
ROGUE WAVE SOFTWARE    WWW.ROGUEWAVE.COM

TOTALVIEW® FOR HPC USER GUIDE

Version 2016.06



Rogue Wave Software, Inc.

Product Information: (303) 473-9118   (800) 487-3217
Fax: (303) 473-9137
Web: http://www.roguewave.com

Use of the Documentation and implementation of any of its processes or techniques are the sole responsibility of the client, and Rogue Wave 
Software, Inc., assumes no responsibility and will not be liable for any errors, omissions, damage, or loss that might result from any use or 
misuse of the Documentation

ROGUE WAVE SOFTWARE, INC., MAKES NO REPRESENTATION ABOUT THE SUITABILITY OF THE DOCUMENTA-
TION.  THE DOCUMENTATION IS PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND. ROGUE WAVE 
SOFTWARE, INC., HEREBY DISCLAIMS ALL WARRANTIES AND CONDITIONS WITH REGARD TO THE DOCUMEN-
TATION, WHETHER EXPRESS, IMPLIED, STATUTORY, OR OTHERWISE, INCLUDING WITHOUT LIMITATION ANY 
IMPLIED WARRANTIES OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE, OR NONINFRINGE-
MENT.  IN NO EVENT SHALL ROGUE WAVE SOFTWARE, INC., BE LIABLE, WHETHER IN CONTRACT, TORT, OR 
OTHERWISE, FOR ANY SPECIAL, CONSEQUENTIAL, INDIRECT, PUNITIVE, OR EXEMPLARY DAMAGES IN CON-
NECTION WITH THE USE OF THE DOCUMENTATION. 

The Documentation is subject to change at any time without notice. 

ACKNOWLEDGMENTS

ROGUEWAVE.COM    

Copyright © 2010-2016 by Rogue Wave Software, Inc. All rights reserved.
Copyright © 2007-2009 by TotalView Technologies, LLC
Copyright © 1998–2007 by Etnus LLC. All rights reserved.
Copyright © 1996–1998 by Dolphin Interconnect Solutions, Inc.
Copyright © 1993–1996 by BBN Systems and Technologies, a division of BBN Corporation.
No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, 
electronic, mechanical, photocopying, recording, or otherwise without the prior written permission of Rogue Wave Soft-
ware, Inc. ("Rogue Wave").
Use, duplication, or disclosure by the Government is subject to restrictions as set forth in subparagraph (c)(1)(ii) of the 
Rights in Technical Data and Computer Software clause at DFARS 252.227-7013.
Rogue Wave has prepared this manual for the exclusive use of its customers, personnel, and licensees. The information 
in this manual is subject to change without notice, and should not be construed as a commitment by Rogue Wave. Rogue 
Wave assumes no responsibility for any errors that appear in this document.
TotalView and TotalView Technologies are registered trademarks of Rogue Wave Software, Inc. TVD is a trademark of 
Rogue Wave.
Rogue Wave uses a modified version of the Microline widget library. Under the terms of its license, you are entitled to use 
these modifications. The source code is available at http://kb.roguewave.com/kb/.
All other brand names are the trademarks of their respective holders.

http://kb.roguewave.com/kb/


 Contents iii

About This Guide 1
Content Organization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .1
Audience  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .2
Using the CLI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3
Resources . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .3

Part 1:  Introduction to Debugging with TotalView

Chapter 1  About TotalView  5
Sessions Manager . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .7
GUI and Command Line Interfaces  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

The GUI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8
The CLI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .8

Stepping and Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .9
Data Display and Visualization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .10

Data Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 10
Diving in a Variable Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
Viewing a Variable Value across Multiple Processes or Threads . . . . . . . . . . . . . 13
Simplifying Array Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 13
Viewing a Variable’s Changing Value . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
Setting Watchpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16

Data Visualization  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 16
The Array Visualizer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
The Parallel Backtrace View  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17
The Call Tree and Call Graph  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 18
The Message Queue Graph  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

C++ View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20
Tools for Multi-Threaded and Parallel Applications  . . . . . . . . . . . . . . . . . . .22

