_class
artificial
full_pathname

id
kind
location

logical_scope_owner
scope_owner

Table 1: Symbol Properties

Symbol
Kind

Has
base_
name

Has
type_
index Property

CLI Namespace Commands / symbol 208

linenumber address_class
artificial
full_pathname

id
kind
location

logical_scope_owner
scope_owner

loader_sym-
bol

address_class
artificial
full_pathname

id
kind
length

location
logical_scope_owner
scope_owner

member X address_class
artificial
full_pathname
id

inheritance
kind
location
logical_scope_owner

ordinal
scope_owner
type_index

module X artificial
full_pathname

id
kind

logical_scope_owner
scope_owner

named_-
constant

X artificial
full_pathname
id

kind
length
logical_scope_owner

scope_owner
type_index
value

namespace X artificial
full_pathname

idkind logical_scope_owner
scope_owner

opaque_type X X artificial
external_name
full_pathname

id
kind
logical_scope_owner

scope_owner

pathname_-
reference_sy
mbol

X artificial
id
full_pathname

kind
lookup_scope
logical_scope_owner

resolved_symbol_-
pathname
scope_owner

pointer_type X artificial
external_name
full_pathname
id

kind
length
logical_scope_owner
scope_owner

target_type_index
validator

qualified_-
type

X X artificial
external_name
full_pathname

id
kind
logical_scope_owner

qualification
scope_owner
target_type_index

soid_referen
ce_symbol

X artificial
full_pathname
id

kind
logical_scope_owner
resolved_symbol_id

scope_owner

Table 1: Symbol Properties

Symbol
Kind

Has
base_
name

Has
type_
index Property

CLI Namespace Commands / symbol 209

Figure 1 on page 210 shows how these symbols are related.

stringchar_-
type

X X artificial
external_name
full_pathname

id
kind
logical_scope_owner

scope_owner
target_type_index

subroutine X address_class
artificial
full_pathname
id

kind
length
location
logical_scope_owner

return_type_index
scope_owner
static_chain
static_chain_height

typedef X X artificial
external_name
full_pathname

id
kind
length

logical_scope_owner
scope_owner
target_type_index

variable X address_class
artificial
full_pathname
id

is_argument
kind
location
logical_scope_owner

ordinal
scope_owner
type_index

void_type X X artificial
external_name
full_pathname

id
kind
length

logical_scope_owner
scope_owner

wchar_type X X artificial
external_name
full_pathname

id
kind
logical_scope_owner

scope_owner
target_type_index

Table 1: Symbol Properties

Symbol
Kind

Has
base_
name

Has
type_
index Property

CLI Namespace Commands / symbol 210

Here are definitions of the properties associated with these symbols.

address_class

contains the location for a variety of objects such as a func, global_var, and a tls_global.

aggregate_kind

One of the following: struct, class, or union.

artificial

A Boolean (0 or 1) value where true indicates that the compiler generated the symbol.

compiler_kind

The compiler or family of compiler used to create the file; for example, gnu, xlc, intel, and so on.

Figure 1 – Symbols Architecture

CLI Namespace Commands / symbol 211

data_addressing

Contains additional operands to get from the base of an object to its data; for example, a Fortran by-desc array
contains a descriptor data structure. The variable points to the descriptor. If you do an addc operation on the
descriptor, you can then do an indirect operation to locate the data.

delayed_symbol

Indicates if a symbol has been full or partially read-in. The following constants are or’d and returned: skim, in-
dex, line, and full.

demangler

The name of demangler used by your compiler.

element_addressing

The location containing additional operands that let you go from the data’s base location to an element.

enumerators

Name of the enumerator tags. For example, if you have something like enum[R,G,B], the tags would be R, G,
and B.

external_name

When used in data types, it translates the object structure to the type name for the language. For example, if you
have a pointer that points to an int, the external name is int *.

full_pathname

This is the # separated static path to the variable; for example, ##image#file#externalname....

id

The internal object handle for the symbol. These symbols always take the form number|number.

index_type_index

The array type’s index type_index; for example, this indicates if the index is a 16-, 32-, 64-bit, and so on.

inheritance

For C++ variables, this string is as follows: [virtual] [{ private | protected | public }] [base class]

Figure 2 – Data Addressing

v

addc
Desc

Indirect Data

CLI Namespace Commands / symbol 212

is_argument

A true/false value indicating if a variable was a parameter (dummy variable) passed into the function.

kind

One of the symbol types listed in the first column of the previous table.

language

A string containing a value such as C, C++, or Fortran.

length

The byte size of the object. For example, this might represent the size of an array or a subroutine.

location

The location in memory where an object’s storage begins.

logical_scope_owner

The current scope’s owner as defined by the language’s rules.

lookup_scope

This is a pathname reference symbol that refers to the scope in which to look up a pathname.

lower_bound

The location containing the array’s lower bound. This is a numeric value, not the location of the first array item.

ordinal

The order in which a member or variable occurred within a scope.

Figure 3 – Logical Scope Owner

CLI Namespace Commands / symbol 213

qualification

A qualifier to a data type such as const or volatile. These can be chained together if there is more than one
qualifier.

resolved_symbol_id

The soid to lookup in a soid reference symbol.

resolved_symbol_pathname

The pathname to lookup in a Fortran reference symbol.

return_type_index

The data type of the value returned by a function.

scope_owner

The ID of the symbol’s scope owner. (This is illustrated by the figure within the logical_scope_owner defini-
tion.)

static_chain

The location of a static link for nested subroutines.

static_chain_height

For nested subroutines, this indicates the nesting level.

stride_bound

Location of the value indicating an array’s stride.

submembers

If you have an array of aggregates or pointers and you have already dived on it, this property gives you a list of
{name type} tuples where name is the name of the member of the array (or * if it's an array of pointers), and
type is the soid of the type that should be used to dive in all into that field.

target_type_index

The type of the following entities: array, ds_undiscovered_type, pointer, and typedef.

type_index

One of the following: member, variable, or named_constant.

upper_bound

The location of the value indicating an array’s upper bound or extent.

validator

The name of an array or pointer validator. This looks at an array descriptor or pointer to determine if it is allo-
cated and associated.

Figure 4 – Qualification

CLI Namespace Commands / symbol 214

value

For enumerators, this indicates the item’s value in hexadecimal bytes.

value_size

For enumerators, this indicates the length in bytes

Symbol Namespaces

The symbols described in the previous section all reside within namespaces. Like symbols, namespaces also have
properties. Table 1 lists the properties associated with a namespace. Figure 5 on page 215 illustrates how these
namespaces are related.

Table 2: Namespace Properties

Symbol Namespaces Properties

block_symname base_name

c_global_symname base_name loader_name

loader_file_path

c_local_symname base_name

c_type_symname base_name type_index

cplus_global_symname base_name cplus_template_types

cplus_class_name cplus_type_name

cplus_local_name loader_file_path

cplus_overload_list loader_name

cplus_local_symname base_name cplus_overload_list

cplus_class_name cplus_template_types

cplus_local_name cplus_type_name

cplus_type_symname base_name cplus_template_types

cplus_class_name cplus_type_name

cplus_local_name type_index

cplus_overload_list

file_symname base_name directory_path

directory_hint

fortran_global_symname base_name loader_file_path

fortran_module_name loader_name

fortran_parent_function_name

fortran_local_symname base_name
fortran_parent_function_name

CLI Namespace Commands / symbol 215

fortran_module_name

fortran_type_symname base_name fortran_parent_function_name

fortran_module_name type_index

image_symname base_name member_name

directory_path node_name

label_symname base_name

linenumber_symname linenumber

loader_symname loader_file_path loader_name

module_symname base_name

type_symname type_index

Figure 5 – Namespace Architecture

Table 2: Namespace Properties

Symbol Namespaces Properties

CLI Namespace Commands / symbol 216

Many of the following properties are used in more than one namespace. The explanations for these properties
will assume a limited context as their use is similar. Some of these definitions assume that you’re are looking at
the following function prototype:
void c::foo<int>(int &)

base_name

The name of the function; for example, foo.

cplus_class_name

The C++ class name; for example, c.

cplus_local_name

Not used.

cplus_overload_list

The function’s signature; for example, int &.

cplus_template_types

The template used to instantiate the function; for example: <int>.

cplus_type_name

The data type of the returned value; for example, void.

directory_hint

The directory to which you were attached when you started TotalView.

directory_path

Your file’s pathname as it is named within your program.

fortran_module_name

The name of your module. Typically, this looks like module‘var or module‘subr‘var.

fortran_parent_function_name

The parent of the subroutine. For example, the parent is module in a reference such as module‘subr. If you
have an inner subroutine, the parent is the outer subroutine.

linenumber

The line number at which something occurred.

loader_file_path

The file’s pathname.

loader_name

The mangled name.

member_name

In a library, you might have an object reference; for example, libC.a(foo.so). foo.so is the member name.

node_name

Not used.

CLI Namespace Commands / symbol 217

type_index

A handle that points to the type definition. Its format is <number,number,number>.

CLI Namespace Commands / thread 218

thread Gets and sets thread properties

Format
TV::thread action [object-id] [other-args]

Arguments
action

The action to perform, as follows:

commands

Displays the subcommands that you can use. The CLI responds by displaying these four action sub-
commands. Do not use other arguments with this option.

get

Gets the values of one or more thread properties. The other-args argument can include one or more
property names. The CLI returns these values in a list, and places them in the same order as the
names you enter.

If you use the -all option instead of object-id, the CLI returns a list containing one (sublist) element for
each object.

properties

Lists an object’s properties. Do not use other arguments with this option.

set

Sets the values of one or more properties. The other-args argument contains paired property names
and values.

object-id

A thread ID. If you use the -all option, the operation is carried out on all threads in the current focus.

other-args

Arguments required by the get and set subcommands.

Description
The TV::thread command lets you examine and set the following thread properties and states:

canonical_executable_name

The absolute file name of the program being debugged. If you had entered a relative name, TotalView find this
absolute name.

continue_sig

The signal to pass to a thread the next time it runs. On some systems, the thread receiving the signal might not
always be the one for which this property was set.

current_ap_id

The ID of the action point at which the current thread is stopped.

CLI Namespace Commands / thread 219

dpid

The ID of the process associated with a thread.

duid

The internal unique ID associated with the thread.

held

A Boolean value (either 1 or 0) indicating if the thread is held. (1 means that the thread is held.) (settable)

id

The ID of the thread.

manager

A Boolean value (either 1 or 0) indicating if this is a system manger thread. (1 means that it is a system manager
thread.)

pc

The current PC at which the target is executing. (settable)

sp

The value of the stack pointer.

state

The current state of the target. See state_values for a list of states.

state_values

A list of values for the state property: break, error, exited, running, stopped, and watch.

stop_reason_message

The reason why the current thread is stopped; for example, Stop Signal.

systid

The system thread ID.

target_architecture

The machine architecture upon which the current thread is executing.

target_byte_ordering

The bit ordering of the current machine. This is either little_endian or big_endian.

target_processor

The kind of processor upon which the current thread is executing. For example, this could be x86 or x86-64.

Examples
f p3 TV::thread get -all id

Returns a list of thread IDs for process 3; for example:
1.1 1.2 1.4

proc set_signal {val} {
 TV::thread set \
 [f t TV::focus_threads] continue_sig $val

CLI Namespace Commands / thread 220

}

Set the starting signal for the focus thread.
proc show_signal {} {
 foreach th [TV::focus_threads] {
 puts "Continue_sig ($th): \
 [TV::thread get $th continue_sig]";
 }
}

Show all starting signals

RELATED TOPICS

Using Groups, Processes, and Threads in the TotalView for HPC User Guide
focus_threads Command
group Command
process Command

CLI Namespace Commands / type 221

type Gets and sets type properties

Format
TV::type action [object-id] [other-args]

Arguments
action

The action to perform, as follows:

commands

Displays the subcommands that you can use. The CLI responds by displaying these four action sub-
commands. Do not use other arguments with this option.

get

Gets the values of one or more type properties. The other-args argument can include one or more
property names. The CLI returns these values in a list, and places them in the same order as the
names you enter.

If you use the -all option instead of object-id, the CLI returns a list containing one (sublist) element for
each object.

properties

Lists a type’s properties. Do not use other arguments with this option.

set

Sets the values of one or more type properties. The other-args argument contains paired property
names and values.

object-id

An identifier for an object; for example, 1 represents process 1, and 1.1 represents thread 1 in process 1. If you
use the -all option, the operation is carried out on all objects of this class in the current focus.

other-args

Arguments required by the get and set subcommands.

Description
The TV::type command lets you examine and set the following type properties and states:

enum_values

For an enumerated type, a list of {name value} pairs giving the definition of the enumeration. If you apply this
to a non-enumerated type, the CLI returns an empty list.

id

The ID of the object.

image_id

The ID of the image in which this type is defined.

CLI Namespace Commands / type 222

language

The language of the type.

length

The length of the type.

name

The name of the type; for example, class foo.

prototype

The ID for the prototype. If the object is not prototyped, the returned value is {}.

rank

(array types only) The rank of the array.

struct_fields

(class/struct/union types only). A list of lists that contains descriptions of all the type’s fields. Each sublist con-
tains the following fields:

{ name type_id addressing properties }

where:

name is the name of the field.
type_id is simply the type_id of the field.
addressing contains additional addressing information that points to the base of the field.
properties contains an additional list of properties in the following format:
“[virtual] [public|private|protected] base class”

If no properties apply, this string is null.

If you use get struct_fields for a type that is not a class, struct, or union, the CLI returns an empty list.

target

For an array or pointer type, returns the ID of the array member or target of the pointer. For commands without
this argument applied to one of these types, the CLI returns an empty list.

type

Returns a string describing this type; for example, signed integer.

type_values

Returns all possible values for the type property.

Examples
TV::type get 1|25 length target

Finds the length of a type and, assuming it is a pointer or an array type, the target type. The result might look
something like:

4 1|12

CLI Namespace Commands / type 223

The following example uses the TV::type properties command to obtain the list of properties. It begins by defin-
ing a procedure:
proc print_type {id} {
 foreach p [TV::type properties] {
 puts [format "%13s %s" $p [TV::type get $id $p]]
 }
}

You then display information with the following command:
print_type 1|6

enum_values
id 1|6
image_id 1|1
language f77
length 4
name <integer>
prototype
rank 0
struct_fields
target
type Signed Integer
type_values {Array} {Array of characters} {Enumeration}...

CLI Namespace Commands / type_transformation 224

type_transformation Creates type transformations and examines properties

Format
TV::type_transformation action [object-id] [other-args]

Arguments
action

The action to perform, as follows:

commands

Displays the subcommands that you can use. The CLI responds by displaying the subcommands
shown here. Do not use additional arguments with this subcommand.

create

Creates a new transformation object. The object-id argument is not used; other-args is Array, List, Map,
Set, Umap, Uset or Struct, indicating the type of transformation being created. You can change a
transformation’s properties up to the time you install it. After being installed, you can longer change
them.

get

Gets the values of one or more transformation properties. The other-args argument can include one
or more property names. The CLI returns these property values in a list whose order is the same as
the property names you entered.

If you use the -all option instead of object-id, the CLI returns a list containing one (sublist) element for
the object.

properties

Displays the properties that the CLI can access. Do not use additional arguments with this option.
These properties are discussed later in this section.

set

Sets the values of one or more properties. The other-args argument consists of pairs of property
names and values. The argument pairs that you can set are listed later in this section.

object-id

The type transformation ID. This value is returned when you create a new transformation; for example, 1 rep-
resents process 1. If you use the -all option, the operation executes upon all objects of this class in the current
focus.

other-args

Arguments required by get and set subcommands.

Description
The TV::type_transformation command lets you define and examine properties of a type transformation. The
states and properties you can set are:

CLI Namespace Commands / type_transformation 225

Common Properties

id

The type transformation ID returned from a create operation.

language

The language property specifies source language for the code of the aggregate type (class) to transform. This is
always C++.

name

Contains a regular expression that checks to see if a symbol is eligible for type transformation. This regular ex-
pression must match the definition of the aggregate type (class) being transformed.

type_callback

The type_callback property is used in two ways.

(1) When it is used within a list or vector transformation, it names the procedure that determines the type of the
list or vector element. The callback procedure takes one parameter, the symbol ID of the symbol that was vali-
dated during the callback to the procedure specified by the validate_callback. The call structure for this call-
back is:

type_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

(2) When it is used within a struct transformation, it names the procedure that specifies the data type to be used
when displaying the struct.

type_transformation_description

A string containing a description of what is being transformed; for example, you might enter “GNU Vector”.

validate_callback

Names a procedure that is called when a data type matches the regular expression specified in the name prop-
erty. The call structure for this callback is:

validate_callback id

where id is the symbol ID of the symbol being validated.

Your callback procedure should check the symbol’s structure to insure that it should be transformed. While not
required, most users will extract symbol information such as its type and its data members while validating the
datatype. The callback procedure must return a Boolean value, where true means the symbol is valid and can be
transformed.

compiler

Reserved for future use.

Array Properties

addressing_callback

Names the procedure that locates the address of the start of an array. The call structure for this callback is:

addressing_callback id

CLI Namespace Commands / type_transformation 226

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

This callback defines a TotalView addressing expression that computes the starting address of an array’s first el-
ement.

lower_bounds_callback

Names the procedure that obtains a lower bound value for the array type being transformed. For C/C++ arrays,
this value is always 0. The call structure for this callback is:

lower_bounds_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

upper_bounds_callback

Names the procedure that defines an addressing expression that computes the extent (number of elements) in
an array. The call structure for this callback is:

upper_bounds_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

List Properties

list_element_count_addressing_callback

Names the procedure that determines the total number of elements in a list. The call structure for this callback
is:

list_element_count_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

This callback defines an addressing expression that specifies how to get to the member of the symbol that spec-
ifies the number of elements in the list.

If your data structure does not have this element, you still must use this callback. In this case, simply return
{nop} as the addressing expression and the transformation will count the elements by following all the pointers.
This can be very time consuming.

list_element_data_addressing_callback

Names the procedure that defines an addressing expression that specifies how to access the data member of a
list element. The call structure for this callback is:

list_element_data_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

list_element_next_addressing_callback

Names the procedure that defines an addressing expression that specifies how to access the next element of a
list. The call structure for this callback is:

list_element_next_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

CLI Namespace Commands / type_transformation 227

list_element_prev_addressing_callback

Names the procedure that defines an addressing expression that specifies how to access the previous element
of a list. The call structure for this callback is:

list_element_prev_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

This property is optional. For example, you would not use it in a singly linked list.

list_end_value

Specifies if a list is terminated by NULL or the head of the list. Enter one of the following: NULL or ListHead

list_first_element_addressing_callback

Names the procedure that defines an addressing expression that specifies how to go from the head element of
the list to the first element of the list. It is not always the case that the head element of the list is the first element
of the list. The call structure for this callback is:

list_first_element_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

list_head_addressing_callback

Names the procedure that defines an addressing expression to obtain the head element of the linked list. The
call structure for this callback is:

list_head_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

Struct Properties

struct_member_count_callback

Names the procedure that obtains the total number of members in a struct. The call structure for this callback
is:

struct_member_count_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

struct_member_addressing_callback

Names the procedure that defines an addressing expression that specifies how to access the specified member
of a struct. The call structure for this callback is:

struct_member_addressing_callback id index

where id is the symbol ID of the symbol that was validated using the validate_callback procedure and index
specifies the zero-based position of the member within the struct.

struct_member_type_callback

Names the procedure that obtains the type id of the specified member of a struct. The call structure for this call-
back is:

struct_member_type_callback id index

CLI Namespace Commands / type_transformation 228

where id is the symbol ID of the symbol that was validated using the validate_callback procedure and index
specifies the zero-based position of the member within the struct.

struct_member_name_callback

Names the procedure that obtains the name of the specified member of a struct. The call structure for this call-
back is:

struct_member_name_callback id index

where id is the symbol ID of the symbol that was validated using the validate_callback procedure and index
specifies the zero-based position of the member within the struct.

Red/Black Tree Properties

The implementation of map/multimap and set/multiset STL types uses red/black trees. These properties are com-
mon to all these types.

rbtree_head_addressing_callback

Names the procedure that defines an addressing expression to obtain the head element of the map. The call
structure for this callback is:

rbtree_head_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

rbtree_head_type_callback

Names the procedure that obtains the type id of the head of a map. The call structure for this callback is:

rbtree_head_type_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

rbtree_element_left_addressing_callback

Names the procedure that defines an addressing expression that specifies how to access the left sub-tree of the
current element of a map. The call structure for this callback is:

rbtree_element_left_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

rbtree_element_right_addressing_callback

Names the procedure that defines an addressing expression that specifies how to access the right sub-tree of
the current element of a map. The call structure for this callback is:

rbtree_element_right_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

rbtree_element_parent_addressing_callback

Names the procedure that defines an addressing expression that specifies how to access the parent of the cur-
rent element of a map. The call structure for this callback is:

rbtree_element_parent_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

CLI Namespace Commands / type_transformation 229

rbtree_element_count_addressing_callback

Names the procedure that determines the total number of elements in a map. The call structure for this call-
back is:

rbtree_element_count_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

This callback defines an addressing expression that specifies how to get to the member of the symbol that spec-
ifies the number of elements in the map.

If your data structure does not have this element, you still must use this callback. In this case, simply return
{nop} as the addressing expression and the transformation will count the elements by following all the pointers.
Unfortunately, this can be very time consuming.

rbtree_element_count_type_callback

Names the procedure that obtains the type id of the member that specifies the number of elements in the map.
The call structure for this callback is:

rbtree_element_count_type_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

If your data structure does not have a count element, this property is not required.

rbtree_left_most_addressing_callback

Names the procedure that defines an addressing expression to obtain the left-most element of the map. The
call structure for this callback is:

rbtree_left_most_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

Map/Multimap Properties

For map and multimap STL types these properties are used in combination with those for red/black trees above.

map_element_key_data_addressing_callback

Names the procedure that defines an addressing expression that specifies how to access the key of an element
of a map. The call structure for this callback is:

map_element_key_data_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

map_element_key_type_callback

Names the procedure that obtains the type id of the key of a map. The call structure for this callback is:

map_element_key_type_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

map_element_type_callback

Names the procedure that obtains the type id of the element in the red/black tree that contains the key/value
pair. The call structure for this callback is:

CLI Namespace Commands / type_transformation 230

map_element_type_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

map_element_value_data_addressing_callback

Names the procedure that defines an addressing expression that specifies how to access the value of an ele-
ment of a map. The call structure for this callback is:

map_element_value_data_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

map_element_value_type_callback

Names the procedure that obtains the type id of the value of a map. The call structure for this callback is:

map_element_value_type_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

map_iterator_end_value

Specifies if a map is terminated by NULL or the head of the map. Enter one of the following: NULL or MapHead

Set/Multiset Properties

For set and multiset STL types these properties are used in combination with those for red/black trees above.
set_element_data_addressing_callback

Names the procedure that defines an addressing expression that specifies how to access an element of a set.
The call structure for this callback is:

set_element_data_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

set_element_type_callback

Names the procedure that obtains the type id of an element in the set. The call structure for this callback is:

set_element_type_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

set_iterator_end_value

Specifies if a set is terminated by NULL or the head of the set. Enter one of the following: NULL or SetHead

Hashtable Properties

The implementations of unordered map/multimap and unordered set/multiset STL types use hash tables. These
properties are common to all these types.

hashtable_head_addressing_callback

Names the procedure that defines an addressing expression to obtain the head element of the map. Depending
on the implementation, this element may be the address of the bucket list or the beginning element of a forward
list. The call structure for this callback is:

hashtable_head_addressing_callback id

CLI Namespace Commands / type_transformation 231

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

hashtable_element_count_addressing_callback

Names the procedure that determines the total number of elements in a hashtable. The call structure for this
callback is:

hashtable_element_count_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

This callback defines an addressing expression that specifies how to get to the member of the symbol that spec-
ifies the number of elements in the map.

hashtable_element_count_type_callback

Names the procedure that obtains the type id of the member that specifies the number of elements in the map.
The call structure for this callback is:

hashtable_element_count_type_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

hashtable_element_addressing_callback

Names the procedure that defines an addressing expression that specifies how to access the next element. The
call structure for this callback is:

hashtable_element_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

hashtable_begin_index_addressing_callback

Names the procedure that determines the index of the first used bucket in a hashtable. The call structure for
this callback is:

hashtable_begin_index_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

This callback defines an addressing expression that specifies how to get to the member of the symbol that spec-
ifies the first used bucket in the hashtable. This allows a small optimization since the transformation can skip
empty buckets at the start of the bucket table. If your data does not supply this value you can use {nop}.

hashtable_begin_index_type_callback

Names the procedure that determines the type of the value that contains the index of the first used bucket in a
hashtable. The call structure for this callback is:

hashtable_begin_index_type_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

hashtable_bucket_count_addressing_callback

Names the procedure that determines the total number of buckets in a hash table. The call structure for this
callback is:

hashtable_bucket_count_addressing_callback id

CLI Namespace Commands / type_transformation 232

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

This callback defines an addressing expression that specifies how to get to the member of the symbol that spec-
ifies the number of buckets in a hashtable.

This property can be {nop} when the hash table elements can be found without scanning the bucket list, for ex-
ample, when the elements are also stored in a forward list.

hashtable_bucket_count_type_callback

Names the procedure that obtains the type id of the member that specifies the number of buckets in a hash ta-
ble. The call structure for this callback is:

hashtable_bucket_count_type_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

If you are not scanning the bucket list for the hashed values, this property is not required.

Unordered Map/Multimap Properties

For unordered map and unordered multimap STL types these properties are used in combination with those for
hash tables above.

umap_element_key_data_addressing_callback

Names the procedure that defines an addressing expression that specifies how to access the key of an element
of a map. The call structure for this callback is:

umap_element_key_data_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

umap_element_key_type_callback

Names the procedure that obtains the type id of the key of a map. The call structure for this callback is:

umap_element_key_type_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

umap_element_type_callback

Names the procedure that obtains the type id of the element in the hashtable that contains the key/value pair.
The call structure for this callback is:

umap_element_type_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

umap_element_value_data_addressing_callback

Names the procedure that defines an addressing expression that specifies how to access the value of an ele-
ment of a map. The call structure for this callback is:

umap_element_value_data_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

CLI Namespace Commands / type_transformation 233

umap_element_value_type_callback

Names the procedure that obtains the type id of the value of a map. The call structure for this callback is:

umap_element_value_type_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

Unordered Set/Multiset Properties

For unordered set and unordered multiset STL types these properties are used in combination with those for
hash tables above.

uset_element_key_data_addressing_callback

Names the procedure that defines an addressing expression that specifies how to access an element of a set.
The call structure for this callback is:

uset_element_key_data_addressing_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

uset_element_key_type_callback

Names the procedure that obtains the type id of an element in the set. The call structure for this callback is:

uset_element_key_type_callback id

where id is the symbol ID of the symbol that was validated using the validate_callback procedure.

Batch Debugging Using tvscript 234

Chapter 4

Batch Debugging
Using tvscript

Overview
Batch debug programs by starting TotalView using the tvscript command, which allows TotalView to run unat-
tended. If you invoke tvscript using cron, you can schedule debugging for a certain time, for instance in the
evening, so reports are available in the morning.

To perform complex actions, use a script file, which can contain CLI and Tcl commands.

Here, for example, is how tvscript is invoked on a program:
tvscript \
 -create_actionpoint "method1=>display_backtrace -show_arguments" \ -
create_actionpoint "method2#37=>display_backtrace \ -show_locals -level 1"
\ -display_specifiers "noshow_pid,noshow_tid" \ -maxruntime "00:00:30" \
filterapp -a 20

You can also execute MPI programs using tvscript. Here is a small example:
tvscript -mpi "Open MP" -tasks 4 \
 -create_actionpoint \
 "hello.c#14=>display_backtrace" \
 ~/tests/MPI_hello

This chapter discusses tvscript command-line options.

Batch Debugging Using tvscript / tvscript Command Syntax 235

tvscript Command Syntax
The syntax for the tvscript command is:

tvscript [options] [filename] [-a program_args]

options

TotalView and tvscript command-line options. You can use any options described in Chapter 7, “TotalView
Command Syntax,” on page 337 tvscript command-line options are described in the next section.

filename

The program being debugged.

-a program_args

Program arguments.

The command-line options most often used with tvscript are:

• -mpi (The MPI environments supported are those listed in the Parallel tab of the File > New
Program dialog box.)

• -starter_args

• -nodes

• -np or -procs or -tasks

For more information on these command-line options, see Chapter 7, “TotalView Command Syntax,” on
page 337.

Blue Gene/L and Blue Gene/P

The syntax for using tvscript with an MPI on Blue Gene/L and Blue Gene/P systems is:

tvscript [options] -mpi BlueGene -np number-of-processes -starter_args "filename [mpi-arguments] [-args pro-

gram_args]" mpirun

-np

The number of processes or tasks that the starter program will create.

-starter_args

Required, with the arguments following enclosed in quotes; the application executable (filename) to be de-
bugged must be the first argument.

-mpi-arguments

The command arguments for mpirun, such as "-cwd", "-mode", and "-partition".

-args

Command argument for mpirun that passes to the launched application on the compute node.

Batch Debugging Using tvscript / tvscript Command Syntax 236

mpirun

Required; the executable at the end of the command line.

Blue Gene/Q with SLURM

The syntax for using tvscript with an MPI on Blue Gene/Q systems using SLURM is:

tvscript [options] -mpi BlueGeneQ-SLURM -np number-of-processes -starter_args "[srun-arguments] filename
[program_args]" srun

-np

The number of processes or tasks that the starter program will create.

-starter_args

Required, with the arguments following enclosed in quotes; the application executable (filename) to be de-
bugged must follow the arguments for srun.

srun-arguments

The command arguments for srun.

filename

The program being debugged.

program_args

The arguments for the program being debugged.

srun

Required; the executable at the end of the command line.

Blue Gene/Q for ANL's Cobalt Job Manager and IBM’s runjob

The syntax for using tvscript on Blue Gene/Q for ANL's Cobalt job manager and IBM's runjob: is

tvscript [options] -mpi BlueGeneQ-Cobalt -np number-of-processes -starter_args "[runjob-arguments] : file-
name [program_args]" runjob

-np

The number of processes or tasks that the starter program will create.

-starter_args

Required, with the arguments following enclosed in quotes; the application executable (filename) to be de-
bugged must follow the arguments for runjob and be separated by a colon (:).

runjob-arguments

The command arguments for runjob.

filename

The program being debugged.

program_args

The arguments for the program being debugged.

Batch Debugging Using tvscript / tvscript Command Syntax 237

runjob

Required; the executable at the end of the command line.

Blue Gene/Q for the LoadLeveler job manager and IBM's runjob

The syntax for using tvscript on Blue Gene/Q for the LoadLeveler job manager and IBM's runjob: is

tvscript [options] -mpi BlueGeneQ-LoadLeveler -np number-of-processes -starter_args "[runjob-arguments]
--exe filename [program_args]" runjob

-np

The number of processes or tasks that the starter program will create.

-starter_args

Required, with the arguments following enclosed in quotes; the application executable (filename) to be de-
bugged must follow the arguments for runjob and --exe.

runjob-arguments

The command arguments for runjob.

filename

The program being debugged.

program_args

The arguments for the program being debugged.

runjob

Required; the executable at the end of the command line.

Cray Xeon Phi

The syntax for using tvscript on Cray Xeon Phi Knights Corner (KNC) native nodes is:

tvscript [options] -mpi CrayKNC-aprun -np number-of-processes -starter_args "[aprun-arguments] filename
[program_args]" aprun

-np

The number of processes or tasks that the starter program will create.

-starter_args

Required, with the arguments following enclosed in quotes; the application executable (filename) to be de-
bugged must follow the arguments for aprun.

aprun-arguments

The command arguments for aprun (except the -k argument).

filename

The program being debugged.

program_args

The arguments for the program being debugged.

Batch Debugging Using tvscript / tvscript Command Syntax 238

aprun

Required; the executable at the end of the command line.

For example:
tvscript \
-create_actionpoint "tx_basic_mpi.c#98=>display_backtrace
 -show_arguments, print myid" \
-mpi CrayKNC-aprun -np 16 \
-starter_args "tx_basic_mpi" \
aprun

Cray XK7

The syntax for using tvscript on Cray XK7 is:

tvscript [options] -mpi CrayXK7-aprun -np number-of-processes -starter_args
 "[aprun-arguments] filename [program_args]" aprun

-np

The number of processes or tasks that the starter program will create.

-starter_args

Required, with the arguments following enclosed in quotes; the application executable (filename) to be de-
bugged must follow the arguments for aprun.

aprun-arguments

The command arguments for aprun.

filename

The program being debugged.

program_args

The arguments for the program being debugged.

aprun

Required; the executable at the end of the command line.

For example:
tvscript \
-create_actionpoint "tx_basic_mpi.c#98=>display_backtrace
 -show_arguments, print myid" \
-mpi CrayXK7-aprun -np 16 \
-starter_args "tx_basic_mpi" \
aprun

Batch Debugging Using tvscript / tvscript Command Syntax 239

tvscript Options
-create_actionpoint "source_location_expr [=>action1[, action2]...]"

Creates an action point at a source location using an expression. (See “Action Point API” on page 245 for writing
expressions.) When the action point is hit, tvscript can trigger one or more actions. Add one
-create_watchpoint command-line option for each action point.

See -event_action for information about actions.

-event_action "event_action_list"

Performs an action when an event occurs. Events represent an unanticipated condition, such as
free_not_allocated in the Memory Debugger. You can use more than one -event_action command-line op-
tion when invoking tvscript.

Here is how you enter an event_action_list :

event1=action1,event2=action2

or

event1=>action1,action2,action3

Table 3: Supported tvscript Events

Event Type Event Definition

General event any_event A generated event occurred.

Memory debug-
ging event

addr_not_at_start Program attempted to free a block using an incorrect
address.

alloc_not_in_heap The memory allocator returned a block not in the
heap; the heap may be corrupt.

alloc_null An allocation either failed or returned NULL; this usu-
ally means that the system is out of memory.

alloc_returned_bad_alignment The memory allocator returned a misaligned block;
the heap may be corrupt.

any_memory_event A memory event occurred.

bad_alignment_argument Program supplied an invalid alignment argument to
the heap manager.

double_alloc The memory allocator returned a block currently
being used; the heap may be corrupt.

double_dealloc Program attempted to free an already freed block.

free_not_allocated Program attempted to free an address that is not in
the heap.

guard_corruption Program overwrote the guard areas around a block.

Batch Debugging Using tvscript / tvscript Command Syntax 240

For each occurring event, define the action to perform:

hoard_low_memory_threshold Hoard low memory threshold crossed.

realloc_not_allocated Program attempted to reallocate an address that is
not in the heap.

rz_overrun Program attempted to access memory beyond the
end of an allocated block.

rz_underrun Program attempted to access memory before the
start of an allocated block.

rz_use_after_free Program attempted to access a block of memory after
it has been deallocated.

rz_use_after_free_overrun Program attempted to access memory beyond the
end of a deallocated block.

rz_use_after_free_underrun Program attempted to access memory before the
start of a deallocated block.

termination_notification The target is terminating.

Source code
debugging event

actionpoint A thread hit an action point.

error An error occurred.

Action Type Action Definition

Memory debug-
ging actions

check_guard_blocks Checks all guard blocks and write violations
into the log file.

list_allocations Writes a list of all memory allocations into the
log file.

list_leaks Writes a list of all memory leaks into the log
file.

save_html_heap_status_source_view Generates and saves an HTML version of the
Heap Status Source View Report.

save_memory_debugging_file Generates and saves a memory debugging
file.

save_text_heap_status_source_view Generates and saves a text version of the
Heap Status Source View Report.

Table 3: Supported tvscript Events

Event Type Event Definition

Batch Debugging Using tvscript / tvscript Command Syntax 241

Source code
debugging actions

 display_backtrace
[-level level-num]
[num_levels]
 [options]

Writes the current stack backtrace into the log
file.

 -level level-num sets the level at which infor-
mation starts being logged.

num_levels restricts output to this number of
levels in the call stack.

If you do not set a level, tvscript displays all
levels in the call stack.

options is one or more of the following:
-[no]show_arguments
-[no]show_fp
-[no]show_fp_registers
-[no]show_image
-[no]show_locals
-[no]show_pc
-[no]show_registers

print [-slice {slice_exp}]
{variable | exp}

Writes the value of a variable or an expression
into the log file. If the variable is an array, the -
slice option limits the amount of data defined
by slice_exp. A slice expression is a way to
define the slice, such as var[100:130] in C and
C++. (This displays all values from var[100] to
var[130].) To display every fourth value, add
an additional argument; for example,
var[100:130:4]. For additional information,
see “Examining Arrays”.

Action Type Action Definition

Batch Debugging Using tvscript / tvscript Command Syntax 242

-display_specifiers "display_specifiers_list"

By default, tvscript writes all of the information in the following table to the log file. You can exclude information
by using one of the following specifiers:

-memory_debugging

Enables memory debugging and memory event notification. This option is required with any option that begins
with -mem. These options are TotalView command line options, as they can be invoked directly by TotalView.

-mem_detect_leaks

Performs leak detection before generating memory information.

-mem_detect_use_after_free

Tests for use after memory is freed.

-mem_guard_blocks

Adds guard blocks to an allocated memory block.

Type of
Specifier Specifier Display ...

General display
specifiers

noshow_fp Does not show the frame pointer (FP)

noshow_image Does not show the process/library in backtrace

noshow_pc Does not show the program counter (PC)

noshow_pid Does not show the system process ID with process
information

noshow_rank Does not show the rank of a process, which is shown
only for a parallel process

noshow_tid Does not show the thread ID with process information

Memory debug-
ging display
specifiers

noshow_allocator Does not show the allocator for the address space

noshow_backtrace Does not show the backtraces for memory blocks

noshow_backtrace_id Does not show the backtrace ID for memory blocks

noshow_block_address Does not show the memory block start and end
addresses

noshow_flags Does not show the memory block flags

noshow_guard_id Does not show the guard ID for memory blocks

noshow_guard_settings Does not show the guard settings for memory blocks

noshow_leak_stats Does not show the leaked memory block statistics

noshow_owner Does not show the owner of the allocation

noshow_red_zones_settings Does not show the Red Zone entries for allocations
(and deallocations) for the address space

Batch Debugging Using tvscript / tvscript Command Syntax 243

-mem_hoard_freed_memory

Holds onto freed memory rather than returning it to the heap.

-mem_hoard_low_memory_threshold nnnn

Sets the low memory threshold amount. When memory falls below this amount, an event is fired.

-mem_paint_all

Paints memory blocks with a bit pattern when a memory is allocated or deallocated.

-mem_paint_on_alloc

Paints memory blocks with a bit pattern when a memory block is allocated.

-mem_paint_on_dealloc

Paints memory blocks with a bit pattern when a memory block is deallocated.

-mem_red_zones_overruns

Turns on testing for Red Zone overruns.

-mem_red_zones_size_ranges min:max,min:max,...

Defines the memory allocations ranges for which Red Zones are in effect. Ranges can be specified as follows:

x:y allocations from x to y

:y allocations from 1 to y

x: allocations of x and higher

x allocation of x

-mem_red_zones_underruns

Turns on testing for Red Zone underruns.

-maxruntime "hh:mm:ss"

Specifies how long the script can run.

-script_file script_file

Names a file containing tvscript API calls and Tcl callback procedures that you create.

-script_log_filename logFilename

Overrides the name of the TVScript log file.

WARNING: Previous log files of the same name are overwritten.

-script_summary_log_filename summaryLogFilename

Overrides the name of the TVScript summary log file.

WARNING: Previous summary log files with the same name are overwritten.

 tvscript Example:

The following example is similar to that shown in “Batch Debugging Using tvscript” on page 234.
tvscript \
 -create_actionpoint "method1=>display_backtrace -show_arguments" \
 -create_actionpoint "method2#37=>display_backtrace \

Batch Debugging Using tvscript / tvscript Command Syntax 244

 -show_locals -level 1" \
 -event_action "error=>display_backtrace -show_arguments \
 -show_locals" \
 -display_specifiers "noshow_pid,noshow_tid" \
 -maxruntime "00:00:30" \
 filterapp -a 20

This script performs the following actions:

• Creates an action point at the beginning of method1. When tvscript reaches that breakpoint, it
logs a backtrace and the method’s arguments.

• Creates an action point at line 37 of method2. When tvscript reaches this line, it logs a backtrace
and the local variables. The backtrace information starts at level 1.

• Logs the backtrace, the current routine’s arguments, and its local variables when an error event
occurs.

• Excludes the process ID and thread ID from the information that tvscript logs.

• Limits tvscript execution time to 30 seconds.

• Names the program being debugged and passes a value of 20 to the application.

Batch Debugging Using tvscript / tvscript External Script Files 245

tvscript External Script Files
The section tvscript Command Syntax discussed the command-line options used when invoking the tvscript
command. You can also place commands in a file and provide them to tvscript using the -script_file command-
line option. Using a script file supports the use of Tcl to create more complex actions when events occur. The fol-
lowing sections describe the functions that you can use within a CLI file.

Logging Functions API
tvscript_log msg

Logs a message to the log file set up by tvscript.

tvscript_slog msg

Logs a message to the summary log file set up by tvscript.

Process Functions API
tvscript_get_process_property process_id property

Gets the value of a property about the process.

The properties you can name are the same as those used with the TV::process command. See process on
page 196 for more information.

Thread Functions API
tvscript_get_thread_property thread_id property

Gets the value of a property about the thread.

The properties you can name are the same as those used with the TV::thread command. See thread on
page 218 for more information.

Action Point API
tvscript_add_actionpoint_handler actionpoint_id actionpoint_handler

Registers a procedure handler to call when the action point associated with actionpoint_id is hit. This
actionpoint_id is the value returned from the tvscript_create_actionpoint routine. The value of
actionpoint_handler is the string naming the procedure.

When tvscript calls an action point handler procedure, it passes one argument. This argument contains a list
that you must convert into an array. The array indices are as follows:

event—The event that occurred, which is the action point

Batch Debugging Using tvscript / tvscript External Script Files 246

process_id—The ID of the process that hit the action point

thread_id—The ID of the thread that hit the action point

actionpoint_id—The ID of the action point that was hit

actionpoint_source_loc_expr—The initial source location expression used to create the action point

tvscript_create_actionpoint source_loc_expr

Creates an action point using a source location expression.