Program Using Almost Any Execution Model  . . . . . . . . . . . . . . . . . . . . . . . . 22
View Process and Thread State  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 22
Control Program Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 23

Contents



Contents     iv

Using Groups  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 24
Synchronizing Execution with Barrier Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

Batch and Automated Debugging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .26
Remote Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
Debugging on a Remote Host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .27
CUDA Debugger  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .28
Memory Debugging  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .29
Reverse Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .30
What’s Next  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .31

Chapter 2  Basic Debugging  32
Program Load and Navigation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .33

Load the Program to Debug . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33
The Root and Process Windows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34

Program Navigation  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
Stepping and Executing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .38

Simple Stepping  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38
Canceling  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

Setting Breakpoints (Action Points)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .42
Basic Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
Evaluation Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
Saving and Reloading Action Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

Examining Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .49
Viewing Built-in Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49

Viewing Variables in the Process Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 49
Viewing Variables in an Expression List Window  . . . . . . . . . . . . . . . . . . . . . . . . . . 50

Viewing Compound Variables Using the Variable Window  . . . . . . . . . . . . . 51
Basic Diving  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 51
Nested Dives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 53
Rediving and Undiving . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Diving in a New Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 54
Displaying an Element in an Array of Structures . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

Visualizing Arrays  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .58
Launching the Visualizer from an Eval Point  . . . . . . . . . . . . . . . . . . . . . . . . . 59
Viewing Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 61

Moving On  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .63

Chapter 3  Accessing TotalView Remotely  64
About Remote Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .64

Remote Display Supported Platforms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64



Contents     v

Remote Display Components . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 64
Installing the Client . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .66

Installing on Linux . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Installing on Microsoft Windows  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 66
Installing on Apple Mac OS X Intel . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 67

Client Session Basics  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .69
Working on the Remote Host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 71

Advanced Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .73
Naming Intermediate Hosts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .75
Submitting a Job to a Batch Queuing System . . . . . . . . . . . . . . . . . . . . . . . . .76
Setting Up Your Systems and Security . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .77
Session Profile Management  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .78
Batch Scripts  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .80

tv_PBS.csh Script . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
tv_LoadLeveler.csh Script  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81

Part 2:  Debugging Tools and Tasks

Chapter 4  Starting TotalView  84
Compiling Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .85

Using File Extensions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86
Starting TotalView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .87

Starting TotalView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 88
Creating or Loading a Session  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Debugging a Program  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 89
Debugging a Core File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Debugging with a Replay Recording File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 90
Passing Arguments to the Program Being Debugged  . . . . . . . . . . . . . . . . . 90
Debugging a Program Running on Another Computer  . . . . . . . . . . . . . . . . 90
Debugging an MPI Program  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91
Using gnu_debuglink Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 91

Initializing TotalView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .93
Exiting from TotalView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .95

Chapter 5  Loading and Managing Sessions  96
Setting up Debugging Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .98

Loading Programs from the Sessions Manager  . . . . . . . . . . . . . . . . . . . . . . 98
Starting a Debugging Session . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 98
Debugging a New Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 99



Contents     vi

Attaching to a Running Program  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .101
Debugging a Core File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .106
Debugging with a Replay Recording File . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .107
Launching your Last Session  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .109

Loading Programs Using the CLI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 109
Debugging Options and Environment Setup  . . . . . . . . . . . . . . . . . . . . . . . 111

Adding a Remote Host . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 111
Options: Reverse Debugging, Memory Debugging, and CUDA . . . . . . . . . 113
Setting Environment Variables and Altering Standard I/O . . . . . . . . . . . . . 115

Environment Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .115
Standard I/O  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .116

Adding Notes to a Session  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 117
Managing Sessions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 119

Editing or Starting New Sessions in a Sessions Window  . . . . . . . . . . . . . . 121
Other Configuration Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122

Handling Signals  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 122
Setting Search Paths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 125
Setting Startup Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 127
Setting Preferences  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 128

Setting Preferences, Options, and X Resources  . . . . . . . . . . . . . . . . . . . . . . . . . .134

Chapter 6  Using and Customizing the GUI  138
Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 138
Using Mouse Buttons . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 139
Using the Root Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140