This procedure returns an action point ID that you can use in a tvscript_add_actionpoint_handler proce-
dure.

source_loc_expr

Sets a breakpoint at the line specified by source_loc_expr or an absolute address. For example:

• [[##image#]filename#]line_number

Indicates all addresses at this line number.

• A function signature; this can be a partial signature.

Indicates all addresses that are the addresses of functions matching signature. If parts of a function signature are
missing, this expression can match more than one signature. For example, “f” matches “f(void)” and “A::f(int)“.
You cannot specify a return type in a signature.

You can also enter a source location expression with sets of addresses using the class and virtual keywords. For
example:

class class_name

Names a set containing the addresses of all member functions of class class_name.

virtual class::signature

Names the set of addresses of all virtual member functions that match signature, and that are in the classes or
derived from the class.

If the expression evaluates to a function that has multiple overloaded implementations, TotalView sets a barrier
on each of the overloaded functions.

Event API
tvscript_add_event_handler event event_handler

Registers a procedure handler to call when the named event occurs. The event is either error or actionpoint.

When tvscript calls an event handler procedure, it passes one argument to it. This argument contains a list that
you must convert into an array.

error

When any error occurs, the array has the following indices:

Batch Debugging Using tvscript / tvscript External Script Files 247

event—The event, which is set to error

process_id— The ID of the process that hit the action point

thread_id—The ID of the thread that hit the action point

error_message—A message describing the error that occurred

actionpoint

When any action point is hit, the array has the following indices:

event—The event, which is set to actionpoint

process_id—The ID of the process that hit the action point

thread_id—The ID of the thread that hit the action point

actionpoint_id—The ID of the action point that was hit

actionpoint_source_loc_expr—The initial source location expression used to create the action point

Example tvscript Script File
The following information is passed to tvscript as follows:

 tvscript -script_file script_file

This script installs an error handler and an action point handler. When an error is encountered during execution,
tvscript passes an array of information to the error handler. Similarly, when an action point is hit, it passes an
array of information to the action point handler. These arrays are described in “Event API” on page 246.
Get the process so we have some information about it
tvscript_log "PID: \

[tvscript_get_process_property 1 "syspid"]";
tvscript_log "Status: \

[tvscript_get_process_property 1 "state"]";
tvscript_log "Executable: \

[tvscript_get_process_property 1 "executable"]";

###
proc error_handler {error_data} {
 tvscript_log "Inside error_handle: $error_data"

 # Change the incoming list into an array.
 # It contains the following indices:
 # process_id
 # thread_id
 # error_message
 array set error_data_array $error_data

 # Get the process so we have some information about it
 temp = [tvscript_get_process_property \

Batch Debugging Using tvscript / tvscript External Script Files 248

 $error_data_array(process_id) "syspid"];
 tvscript_log " Process ID: $temp";

 temp = [tvscript_get_thread_property \
 $error_data_array(thread_id) "systid"];
 tvscript_log " Thread ID: $temp";

 temp = $error_data_array(error_message);
 tvscript_log " Error Message: $temp";

}

###
Action point handlers

proc l1_actionpoint_handler {event_data} {
 tvscript_log "Inside l1_actionpnt_handler: $event_data"
 tvscript_slog "Inside l1_actionpnt_handler: $event_data"

 # Change the incoming list into an array.
 # It contains the following indices:
 # actionpoint_id
 # actionpoint_source_loc_expr
 # event
 # process_id
 # thread_id
 array set event_data_array $event_data

 # Get the process so we have some information about it
 temp = [tvscript_get_process_property \
 $event_data_array(process_id) "syspid"];
 tvscript_log " Process ID: $temp";

 temp = [tvscript_get_thread_property \
 $event_data_array(thread_id) "systid"];
 tvscript_log " Thread ID: $temp";

 temp = [tvscript_get_process_property \
 $event_data_array(process_id) "state"];
 tvscript_log " Status: $temp";

 temp = [tvscript_get_process_property \
 $event_data_array(process_id) "executable"]
 tvscript_log " Executable: $temp";

 temp = $event_data_array(actionpoint_source_loc_expr)
 tvscript_log "Action point Expression: $temp"

Batch Debugging Using tvscript / tvscript External Script Files 249

 tvscript_log "Value of i:"
 set output [capture "dprint i"]
 tvscript_log $output
}

###
Event handlers

proc generic_actionpoint_event_handler {actionpoint_data} {
 tvscript_log \
 "Inside generic_actionpoint_event_handler: "
 tvscript_log $actionpoint_data
 tvscript_slog "Inside generic_actionpoint_event_handler: "
 tvscript_slog $actionpoint_data

 # Change the incoming list into an array.
 # It contains the following indices:
 # actionpoint_id
 # actionpoint_source_loc_expr
 # event
 # process_id
 # thread_id
 array set actionpnt_data_array $actionpoint_data

 temp = $actionpnt_data_array(process_id)
 tvscript_log " Process ID: $temp"

 temp = $actionpnt_data_array(thread_id)
 tvscript_log " Thread ID: $temp"

 temp = $actionpnt_data_array(actionpoint_id)
 tvscript_log " Action Point ID: $temp"

 temp = $actionpnt_data_array(actionpoint_source_loc_expr)
 tvscript_log "Action Point Expression: "
}

###
Add event handlers

Setup action points and action point handlers
set actionpoint_id [tvscript_create_actionpoint "l1"]
tvscript_add_actionpoint_handler $actionpoint_id \ "l1_actionpoint_handler"

Setup a generic actionpoint handler
tvscript_add_event_handler "actionpoint" \ "generic_actionpoint_event_handler"

###

Batch Debugging Using tvscript / tvscript External Script Files 250

Add error handler
tvscript_add_event_handler "error" "error_handler"

TotalView Variables 251

Chapter 5

TotalView Variables

Overview
This chapter contains a list of all CLI and TotalView variables, organized into sections that each correspond to
a CLI namespace:

• Top-Level (::) Namespace

• TV:: Namespace

• TV::MEMDEBUG:: Namespace

• TV::GUI:: Namespace

TotalView Variables / Top-Level (::) Namespace 252

Top-Level (::) Namespace

ARGS(dpmid)

Contains the arguments to be passed the next time the process starts, with TotalView ID dpid.

Permitted Values: A string

Default: None

ARGS_DEFAULT

Contains the argument passed to a new process when no ARGS(dpid) variable is defined.

Permitted Values: A string

Default: None

BARRIER_STOP_ALL

Contains the value for the “stop_when_done” property for newly created action points. This property defines addi-
tional elements to stop when a barrier point is satisfied or a thread encounters this action point. You can also set
this value using the When barrier hit, stop value in the Action Points Page of the File > Preferences dialog box.
The values are:

group

Stops all processes in a thread’s control group when a thread reaches a barrier created using this default.

process

Stops the process in which the thread is running when a thread reaches a barrier created using this default.

none

Stops only the thread that hit a barrier created using this default.

This variable is the same as the TV::barrier_stop_all variable.

Permitted Values: group, process, or thread

Default: group

BARRIER_STOP_WHEN_DONE
Contains the default value used when a barrier point is satisfied. You can also set this value using the -
stop_when_done command-line option or the When barrier done, stop value in the Action Points Page of the
File > Preferences dialog box. The values are:

group

When a barrier is satisfied, stops all processes in the control group.

process

When a barrier is satisfied, stops the processes in the satisfaction set.

TotalView Variables / Top-Level (::) Namespace 253

none

Stops only the threads in the satisfaction set; other threads are not affected. For process barriers, there is no dif-
ference between process and none.

In all cases, TotalView releases the satisfaction set when the barrier is satisfied.

This variable is the same as the TV::barrier_stop_when_done variable.

Permitted Values: group, process, or thread

Default: group

CGROUP(dpid)

Contains the control group for the process with the TotalView ID dpid. Setting this variable moves process dpid into
a different control group. For example, the following command moves process 3 into the same group as process
1:
dset CGROUP(3) $CGROUP(1)

Permitted Values: A number

Default: None

COMMAND_EDITING
Enables some Emacs-like commands for use when editing text in the CLI. These editing commands are always
available in the CLI window of the TotalView GUI. However, they are available only in the stand-alone CLI if the ter-
minal in which it is running supports cursor positioning and clear-to-end-of-line. The commands you can use are:

^A: Moves the cursor to the beginning of the line

^B: Moves the cursor one character backward

^D: Deletes the character to the right of cursor

^E: Moves the cursor to the end of the line

^F: Moves the cursor one character forward

^K: Deletes all text to the end of line

^N: Retrieves the next entered command (only works after ^P)

^P: Retrieves the previously entered command

^R or ^L: Redraws the line

^U: Deletes all text from the cursor to the beginning of the line

Rubout or Backspace: Deletes the character to the left of the cursor

Permitted Values: true or false

Default: false

TotalView Variables / Top-Level (::) Namespace 254

EXECUTABLE_PATH
Contains a colon-separated list of the directories searched for source and executable files.

Permitted Values: Any directory or directory path. To include the current setting, use $EXECUTABLE_PATH.

Default: . (dot)

EXECUTABLE_SEARCH_MAPPINGS
Contains pairs of regular expressions and replacement and replacement strings—these replacements are called
mappings—separated by colons. TotalView applies these mappings to the search paths before it looks for source,
object, and program files.

The syntax for mapping strings is:

+regular_exp+=+replacement+ :+regular_exp+=+replacement+

This example shows two pairs, each delimited by a colon (“:”). Each element within a pair is delimited by any char-
acter except a colon. The first character entered is the delimiter. This example uses a “+” as a delimiter.
(Traditionally, forward slashes are used as delimiters but are not used here, as a forward slash is also used to sep-
arate components of a pathname. For example, /home/my_dir contains forward slashes.)

Be aware that special characters must follow standard Tcl rules and conventions, for example:
dset EXECUTABLE_SEARCH_MAPPINGS {+^/nfs/compiled/u2/(.*)$+ = +/nfs/host/u2/\1+ }

This expression applies a mapping so that a directory named /nfs/compiled/u2/project/src1 in the expanded
search path becomes /nfs/host/u2/project/src1.

Default: {}

EXECUTABLE_SEARCH_PATH
Contains a list of paths, separated by a colon, to search for executables. For information, see “Setting Search
Paths Using TotalView for HPC Variables” in the TotalView for HPC in-product help.

Permitted Values: Any directory or directory path.

Default: ${EXECUTABLE_PATH};${$PATH}:.

GROUP(gid)

Contains a list of the TotalView IDs for all members in group gid.

The first element indicates the type of group:

control

The group of all processes in a program

lockstep

A group of threads that share the same PC

process

A user-created process group

TotalView Variables / Top-Level (::) Namespace 255

share

The group of processes in one program that share the same executable image

thread

A user-created thread group

workers

The group of worker threads in a program

Elements that follow are either pids (for process groups) or pid.tid pairs (for thread groups).

The gid is a simple number for most groups. In contrast, a lockstep group’s ID number is of the form pid.tid. Thus,
GROUP(2.3) contains the lockstep group for thread 3 in process 2. Note, however, that the CLI does not display
lockstep groups when you use dset with no arguments because they are hidden variables.

The GROUP(id) variable is read-only.

Permitted Values: A Tcl array of lists indexed by the group ID. Each entry contains the members of one
group.

Default: None

GROUPS
Contains a list of all TotalView groups IDs. Lockstep groups are not contained in this list. This is a read-only value
and cannot be set.

Permitted Values: A Tcl list of IDs.

LINES_PER_SCREEN
Defines the number of lines shown before the CLI stops printing information and displays its more prompt. The
following values have special meaning:

0

No more processing occurs, and the printing does not stop when the screen fills with data.

NONE

A synonym for 0

AUTO

The CLI uses the tty settings to determine the number of lines to display. This may not work in all cases. For ex-
ample, Emacs sets the tty value to 0. If AUTO works improperly, you need to explicitly set a value.

Permitted Values: A positive integer, or the AUTO or NONE strings

Default: Auto

MAX_LEVELS
Defines the maximum number of levels that the dwhere command displays.

Permitted Values: A positive integer

Default: 512

TotalView Variables / Top-Level (::) Namespace 256

MAX_LIST
Defines the number of lines that the dlist command displays.

Permitted Values: A positive integer

Default: 20

OBJECT_SEARCH_MAPPINGS
Contains pairs of regular expressions and replacement and replacement strings (called mappings) separated by
colons. TotalView applies these mappings to the search paths when searching for source, object, and program
files. For more information, see EXECUTABLE_SEARCH_MAPPINGS.

Default: {}

OBJECT_SEARCH_PATH
Contains a list of paths separated by a colon to search for your program’s object files. For information, see
“Search Path Variables That You Can Set” in the TotalView for HPC in-product help.

Permitted Values: Any directory or directory path.

Default: ${COMPILATION_DIRECTORY): ${EXECUTABLE_PATH}: ${EXECUTABLE_DIRECTORY}:
$links{${EXECUTABLE_DIRECTORY}}: .:${TOTALVIEW_SRC}

PROCESS(dpid)

Contains a list of information associated with a dpid. This is a read-only value and cannot be set.

Permitted Values: An integer

Default: None

PROMPT
Defines the CLI prompt. Any information within brackets ([]) is assumed to be a Tcl command, so therefore evalu-
ated before the prompt string is created.

Permitted Values: Any string. To access the value of PTSET, place the variable within brackets; that is, [dset
PTSET].

Default: {[dfocus]> }

PTSET
Contains the current focus. This is a read-only value and cannot be set.

Permitted Values: A string

Default: d1.<

SGROUP(pid)

Contains the group ID of the share group for process pid. The share group is determined by the control group for
the process and the executable associated with this process. You cannot directly modify this group.

Permitted Values: A number

TotalView Variables / Top-Level (::) Namespace 257

Default: None

SHARE_ACTION_POINT
Indicates the scope for newly created action points. In the CLI, this is the dbarrier, dbreak, and dwatch com-
mands. If this boolean value is true, newly created action point are shared across the group; if false, a newly
created action point is active only in the process in which it is set.

As an alternative to setting this variable, you can select the Plant in share group check box in the Action Points
Page in the File > Preferences dialog box. To override this value in the GUI, use the Plant in share group check-
box in the Action Point > Properties dialog box.

Permitted Values: true or false

Default: true

SHARED_LIBRARY_SEARCH_MAPPINGS
Contains pairs of regular expressions and replacement strings (mappings), separated by colons. TotalView applies
these mappings to the search paths before it looks for shared library files.

Default: {}

SHARED_LIBRARY_SEARCH_PATH
Contains a list of paths, each separated by a colon, to search for your program’s shared library files.

Permitted Values: Any directory or directory path.

Default: ${EXECUTABLE_PATH}:

SOURCE_SEARCH_MAPPINGS
Contains pairs of regular expressions and replacement strings (mappings) separated by colons. TotalView applies
these mappings to the search paths before it looks for source, object, and program files. For more information,
see EXECUTABLE_SEARCH_MAPPINGS.

Default: {}

SOURCE_SEARCH_PATH
Contains a list of paths, separated by a colon, to search for your program’s source files. For information, see
“Search Path Variables That You Can Set” in the TotalView for HPC in-product help.

Permitted Values: Any directory or directory path.

Default: ${COMPILATION_DIRECTORY}: ${EXECUTABLE_PATH}: ${EXECUTABLE_DIRECTORY}:
${links{${EXECUTABLE_DIRECTORY}): .:${TOTALVIEW_SRC}

STOP_ALL
Indicates a default property for newly created action points, defining additional elements to stop when this action
point is encountered

group

Stops the entire control group when the action point is hit

TotalView Variables / Top-Level (::) Namespace 258

process

Stops the entire process when the action point is hit

thread

Stops only the thread that hit the action point. Note that none is a synonym for thread

Permitted Values: group, process, or thread

Default: process

TAB_WIDTH
Indicates the number of spaces used to simulate a tab character when the CLI displays information.

Permitted Values: A positive number. A value of -1 indicates that the CLI does not simulate tab expansion.

Default: 8

THREADS(pid)

Contains a list of all threads in the process pid, in the form {pid.1 pid.2 ...}. This is a read-only variable and cannot
be set.

Permitted Values: A Tcl list

Default: None

TOTALVIEW_ROOT_PATH
Names the directory containing the TotalView executable. This is a read-only variable and cannot be set. This vari-
able is exported as TVROOT, and can be used in launch strings.

Permitted Values: The location of the TotalView installation directory

TOTALVIEW_TCLLIB_PATH
Contains a list of the directories in which the CLI searches for TCL library components.

Permitted Values: Any valid directory or directory path. To include the current setting, use $TOTALVIEW_T-
CLLIB_PATH.

Default: The directory containing the CLI’s Tcl libraries

TOTALVIEW_VERSION
Contains the version number and the type of computer architecture upon which TotalView is executing. This is a
read-only variable and cannot be set.

Permitted Values: A string containing the platform and version number

Default: Platform-specific

TotalView Variables / Top-Level (::) Namespace 259

VERBOSE
Sets the error message information displayed by the CLI:

info

Prints errors, warnings, and informational messages. Informational messages include data on dynamic libraries
and symbols.

warning

Prints only errors and warnings.

error

Prints only error messages.

silent

Does not print error, warning, and informational messages. This also shuts off printing results from CLI com-
mands. This should be used only when the CLI is run in batch mode.

Permitted Values: info, warning, error, and silent

Default: info

WGROUP(pid)

The group ID of the thread group of worker threads associated with the process pid. This variable is read-only.

Permitted Values: A number

Default: None

WGROUP(pid.tid)
Contains one of the following:

• The group ID of the workers group in which thread pid.tid is a member

• 0 (zero), which indicates that thread pid.tid is not a worker thread

Storing a nonzero value in this variable marks a thread as a worker. In this case, the returned value is the ID of the
workers group associated with the control group, regardless of the actual nonzero value assigned to it.

Permitted Values: A number representing the pid.tid

Default: None

TotalView Variables / TV:: Namespace 260

TV:: Namespace

TV::aix_use_fast_ccw
This variable is defined only on AIX, and is a synonym for the platform-independent variable TV::use_fast_wp,
providing TotalView script backward compatibility. See TV::use_fast_wp for more information.

TV::aix_use_fast_trap
This variable is defined only on AIX, and is a synonym for the platform-independent variable TV::use_fast_trap,
for TotalView script backward compatibility. See TV::use_fast_trap for more information.

TV::ask_on_cell_spu_image_load
If true, TotalView might ask whether to stop the process when a Cell SPU image is loaded. If false, TotalView does
not stop execution when a Cell SPU image is loaded.

Permitted Values: true or false

Default: true

TV::ask_on_dlopen
If true, TotalView asks about stopping processes that use the dlopen or load (AIX only) system calls dynamically
load a new shared library.

If false, TotalView does not ask about stopping a process that dynamically loads a shared library.

Permitted Values: true or false

Default: true

TV::auto_array_cast_bounds
Indicates the number of array elements to display when the TV::auto_array_cast_enabled variable is true. This
is the variable set by the Bounds field of the Pointer Dive Page in the File > Preferences dialog box.

Permitted Values: An array specification

Default: [10]

TV::auto_array_cast_enabled
When true, TotalView automatically dereferences a pointer into an array. The number of array elements is indi-
cated in the TV::auto_array_cast_bounds variable. This is the variable set by the Cast to array with bounds
checkbox of the Pointer Dive Page in the File > Preferences dialog box.

Permitted Values: true or false

Default: false

TotalView Variables / TV:: Namespace 261

TV::auto_deref_in_all_c
Defines if and how to dereference C and C++ pointers when performing a View > Dive in All operation, as
follows:

yes_dont_push

While automatic dereferencing will occur, does not allow use of the Undive command to see the underefer-
enced value when performing a Dive in All operation.

yes

Allows use of the Undive control to see undereferenced values.

no

Does not automatically dereference values when performing a Dive in All operation.

This is the variable set when you select the Dive in All element in the Pointer Dive Page of the File > Prefer-
ences dialog box.

Permitted Values: no, yes, or yes_dont_push

Default: no

TV::auto_deref_in_all_fortran
Tells TotalView if and how it should dereference Fortran pointers when you perform a Dive in All operation, as
follows:

yes_dont_push

While automatic dereferencing will occur, does not allow use of the Undive command to see the underefer-
enced value when performing a Dive in All operation.

yes

Allows use of the Undive control to see undereference values.

no

Does not automatically dereference values when performing a Dive in All operation.

This is the variable set when you select the Dive in All element in the Pointer Dive Page of the File > Prefer-
ences dialog box.

Permitted Values: no, yes, or yes_dont_push

Default: no

TV::auto_deref_initial_c
Tells TotalView if and how it should dereference C pointers when they are displayed, as follows:

yes_dont_push

While automatic dereferencing will occur, does not allow use of the Undive command to see the underefer-
enced value.

yes

Allows use of the Undive control to see undeferenced values.

TotalView Variables / TV:: Namespace 262

no

Does not automatically dereference values.

This is the variable set when you select the initially element in the Pointer Dive Page of the File > Preferences
dialog box.

Permitted Values: no, yes, or yes_dont_push

Default: no

TV::auto_deref_initial_fortran
Defines if and how to dereference Fortran pointers when they are displayed, as follows:

yes_dont_push

While automatic dereferencing will occur, does not allow use of the Undive command to see the underefer-
enced value.

yes

Allows use of the Undive control to see undeferenced values.

no

Does not automatically dereference values.

This is the variable set when you select the initially element in the Pointer Dive Page of the File > Preferences
dialog box.

Permitted Values: no, yes, or yes_dont_push

Default: no

TV::auto_deref_nested_c
Tells TotalView if and how it should dereference C pointers when you dive on structure elements:

yes_dont_push

While automatic dereferencing will occur, you can’t use the Undive command to see the undereferenced value.

yes

You will be able to use the Undive control to see undeferenced values.

no

Do not automatically dereference values.

This is the variable set when you select the from an aggregate element in the Pointer Dive Page of the File >
Preferences dialog box.

Permitted Values: no, yes, or yes_dont_push

Default: yes_dont_push

TV::auto_deref_nested_fortran
Defines if and how to dereference Fortran pointers when they are displayed:

TotalView Variables / TV:: Namespace 263

yes_dont_push

While automatic dereferencing will occur, does not allow use of the Undive command to see the underefer-
enced value.

yes

Allows use of the Undive control to see undeferenced values.

no

Does not automatically dereference values.

This is the variable set when you select the from an aggregate element in the Pointer Dive Page of the File >
Preferences dialog box.

Permitted Values: no, yes, or yes_dont_push

Default: yes_dont_push

TV::auto_load_breakpoints

If true, TotalView automatically loads action points from the file named filename.TVD.v3breakpoints where file-
name is the name of the file being debugged. If false, breakpoints are not automatically loaded. If you set this to
false, you can still load breakpoints using the Action Point > Load All or the dactions -load command.

Permitted Values: true or false

Default: true

TV::auto_read_symbols_at_stop
If false, TotalView does not automatically read symbols if execution stops when the program counter is in a
library whose symbols were not read. If true, TotalView reads in loader and debugging symbols. You would set it
to false if you have prevented symbol reading using either the TV::dll_read_loader_symbols_only or
TV::dll_read_no_symbols variables (or the preference within the GUI) and reading these symbols is both unnec-
essary and would affect performance.

Permitted Values: true or false

Default: true

TV::auto_save_breakpoints

If true, TotalView automatically writes information about breakpoints to a file named filename.TVD.v3break-
points, where filename is the name of the file being debugged. Information about watchpoints is not saved.

TotalView writes this information when you exit from TotalView. If you set this variable to false, you can explicitly
save this information by using the Action Point > Save All or the dactions -save command.

Permitted Values: true or false

Default: false

TotalView Variables / TV:: Namespace 264

TV::barrier_stop_all

Contains the value of the “stop_all” property for newly created action points. This property defines additional ele-
ments to stop when a thread encounters this action point. You can also set this value using the -stop_all
command-line option or the When barrier hit, stop value in the Action Points page of the File > Preferences
dialog box. The values that you can use are as follows:

group

Stops all processes in a thread’s control group when a thread reaches a barrier created using this as a default.

process

Stops the process in which the thread is running when a thread reaches a barrier created using this default.

thread

Stops only the thread that hit a barrier created using this default.

This variable is the same as the BARRIER_STOP_ALL variable.

Permitted Values: group, process, or thread

Default: group

TV::barrier_stop_when_done

Contains the value for the “stop_when_done” property for newly created action points. This property defines addi-
tional elements to stop when a barrier point is satisfied. You can also set this value using the -stop_when_done
command-line option or the When barrier done, stop value in the Action Points page of the File > Preferences
dialog box. The values you can use are:

group

When a barrier is satisfied, stops all processes in the control group.

process

When a barrier is satisfied, stops the processes in the satisfaction set.

thread

Stops only the threads in the satisfaction set; other threads are not affected. For process barriers, there is no dif-
ference between process and none.

In all cases, TotalView releases the satisfaction set when the barrier is satisfied.

This variable is the same as the BARRIER_STOP_WHEN_DONE variable.

Permitted Values: group, process, or thread

Default: group

Default:

TV::bluegene_io_interface
If the Bluegene front-end cannot resolve the network name, you must initialize this variable (or set it as a com-
mand-line option). By default, TotalView assumes that it can resolve the address as follows:

TotalView Variables / TV:: Namespace 265

front_end_hostname-io

For example, if the front-end hostname is fred, TotalView assumes that the servers are connecting to fred-io.

Permitted Values: A string

Default: none

Default:

TV::bluegene_server_launch_string
Defines the launch string used when launching tvdsvr processes on I/O nodes.

Permitted Values: A string

Default: -callback %L -set_pw %P -verbosity %V %F

TV::bluegene__launch_timeout
Specifies the number of seconds to wait to hear back from the TotalView Debugger Server (tvdsvr) after its
launch.

Permitted Values: An integer from 1 to 3600 (1 hour)

Default: 240

TV::bulk_launch_base_timeout
Defines the base timeout period used to execute a bulk launch.

Permitted Values: A number from 1 to 3600 (1 hour)

Default: 20

TV::bulk_launch_enabled
If true, uses bulk launch features when automatically launching the TotalView Debugger Server (tvdsvr) for
remote processes.

Permitted Values: true or false

Default: false

TV::bulk_launch_incr_timeout
Defines the incremental timeout period to wait for a process to launch when automatically launching theTotal-
View Debugger Server (tvdsvr) using the bulk server feature.

Permitted Values: A number from 1 to 3600 (1 hour)

Default: 10

TV::bulk_launch_tmpfile1_header_line
Defines the header line used in the first temporary file for a bulk server launch operation.

Permitted Values: A string

Default: None

TotalView Variables / TV:: Namespace 266

TV::bulk_launch_tmpfile1_host_lines
Defines the host line used in the first temporary file when performing a bulk server launch operation.

Permitted Values: A string

Default: %R

TV::bulk_launch_tmpfile1_trailer_line
Defines the trailer line used in the first temporary file when performing a bulk server launch operation.

Permitted Values: A string

Default: None

TV::bulk_launch_tmpfile2_header_line
Defines the header line used in the second temporary file when performing a bulk server launch operation.

Permitted Values: A string

Default: None

TV::bulk_launch_tmpfile2_host_lines
Defines the host line used in the second temporary file when performing a bulk server launch operation.

Permitted Values: A string

Default: {tvdsvr -working_directory %D -callback %L -set_pw %P -verbosity %V}

TV::bulk_launch_tmpfile2_trailer_line
Defines the trailer line used in the second temporary file when performing a bulk server launch operation.

Permitted Values: A string

Default: None

TV::c_type_strings
If true, uses C type string extensions to display character arrays; when false, uses string type extensions.

Permitted Values: true or false

Default: true

TV::cell_spu_image_ignore_regexp
If set to a non-empty string, and TV::ask_on_cell_spu_image_load is true, TotalView matches the SPU image’s
name with the regular expression. For a match, TotalView does not ask to stop the process but allows the pro-
cess to continue running after loading the SPU image.

If the image name does not match this regular expression or the regular expression contained within
TV::cell_spu_images_stop_regexp, TotalView asks if it should stop the process, unless you’ve answered the stop
to set breakpoint question by pressing No (or the equivalent from within the CLI).

Permitted Values: A regular expression

TotalView Variables / TV:: Namespace 267

Default: {}

TV::cell_spu_images_stop_regexp
If set to a non-empty string and TV::ask_on_cell_spu_image_load is true, TotalView matches the SPU image’s
name with the regular expression. For a match, TotalView asks whether to stop the process.

If the image name does not match this regular expression or the regular expression contained within
TV::cell_spu_images_ignore_regexp, TotalView asks if it should stop the process, unless you’ve answered the
stop to set breakpoint question by pressing No (or the equivalent from within the CLI).

Permitted Values: A regular expression

Default: {}

TV::cell_spurs_jm_name
A string that names the file containing the symbols for the “jm” SPURS job policy module. When TotalView detects
an embedded SPURS kernel image being loaded into an SPU context, it extracts the GUIDs of the policy modules
from the kernel, and searches for either the default SPU ELF image file, which is spurs_jm.elf or the file named by
this variable.

Permitted Values: An ELF file name

Default: spurs_jm.elf

TV::cell_spurs_kernel_dll_regexp
Defines a regular expression that matches the image path component name of the SPURS kernel SPU ELF image
embedded in the libspurs.so DLL.

When TotalView sees a new image loaded into an SPU thread by libspe or libspe2, it checks if the image path
component name matches this variable. If so, TotalView handles the SPURS kernel library in a different way. You
may need to change this regular expression to match the name of your SPURS kernel if it is embedded in a
shared library other than libspurs.so or if the name of the SPURS kernel is different than spurs_kernel.elf.

Permitted Values: A regular expression

Default: {/libspurs\.so\(spurs_kernel\.elf@[0-9]+\)$}

TV::cell_spurs_ss_name
A string that names the file containing the symbols for the “ss” SPURS system service policy module. When
TotalView detects an embedded SPURS kernel image being loaded into an SPU context, it extracts the GUIDs of
the policy modules from the kernel, and searches for either the default SPU ELF image file, which is spurs_tss.elf
or the file named by this variable.

Permitted Values: An ELF file name

Default: spurs_ss.elf

TotalView Variables / TV:: Namespace 268

TV::cell_spurs_tm_name
A string that names the file containing the symbols for the “tm” SPURS task policy module. When TotalView
detects an embedded SPURS kernel image being loaded into an SPU context, it extracts the GUIDs of the policy
modules from the kernel, and searches for either the default SPU ELF image file, which is spurs_tm.elf or the file
named by this variable.

Permitted Values: An ELF file name

Default: spurs_tm.elf

TV::checksum_libraries

Permitted Values:

Default: auto

TV::comline_patch_area_base

Allocates the patch space dynamically at the given address. See “Allocating Patch Space for Compiled Expressions”
in the TotalView for HPC Users Guide.

Permitted Values: A hexadecimal value indicating space accessible to TotalView

Default: 0xffffffffffffffff

TV::comline_patch_area_length

Sets the length of the dynamically allocated patch space to the specified length. See “Allocating Patch Space for
Compiled Expressions” in the TotalView for HPC Users Guide.

Permitted Values: A positive number

Default: 0

TV::command_editing
Enables some Emacs-like commands for use while editing text in the CLI. These editing commands are always
available in the CLI window of TotalView UI. However, they are available only within the stand-alone CLI if the ter-
minal in which it is running supports cursor positioning and clear-to-end-of-line. The commands that you can use
are:

^A: Moves the cursor to the beginning of the line.

^B: Moves the cursor one character backward.

^D: Deletes the character to the right of cursor.

^E: Moves the cursor to the end of the line.

^F: Moves the cursor one character forward.

^K: Deletes all text to the end of line.

TotalView Variables / TV:: Namespace 269

^N: Retrieves the next entered command (only works after ^P).

^P: Retrieves the previously entered command.

^R or ^L: Redraws the line.

^U: Deletes all text from the cursor to the beginning of the line.

Rubout or Backspace: Deletes the character to the left of the cursor.

Permitted Values: true or false

Default: false

TV::compile_expressions
When true, TotalView enables compiled expressions. If false, TotalView interprets your expression.

On an IBM AIX system, you can use the -aix_use_fast_trap command line option to speed up the performance of
compiled expressions. Check the TotalView for HPC Release Notes to determine if your version of the operating sys-
tem supports this feature.

Permitted Values: true or false

Default: false

TV::compiler_vars
(SGI only) When true, TotalView shows variables created by your Fortran compiler as well as the variables in your
program. When false (which is the default), TotalView does not show the variables created by your compiler.

SGI 7.2 Fortran compilers write debugging information that describes variables the compiler created to assist in
some operations. For example, it could create a variable used to pass the length of character*(*) variables. You
might want to set this variable to true if you are looking for a corrupted runtime descriptor.

You can override the value set to this variable in a startup file with these command-line options:
-compiler_vars: sets this variable to true
-no_compiler_vars: sets this variable to false

Permitted Values: true or false

Default: false

TV::control_c_quick_shutdown
When true, TotalView kills attached processes and exits. When false, TotalView can sometimes better manage
the way it kills parallel jobs when it works with management systems. This has been tested only with SLURM and
may not work with other systems.

If you set the TV::ignore_control_c variable to true, TotalView ignores this variable.

Permitted Values: true or false

Default: true

TotalView Variables / TV:: Namespace 270

TV::copyright_string
A read-only string containing the copyright information displayed when you start the CLI and TotalView.

TV::cppview
If true, the C++View facility allows the formatting of program data in a more useful or meaningful form than the
concrete representation visible by default when you inspect data in a running program. For more information on
using C++View, see “C++View” on page 317.

Permitted Values: true or false

Default: true

TV::cuda_debugger
Indicates whether cuda debugging is currently enabled. This is a read-only variable.

Permitted Values: true or false

Default: true

TV::current_cplus_demangler
Setting this variable overrides the C++ demangler used by default. Note that this value is ignored unless you also
set the value of the TV::force_default_cplus_demangler variable. The following values are supported:

• gnu: GNU C++ on Linux Alpha

• gnu_dot: GNU C++ Linux x86

• gnu_v3: GNU C++ Linux x86

• kai: KAI C++

• kai3_n: KAI C++ version 3.n

• kai_4_0: KAI C++

• spro: SunPro C++ 4.0 or 5.2

• spro5: SunPro C++ 5.0 or later

• sun: Sun CFRONT C++

• xlc: IBM XLC/VAC++ compilers

Permitted Values: A string naming the compiler

Default: Derived from your platform and information within your program

TV::current_fortran_demangler
Setting this variable overrides the Fortran demangler used by default. Note that this value is ignored unless you
also set the value of the TV::force_default_f9x_demangler variable. The following values are supported:

TotalView Variables / TV:: Namespace 271

• xlf90: IBM Fortran

• fujitsu_f9x: Fujitsu Fortran 9x

• intel: Intel Fortran 9x

• sunpro_f9x_4: Sun ProFortran 4

• sunpro_f9x_5: Sun ProFortran 5

Permitted Values: A string naming the compiler

Default: Derived from your platform and information within your program

TV::data_format_double
Defines the format to use when displaying double-precision values. This is one of a series of variables that define
how to display data. The format of each is similar:

{presentation format-1 format-2 format 3}

presentation

Selects which format to use when displaying -information. Note that you can display floating point information
using dec, hex, and oct formats. You can display integers using auto, dec, and sci formats.

auto

Equivalent to the C language’s printf() function’s %g specifier. You can use this with integer and float-
ing-point numbers. This format is either hexdec or dechex, depending upon the programming lan-
guage being used.

dec

Equivalent to the printf() function’s %d specifier. You can use this with integer and floating-point
numbers.

dechex

Displays information using the dec and hex formats. You can use this with integers.

hex

Equivalent to the printf() function’s %x specifier. You can use this with integer and floating-point
numbers.

hexdec

Displays information using the hex and dec formats. You can use this with integer numbers.

oct

Equivalent to the printf() function’s %o specifier. You can use this with integer and floating-point
numbers.

sci

Equivalent to the printf() function’s %e specifier. You can use this with floating-point numbers.

TotalView Variables / TV:: Namespace 272

format

For integers, format-1 defines the decimal format, format-2 defines the hexadecimal format, and format-3 de-
fines the octal format.

For floating point numbers, format-1 defines the fixed point display format, format-2 defines the scientific format,
and format-3 defines the auto (printf()’s %g) format.

The format string is a combination of the following specifiers:

%

A signal indicating the beginning of a format.

width

A positive integer. This is the same width specifier used in the printf() function.

. (period)

A punctuation mark separating the width from the precision.

precision

A positive integer. This is the same precision specifier used in the printf() function.

(pound)

Displays a 0x prefix for hexadecimal and 0 for octal formats. This isn’t used within floating-point for-
mats.

0 (zero)

Pads a value with zeros. This is ignored if the number is left-justified. If you omit this character, To-
talView pads the value with spaces.

- (hyphen)

Left-justifies the value within the field’s width.

Permitted Values: A value in the described format

Default: {auto %-1.15 %-1.15 %-20.2}

TV::data_format_ext
Defines the format to use when displaying extended floating point values such as long doubles.For a description
of the contents of this variable, see TV::data_format_double.

Permitted Values: A value in the described format

Default: {auto %-1.15 %-1.15 %-1.15}

TV::data_format_int8
Defines the format to use when displaying 8-bit integer values. For a description of the contents of this variable,
see TV::data_format_double.

Permitted Values: A value in the described format

Default: {auto %1.1 %#4.2 %#4.3}

TotalView Variables / TV:: Namespace 273

TV::data_format_int16
Defines the format to use when displaying 16-bit integer values. For a description of the contents of this variable,
see TV::data_format_double.

Permitted Values: A value in the described format

Default: {auto %1.1 %#6.4 %#7.6}

TV::data_format_int32
Defines the format to use when displaying 32-bit integer values. For a description of the contents of this variable,
see TV::data_format_double.

Permitted Values: A value in the described format

Default: {auto %1.1 %#10.8 %#12.11}

TV::data_format_int64
Defines the format to use when displaying 64-bit integer values. For a description of the contents of this variable,
see TV::data_format_double.

Permitted Values: A value in the described format

Default: {auto %1.1 %#18.16 %#23.22}

TV::data_format_int128
Defines the format to use when displaying 128-bit integer values. For a description of the contents of this vari-
able, see TV::data_format_double.

Permitted Values: A value of the described format.

Default: {auto %1.1 %#34.32 %#44.43}

TV::data_format_long_stringlen
Defines the number of characters allowed in a long string.

Permitted Values: A positive integer number

Default: 8000

TV::data_format_single
Defines the format to use when displaying single precision, floating-point values. For a description of the contents
of this variable, see TV::data_format_double.

Permitted Values: A value in the described format

Default: {auto %-1.6 %-1.6 %-1.6}

TV::data_format_stringlen
Defines the maximum number of characters displayed for a string.

Permitted Values: A positive integer number

TotalView Variables / TV:: Namespace 274

Default: 100

TV::dbfork
When true, TotalView catches the fork(), vfork(), and execve() system calls if your executable is linked with the
dbfork library. See “Linking with the dbfork Library” on page 367..

Permitted Values: true or false

Default: true

TV::default_launch_command
Names the compiled-in launch command appropriate for the platform.

Permitted Values: A string indicating the default compiled-in launch command value.

Default: Sun SPARC: rshAll other platforms: ssh -x

TV::default_parallel_attach_subset
Names the default subset specification listing MPI ranks to attach to when an MPI job is created or attached to.

Permitted Values: A string indicating the default subset specification.

Default: Initialized to the value specified with the -default_parallel_attach_subset command line
option.

TV::default_stderr_append
When true, TotalView appends the target program’s stderr information to the file set in the GUI, by the -stderr
command-line option, or in the TV::default_stderr_filename variable. If no pathname is set, the value of this
variable is ignored. If the file does not exist, TotalView creates it.

Permitted Values: true or false

Default: false

TV::default_stderr_filename
Names the file to which to write the target program’s stderr information. If the file exists, TotalView overwrites it.
If the file does not exist, TotalView creates it.

Permitted Values: A string indicating a pathname

Default: None

TV::default_stderr_is_stdout
When true, TotalView writes the target program’s stderr information to the same location as stdout.

Permitted Values: true or false

Default: false

TV::default_stdin_filename
Names the file from which the target program reads stdin information.

TotalView Variables / TV:: Namespace 275

Permitted Values: A string indicating a pathname

Default: None

TV::default_stdout_append
When true, TotalView appends the target program’s stdout information to the file set in the GUI, by the -stdout
command-line option, or in the TV::default_stdout_filename variable. If no pathname is set, the value of this
variable is ignored. If the file does not exist, TotalView creates it.

Permitted Values: true or false

Default: false

TV::default_stdout_filename
Names the file to which to write the target program’s stdout information. If the file exists, TotalView overwrites it.
If the file does not exist, TotalView creates it.

Permitted Values: A string indicating a pathname

Default: None

TV::display_assembler_symbolically
When true, TotalView displays assembler locations as label+offset. When false, these locations are displayed as
hexadecimal addresses.

Permitted Values: true or false

Default: false

TV::dll_ignore_prefix
Defines a list of library files that will not result in a query to stop the process when loaded. This list contains a
colon-separated list of prefixes. Also, TotalView will not ask if you would like to stop a process if:

• You also set the TV::ask_on_dlopen variable to true.

• The suffix of the library being loaded does not match a suffix contained in the TV::dll_stop_suffix
variable.

• One or more of the prefixes in this list match the name of the library being loaded.

Permitted Values: A list of path names, each item of which is separated from another by a colon

Default: /lib/:/usr/lib/:/usr/lpp/:/usr/ccs/lib/:/usr/dt/lib/:/tmp/

TV::dll_read_all_symbols
Always reads loader and debugging symbols of libraries named within this variable.

This variable is set to a colon-separated list of library names. A name can contain the * (asterisk) and ? (question
mark) wildcard characters, which have their usual meaning:

• *: zero or more characters.

TotalView Variables / TV:: Namespace 276

• ?: a single character.

Because this is the default behavior, include only library names here that would be excluded because they are
selected by a wildcard match within the TV:dll_read_loader_symbols_only and TV::dll_read_no_symbols
variables.

Permitted Values: One or more library names separated by colons

Default: None

TV::dll_read_loader_symbols_only
When TotalView loads libraries named in this variable, it reads only loader symbols. Because TotalView checks and
processes the names in TV::dll_read_all_symbols list before it processes this list, it ignores names that are in
that list and in this one.

This variable is set to a colon-separated list of strings. Any string can contain the * (asterisk) and ? (question mark)
wildcard characters, which have their usual meaning:

• *: zero or more characters.

• ?: a single character.

If you do not need to debug most of your shared libraries, set this variable to * and then put the names of any
libraries you wish to debug on the TV::dll_read_all_symbols list.

Permitted Values: One or more library names separated by colons

Default: None

TV::dll_read_no_symbols
When TotalView loads libraries named in this variable, it does not read in either loader or debugging symbols.
Because TotalView checks and processes the names in the TV::dll_read_loader_symbols_only lists before it pro-
cesses this list, it ignores names that are in those lists and in this one.

This variable is set to a colon-separated list of strings. Any string can contain the * (asterisk) and ? (question mark)
wildcard characters having their usual meaning:

• *, which means zero or more characters

• ?, which means a single character.

Because information about subroutines, variables, and file names are not known for these libraries, stack back-
traces may be truncated. However, if your program uses large shared libraries and it’s time consuming to read
even their loader symbols, you may want to put those libraries on this list.

Permitted Values: One or more library names separated by colons

Default: None

TotalView Variables / TV:: Namespace 277

TV::dll_stop_suffix
Contains a colon-separated list of suffixes that stop the current process when it loads a library file with this suffix.

You must confirm that you want to stop the process:

• If TV::ask_on_dlopen variable is set to true

• If one or more of the suffixes in this list match the name of the library being loaded.

Permitted Values: A Tcl list of suffixes

Default: None

TV::dlopen_always_recalculate
When false, enables dlopen event filtering (see “dlopen Options for Scalability” on page 381).

TV::dlopen_always_recalculate is true by default, meaning that breakpoint specifications are reevaluated on
every dlopen call. This is referred to as Slow Mode.

A value of false enables dlopen event filtering, deferring the reevaluation of breakpoint specifications until after
the dlopen event and thus reducing the number of events per process that TotalView evaluates. This is useful in
improving performance when a process loads large numbers of libraries. Depending on the setting of
TV::dlopen_recalculate_on_match, performance can be improved with the Medium or Fast modes of dlopen
event filtering.

Permitted Values: true or false

Default: true

TV::dlopen_recalculate_on_match
Contains a colon-separated list of simple glob patterns (a glob list) containing library names. If TV::dlopen_al-
ways_recalculate is set to true, the value of this variable is ignored.

glob patterns specify sets of filenames with wildcard characters. A simple glob pattern is a string, optionally ending
with an asterisk character (*).

If TV::dlopen_always_recalculate is false and a dlopen event occurs, the name of the library associated with the
event is matched against the list of glob patterns. If the glob-list is empty (default) or the name of the dlopened
library does not match any patterns in the glob-list, then breakpoint reevaluation is deferred until the process
stops for some other reason (e.g., the process hits a breakpoint, the user stops the process, the process encoun-
ters a signal, etc.). If the library name matches a pattern, the breakpoints are reevaluated immediately. A glob-list
that contains the empty string results in Fast mode, since all the dlopened libraries will have their breakpoint
reevaluation deferred. Medium mode is when select libraries are to have their breakpoints reevaluated
immediately.

The matching rules are:

TotalView Variables / TV:: Namespace 278

• If the simple glob pattern does not end in an asterisk, then the tail of the loaded library name must
match the string. For example, the string "libfoo.so" matches library name "/dir/path/libfoo.so",
but does not match "/dir/path/libfoo.so.1.0".

• If the simple glob pattern ends in an asterisk, then the asterisk is removed from the string, and the
remaining portion of the string matches any substring found in the library name. For example, the
string "libfoo.so*" matches "/dir/path/libfoo.so" or "/dir/path/libfoo.so.1.0", and the string "/
path/*" matches "/dir/path/libfoo.so" or "/dir/path/libbar.so".

For a more complete explanation of dlopen event filtering, including use-case examples, please refer to “dlopen
Options for Scalability” on page 381.

Permitted Values: String

Default: "", the empty string

TV::dlopen_read_libraries_in_parallel
When false, (the default), TotalView handles dlopen events in the target application serially. (Note that for parallel
applications, handling dlopen events serially can degrade debugger performance.)

When true, TotalView attempts to handle dlopen events in parallel.

On non-MRNet platforms, or if MRNet is not enabled, then the value of this variable is ignored. For more informa-
tion, see “Handling dlopen Events in Parallel” in the TotalView for HPC User Guide.

Permitted Values: true or false

Default: false

TV::dump_core
When true, a core file is created when an internal TotalView error occurs. This is used only when debugging
TotalView problems. You can override this variable’s value by using the following command-line options:

-dump_core sets this variable to true
-no_dumpcore sets this variable to false

Permitted Values: true or false

Default: false

TV::dwhere_qualification_level
Controls the amount of information displayed when you use the dwhere command. Here are three examples:
dset TV::dwhere_qualification_level +overload_list
dset TV::dwhere_qualification_level -class_name
dset TV::dwhere_qualification_level -parent_function

You could combine these arguments into one command. For example:
dset TV::dwhere_qualification_level +overload_list \ -class_name -parent_function

In these examples “+” means that the information should be displayed and “-” means the information should not
be displayed.

TotalView Variables / TV:: Namespace 279

The arguments to this command are:

• all

• class_name

• file_directory

• hint

• image_directory

• loader_directory

• member

• module

• node

• overload_list

• parent_function

• template_args

• type_name

The all argument is often used as follows:
dset TV::dwhere_qualification_level all-parent_function

This states that all elements are displayed except for a parent function. For more information on these argu-
ments, see “symbol” on page 205.

Permitted Values: One or more of the arguments listed above.

Default: class_name+template_args+module+ parent_function+member+node

TV::dynamic
When true, TotalView loads symbols from shared libraries. This variable is available on all platforms supported by
Rogue Wave Software. (This may not be true for platforms ported by others. For example, this feature is not avail-
able for Hitachi computers.) Setting this value to false can cause the dbfork library to fail because TotalView
might not find the fork(), vfork(), and execve() system calls.

Permitted Values: true or false

Default: true

TV::editor_launch_string
Defines the editor launch string command. The launch string substitution characters you can use are:

%E: The editor

TotalView Variables / TV:: Namespace 280

%F: The display font

%N: The line number

%S: The source file

Permitted Values: Any string value—as this is a Tcl variable, you’ll need to enclose the string within {}
(braces) if the string contains spaces

Default: {xterm -e %E +%N %S}

TV::env
Names a variable that is already contained within your program’s environment. This is a read-only variable and is
set by using the -env command-line option. For more information, see -env variable=value on page 342.

To set this variable from within TotalView, use the File > New Program or Process > Startup dialog boxes.

Permitted Values: None. The variable is read-only.

Default: None

TV::follow_clone
When a value greater than 0, allows TotalView to pickup threads created using the clone() system call. The sup-
ported values are:

0: TotalView does not follow clone() calls. This is most often used if problems occur.

1: TotalView follows clone() calls until the first pthread_create() call is made. This value is then set to 0.

2: TotalView follows clone() calls whenever they occur. Calls to clone() and pthread_create() can be interleaved.
This may affect performance if the program has many threads.

3: (default) Like 2, TotalView follows clone() calls whenever they occur. However, TotalView uses a feature avail-
able on newer Linux systems to reduce the overhead.

NOTE >> Linux threads are not affected by this variable. This variable should be left set at 3 unless you
have reason to believe it is malfunctioning on your system.

Permitted Values: 0, 1, 2, or 3

Default: 3

TV::force_default_cplus_demangler
When true, TotalView uses the demangler set in the TV::current_cplus_demangler variable. Set this variable only
if TotalView uses the wrong demangler which may occur if you are using an unsupported compiler, an unsup-
ported language preprocessor, or if your vendor has made changes to your compiler.

Permitted Values: true or false

Default: false

TotalView Variables / TV:: Namespace 281

TV::force_default_f9x_demangler
When true, TotalView uses the demangler set in the TV::current_fortran_demangler variable. Set this variable
only if TotalView uses the wrong demangler which may occur if you are using an unsupported compiler, an
unsupported language preprocessor, or if your vendor has made changes to your compiler.

Permitted Values: true or false

Default: false

TV::global_typenames
When true, TotalView assumes that type names are globally unique within a program and that all type definitions
with the same name are identical. This must be true for standard-conforming C++ compilers.

If you set this option to true, TotalView attempts to replace an opaque type (struct foo *p;) declared in one mod-
ule with an identically named defined type (struct foo { … };) in a different module.

If TotalView has read the symbols for the module containing the non-opaque type definition, it automatically dis-
plays the variable by using the non-opaque type definition when displaying variables declared with the opaque
type.

If false, TotalView does not assume that type names are globally unique within a program. Use this variable only if
your code has different definitions of the same named type, since TotalView can pick the wrong definition when it
substitutes for an opaque type in this case.

Permitted Values: true or false

Default: true

TV::gnu_debuglink
When true, TotalView checks for a .gnu_debuglink section within your process. If it is found, it looks for the file
named in this section. If false, TotalView ignores the contents of this section. This means that a gnu_debuglink file
will not be loaded. For more information, see “Using gnu_debuglink Files” on page 365.

Permitted Values: true or false

Default: true

TV::gnu_debuglink_checksum
When true, TotalView compares the checksum of the gnu_debuglink file against the checksum contained within
the .gnu_debuglink section. TotalView will only load the information from the gnu_debuglink file when the check-
sums match. For more information, see “Using gnu_debuglink Files” on page 365.

Permitted Values: true or false

Default: true

TV::gnu_debuglink_global_directory
Names the directory to store gnu_debuglink files. For more information, see “Using gnu_debuglink Files” on
page 365.

TotalView Variables / TV:: Namespace 282

Permitted Values: A pathname within your file system. While this path can be relative, it is usually a full
pathname.

Default: /usr/lib/debug

TV::gnu_debuglink_global_search_path
Defines the search path to use when searching for .gnu_debuglink files. You can use two substituting variables
when assigning values:

• %D: The directory containing the .gnu_debuglink file.

• %G: The contents of the TV::gnu_debuglink_global_directory variable.

• %/: The target directory delimiter; for example “/”.

 For more information, see “Using gnu_debuglink Files” on page 365. .

Permitted Values: A string containing directory paths.

Default: %D:%D.debug:%G%/%D

TV::hia_local_dir
This variable affects only those cases where TotalView preloads the agent. It names the directory in which
TotalView will look for the hia for a local job. The default is the value of TV::hia_local_installation_dir. Change
this variable if you want TotalView to look for the agent in a different directory.

TV::hia_local_installation_dir
A read-only variable that names the directory where the hia distributed with the executing instance of TotalView
is found.

TV::hia_remote_dir
This variable affects only those cases where TotalView preloads the agent. It names the directory on a remote
host where TotalView will look for the hia that is to be used by the remote job. If the variable is not set, the server
uses its default, which is the same as the default value of the server’s TV::hia_local_dir but is interpreted in the
remote file system.

TV::hpf
Deprecated.

TV::hpf_node
Deprecated.

TV::host_platform
A read-only value that returns the architecture upon which TotalView is running.

TotalView Variables / TV:: Namespace 283

TV::ignore_control_c
When true, TotalView ignores Ctrl+C. This prevents you from inadvertently terminating the TotalView process. You
would set this option to true when your program catches the Ctrl+C (SIGINT) signal. You may want to set File >
Signals so that TotalView resends the SIGINT signal, instead of just stopping the program.

Permitted Values: true or false

Default: false

TV::image_load_callbacks
Contains a Tcl list of procedure names. TotalView invokes the procedures named in this list whenever it loads a
new program. This could occur when:

• A user invokes a command such as dload.

• TotalView resolves dynamic library dependencies.

• User code uses dlopen() to load a new image.

TotalView invokes the functions in order, beginning at the first function in this list.

Permitted Values: A Tcl list of procedure names

Default: {::TV::S2S::handle_image_load}

TV::in_setup
Contains a true value if called while TotalView is being initialized. Your procedures would read the value of this
variable so that code can be conditionally executed based on whether TotalView is being initialized. In most cases,
this is used for code that should be invoked only while TotalView is being initialized. This is a read-only variable.

Permitted Values: true or false

Default: false

TV::ipv6_support
When true, ipv6 support is enabled. If false, ipv6 support is disabled.

Permitted Values: true or false

Default: false

TV::jnibridge
Internal use only.

TV::kcc_classes
When true, TotalView converts structure definitions created by the KCC compiler into classes that show base
classes and virtual base classes in the same way as other C++ compilers. When false, TotalView does not perform
this conversion. In this case, TotalView displays virtual bases as pointers rather than as the data.

TotalView Variables / TV:: Namespace 284

TotalView converts structure definitions by matching the names given to structure members. This means that
TotalView may not convert definitions correctly if your structure component names look like KCC processed
classes. However, TotalView never converts these definitions unless it believes that the code was compiled with
KCC. (It does this when it sees one of the tag strings that KCC outputs, or when you use the KCC name deman-
gler.) Because all recognized structure component names start with “_ _” and the C standard forbids this use, your
code should not contain names with this prefix.

Under some circumstances, TotalView may not be able to convert the original type names because type definition
are not available. For example, it may not be able to convert “struct __SO_foo” to “struct foo”. In this case,
TotalView shows the “__SO_foo” type. This is just a cosmetic problem. (The “__SO__” prefix denotes a type defini-
tion for the nonvirtual components of a class with virtual bases).

Since KCC output does not contain information on the accessibility of base classes (private, protected, or pub-
lic), TotalView cannot provide this information.

Permitted Values: true or false

Default: true

TV::kernel_launch_string
This is not currently used.

TV::kill_callbacks
Names a Tcl function to run before TotalView kills a process. The contents of this variable is a list of pairs. For
example:
dset TV::kill_callbacks {

{^srun$ TV::destroy_srun}
}

The first element in the pair is a regular expression, and the second is the name of a Tcl function. If the process’s
name matches the regular expression, TotalView runs the Tcl procedure, giving it the DPID of the process as its
argument. This procedure can do anything that needs to be done for orderly process termination.

If your Tcl procedure returns false, TotalView kills your process as you would expect. If the procedure returns
true, TotalView takes no further action to terminate the process.

Any slave processes are killed before the master process is killed. If there is a kill_callback for the master pro-
cess, it is called after the slave processes are killed. If there are kill_callbacks for the slave processes, they will be
called before the slave is killed.

Permitted Values: List of one or more list of pairs

Default: {}

TV::library_cache_directory
Specifies the directory to write library cache data.

Permitted Values: A string indicating a path

TotalView Variables / TV:: Namespace 285

Default: $USERNAME/.totalview/lib_cache

TV::launch_command
Specifies the launch command.

Permitted Values: A string indicating the launch command

Default: The value of TVDSVRLAUNCHCMD if set, otherwise the value of default_launch_com-
mand. Note: changing the value of TVDSVRLAUNCHCMD in the environment after start-
ing TotalView does not affect this variable or how %C is expanded.

TV::local_interface
Sets the interface name that the server uses when it makes a callback. For example, on an IBM PS2 machine, you
would set this to css0. However, you can use any legal inet interface name. (You can obtain a list of the interfaces
if you use the netstat -i command.)

Permitted Values: A string

Default: {}

TV::local_server
(Sun only) This variable tells TotalView which local server it should launch. By default, TotalView finds the local
server in the same place as the remote server. On Sun platforms, TotalView can launch a 32- and 64-bit version.

Permitted Values: A file or path name to the local server

Default: tvdsvr

TV::local_server_launch_string
(Sun only) If TotalView will not be using the server contained in the same working directory as the TotalView exe-
cutable, the contents of this string indicate the shell command that TotalView uses to launch this alternate server.

Permitted Values: A string enclosed with {} (braces) if it has embedded spaces

Default: {%M -working_directory %D -local %U -set_pw %P -verbosity %V}

TV::message_queue
When true, TotalView displays MPI message queues when you are debugging an MPI program. When false, these
queues are not displayed. Disable these queues only if something is overwriting the message queues, thereby
confusing TotalView.

Permitted Values: true or false

Default: true

TV::mrnet_enabled
When true, TotalView enables MRNet on platforms where it is supported (Linux-x86_64, Linux-Power, Blue Gene/
Q, and Cray). To disable the MRNet infrastructure when debugging an MPI job, set this variable to false.

Permitted Values: true or false

Default: true

TotalView Variables / TV:: Namespace 286

TV::mrnet_port_base
The start of the port range that MRNet attempts to use for listening sockets on Cray systems. This string is passed
to MRNet instead of using the MRNET_PORT_BASE environment variable. This value is only used when TotalView
uses MRNet on Cray systems.

Permitted Values: a port number

Default: {}

TV::native_platform
A read-only state variable that identifies the native (host) platform on which the TotalView client (GUI or CLI) is
running. This variable’s value is the same as the value of TV::platform.

Permitted Values: a string indicating a platform

Default: platform-specific

TV::nptl_threads
When set to auto, TotalView determines which threads package your program is using. A value of true identifies
use of NPTL threads, while false means that the program is not using this package.

Permitted Values: true, false, or auto

Default: auto

TV::open_cli_window_callback
Contains the string that the CLI executes after you open the CLI by selecting the Tools > Command Line com-
mand. It is ignored when you open the CLI from the command line.

This variable is most commonly used to set the terminal characteristics of the (pseudo) tty that the CLI is using,
since these are inherited from the tty on which TotalView was started. Therefore, if you start TotalView from a
shell running inside an Emacs buffer, the CLI uses the raw terminal modes that Emacs is using. You can change
your terminal mode by adding the following command to your .tvdrc file:
dset TV::open_cli_window_callback "stty sane"

Permitted Values: A string representing a Tcl or CLI command

Default: Null

TV::parallel
When true, enables TotalView support for parallel program runtime libraries such as MPI, PE, and UPC. You might
set this to false if you need to debug a parallel program as if it were a single-process program.

Permitted Values: true or false

Default: true

TV::parallel_attach
automatically attaches to processes. Your choices are:

TotalView Variables / TV:: Namespace 287

• yes: Attach to all started processes.

• no: Do not attach to any started processes.

• ask: Display a dialog box listing the processes to which TotalView can attach, and let the user
decide to which ones TotalView should attach.

Permitted Values: yes, no, or ask

Default: yes

TV::parallel_stop
Tells TotalView if it should automatically run processes when your program launches them. Your choices are:

• yes: Stop the processes before they begin executing.

• no: Do not interfere with the processes; that is, let them run.

• ask: Display a question box asking if it should stop before executing.

Permitted Values: yes, no, or ask

Default: ask

TV::platform
Indicates the platform on which you are running TotalView. This is a read-only variable.

Permitted Values: A string indicating a platform, such as alpha or sun5

Default: Platform-specific

TV::process_load_callbacks
Names the procedures that TotalView runs after it loads or attaches to a program and just before it runs the pro-
gram. TotalView executes these procedures after it invokes the procedures in the TV::image_load_callbacks list.

The procedures in this list are called at most once per process load or attach, even though your executable may
use many shared libraries. After attaching to the processes in a parallel job, the callback procedures listed in
TV::process_load_callbacks are invoked on one representative process in each share group, and only when the
share group is first created. If the parallel job is restarted, the callback procedures are not invoked because the
share groups are not recreated. All processes in a parallel job are attached before calling the procedures. The
calls to the procedures are queued and executed at a later time, and are not guaranteed to be during the lifetime
of the processes.

Permitted Values: A list of Tcl procedures

Default: TV::source_process_startup. The default procedure looks for a file with the same name as
the newly loaded process’s executable image that has a .tvd suffix appended to it. If it
exists, TotalView executes the commands contained within it. This function is passed an
argument that is the ID for the newly created process.

TotalView Variables / TV:: Namespace 288

TV::recurse_subroutines:
Determines whether a data window displaying the subroutines associated with a source file initially displays just
the subroutine names, or also the data values in the subroutine scopes. This situation most commonly occurs in
the Program Browser.

• true: Displays both the subroutine names and the data in their scope.

• false: Displays only the subroutine names.

For complex applications, determining the state of the data values in the scope of all subroutines can significantly
slow down TotalView. If set to false so only the subroutine names appear, data values for a particular subroutine
can still be viewed by explicitly diving into the subroutine.

Permitted Values: true or false

Default: true

TV::replay_history_mode
Controls how ReplayEngine handles the history buffer when it is full, as follows:

• 1: Discards the oldest history and continue.

• 2: Stops the process.

Permitted Values: 1 or 2

Default: 1

TV::replay_history_size
Specifies the size of ReplayEngine’s buffer for recorded history, in either bytes, kilobytes (K) or megabytes (M). To
specify kilobytes or megabytes, append a K or M to the number, as follows: 10000K or 1024M

Permitted Values: An integer or an integer followed by K or M

Default: 0 (Limited only by available memory)

TV::restart_threshold
When killing a multi-threaded or multiprocess program, specifies the number of threads or processes that must
be running before a prompt launches confirming that you wish to kill the program. By default, this prompt
appears if there is more than one thread or process running.

Permitted Values: a positive integer

Default: 1

TV::save_global_dialog_defaults
Obsolete.

TV::save_search_path
Obsolete.

TotalView Variables / TV:: Namespace 289

TV::save_window_pipe_or_filename
Names the file to which TotalView writes or pipes the contents of the current window or pane when you select
the File > Save Pane command.

Permitted Values: A string naming a file or pipe

Default: None, until something is saved. Afterward, the saved string is the default.

TV::search_case_sensitive
When true, text searches are case-sensitive, succeeding only for an exact match for the entry in the Edit > Find
dialog box. For example, searching Foo won’t find foo if this variable is set to true. It will be found if this variable
is set to false.

Permitted Values: true or false

Default: false

TV::server_launch_enabled
When true, TotalView uses its single-process server launch procedure when launching remote tvdsvr processes.
When false, tvdsvr is not automatically launched.

Permitted Values: true or false

Default: true

TV::server_launch_timeout
Specifies the number of seconds to wait for a response from the TotalView Debugger Server (tvdsvr) that it has
launched.

Permitted Values: An integer from 1 to 3600 (1 hour)

Default: 30

TV::server_response_wait_timeout
Specifies how long to wait for a response from the TotalView Debugger Server (tvdsvr). Using a higher value may
help avoid server timeouts if you are debugging across multiple nodes that are heavily loaded.

Permitted Values: An integer from 1 to 3600 (1 hour)

Default: 30

TV::share_action_point
Indicates the scope in which TotalView places newly created action points. In the CLI, this is the dbarrier, dbreak,
and dwatch commands. If true, newly created action points are shared across the group. If false, a newly created
action point is active only in the process in which it is set.

As an alternative to setting this variable, you can select the Plant in share group check box in the Action Points
Page in the File > Preferences dialog box. You can override this value in the GUI by selecting the Plant in share
group checkbox in the Action Point > Properties dialog box.

Permitted Values: true or false

TotalView Variables / TV:: Namespace 290

Default: true

TV::signal_handling_mode

A list that modifies the way in which TotalView handles signals. This list consists of a list of signal_action descrip-
tions, separated by spaces:
signal_action[signal_action] ...

A signal_action description consists of an action, an equal sign (=), and a list of signals:
action=signal_list

An action can be one of the following: Error, Stop, Resend, or Discard.

A signal_list is a list of one or more signal specifiers, separated by commas:
signal_specifier[,signal_specifier] ...

A signal_specifier can be a signal name (such as SIGSEGV), a signal number (such as 11), or a star (*), which speci-
fies all signals. We recommend using the signal name rather than the number because number assignments vary
across UNIX versions.

The following rules apply when you are specifying an action_list:

• If you specify an action for a signal in an action_list, TotalView changes the default action for that
signal.

• If you do not specify a signal in the action_list, TotalView does not change its default action for the
signal.

• If you specify a signal that does not exist for the platform, TotalView ignores it.

• If you specify an action for a signal twice, TotalView uses the last action specified. In other words,
TotalView applies the actions from left to right.

If you need to revert the settings for signal handling to built-in defaults, use the Defaults button in the File > Sig-
nals dialog box.

For example, to set the default action for the SIGTERM signal to Resend, you specify the following action list:
{Resend=SIGTERM}

As another example, to set the action for SIGSEGV and SIGBUS to Error, the action for SIGHUP and SIGTERM to
Resend, and all remaining signals to Stop, you specify the following action list:
{Stop=* Error=SIGSEGV,SIGBUS Resend=SIGHUP,SIGTERM}

This action list shows how TotalView applies the actions from left to right.

1. Sets the action for all signals to Stop.

2. Changes the action for SIGSEGV and SIGBUS from Stop to Error.

3. Changes the action for SIGHUP and SIGTERM from Stop to Resend.

TotalView Variables / TV:: Namespace 291

Permitted Values: A list of signals, as was just described

Default: This differs from platform to platform; type dset TV::signal_handling_mode to see what
a platform’s default values are

TV::source_pane_tab_width
Sets the width of the tab character that is displayed in the Process Window’s Source Pane. You may want to set
this value to the same value as you use in your text editor.

Permitted Values: An integer

Default: 8

TV::spell_correction
When you use the View > Lookup Function or View > Lookup Variable commands in the Process Window or
edit a type string in a Variable Window, TotalView checks the spelling of your entries. By default (verbose),
TotalView displays a dialog box before it corrects spelling. You can set this resource to brief to run the spelling
corrector silently. (TotalView makes the spelling correction without displaying it in a dialog box first.) You can also
set this resource to none to disable the spelling corrector.

Permitted Values: verbose, brief, or none

Default: verbose

TV::stack_trace_qualification_level
Controls the amount of information displayed in stack traces. For more information, see
TV::dwhere_qualification_level.

Permitted Values: One or more of the following arguments: all, class_name, file_directory, hint, image_-
directory, loader_directory, member, module, node, overload_list, parent_function,
template_args, type_name.

Default: class_name+template_args+module+ parent_function+member+node

TV::stop_all
Indicates a default property for newly created action points. This property tells TotalView what else it should stop
when it encounters this action point. The values you can set are:

group

Stops the entire control group when the action point is hit.

process

Stops the entire process when the action point is hit.

thread

Only stops the thread that hit the action point. Note that none is a synonym for thread.

Permitted Values: group, process, or thread

Default: group

TotalView Variables / TV:: Namespace 292

TV::stop_relatives_on_proc_error
When true, TotalView stops the control group when an error signal is raised. This is the variable used by the Stop
control group on error signal option in the Options Page of the File > Preferences dialog box.

Permitted Values: true or false

Default: true

TV::suffixes
Use a space separated list of items to identify the contents of a file. Each item on this list has the form: suf-
fix:lang[:include]. You can set more than suffix for an item. If you want to remove an item from the default list,
set its value to unknown.

Permitted Values: A list identifying how suffixes are used

Default: {:c:include s:asm S:asm c:c h:c:include lex:c:include y:c:include bmap:c:include f:f77
F:f77 f90:f9x F90:f9x hpf:hpf HPF:hpf cxx:c++ cpp:c++ cc:c++ c++:c++ C:c++ C++:c++
hxx:c++:include hpp:c++:include hh:c++:include h++:c++:include HXX:c++:include
HPP:c++:include HH:c++:include H:c++:include ih:c++:include th:c++}

TV::target_platform
A read-only variable that displays a list of the platforms on which you can debug from the native (host) platform,
usually in the format os-cpu. For example, from a native platform of Linux-x86, the list is “linux-power linux-
x86_64 linux-x86 catamount-x86_64 catamount-x86.” The platform names may be listed differently than in
TV::platform and TV::native_platform. For example, for AIX, TV::target_platform is “aix-power” but TV::plat-
form and TV::native_platform are “rs6000.”

Permitted Values: A list of platform names

Default: Platform-dependent

TV::ttf
When true, TotalView uses registered type transformations to change the appearance of data types that have
been registered using the TV::type_transformation command.

Permitted Values: true or false

Default: true

TV::ttf_max_length
When transforming STL structures, TotalView must chase through pointers to obtain values. This number indi-
cates how many of these pointers it should follow.

Permitted Values: an integer number

Default: 10000

TotalView Variables / TV:: Namespace 293

TV::use_fast_trap
Controls TotalView’s use of the target operating system’s support of the fast trap mechanism for compiled condi-
tional breakpoints, also known as EVAL points. You cannot interactively use this variable. Instead, you must set it
within a TotalView startup file; for example, set its value with a .tvdrc file.

Your operating system may not be configured correctly to support this option. See the TotalView for HPC Release
Notes on our web site for more information.

Permitted Values: true or false

Default: true

TV::use_fast_wp
Controls TotalView’s use of the target operating system’s support of the fast trap mechanism for compiled condi-
tional watchpoints, also known as CDWP points. You cannot interactively use this variable. Instead, you must set it
within a TotalView startup file; for example, set its value with a .tvdrc file.

Your operating system may not be configured correctly to support this option. See the TotalView for HPC Release
Notes on our web site for more information.

Permitted Values: true or false

Default: false

TV::use_interface
This variable is a synonym for TV::local_interface.

TV::user_threads
When true, it enables TotalView support for handling user-level (M:N) thread packages on systems that support
two-level (kernel and user) thread scheduling.

Permitted Values: true or false

Default: true

TV::version
Indicates the current TotalView version. This is a read-only variable.

Permitted Values: A string

Default: Varies from release to release

TV::visualizer_launch_enabled
When true, TotalView automatically launches the Visualizer when you first visualize something. If you set this vari-
able to false, TotalView disables visualization. This is most often used to stop evaluation points containing a
$visualize directive from invoking the Visualizer.

Permitted Values: true or false

Default: true

TotalView Variables / TV:: Namespace 294

TV::visualizer_launch_string
Specifies the command string that TotalView uses when it launches a visualizer. Because the text is actually used
as a shell command, you can use a shell redirection command to write visualization datasets to a file (for exam-
ple, “cat > your_file”).

Permitted Values: A string

Default: %B/visualize

TV::visualizer_max_rank
Specifies the default value used in the Maximum permissible rank field in the Launch Strings Page of the File
> Preferences dialog box. This field sets the maximum rank of the array that TotalView will export to a visualizer.
The Visualizer cannot visualize arrays of rank greater than 2. If you are using another visualizer or just dumping
binary data, you can set this value to a larger number.

Permitted Values: An integer

Default: 2

TV::warn_step_throw
If this is set to true and your program throws an exception during a single-step operation, TotalView asks if you
wish to stop the step operation. The process will be left stopped at the C++ run-time library’s “throw” routine. If
this is set to false, TotalView will not catch C++ exception throws during single-step operations. Setting it to false
may mean that TotalView will lose control of the process, and you may not be able to control the program.

Permitted Values: true or false

Default: true

TV::wrap_on_search
When true, TotalView will continue searching from either the beginning (if Down is also selected in the Edit >
Find dialog box) or the end (if Up is also selected) if it doesn’t find what you’re looking for. For example, you
search for foo and select the Down button. If TotalView doesn’t find it in the text between the current position
and the end of the file, TotalView will continue searching from the beginning of the file if you set this option.

Permitted Values: true or false

Default: true

TV::xplat_remcmd
A command that needs to be executed before executing a process on a remote host, e.g., runauth. This string is
passed to MRNet instead of using the XPLAT_REMCMD environment variable. This value is only used when
TotalView uses MRNet.

Permitted Values: a command

Default: {}

TotalView Variables / TV:: Namespace 295

TV::xplat_rsh
An rsh command that is passed to MRNet instead of using the XPLAT_RSH environment variable. This command
is used to launch remote processes. If this variable isn't explicitly set and the XPLAT_RSH environment variable is
empty, TotalView uses the value of TV::launch_command. This value is used only when TotalView uses MRNet.

Permitted Values: a remote launch command

Default: {}

TV::xplat_rsh_args
A list of arguments that need to be given to the remote launch command. This string is passed to MRNet instead
of using the XPLAT_RSH_ARGS environment variable. This value is only used when TotalView uses MRNet.

Permitted Values: a space-separated list of remote launch arguments

Default: {}

TV::xterm_name
The name of the program that TotalView should use when spawning the CLI. In most cases, you will set this using
the -xterm_name command-line option.

Permitted Values: a string

Default: xterm

TotalView Variables / TV::MEMDEBUG:: Namespace 296

TV::MEMDEBUG:: Namespace

TV::MEMDEBUG::default_snippet_extent
Defines the number of code lines above and below point of allocation that the Memory Debugger saves when it
is adding code snippets to saved output.

You can also set this value using a Memory Debugger preference.

Permitted Values: A positive integer number

Default: 5

TV::MEMDEBUG::do_not_apply_hia_defaults
If set to true, tells the Memory Debugger that it should use settings it finds in a default .hiarc file. Otherwise, the
Memory Debuggers sets all options to off.

You can also set this value using a Memory Debugger preference.

Permitted Values: true or false

Default: false

TV::MEMDEBUG::hia_allow_ibm_poe
Tells the Memory Debugger if you can enable memory debugging on poe. As the default value is false, set this
variable if you want memory debugging to be on by default. This variable is hardly ever used.

Permitted Values: true or false

Default: false

TV::MEMDEBUG::ignore_snippets
When true, the Memory Debugger ignores code snippets that it saved and instead locates the information from
your program's files.

You can also set this value using Memory Debugger preference.

Permitted Values: true or false

Default: false

TV::MEMDEBUG::leak_check_interior_pointers
When true, the Memory Debugger considers a block as being referenced if a pointer is pointing anywhere within
the block instead of just at the block’s starting location. In most programs, the code should be keeping track of
the block’s boundary. However, if your C++ program is using multiple inheritance, you may be pointing into the
middle of the block without knowing it.

Permitted Values: true or false

Default: true

TotalView Variables / TV::MEMDEBUG:: Namespace 297

TV::MEMDEBUG::leak_detection_alignment
Specifies the alignment and stride TotalView uses as it steps through memory looking for pointers during leak
detection. If 0 (the default value), then TotalView defaults to using the size of a pointer, which varies according to
platform and programming model. In normal circumstances you should not need to adjust the alignment.

Permitted Values: A non-negative integer number

Default: 0

TV::MEMDEBUG::leak_max_cache
Sets the size of the Memory Debugger's cache. We urge you not to change this value unless your program is
exceptionally large or are asked to make the change by someone on the TotalView support team.

Permitted Values: A positive integer number

Default: 4194304

TV::MEMDEBUG::leak_max_chunk
Tells the Memory Debugger how much memory it should obtain when it obtains memory from your operating
system. You shouldn't change this value unless asked to by someone on the TotalView support team.

Permitted Values: A positive integer number

Default: 4194304

TV::MEMDEBUG::shared_data_filters
Names a filter definition file that is not located in the default directory. (The default directory is the lib subdirec-
tory within the TotalView installation directory.) The contents of this variable are read when TotalView begins
executing. Consequently, TotalView ignores any changes you make during the debugging session. The following
example names the directory in which the filter file resides. This example assumes that filter has the default
name, which is tv_filters.tvd.

dset TV::MEMDEBUG::shared_data_filters {/home/projects/filters/}

Use brackets so that Tcl doesn’t interpret the “/” as a mathematical operator. If you wish to use a specific file, just
use its name in this command. For example:

dset TV::MEMDEBUG::shared_data_filters \ {/home/projects/filters/filter.tvd}

The file must have a .tvd extension.

Permitted Values: A string naming the path to the filter directory.

Default: none

TotalView Variables / TV::GUI:: Namespace 298

TV::GUI:: Namespace

NOTE >> The variables in this section have meaning (and in some cases, a value) only when you are
using the TotalView GUI.

TV::GUI::chase_mouse
When this variable is set to true, TotalView displays dialog boxes at the location of the mouse cursor. If this is set
to false, TotalView displays them centered in the upper third of the screen.

Permitted Values: true or false

Default: true

TV::GUI::display_bytes_kb_mb
When true, the Memory Debugger displays memory block sizes in megabytes. If set to false, it displays memory
blocks sizes in kilobytes.

Permitted Values: true or false

Default: true

TV::GUI::display_font_dpi
Indicates the video monitor DPI (dots per inch) at which fonts are displayed.

Permitted Values: An integer

Default: 75

TV::GUI::enabled
When true, you invoked the CLI from the GUI or a startup script. Otherwise, this read-only value is false.

Permitted Values: true or false

Default: true if you are running the GUI even though you are seeing this in a CLI window; false if
you are only running the CLI

TV::GUI::fixed_font
Indicates the specific font TotalView uses when displaying program information such as source code in the Pro-
cess Window or data in the Variable Window. This variable contains the value set when you select a Code and
Data Font entry in the Fonts Page of the File > Preferences dialog box.

This is a read-only variable.

Permitted Values: A string naming a fixed font residing on your system

Default: While this is platform specific, here is a representative value:-adobe-courier-medium-r-
normal--12-120-75-75-m-70-iso8859-1

TotalView Variables / TV::GUI:: Namespace 299

TV::GUI::fixed_font_family
Indicates the specific font TotalView uses when displaying program information such as source code in the Pro-
cess Window or data in the Variable Window. This variable contains the value set when you select a Code and
Data Font entry of the Fonts Page of the File > Preferences dialog box.

Permitted Values: A string representing an installed font family

Default: fixed

TV::GUI::fixed_font_size
Indicates the point size at which TotalView displays fixed font text. This is only useful if you have set a fixed font
family because if you set a fixed font, the value entered contains the point size.

Font sizes are indicated using printer points.

Permitted Values: An integer

Default: 12

TV::GUI::font
Indicates the specific font used when TotalView writes information as the text in dialog boxes and in menu bars.
This variable contains the information set when you select a Select by full name entry in the Fonts Page of the
File > Preferences dialog box.

Permitted Values: A string naming a fixed font residing on your system. While this is platform specific, here
is a representative value:-adobe-helvetica-medium-r-normal--12-120-75-75-p-67-
iso8859-1

Default: helvetica

TV::GUI::force_window_positions
Setting this variable to true tells TotalView that it should use the version 4 window layout algorithm. This algo-
rithm tells the window manager where to set the window. It also cascades windows from a base location for each
window type. If this is not set, which is the default, newer window managers such as kwm or Enlightenment can
use their smart placement modes.

Dialog boxes still chase the pointer as needed and are unaffected by this setting.

Permitted Values: true or false

Default: false

TV::GUI::frame_offset_x
Not implemented.

TV::GUI::frame_offset_y
Not implemented.

TotalView Variables / TV::GUI:: Namespace 300

TV::GUI::geometry_call_tree
Specifies the position at which TotalView displays the Tools > Call Tree Window. This position is set using a list
containing four values: the window’s x and y coordinates. These are followed by two more values specifying the
window’s width and height.

If you set any of these values to 0 (zero), TotalView uses its default value. This means, however, you cannot place
a window at x, y coordinates of 0, 0. Instead, you’ll need to place the window at 1, 1.

If you specify negative x and y coordinates, TotalView aligns the window to the opposite edge of the screen.

Permitted Values: A list containing four integers indicating the window’s x and y coordinates and the win-
dow’s width and height

Default: {0 0 0 0}

TV::GUI::geometry_cli
Specifies the position at which TotalView displays the Tools > CLI Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y coordinates and the win-
dow’s width and height

Default: {0 0 0 0}

TV::GUI::geometry_expressions
Specifies the position at which TotalView displays the Tools > Expression List Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y coordinates and the win-
dow’s width and height

Default: {0 0 0 0}

TV::GUI::geometry_globals
Specifies the position at which TotalView displays the Tools > Program Browser Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y coordinates and the win-
dow’s width and height

Default: {0 0 0 0}

TV::GUI::geometry_help
Specifies the position at which TotalView displays the Help Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y coordinates and the win-
dow’s width and height

TotalView Variables / TV::GUI:: Namespace 301

Default: {0 0 0 0}

TV::GUI::geometry_memory_stats
Specifies the position at which TotalView displays the Tools > Memory Statistics Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y coordinate’s and the win-
dow’s width and height

Default: {0 0 0 0}

TV::GUI::geometry_message_queue
Specifies the position at which TotalView displays the Tools > Message Queue Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y coordinates and the win-
dow’s width and height

Default: {0 0 0 0}

TV::GUI::geometry_message_queue_graph
Specifies the position at which TotalView displays the Tools > Message Queue Graph Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y coordinates and the win-
dow’s width and height

Default: {0 0 0 0}

TV::GUI::geometry_modules
Specifies the position at which TotalView displays the Tools > Fortran Modules Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y coordinates and the win-
dow’s width and height.

Default: {0 0 0 0}

TV::GUI::geometry_process
Specifies the position at which TotalView displays the Process Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y coordinates and the win-
dow’s width and height

Default: {0 0 0 0}

TotalView Variables / TV::GUI:: Namespace 302

TV::GUI::geometry_ptset
No longer used.

TV::GUI::geometry_root
Specifies the position at which TotalView displays the Root Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y coordinates and the win-
dow’s width and height

Default: {0 0 0 0}

TV::GUI::geometry_thread_objects
Specifies the position at which TotalView displays the Tools > Thread Objects Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y coordinates and the win-
dow’s width and height

Default: {0 0 0 0}

TV::GUI::geometry_variable
Specifies the position at which TotalView displays the Variable Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y coordinates and the win-
dow’s width and height

Default: {0 0 0 0}

TV::GUI::geometry_variable_stats
Specifies the position at which TotalView displays the Tools > Statistics Window.

See TV::GUI::geometry_call_tree for information on setting this list.

Permitted Values: A list containing four integers indicating the window’s x and y coordinates and the win-
dow’s width and height

Default: {0 0 0 0}

TV::GUI::hand_cursor_enabled
Specifies whether the cursor should change to a hand cursor when hovering over an element you can dive into in
the source pane of the process window.

Permitted Values: true or false

Default: true

TotalView Variables / TV::GUI:: Namespace 303

TV::GUI::heap_summary_refresh
Not user settable.

TV::GUI::inverse_video
Not implemented.

TV::GUI::keep_expressions
Deprecated.

TV::GUI::keep_search_dialog
When true, TotalView doesn’t remove the Edit > Find dialog box after you select that dialog box’s Find button. If
you select this option, you will need to select the Close button to dismiss the Edit > Find box.