Controlling the Display of Processes and Threads . . . . . . . . . . . . . . . . . . . 142
Default View . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .143
Changing the Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .144
Grouping by Status and Source Line  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .145
Grouping by All Properties  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .146

Using the Old Root Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 146
Suppressing the Root Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 147

Using the Process Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 148
Resizing and Positioning Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 151
About Diving into Objects  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 152
Saving the Data in a Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 155
Searching and Navigating Program Elements  . . . . . . . . . . . . . . . . . . . . . . 156

Searching for Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 156
Looking for Functions and Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157
Finding the Source Code for Functions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 157

Resolving Ambiguous Names . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .158



Contents     vii

Finding the Source Code for Files  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 159
Resetting the Stack Frame . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 160

Viewing the Assembler Version of Your Code  . . . . . . . . . . . . . . . . . . . . . . 161
Editing Source Text . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 164

Chapter 7  Stepping through and Executing your Program  165
Using Stepping Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 166

Stepping into Function Calls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 167
Stepping Over Function Calls  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 168

Executing to a Selected Line  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 169
Executing Out of a Function  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 170
Continuing with a Specific Signal  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 171
Killing (Deleting) Programs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Restarting Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 172
Setting the Program Counter  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 173

Chapter 8  Setting Action Points  174
About Action Points  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 175

Print Statements vs. Action Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 177
Setting Breakpoints and Barriers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179

Setting Source-Level Breakpoints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 179
Choosing Source Lines  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .179

Setting Breakpoints at Locations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 182
Ambiguous Functions and Pending Breakpoints  . . . . . . . . . . . . . . . . . . . . . . . . .182

Displaying and Controlling Action Points  . . . . . . . . . . . . . . . . . . . . . . . . . . . 184
Disabling Action Points  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185
Deleting Action Points  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185
Enabling Action Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185
Suppressing Action Points  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .185

Setting Breakpoints on Classes and Functions  . . . . . . . . . . . . . . . . . . . . . . 186
Setting Machine-Level Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .188

Setting Breakpoints for Multiple Processes . . . . . . . . . . . . . . . . . . . . . . . . . 189
Setting Breakpoints When Using the fork()/execve() Functions  . . . . . . . . 191

Debugging Processes That Call the fork() Function  . . . . . . . . . . . . . . . . . . . . . . .191
Debugging Processes that Call the execve() Function . . . . . . . . . . . . . . . . . . . . .191
Example: Multi-process Breakpoint  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .192

Setting Barrier Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 193
About Barrier Breakpoint States  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .193
Setting a Barrier Breakpoint . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .194
Creating a Satisfaction Set  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195
Hitting a Barrier Point  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .195



Contents     viii

Releasing Processes from Barrier Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196
Deleting a Barrier Point . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .196
Changing Settings and Disabling a Barrier Point  . . . . . . . . . . . . . . . . . . . . . . . . .196

Defining Eval Points and Conditional Breakpoints  . . . . . . . . . . . . . . . . . . 197
Setting Eval Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 198
Creating Conditional Breakpoint Examples  . . . . . . . . . . . . . . . . . . . . . . . . . 199
Patching Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 200

Branching Around Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .200
Adding a Function Call . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201
Correcting Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .201

About Interpreted and Compiled Expressions  . . . . . . . . . . . . . . . . . . . . . . 202
About Interpreted Expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202
About Compiled Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .202

Allocating Patch Space for Compiled Expressions  . . . . . . . . . . . . . . . . . . . 203
Allocating Dynamic Patch Space  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204
Allocating Static Patch Space  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .204

Using Watchpoints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 206
Using Watchpoints on Different Architectures  . . . . . . . . . . . . . . . . . . . . . . 206
Creating Watchpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 208

Displaying Watchpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .209
Watching Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210
Triggering Watchpoints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 210

Using Multiple Watchpoints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211
Copying Previous Data Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .211

Using Conditional Watchpoints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 211
Saving Action Points to a File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 213

Chapter 9  Examining and Editing Data and Program Elements  214
Changing How Data is Displayed  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215

Displaying STL Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 215
Changing Size and Precision . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 218

Displaying Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 220
Displaying Program Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 221

Controlling the Displayed Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .222
Seeing Value Changes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 223