Permitted Values: true or false

Default: true

TV::GUI::old_root_window
When true, TotalView replaces the Root Window with the Root Window used in versions prior to TotalView for
HPC 8.15. You can override this value using the following command-line options:

• -oldroot sets this variable to true

• -newroot sets this variable to false

NOTE >> Using the previous-version Root Window may affect performance of applications
containing thousands of threads/processes.

Permitted Values: true or false

Default: false

TV::GUI::pop_at_breakpoint
When true, TotalView sets the Open (or raise) process window at breakpoint check box to be selected by
default. If this variable is set to false, it sets that check box to be deselected by default.

Permitted Values: true or false

Default: false

TV::GUI::pop_on_error
When true, TotalView sets the Open process window on error signal check box in the File > Preferences’s
Option Page to be selected by default. If you set this to false, TotalView sets that check box to be deselected by
default.

Permitted Values: true or false

TotalView Variables / TV::GUI:: Namespace 304

Default: true

TV::GUI::process_grid_wanted
When true, TotalView enables the Processes/Ranks Tab in the Process Window. Enabling this tab can significantly
affect performance, particularly for large, massively parallel applications.

Permitted Values: true or false

Default: false

TV::GUI::show_startup_parameters
Setting this value to true tells TotalView to display that it should display the Process > Startup dialog box when
you use a program name as an argument to the TotalView command.

Permitted Values: true or false

Default: true

TV:GUI:show_sys_thread_id
Setting this value to true tells TotalView to display the current thread’s system thread ID within the TotalView GUI.

Permitted Values: true or false

Default: true

TV::GUI::single_click_dive_enabled
When set, you can perform dive operations using the middle mouse button. Diving using a left-double-click still
works. If you are editing a field, clicking the middle mouse performs a paste operation.

Permitted Values: true or false

Default: true

TV::GUI::toolbar_style
This value set defines toolbar display.

Permitted Values: icons_above_text, icons_besides_text, icons, or text

Default: icons_above_text

TV::GUI::tooltips_enabled
When true, variable tooltips are displayed in the Process Window Source Pane.

Permitted Values: true or false

Default: true

TV::GUI::ui_font
Indicates the specific font used when TotalView writes information as the text in dialog boxes and in menu bars.
This variable contains the information set when you select a Select by full name entry in the Fonts Page of the
File > Preferences dialog box.

TotalView Variables / TV::GUI:: Namespace 305

Permitted Values: While this is platform specific, here is a representative value:-adobe-helvetica-medium-
r-normal--12-120-75-75-p-67-iso8859-1

Default: helvetica

TV::GUI::ui_font_family
Indicates the family of fonts that TotalView uses when displaying such information as the text in dialog boxes and
menu bars. This variable contains the information set when you select a Family in the Fonts Page of the File >
Preferences dialog box.

Permitted Values: A string

Default: helvetica

TV::GUI::ui_font_size
Indicates the point size at which TotalView writes the font used for displaying such information as the text in dia-
log boxes and menu bars. This variable contains the information set when you select a User Interface Size in the
Fonts Page of the File > Preferences dialog box.

Permitted Values: An integer

Default: 12

TV::GUI::using_color
Not implemented.

TV::GUI::using_text_color
Not implemented.

TV::GUI::using_title_color
Not implemented.

TV::GUI::version
This number indicates which version of the TotalView GUI is being displayed. This is a read-only variable.

Permitted Values: A number

Creating Type Transformations 306

Chapter 6

Creating Type
Transformations

Overview
The Type Transformation Facility (TTF) lets you define the way TotalView displays aggregate data. Aggregate
data is simply a collection of data elements from within one class or structure. These elements can also be
other aggregated elements. In most cases, you will create transformations that model data that your program
stores in an array- or list-like way. You can also transform arrays of structures.

This chapter describes the TTF. It presents information on how you create your own. Creating transforma-
tions can be quite complicated. This chapter looks at transformations for which TotalView can automatically
create an addressing expression.

The chapter also describes C++View (CV), a facility that allows you to format program data in a more useful or
meaningful form than the concrete representation that you see in TotalView when you inspect data in a run-
ning program.

Topics in this chapter are:

• “Why Type Transformations” on page 307

• “Creating Structure and Class Transformations” on page 309

• “C++View” on page 317

Creating Type Transformations / Why Type Transformations 307

Why Type Transformations
Modern programming languages allow you to use abstractions such as structures, class, and STL data types such
as lists, maps, multimaps, sets, multisets, and vectors to model the data that your program uses. For example, the
STL (Standard Template Library) allows you to create vectors of the data contained within a class. These abstrac-
tions simplify the way in which you think of and manipulate program’s data. These abstractions can also
complicate the way in which you debug your program because it may be nearly impossible or very inconvenient
to examine your program’s data. For example, Figure 6 shows a vector transformation.

The upper left window shows untransformed information. In this example, TotalView displays the complete struc-
ture of this GNU C++ STL structure. This means that you are seeing the data exactly as your compiler created it.

Figure 6 – A Vector Transformation

Creating Type Transformations / Why Type Transformations 308

The logical model that is the reason for using an STL vector is buried within this information. Neither TotalView
nor your compiler has this information. This is where type transformations come in. They give TotalView knowl-
edge of how the data is structured and how it can access data elements. The bottom Variable Window shows
how TotalView reorganizes this information.

NOTE >> By default, TotalView transforms STL strings, vectors, lists, maps, multimaps, sets, and multi-
sets. The unordered STL types, unordered_map, unordered_multimap, unordered_set and
unordered_multiset, are transformed for recent g++ compilers. If you do not want TotalView
to transform your information, select the Options Tab within the File > Preferences Dialog Box
and remove the check mark from View simplified STL containers (and user-defined
transformations).

Creating Type Transformations / Creating Structure and Class Transformations 309

Creating Structure and Class Transformations
The procedure for transforming a structure or a class requires that create a mapping between the elements of
the structure or class and the way in which you want this information to appear.

This section contains the following topics:

• “Transforming Structures” on page 309

• “build_struct_transform Function” on page 311

• “Type Transformation Expressions” on page 311

• “Using Type Transformations” on page 315

Transforming Structures
The following small program contains a structure and the statements necessary to initialize it:
#include <stdio.h>

int main () {
 struct stuff {
 int month;
 int day;
 int year;
 char * pName;
 char * pStreet;
 char CityState[30];
 };

 struct stuff info;
 char my_name[] = "John Smith";
 char my_street[] = "24 Prime Parkway, Suite 106";
 char my_CityState[] = "Natick, MA 01760";

 info.month = 6;
 info.day = 20;
 info.year = 2004;
 info.pName = my_name;
 info.pStreet = my_street;
 strcpy(info.CityState, my_CityState);

 printf("The year is %d\n", info.year);
}

Suppose that you do not want to see the month and day components. You can do this by creating a transforma-
tion that names just the elements you want to include:

Creating Type Transformations / Creating Structure and Class Transformations 310

::TV::TTF::RTF::build_struct_transform {
 name {^struct stuff$}
 members {
 { year { year } }
 { pName { * pName } }
 { pStreet { * pStreet } }
 }
}

You can apply this transformation to your data in the following ways:

• After opening the program, use the Tools > Command Line command to open a CLI Window.
Next, type this function call.

• If you write the function call into a file, use the Tcl source command. If the name of the file is
stuff.tvd, enter the following command into a CLI Window:

source stuff.tvd

• You can place the transformation source file into the same directory as the executable, giving it the
same root name as the executable. If the executable file has the name stuff, TotalView will
automatically execute all commands within a file named stuff.tvd when it loads your executable.

After TotalView processes your transformation, it displays the Variable Window when you dive on the info
structure:

Figure 7 – Transforming a Structure

Creating Type Transformations / Creating Structure and Class Transformations 311

build_struct_transform Function
The build_struct_transform routine used in the example in the previous section is a Tcl helper function that
builds the callbacks and addressing expressions that TotalView needs when it transforms data. It has two
required arguments: name and members.

name Argument

The name argument contains a regular expression that identifies the structure or class. In this example, struct is
part of the identifier’s name. It does not mean that you are creating a structure. In contrast, if stuff is class, you
would type:
name {^class stuff$}

If you use a wildcard such as asterisk ()* or question mark (?), TotalView can match more than one thing. In some
cases, this is what you want. If it isn’t, you need to be more precise in your wildcard.

members Argument

The members argument names the elements that TotalView will include in the information it will display. This
argument contains one or more lists. The example in the previous section contained three lists: year, pName,
and pStreet. Here again is the pName list:
{ pName { * pName } }

The first element in the list is the display name. In most cases, this is the name that exists in the structure or class.
However, you can use another name. For example, since the transformation dereferences the pointer, you might
want to change its name to Name:
{ Name { * pName } }

The sublist within the list defines a type transformation expression. These expressions are discussed in the next
section.

Type Transformation Expressions
The list that defines a member has a name component and sublist within the list. This sublist defines a type trans-
formation expression. This expression tells TotalView what it needs to know to locate the member. The example in
the previous section used two of the six possible expressions. The following list describes these expressions:

{member}

No transformation occurs. The structure or class member that TotalView displays is the same as it displays if you
hadn’t used a transformation. This is most often used for simple data types such as ints and floats.

{* expr}

Dereferences a pointer. If the data element is a pointer to an element, this expression tells TotalView to derefer-
ence the pointer and display the dereferenced information.

Creating Type Transformations / Creating Structure and Class Transformations 312

{expr . expr}

Names a subelement of a structure. This is used in the same way as the dot operator that exists in C and C++.
You must type a space before and after the dot operator.

{expr + offset}

Use the data whose location is an offset away from expr. This behaves just like pointer arithmetic in C and C++.
The result is calculated based on the size of the type that expr points to:
result = expr + sizeof(*expr) * offset

{expr -> expr}

Names a subelement in a structure accessed using a pointer. This is used in the same way as the -> operator in
C and C++. You must type a space before and after the -> operator.

{datatype cast expr}

Casts a data type. For example:

{double cast national_debt}

{N upcast expr}

Converts the current class type into one of its base classes. For example:

{base_class upcast expr }

You can nest expressions within expressions. For example, here is the list for adding an int member that is
defined as int **pfoo:

{foo { * {* pfoo}}

Example

The example in this section changes the structure elements of the example in the previous section so that they
are now class members. In addition, this example contains a class that is derived from a second class:
#include <stdio.h>
#include <string.h>

class xbase
{

public:
char * pName;
char * pStreet;
char CityState[30];

};

class x1 : public xbase
{

public:
int month;
int day;
int year;
void *v;

Creating Type Transformations / Creating Structure and Class Transformations 313

void *q;
};

class x2
{

public:
int q1;
int q2;

};

int main () {
class x1 info;
char my_name[] = “John Smith”;
char my_street[] = “24 Prime Parkway, Suite 106”;
char my_CityState[] = “Natick, MA 01760”;

info.month = 6;
info.day = 20;
info.year = 2004;
info.pName = my_name;
info.pStreet = my_street;
info.v = (void *) my_name;
strcpy(info.CityState, my_CityState);

class x2 x;
x.q1 = 100;
x.q2 = 200;
info.q = (void *) &x;

printf(“The year is %d\n”, info.year);
}

Figure 8 shows the Variables Windows that TotalView displays for the info class and the x struct.

Creating Type Transformations / Creating Structure and Class Transformations 314

The following transformation remaps this information:
::TV::TTF::RTF::build_struct_transform {

name {^(class|struct) x1$}
members {

{ pmonth { month } }
{ pName { xbase upcast { * pName } } }
{ pStreet { xbase upcast { * pStreet } } }
{ pVoid1 { “$string *” cast v } }
{ pVoid2 { * { “class x2 *” cast q } } }

}
}

After you remap the information, TotalView displays the x1 class.

Figure 8 – Untransformed Data

Creating Type Transformations / Creating Structure and Class Transformations 315

The members of this transformation are as follows:

• pmonth: The month member is added to the transformed structure without making any changes
to the way TotalView displays its data. This member, however, changes the display name of the
data element. That is, the name that TotalView uses to display a member within the remapped
structure does not have to be the same as it is in the actual structure.

• pName: The pName member is added. The transformation contains two operations. The first
dereferences the pointer. In addition, as x1 is derived from xbase, you need to upcast the variable
when you want to include it.

Notice that one expression is nested within another.

• pStreet: The pStreet member is added. The operations that are performed are the same as for
pName.

• pVoid1: The v member is added. Because the application’s definition of the data is void *, casting
tells TotalView how it should interpret the information. In this example, the data is being cast into a
pointer to a string.

• pVoid2: The q member is added. The transformation contains two operations. The first casts q into
a pointer to the x2 class. The second dereferences the pointer.

Using Type Transformations
When TotalView begins executing, it loads its built-in transformations. To locate the directory in which these files
are stored, use the following CLI command:

Figure 9 – Transformed Class

Creating Type Transformations / Creating Structure and Class Transformations 316

dset TOTALVIEW_TCLLIB_PATH

Type transformations are always loaded. By default, they are turned on. From the GUI, you can control whether
transformations are turned on or off by going to the Options Page of the File > Preferences Dialog Box and
changing the View simplified STL containers (and user-defined transformations) item. For example, the fol-
lowing turns on type transformations:
dset TV::ttf true

Creating Type Transformations / C++View 317

C++View
C++View (CV) is a facility that allows you to format program data in a more useful or meaningful form than the
concrete representation that you see in TotalView when you inspect data in a running program. To use C++View,
you must write a function for each type whose format you would like to control.

This section contains the following topics:

• “Writing a Data Display Function” on page 318

• “Templates” on page 320

• “Precedence - Searching for TV_ttf_display_type” on page 321

• “TV_ttf_add_row” on page 321

• “Return values from TV_ttf_display_type” on page 322

• “Elision” on page 323

• “Other Constraints” on page 324

• “Safety” on page 324

• “Memory Management” on page 325

• “Multithreading” on page 325

• “Tips and Tricks” on page 326

• “Core Files” on page 326

• “Using C++View with ReplayEngine” on page 326

• “C” on page 328

• “Fortran” on page 329

• “Compiling and linking tv_data_display.c” on page 333

• “C++View Example Files” on page 334

• “Limitations” on page 335

• “Licensing” on page 335

Creating Type Transformations / C++View 318

Writing a Data Display Function
The frame of reference in describing this is C++.

In order for C++View to work correctly, the code you write and TotalView must cooperate. There are two key
issues here. The first is registering your function so that TotalView can find it when it needs to format data for dis-
play. This is straightforward: all you need to do is to define your function to have the right name and prototype.
When TotalView needs to format the data of type T, it will look for a function with this signature:
int TV_ttf_display_type (const T *);

The const is deliberate to remind you that changes should not be made to the object being formatted for display.
Many real-world applications are not entirely const-correct, and in cases where you must cast away the const,
extreme caution is advised.

You will need to define a TV_ttf_display_type function for each type you want to format. A TV_ttf_display_type
function may be at global scope, or it may be a class (static) method. It cannot be a member function.

The second issue concerns how the TV_ttf_display_type function which you will write communicates with
TotalView. The API you will need to use is given in the header file tv_data_display.h included with your TotalView
distribution in the <totalview-installation>/src directory.

Your TV_ttf_display_type will use the provided function TV_ttf_add_row to tell TotalView what information
should be displayed. Its prototype is:
 int TV_ttf_add_row (const char *field_name,
 const char *type_name,
 const char *address);

The field_name parameter is the descriptive name of the data field being computed. It will be shown by
TotalView in a form similar to that of the name of a structure's field. The type_name parameter is the type of the
data to be displayed. It must be the name of a legal type name in the program, or one of TotalView's types.

As a convenience, the header file provides these symbols for you:

TV_ttf_type_ascii_string

This tells TotalView to format a character array as a string (i.e., left to right) instead of an array (top to bottom).

TV_ttf_type_int

This is an alias for TotalView integer type $int.

The third parameter, address, is the address in your program's address space of the object to be displayed.

TV_ttf_add_row should be called only as a result of TotalView invoking your TV_ttf_display_type function. It may
be called by a TV_ttf_display_type called by TotalView, or by one of the descendant callees of that
TV_ttf_display_type.

Creating Type Transformations / C++View 319

Example

Here are the definitions of a couple of classes:
class A {
 int i;
 char *s;
};

class B {
 A a;
 double d;
};

We can define the display callback functions as follows:
int TV_ttf_display_type (const A *a)
{
 /* NOTE: error checking of value returned from TV ttf add_row \
 omitted */
 (void) TV_ttf_add_row ("i", TV_ttf_type_int, &(a->i));
 (void) TV_ttf_add_row ("s", TV_ttf_type_ascii_string, a->s);

 /* indicate success to TotalView */
 TV_ttf_format_ok;
}

int TV_ttf_display_type (const B *b)
{
 /* NOTE: error checking of value returned from TV ttf add_row \
 omitted */
 (void) TV_ttf_add_row ("a", "A", &(b->a));
 (void) TV_ttf_add_row ("d", "double", &(b->d));

 /* indicate success to TotalView */
 return TV_ttf_format_ok;
}

For brevity and clarity, we have omitted all error checking of the value returned from TV_ttf_add_row. We will dis-
cuss the possible values that a TV_ttf_display_type may return later.

For now, we just return a simple success.

We could have made one or both of the display callbacks a class method:
class A {
 int i;
 char *s;
public:
 static int TV_ttf_display_type (const A *a);
};

Creating Type Transformations / C++View 320

int A::TV_ttf_display_type (const A *a)
{
 /* as before */
}

and similarly for class B.

Templates
C++View can also be used with template classes. Consider this container class:
template <class T> class BoundsCheckedArray {
private:
 int size;
 T *array;

public:
 typedef T value_type;

 T (int s) { ... }
 ...
};

Writing a collection of overloaded display functions for each instantiated BoundsCheckedArray can rapidly
become an overwhelming maintenance burden. Instead, consider whether you can write a template function.

One potential difficulty is getting the name of the type parameter to pass to TV_ttf_add_row. Here we follow the
convention used by the container classes in the standard library which typedefs the template type parameter to
the standard name value_type.

We can construct our template function like this:
template <class T>
int TV_ttf_display_type (const BoundsCheckedArray<T> *a)
{
 char type [4096];

 snprintf (type, sizeof (type), "value_type[%d]", \
 a->get_size ());

 TV_ttf_add_row ("array_values", type, a->get_array ());
 return TV_ttf_format_ok;
}

What we've done here is constructed the type of a fixed-sized array of the type named by the template type
parameter. (In some cases you may need to use the compiler's demangler to get the name of the type. See also
“Tips and Tricks” on page 326.)

This one definition can be used for any instance of the template class. In some cases, however, you may want a
specialized implementation of the display function. As an illustration, consider this:

Creating Type Transformations / C++View 321

int TV_ttf_display_type (const BoundsCheckedArray<char> *s)
{
 TV_ttf_add_row ("string", TV_ttf_type_ascii_string, \
 s->get_array ());
 return TV_ttf_format_ok;
 }

Here we want to tell TotalView to display the array horizontally as a string instead of vertically as an array. For this
reason, we want to pass TV_ttf_type_ascii_string to TV_ttf_add_row as the name of the type instead of the
name constructed by the implementation of the general template display function. We therefore define a special
version of the display function to handle BoundsCheckedArray<char>.

One remaining issue relating to templates is arranging for the various template display function instances to be
instantiated. It is unlikely that display functions will be called directly by your program. (Indeed, we mentioned ear-
lier that TV_ttf_add_row should not be called other than as a result of a call initiated by TotalView.) Consequently,
the template functions may well not be generated automatically. You can either arrange for functions to be refer-
enced, such as by calling them in a controlled manner, or by explicit template instantiation:

template int TV_ttf_display_type \
 (const BoundsCheckedArray<int> *);
template int TV_ttf_display_type \
 (const BoundsCheckedArray<double> *);
.
.

Precedence - Searching for TV_ttf_display_type
Only one call to a TV_ttf_display_type will be attempted per object to be displayed, even if multiple candidates
are defined. For a type T, TotalView will look for the function in this order:

1. A class-qualified class (static) function returning int and taking a single const T * as its only argument.

2. A function at file scope, returning int and taking a single const T * as its only argument.

3. A global function, returning int and taking a single const T * as its only argument.

4. A TCL transformation

Namespace qualifications are not directly considered.

TV_ttf_add_row
TV_ttf_add_row will return one of the following values defined in the enum TV_ttf_error_codes given in the file
tv_data_display.h, located in the <totalview-installation>/include directory in your distribution of TotalView.

Creating Type Transformations / C++View 322

The values returned by TV_ttf_add_row are:

TV_ttf_ec_ok

Indicates that the operation succeeded.

TV_ttf_ec_not_ active

Indicates that TV_ttf_add_row was called when the type formatting facility is not active. This is most likely to occur
if TV_ttf_add_row is called other than as a result of a call to a TV_ttf_display_type initiated by TotalView.

TV_ttf_ec_invalid_characters

Indicates that either the field name or the type name contained illegal characters, such as newline or tab.

TV_ttf_ec_buffer_exhausted

Indicates that the internal buffer used by TV_ttf_add_row to marshal your formatted data for onward transmis-
sion to TotalView is full. See “Tips and Tricks” on page 326 for suggestions for reducing the number of calls to
TV_ttf_add_row.

Return values from TV_ttf_display_type
The set of values your TV_ttf_display_function may return to TotalView is defined in the enum TV_ttf_for-
mat_result given in the file tv_data_display.h included with your distribution of TotalView. These values are:

TV_ttf_format_ok

Your function should return this value if it has successfully formatted the data and successfully registered its out-
put using TV_ttf_add_row.

TV_ttf_format_ok_elide

As TV_ttf_format_ok but indicates that the output may be subject to type elision (see below).

TV_ttf_format_ failed

Return this if your function was unable to format the data. When displaying the data, TotalView will indicate that
an error occurred.

Creating Type Transformations / C++View 323

TV_ttf_format_ raw

Use this to have your function tell TotalView to display the raw data as it would normally do, that is, as if there
were no TV_ttf_display_type present for that type.

TV_ttf_format_ never

As TV_ttf_format_raw. In addition, this value tells TotalView never to call the display function again.

Elision
Elision is a feature that allows you to simplify how your data are presented. Consider the BoundsCheckedAr-
ray<char> class and the specialized TV_ttf_display_type function we defined earlier:
int TV_ttf_display_type (const BoundsCheckedArray<char> *s)
{
 (void) TV_ttf_add_row ("string", TV_ttf_type_ascii_string, \
 s->get_array ());
 return TV_ttf_format_ok;
}

We used TV_ttf_type_ascii_string so that the array of characters is presented horizontally as a string, rather than
vertically as an array. If our program declares a variable BoundsCheckedArray<char> var1, we will see output
like this in the CLI:
d1.<> dprint var1
 var1 = {
 string = "Hello World!"
}
d1.<>

Note, however, that the variable var1 is still presented as an aggregate or class. Conceptually this is unnecessary,
and in this arrangement an extra dive may be necessary to examine the data. Additionally, more screen space is
needed than is necessary.

You can use elision to promote the member of a class out one level. With elision, we will get output that looks like
this:
d1.<> dprint var1
 string = "Hello World!"
d1.<>

TotalView will engage elision if your TV_ttf_display_type function returns TV_ttf_format_ok_elide (in place of
TV_ttf_format_ok). In addition, for elision to occur, the object being presented must have only one field.

Creating Type Transformations / C++View 324

Other Constraints
An aggregate type cannot contain itself. (An attempt to do so would result in an infinite sized aggregate.) When
generating a field of an aggregate T using TV_ttf_add_row, the named type may not be T, or anything which
directly or indirectly contains a T as a member. If you do need to do something like that, use a pointer or
reference.

As an illustration, consider this:
class A { ... };
class B { A a; ... };

int TV_ttf_display_type (const A *a)
{
 (void) TV_ttf_add_row (...);
 return TV_ttf_format_ok;
}
int TV_ttf_display_type (const B *b)
{
 (void) TV_ttf_add_row (...);
 (void) TV_ttf_add_row ("a", "A", &(b->a));
 return TV_ttf_format_ok;
}

Note the following:

• TV_ttf_display_type (const A *a) may not add an object of type A (direct inclusion) nor one of
type B (indirect inclusion).

• When viewing an object of type B, TotalView will invoke TV_ttf_add_row (const B *), and then
TV_ttf_add_row (const *A).

Safety
When you stop your program to inspect data, objects might not be in a fully consistent state. This may happen in
a number of circumstances, such as:

• Stopping in a the middle of a constructor or destructor.

• Displaying an object in scope, but before its constructor has been called.

• Viewing a dangling pointer to an object, that is, a pointer to an object in memory that has been
released by the program. This may be stack memory, but also heap memory. (If the target is
running with memory debugging enabled, then TotalView does check that the object to be
displayed does not lie in a deallocated region. If it does, then it does not call your
TV_ttf_display_type, and will display the data in their raw form You should not, however, rely on
this check.)

Creating Type Transformations / C++View 325

In the absence of C++View, this is not a problem, as displaying the data is just a matter of reading memory. How-
ever, with C++View, displaying data now involves executing functions in the target code. Your functions should be
careful to check that the object to be displayed is in a consistent state. If you can't establish that with certainty,
then it should not attempt to format the data, and instead it should return TV_ttf_format_failed.

Otherwise, your target program may crash when you attempt to display an object at an inappropriate time. As
with any function call made from TotalView (expression list, evaluation window, etc.), TotalView recovers from this
in a limited manner by posting an error message and restoring the stack to its original state. However, the target
code may be left in an inconsistent or corrupted state, and further progress may not be possible or useful.

You may not place a breakpoint in a TV_ttf_display_type function. If you do, the callback will be aborted similarly,
and TotalView will display an error.

Memory Management
You must make sure that the formatted data you want displayed by TotalView (the data whose address you sup-
ply as the third parameter to TV_ttf_add_row) remains allocated after the call to your TV_ttf_display_type
returns. In practice this means that you shouldn't allocate these data on the stack. Your TV_ttf_display_type
function may be called at anytime, including when your target program may be in the memory manager. For this
reason it is inadvisable to allocate or deallocate dynamic memory in your TV_ttf_display_type functions. If the
formatted data are manufactured, that is, generated by TV_ttf_display_type rather than already existing, then
the memory for those data should be allocated during the target's normal course of execution.

You may find it convenient to have your program format data as part of its normal operations.That way there are
no side-effects to worry about when TotalView calls your TV_ttf_display_type callback function.

The field_name and type_name string parameters to TV_ttf_add_row do not need to remain allocated after the
call to TV_ttf_add_row.

Multithreading
Accessing shared data in multithreaded environments will usually need some sort of access control mechanism
to protect its consistency and correctness. Your TV_ttf_display_type functions must be coded carefully if they
need to access data that are usually protected by a lock or mutex. Attempting to take the lock or mutex may
result in deadlock if the mutex is already locked.

Usually the threads in the program will have been stopped when TotalView calls the TV_ttf_display_type func-
tion. If the mutex is locked before TotalView calls TV_ttf_display_type, then an attempt by TV_ttf_display_type to
lock the mutex will result in deadlock.

Creating Type Transformations / C++View 326

If you are designing a TV_ttf_display_type that needs to access data usually protected by a lock or mutex, con-
sider whether you are able to determine whether the data are in a consistent state without having to take the
lock. It might be enough to be able to determine whether the mutex is locked. If the data cannot be accessed
safely, have the TV_ttf_display_type return TV_ttf_format_failed or TV_ttf_format_raw according to what fits
best with your requirements.

Tips and Tricks
Consider constructing the type name on-the-fly. This can save time and memory. As an example, consider the
TV_ttf_display_type for BoundsCheckedArray<T> we discussed earlier:
template <class T>
int TV_ttf_display_type (const BoundsCheckedArray<T> *a)
{
 char type [4096];

 snprintf (type, sizeof (type), "value_type[%d]", a->get_size ());

 (void) TV_ttf_add_row ("array_values", type, a->get_array ());
 return TV_ttf_format_ok;
}

Note how we constructed an array type. The alternative would be to iterate a->get_size () times calling TV_ttf_ad-
d_row (). Depending on the number of elements, this could exhaust the API's buffer. In addition, there is a time
penalty since TotalView will need to handle each line added by TV_ttf_add_row separately.

Constructing the array type as we did not only eliminates these disadvantages, it also provides other advantages.
For example, as TotalView now knows that what is being presented is really an array, all the normal operations on
arrays such as sorting, filtering, etc. are available.

Core Files
Because C++View needs to call a function in your program, C++View does not work with core files.

Using C++View with ReplayEngine
In general, C++View can be used with ReplayEngine just as with normal TotalView debugging. However, there are
some differences you should be aware of. In both record mode and replay mode, TotalView switches your pro-
cess into ReplayEngine’s volatile mode before calling your TV_ttf_display_type function. When the call
finishes, TotalView switches the process out of volatile mode. On entering volatile mode, ReplayEngine saves the
state of the process, and on exiting volatile mode, ReplayEngine restores the saved status.

Creating Type Transformations / C++View 327

In most cases, executing TV_ttf_display_type in volatile mode behaves as you would expect. However,
because ReplayEngine restores the earlier process state when it leaves volatile mode, any changes to process
memory, such as writing to a variable, made while in volatile mode are lost.

This fact has implications for your program if your TV_ttf_display_type function modifies global or static
data upon which either the function or the program relies. If TV_ttf_display_type does not change any
global state, you will see no change in behavior when you engage ReplayEngine. However, if you generate syn-
thetic values, such as the average, maximum or minimum values in an array, you cannot compute these in your
TV_ttf_display_type function as the results will be lost when the function call terminates. Instead, consider
generating them as a by-product of the program’s normal execution as described in the section on Memory
Management.

For more information on ReplayEngine, see Getting Started with ReplayEngine.

The behavior of C++View transformations under ReplayEngine is similar to TotalView for HPC’s behavior when
evaluating expressions with ReplayEngine enabled. For a discussion of this, see “Expression Evaluation with
ReplayEngine” in the TotalView for HPC User Guide.

The following code demonstrates how engaging ReplayEngine might affect calls to TV_ttf_display_type. This
example is shipped with the ReplayEngine example files as cppview_example_5.cc.

/* Example program demonstrating TotalView's C++View with ReplayEngine. */
/* Run with (in both record and replay modes) and without ReplayEngine. */
/* Note how c in main is displayed in the various cases. */

#include <stdio.h>
#include "tv_data_display.h"

static int counter;

class C {
 public:
 int value;

 C () : value (0) {};
}; /* C */

int
TV_ttf_display_type(const C *c)
{
 int ret_val = TV_ttf_format_ok;
 int err;

 // if Replay is engaged, this write to the global is lost because
 // the ttf function is evaluated in volatile mode
 counter++;

Creating Type Transformations / C++View 328

 // error checking omitted for brevity
 (void) TV_ttf_add_row ("value", "int", &(c->value));

 // show how many times we've been called. Will always be zero
 // with Replay engaged because the update is lost when the
 // call to TV_ttf_display_type returns.
 (void) TV_ttf_add_row ("number_of_times_called", "int", &counter);

 return ret_val ;
} /* TV_ttf_display_type */

int main(int argc, char *argv[])
{
 C c;

 c.value = 1;

 c.value++; // should be 1 **before** this line is executed

 c.value++; // should be 2 **before** this line is executed

 /* c.value should be 3 */

 return 0;
} /* main */

Compile and link the program with tv_data_display.c (see Compiling and linking tv_data_display.c). Follow
this procedure:

1. Start the program under TotalView and enter the function main.

2. Dive on the local variable c, and note how the synthetic member number_of_times_called changes as
you step through the program.

3. Restart, but this time with ReplayEngine engaged.

4. Notice the changes to the value member as you move forwards and backwards, and that the synthetic
member number_of_times_called remains 0 because the increment in TV_ttf_display_type is
lost when the function returns.

C
Although primarily intended for C++, C++View may be usable with C. C does not allow overloading so there may
be at most one TV_ttf_display_type function with external linkage present. If you are interested in formatting
only one type, then this restriction will not be constraining.

Creating Type Transformations / C++View 329

You may be able to work around this problem by defining separate TV_ttf_display_type functions as before, but
placing each in a different file, and defining them to be static. Since the visibility of each definition is limited to the
translation unit in which it appears, multiple functions can coexist.

This work-around, however, depends on the nature of the debug information emitted by the compiler. Some
compilers do not place static functions in an indexable section in the debug information, or may try to optimize
them out. If TotalView cannot find the function, it will not be called. TotalView cannot traverse the entire resolved
symbol table to find these functions, as it would incur significant performance problems.

Fortran
Fortran variables don't readily lend themselves to transformation by C++View, but in some cases, such as when
using a common block with Cray pointer variables, it is possible to set up a corresponding C structure and then
use that type to push the transformation.

Example

Consider this test case using Cray pointers in a common block, including three parts:

• The Fortran code

• A common block defined in an include file

• The C code containing the C++View code

The Fortran Code

Here, the Fortran code sets up a common block with a few variables and then assigns them some values.

program pointerp

call stuff

end

subroutine stuff

include 'foop.cmn'

foo = 42
ix = 11
iy = 12
iz = 13

call doit(ix)

call readit

Creating Type Transformations / C++View 330

return
end

subroutine doit(ix_x)

include 'foop.cmn'

ipxp = malloc(8*ix_x*foo)
ipyp = malloc(8*iy*iz)

xp = 3
yp = 5

return
end

subroutine readit

include 'foop.cmn'
xp = 4

return
end

The include File

The Fortran include file foop.cmn sets up a common block foo1 that corresponds to the C structure extern
foo1_, both in bold below.

The include file, foop.cmn:
 integer :: foo, ix, iy, iz
 real(kind=8) :: xp, yp
 pointer (ipxp, xp(foo,ix))
 pointer (ipyp, yp(iy,iz))
 common /foo1/ ix, iy, iz, foo, ipxp, ipyp

The C Code

The C code fortranTV.c defines structure extern foo1_, aligned to the Fortran common block foo1. Then, in the
TV_ttf_display_type routine for the struct foo, the calls to TV_ttf_add_row follow the layout of the data in the
common block, allowing us to view the data as we want to see it

The C code, fortranTV.c:
#include <stdio.h>

#include "tv_data_display.h"

Creating Type Transformations / C++View 331

#ifdef __cplusplus
extern "C" {
#endif

extern struct foo { int x ; } foo1_ ;

#ifdef __cplusplus
}
#endif

// Routine data display declaration
int TV_ttf_display_type(const struct foo *parameter)
{
 // Assign 'data' to the start of the common block
 int *data = (int *)parameter ;

 // Pick up the Cray pointer
 double **ptr = (double **) &data[4] ;
 char typeName[64] ;

 TV_ttf_add_row("ix", "int", &data[0]) ;
 TV_ttf_add_row("iy", "int", &data[1]) ;
 TV_ttf_add_row("iz", "int", &data[2]) ;
 TV_ttf_add_row("foo", "int", &data[3]) ;

 sprintf(typeName, "double[%d]", data[0]*data[3]) ;
 TV_ttf_add_row("ipxp", typeName, ptr[0]) ;

 sprintf(typeName, "double[%d]", data[1]*data[2]) ;
 TV_ttf_add_row("ipyp", typeName, ptr[1]) ;

 return TV_ttf_format_ok ;
}

Compiling and Linking

First compile the TotalView tv_data_display.c routine, as described in “Compiling and linking tv_data_display.c”
on page 333.

Build the program and the C program to add in the C++View transform:

ifort -g -c pointerp.f

ifort -g -c fortranTV.c -I$TVINCLUDE

Finally, link the program:

ifort -g -o crayptr pointerp.o tv_data_display.o fortranTV.o

Creating Type Transformations / C++View 332

Debugging

When you debug, set a breakpoint on the return statement on line 20, in subroutine doit. Run to the breakpoint
and then dive on the common block foo1.

To see the data transformed more clearly, expand the type information (downward arrow with the + sign) and
change the language to C or C++.

Figure 10 – Using C++ View with Fortran, diving on the Fortran pointer data

if

Figure 11 – Using C++ View with Fortran, changing language to C++

Creating Type Transformations / C++View 333

Then change the type from $void to foo, Figure 12.

Note that, while the original display of the common block shows the Cray pointers as integers (because a Cray
pointer is actually an integer that holds only a memory address), the final, transformed display shows the data ref-
erenced by the pointers, or the arrays of doubles.

Compiling and linking tv_data_display.c
Your distribution includes the file tv_data_display.c. in the <totalview-installation>/src directory. This file contains
the implementation of the interface between your TV_ttf_display_type functions and TotalView. This is distrib-
uted as source. You will need to compile this file and link it with your application.

You should take care to ensure that there is only one instance of tv_data_display.c present in your running appli-
cation. One way in which multiple instances could creep in is if you link separate copies of the tv_data_display.c
into independent shared libraries that your program uses. To avoid this type of problem, we strongly suggest that
you build tv_data_display.c into its own separate shared library that can be shared by all the libraries your appli-
cation uses. For example:

setenv TVSOURCE /usr/local/toolworks/totalview.8.9.0-2/src

setenv TVINCLUDE /usr/local/toolworks/totalview.8.9.0-2/include

gcc -g -Wall -fPIC -c $TVSOURCE/tv_data_display.c -I$TVINCLUDE gcc -g \

Figure 12 – Using C++ View with Fortran, transform the type

Creating Type Transformations / C++View 334

-shared -Wl,-soname,libtv_data_display.so -o libtv_data_display.so tv_data_display.o

Some compilers or linkers will perform a type of garbage collection step and eliminate code or data that your
application does not use. This affects C++View in two ways:

1. Your TV_ttf_display_type functions are unlikely to be called by your program.

2. Leading on from this, some of the entities in tv_data_display.c may not be reachable from your program.

As a result, the compiler or linker may identify your TV_ttf_display_type or tv_data_display.c as candidates for
garbage collection and elimination. You can try to work around this problem by trying to create references to the
TV_ttf_display_type functions.

Better still, we suggest identifying the flags for your compiler or linker that disable garbage collection. On AIX, for
example, the linker flag -bkeepfile:<filename> tells the linker not to perform garbage collection in the file named
<filename>.

C++View Example Files
Your TotalView distribution includes an examples directory, <totalview-installation>/examples, which includes the
following C++View example files:

NOTE >> Some compilers, such as some versions of gcc, do not emit debug information for typedefs in
class scopes, and therefore TotalView cannot find the type underlying value_type so C++View
may not work with those compilers.

cppview_example_1

A simple example showing two TV_ttf_display_type functions, one a function at global scope, the other a class
function. It also demonstrates elision.

cppview_example_2

A simple example using templates, showing how the type named in the template can be passed to TV_ttf_ad-
d_row.

cppview_example_3

A more complex example using templates, showing how a TV_ttf_display_type function can be either generic
or specialized for a particular instantiation of a template class. It also demonstrates elision.

cppview_example_4

A more complex example showing the use of STL container classes, elision, and the different values that
TV_ttf_display_type can return.

cppview_example_5

This example adds a synthetic member to a class, and can be used to explore how C++View behaves under Re-
playEngine.

Creating Type Transformations / C++View 335

Limitations
With the exception of Sun, compilers that emit STABS debug information do not handle C++ namespaces. This
affects TotalView in general and C++View in particular, in that references to entities in namespaces are not always
resolved.

Licensing
The C++View API library is distributed as two files. The first is tv_data_display.c, an ANSI C file that contains the
implementation of the API used by your TV_ttf_display_type functions. The other is tv_data_display.h, which is
a matching header file.

These files are licensed so as to permit unlimited embedding and redistribution.

 336

PART II

Running TotalView

This section of the TotalView for HPC Reference Guide contains information about command-line options you
use when starting TotalView and the TotalView Debugger Server.

Chapter 7, “TotalView Command Syntax,” on page 337
TotalView contains a great number of command-line options. Many of these options allow you to override de-
fault behavior or a behavior that you’ve set in a preference or a startup file.

Chapter 8, “TotalView Debugger Server Command Syntax,” on page 351
This chapter describes how you modify the behavior of the tvdsvr. These options are most often used if a prob-
lem occurs in launching the server or if you have some very specialized need. In most cases, you can ignore the
information in this chapter.

TotalView Command Syntax 337

Chapter 7

TotalView Command Syntax

Overview
This chapter describes the syntax of the totalview command. Topics in this chapter are:

• Command-Line Syntax

• Command-Line Options

TotalView Command Syntax / Command-Line Syntax 338

Command-Line Syntax

Format
totalview [options] [executable [core-file | recording-file]] [-a [args]]

or

totalview [options] -args executable [args]

Arguments
options

TotalView options.

executable

Specifies the path name of the executable being debugged. This can be an absolute or relative path name. The
executable must be compiled with debugging symbols turned on, normally the -g compiler option. Any multi-
process programs that call fork(), vfork(), or execve() should be linked with the dbfork library.

core-file

Specifies the name of a core file. Use this argument in addition to executable when you want to examine a core file
with TotalView.

recording-file

Specifies the name of a saved replay recording session file. Use this argument in addition to executable when you
want to replay the recording session with TotalView.

args

Default target program arguments.

Description
TotalView is a source-level debugger with a motif-based graphic user interface and features for debugging distrib-
uted programs, multiprocess programs, and multithreaded programs. TotalView is available on a number of
different platforms.

If you specify mutually exclusive options on the same command line (for example, ---dynamic and -no_dynamic),
the last option listed is used.

TotalView Command Syntax / Command-Line Options 339

Command-Line Options
-a args

Pass all subsequent arguments (specified by args) to the program specified by filename. This option must be the
last one on the command line.

-aix_use_fast_ccw

Defined only on AIX, a synonym for the platform-independent -use_fast_wp, for TotalView script backward
compatibility . See -use_fast_wp for more information.You must set this option on the command line; you can-
not set it interactively using the CLI.

-aix_use_fast_trap

Defined only on AIX, a synonym for the platform-independent -use_fast_trap, for TotalView script backward
compatibility. See -use_fast_trap for more information. You must set this option on the command line; you
cannot set it interactively using the CLI.

-args filename [args]

Specifies filename as the executable to debug, with args as optional arguments to pass to your program. This op-
tion must be listed last on the command line. You can also use --args instead of -args, for compatibility with
other debuggers.

-background color

Sets the general background color to color.

-bg color

Same as -background.

Default: light blue

-bluegene_q_user_threads

Enables handling of user-level (M:N) thread packages on BlueGene/Q systems.

-no_bluegene_q_user_threads

(Default) Disables handling of user-level (M:N) thread packages, improving startup performance at
high scale. There is usually a 1:1 correspondence between user-level threads and kernel-level
threads on BlueGene/Q systems.

-compiler_vars

(Alpha, HP, and SGI only.) Shows variables created by the Fortran compiler, as well as those in the user’s pro-
gram.

Some Fortran compilers (HP f90/f77, HP f90, SGI 7.2 compilers) output debugging information that describes
variables the compiler itself has invented for purposes such as passing the length of character*(*) variables. By
default, TotalView suppresses the display of these compiler-generated variables.

However, you can specify the -compiler_vars option to display these variables. This is useful when you are
looking for a corruption of a run-time descriptor or are writing a -compiler.

TotalView Command Syntax / Command-Line Options 340

-no_compiler_vars

(Default) Tells TotalView that it should not show variables created by the Fortran compiler.

-control_c_quick_shutdown-ccq

(Default) Tells TotalView to kills attached processes and exits.

-no_control_c_quick_shutdown -nccq

Invokes code that sometimes allows TotalView to better manage the way it kills parallel jobs when it works with
management systems. This has only been tested with SLURM. It may not work with other systems.

-cuda

(Default) Enables CUDA debugging with TotalView.

-no_cuda

Disables CUDA debugging. Any CUDA kernels launched on a GPU device are not seen by the debug-
ger, so the debugger can only debug the host code. -nocuda is the identical command.

-dbfork

(Default) Catches the fork(), vfork(), and execve() system calls if your executable is linked with the dbfork li-
brary.

-no_dbfork

Tells TotalView that it should not catch fork(), vfork(), and execve() system calls even if your execut-
able is linked with the dbfork library.

-debug_file console_outputfile

Redirects TotalView console output to a file named console_outputfile.

If consoleoutputfile is the string UNIQUE, the filename tv_dump.hostname.pid is used. If console_outputfile con-
tains the string '$$' (note the escaping single quotes), hostname.pid is substituted. UNIQUE and '$$' are useful
for separating the console output when running multiple tvdsvr processes.

All TotalView console output is written to stderr.

-default_parallel_attach_subset subset_specification

Specifies a set of MPI ranks to be attached to when an MPI job is created or attached to. The subset_specification
is a space-separated list, the elements of which can be in one of these forms:

rank: that rank only

rank1-ranks2: all ranks between rank1 and rank2 inclusive

rank1-rank2:stride: every strideth rank between rank1 and rank2

A rank must be either a positive decimal integer or max (the last rank in the MPI job).

A subset_specification that is the empty string ("") is equivalent to 0-max.

The default_parallel_attach_subset is used to initialize the -parallel_attach_subset property of an MPI
starter process, which can be get or set in the CLI using:

TV::process get dpid parallel_attach_subset

TV::process set dpid parallel_attach_subset -subset_specification

TotalView Command Syntax / Command-Line Options 341

The CLI dattach and dload -parallel_attach_subset -subset_specification overrides the default_parallel_at-
tach_subset and sets the parallel_attach_subset property of the process being attached or loaded.

-demangler=compiler

Overrides the demangler and mangler TotalView uses by default. The following indicate override options.

-demangler=compaq: HP cxx on Linux (alpha)

-demangler=gnu: GNU C++ on Linux Alpha

-demangler=gnu_dot: GNU C++ on Linux x86

-demangler=gnu_v3:GNU C++ Linux x86

-demangler=kai: KAI C++

-demangler=kai3_n: KAI C++ version 3.n

-demangler=kai_4_0:KAI C++

-demangler=spro: SunPro C++ 4.0 or 4.2

-demangler=spro5: SunPro C++ 5.0 or later

-demangler=sun: Sun CFRONT C++

-demangler=xlc: IBM XLC/VAC++ compilers

-display displayname

Set the name of the X Windows display to displayname. For example, -display vinnie:0.0 will display TotalView
on the machine named “vinnie.”

Default: The value of your DISPLAY environment variable.

-dll_ignore_prefix list

The colon-separated argument to this option tells TotalView that it should ignore files having this prefix when
making a decision to ask about stopping the process when it dlopens a dynamic library. If the DLL being opened
has any of the entries on this list as a prefix, the question is not asked.

-dll_stop_suffix list

The colon-separated argument to this option tells TotalView that if the library being opened has any of the en-
tries on this list as a suffix, it should ask if it should open the library.

-dlopen_always_recalculate

(Default). Reevaluates breakpoint specifications on every dlopen call.

-no_dlopen_always_recalculate

Enables dlopen event filtering, deferring the reevaluation of breakpoint specifications until after the
dlopen event. The point at which the breakpoint specifications are reevaluated depends on the value
of the TV::dlopen_recalculate_on_match variable (see -dlopen_recalculate_on_match glob-list).

This setting impacts scalability in HPC computing environments. For details, see “Filtering dlopen Events” on
page 381.

TotalView Command Syntax / Command-Line Options 342

-dlopen_recalculate_on_match glob-list

Default: "" (the empty string)

This option’s argument is a colon-separated list of simple glob patterns used to compare and match the
dlopened library. A simple glob pattern is a string, optionally ending with asterisk character ('*'). For information
on the semantics of glob pattern matching, see TV::dlopen_recalculate_on_match.

Used with -no_dlopen_always_recalculate, when a dlopen event occurs, the name of the dlopened library is
matched against the list of glob patterns; if the glob-list is empty (the default) or the name of the dlopened library
does not match the glob-list, then breakpoint reevaluation is deferred until the process stops for some other
reason (e.g., the process hits a breakpoint, the user stops the process, the process encounters a signal, etc.).

If the library name matches a pattern, the breakpoints are reevaluated immediately.

-dlopen_read_libraries_in_parallel

Enables dlopen events to be handled in parallel, reducing client/server communication overhead by using
MRNet to fetch the library information.

-no_dlopen_read_libraries_in_parallel

(Default). Disables handling dlopened events in parallel.

This setting impacts scalability in HPC computing environments. For details, see “Handling dlopen Events in
Parallel” on page 383.

-dump_core

Allows TotalView to dump a core file of itself when an internal error occurs. This is used to help Rogue Wave Soft-
ware debug problems.

-e commands

Tells TotalView to immediately execute the CLI commands named within this argument. All information you en-
ter here is sent directly to the CLI’s Tcl interpreter. For example, the following writes a string to stdout:

cli -e 'puts hello'

You can have more than one -e option on a command line.

-ent

Tells TotalView that it should only use an Enterprise license.

-no_ent

Tells TotalView that it should not use an Enterprise license. You may combine this with -no_team or --
-noteamplus.

-env variable=value

Tells TotalView to add an environment variable to the environment variables passed to your program by the
shell. If the variable already exists, it effectively replaces the previous value. You need to use this command for
each variable being added; that is, you cannot add more than one variable with an env command.

-foreground color

Sets the general foreground color (that is, the text color) to color.

TotalView Command Syntax / Command-Line Options 343

-fg color

Same as -foreground.

Default: black

-f9x_demangler=compiler

Overrides the Fortran demangler and mangler TotalView uses by default. The following indicate override op-
tions.

-demangler=spro_f9x_4: SunPro Fortran, 4.0 or later

-demangler=xlf: IBM Fortran

-global_types

(Default) Lets TotalView assume that type names are globally unique within a program and that all type defini-
tions with the same name are identical. The C++ standard asserts that this must be true for standard-conform-
ing code.

If this option is set, TotalView will attempt to replace an opaque type (struct foo *p;) declared in one module,
with an identically named defined type in a different module.

If TotalView has read the symbols for the module containing the non-opaque type definition, then when display-
ing variables declared with the opaque type, TotalView will automatically display the variable by using the non-
opaque type definition.

-no_global_types

Specifies that TotalView cannot assume that type names are globally unique in a program. You should
specify this option if your code has multiple different definitions of the same named type, since oth-
erwise TotalView can use the wrong definition for an opaque type.

-gnu_debuglink

Tells TotalView that if a program or library has a .gnu_debug_link section, it should look for a gnu_debug_link
file. If found, TotalView reads the debugging information from this file.

-no_gnu_debuglink

Do not load information from a gnu_debug_link file even if the file has a .gnu_debug_link section.

-gnu_debuglink_checksum

Tells TotalView that it should validate the gnu_debug_link file’s checksum against the checksum contained in
the process’s .gnu_debuglink section.

-no_gnu_debuglink_checksum

Do not compare checksums. Only do this if you are absolutely certain that the debug file matches.

-ipv6_support

Directs TotalView to support IPv6 addresses.

-no_ipv6_support

(Default) Do not support IPv6 addresses.

TotalView Command Syntax / Command-Line Options 344

-kcc_classes

(Default) Converts structure definitions output by the KCC compiler into classes that show base classes and vir-
tual base classes in the same way as other C++ compilers. See the description of the TV::kcc_classes variable
for a description of the conversions that TotalView performs.

-no_kcc_classes

Specifies that TotalView will not convert structure definitions output by the KCC compiler into classes.
Virtual bases will show up as pointers, rather than as data.

-lb

(Default) Loads action points automatically from the filename.TVD.v3breakpoints file, providing the file exists.

-nlb

Tells TotalView that it should not automatically load action points from an action points file.

-load_session session_name

Loads into TotalView the session named in session_name. If the preference “Show Startup Parameters when To-
talView starts” is set, this option launches the Session Manager’s Program Session screen where you can edit the
session’s properties and then launch the session; otherwise, the option immediately loads the session into To-
talView, launching the Root and Process windows. Session names with spaces must be enclosed in quotes, for
example, "my debug session". Sessions that attach to an existing process cannot be loaded using this option;
rather, use the -pid option instead.

-local_interface string

Sets the interface name that the server uses when it makes a callback. For example, on an IBM PS2 machine, you
would set this to css0. However, you can use any legal inet interface name. (You can obtain a list of the inter-
faces if you use the netstat -i command.)

-memory_debugging

Enables memory debugging. By adding the following suboptions, you enable that particular feature using its the
feature’s default configuration. In most cases, you will want to use one or more of the following sub-options.

-mem_detect_use_after_free

Tests for memory use after memory is freed.

-mem_detect_use_after_free

Tests for memory use after memory is freed.

-mem_guard_blocks

Surrounds allocated memory blocks with guard blocks.

-mem_hoard_freed_memory

Tells the Memory Debugger to hoard memory blocks instead of releasing them when a free() routine
is called.

-mem_hoard_low_memory_threshold nnnn

Sets the low memory threshold amount. When memory falls below this amount an event will be fired.

-mem_notify_events

Turns on memory event notification.

TotalView Command Syntax / Command-Line Options 345

-no_mem_notify_events turns event notification off.

-mem_paint_all

Paint both allocated and deallocated blocks with a bit pattern.

-mem_paint_on_alloc

Paint memory blocks with a bit pattern when they are allocated.

-mem_paint_on_dealloc

Paint memory blocks with a bit pattern when they are freed.

-mem_red_zones_overruns

Turn on testing for Red Zones overruns.

-mem_red_zones_size_ranges min:max,min:max,...

Defines the memory allocations ranges for which Red Zones are in effect. Ranges can be specified as
follows: x:y allocations from x to y.

:y allocations from 1 to y

x: allocations of x and higher

x allocation of x

-mem_red_zones_underruns

Turn on testing for Red Zones underruns.

-message_queue

(Default) Enables the display of MPI message queues when debugging an MPI program.

-mqd

Same as -message_queue.

-mqd

Same as -message_queue.

-no_message_queue

Disables the display of MPI message queues when you are debugging an MPI program. This might be
useful if something is overwriting the message queues and causing TotalView to become confused.

-no_mqd

Same as -no_message_queue.

-mpi starter

Names the MPI that your program requires. The list of starter names that you enter are those that appear in the
Parallel system pull down list contained within the New Program’s Parallel tab. If the starter name has more
than one word (for example, Open MPI), enclose the name in quotes. For example:

-mpi "Open MPI"

-newUI

Launches the NextGen TotalView for HPC UI rather than TotalView’s traditional interface.

-nodes

Specifies the number of nodes upon which the MPI job will run.

TotalView Command Syntax / Command-Line Options 346

-no_startup_scripts

Tells TotalView not to reference any initialization files during startup. Note that this negates all settings in all ini-
tialization files. Aliases are -nostartupscripts and -nss.

-nohand_cursor

By default, the cursor in the source pane of the process window turns into a hand cursor when hovering over an
element you can dive on (a red box is also drawn around the applicable code). Specify this option to override this
behavior and retain the usual arrow cursor.

-np

Specifies how many tasks that TotalView should launch for the job. This argument usually follows a -mpi com-
mand-line option.

-nptl_threads

Tells TotalView that your application is using NPTL threads. You only need use this option if default cannot deter-
mine that you are using this threads package.

-no_nptl_threads

Tells TotalView that you are not using the NPTL threads package. Use this option if TotalView thinks your applica-
tion is using it and it isn’t.

-oldroot

Displays the Root Window used in versions prior to TotalView 8.15.0. Using --oldroot or --newroot overrides
the TV::GUI::old_root_window value.

-newroot

(Default) Displays the new Root Window. This is useful when TV::GUI::-old_root_window is set to
true in the .tvdrc file and you wish to use the new Root Window.

-parallel

(Default) Enables handling of parallel program run-time libraries such as MPI, PE, and UPC.

-no_parallel

Disables handling of parallel program run-time libraries such as MPI, PE, and UPC. This is useful for
debugging parallel programs as if they were single-process programs.

-parallel_attach option

Sets the action that TotalView takes when starting a parallel program. Possible options are:

yes (default) Attaches to all processes in a parallel program, unless the process being launched or at-
tached to has a non-empty parallel_attach_subset property. In this case, only the subset of processes speci-
fied in the parallel_attach_subset are attached.

no: Attaches to no processes in a parallel program.

ask Asks which processes to attach to by posting the subset attach dialog box if the debugger
GUI is open.

This option works in concert with the parallel_attach_subset property (see -default_parallel_attach_subset) of
an MPI starter process, which specifies a set of MPI tasks to attach to when the debugger launches or attaches
to an MPI job.

TotalView Command Syntax / Command-Line Options 347

Modifying this setting does not affect the parallel_attach_subset property itself.

-patch_area_base address

Allocates the patch space dynamically at address. See “Allocating Patch Space for Compiled Expressions” in the To-
talView for HPC User Guide.

-patch_area_length length

Sets the length of the dynamically allocated patch space to this length. See “Allocating Patch Space for Compiled
Expressions” in the TotalView for HPC User Guide.

-pid pid filename

Attaches to process pid for executable filename when TotalView starts executing.

-procs

Specifies how many tasks that TotalView should launch for the job. This argument usually follows a -mpi com-
mand-line option.

-processgrid

Displays the Processes/Ranks Tab in the Process Window. Note that enabling this tab can significantly affect per-
formance, particularly for large, massively parallel applications.

-noprocessgrid (default)

Does not display the Processes/Ranks Tab in the Process Window. This command qualifier is helpful
when you wish to disable the Processes/Ranks Tab for a debug session and you have TV::GUI::pro-
cess_grid_wanted set to true in your .tvdrc file.

-remote hostname[:portnumber]

Debugs an executable that is not running on the same machine as TotalView. For hostname, you can specify a
TCP/IP host name (such as vinnie) or a TCP/IP address (such as 128.89.0.16). Optionally, you can specify a TCP/
IP port number for portnumber, such as :4174. When you specify a port number, you disable the autolaunch fea-
ture. For more information on the autolaunch feature, see “Setting Single Process Server Launch” in the TotalView
for HPC User Guide.

-r hostname[:portnumber]

Same as -remote.

-replay

Enables the ReplayEngine when TotalView begins. This command-line option is ignored if you do not have a li-
cense for ReplayEngine.

-s pathname

Specifies the path name of a startup file that will be loaded and executed. This path name can be either an ab-
solute or relative name.

You can add more than one -s option on a command line.

TotalView Command Syntax / Command-Line Options 348

-serial device[:options]

Debugs an executable that is not running on the same machine as TotalView. For device, specify the device name
of a serial line, such as /dev/com1. Currently, the only option you are allowed to specify is the baud rate, which
defaults to 38400. For more information on debugging over a serial line, see “Debugging Over a Serial Line” in
the TotalView for HPC Users Guide.

-search_path pathlist

Specify a colon-separated list of directories that TotalView will search when it looks for source files. For example:

totalview -search_path proj/bin:proj/util

-signal_handling_mode "action_list"

Modifies the way in which TotalView handles signals. You must enclose the action_list string in quotation marks
to protect it from the shell.

An action_list consists of a list of signal_action descriptions separated by spaces:

signal_action[signal_action] ...

A signal action description consists of an action, an equal sign (=), and a list of signals:

action=signal_list

An action can be one of the following: Error, Stop, Resend, or Discard, For more information on the meaning
of each action, see Chapter 3 of the TotalView for HPC User Guide.

A signal_specifier can be a signal name (such as SIGSEGV), a signal number (such as 11), or a star (*), which spec-
ifies all signals. We recommend that you use the signal name rather than the number because number assign-
ments vary across UNIX sessions.

The following rules apply when you are specifying an action_list:

(1) If you specify an action for a signal in an action_list, TotalView changes the default action for that signal.

(2) If you do not specify a signal in the action_list, TotalView does not change its default action for the signal.

(3) If you specify a signal that does not exist for the platform, TotalView ignores it.

(4) If you specify an action for a signal more than once, TotalView uses the last action specified.

If you need to revert the settings for signal handling to built-in defaults, use the Defaults button in the File >
Signals dialog box.

For example, here’s how to set the default action for the SIGTERM signal to resend:
"Resend=SIGTERM"

Here’s how to set the action for SIGSEGV and SIGBUS to error, the action for SIGHUP to resend, and all re-
maining signals to stop:

"Stop=* Error=SIGSEGV,SIGBUS Resend=SIGHUP"

-shm "action_list"

Same as -signal_handling_mode.

TotalView Command Syntax / Command-Line Options 349

-starter_args "arguments"

Tells TotalView to pass arguments to the starter program. You can omit the quotation marks if arguments is just
one string without any embedded spaces.

-stderr pathname

Names the file to which TotalView writes the target program’s stderr information while executing within To-
talView. If the file exists, TotalView overwrites it. If the file does not exist, TotalView creates it.

-stderr_append

Tells TotalView to append the target program’s stderr information to the file named in the -stderr command,
specified in the GUI, or in the TotalView TV::default_stderr_filename variable. If the file does not exist, To-
talView creates it.

-stderr_is_stdout

Tells TotalView to redirect the target program’s stderr to stdout.

-stdin pathname

Names the file from which the target program reads information while executing within TotalView.

-stdout pathname

Names the file to which TotalView writes the target program’s stdout information while executing within To-
talView. If the file exists, TotalView overwrites it. If the file does not exist, TotalView creates it.

-stdout_append

Tells TotalView to append the target program’s stdout information to the file named in the -stdout command,
specified in the GUI, or in the TotalView TV::default_stdout_filename variable. If the file does not exist, To-
talView creates it.

-tasks

Specifies how many tasks that TotalView should launch for the job. This argument usually follows a -mpi com-
mand-line option.

-team

Tells TotalView that it should only use a Team license.

-no_team

Tells TotalView that it should not use an Enterprise license. You may combine this with -no_ent or -
noteamplus.

-teamplus

Tells TotalView that it should only use a Team Plus license.

-no_teamplus

Tells TotalView that it should not use a Team PLus license. You may combine this with -no_ent or -
noteam.

-tvhome pathname

The directory from which TotalView reads preferences and other related information and the directory to which
it writes this information.

TotalView Command Syntax / Command-Line Options 350

-use_fast_trap

Controls TotalView’s use of the target operating system’s support of the fast trap mechanism for compiled con-
ditional breakpoints, also known as EVAL points. As of TotalView 8.7, when this was introduced, only AIX sup-
ported the fast trap mechanism for breakpoints, but we anticipate other operating systems adding support. You
must set this option on the command line; you cannot set it interactively using the CLI.

Your operating system may not be configured correctly to support this option. See the TotalView for HPC Release
Notes on our web site for more information.

-use_fast_wp

Controls TotalView’s use of the target operating system’s support of the fast trap mechanism for compiled con-
ditional watchpoints, also known as CDWP points. As of TotalView 8.7, when this was introduced, only AIX sup-
ported the fast trap mechanism for watchpoints, but we anticipate other operating systems adding support. You
must set this option on the command line; you cannot set it interactively using the CLI.

Your operating system may not be configured correctly to support this option. See the TotalView for HPC Release
Notes on our web site for more information.

-user_threads

(Default) Enables handling of user-level (M:N) thread packages on systems where two-level (kernel and user)
thread scheduling is supported. (Note: This option does not apply to -BlueGene/Q systems; instead, see -blue-
gene_q_user_threads.)

-no_user_threads

Disables handling of user-level (M:N) thread packages. This option may be useful in situations where
you need to debug kernel-level threads, but in most cases, this option is of little use on systems
where two-level thread scheduling is used.

-verbosity level

Sets the verbosity level of TotalView messages to level, which may be one of silent, error, warning, or info.

Default: info

-xterm_name pathname

Sets the name of the program used when TotalView needs to create a the CLI. If you do not use this command or
have not set the TV::xterm_name variable, TotalView will attempt to create an xterm window.

TotalView Debugger Server Command Syntax 351

Chapter 8

TotalView Debugger Server
Command Syntax

Overview
This chapter summarizes the syntax of the TotalView Debugger Server command, tvdsvr, which is used for
remote debugging. Remote debugging occurs when you explicitly call for it or when you are using disciplines
like MPI that startup processes on remote servers. For more information on remote debugging, refer to Set-
ting Up Remote Debugging Sessions” in the TotalView for HPC Users Guide.

Topics in this chapter are:

• The tvdsvr Command and Its Options

• Replacement Characters

TotalView Debugger Server Command Syntax / The tvdsvr Command and Its Options 352

The tvdsvr Command and Its Options
tvdsvr {-server | -callback hostname:port | -serial device} [other options]

Description
tvdsvr allows TotalView to control and debug a program on a remote machine. To accomplish this, the tvdsvr
program must run on the remote machine, and it must have access to the executables being debugged. These
executables must have the same absolute path name as the executable that TotalView is debugging, or the PATH
environment variable for tvdsvr must include the directories containing the executables.

You must specify a -server, -callback, or -serial option with the tvdsvr command. By default, TotalView automat-
ically launches tvdsvr using the -callback option, and the server establishes a connection with TotalView.
(Automatically launching the server is called autolaunching.)

If you prefer not to automatically launch the server, you can start tvdsvr manually and specify the -server option.
Be sure to note the password that tvdsvr prints out with the message:

pw = hexnumhigh:hexnumlow

TotalView will prompt you for hexnumhigh:hexnumlow later. By default, tvdsvr automatically generates a password
that it uses when establishing connections. If desired, you can set your own password by using the -set_pw
option.

To connect to the tvdsvr from TotalView, you use the File > New Program Dialog Box and must specify the host
name and TCP/IP port number, hostname:portnumber on which tvdsvr is running. Then, TotalView prompts you for
the password for tvdsvr.

Options
The following options name the port numbers and passwords that TotalView uses to connect with tvdsvr.

-callback hostname:port

(Autolaunch feature only) Immediately establishes a connection with a TotalView process running on hostname
and listening on port, where hostname is either a host name or TCP/IP address. If tvdsvr cannot connect with To-
talView, it exits.

If you use the -port, -search_port, or -server options with this option, tvdsvr ignores them.

-callback_host hostname

Names the host upon which the callback is made. The hostname argument indicates the machine upon which To-
talView is running. This option is most often used with a bulk launch.

TotalView Debugger Server Command Syntax / The tvdsvr Command and Its Options 353

-callback_ports port-list

Names the ports on the host machines that are used for callbacks. The port-list argument contains a comma-
separated list of the host names and TCP/IP port numbers (hostname:port,hostname:port...) on which TotalView is
listening for connections from tvdsvr. This option is most often used with a bulk launch.

For more information, see “Setting Up Remote Debugging Sessions” in the TotalView for HPC Users Guide.

-debug_file console_outputfile

Redirects TotalView Debugger Server console output to a file named console_outputfile.

If console_outputfile is the string UNIQUE, the filename tv_dump.hostname.pid is used. If console_outputfile con-
tains the string '$$' (note the escaping single quotes), hostname.pid is substituted. UNIQUE and '$$' are useful
for separating the console output when running multiple tvdsvr processes.

Default: All console output is written to stderr.

-nodes_allowed num

Explicitly tells tvdsvr how many nodes the server supports and how many licenses it needs. This is only used for
the Cray XT3.

-port number

Sets the TCP/IP port number on which tvdsvr should communicate with TotalView. If this port is busy, tvdsvr
does not select an alternate port number (that is, it won’t communicate with anything) unless you also specify -
search_port.

Default: 4142

-search_port

Searches for an available TCP/IP port number, beginning with the default port (4142) or the port set with the -
port option and continuing until one is found. When the port number is set, tvdsvr displays the chosen port
number with the following message:

port = number

Be sure that you remember this port number, since you will need it when you are connecting to this server from
TotalView.

-serial device[:options]

Waits for a serial line connection from TotalView. For device, specifies the device name of a serial line, such as /
dev/com1. The only option you can specify is the baud rate, which defaults to 38400. For more information on
debugging over a serial line, see “Debugging Over a Serial Line” in the TotalView for HPC Users Guide.

-server

Listens for and accepts network connections on port 4142 (default).

Using -server can be a security problem. Consequently, you must explicitly enable this feature by placing an
empty file named tvdsvr.conf in your /etc directory. This file must be owned by user ID 0 (root). When tvdsvr
encounters this option, it checks if this file exists. This file’s contents are ignored.

TotalView Debugger Server Command Syntax / The tvdsvr Command and Its Options 354

You can use a different port by using one of the following options: -search_port or -port. To stop tvdsvr from
listening and accepting network connections, you must terminate it by pressing Ctrl+C in the terminal window
from which it was started or by using the kill command.

-set_pw hexnumhigh:hexnumlow

Sets the password to the 64-bit number specified by the hexnumhigh and hexnumlow 32-bit numbers. When a
connection is established between tvdsvr and TotalView, the 64-bit password passed by TotalView must match
this password set with this option. tvdsvr displays the selected number in the following message:

pw = hexnumhigh:hexnumlow

We recommend using this option to avoid connections by other users.

If necessary, you can disable password checking by specifying the “-set_pw 0:0” option with the tvdsvr command.
Disabling password checking is dangerous; it allows anyone to connect to your server and start programs, in-
cluding shell commands, using your UID. Therefore, we do not recommend disabling password checking.

-set_pws password-list

Sets 64-bit passwords. TotalView must supply these passwords when tvdsvr establishes the connection with it.
The argument to this command is a comma-separated list of passwords that TotalView automatically generates.
This option is most often used with a bulk launch.

For more information, see Setting Up Remote Debugging Sessions” in the TotalView for HPC Users Guide.

-verbosity level

Sets the verbosity level of TotalView Debugger Server-generated messages to level, which may be one of silent,
error, warning, or info.

Default: info

-working_directory directory

Makes directory the directory to which TotalView connects.

Note that the command assumes that the host machine and the target machine mount identical file systems.
That is, the path name of the directory to which TotalView is connected must be identical on both the host and
target machines.

After performing this operation, the TotalView Debugger Server is started.

TotalView Debugger Server Command Syntax / Replacement Characters 355

Replacement Characters
When placing a tvdsvr command in a Server Launch or Bulk Launch string (see the File > Preferences com-
mand within the online Help for more information), you will need to use special replacement characters. When
your program needs to launch a remote process, TotalView replaces these command characters with what they
represent. Here are the replacement characters:

%A

Expands to the ALPS Application ID (apid), which is a unique identifier for an application started using ALPS
aprun on Cray XT, XE, and XK. The token is used to construct server path references copied onto the compute
nodes' ramdisk under the /var/spool/alps/apid directory by the ALPS Tool Helper library.

%B

Expands to the bin directory where tvdsvr is installed.

%C

Is replaced by the name of the server launch command being used. On most platforms, this is ssh -x. On Sun
SPARC, this command is rsh. If the TVDSVRLAUNCHCMD environment variable exists, TotalView will use its
value instead of its platform-specific value.

%D

Is replaced by the absolute path name of the directory to which TotalView will be connected.

%F

Contains the “tracer configuration flags” that need to be sent to tvdsvr processes. These are system-specific
startup options that the tvdsvr process needs.

%H

Expands to the host name of the machine upon which TotalView is running. (This replacement character is most
often used in bulk server launch commands. However, it can be used in a regular server launch and within a
tvdsvr command contained within a temporary file.)

%I

Expands to the pid of the MPI starter process. For example, it can contain mpirun, aprun, etc. It can also be the
process to which you manually attach. If no pid is available, %I expands to 0.

%J

Expands to the job ID. For MPICH or poe jobs, is the contents of the totalview_jobid variable contained either
in the starter or first process. If that variable does not exist, it is set to zero (“0”). If it is not appropriate for the kind
of job being launched, its value is -1.

%K

Expands to the tvdsvr platform suffix string in situations where a different server must be used. On Blue
Gene/L and Blue Gene/P, the %K expansion includes _bgl, on Blue Gene/Q it includes _bgq, and on Cray XT3
Catamount (RedStorm) it includes _rs.

TotalView Debugger Server Command Syntax / Replacement Characters 356

When MRNet is being used as the debugger infra-structure, _mrnet is appended to the normal %K expansion.
On Cray XT with MRNet enabled the %K token is expanded to _mrnet, while on Blue Gene/L or Blue Gene/P with
MRNet enabled the %K token is expanded to _bgl_mrnet. This convention allows MRNet-specific debugger
servers to be launched only when MRNet is being used as the debugger infrastructure.

%L

If TotalView is launching one process, this is replaced by the host name and TCP/IP port number (hostname:port)
on which TotalView is listening for connections from tvdsvr.

If a bulk launch is being performed, TotalView replaces this with a comma-separated list of the host names and
TCP/IP port numbers (hostname:port,hostname:port...) on which TotalView is listening for connections from tvdsvr.

For more information, see Setting Up Remote Debugging Sessions” in the TotalView for HPC Users Guide.

%M

(Sun) Expands to the command name used for a local server launch.

%N

Is replaced by the number of servers that TotalView will launch. This is only used in a bulk server launch com-
mand.

%P

If TotalView is launching one process, this is replaced by the password that it automatically generated.

If a bulk launch is being performed, TotalView replaces this with a comma-separated list of 64-bit passwords.

%R

Is replaced by the host name of the remote machine specified in the File > New Program command. When
performing a bulk launch, this is replaced by a comma-separated list of the names of the hosts upon which To-
talView will launch tvdsvr processes.

%S

If TotalView is launching one process, it replaces this symbol with the port number on the machine upon which
TotalView is -running.

If a bulk server launch is being performed, TotalView replaces this with a comma-separated list of port numbers.

%t1 and %t2

Is replaced by files that TotalView creates containing information it generates. This is only available in a bulk
launch.

These temporary files have the following structure:

(1) An optional header line containing initialization commands required by your system.

(2) One line for each host being connected to, containing host-specific information.

(3) An optional trailer line containing information needed by your system to terminate the temporary file.

The File > Preferences Bulk Server Page allows you to define templates for the contents of temporary files.
These files may use these replacement characters. The %N, %t1, and %t2 replacement characters can only be
used within header and trailer lines of temporary files. All other characters can be used in header or trailer lines

TotalView Debugger Server Command Syntax / Replacement Characters 357

or within a host line defining the command that initiates a single-process server launch. In header or trailer lines,
they behave as defined for a bulk launch within the host line. Otherwise, they behave as defined for a single-
server launch.

%U

(Sun) Expands to the local socket ID.

%V

Is replaced by the current TotalView verbosity setting.

%Z

Expands to the job ID. For MPICH or poe jobs, is the contents of the totalview_jobid variable contained either
in the starter or first process. If that variable does not exist, it is set to zero (“0”). If it is not appropriate for the kind
of job being launched, its value is -1.

 358

PART III

Platforms and
Operating Systems

The three chapters in this part of the Reference Guide describe information that is unique to the computers,
operating systems, and environments in which TotalView runs.

Chapter 9, “Platforms and Compilers,” on page 359
Here you will find general information on the compilers and runtime environments that TotalView supports.
This chapter also contains commands for starting TotalView and information on linking with the dbfork library.

Chapter 10, “Operating Systems,” on page 370
While how you use TotalView is the same on all operating systems, there are some things you will need to know
that are differ from platform to platform.

Chapter 11, “Architectures,” on page 387
When debugging assembly-level functions, you will need to know how TotalView refers to your machines regis-
ters.

Platforms and Compilers 359

Chapter 9

Platforms and Compilers

Overview
This chapter describes the compilers and parallel runtime environments used on platforms supported by
TotalView. You must refer to the TotalView for HPC Platforms and Systems Requirement Guide for information on
the specific compiler and runtime environments that TotalView supports.

For information on supported operating systems, please refer to Chapter 10, “Operating Systems,” on
page 370.

Topics in this chapter are:

• Compiling with Debugging Symbols

• Using gnu_debuglink Files

• Linking with the dbfork Library

Platforms and Compilers / Compiling with Debugging Symbols 360

Compiling with Debugging Symbols
You need to compile programs with the -g option and possibly other compiler options so that debugging symbols
are included. This section shows the specific compiler commands to use for each compiler that TotalView
supports.

NOTE >> Please refer to the release notes in your TotalView distribution for the latest information
about supported versions of the compilers and parallel runtime environments listed here.

Apple Running Mac OS X
On Mac OS, in all cases use the standard compiler invocation, just being sure to include the -g option.

On Mac OS X, you can create 64-bit applications using GCC 4 by adding the -m64 command-line option.

IBM AIX on RS/6000 Systems
The following table lists the procedures to compile programs on IBM RS/6000 systems running AIX.

Compiler Compiler Command Line

Absoft Fortran 77 f77 -g program

.f f77 -g program.for

Absoft Fortran 90 f90 -g program.f90

GCC C gcc -g program.c

GCC C++ g++ -g program.cxx

GCC Fortran g77 -g program.f

IBM xlc C xlc -g program.c

IBM xlC C++ xlC -g program.cxx

IBM xlf Fortran 77 xlf -g program.f

IBM xlf90 Fortran 90 xlf90 -g program.f90

Compiler Compiler Command Line

GCC C gcc -g program.c

GCC C++ g++ -g program.cxx

IBM xlc C xlc -g program.c

Platforms and Compilers / Compiling with Debugging Symbols 361

You can set up to seven variables when debugging threaded applications. Here’s how you might set six of these
variables within a C shell:
setenv AIXTHREAD_MNRATIO"1:1"
setenv AIXTHREAD_SLPRATIO"1:1"
setenv AIXTHREAD_SCOPE"S"
setenv AIXTHREAD_COND_DEBUG"ON"
setenv AIXTHREAD_MUTEX_DEBUG"ON"
setenv AIXTHREAD_RWLOCK_DEBUG"ON"

The first three variables must be set. Depending upon what you need to examine, you will also need to set one or
more of the “DEBUG” variables.

The seventh variable, AIXTHREAD_DEBUG, should not be set. If it is, you should unset it before running TotalView

NOTE >> Setting these variables can slow down your application’s performance. None of them should
be set when you are running non-debugging versions of your program.

When compiling with KCC, you must specify the -qnofullpath option; KCC is a preprocessor that passes its out-
put to the IBM xlc C compiler. It will discard #line directives necessary for source-level debugging if you do not
use the -qfullpath option. We also recommend that you use the +K0 option and not the -g option.

When compiling with guidef77, the -WG,-cmpo=i option may not be required on all versions because -g can
imply these options.

When compiling Fortran programs with the C preprocessor, pass the -d option to the compiler driver. For exam-
ple: xlf -d - program.F

If you will be moving any program compiled with any of the IBM xl compilers from its creation directory, or you do
not want to set the search directory path during debugging, use the -qfullpath compiler option. For example:
xlf -qfullpath -g -c program.f

IBM xlC C++ xlC -g program.cxx

IBM xlf Fortran 77 xlf -g program.f

IBM xlf90 Fortran 90 xlf90 -g program.f90

Compiler Compiler Command Line

Platforms and Compilers / Compiling with Debugging Symbols 362

IBM Blue Gene
The following table lists the procedures to compile programs on IBM Blue Gene computers.

IBM Power Linux
The following table lists the procedures to compile programs on the IBM Power Linux computer.

Linux Running on an x86 Platform
The following table lists the procedures to compile programs on Linux x86 platforms.

Compiler Compiler Command Line

IBM Visual Age C xlc -g program.c

IBM Visual Age C++ xlC -g program.cxx

IBM Visual Age FORTRAN 77 xlf -g program.f

IBM Visual Age Fortran 90 xlf90 -g program.f90

Compiler Compiler Command Line

Absoft Fortran 77 f77 -g program

.f f77 -g program.for

Absoft Fortran 90 f90 -g program.f90

GCC C gcc -g program.c

GCC C++ g++ -g program.cxx

IBM Visual Age C xlc -g program.c

IBM Visual Age C++ xlC -g program.cxx

IBM Visual Age FORTRAN 77 xlf -g program.f

IBM Visual Age Fortran 90 xlf90 -g program.cc

Compiler Compiler Command Line

Absoft Fortran 77 f77 -g program

.f f77 -g program.for

Absoft Fortran 90 f90 -g program.f90

Absoft Fortran 95 f95 -g program.f95

GCC C gcc -g program.c

Platforms and Compilers / Compiling with Debugging Symbols 363

Linux Running on an x86-64 Platform
The following table lists the procedures to compile programs on Linux x86-64 platforms.

GCC C++ g++ -g program.cxx

G77 g77 -g program.f

Intel C++ Compiler icc -g program.cxx

Intel Fortran Compiler ifc -g program.f

Lahey/Fujitsu Fortran lf95 -g program.f

PGI Fortran 77 pgf77 -g program.f

PGI Fortran 90 pgf90 -g program.f

Compiler Compiler Command Line

Absoft Fortran 77 f77 -g program

.f f77 -g program.for

Absoft Fortran 90 f90 -g program.f90

Absoft Fortran 95 f95 -g program.f95

GCC C gcc -g program.c

GCC C++ g++ -g program.cxx

G77 g77 -g program.f

Intel C++ Compiler icc -g program.cxx

Intel Fortran Compiler ifc -g program.f

Pathscale EKO C pathcc -g program.f

Pathscale EKO C++ pathCC -g program.f

Lahey/Fujitsu Fortran lf95 -g program.f

PGI C++ pcCC -g program.f

PGI Fortran 77 pgf77 -g program.f

PGI Fortran 90 pgf90 -g program.f

Compiler Compiler Command Line

Platforms and Compilers / Compiling with Debugging Symbols 364

Linux Running on an Itanium Platform
The following table lists the procedures to compile programs running on the Intel Itanium platform.

Sun Solaris
The following table lists the procedures to compile programs on SunOS 5 SPARC.

Compiler Compiler Command Line

GCC C gcc -g program.c

GCC C++ g++ -g program.cxx

G77 g77 -g program.f

Intel C++ Compiler icc -g program.cxx

Intel Fortran Compiler ifc -g program.f

Compiler Compiler Command Line

Apogee C apcc -g program.c

Apogee C++ apcc -g program.cxx

GCC C gcc -g program.c

GCC C++ g++ -g program.cxx

Sun One Studio C cc -g program.c

Sun One Studio C++ CC -g program.cxx

Sun One Studio Fortran 77 f77 -g program.f

Sun One Studio Fortran 90 f90 -g program.f90

Platforms and Compilers / Using gnu_debuglink Files 365

Using gnu_debuglink Files
Some versions of Linux allow you to place debugging information in a separate file. These files, which can have
any name, are called gnu_debuglink files. Because this information is stripped from the program’s file, it almost
always greatly reduces the size of your program. In most cases, you would create gnu_debuglink files for system
libraries or other programs for which it is inappropriate to ship versions have debugging information.

After you create an unstripped executable or shared library, you can prepare the gnu_debuglink file as follows:

1. Create a .debug copy of the file. This second file will only contain debugging symbol table information. That
is, it differs from the original in that it does not contain code or data.

Create this file on Linux systems that support the - -add-gnu-debuglink and - -only-keep-debug command-line
options. If objcopy -- -help mentions - -add-gnu-debuglink, you should be able to create this file. See man obj-
copy for more details.

1. Create a stripped copy of the image file, and add a .gnu_debuglink section to the stripped file that con-
tains the name of the .debug file and the checksum of the .debug file.

2. Distribute the stripped image and .debug files separately. The idea is that the stripped image file will nor-
mally take up less space on the disk, and if you want the debug information, you can also install the
corresponding .debug file.

The following example creates the gnu_debuglink file for a program named hello. It also strips the debugging
information from hello:
objcopy --only-keep-debug hello hello.gnu_debuglink.debug
objcopy --strip-all hello hello.gnu_debuglink
objcopy --add-gnu-debuglink=hello.gnu_debuglink.debug \
 hello.gnu_debuglink

Total View Command-Line Options and CLI State Variables
The following command line options and CLI variables control how TotalView handles .gnu_debuglink files.

• -gnu_debuglink and -no_gnu_debuglink, TV::gnu_debuglink

Controls Total View processing of the .gnu_debuglink section in executables and shared libraries; the
default value is true. Setting the variable to false or using the no_ command-line option prefix saves time
when you do not want to process the debug-only files or when you need to avoid other problems associated
with the debug-only files.

• -[no_]gnu_debuglink_checksum and TV::gnu_debuglink_checksum

Platforms and Compilers / Using gnu_debuglink Files 366

Tells TotalView if it should validate the checksum of the debug-only files against the checksum stored in the
.gnu_debuglink section of the executable or shared library; the default is true. Setting the variable to false
or using the no_ command-line option prefix can save time associated with computing the checksum of
large files. Do this only if you are absolutely certain that the debug file matches.

• -gnu_debuglink_global_directory and TV::gnu_debuglink_global_directory

Specifies the global debug directory; the default value is /usr/lib/debug.