Seeing Structure Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .225
Displaying Variables in the Current Block . . . . . . . . . . . . . . . . . . . . . . . . . . . 225
Viewing Variables in Different Scopes as Program Executes  . . . . . . . . . . 226

Scoping Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .227
Freezing Variable Window Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 227
Locking the Address . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 228
Browsing for Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 230
Displaying Local Variables and Registers  . . . . . . . . . . . . . . . . . . . . . . . . . . . 232



Contents     ix

Interpreting the Status and Control Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . .233
Dereferencing Variables Automatically   . . . . . . . . . . . . . . . . . . . . . . . . . . . . 234
Examining Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 235
Displaying Areas of Memory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 236
Displaying Machine Instructions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 237
Rebinding the Variable Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 238
Closing Variable Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 239

Diving in Variable Windows . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 240
Displaying an Array of Structure’s Elements  . . . . . . . . . . . . . . . . . . . . . . . . 242
Changing What the Variable Window Displays  . . . . . . . . . . . . . . . . . . . . . . 244

Viewing a List of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Entering Variables and Expressions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 246
Seeing Variable Value Changes in the Expression List Window . . . . . . . . 248
Entering Expressions into the Expression Column . . . . . . . . . . . . . . . . . . . 249
Using the Expression List with Multi-process/Multi-threaded Programs  250
Reevaluating, Reopening, Rebinding, and Restarting . . . . . . . . . . . . . . . . . 251
Seeing More Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 251
Sorting, Reordering, and Editing . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 252

Changing the Values of Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 254
Changing a Variable’s Data Type  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256

Displaying C and C++ Data Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 256
Viewing Pointers to Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Viewing Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 258
Viewing typedef Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Viewing Structures  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 259
Viewing Unions  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 260
Casting Using the Built-In Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 261

Viewing Character Arrays ($string Data Type) . . . . . . . . . . . . . . . . . . . . . . . . . . . .263
Viewing Wide Character Arrays ($wchar Data Types) . . . . . . . . . . . . . . . . . . . . . .264
Viewing Areas of Memory ($void Data Type) . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265
Viewing Instructions ($code Data Type)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265
Viewing Opaque Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .265

Type-Casting Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 266
Displaying Declared Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266
Displaying Allocated Arrays . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266
Displaying the argv Array . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .266

Changing the Address of Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 267
Displaying C++ Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268

Viewing Classes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 268
C++View  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 270
Displaying Fortran Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271

Displaying Fortran Common Blocks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 271



Contents     x

Displaying Fortran Module Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 273
Debugging Fortran 90 Modules . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 274
Viewing Fortran 90 User-Defined Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . 275
Viewing Fortran 90 Deferred Shape Array Types  . . . . . . . . . . . . . . . . . . . . 276
Viewing Fortran 90 Pointer Types  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 276
Displaying Fortran Parameters . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 277

Displaying Thread Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 278
Scoping and Symbol Names  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 280

Qualifying Symbol Names  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 281

Chapter 10  Examining Arrays  283
Examining and Analyzing Arrays  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284

Displaying Array Slices  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 284
Using Slices and Strides  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .284
Using Slices in the Lookup Variable Command . . . . . . . . . . . . . . . . . . . . . . . . . . .287

Array Slices and Array Sections  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 287
Viewing Array Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 288

Expression Field  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289
Type Field . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .289
Slice Definition . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290
Update View Button . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290
Data Format Selection Box . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .290

Filtering Array Data Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 290
Filtering Array Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291
Filtering by Comparison  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .291
Filtering for IEEE Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .292
Filtering a Range of Values  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .294
Creating Array Filter Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295
Using Filter Comparisons  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .295

Sorting Array Data . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 296
Obtaining Array Statistics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 297

Displaying a Variable in all Processes or Threads  . . . . . . . . . . . . . . . . . . . 300
Diving on a “Show Across” Pointer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301
Editing a “Show Across” Variable  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 301

Visualizing Array Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 302
Visualizing a “Show Across” Variable Window  . . . . . . . . . . . . . . . . . . . . . . . 302

Chapter 11  Visualizing Programs and Data  303
Displaying Call Trees and Call Graphs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 304
Parallel Backtrace View  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 307
Array Visualizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309