Searching for the gnu_debug_link File
If the TV::gnu_debuglink variable is true and if the process contains a .gnu_debug_link section, TotalView
searches for the gnu_debug_link file as follows:

1. In the directory containing the program.

2. In the .debug subdirectory of the directory containing the program.

3. In a directory named in the TV::gnu_debuglink_global_directory variable.

For example, assume that the program’s pathname is /A/B/hello_world and the debug filename stored in the
.gnu_debuglink section of this program is hello_world.debug. If the TV::gnu_debuglink_global_directory vari-
able is set to /usr/lib/debug, TotalView searches for the following files:

1. /A/B/hello_world.debug

2. /A/B/.debug/hello_world.debug

3. /usr/lib/debug/A/B/hello_world.debug

Platforms and Compilers / Linking with the dbfork Library 367

Linking with the dbfork Library
If your program uses the fork() and execve() system calls, and you want to debug the child processes, you need
to link programs with the dbfork library.

NOTE >> While you must link programs that use fork() and execve() with the TotalView dbfork library so
that TotalView can automatically attach to them when your program creates them, programs
that you attach to need not be linked with this library.

dbfork on IBM AIX on RS/6000 Systems
Add either the -ldbfork or -ldbfork_64 argument to the command that you use to link your programs. If you are
compiling 32-bit code, use the following arguments:

• /usr/totalview/lib/libdbfork.a \ -bkeepfile:/usr/totalview/rs6000/lib/libdbfork.a

• -L/usr/totalview/lib \ -ldbfork -bkeepfile:/usr/totalview/rs6000/lib/libdbfork.a

For example:
cc -o program program.c \

-L/usr/totalview/rs6000/lib/ -ldbfork \
 -bkeepfile:/usr/totalview/rs6000/lib/libdbfork.a

If you are compiling 64-bit code, use the following arguments:

• /usr/totalview/lib/libdbfork_64.a \ -bkeepfile:/usr/totalview/rs6000/lib/libdbfork.a

• -L/usr/totalview/lib -ldbfork_64 \ -bkeepfile:/usr/totalviewrs6000//lib/libdbfork.a

For example:
cc -o program program.c \
 -L/usr/totalview/rs6000/lib -ldbfork \

-bkeepfile:/usr/totalview/rs6000/lib/libdbfork.a

When you use gcc or g++, use the -Wl,-bkeepfile option instead of using the -bkeepfile option, which will pass
the same option to the binder. For example:
gcc -o program program.c \

-L/usr/totalview/rs6000/lib -ldbfork -Wl, \
-bkeepfile:/usr/totalview/rs6000/lib/libdbfork.a

Linking C++ Programs with dbfork

You cannot use the -bkeepfile binder option with the IBM xlC C++ compiler. The compiler passes all binder
options to an additional pass called munch, which will not handle the -bkeepfile option.

Platforms and Compilers / Linking with the dbfork Library 368

To work around this problem, we have provided the C++ header file libdbfork.h. You must include this file some-
where in your C++ program. This forces the components of the dbfork library to be kept in your executable. The
file libdbfork.h is included only with the RS/6000 version of TotalView. This means that if you are creating a pro-
gram that will run on more than one platform, you should place the include within an #ifdef statement’s range.
For example:
#ifdef _AIX
#include "/usr/totalview/include/libdbfork.h"
#endif
int main (int argc, char *argv[])
{
}

In this case, you would not use the -bkeepfile option and would instead link your program using one of the fol-
lowing options:

• /usr/totalview/include/libdbfork.a

• -L/usr/totalview/include -ldbfork

Linux or Mac OS X
Add one of the following arguments or command-line options to the command that you use to link your
programs:

• /usr/totalview/platform/lib/libdbfork.a

• -L/usr/totalview/platform/lib -ldbfork or-L/usr/totalview/platform/lib -ldbfork_64 (

where platform is one of the following: darwin-power, linux-x86, linux-x86-64, or linux-ia64.

In general, 32-bit programs use libdbfork.a and 64-bit programs use libdbfork_64.a. Of course, if your architec-
ture doesn’t support 32-bit programs, the option won’t work.

For example:
cc -o program program.c \

-L/usr/totalview/linux-x86/lib -ldbfork

However, linux-ia64 uses libdbfork for 64-bit programs.

SunOS 5 SPARC
Add one of the following command line arguments or options to the command that you use to link your
programs:

• /opt/totalview/sun5/lib/libdbfork.a

• -L/opt/totalview/sun5/lib -ldbfork

Platforms and Compilers / Linking with the dbfork Library 369

For example:
cc -o program program.c \

-L/opt/totalview/sun5/lib -ldbfork

As an alternative, you can set the LD_LIBRARY_PATH environment variable and omit the -L option on the com-
mand line:
setenv LD_LIBRARY_PATH /opt/totalview/sun5/lib

Operating Systems 370

Chapter 10

Operating Systems

Operating Systems

This chapter describes the operating system features that can be used with TotalView. This chapter includes
the following topics:

• Supported Operating Systems

• Troubleshooting Mac OS X Installations

• Mounting the /proc File System (SunOS 5 only)

• Swap Space

• Shared Libraries

• Debugging Your Program’s Dynamically Loaded Libraries

• Remapping Keys (Sun Keyboards only)

• Expression System

Operating Systems / Supported Operating Systems 371

Supported Operating Systems
Here is an overview of operating systems and some of the environments supported by TotalView at the time
when this book was printed. As this book isn’t printed nearly as often as vendors update compilers and operating
systems, the compiler and operating system versions mentioned here may be obsolete. For a definitive list, see
the most recent platform guide on our website. You can download this document at http://www.roguewave.com/
products-services/totalview, and selecting Supported Platforms to download the most recent platform guide.

• Apple Macintosh OS X 10.7, 10.8, and 10.9.

• Cray XT, XE, and XK running the Cray Linux Environment (CLE), version 2.2 or later.

• IBM Blue Gene systems running Linux on the front end nodes.

• IBM RS/6000 and SP systems running AIX versions 5.3L, 6.1, and 7.1.

• Sun x86_64, Solaris 10

• Sun SPARC Solaris 10.

• Linux: see the Platforms Guide.

http://www.roguewave.com/products-services/totalview
http://www.roguewave.com/products-services/totalview

Operating Systems / Troubleshooting Mac OS X Installations 372

Troubleshooting Mac OS X Installations

Problem Description
At TotalView startup, the OS checks whether the Mach system call -task_for_pid() is working properly. If the
call returns an error, no debugging is possible, and TotalView outputs an error message that begins “The Mach
system call -task_for_pid() is not working properly.” TotalView cannot distinguish the circumstances that can lead
to this error, which are varied and depend on the version of OS X. The following sections describe a series of
steps to troubleshoot this problem.

For Mac OS X Versions 10.8 (Mountain Lion) or Later
Requirements:

• The TotalView executables must be codesigned.

• The Mac host's system security policy must have Developer mode enabled.

• TotalView users must be members of the _developer group, and must run TotalView within the
context of a login session that has been validated by a password challenge at the OS X console.

For Mac OS X Versions 10.11 (Capitan) or Later
In the Mac OS X El Capitan release, Apple has added a new layer named System Integrity Protection (SIP) to its
security model. SIP's protections are not limited to protecting the system from file system changes. There are also
system calls that are now restricted in their functionality, which can affect developing and debugging on Mac OS
X. For runtime protection the following restrictions exist:

• task_for_pid() fails with EPERM if called incorrectly, which may cause TotalView to crash

• dyld environment variables are ignore

• DTrace probes are unavailable

However, SIP does not block inspection by the developer of their own applications while they are being devel-
oped. TotalView tools will continue to allow applications to be inspected and debugged during the development
process.

For more information about SIP, please see Apple's developer documentation.

Operating Systems / Troubleshooting Mac OS X Installations 373

Remotely Debugging without Console Access
If you want to debug a remote machine to which you do not have console access, you can try the following
procedure:

1. Install Xquartz and TotalView on the remote machine, and then perform the following steps on that remote
machine:

2. Allow X11 forwarding in the sshd_config file (disabled by default).

3. Make sure every user who might need to debug is in the _developer group.

4. Type: DevToolsSecurity -enable.

5. Type: sudo security authorizationdb write system.privilege.taskport allow.

The last step above is necessary to allow the launching of TotalView when not on the console.

Operating Systems / Mounting the /proc File System 374

Mounting the /proc File System
To debug programs on SunOS 5 with TotalView, you need to mount the /proc file system.

If you receive one of the following errors from TotalView, the /proc file system might not be mounted:

• job_t::launch, creating process: process not found

• Error launching process while trying to read -dynamic symbols

• Creating Process... Process not found Clearing Thrown Flag Operation

Attempted on an unbound process object

To determine whether the /proc file system is mounted, enter the appropriate command from the following
table.

If you receive one of these messages from the mount command, the /proc file system is mounted.

Mounting /proc with SunOS 5
To make sure that the /proc file system is mounted each time your system boots, add the appropriate line from
the following table to the appropriate file.

Then, to mount the /proc file system, enter the following command:
/sbin/mount /proc

Operating
System Command

SunOS 5 % /sbin/mount | grep /proc /proc on /

proc read/write/setuid on ...

Operating
System Name of File Line to add

SunOS 5 /etc/vfstab /proc - /proc proc - no -

Operating Systems / Swap Space 375

Swap Space
Debugging large programs can exhaust the swap space on your machine. If you run out of swap space, TotalView
exits with a fatal error, such as:

• Fatal Error: Out of space trying to allocate

This error indicates that TotalView failed to allocate dynamic memory. It can occur anytime during a debugging
session. It can also indicate that the data size limit in the C shell is too small. You can use the C shell’s limit com-
mand to increase the data size limit. For example:
limit datasize unlimited

• job_t::launch, creating process: Operation failed

This error indicates that the fork() or execve() system call failed while TotalView was creating a process to debug.
It can happen when TotalView tries to create a process.

Swap Space on IBM AIX
To find out how much swap space has been allocated and is currently being used, use the /usr/sbin/pstat -s
command:

To find out how much swap space is in use while you are running TotalView:

1. Start TotalView with a large executable:
totalview executable

Press Ctrl+Z to suspend TotalView.

1. Use the following command to see how much swap space TotalView is using:
ps u

For example, in this case the value in the SZ column is 5476 KB:
USER PID %CPU %MEM SZ RSS TTY ...
smith 15080 0.0 6.0 5476 547 pts/1 ...

To add swap space, use the AIX system management tool, smit. Use the following path through the smit menus:
System Storage Management > Logical Volume Manager >
 Paging Space

Swap Space on Linux
To find out how much swap space has been allocated and is currently being used, use either the swapon or top
commands on Linux:

Operating Systems / Swap Space 376

You can use the mkswap(8) command to create swap space. The swapon(8) command tells Linux that it should
use this space.

Swap Space on SunOS 5
To find out how much swap space has been allocated and is currently being used, use the swap -s command:

To find out how much swap space is in use while you are running TotalView:

1. Start TotalView with a large executable:
totalview executable

Press Ctrl+Z to suspend TotalView.

1. Use the following command to see how much swap space TotalView is using:
/bin/ps -l

To add swap space, use the mkfile(1M) and swap(1M) commands. You must be root to use these commands.
For more information, refer to the online manual pages for these commands.

Operating Systems / Shared Libraries 377

Shared Libraries
TotalView supports dynamically linked executables, that is, executables that are linked with shared libraries.

When you start TotalView with a dynamically linked executable, TotalView loads an additional set of symbols for
the shared libraries, as indicated in the shell from which you started TotalView. To accomplish this, TotalView:

1. Runs a sample process and discards it.

2. Reads information from the process.

3. Reads the symbol table for each library.

When you create a process without starting it, and the process does not include shared libraries, the PC points to
the entry point of the process, usually the start routine. If the process does include shared libraries, TotalView
takes the following actions:

• Runs the dynamic loader (SunOS 5: ld.so, Linux: /lib/ld-linux.so.?).

• Sets the PC to point to the location after the invocation of the dynamic loader but before the
invocation of C++ static constructors or the main() routine.

When you attach to a process that uses shared libraries, TotalView takes the following actions:

• If you attached to the process after the dynamic loader ran, then TotalView loads the dynamic
symbols for the shared library.

• If you attached to the process before it runs the dynamic loader, TotalView allows the process to
run the dynamic loader to completion. Then, TotalView loads the dynamic symbols for the shared
library.

If desired, you can suppress the recording and use of dynamic symbols for shared libraries by starting TotalView
with the -no_dynamic option. Refer to Chapter 7, “TotalView Command Syntax,” on page 337 for details on this
TotalView startup option.

If a shared library has changed since you started a TotalView session, you can use the Group > Rescan Library
command to reload library symbol tables. Be aware that only some systems such as AIX permit you to reload
library information.

Changing Linkage Table Entries and LD_BIND_NOW
If you are executing a dynamically linked program, calls from the executable into a shared library are made using
the Procedure Linkage Table (PLT). Each function in the dynamic library that is called by the main program has an
entry in this table. Normally, the dynamic linker fills the PLT entries with code that calls the dynamic linker. This
means that the first time that your code calls a function in a dynamic library, the runtime environment calls the
dynamic linker. The linker will then modify the entry so that next time this function is called, it will not be involved.

Operating Systems / Shared Libraries 378

This is not the behavior you want or expect when debugging a program because TotalView will do one of the
following:

• Place you within the dynamic linker (which you don't want to see).

• Step over the function.

And, because the entry is altered, everything appears to work fine the next time you step into this function.

You can correct this problem by setting the LD_BIND_NOW environment variable. For example:
setenv LD_BIND_NOW 1

This tells the dynamic linker that it should alter the PLT when the program starts executing rather than doing it
when the program calls the function.

Operating Systems / Debugging Your Program’s Dynamically Loaded Libraries 379

Debugging Your Program’s Dynamically Loaded
Libraries
TotalView automatically reads the symbols of shared libraries that are dynamically loaded into your program at
runtime. These libraries are those loaded using dlopen (or, on IBM AIX, load and loadbind).

TotalView automatically detects these calls, and then loads the symbol table from the newly loaded libraries and
plants any enabled saved breakpoints for these libraries. TotalView then decides whether to ask you about stop-
ping the process to plant breakpoints. You will set these characteristics by using the Dynamic Libraries page in
the File > Preferences Dialog Box.

TotalView decides according to the following rules:

1. If either the Load symbols from dynamic libraries or Ask to stop when loading dynamic libraries pref-
erence is set to false, TotalView does not ask you about stopping.

2. If one or more of the strings in the When the file suffix matches preference list is a suffix of the full library
name (including the path), TotalView asks you about stopping.

3. If one or more of the strings in the When the file path prefix does not match list is a prefix of the full
library name (including the path), TotalView does not ask you about stopping.

Figure 13 – File > Preferences Dialog Box: Dynamic Libraries Page

Operating Systems / Debugging Your Program’s Dynamically Loaded Libraries 380

4. If the newly loaded libraries have any saved breakpoints, TotalView does not ask you about stopping.

5. If none of the rules above apply, TotalView asks you about stopping.

If TotalView does not ask you about stopping the process, the process is continued.

If TotalView decides to ask you about stopping, it displays a dialog box, asking if it should stop the process so you
can set breakpoints. To stop the process, answer Yes.

To allow the process to continue executing, answer No. Stopping the process allows you to insert breakpoints in
the newly loaded shared library.

Do either or both of the following to tell TotalView if it should ask:

• If you can set the -ask_on_dlopen command-line option to true, or you can set the -
no_ask_on_dlopen option to false.

• Unset the Load symbols from dynamic libraries preference.

The following table lists paths where you are not asked if TotalView should stop the process:

The values you enter in the TotalView preference should be space-separated lists of the prefixes and suffixes to
be used.

After starting TotalView, you can change these lists by using the When the file suffix matches and And the file
path prefix does not match preferences.

Figure 14 – Stop Process Question Dialog Box

Platform Value

IBM AIX /lib/ /usr/lib/ /usr/lpp/ /usr/ccs/lib/
/usr/dt/lib/ /tmp/

SUN Solaris 2.x /lib//usr/lib/
/usr/ccs/lib/

Linux x86 /lib/usr/lib

Linux Alpha /lib/usr/lib

Operating Systems / Debugging Your Program’s Dynamically Loaded Libraries 381

dlopen Options for Scalability
When a target process calls dlopen(), a dlopen event is generated in TotalView. Because handling dlopen
events impacts startup time for dynamically linked executables, TotalView provides ways to configure dlopen for
better performance and scalability in HPC computing environments:

• Filtering dlopen events to avoid stopping a process for each event.

• Handling dlopen events in parallel to reduce client/server communication overhead with MRNet
enabled.

Filtering dlopen Events

Two state variables and their related command line options enable you to filter dlopen events to plant break-
points in the dlopened libraries only when the process stops for some other reason.

dlopen event filtering is controlled by the settings on two state variables, TV::dlopen_always_recalculate and
TV::dlopen_recalculate_on_match, and their related command line options dlopen_always_recalculate and
dlopen_recalculate_on_match

Three possible dlopen filtering modes are made possible by these variables: Slow, Medium and Fast.

In Fast mode, the process never stops for a dlopen event, not even "null" dlopen events. Using this option can
result in significant performance gains, but may be impractical for some applications.In Medium mode, some
libraries can be specified to always reevaluate their breakpoints, rather than all or none.

• Slow Mode: Reloads libraries on every dlopen event

Option:
dlopen_always_recalculate==true

Reloads libraries on every dlopen event, retaining TotalView’s traditional breakpoint reevaluation semantics.
This mode is compatible with CUDA and is a good choice when your session has pending breakpoints. How-
ever, this mode does not perform or scale as well as the other modes, because it requires the TotalView cli-
ent to handle every (non-null) dlopen event for every process.

If performance is not the primary concern, or the application or runtime environment does not perform
many dlopen events, then this may be a good choice.

In this mode, when the target stops with a dlopen event, the server reports the event to the client, where
the library list is reloaded and checked to see if any additional breakpoint locations need to be planted in
the newly loaded libraries

• Medium Mode: Reports only libraries that match defined patterns on a dlopen event

Options:
dlopen_always_recalculate==false
dlopen_recalculate_on_match=="glob-list"

Operating Systems / Debugging Your Program’s Dynamically Loaded Libraries 382

A glob-list is a colon-separated list of simple glob patterns used to compare and match the dlopened library.
A simple glob pattern is a string, optionally ending with asterisk character ('*') For example:
dlopen_recalculate_on_match=="libcuda.so*:libmylib1*:libmylib2.so"

This mode strikes a balance between performance and enabling breakpoints to be planted in dlopened
libraries.

In Medium mode, the target process stops on every dlopen event (just as in Slow mode), but the event is
not reported to the client unless one of the newly loaded libraries matches the provided pattern.

This setting requires:

— Adding the names of any dlopened libraries to the TV::dlopen_recalculate_on_match list if
you want breakpoints planted in the library when the library is loaded.

— Adding "libcuda.so*" to the match list if you are debugging CUDA; otherwise TotalView will
miss CUDA kernel launch events.

• Fast Mode: Does not stop for dlopen events

Options:
dlopen_always_recalculate==false
dlopen_recalculate_on_match==""

This mode provides the best performance, disallowing planting breakpoints in dlopened libraries when the
library is loaded. Breakpoints are planted in the dlopened libraries only when the process stops for some
other reason; however, be aware with this option that an application may have executed past the point at
which you want to start debugging inside the dlopened library.

Because the debugger does not plant the dlopen breakpoint in the process, the process never stops for a
dlopen event, not even "null" dlopen events. While this mode may be impractical for some applications, the
performance gains are significant.

Table 4 summarizes the pros and cons of each mode.

Table 4: dlopen Event Filtering Modes

Mode/
Speed Option

Slow dlopen_always_recalculate==true

Pros:

• Retains TotalView’s traditional breakpoint
reevaluation semantics.

• Works best with pending breakpoints.

• Compatible with CUDA.

Cons:

• Does not perform or scale as well as
the other modes because the TotalView
client handles every (non-null) dlopen
event for every process.

Medium dlopen_always_recalculate==false

dlopen_recalculate_on_match=="glob-list"

Operating Systems / Debugging Your Program’s Dynamically Loaded Libraries 383

Handling dlopen Events in Parallel

TotalView’s default behavior is to handle dlopened libraries serially, creating multiple, single-cast client-server
communications. This can degrade performance, depending on the number of libraries a process dlopens, and
the number of processes in the job.

To handle dlopened libraries in parallel, use the TV::dlopen_read_libraries_in_parallel and its related command
line option -dlopen_read_libraries_in_parallel.

This sets the state variable to true. Placing this dset command in the tvdrc file ensures that all instances of
TotalView launch with this option:
dset TV::dlopen_read_libraries_in_parallel true

To set this option on an individual instance of TotalView, use the command line option when you start TotalView:
totalview -dlopen_read_libraries_in_parallel

Pros:

• Performs better by filtering out dlopen
events.

• Allows the TotalView client to process
multiple dlopen events at a time.

• Compatible with CUDA.

Cons:

• Process stops at the dlopen
breakpoint, even for "null" dlopen
events.

• An application may execute past the
point at which you want to start
debugging inside the dlopened library.

• Requires adding to the match list any
libraries that should have breakpoints
planted when the library is loaded.

• Requires adding to the match list
libcuda.so* for CUDA support.

Fast dlopen_always_recalculate==false

dlopen_recalculate_on_match==""

Pros:

• Performs best by never stopping the
process at dlopen events.

• Allows the TotalView client to process
multiple dlopen events at a time.

Cons:

• Breakpoints cannot be calculated when
a particular library is loaded.

• Breaks CUDA support.

Table 4: dlopen Event Filtering Modes

Mode/
Speed Option

Operating Systems / Debugging Your Program’s Dynamically Loaded Libraries 384

NOTE >> Enabling this option does not guarantee that dlopen performance will improve on all systems
in all scenarios. Be sure to test the impact of this setting on your system and debugging envi-
ronments.

Remember that MRNet must also be enabled for this to work.

Known Limitations
Dynamic library support has the following known limitations:

• TotalView does not deal correctly with parallel programs that call dlopen on different libraries in
different processes. TotalView requires that the processes have a uniform address space, including
all shared libraries.

• TotalView does not yet fully support unloading libraries (using dlclose) and then reloading them at
a different address using dlopen.

Operating Systems / Remapping Keys 385

Remapping Keys
On the SunOS 5 keyboard, you may need to remap the page-up and page-down keys to the prior and next key-
sym so that you can scroll TotalView windows with the page-up and page-down keys. To do so, add the following
lines to your X Window System startup file:
Remap F29/F35 to PgUp/PgDn
xmodmap -e 'keysym F29 = Prior'
xmodmap -e 'keysym F35 = Next'

Operating Systems / Expression System 386

Expression System
Depending on the target platform, TotalView supports:

• An interpreted expression system only

• Both an interpreted and a compiled expression system

Unless stated otherwise below, TotalView supports interpreted expressions only.

Expression System on IBM AIX-Power and Blue Gene/Q
On IBM AIX and Blue Gene/Q, TotalView supports compiled and interpreted expressions. TotalView also supports
assembly language in expressions.

Some program functions called from the TotalView expression system on the Power architecture cannot have
floating-point arguments that are passed by value. However, in functions with a variable number of arguments,
floating-point arguments can be in the varying part of the argument list. For example, you can include floating-
point arguments with calls to printf:
double d = 3.14159;
printf("d = %f\n", d);

On Blue Gene/Q, currently TotalView supports only statically allocated patch spaces linked into the base execut-
able. The executable may be statically or dynamically linked. The static patch space must not reside in a shared
library. See Allocating Static Patch Space in the TotalView for HPC User Guide.

Architectures 387

Chapter 11

Architectures

Overview
This chapter describes the architectures TotalView supports, including:

• “AMD and Intel x86-64” on page 388

• “Power Architectures” on page 393

• “Intel IA-64” on page 400

• “Intel x86” on page 406 (Intel 80386, 80486 and Pentium processors)

• “Sun SPARC” on page 411

Architectures / AMD and Intel x86-64 388

AMD and Intel x86-64
This section describes AMD's 64-bit processors and the Intel EM64T processors, including:

• “x86-64 General Registers” on page 388

• “x86-64 Floating-Point Registers” on page 389

• “x86-64 FPCR Register” on page 390

• “x86-64 FPSR Register” on page 391

• “x86-64 MXCSR Register” on page 392

The x86-64 can be programmed in either 32- or 64-bit mode. TotalView supports both. In 32-bit mode, the pro-
cessor is identical to an x86, and the stack frame is identical to the x86. The information within this section
describes 64-bit mode.

The AMD x86-64 processor supports the IEEE floating-point format.

x86-64 General Registers
TotalView displays the x86-64 general registers in the Stack Frame Pane of the Process Window. The following
table describes how TotalView treats each general register, and the actions you can take with each register.

Register Description Data Type Edit Dive
Specify in
Expression

RAX General registers $long yes yes $rax

RDX $long yes yes $rdx

RCX $long yes yes $rcx

RBX $long yes yes $rbx

RSI $long yes yes $rsi

RDI $long yes yes $rdi

RBP $long yes yes $rbp

RSP $long yes yes $rsp

R8-R15 $long yes yes $r8-$r15

RA Selector registers $int no no $ra

SS $int no no $ss

DS $int no no $ds

Architectures / AMD and Intel x86-64 389

x86-64 Floating-Point Registers
TotalView displays the x86-64 floating-point registers in the Stack Frame Pane of the Process Window. The next
table describes how TotalView treats each floating-point register, and the actions you can take with each register.

ES $int no no $es

FS $int no no $fs

GS $int no no $gs

EFLAGS $int no no $eflags

RIP Instruction pointer $code[] no yes $rip

FS_BASE $long yes yes $fs_base

GS_BASE $long yes yes $gs_base

TEMP $long no no $temp

Register Description Data Type Edit Dive
Specify in
Expression

ST0 ST(0) $extended yes yes $st0

ST1 ST(1) $extended yes yes $st1

ST2 ST(2) $extended yes yes $st2

ST3 ST(3) $extended yes yes $st3

ST4 ST(4) $extended yes yes $st4

ST5 ST(5) $extended yes yes $st5

ST6 ST(6) $extended yes yes $st6

ST7 ST(7) $extended yes yes $st7

FPCR Floating-point control
register

$int yes no $fpcr

FPSR Floating-point status
register

$int no no $fpsr

FPTAG Tag word $int no no $fptag

FPOP Floating-point
operation

$int no no $fpop

FPI Instruction address $int no no $fpi

FPD Data address $int no no $fpd

Register Description Data Type Edit Dive
Specify in
Expression

Architectures / AMD and Intel x86-64 390

NOTE >> The x86-64 has 16 128-bit registers that are used by SSE and SSE2 instructions. TotalView dis-
plays these as 32 64-bit registers. These registers can be used in the following ways: 16 bytes,
8 words, 2 longs, 4 floating point, 2 double, or a single 128-bit value. TotalView shows each of
these hardware registers as two $long registers. To change the type, dive and then edit the
type in the data window to be an array of the type you wish. For example, cast it to
“$char[16]”, “$float[4], and so on.

x86-64 FPCR Register
For your convenience, TotalView interprets the bit settings of the FPCR and FPSR registers.

You can edit the value of the FPCR and set it to any of the bit settings outlined in the next table.

MXCSR SSE status and control $int yes no $mxcsr

MXCS-
R_MASK

MXCSR mask $int no no $mxcsr_
mask

XMM0_L
...

XMM7_L

Streaming SIMD -
Extension: left half

$long yes yes $xmm0_l ...
$xmm7_l

XMM0_H
...

XMM7_H

Streaming SIMD -
Extension: right half

$long yes yes $xmm0_h ...
$xmm7_h

XMM8_L
...

XMM15_
L

Streaming SIMD -
Extension: left half

$long yes yes $xmm8_l ...
$xmm15_l

XMM8_H
...

XMM15_
H

Streaming SIMD -
Extension: right half

$long yes yes $xmm8_h ...
$xmm15_h

Value Bit Setting Meaning

RC=RN 0x0000 To nearest rounding mode

RC=R- 0x2000 Toward negative infinity rounding mode

RC=R+ 0x4000 Toward positive infinity rounding mode

RC=RZ 0x6000 Toward zero rounding mode

Register Description Data Type Edit Dive
Specify in
Expression

Architectures / AMD and Intel x86-64 391

Using the x86-64 FPCR Register

You can change the value of the FPCR within TotalView to customize the exception handling for your program.

For example, if your program inadvertently divides by zero, you can edit the bit setting of the FPCR register in the
Stack Frame Pane. In this case, you would change the bit setting for the FPCR to include 0x0004 so that TotalView
traps the “divide-by-zero” bit. The string displayed next to the FPCR register should now include EM=(ZM). Now,
when your program divides by zero, it receives a SIGFPE signal, which you can catch with TotalView. See “Handling
Signals” in Chapter 5 of the TotalView for HPC Users Guide for information on handling signals. If you did not set the
bit for trapping divide by zero, the processor would ignore the error and set the EF=(ZE) bit in the FPSR.

x86-64 FPSR Register
The bit settings of the x86-64 FPSR register are outlined in the following table.

PC=SGL 0x0000 Single-precision rounding

PC=DBL 0x0080 Double-precision rounding

PC=EXT 0x00c0 Extended-precision rounding

EM=PM 0x0020 Precision exception enable

EM=UM 0x0010 Underflow exception enable

EM=OM 0x0008 Overflow exception enable

EM=ZM 0x0004 Zero-divide exception enable

EM=DM 0x0002 Denormalized operand exception enable

EM=IM 0x0001 Invalid operation exception enable

Value Bit Setting Meaning

TOP=<i> 0x3800 Register <i> is top of FPU stack

B 0x8000 FPU busy

C0 0x0100 Condition bit 0

C1 0x0200 Condition bit 1

C2 0x0400 Condition bit 2

C3 0x4000 Condition bit 3

ES 0x0080 Exception summary status

SF 0x0040 Stack fault

EF=PE 0x0020 Precision exception

EF=UE 0x0010 Underflow exception

Value Bit Setting Meaning

Architectures / AMD and Intel x86-64 392

x86-64 MXCSR Register
This register contains control and status information for the SSE registers. Some of the bits in this register are
editable. You cannot dive in these values.

The bit settings of the x86-64 MXCSR register are outlined in the following table.

EF=OE 0x0008 Overflow exception

EF=ZE 0x0004 Zero divide exception

EF=DE 0x0002 Denormalized operand exception

EF=IE 0x0001 Invalid operation exception

Value Bit Setting Meaning

FZ 0x8000 Flush to zero

RC=RN 0x0000 To nearest rounding mode

RC=R- 0x2000 Toward negative infinity rounding mode

RC=R+ 0x4000 Toward positive infinity rounding mode

RC=RZ 0x6000 Toward zero rounding mode

EM=PM 0x1000 Precision mask

EM=UM 0x0800 Underflow mask

EM=OM 0x0400 Overflow mask

EM=ZM 0x0200 Divide-by-zero mask

EM=DM 0x0100 Denormal mask

EM=IM 0x0080 Invalid operation mask

DAZ 0x0040 Denormals are zeros

EF=PE 0x0020 Precision flag

EF=UE 0x0010 Underflow flag

EF=OE 0x0008 Overflow flag

EF=ZE 0x0004 Divide-by-zero flag

EF=DE 0x0002 Denormal flag

EF=IE 0x0001 Invalid operation flag

Value Bit Setting Meaning

Architectures / Power Architectures 393

Power Architectures
This section contains the following information:

• Power General Registers

• Blue Gene Power Registers

• Power MSR Register

• Power Floating-Point Registers

• Blue Gene/Q QPX Floating-Point Registers

• Power FPSCR Register

• Using the Power FPSCR Register

NOTE >> The Power architecture supports the IEEE floating-point format.

Power General Registers
TotalView displays Power general registers in the Stack Frame Pane of the Process Window. The following table
describes how TotalView treats each general register, and the actions you can take with each register.

Register Description Data Type Edit Dive
Specify in
Expression

R0 General register 0 $int/$long yes yes $r0

SP Stack pointer $int/$long yes yes $sp

RTOC TOC pointer $int/$long yes yes $rtoc

R3 - R31 General registers 3 - 31 $int/$long yes yes $r3 - $r31

INUM $int/$long yes no $inum

PC Program counter $code[] no yes $pc

SRR1 Machine status save/
restore register

$int/$long yes no $srr1

LR Link register $code[] yes no $lr

CTR Counter register $int/$long yes no $ctr

CR Condition register (see
below)

$int/$long yes no $cr

Architectures / Power Architectures 394

CR Register

TotalView writes information for each of the eight condition sets, appending a a >, <, or = symbol. For example, if
the summary overflow (0x1) bit is set, TotalView might display the following:

0x22424444 (574768196) (0=,1=,2>,3=,4>,5>,6>,7>)

XER Register

Depending upon what was set, TotalView can display up to five kinds of information, as follows:

STD:0x%02x

The string terminator character (bits 25-31)

SL:%d

The string length field (bits 16-23)

S0

Displayed if the summary overflow bit is set (bit 0)

OV

Displayed if the overflow bit is set (bit 1)

CA

Displayed if the carry bit is set (bit 2)

For example:

XER Integer exception regis-
ter (see below)

$int/$long yes no $xer

DAR Data address register $int/$long yes no $dar

MQ MQ register $int/$long yes no $mq

MSR Machine state register $int/$long yes no $msr

SEG0 - SEG9 Segment registers 0 - 9 $int/$long yes no $seg0 - $seg9

SG10 - SG15 Segment registers 10 -
15

$int/$long yes no $sg10 - $sg15

SCNT SS_COUNT $int/$long yes no $scnt

SAD1 SS_ADDR 1 $int/$long yes no $sad1

SAD2 SS_ADDR 2 $int/$long yes no $sad2

SCD1 SS_CODE 1 $int/$long yes no $scd1

SCD2 SS_CODE 2 $int/$long yes no $scd2

TID $int/$long yes no

Register Description Data Type Edit Dive
Specify in
Expression

Architectures / Power Architectures 395

0x20000002 (536870914) (STD:0x00,SL:2,CA)

Blue Gene Power Registers
TotalView displays Blue Gene Power registers in the Stack Frame Pane of the Process Window. The following table
describes how TotalView treats each Blue Gene register, and the actions you can take with each register.

Register Description Data Type Edit Dive
Specify in
Expression

R0 General register 0 $int/$long yes yes $r0

SP Stack pointer $int/$long yes yes $sp

RTOC TOC pointer $int/$long yes yes $rtoc

R3 - R31 General registers 3 - 31 $int/$long yes yes $r3 - $r31

LR Link register $code[] yes no $lr

CR Condition register (see
below)

$int/$long yes no $cr

XER Integer exception regis-
ter (see below)

$int/$long yes no $xer

CTR Counter register $int/$long yes no $ctr

IAR Program counter $code[] no yes $pc

MSR Machine state register $int/$long yes no $msr

DEAR Data address register $int/$long yes no $dar

ESR Exception status
register

$int/$long no no $esr

Architectures / Power Architectures 396

Blue Gene/Q QPX Floating-Point Registers
TotalView displays the Blue Gene/Q Quad Processing eXtension to the Power ISA (QPX) registers in the Stack
Frame Pane of the Process Window. The architecture provides for 32 256-bit registers that can be used as four
doubles, eight floats, four 64-bit integers, or eight 32-bit integers. The next table describes how TotalView treats
each floating-point register, and the actions you can take with each register.

The data type $qpx_reg is a TotalView predefined type that is defined as follows:
 union $qpx_reg {
 $double q4_double[4];
 $float q8_float[8];
 $int64 q4_int64[4];
 $int32 q8_int32[8];
 };

The traditional Book 1 Power PC floating point instructions that operate on the FPR register set operate on slot 0
of the corresponding QPX register. Therefore, the Stack Frame Pane of the Process Window shows the double
contained in slot 0 (the q4_double[0] field of the $qpx_reg data type) for each QPX register. Dive on a QPX
register to open a Data Pane displaying the full contents of the register.

Power MSR Register
For your convenience, TotalView interprets the bit settings of the Power MSR register. You can edit the value of
the MSR and set it to any of the bit settings outlined in the following table.

Register Description Data Type Edit Dive
Specify in
Expression

F0 - F31 QPX floating-point reg-
isters 0 - 31

$qpx_req yes yes $q0 - $q31

FPSCR Floating-point status
register

$long yes no $fpscr

Value Bit Setting Meaning

0x80000000000000000 SF Sixty-four bit mode

0x0000000000040000 POW Power management enable

0x0000000000020000 TGPR Temporary GPR mapping

0x0000000000010000 ILE Exception little-endian mode

0x0000000000008000 EE External interrupt enable

0x0000000000004000 PR Privilege level

0x0000000000002000 FP Floating-point available

0x0000000000001000 ME Machine check enable

Architectures / Power Architectures 397

Power Floating-Point Registers
TotalView displays the Power floating-point registers in the Stack Frame Pane of the Process Window. The next
table describes how TotalView treats each floating-point register, and the actions you can take with each register.

Power FPSCR Register
For your convenience, TotalView interprets the bit settings of the Power FPSCR register. You can edit the value of
the FPSCR and set it to any of the bit settings outlined in the following table.

0x0000000000000800 FE0 Floating-point exception mode 0

0x0000000000000400 SE Single-step trace enable

0x0000000000000200 BE Branch trace enable

0x0000000000000100 FE1 Floating-point exception mode 1

0x0000000000000040 IP Exception prefix

0x0000000000000020 IR Instruction address translation

0x0000000000000010 DR Data address translation

0x0000000000000002 RI Recoverable exception

0x0000000000000001 LE Little-endian mode enable

Register Description Data Type Edit Dive
Specify in
Expression

F0 - F31 Floating-point registers
0 - 31

$double yes yes $f0 - $f31

FPSCR Floating-point status
register

$int yes no $fpscr

FPSCR2 Floating-point status
register 2

$int yes no $fpscr2

Value Bit Setting Meaning

0x80000000 FX Floating-point exception summary

0x40000000 FEX Floating-point enabled exception summary

0x20000000 VX Floating-point invalid operation exception summary

0x10000000 OX Floating-point overflow exception

0x08000000 UX Floating-point underflow exception

Value Bit Setting Meaning

Architectures / Power Architectures 398

0x04000000 ZX Floating-point zero divide exception

0x02000000 XX Floating-point inexact exception

0x01000000 VXSNAN Floating-point invalid operation exception for SNaN

0x00800000 VXISI Floating-point invalid operation exception: ¥ - ¥, or
infinity-infinity

0x00400000 VXIDI Floating-point invalid operation exception: ¥ / ¥, or infinity
divided by infinity

0x00200000 VXZDZ Floating-point invalid operation exception: 0 / 0

0x00100000 VXIMZ Floating-point invalid operation exception: ¥ * ¥, or infinity
times infinity

0x00080000 VXVC Floating-point invalid operation exception: invalid compare

0x00040000 FR Floating-point fraction rounded

0x00020000 FI Floating-point fraction inexact

0x00010000 FPRF=(C) Floating-point result class descriptor

0x00008000 FPRF=(L) Floating-point less than or negative

0x00004000 FPRF=(G) Floating-point greater than or positive

0x00002000 FPRF=(E) Floating-point equal or zero

0x00001000 FPRF=(U) Floating-point unordered or NaN

0x00011000 FPRF=(QNAN) Quiet NaN; alias for FPRF=(C+U)

0x00009000 FPRF=(-INF) -Infinity; alias for FPRF=(L+U)

0x00008000 FPRF=(-NORM) -Normalized number; alias for FPRF=(L)

0x00018000 FPRF=(-DENORM) -Denormalized number; alias for FPRF=(C+L)

0x00012000 FPRF=(-ZERO) -Zero; alias for FPRF=(C+E)

0x00002000 FPRF=(+ZERO) +Zero; alias for FPRF=(E)

0x00014000 FPRF=(+DENORM) +Denormalized number; alias for FPRF=(C+G)

0x00004000 FPRF=(+NORM) +Normalized number; alias for FPRF=(G)

0x00005000 FPRF=(+INF) +Infinity; alias for FPRF=(G+U)

0x00000400 VXSOFT Floating-point invalid operation exception: software request

0x00000200 VXSQRT Floating-point invalid operation exception: square root

0x00000100 VXCVI Floating-point invalid operation exception: invalid integer
convert

0x00000080 VE Floating-point invalid operation exception enable

Value Bit Setting Meaning

Architectures / Power Architectures 399

Using the Power FPSCR Register

On AIX, if you compile your program to catch floating-point exceptions (IBM compiler -qflttrap option), you can
change the value of the FPSCR within TotalView to customize the exception handling for your program.

For example, if your program inadvertently divides by zero, you can edit the bit setting of the FPSCR register in the
Stack Frame Pane. In this case, you would change the bit setting for the FPSCR to include 0x10 so that TotalView
traps the “divide by zero” exception. The string displayed next to the FPSR register should now include ZE. Now,
when your program divides by zero, it receives a SIGTRAP signal, which will be caught by TotalView. See “Handling
Signals” in Chapter 5 of the TotalView for HPC Users Guide for more information. If you did not set the bit for trap-
ping divide by zero or you did not compile to catch floating-point exceptions, your program would not stop and
the processor would set the ZX bit.

0x00000040 OE Floating-point overflow exception enable

0x00000020 UE Floating-point underflow exception enable

0x00000010 ZE Floating-point zero divide exception enable

0x00000008 XE Floating-point inexact exception enable

0x00000004 NI Floating-point non-IEEE mode enable

0x00000000 RN=NEAR Round to nearest

0x00000001 RN=ZERO Round toward zero

0x00000002 RN=PINF Round toward +infinity

0x00000003 RN=NINF Round toward -infinity

Value Bit Setting Meaning

Architectures / Intel IA-64 400

Intel IA-64
This section contains the following information:

• Intel IA-64 General Registers

• “IA-64 Processor Status Register Fields (PSR)” on page 401

• “Current Frame Marker Register Fields (CFM)” on page 402

• “Register Stack Configuration Register Fields (RSC)” on page 403

• “Previous Function State Register Fields (PFS)” on page 403

• “Floating Point Registers” on page 404

• “Floating Point Status Register Fields” on page 404

The Cray XT3 front end runs on this chip.

Intel IA-64 General Registers
TotalView displays the IA-64 general registers in the Stack Frame Pane of the Process Window. The following table
describes how TotalView treats each general register, and the actions you can take with each.

NOTE >> The descriptions in this section are taken (almost verbatim) from the “Intel Itanium Architec-
ture Software Developer’s Manual. Volume 1: Application Architecture”. This was revision 2.0,
printed in December 2001.

Register Description Data Type Edit Dive in expression

r0 register 0 $long N Y $r0

r1 global pointer $long N Y $r1

r2-r31 static general registers $long Y Y $r2-$r31

r31-r127 stacked general registers (all may not be
valid)

$long Y Y $r32-$r127

b0-b7 branch registers $code[] Y Y $b0-$b7

ip instruction pointer $code[] N Y $ip

cfm current frame marker $long Y Y $cfm

psr processor status register $long Y Y $psr

rsc register stack configuration register (AR 16) $long Y Y $rsc

Architectures / Intel IA-64 401

NOTE >> All general registers r32-r127 may not be valid in a given stack frame.

IA-64 Processor Status Register Fields (PSR)
These fields control memory access alignment, byte-ordering, and user-configured performance monitors. It also
records the modification state of floating-point registers.

bsp rse backing store pointer (AR 17) $long Y Y $bsp

bspstore rse backing store pointer for memory stores
(AR 18)

$long N Y $bspstore

rnat rse NAT collection register (AR 19) $long Y Y $rnat

ccv compare and exchange value register (AR 32) $long Y Y $ccv

unat user NAT collection register (AR 36) $long Y Y $unat

fpsr floating point status register (AR 40) $long Y Y $fpsr

pfs previous function state (AR 64) $long Y Y $pfs

lc loop count register (AR 65) $long Y Y $lc

ec epilog count register (AR 66) $long Y Y $ec

pr predication registers (packed) $long Y Y $pr

nat nat registers (packed) $long Y Y $nat

Bit Field Meaning

1 be big-endian enable

2 up user performance monitor enable

3 ac alignment check

4 mfl lower (f2-f31) floating point registers written

5 mfh upper (f32-f127) floating point registers written

13 ic interruption collection

14 i interrupt bit

15 pk protection key enable

17 dt data address translation

18 dfl disabled lower floating point register set

19 dfh disabled upper floating point register set

Register Description Data Type Edit Dive in expression

Architectures / Intel IA-64 402

Current Frame Marker Register Fields (CFM)
Each general register stack frame is associated with a frame marker. The frame maker describes the state of the
general register stack. The Current Frame Marker (CFM) holds the state of the current stack frame.

20 sp secure performance monitors

21 pp privileged performance monitor enable

22 di disable instruction set transition

23 si secure interval timer

24 db debug breakpoint fault

25 lp lower privilege transfer trap

26 tb taken branch trap

27 rt register stack translation

33:32 cpl current privilege level

34 is instruction set

35 mc machine check abort mask

36 it instruction address translation

37 id instruction debug fault disable

38 da disable data access and dirty-bit faults

39 dd data debug fault disable

40 ss single step enable

42:41 ri restart instruction

43 ed exception deferral

44 bn register bank

45 ia disable instruction access-bit faults

Bit Range Field Meaning

6:0 sof Size of frame

13:7 sol Size of locals portion of stack frame

17:14 sor Size of rotating portion of stack frame (number of
rotating registers is sor*8

24:18 rrb.gr Register rename base for general registers

Bit Field Meaning

Architectures / Intel IA-64 403

Register Stack Configuration Register Fields (RSC)
The Register Stack Configuration (RSC) Register is a 64-bit register used to control the operation of the Register
Stack Engine (RSE).

Previous Function State Register Fields (PFS)
The Previous Function State register (PFS) contains multiple fields: Previous Frame Marker (pfm), Previous Epilog
Count (pec), and Previous Privilege Level (ppl). These values are copied automatically on a call from the CFM reg-
ister, Epilog Count Register (EC), and PSR.cpl (Current Privilege Level in the Processor Status Register) to
accelerate procedure calling.

31:25 rrb.fr Register rename base for float registers

37:32 rrb.pr Register rename base for predicate registers

Bit Range Field Meaning

1:0 00 mode enforced lazy

1:0 01 load intensive

1:0 10 store intensive

1:0 11 eager

3:2 pl RSE privilege level

4 be RSE endian mode (0=little endian, 1=big
endian)

29:16 loadrs RSE load distance to tear point

Value Bit Setting Meaning

 37:0 pfm previous frame marker

 57:52 pec previous epilog count

 63:62 ppl previous privilege level

Bit Range Field Meaning

Architectures / Intel IA-64 404

Floating Point Registers
The IA-64 contains 128 floating-point registers. The first two are read only.

Floating Point Status Register Fields
The Floating-Point Status Register (FPSR) contains the dynamic control and status information for floating-point
operations. There is one main set of control and status information and three alternate sets.

Here is a description of the FPSR status field descriptions.

Register Description Data Type Edit Dive
Specify in
Expression

f0 float register 0 $long N Y $f0

f1 float register 1 $long N Y $f1

f2-f31 lower float registers $long Y Y $f2-$f31

f32-f127 upper float registers $long Y Y $f32-$f127

Field Bits Meaning

traps.vd 0 Invalid Operation Floating-Point Exception fault
disabled

traps.dd 1 Denormal/Unnormal Operating Floating-Point Excep-
tion fault disabled

traps.zd 2 Zero Divide Floating-Point Exception trap disabled

traps.od 3 Overflow Floating-Point Exception trap disabled

traps.ud 4 Underflow Floating-Point Exception trap disabled

traps.id 5 Inexact Floating-Point Exception trap disabled

sfo 18:6 main status field

sf1 31:19 alternate status field 1

sf2 44:32 alternate status field 2

sf3 57:45 alternate status field 3

Bits Field meaning

0 ftz flush-to-zero mode

1 wre widest range exponent

3:2 pc precision control

5:4 rc rounding control

Architectures / Intel IA-64 405

6 td traps disabled

7 v invalid operation

8 d denormal/unnormal operand

9 z zero divide

10 o overflow

11 u underflow

12 i inexact

Bits Field meaning

Architectures / Intel x86 406

Intel x86
This section contains the following information:

• “Intel x86 General Registers” on page 406

• “Intel x86 Floating-Point Registers” on page 407

• “Intel x86 FPCR Register” on page 408

• “Intel x86 FPSR Register” on page 409

• “Intel x86 MXCSR Register” on page 409

NOTE >> The Intel x86 processor supports the IEEE floating-point format.

Intel x86 General Registers
TotalView displays the Intel x86 general registers in the Stack Frame Pane of the Process Window. The following
table describes how TotalView treats each general register, and the actions you can take with each register.

Register Description Data Type Edit Dive
Specify in
Expression

EAX General registers $long yes yes $eax

ECX $long yes yes $ecx

EDX $long yes yes $edx

EBX $long yes yes $ebx

EBP $long yes yes $ebp

ESP $long yes yes $esp

ESI $long yes yes $esi

EDI $long yes yes $edi

CS Selector registers $int no no $cs

SS $int no no $ss

DS $int no no $ds

ES $int no no $es

FS $int no no $fs

GS $int no no $gs

EFLAGS $int no no $eflags

Architectures / Intel x86 407

Intel x86 Floating-Point Registers
TotalView displays the x86 floating-point registers in the Stack Frame Pane of the Process Window. The next table
describes how TotalView treats each floating-point register, and the actions you can take with each register.

EIP Instruction pointer $code[] no yes $eip

FAULT $long no no $fault

TEMP $long no no $temp

INUM $long no no $inum

ECODE $long no no $ecode

Register Description Data Type Edit Dive
Specify in
Expression

ST0 ST(0) $extended yes yes $st0

ST1 ST(1) $extended yes yes $st1

ST2 ST(2) $extended yes yes $st2

ST3 ST(3) $extended yes yes $st3

ST4 ST(4) $extended yes yes $st4

ST5 ST(5) $extended yes yes $st5

ST6 ST(6) $extended yes yes $st6

ST7 ST(7) $extended yes yes $st7

FPCR Floating-point control
register

$int yes no $fpcr

FPSR Floating-point status
register

$int no no $fpsr

FPTAG Tag word $int no no $fptag

FPIOFF Instruction offset $int no no $fpioff

FPISEL Instruction selector $int no no $fpisel

FPDOFF Data offset $int no no $fpdoff

FPDSEL Data selector $int no no $fpdsel

MXCSR SSE status and control $int yes no $mxcsv

MXCS-
R_MASK

MXCSR mask $int no no $mxcsr_
mask

Register Description Data Type Edit Dive
Specify in
Expression

Architectures / Intel x86 408

NOTE >> The Pentium III and 4 have 8 128-bit registers that are used by SSE and SSE2 instructions.
TotalView displays these as 16 64-bit registers. These registers can be used in the following
ways: 16 bytes, 8 words, 2 long longs, 4 floating point, 2 double, or a single 128-bit value.
TotalView shows each of these hardware registers as two $long long registers. To change the
type, dive and then edit the type in the data window to be an array of the type you wish. For
example, cast it to “$char[16]”, “$float[4], and so on.

Intel x86 FPCR Register
For your convenience, TotalView interprets the bit settings of the FPCR and FPSR registers.

You can edit the value of the FPCR and set it to any of the bit settings outlined in the next table.

XMM0_L
...

XMM7_L

Streaming SIMD -Exten-
sion: left half

$long long yes yes $xmm0_l ...
$xmm7_l

XMM0_H
...

XMM7_H

Streaming SIMD -Exten-
sion: right half

$long long yes yes $xmm0_h
...

$xmm7_h

Value Bit Setting Meaning

RC=RN 0x0000 To nearest rounding mode

RC=R- 0x2000 Toward negative infinity rounding mode

RC=R+ 0x4000 Toward positive infinity rounding mode

RC=RZ 0x6000 Toward zero rounding mode

PC=SGL 0x0000 Single-precision rounding

PC=DBL 0x0080 Double-precision rounding

PC=EXT 0x00c0 Extended-precision rounding

EM=PM 0x0020 Precision exception enable

EM=UM 0x0010 Underflow exception enable

EM=OM 0x0008 Overflow exception enable

EM=ZM 0x0004 Zero-divide exception enable

EM=DM 0x0002 Denormalized operand exception enable

EM=IM 0x0001 Invalid operation exception enable

Register Description Data Type Edit Dive
Specify in
Expression

Architectures / Intel x86 409

Using the Intel x86 FPCR Register

You can change the value of the FPCR within TotalView to customize the exception handling for your program.

For example, if your program inadvertently divides by zero, you can edit the bit setting of the FPCR register in the
Stack Frame Pane. In this case, you would change the bit setting for the FPCR to include 0x0004 so that TotalView
traps the “divide-by-zero” bit. The string displayed next to the FPCR register should now include EM=(ZM). Now,
when your program divides by zero, it receives a SIGFPE signal, which you can catch with TotalView. See “Handling
Signals” in Chapter 5 of the TotalView for HPC Users Guide for information on handling signals. If you did not set the
bit for trapping divide by zero, the processor would ignore the error and set the EF=(ZE) bit in the FPSR.

Intel x86 FPSR Register
The bit settings of the Intel x86 FPSR register are outlined in the following table.

Intel x86 MXCSR Register
This register contains control and status information for the SSE registers. Some of the bits in this register are
editable. You cannot dive in these values.

Value Bit Setting Meaning

TOP=<i> 0x3800 Register <i> is top of FPU stack

B 0x8000 FPU busy

C0 0x0100 Condition bit 0

C1 0x0200 Condition bit 1

C2 0x0400 Condition bit 2

C3 0x4000 Condition bit 3

ES 0x0080 Exception summary status

SF 0x0040 Stack fault

EF=PE 0x0020 Precision exception

EF=UE 0x0010 Underflow exception

EF=OE 0x0008 Overflow exception

EF=ZE 0x0004 Zero divide exception

EF=DE 0x0002 Denormalized operand exception

EF=IE 0x0001 Invalid operation exception

Architectures / Intel x86 410

The bit settings of the Intel x86 MXCSR register are outlined in the following table.

Value Bit Setting Meaning

FZ 0x8000 Flush to zero

RC=RN 0x0000 To nearest rounding mode

RC=R- 0x2000 Toward negative infinity rounding mode

RC=R+ 0x4000 Toward positive infinity rounding mode

RC=RZ 0x6000 Toward zero rounding mode

EM=PM 0x1000 Precision mask

EM=UM 0x0800 Underflow mask

EM=OM 0x0400 Overflow mask

EM=ZM 0x0200 Divide-by-zero mask

EM=DM 0x0100 Denormal mask

EM=IM 0x0080 Invalid operation mask

DAZ 0x0040 Denormals are zeros

EF=PE 0x0020 Precision flag

EF=UE 0x0010 Underflow flag

EF=OE 0x0008 Overflow flag

EF=ZE 0x0004 Divide-by-zero flag

EF=DE 0x0002 Denormal flag

EF=IE 0x0001 Invalid operation flag

Architectures / Sun SPARC 411

Sun SPARC
This section has the following information:

• SPARC General Registers

• SPARC PSR Register

• SPARC Floating-Point Registers

• SPARC FPSR Register

• Using the SPARC FPSR Register

NOTE >> The SPARC processor supports the IEEE floating-point format.

SPARC General Registers
TotalView displays the SPARC general registers in the Stack Frame Pane of the Process Window. The following
table describes how TotalView treats each general register, and the actions you can take with each register.

Register Description Data Type Edit Dive
Specify in
Expression

G0 Global zero register $int no no $g0

G1 - G7 Global registers $int yes yes $g1 - $g7

O0 - O5 Outgoing parameter
registers

$int yes yes $o0 - $o5

SP Stack pointer $int yes yes $sp

O7 Temporary register $int yes yes $o7

L0 - L7 Local registers $int yes yes $l0 - $l7

I0 - I5 Incoming parameter
registers

$int yes yes $i0 - $i5

FP Frame pointer $int yes yes $fp

I7 Return address $int yes yes $i7

PSR Processor status register $int yes no $psr

Y Y register $int yes yes $y

WIM WIM register $int no no

TBR TBR register $int no no

Architectures / Sun SPARC 412

SPARC PSR Register
For your convenience, TotalView interprets the bit settings of the SPARC PSR register. You can edit the value of
the PSR and set some of the bits outlined in the following table.

SPARC Floating-Point Registers
TotalView displays the SPARC floating-point registers in the Stack Frame Pane of the Process Window. The next
table describes how TotalView treats each floating-point register, and the actions you can take with each register.

PC Program counter $code[] no yes $pc

nPC Next program counter $code[] no yes $npc

Value Bit Setting Meaning

ET 0x00000020 Traps enabled

PS 0x00000040 Previous supervisor

S 0x00000080 Supervisor mode

EF 0x00001000 Floating-point unit enabled

EC 0x00002000 Coprocessor enabled

C 0x00100000 Carry condition code

V 0x00200000 Overflow condition code

Z 0x00400000 Zero condition code

N 0x00800000 Negative condition code

Register Description Data Type Edit Dive
Specify in
Expression

F0, F1, F0_F1 Floating-point registers (f
registers), used singly

$float no yes $f0, $f1,
$f0_f1

F2 - F31 Floating-point registers (f
registers), used singly

$float yes yes $f2- $f31

F0, F1, F0_F1 Floating-point registers (f
registers), used as pairs

$double no yes $f0, $f1,
$f0_f1

F0/F1 - F30/
F31

Floating-point registers (f
registers), used as pairs

$double yes yes $2 - $f30_f31

Register Description Data Type Edit Dive
Specify in
Expression

Architectures / Sun SPARC 413

TotalView allows you to use these registers singly or in pairs, depending on how they are used by your program.
For example, if you use F1 by itself, its type is $float, but if you use the F0/F1 pair, its type is $double.

SPARC FPSR Register
For your convenience, TotalView interprets the bit settings of the SPARC FPSR register. You can edit the value of
the FPSR and set it to any of the bit settings outlined in the following table.

FPCR Floating-point control
register

$int no no $fpcr

FPSR Floating-point status
register

$int yes no $fpsr

Value Bit Setting Meaning

CEXC=NX 0x00000001 Current inexact exception

CEXC=DZ 0x00000002 Current divide by zero exception

CEXC=UF 0x00000004 Current underflow exception

CEXC=OF 0x00000008 Current overflow exception

CEXC=NV 0x00000010 Current invalid exception

AEXC=NX 0x00000020 Accrued inexact exception

AEXC=DZ 0x00000040 Accrued divide by zero exception

AEXC=UF 0x00000080 Accrued underflow exception

AEXC=OF 0x00000100 Accrued overflow exception

AEXC=NV 0x00000200 Accrued invalid exception

EQ 0x00000000 Floating-point condition =

LT 0x00000400 Floating-point condition <

GT 0x00000800 Floating-point condition >

UN 0x00000c00 Floating-point condition unordered

QNE 0x00002000 Queue not empty

NONE 0x00000000 Floating-point trap type None

IEEE 0x00004000 Floating-point trap type IEEE Exception

UFIN 0x00008000 Floating-point trap type Unfinished FPop

UIMP 0x0000c000 Floating-point trap type Unimplemented FPop

SEQE 0x00010000 Floating-point trap type Sequence Error

Register Description Data Type Edit Dive
Specify in
Expression

Architectures / Sun SPARC 414

Using the SPARC FPSR Register

The SPARC processor does not catch floating-point errors by default. You can change the value of the FPSR within
TotalView to customize the exception handling for your program.

For example, if your program inadvertently divides by zero, you can edit the bit setting of the FPSR register in the
Stack Frame Pane. In this case, you would change the bit setting for the FPSR to include 0x01000000 so that
TotalView traps the “divide by zero” bit. The string displayed next to the FPSR register should now include
TEM=(DZ). Now, when your program divides by zero, it receives a SIGFPE signal, which you can catch with
TotalView. See “Handling Signals” in Chapter 5 of the TotalView for HPC Users Guide for more information. If you did
not set the bit for trapping divide by zero, the processor would ignore the error and set the AEXC=(DZ) bit.

NS 0x00400000 Nonstandard floating-point FAST mode

TEM=NX 0x00800000 Trap enable mask - Inexact Trap Mask

TEM=DZ 0x01000000 Trap enable mask - Divide by Zero Trap Mask

TEM=UF 0x02000000 Trap enable mask - Underflow Trap Mask

TEM=OF 0x04000000 Trap enable mask - Overflow Trap Mask

TEM=NV 0x08000000 Trap enable mask - Invalid Operation Trap Mask

EXT 0x00000000 Extended rounding precision - Extended
precision

SGL 0x10000000 Extended rounding precision - Single precision

DBL 0x20000000 Extended rounding precision - Double precision

NEAR 0x00000000 Rounding direction - Round to nearest (tie-even)

ZERO 0x40000000 Rounding direction - Round to 0

PINF 0x80000000 Rounding direction - Round to +Infinity

NINF 0xc0000000 Rounding direction - Round to -Infinity

Value Bit Setting Meaning

 415

PART IV

Appendices

This section contains supplementary information, currently a single appendix, Appendix A, “MPI Startup,” on
page 416 that provides information on creating startup files for various Message Passing Interface (MPI)
implementations.

 416

Appendix A

MPI Startup

Overview
Here you will find information that will allow you to create startup profiles for environments that Rogue Wave
Software doesn't define. Any customizations made to your MPI environment will be available for later selec-
tion in the Sessions Manager where they will appear in the File > Debug New Parallel Program dialog's
Parallel System Name list.

Rogue Wave Software products know about different Message Passing Interface (MPI) implementations.
Because so many implementations are standard, our products usually do the right thing. Unfortunately, sub-
tle differences in your environment or an implementation can cause difficulties that prevent our products
from automatically starting your program. In these cases, you must declare what needs to be done.

 / Customizing Your Parallel Configuration 417

Customizing Your Parallel Configuration
The File > Debug New Parallel Program dialog box (TotalView for HPC) or the Add parallel program screen
(MemoryScape) let you select a parallel configuration. If the default configurations that Rogue Wave Software pro-
vides do not meet your needs, you can either overwrite these configurations or create new ones.

The default definitions for parallel configurations reside in the parallel_support.tvd file, located in your
totalview/lib installation directory. For TotalView — and MemoryScape when used with TotalView — you can use
the variable TV::parallel_configs to customize parallel configurations. For standalone -MemoryScape, you need
to instead add any new configurations directly to the parallel_support.tvd file. Both these methods are dis-
cussed here.

TotalView
If you are using TotalView, set the TV::parallel_configs variable, either local to your TotalView installation or
globally:

• Globally, in your system's .tvdrc file. If you set this variable here, everyone using this TotalView
version will see the definition.

• Locally, in your .totalview/tvdrc file. You will be the only person to see this definition when you
start TotalView.

You can also directly edit the parallel_support.tvd file, located in the totalview/lib installation directory area,
but reinstalling TotalView overwrites this file so this is not recommended.

For TotalView, if you are using a locally-installed MPI implementation, you should add it to your PATH variable. By
default, both TotalView and MemoryScape use the information in PATH to find the parallel launcher (for example,
mpirun, mpiexec, poe, srun, prun, dmpirun, and so on). Generally, if you can run your parallel job from a com-
mand line, TotalView can also run it.

If you have multiple installed MPI systems — for example, multiple versions of MPICH installed on a common file
server — only one can be in your path. In this case, specify an absolute path to launch it, which means you will
need to customize the TV::parallel_configs list variable or the parallel_support.tvd file contained within your
installation directory so that it does not rely on your PATH variable.

The easiest way to create your own startup configuration for TotalView is to copy a similar configuration from the
TV::private::parallel_configs_base variable (found in the parallel_support.tvd file, located in your installation
directory at totalview/lib) to the TV::parallel_configs variable, and then edit it. Save the TV::parallel_configs
variable in the tvdrc file located in the .totalview subdirectory in your home directory. For standalone -Memory-
Scape, please see Standalone MemoryScape.

 / Customizing Your Parallel Configuration 418

When you add configurations, they are simply added to a list. This means that if TotalView supplies a definition
named foo and you create a definition also named foo, both exist and your product chooses the first one in the
list. Because both are displayed, be careful to give each new definition a unique name.

Standalone MemoryScape
For the standalone MemoryScape product, to customize the way an MPI program starts up, edit the parallel_-
support.tvd file, located in the totalview/lib installation directory area, using its existing syntax and definitions
as a model for any new MPI implementations you add.

Note that this file is overwritten when you install a new TotalView or MemoryScape release. Be sure to make a
backup copy of any customizations you make to this file. See Customizing Your Parallel Configuration for infor-
mation on how to edit this file.

Make a backup copy of customizations you add to the parallel_support.tvd file, since the file is overwritten if you
reinstall TotalView or MemoryScape.

 / Example Parallel Configuration Definitions 419

Example Parallel Configuration Definitions
This section provides three examples of customized parallel configurations. See Customizing Your Parallel Con-
figuration on page 417 for information on where to place these definitions.

NOTE >> Any customizations made to your MPI environment will be available for later selection in the
Sessions Manager where they will appear in the File > Debug New Parallel Program dialog's
Parallel System Name list.

Here are three examples:
dset TV::parallel_configs {
 #Argonne MPICH
 name: MPICH;
 description: Argonne MPICH;
 starter: mpirun -tv -ksq %s %p %a;
 style: setup_script;
 tasks_option: -np;
 nodes_option: -nodes;
 env_style: force;
 pretest: mpichversion;

 #Argonne MPICH2
 name: MPICH2;
 description: Argonne MPICH2;
 starter: $mpiexec -tvsu %s %p %a;
 style: manager_process;
 tasks_option: -n;
 env_option: -env;
 env_style: assign_space_repeat;
 comm_world: 0x44000000;
 pretest: mpich2version

 # AIX POE
 name: poe - AIX;
 description: IBM PE - AIX;
 tasks_option: -procs;
 tasks_env: MP_PROCS;
 nodes_option: -nodes;
 starter: /bin/poe %p %a %s;
 style: bootstrap;
 env: NLSPATH=/usr/lib/nls/msg/%L/%N/: \
 /usr/lib/nls/msg/%L/%N.cat;
 service_tids: 2 3 4;
 comm_world: 0;
 pretest: test -x /bin/poe

 / Example Parallel Configuration Definitions 420

 msq_lib: /usr/lpp/ppe.poe/lib/%m
 }

All lines (except for comments) end with a semi-colon (;). Add spaces freely to improve the readability of these
definitions as TotalView and MemoryScape ignore them.

Notice that the MPICH2 definition contains the $mpiexec variable. This variable is defined elsewhere in the par-
allel_support.tvd file as follows:
set mpiexec mpiexec;

There is no limit to how many definitions you can place within the parallel_support.tvd file or within a variable.
The definitions you create will appear in the Parallel system pulldown list in the File > New dialog box (TotalView)
or the Add parallel program screen (MemoryScape) and can be used as an argument to the --mpi option of the
CLI's dload command.

Note that for MemoryScape, you do not set this variable because the tvdrc file is not read. Rather, directly edit the
parallel_support.tvd file.

The fields that you can set are as follows:

comm_world

Only use this option when style is set to bootstrap. This variable is the definition of MPI_COMM_WORLD in C
and C++. MPI_COMM_WORLD is usually a #define or enum to a special number or a pointer value. If you do
not include this field, TotalView and MemoryScape cannot acquire the rank for each MPI process.

description

(optional) A string describing what the configuration is used for. There is no length limit.

env

(optional) Defines environment variables that are placed in the starter program's environment. (Depending on
how the starter works, these variables may not make their way into the actual ranked processes.) If you are de-
fining more than one environment variable, define each in its own env clause.

The format to use is:
variable_name=value

env_option

(optional) Names the command-line option that exports environment variables to the tasks started by the
launcher program. Use this option along with the env_style field.

env_style

(optional) Contains a list of environment variables that are passed to tasks.

assign: The argument to be inserted to the command-line option named in env_option is a comma-separated
list of environment variable name=value pairs; that is,

NAME1=VALUE1,NAME2=VALUE2,NAME3=VALUE3

This option is ignored if you do not use an env_option clause.

 / Example Parallel Configuration Definitions 421

assign_space_repeat: The argument after env_option is a space-separated name/value pair that is assigned
to an environment variable. The command within env_option is repeated for each environment variable; that
is, suppose you enter:

-env NAME1 VALUE1 -env NAME2 VALUE2
-env NAME3 VALUE3

This mode is primarily used for the mpiexec.py MPICH2 starter program.

excenv

One of the following three strings:

export: The argument to be inserted after the command named in env_option. This is a comma-separated list
of environment variable names; that is,

NAME1,NAME2,NAME3

This option is ignored if you do not use the env_option clause.

force: Environment variables are forced into the ranked processes using a shell script. TotalView or Memory-
Scape will generate a script that launches the target program. The script also tells the starter to run that script.
This clause requires that your home directory be visible on all remote nodes. In most cases, you will use this op-
tion when you need to dynamically link memory debugging into the target. While this option does not work with
all MPI implementations, it is the most reliable method for MPICH1.

none: No argument is inserted after env_option.

msq_lib

(optional) Names the dynamically loaded library that TotalView and MemoryScape use when it needs to locate
message queue information. You can name this file using either a relative or full pathname.

name

A short name describing the configuration. This name shows up in such places as the File > New dialog box and
in the Process > Startup Parameter's Parallel tab in TotalView and the Add parallel program screen in
MemoryScape. TotalView and MemoryScape remember which configuration you use when starting a program
so that they can automatically reapply the configuration when you restart the program.

Because the configuration is associated with a program's name, renaming or moving the program destroys this
association.

nodes_option

Names the command-line option (usually -nodes) that sets the number of node upon which your program
runs. This statement does not define the value that is the argument to this command-line option.

Only omit this statement if your system doesn't allow you to control the number of nodes from the command
line. If you set this value to zero (“0”), this statement is omitted.

pretest

(optional) Names a shell command that is run before the parallel job is launched. This command must run
quickly, produce a timely response, and have no side-effects. This is a test, not a setup hook.

 / Example Parallel Configuration Definitions 422

TotalView or MemoryScape may kill the test if it takes too long. It may call it more than once to be sure if every-
thing is OK. If the shell command exit is not as expected, TotalView or MemoryScape complains and asks for per-
mission before continuing,

pretext_exit

The expected error code of the pretest command. The default is zero.

service_tids

(optional) The list of thread IDs that TotalView and MemoryScape marks as service threads. When using To-
talView, you can use the View > Display Managers command to tell TotalView to display them.

A service thread differs from a system manager thread in that it is created by the parallel runtime and are not
created by your program. POE for example, often creates three service threads.

starter

Defines a template that TotalView and MemoryScape use to create the command line that starts your program.
In most cases, this template describes the relative position of the arguments. However, you can also use it to
add extra parameters, commands, or environment variables. Here are the three substation parameters:

%a: Replaced with the command-line arguments passed to rank processes.

%p: Replaced with the absolute pathname of the target program.

%s: Replaced with additional startup arguments. These are parameters to the starter process, not the rank pro-
cesses.

For example:
starter: mpirun -tv -all-local %s %p %a;

When the user selects a value for the option indicated by the nodes_option and tasks_options, the argument
and the value are placed within the %s parameter. If you enter a value of 0 for either of these, MemoryScape
and TotalView omit the parameter. In MemoryScape, 0 is the default.

style

MPI programs are launched in two ways: either by a manager process or by a script. Use this option to name the
method, as follows:

manager_process: The parallel system uses a binary manager process to oversee process creation and pro-
cess lifetime. Our products attach to this process and communicate with it using its debug interface. For exam-
ple, IBM's poe uses this style.

style: manager_process;

setup_script: The parallel system uses a script—which is often mpirun—to set up the arguments, environ-
ment, and temporary files. However, the script does not run as part of the parallel job. This script must under-
stand the -tv command-line option and the TOTALVIEW environment variable.

bootstrap: The parallel system attempts to launch an uninstruemented MPI by interposing TotalView or Mem-
oryScape inside the parallel launch sequence in place of the target program. This does not work for MPICH and
SGI MPT.

 / Example Parallel Configuration Definitions 423

tasks_env

The name of an environment variable whose value is the expected number of parallel tasks. This is consulted
when the user does not explicitly specify a task count.

tasks_option

(sometimes required) Lets you define the option (usually -np or -procs) that controls the total number of tasks
or processes.

Only omit this statement if your system doesn't allow you to control the number of tasks from the command
line. If you set this to 0, this statement is omitted.

ROGUEWAVE.COM Index 424

-serial device 353
- -add-gnu-debuglink command-

line option 365

Symbols
.debug gnu_debuglink copy 365
.totalview/lib_cache

subdirectory 43
.tvd files 204
@ symbol for action point 100
* expr 311
/proc file system 374
scoping separator character 34,

39, 99
%A server launch replacement

character 355
%B server launch replacement

character 355
%C server launch replacement

character 355
%D path name replacement

character 355
%H hostname replacement

character 355
%L host and port replacement

character 356
%N line number replacement

character 356
%P password replacement

character 356
%S source file replacement

character 356
%t1 file replacement character 356
%t2 file replacement character 356
%V verbosity setting replacement

character 357
= symbol for PC of current buried

stack frame 100
> symbol for PC 100
$mpiexec variable 420
$newval variable in

watchpoints 158
$oldval variable in watchpoints 158
$stop function 73, 117

A
-a option to totalview

command 339
ac, see dactions command
acquiring processes 274
action point

identifiers 24
Action Point > Save All

command 263
action point identifiers 68
action points

autoloading 263
default for newly created 257
default property 257
deleting 57, 180, 193, 196, 221
disabling 24, 25, 61
displaying 24
enabling 24, 25
identifiers 25
information about 24, 25, 174
loading 25
loading automatically 344
loading saved information 26
reenabling 68
saving 25
saving information about 26
scope of what is stopped 257
setting at location 24
sharing 256
stopping when reached 291

actionpoint
properties 180

actionpoint command 180
actions points

list of disabled (ambiguous
context) 25

list of enabled (ambiguous
context) 25

actions, see dactions command

activating type
transformations 316

Add parallel program screen 417
adding group members 84
adding groups 83
address 205
address property 180
addressing_callback 225
advancing by steps 142
aggregate data 306
AIX

compiling on 360
linking C++ to dbfork

library 367
linking to dbfork library 367
swap space 375

aix_use_fast_trap command-line
option 339

aix_use_fast_trap variable 260, 293
alias command 20
aliases

default 20
removing 178

append, see dlappend command
appending to CLI variable lists 98
architectures 258

Intel IA-64 400
Intel-x86 388, 406
PowerPC 393
SPARC 411

arenas 76, 111
ARGS variable 252
ARGS_DEFAULT variable 127, 132,

252
ARGS(dpmid) variable 127, 132
arguments

command line 132
default 252
for totalview command 337
for tvdsvr command 352

arrays

Index

ROGUEWAVE.COM Index 425

automatic
dereferencing 260

gathering statistical
data 117

number of elements
displayed 260

arriving at barrier 35
as, see dassign command
ask on dlopen option 379
ask_on_dlopen option 380
ask_on_dlopen variable 260
assemble, displaying

symbolically 275
assembler instructions,

stepping 146
assign, see dassign command
assigning string values 29
assigning values 29
asynchronous execution 73
at, see dattach command
attach, see dattach command
attaching to parallel

processes 31
attaching to processes 31
attaching to ranks 31
attaching, using PIDs 32
auto_array_cast_bounds

variable 260
auto_array_cast_enabled

variable 260
auto_deref_in_all_c variable 261
auto_deref_in_all_fortran

variable 261
auto_deref_initial_c variable 261
auto_deref_initial_fortran

variable 262
auto_deref_nested_c

variable 262
auto_deref_nested_fortran

variable 262
auto_load_breakpoints

variable 263
auto_read_symbols_at_stop

variable 263
auto_save_breakpoints

variable 263
automatic dereferencing 261

automatic dereferencing of
arrays 260

automatically attaching to
processes 286

B
b, see dbreak command
ba, see dbarrier command
background command-line

option 339
back-tick analogy 22
barrier breakpoint 35
barrier is satisfied 253, 264
BARRIER_STOP_ALL variable 34,

36, 252
barrier_stop_all variable 264
BARRIER_STOP_WHEN_DONE

variable 34, 252
barrier_stop_when_done

variable 264
barrier, see dbarrier command
barriers 34, 35

arriving 35
creating 35
what else is stopped 34

base_name 206
Batch debugging, tvscript 234
baud rate, specifying 353
baw, see dbarrier command
bg command-line option 339
bkeepfile command-line

option 367
blocking command input 157
blocking input 157
Bluegene I/O interface 264
Bluegene launch string 265
Bluegene server timeout 265
bluegene_io_interface

variable 264
bluegene_launch_string

variable 265
bluegene_server_launch_time-

out variable 265
break, see dbreak command
breakpoints

automatically loading 263
barrier 34

default file in which set 40
defined 40
file 26, 263
popping Process

Window 303
setting at functions 40
setting expression 39
stopping all processes at 39
temporary 152
triggering 40

bt, see dbreak command
build_struct_transform

defined 311
example 310
lists 311
members argument 311
name argument 311

bulk launch 356
bulk_launch_base_timeout

variable 265
bulk_launch_enabled

variable 265
bulk_launch_incr_timeout

variable 265
bulk_launch_tmpfile1_header_

line variable 265
bulk_launch_tmpfile1_host_

lines variable 266
bulk_launch_tmpfile1_trailer_

line variable 266
bulk_launch_tmpfile2_ head-

er_line variable 266
bulk_launch_tmpfile2_host_

lines variable 266
bulk_launch_tmpfile2_trailer_

line variable 266
buried stack frame 99
by_language_rules 202
by_path 202
by_type_index 202

C
C language

escape characters 29
using with C++View 328

C shell 375
c_type_strings 266
c_type_strings variable 266
C++

ROGUEWAVE.COM Index 426

demangler 270, 341
including libdbfork.h 368
STL instantiation 307

C++View
and multithread safety 325
and programming

design 324
and template classes 320
compiling and linking 333
described 317
example display

function 319
example of use with

ReplayEngine 327
examples 334
use of with

ReplayEngine 326
using with C 328

cache, flushing 43
cache, Memory Debugger 297
cache, see dcache command
call stack 155

displaying 166
see also stack frame 13, 165

call tree saved position 300
callback command-line

option 352
callback list 284
callback_host 352
callback_ports 353
callbacks 283

after loading a program 287
when opening the CLI 286

capture command 22, 170
case sensitive searching 289
cast subcommand 202
Cast to array with bounds

checkbox 260
casting variables 120
ccq command-line option 340
CGROUP variable 253
changing CLI variables 134, 135
changing dynamic context 155
changing focus 76
changing value of program

variable 29, 48, 95, 114, 129,
149, 152

chase_mouse variable 298
checking interior pointers

variable 296
class transformations 309
classes, transforming 311
CLI

activated from GUI flag 298
sourcing files 310
startup file 310

CLI variables
aix_use_fast_trap 260, 293
ARGS 252
ARGS_DEFAULT 252
ask_on_dlopen 260
auto_array_cast_bounds 26

0
auto_array_cast_enabled 26

0
auto_deref_in_all_c 261
auto_deref_in_all_fortran 26

1
auto_deref_initial_fortran 2

62
auto_deref_intial_c 261
auto_deref_nested_c 262
auto_deref_nested_fortran

262
auto_load_breakpoints 263
auto_read_symbols_at_stop

263
auto_save_breakpoints 263
BARRIER_STOP_ALL 34, 36,

252
barrier_stop_all 264
BARRIER_STOP_WHEN_DON

E 34, 252
barrier_stop_when_done 26

4
blue_gene_launch_string 26

5
bluegene_io_interface 264
bluegene_server_launch_ti

meout 265
bulk_launch_base_timeout

265
bulk_launch_enabled 265
bulk_launch_incr_timeout 2

65
bulk_launch_tmpfile1_head

er_line 265

bulk_launch_tmpfile1_host_
lines 266

bulk_launch_tmpfile1_trail-
er_ line 266

bulk_launch_tmpfile2_head-
er_ line 266

bulk_launch_tmpfile2_host_
lines 266

bulk_launch_tmpfile2_trail-
er_ line 266

c_type_strings 266
CGROUP 253
changing 134, 135
chase_mouse 298
comline_patch_area_

base 268
comline_path_area_

length 268
COMMAND_EDITING 253
command_editing 268
compile_expressions 269
compiler_vars 269
control_c_quick_shutdown

269
copyright_string 270
current_cplus_

demangler 270
current_fortran_

demangler 270
data_format_double 271
data_format_ext 272
data_format_int16 273
data_format_int32 273
data_format_int64 273
data_format_int8 272
data_format_single 273
data_format_singlen 273
dbfork 274
default value for 135
default_snippet_extent 296
default_stderr_append 274
default_stderr_filename 274
default_stderr_is_stdout 27

4
default_stdin_filename 274
default_stdout_append 275
default_stdout_filename 27

5
deleting 134, 135
display_assembler_

symbolically 275

ROGUEWAVE.COM Index 427

display_bytes_kb_mb 298
display_font_dpi 298
dll_ignore_prefix 275
dll_read_all_symbols 275
dll_read_loader_

symbols_only 276
dll_read_no_symbols 276
dll_stop_suffix 277, 278
dump_core 278
dwhere_qualification_level

278
dynamic 279
editor_launch_string 279
enabled 298
env 280
errorCodes 117
EXECUTABLE_PATH 32, 100,

254
EXECUTABLE_SEARCH_PAT

H 254
fixed_font 298
fixed_font_family 299
fixed_font_size 299
follow_clone 280
font 299
force_default_cplus_deman

gler 280
force_default_f9x_demangle

r 281
force_window_position 299
frame_offset_x 299
frame_offset_y 299
geometry_call_tree 300
geometry_cli 300
geometry_globals 300
geometry_help 300
geometry_memory_stats 30

1
geometry_message_queue

301
geometry_message_queue_

graph 301
geometry_modules 301
geometry_process 301
geometry_ptset 302
geometry_root 302
geometry_thread_objects 3

02
geometry_variable 302
geometry_variable_stats 30

2
global_typenames 281

gnu_debuglink 281, 365
gnu_debuglink_checksum_fl

ag 365
gnu_debuglink_global_direct

ory 281, 366
gnu_debuglink_search_path

282
GROUP 254
GROUPS 102, 255
hia_allow_ibm_poe 296
ignore_control_c 283
ignore_snippets 296
image_load_callbacks 283
in_setup 283
kcc_classes 283
keep_expressions 303
keep_search_dialog 303
kernel_launch_string 284
kill_callbacks 284
leak_check_interior_pointer

s 296, 297
leak_max_cache 297
leak_max_chunk 297
library_cache_directory 284,

285
LINES_PER_SCREEN 255
local_interface 285
local_server 285
local_server_launch_string 2

85
MAX_LIST 99, 256
message_queue 285, 286
nptl_threads 286
OBJECT_SEARCH_MAPPING

S 254, 256
OBJECT_SEARCH_PATH 256
open_cli_callback 286
parallel 286
parallel_attach 286
parallel_configs 417
parallel_stop 287
platform 287
pop_at_breakpoint 303
pop_on_error 303
process_load_callbacks 287
PROMPT 256
PTSET 256
restart_threshold 288
save_window_pipe_or_filena

me 289
search_case_sensitive 289
server_launch_enabled 289

server_launch_timeout 289
server_response_wait_time

out 289
SGROUP 256
SHARE_ACTION_POINT 257
share_action_point 289
shared_data_filters 297
show_startup_parameters

304
show_sys_thread_id 304
signal_handling_mode 290
single_click_dive_enabled 3

04
source_pane_tab_width 291
SOURCE_SEARCH_MAPPING

S 257
SOURCE_SEARCH_PATH 25

7
spell_correction 291
stack_trace_qualification_lev

el 291
STOP_ALL 39, 257
stop_all 291
stop_relatives_on_proc_erro

r 292
suffix 292
TAB_WIDTH 100, 258
THREADS 258
toolbar_style 304
tooltips_enabled 304
TOTAL_VERSION 258
TOTALVIEW_ROOT_PATH 25

8
TOTALVIEW_TCLLIB_PATH 2

58
ttf 292
ui_font 304
ui_font_family 305
ui_font_size 305
user_threads 293
using_color 305
using_text_color 305
using_title_color 305
VERBOSE 259
version 293, 305
viewing 134, 135
visualizer_launch_enabled 2

93
visualizer_launch_string 294
visualizer_max_rank 294
warn_step_throw 294
WGROUP 259

ROGUEWAVE.COM Index 428

wrap_on_search 294, 295
closed loop, see closed loop
closes shared libraries 184
clusterid property 196
co, see dcont command
code snippets 296
code, displaying 99
color

foreground 342
comand-line options

-ccq 340
comline_patch_area_base

variable 268
comline_path_area_length

variable 268
command arguments 252
command focus 76
command input, blocking 157
command line arguments 132
command output 22
command prompt 256
command summary 4
command verb

actionpoint command 184
COMMAND_EDITING

variable 253
command_editing variable 268
command, Tools > Dynamic

Libraries 63
command-line options

-aix_use_fast_trap 339
-background 339
-bg 339
-ccq 340
-compiler_vars 339
-

control_c_quick_shutdo
wn 340

-cuda 340
-dbfork 340
-debug_file 340
-demangler 341
-display 341
-dll_ignore_prefix 341
-dll_stop_suffix 341
-dump_core 342
-e 342

-ent 342
-env 342
-f9x_demangler 343
-fg 343
-foreground 342
-global_types 343
-gnu_debuglink 343
-

gnu_debuglink_checksu
m 343

-ipv6_support 343
-kcc_classes 344
-lb 344
-message_queue 344, 345
-mqd 345
-nccq 340
-nlb 344
-no_compiler_vars 340
-

no_control_c_quick_shu
tdown 340

-no_cuda 340
-no_dbfork 340
-no_ent 342
-no_global_types 343
-no_gnu_debuglink 343
-

no_gnu_debuglink_chec
ksum 343

-no_ipv6_support 343
-no_kcc_classes 344
-no_message_queue 345
-no_mqd 345
-no_nptl_threads 346
-no_parallel 346
-no_startup_scripts 346
-no_team 349
-no_teamplus 349
-no_user_threads 339, 350
-nptl_threads 346
-parallel 346
-patch_area_base 347
-patch_area_length 347
-pid 347
-r 347
-remote 347
-s 347
-search_path 348
-serial 348
-shm 348
-signal_handling_mode 348

-stderr 349
-stderr_append 349
-stderr_is_stdout 349
-stdin 349
-stdout 349
-stdout_append 349
-team 349
-timeplus 349
-tvhome 349
-user_threads 339, 350
-verbosity 350
-xterm_name 350

commands
responding to 201
totalview 337
tvdsvr, syntax and use 351
user-defined 20

commands verb
actionpoint command 180
expr command 188
group command 193
process command 196
thread command 218
type command 221

compile_expressions
variable 269

compiler property 225
compiler_vars command-line

option 339
compiler_vars variable 269
compilers, KCC 283
compiling

debugging symbols 360
for C++View 333
-g compiler command-line

option 360
on Bluegene 362
on IBM Power Linux 362
on Itanium 364
on SunOS 364
on x86 362
on x86-64 363
options 360

compressed list of processes,
defined. See plist.