Command Summary  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 309



Contents     xi

How the Visualizer Works  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 310
Viewing Data Types in the Visualizer . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 311

Viewing Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .311
Visualizing Data Manually  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312
Using the Visualizer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 312

Using Dataset Window Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .313
Using View Window Commands  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .314

Using the Graph Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 315
Displaying Graph Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .316

Using the Surface Window  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 317
Displaying Surface Views . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .318
Manipulating Surface Data  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .320

Visualizing Data Programmatically . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 322
Launching the Visualizer from the Command Line . . . . . . . . . . . . . . . . . . . 323
Configuring TotalView to Launch the Visualizer . . . . . . . . . . . . . . . . . . . . . . 323

Setting the Visualizer Launch Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .325
Adapting a Third Party Visualizer  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 325

Chapter 12  Evaluating Expressions  327
Why is There an Expression System? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 328

Calling Functions: Problems and Issues  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 329
Expressions in Eval Points and the Evaluate Window . . . . . . . . . . . . . . . . . 329
Using C++ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 331

Using Programming Language Elements  . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Using C and C++  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 333
Using Fortran   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 334

Fortran Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .334
Fortran Intrinsics . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .335

Using the Evaluate Window . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 337
Writing Assembler Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 339

Using Built-in Variables and Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
Using TotalView Variables  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 344
Using Built-In Statements  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 345



Contents     xii

Expression Evaluation with ReplayEngine . . . . . . . . . . . . . . . . . . . . . . . . . . 348

Chapter 13  About Groups, Processes, and Threads  349
A Couple of Processes  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 350
Threads  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 353
Complicated Programming Models . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 355
Types of Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 357
Organizing Chaos  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 360
How TotalView Creates Groups  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 364
Simplifying What You’re Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 370

Chapter 14  Manipulating Processes and Threads  372
Viewing Process and Thread States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 374

Seeing Attached Process States . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375
Seeing Unattached Process States  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 375

Using the Toolbar to Select a Target  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 377
Stopping Processes and Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 378
Using the Processes/Ranks and Threads Tabs . . . . . . . . . . . . . . . . . . . . . . 379

The Processes Tab  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 379
The Threads Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 380

Updating Process Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 382
Holding and Releasing Processes and Threads  . . . . . . . . . . . . . . . . . . . . . 383
Using Barrier Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 386

Barrier Point Illustration . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 387
Examining Groups  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 389
Placing Processes in Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 391
Starting Processes and Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 392
Creating a Process Without Starting It . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 393
Creating a Process by Single-Stepping  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 394
Stepping and Setting Breakpoints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 395

Chapter 15  Debugging Strategies for Parallel Applications  398
General Parallel Debugging Tips  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 399

Breakpoints, Stepping, and Program Execution  . . . . . . . . . . . . . . . . . . . . . 399
Setting Breakpoint Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .399
Synchronizing Processes   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .399
Using Group Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .399
Stepping at Process Level . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .400

Viewing Processes, Threads, and Variables  . . . . . . . . . . . . . . . . . . . . . . . . . 400



Contents     xiii

Identifying Process and Thread Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .400
Viewing Variable Values . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .400

Restarting from within TotalView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401
Attaching to Processes Tips  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 401

MPI Debugging Tips and Tools . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405
MPI Display Tools  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 405

MPI Rank Display  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .405
Displaying the Message Queue Graph Window  . . . . . . . . . . . . . . . . . . . . . . . . . .406
Displaying the Message Queue  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .408

MPICH Debugging Tips . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 411
IBM PE Debugging Tips  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 413

Part 3:  Using the CLI

Chapter 16  Using the Command Line Interface (CLI)  415
About the Tcl and the CLI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416

About The CLI and TotalView  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 416
Using the CLI Interface . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 417

Starting the CLI  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 418
Startup Example  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 419
Starting Your Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 420

About CLI Output  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 422
‘more’ Processing  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 423

Using Command Arguments . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 424
Using Namespaces . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 425
About the CLI Prompt . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 426
Using Built-in and Group Aliases  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 427
How Parallelism Affects Behavior . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428

Types of IDs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 428
Controlling Program Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430