Compressed List Syntax,
defined 139

conditional watchpoints 158
connection directory 355

ROGUEWAVE.COM Index 429

console output for tvdsvr 353
console output redirection 340
cont, see dcont command
continue_sig property 218
continuing execution 81
control group variable 253
control group, stopping 292
control list element 254
control_c_quick_shutdown com-

mand-line option 340
control_c_quick_shutdown

variable 269
copyright_string variable 270
core

dumping for TotalView 342
when needing to debug To-

talView itself 278
core files, loading 32
count property 194
Cray pointers, example using

Fortran with C++View 329
create subcommand 224
creating barrier breakpoints 35
creating commands 20
creating groups 83
creating new process

objects 103
creating threads 81
creating type

transformations 306
Ctrl+C, ignoring 283
Ctrl+D to exit CLI 169, 171
CUDA

CLI command detail 52
dcuda > block command 52
dcuda CLI command 52
support for GPU

threads 19, 52
current frame marker register

Intel IA-64 402
current list location 66
current_cplus_demangler

variable 270
current_fortran_demangler

variable 270

D
d, see ddown command
dactions command 25
dassign command 29
data format

presentation styles 271
transforming

withC++View 317
data representation

simplifying using elision 323
data size 105
data size limit in C shell 375
data_format_double

variable 271
data_format_ext variable 272
data_format_int16 variable 273
data_format_int32 variable 273
data_format_int64 variable 273
data_format_int8 variable 272
data_format_single variable 273
data_format_stringlen

variable 273
datatype cast expr 312
datatype incompatibilities 29
dattach command 31
dbarrier command 34
dbfork command-line

option 340
dbfork library 367

linking with 367
syntax 340

dbfork variable 274
dbreak command 39

setting expression in 39
dcache command 43
dcalltree command 44
dcont command 50
dcuda command 52
ddelete command 57
ddetach command 59
ddisable command 61
ddl_read_all_symbols

variable 275
ddlopen command 63
ddown command 66
de, see ddelete command

deactivating action points 61
deadlocks at barriers 36
debug gnu_debuglink copy 365
debug_file command-line

option 340, 353
debugger server 351
debugging remote systems 43
debugging session, ending 169
dec2hex command 183
default aliases 20
default arguments 132, 252

modifying 132
default focus 76
default preferences, setting 136
default value of variables,

restoring 151
default_snippet_extent 296
default_stderr_append

variable 274
default_stderr_filename

variable 274
default_stderr_is_stdout

variable 274
default_stdin_filename

variable 274
default_stdout_append

variable 275
default_stdout_filename

variable 275
deferred reading, shared library

symbols 200
defining MPI startup

implementations 416
defining the current focus 256
delete verb, expr command 188
delete, see ddelete command
deleting action points 57, 180,

193, 196, 221
deleting cache 43
deleting CLI variables 134, 135
deleting groups 83, 84
deleting variables 151
demangler 270

C++ 270
forcing use 280, 281
Fortran 270
overriding 341, 343

ROGUEWAVE.COM Index 430

demangler command-line
option 341

denable command 68
dereferencing 261, 262, 263

C pointers
automatically 261

C structure pointers
automatically 262

dereferencing values
automatically 261

det, see ddetach command
detach, see ddetach command
detaching from processes 59
dexamine command 70
dflush command 73, 117
dfocus command 76
dga command 79
dgo command 81
dgroups command 83

-add 84
-delete 84

dhalt command 88
dheap command 89
dheap command, see also heap

debugging
dhold command 95
di, see ddisable command
directory search paths 254
disable, see ddisable command
disabled action points list (am-

biguous context) 25
disabling action points 24, 25, 61
display call stack 166
display command-line

option 341
display_assembler_ symbolically

variable 275
display_bytes_kb_mb

variable 298
display_font_dpi variable 298
displaying

code 99
current execution

location 166
error message

information 259

help information 170
information on a name 161
lines 256
values 117

displaying expressions 117
displaying memory 70
displaying memory values 70
diving, single click 304
dkill command 97
dlappend command 98
dlist command 99, 256
dlist, number of lines

displayed 256
dll command 184
DLL Do Query on Load list 379
DLL Don’t Query on Load

list 379
dll_ignore_prefix command-line

option 341
dll_ignore_prefix variable 275
dll_read_loader_symbols_only 2

76
dll_read_no_symbols

variable 276
dll_stop_suffix command-line

command-line option 341
dll_stop_suffix variable 277, 278
dload command 102
dlopen 64, 379

ask when loading 260
dmstat command 105
dnext command 108
dnexti command 111
done property 188
double-precision data

format 271
dout command 114
down, see ddown command
dpid 253
dpid property 219
dprint command 117
dptsets command 123
drerun - drun differences 127
drerun command 126
drestart command 129

drun - drerun differences 127
drun command 97, 131

poe issues 127, 132
reissuing 132

dsession 134
dset command 134, 135
dstatus command 138
dstep command 142

iterating over focus 142
dstepi command 146
duhtp, see dunhold command
duid property 197, 219
dump subcommand 202, 205
dump_core command-line

option 342
dump_core variable 278
dunhold command 149
dunset command 151
duntil command 152

group operations 153
dup command 155
dwait command 157
dwatch command 158
dwhat command 161
dwhere command 165

levels 255
dwhere_qualification_level

variable 278
dworker command 168
Dynamic Libraries page 379
dynamic library support

limitations 384
dynamic linker 378
dynamic variable 279
dynamically linked program 377
dynamically loaded libraries 379

E
e command-line option 342
editor_launch_string

variable 279
eliminating tab processing 100
elision, to simplify data

representation 323
Emacs-like commands 268

ROGUEWAVE.COM Index 431

en, see denable command
enable, see denable command
enabled action points list (am-

biguous context) 25
enabled property 181
enabled variable 298
enabling action points 24, 25, 68
ending debugging session 169
ent command-line option 342
enum_values property 221
env command-line option 342
env variable 280
error message information 259
error state 259
errorCodes command 117, 186
errorCodes variable 186
errors, raising 186
escape characters 29
evaluating functions 117
evaluation points, see dbreak
evaluations, suspended,

flushing 73
examining memory 70, 71

using an expression 71
exception subcodes 117
exception, warning when

thrown 294
executable property 197
EXECUTABLE_PATH variable 32,

100, 254
EXECUTABLE_SEARCH_PATH

variable 254
executing as one instruction 111
executing as one statement 108
executing assembler

instructions 146
executing source lines 142
execution

continuing 81
displaying location 166
halting 88
resuming 50

execve() 367
calling 340
catching 274

exit command 169
expr . expr 312

expr -> expr 312
expr command 117, 188
expression property 181, 188
expression system

AIX 386
expression values, printing 117
expressions in breakpoint 39
expressions, compiling 269
expressions, type

transformation 311
extensions for file names 292

F
f, see dfocus command
f9x_demangler command-line

option 343
fast_trap, setting 260, 293
fatal errors 375
fg command-line option 343
File > Preferences

command 316
file name extensions 292
files

initialization 310
libdbfork.h 368

filter definition file 297
filters, sharing memory

filters 297
fixed_font variable 298
fixed_font_family variable 299
fixed_font_size variable 299
floating point data format

double-precision 271
extended floating point 272
single-precision 273

floating point status register
Intel IA-64 404

flush, see dflush command
flushing cache 43
flushing suspended

evaluations 73
focus

see also dfocus command
default 76
defining 256
temporarily changing 76

focus_groups command 190

focus_processes command 191
focus_threads command 192
focus_threads property 188
follow_clone variable 280
font variable 299
fonts 298

fixed 298, 299
ui 299, 304
ui font family 305
ui font size 305

force_default_cplus_ demangler
variable 280

force_default_f9x_ demangler
variable 281

force_window_position
variable 299

foreground command-line
option 342

fork()
about 367
calling 340
catching 274

formatting program data using
C++View 317

Fortran
demangler 270

frame_offset_x variable 299
frame_offset_y variable 299
functions

evaluating 117
setting breakpoints at 40

G
g, see dgo command
GDP SPU Runtime System (SPU).

See spurs.
general registers

Intel IA-64 400
geometry_call_tree variable 300
geometry_cli position 300
geometry_cli variable 300
geometry_globals variable 300
geometry_help variable 300
geometry_memory_stats

variable 301
geometry_message_queue

variable 301
geometry_message_queue_

ROGUEWAVE.COM Index 432

graph variable 301
geometry_modules variable 301
geometry_process variable 301
geometry_ptset variable 302
geometry_root variable 302
geometry_thread_objects

variable 302
geometry_variable variable 302
geometry_variable_stats

variable 302
get subcommand 202
get verb

actionpoint command 180,
184

expr command 188
group command 193
process command 196
thread command 218
type command 221

Global Arrays 79
setting language for

display 79
global_typenames variable 281
global_types, command-line

option 343
GNU C++ STL instantiation 307
gnu_debuglink command-line

option 343, 365, 366
gnu_debuglink files 365
gnu_debuglink variable 281, 365
gnu_debuglink_checksum com-

mand-line option 343, 365
gnu_debuglink_checksum

variable 281
gnu_debuglink_checksum_flag

variable 365
gnu_debuglink_global_ directory

variable 281
gnu_debuglink_global_directory

command-line option 366
gnu_debuglink_global_directory

variable 366
gnu_debuglink_search_path

variable 282
go, see dgo command
goal breakpoint 143

GPU threads. See CUDA.
gr, see dgroups command
group command 193
group ID 259
group members, stopping

flag 257
group of interest 143
GROUP variable 254
group width stepping

behavior 142
groups

accessing properties 193
adding 83
adding members 84
creating 83
deleting 83, 84
intersecting 83
listing 83
naming 84
placing processes in 32
removing members 83
returning list of 190
setting properties 193

GROUPS variable 102, 255
groups, see dgroups command

H
h, see dhalt command
halt, see dhalt command
halting execution 88
handling signals 348
handling user-level (M:N) thread

packages 293
heap size 105
heap_size property 197
held property 197, 219
help command 170
help window position 300
hex2dec command 195
hexadecimal conversion 183
hia_allow_ibm_poe 296
hiarc file 296
hold, see dhold command
holding processes 95
holding threads 35, 95
host ports 352

hostname
expansion 355
for tvdsvr 352
property 197
replacement 356

HP Tru64 UNIX
/proc file system 374

hp, see dhold command
ht, see dhold command
htp, see dhold command

I
I/O redirection 131
id property 181, 189, 194, 197,

219, 221, 225
ignore_control_c variable 283
ignore_snippets false 296
ignoring libraries by prefix 341
image browser window

position 300
image file, stripped copy 365
Image information 105
image_id property 221
image_ids property 197
image_load_ callbacks list 287
image_load_callbacks

variable 283
in_setup variable 283
IndextermTEST 338
inet interface name 285, 344
infinite loop, see loop, infinite
info state 259
information on a name 161
initialization file 178, 310
initially_suspended_process

property 189
input, blocking 157
inserting working threads 168
instructions, stepping 146
integer (64-bit) data format 273
integer data format

16-bit 273
32-bit 273
8-bit 272

Intel IA-64
architecture 400

ROGUEWAVE.COM Index 433

current frame marker
register 402

floating point status
register 404

general registers 400
Intel IA-64

floating point
registers 404

previous function state
register 403

processor status
register 401

register stack configuration
register 403

Intel-x86
architecture 388, 406
floating-point registers 389,

407
FPCR register 390, 408

using 391, 409
FPSR register 391, 392, 409
general registers 388, 406

interface name for server 285,
344

interior pointers, checking 296
intersecting groups 83
ipv6_support command-line

option 343
ipv6_support option 343
IRIX

/proc file system 374

J
job_t::launch 374

K
k, see dkill command
-kcc_classes command-line

option 344
kcc_classes command-line

option 344
kcc_classes variable 283
keep_expressions variable 303
keep_search_dialog variable 303
kernel_launch_string

variable 284
keys, remapping 385
keysym 385
kill_callbacks variable 284

kill, see dkill command
killing attached processes 269
killing processes 97

L
l, see dlist command
language property 181, 222, 225
languages

C, using with C++View 328
lappend, see dlappend com-

mand
launch string

for editor 279
for server (Sun only) 285
for Visualizer 294

Launch Strings page 294
launching

local server 285
processes 131
tvdsvr 351
Visualizer 293

lb command-line option 344
LD_BIND_NOW envrionment

variable 377
LD_LIBRARY_PATH 369
-ldbfork linker option 368
-ldbfork option 367, 368
-ldbfork_64 option 367, 368
leak_check_interior_pointers 29

6, 297
leak_check_interior_pointers

variable 296, 297
leak_max_cache 297
leak_max_chunk 297
length property 181, 222
levels for dwhere 255
levels, moving down 66
libdbfork_64.a 368
libdbfork.a 367, 368
libdbfork.h file 368
libraries

dbfork 340
ignoring by prefix 341
loading by suffix 277
loading symbols from 279
not loading based on

prefix 275
shared 377

library cache data 284
library cache, flushing 43
library_cache_directory

variable 284, 285
line property 181
line_number 206
LINES_PER_SCREEN

variable 255
linking

for C++View 333
linking to dbfork library 367

AIX 367
C++ and dbfork 367
SunOS 5 368

Linux swap space 375
list location 66
list_element_count_addressing_

callback 226
list_element_data_addressing_c

allback 226
list_element_next_addressing_c

allback 226
list_element_prev_addressing_c

allback 227
list_end_value property 227
list_first_element_addressing_ca

llback 227
list_head_addressing_callback 2

27
list, see dlist command
listing groups 83

using a regular
expression 85

listing lines 256
lo, see dload command
load and loadbind 379
load, see dload command
loader_name 206
loading

action point information 26
action points 25, 344
libraries 275, 276
programs 103
shared libraries 184
symbols from shared

libraries 279
tvd files 204

loading sessions

ROGUEWAVE.COM Index 434

dsession 134
local_interface variable 285
local_server variable 285
local_server_launch_string

variable 285
lockstep list element 254
logical model 308
lookup subcommand 202
lookup_keys subcommand 203
loop, infinite, see infinite loop
lower_bounds_callback 226

M
machine instructions,

stepping 146
manager property 219
manager threads, running 142
managing shared libraries 184
mangler, overriding 341, 343
mappings, search path 257
MAX_LIST variable 99, 256
Maximum permissible rank

field 294
mem_detect_leaks memory sub-

option 242
mem_guard_blocks memory

sub-option 242
mem_hoard_freed_memory

memory sub-option 243
mem_paint_all memory sub-

option 243
mem_paint_on_alloc memory

sub-option 243
mem_paint_on_dealloc memory

sub-option 243
member_type property 194
member_type_values

property 194
members argument,

build_struct_transform 311
members property 194
memory

data size 105
heap 105
stack 105
text size 105

memory statistics window
position 301

Memory Tracker, see dheap
command

memory use 105
message queue graph window

position 301
message queue window

position 301
message verbosity variable 259
message_queue command-line

option 344, 345
message_queue variable 285,

286
mkswap command 376
modules window position 301
more processing 118
more prompt 170, 255
mounting /proc file system 374
MPI message queues 285
MPI startup 416
mqd command-line option 345
multiprocess programs, attach-

ing to processes 32
multithread safety

and C++View 325

N
N upcast expr 312
n, see dnext command
name argument,

build_struct_transform 311
name property 222, 225
name, information about 161
namespaces 135

TV:: 135
TV::GUI:: 135
using wildcards 135

Namespaces, Symbol 214
naming the host 352
nccq command-line option 340
nested subroutines, stepping

out of 114
newval variable in

watchpoints 158
next, see dnext command

nexti, see dnexti command
ni, see dnexti command
nil, see dnexti command
niw, see dnexti command
nl, see dnext command
nlb command-line option 344
no_ask_on_dlopen command-

line option 380
no_compiler_vars command-

line option 340
no_control_c_quick_shutdown

command-line option 340
no_dbfork command-line

option 340
no_dynamic command-line

option 377
no_ent command-line

option 342
no_global_types command-line

option 343
no_gnu_debuglink command-

line option 343
no_gnu_debuglink_checksum

command-line option 343
no_ipv6_support command-line

option 343
no_kcc_classes command-line

option 344
no_message_queue command-

line option 345
no_mqd command-line

option 345
no_nptl_threads command-line

option 346
no_parallel command-line

option 346
no_startup_scripts command

line option 346
no_team command-line

option 349
no_teamplus command-line

option 349
no_user_threads command-line

option 339, 350
nodeid property 198
nodes_allowed command-line

ROGUEWAVE.COM Index 435

option 353
nptl_threads command-line

option 346
nptl_threads variable 286
NVIDIA. See CUDA
nw, see dnext command

O
OBJECT_SEARCH_MAPPINGS

variable 254, 256
OBJECT_SEARCH_PATH

variable 256
oldval variable in

watchpoints 158
Open (or raise) process window

at breakpoint checkbox 303
Open process window on error

signal check box 303
open_cli_window_callback

variable 286
opening shared libraries 63
option 353
options

tvdsvr
-callback 352
-serial 352
-server 352
-set_pw 352

-user_threads 350
ou, see dout command
oul, see dout command
out, see dout command
ouw, see dout command

P
p, see dprint command
p/t expressions 123
P/T set information 123
panes, width 291
parallel backtrace data,

displaying 44
parallel command-line

option 346
parallel jobs

displaying state of data us-
ing dcalltree
command 44

parallel processes

attaching to 31
displaying process and

thread state using dcall-
tree command 44

parallel program runtime library
support 286

parallel runtime libraries 286
parallel variable 286
parallel_attach variable 286
parallel_configs variable 417
parallel_stop variable 287
parallel_support.tvd file 417
passwords 354

checking 354
generated by tvdsvr 352

patch space 268
patch_area_base command-line

option 347
patch_area_length command-

line option 347
PATH environment variable

for tvdsvr 352
pc property 219
picking up threads 280
pid command-line option 347
Plant in share group

checkbox 257, 289
platform variable 287
plist, defined 139
pop_at_breakpoint variable 303
pop_on_error variable 303
popping Process Window on er-

ror variable 303
port 4142 353
port command-line option 353
port number 353

for tvdsvr 352
replacement 356
searching 353

ports on host 352
post_scope 203
post_symbol 203
PowerPC

architecture 393
Blue Gene registers 395
floating-point registers 397
FPSCR register 397

using the 399

FPSCR register, using 399
general registers 393
MSR register 396

pre_scope 203
pre_sym 203
preferences, setting defaults

for 136
previous function state register

Intel IA-64 403
print, see dprint command
printing expression values 117
printing registers 120
printing slices 118
printing variable values 117
proc file system problems 374
Procedure Linkage Table

(PLT) 377
Process > Startup command 81
process barrier breakpoint, see

barrier breakpoint
process command 196
process counts, see ptlist
process groups, see groups
process information, saving 48
process list element 254
process objects, creating

new 103
process statistics 105
process width stepping

behavior 143
process window position 301
process_load_callbacks

variable 287
process, attaching to existing

CLI dattach command 31
continuing or halting execu-

tion on attach 31
process/thread sets,

changing 76
processes

attaching to 31, 102
automatically acquiring 274
automatically attaching

to 286
current status 138
destroyed when exiting

CLI 169, 171
detaching from 59

ROGUEWAVE.COM Index 436

holding 95
killing 97
properties 196
releasing 149
releasing control 59
restarting 126, 131
returning list of 191
starting 126, 131
terminating 97

processor status registerm Intel
IA-64 401

program control groups, placing
processes in 32

program stepping 142
program variable, changing

value 29, 48, 95, 114, 129,
149, 152

programs, loading 103
PROMPT variable 256
prompting when screen is

full 118
properties

address 180
clusterid 196
continuation_sig 218
count 194
done 188
dpid 219
duid 197, 219
enabled 181
enum_values 221
executable 197
expression 181, 188
focus_threads 188
heap_size 197
held 197, 219
hostname 197
id 181, 189, 194, 197, 219, 221
image_id 221
image_ids 197
initially_suspended_process

189
language 181, 222
length 181, 222
line 181
manager 219
member_type 194
member_type_values 194
members 194

name 222
nodeid 198
pc 219
prototype 222
rank 222
result 189
satisfaction_group 181
share 181
sp 219
stack_size 198
stack_vm_size 198
state 198, 219
state_values 198, 219
status 189
stop_when_done 181
stop_when_hit 182
struct_fields 222
symbol 206
syspid 198
systid 219
text_size 199
threadcount 199
threads 199
type 194
type_values 182, 194
vm_size 199

properties verb
actionpoint command 180,

184
expr command 188
group command 193
process command 196
thread command 218
type command 221

prototype property 222
ptlist

and dcalltree 45
and dstatus 138
and dwhere group-by

property 165
defined 139
example 141

PTSET variable 256
ptsets, see dptsets

Q
qnofullpath command-line

option 361
qualifying symbol names 99

quit command 171
quotation marks 29

R
r command-line option 347
r, see drun command
raising errors 186
rank property 222
ranks, attaching to 31
raw memory display 70
read_delayed subcommand 205
read_symbols command 200
reading action points file 25
reading symbols 200, 263, 275,

276
rebind subcommand 205
reenabling action points 68
register stack configuration reg-

ister
Intel IA-64 403

registers
Blue Gene

PowerPC 395
BlueGene

PowerPC 395
floating-point

Intel-x86 389, 407
PowerPC 397
SPARC 412

general
Intel-x86 388, 406
PowerPC 393
SPARC 411

Intel-x86 FPCR 390, 408
using the 391, 409

Intel-x86 FPSR 391, 392, 409
Power FPSCR 397
Power MSR 396
PowerPC FPSCR 397

using 399
PowerPC FPSCR,

using 399
PowerPC MSR 396
printing 120
SPARC FPSR 413
SPARC FPSR, using 414
SPARC PSR 412

registers, using in

ROGUEWAVE.COM Index 437

evaluations 40
regular expressions within name

argument 311
release 253
releasing control 59
releasing processes and

threads 34, 149
remapping keys 385
remote command-line

option 347
remote debugging, tvdsvr com-

mand syntax 351
remote systems, debugging 43
removing

aliases 178
group member 83
variables 151
worker threads 168

replacement characters 355
replacing tabs with spaces 258
replay, see dhistory command
rerun, see rerun command
resolve_final subcommand 205
resolve_next subcommand 205
respond 201
restart_threshold variable 288
restart, see drestart command
restarting processes 126, 131
restoring variables to default

values 151
result property 189
resuming execution 50, 81, 97
returning error information 186
root path 258

of TotalView 258
Root Window position 302
routines, stepping out of 114
rr, see drerun command
RS/6000, compiling on 360
RTLD_GLOBAL 63
RTLD_LAZY 63, 64
RTLD_LOCAL 63
RTLD_NOW 63, 64
run, see drun command
running to an address 152

S
s command-line option 347
s, see dstep command
satisfaction set 35, 252, 264
satisfaction_group property 181
save_window_pipe_or_ filename

variable 289
saved position

Call Tree Window 300
CLI Window 300
Help Window 300
Image Browser Window 300
Memory Statistics

Window 301
Message Queue Graph

Window 301
Message Queue

window 301
Modules Window 301
Process Window 301
Root Window 302
Thread Objects Window 302
Variable Window 302

saving action point
information 26

saving action points 25
saving process information 48
scope 206
scope command 202
scope of action point 257
screen size 255
search dialog, remaining

displayed 303
search path 254

mappings 257
setting 254, 256, 257

search_case_sensitive
variable 289

search_path command-line
option 348

search_port command-line
option 353

searching
case sensitive 289
wrapping 294

serial command-line option 348,
352, 353

serial line connection 353
server command-line

option 352, 353
server launch command 355
server_launch_enabled

variable 289
server_launch_timeout

variable 289
server_response_wait_timeout

variable 289
servers, number of 356
sessions

dsession 134
set verb

actionpoint command 180
group command 193
process command 196
thread command 218
type command 221

set_pw command-line
option 352, 354

set_pws command-line
option 354

set, see dset command
setting default preferences 136
setting lines between more

prompts 255
setting terminal properties 177
setting variables 135
SGROUP variable 256
share groups, share group

variable 256
share list element 255
share property 181
SHARE_ACTION_POINT

variable 257
share_action_point variable 289
share_in_group flag 257
shared libraries 377

closing 184
deferred reading 200
information about 184
loading symbols from 279
managing 184
manually loading 63
reading deferred

symbols 200
reading symbols 263, 275,

276
shared_data_filters 297

ROGUEWAVE.COM Index 438

shm command-line option 348
show_startup_parameters 304
show_sys_thread_id

variable 304
showing current status 138
showing Fortran compiler

variables 269
si, see dstepi command
SIGINT 283
signal_handling_mode com-

mand-line option 348
signal_handling_mode

variable 290
signals, handling in

TotalView 348
sil, see dstepi command
SILENT state 259
single process server

launch 289
single_click_dive_enabled

variable 304
siw, see dstepi command
sl, see dstep command
slices, printing 118
SLURM, control_c_quick_shut-

down variable 269, 340
source code, displaying 99
source_pane_tab_width

variable 291
source_process_startup 287
source_process_startup

command 204
SOURCE_SEARCH_MAPPINGS

variable 257
SOURCE_SEARCH_PATH

variable 257
sourcing tvd files 204
sp property 219
spaces simulating tabs 258
SPARC

architecture 411
floating-point registers 412
FPSR register 413

using 414
general registers 411
PSR register 412

spell_correction variable 291
spurs

support for 19
st, see dstatus command
stack frame 99

moving down through 66
see also call stack 165

stack frame, see also call
stack 13

stack memory 105
stack movements 155
stack_size property 198
stack_trace_qualification_level

variable 291
stack_vm size 106
stack_vm_size property 198
stack, unwinding 73
starting a process 126, 131
startup command 81
startup file 310
start-up file, tvdinit.tvd 20
startup options

-no_startup_scripts 346
state property 198, 219
state_values property 198, 219
statistical array data,

gathering 117
status of P/T sets 123
status property 189
status, see dstatus command
stderr 274
stderr command-line

option 349
stderr redirection 131
stderr_append command-line

option 349
stderr_is_stdout command-line

option 349
stdin 274
stdin command-line option 349
stdin redirection 131
stdout 275
stdout command-line

option 349
stdout redirection 131

stdout_append command-line
option 349

step, see dstep command
stepi, see dstepi command
stepping

group width behavior 142
machine instructions 111,

146
process width behavior 143
see also dnext command,

dnexti command, dstep
command, and dstepi
command 108

thread width behavior 143
warning when exception

thrown 294
STL instantiation 307
stop group breakpoint 40
stop_all property 264
STOP_ALL variable 39, 252, 257
stop_all variable 291
stop_group flag 257
stop_relatives_on_proc_ error

variable 292
stop_when_done command-line

command-line option 252
stop_when_done property 181,

264
stop_when_hit property 182
stopped process, responding to

resume commands 35
stopping execution 88
stopping group members

flag 257
stopping the control group 292
string length format 273
strings, assigning values to 29
stripped copy 365
struct_fields property 222
structure definitions in KCC 283
structure transformations 309
structures, transforming 311
stty command 177
suffixes variable 292
SunOS 5

/proc file system 374

ROGUEWAVE.COM Index 439

key remapping 385
linking to dbfork library 368
swap space 376

sw, see dstep command
swap command 376
swap space 375

AIX 375
Linux 375
SunOS 376

swapon command 376
symbol command 205
symbol name qualification 99
symbols

namespaces 214
properties 206
reading 275, 276

symbols, interpreting 29
syspid property 198
system variables, see CLI vari-

ables
systid property 219

T
tab processing 100
TAB_WIDTH variable 100, 258
tabs, replacing with spaces 258
target processes 88

terminating 97
target property 222
TCL library component search

path 258
team command-line option 349
teamplus command-line

option 349
templates

using with C++View 320
temporarily changing focus 76
terminal properties, setting 177
terminating debugging

session 169
terminating processes 97
text size 105
text_size property 199
thread barrier breakpoint, see

barrier breakpoint
thread command 218
thread counts, see ptlist

thread groups, see groups
thread list element 255
thread objects window

position 302
thread of interest 143, 152
thread state display via

ptlist 139
thread width stepping

behavior 143
threadcount property 199
threads

barriers 36
creating 81
current status 138
destroyed when exiting

CLI 169, 171
getting properties 218
holding 35, 95
list variable 258
picking up 280
property 199
releasing 149
returning list of 192
setting properties 218

THREADS variable 258
timeplus command-line

option 349
toolbar_style variable 304
Tools > Command Line

command 286
Tools > Dynamic Libraries

command 63
Tools > Evaluate window 73
tooltips_enabled variable 304
totalview command 337

options 338
synopsis 337
syntax and use 337

TotalView Debugger Server 31
TotalView executable 258
TotalView GUI version 305
TotalView version 293
totalview_jobid variable 357
TOTALVIEW_ROOT_PATH

variable 258
TOTALVIEW_TCLLIB_PATH

command 316
TOTALVIEW_TCLLIB_PATH

variable 258
TOTALVIEW_VERSION

variable 258
TotalView.breakpoints file 26
totalview/lib_cache

subdirectory 43
transformations

of types using C++View 317
using type 315
why type 307

transforming classes 311
transforming structures 309,

311
triggering breakpoints 40
ttf variable 292
tv_data_display.h, and API for us-

ing C++View 318
TV_ttf_display_type function

with C++View 327
TV_ttf_display_type function,

writing for C++View 318
TV:: namespace 135
TV::actionpoint command 180
TV::dll command 64, 184
TV::dll_read_loader_symbols_on-

ly variable 200
TV::dll_read_no_symbols

variable 200
TV::errorCodes command 186
TV::expr command 117, 188
TV::focus_groups command 190
TV::focus_processes

command 191
TV::focus_threads

command 192
TV::group command 193
TV::GUI:: namespace 135
TV::hex2dec command 195
TV::process command 196
TV::read_symbols

command 200
TV::respond command 201
TV::scope command 202
TV::source_process_startup

command 204
TV::symbol command 205
TV::thread command 218

ROGUEWAVE.COM Index 440

TV::ttf variable 316
TV::type command 221
TV::type_transformation

command 224
tvd files 204
TVD.breakpoints file 263
tvdinit.tvd start-up file 20, 178
tvdsvr command 351, 352, 355

description 352
options 352
password 352
PATH environment

variable 352
synopsis 352

tvdsvr.conf 353
TVDSVRLAUNCHCMD environ-

ment variable 355
tvhome command-line

option 349
tvscript 234

action point API 245
command syntax 235
create_actionpoint com-

mand-line option 239
display_specifiers com-

mand-line option 242
event actions 240
Event API 246
event_action command-line

option 239
event_action event

types 239
example 243
example script file 247
external script files 245
logging functions API 245
maxruntime memory sub-

option 243
memory debugging com-

mand-line options 242
memory debugging com-

mand-line sub-
options 242

MPI programs 234
options 239
process functions API 245
script_file command-line

option 243
script_log_filename com-

mand-line option 243
script_summary_log_file-

name command-line
option 243

source location expression
syntax 246

thread functions API 245
tvscript syntax for Blue

Gene 235
tvscript syntax for Blue Gene/Q

LoadLeveler job
manager 237

tvscript syntax for Blue Gene/Q
with ANL’s Cobalt 236

tvscript syntax for Blue Gene/Q
with SLURM 236

tvscript syntax for Cray Xeon
Phi 237, 238

type command 221
type names 281
type property 182, 194, 222
type transformation

variable 292
Type Transformations

why 307
type transformations

activating 316
creating 306
expressions 311
preference 308
regular expressions 311
structures 309
using 315
using C++View 317

type_callback 225
type_index 206
type_transformation

command 224
type_transformation_descrip-

tion property 225
type_values property 182, 194,

222

U
u, see dup command
uhp, see dunhold command
uht, see dunhold command

ui_font variable 304
ui_font_family variable 305
ui_font_size variable 305
un, see duntil command
unalias command 178
unconditional watchpoints 158
undefined symbols 63
unhold, see dunhold command
unl, see duntil command
unset, see dunset command
until, see duntil command
unw, see duntil command
unwinding the stack 73
up, see dup command
upper_bounds_callback 226
user_threads command-line

option 339, 350
user_threads variable 293
user-defined commands 20
user-level (M:N) thread

packages 293
using quotation marks 29
using type transformations 315
using_color variable 305
using_text_color variable 305
using_title_color variable 305

V
validate_callback 225
value for newly created action

points 257
values, printing 117
Variable Window position 302
variables

assigning command output
to 22

casting 120
changing values 29, 48, 95,

114, 129, 149, 152
default value for 134, 135
printing 117
removing 151
setting 135
watched 159
watching 158

vector transformation 307

ROGUEWAVE.COM Index 441

VERBOSE variable 259
verbosity command-line

option 350, 354
verbosity setting replacement

character 357
version variable 293, 305
version, TotalView 258
vfork()

calling 340
catching 274

viewing CLI variables 134, 135
visualizer_launch_enabled

variable 293
visualizer_launch_string

variable 294
visualizer_max_rank

variable 294
vm_size property 199
vm_size size 106

W
w, see dwhere command
wa, see dwatch command
wait, see dwait command
walk subcommand 203
warn_step_throw variable 294
warning state 259
watch, see dwatch command
watchpoints 158

$newval 158
$oldval 158
conditional 158
information not saved 26
length of 159
supported systems 159

-WG,-cmpo=i option 361
WGROUP variable 259
wh, see dwhat command
what, see dwhat command
When barrier done, stop

value 252
When barrier hit, stop value 252
where, see dwhere command
why type transformations 307
window position, forcing 299
worker group list variable 259
worker threads 259

inserting 168
removing 168

worker, see dworker command
workers list element 255
working_directory command-

line option 354
wot, see dworker command
wrap_on_search variable 294,

295

X
xterm_name command-line

option 350

	Contents
	About this Guide
	Overview
	Resources

	PART I CLI Commands
	Chapter 1 CLI Command Summary
	Chapter 2 CLI Commands
	Command Overview
	General CLI Commands
	CLI Initialization and Termination Commands
	Program Information Commands
	Execution Control Commands
	Action Points
	Platform-Specific CLI Commands
	Other Commands

	alias
	capture
	dactions
	dassign
	dattach
	dbarrier
	dbreak
	dcache
	dcalltree
	dcheckpoint
	dcont
	dcuda
	ddelete
	ddetach
	ddisable
	ddlopen
	ddown
	denable
	dexamine
	dflush
	dfocus
	dga
	dgo
	dgroups
	dhalt
	dheap
	dhistory
	dhold
	dkill
	dlappend
	dlist
	dload
	dmstat
	dnext
	dnexti
	dout
	dprint
	dptsets
	drerun
	drestart
	drun
	dsession
	dset
	dstatus
	dstep
	dstepi
	dunhold
	dunset
	duntil
	dup
	dwait
	dwatch
	dwhat
	dwhere
	dworker
	exit
	help
	quit
	spurs
	stty
	unalias

	Chapter 3 CLI Namespace Commands
	Command Overview
	Accessor Functions
	Helper Functions

	actionpoint
	dec2hex
	dll
	errorCodes
	expr
	focus_groups
	focus_processes
	focus_threads
	group
	hex2dec
	process
	read_symbols
	respond
	scope
	source_process_startup
	symbol
	thread
	type
	type_transformation

	Chapter 4 Batch Debugging Using tvscript
	Overview
	tvscript Command Syntax
	tvscript Options

	tvscript External Script Files
	Logging Functions API
	Process Functions API
	Thread Functions API
	Action Point API
	Event API
	Example tvscript Script File

	Chapter 5 TotalView Variables
	Overview
	Top-Level (::) Namespace
	TV:: Namespace
	TV::MEMDEBUG:: Namespace
	TV::GUI:: Namespace

	Chapter 6 Creating Type Transformations
	Overview
	Why Type Transformations
	Creating Structure and Class Transformations
	Transforming Structures
	build_struct_transform Function
	Type Transformation Expressions
	Using Type Transformations

	C++View
	Writing a Data Display Function
	Templates
	Precedence - Searching for TV_ttf_display_type
	TV_ttf_add_row
	Return values from TV_ttf_display_type
	Elision
	Other Constraints
	Safety
	Memory Management
	Multithreading
	Tips and Tricks
	Core Files
	Using C++View with ReplayEngine
	C
	Fortran
	Compiling and linking tv_data_display.c
	C++View Example Files
	Limitations
	Licensing

	PART II Running TotalView
	Chapter 7 TotalView Command Syntax
	Overview
	Command-Line Syntax
	Command-Line Options

	Chapter 8 TotalView Debugger Server Command Syntax
	Overview
	The tvdsvr Command and Its Options
	Description
	Options

	Replacement Characters

	PART III Platforms and Operating Systems
	Chapter 9 Platforms and Compilers
	Overview
	Compiling with Debugging Symbols
	Apple Running Mac OS X
	IBM AIX on RS/6000 Systems
	IBM Blue Gene
	IBM Power Linux
	Linux Running on an x86 Platform
	Linux Running on an x86-64 Platform
	Linux Running on an Itanium Platform
	Sun Solaris

	Using gnu_debuglink Files
	Total View Command-Line Options and CLI State Variables
	Searching for the gnu_debug_link File

	Linking with the dbfork Library
	dbfork on IBM AIX on RS/6000 Systems
	Linux or Mac OS X
	SunOS 5 SPARC

	Chapter 10 Operating Systems
	Operating Systems
	Supported Operating Systems
	Troubleshooting Mac OS X Installations
	Problem Description
	For Mac OS X Versions 10.8 (Mountain Lion) or Later
	For Mac OS X Versions 10.11 (Capitan) or Later
	Remotely Debugging without Console Access

	Mounting the /proc File System
	Mounting /proc with SunOS 5

	Swap Space
	Swap Space on IBM AIX
	Swap Space on Linux
	Swap Space on SunOS 5

	Shared Libraries
	Changing Linkage Table Entries and LD_BIND_NOW

	Debugging Your Program’s Dynamically Loaded Libraries
	dlopen Options for Scalability
	Known Limitations

	Remapping Keys
	Expression System
	Expression System on IBM AIX-Power and Blue Gene/Q

	Chapter 11 Architectures
	Overview
	AMD and Intel x86-64
	x86-64 General Registers
	x86-64 Floating-Point Registers
	x86-64 FPCR Register
	x86-64 FPSR Register
	x86-64 MXCSR Register

	Power Architectures
	Power General Registers
	Blue Gene Power Registers
	Blue Gene/Q QPX Floating-Point Registers
	Power MSR Register
	Power Floating-Point Registers
	Power FPSCR Register

	Intel IA-64
	Intel IA-64 General Registers
	IA-64 Processor Status Register Fields (PSR)
	Current Frame Marker Register Fields (CFM)
	Register Stack Configuration Register Fields (RSC)
	Previous Function State Register Fields (PFS)
	Floating Point Registers
	Floating Point Status Register Fields

	Intel x86
	Intel x86 General Registers
	Intel x86 Floating-Point Registers
	Intel x86 FPCR Register
	Intel x86 FPSR Register
	Intel x86 MXCSR Register

	Sun SPARC
	SPARC General Registers
	SPARC PSR Register
	SPARC Floating-Point Registers
	SPARC FPSR Register

	PART IV Appendices
	Appendix A MPI Startup
	Overview
	Customizing Your Parallel Configuration
	TotalView
	Standalone MemoryScape

	Example Parallel Configuration Definitions

	Index