Advancing Program Execution  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 430
Using Action Points . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 431



Contents     xiv

Chapter 17  Seeing the CLI at Work  432
Setting the CLI EXECUTABLE_PATH Variable . . . . . . . . . . . . . . . . . . . . . . . . 433
Initializing an Array Slice  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 434
Printing an Array Slice  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 435
Writing an Array Variable to a File  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 437
Automatically Setting Breakpoints . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 438

Part 4:  Advanced Tools and Customization

Chapter 18  Setting Up Remote Debugging Sessions  442
About Remote Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 442

Platform Issues when Remote Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . 443
Automatically Launching a Process on a Remote Server  . . . . . . . . . . . . . 445
Troubleshooting Server Autolaunch  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446

Changing the Remote Shell Command . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 446
Changing Arguments  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447
Autolaunching Sequence . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 447

Starting the TotalView Server Manually . . . . . . . . . . . . . . . . . . . . . . . . . . . . 449
TotalView Server Launch Options and Commands . . . . . . . . . . . . . . . . . . 452

Server Launch Options  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 452
Setting Single-Process Server Launch Options . . . . . . . . . . . . . . . . . . . . . . . . . . .452
Setting Bulk Launch Window Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .453

Customizing Server Launch Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . 455
Setting the Single-Process Server Launch Command  . . . . . . . . . . . . . . . . . . . . .455
Setting the Bulk Server Launch Command  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .456

Debugging Over a Serial Line  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460
Starting the TotalView Debugger Server . . . . . . . . . . . . . . . . . . . . . . . . . . . . 460

Chapter 19  Setting Up MPI Debugging Sessions  461
Debugging MPI Programs  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463

Starting MPI Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 463
Starting MPI Programs Using File > Debug New Parallel Program . . . . . . 463

The Parallel Program Session Dialog . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .465

MPICH Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
Starting TotalView on an MPICH Job  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 468
Attaching to an MPICH Job  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 470
Using MPICH P4 procgroup Files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 471

MPICH2 Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472
Downloading and Configuring MPICH2 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 472



Contents     xv

Starting TotalView Debugging on an MPICH2 Hydra Job . . . . . . . . . . . . . . 472
Starting TotalView Debugging on an MPICH2 MPD Job  . . . . . . . . . . . . . . . 473

Starting the MPI MPD Job with MPD Process Manager . . . . . . . . . . . . . . . . . . . .473
Starting an MPICH2 MPD Job  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .473

Cray MPI Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 475
IBM MPI Parallel Environment (PE) Applications  . . . . . . . . . . . . . . . . . . . . 476

Preparing to Debug a PE Application  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 476
Using Switch-Based Communications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .476
Performing a Remote Login  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .477
Setting Timeouts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .477

Starting TotalView on a PE Program  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
Setting Breakpoints  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 477
Starting Parallel Tasks  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478
Attaching to a PE Job  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 478

Attaching from a Node Running poe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .478
Attaching from a Node Not Running poe . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .479

IBM Blue Gene Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 480
Open MPI Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 482
QSW RMS Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

Starting TotalView on an RMS Job  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483
Attaching to an RMS Job  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 483

SGI MPI Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
Starting TotalView on an SGI MPI Job  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
Attaching to an SGI MPI Job . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 485
Using ReplayEngine with SGI MPI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 486

Sun MPI Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487
Attaching to a Sun MPI Job  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 487

Starting MPI Issues . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 489
Using ReplayEngine with Infiniband MPIs . . . . . . . . . . . . . . . . . . . . . . . . . . 490

Chapter 20  Setting Up Parallel Debugging Sessions  492
Debugging OpenMP Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493

Debugging OpenMP Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 493
About TotalView OpenMP Features  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .494
About OpenMP Platform Differences . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .494

Viewing OpenMP Private and Shared Variables  . . . . . . . . . . . . . . . . . . . . . 494
Viewing OpenMP THREADPRIVATE Common Blocks  . . . . . . . . . . . . . . . . . 496
Viewing the OpenMP Stack Parent Token Line  . . . . . . . . . . . . . . . . . . . . . . 497



Contents     xvi

Using SLURM . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 498
Debugging Cray XT Applications . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499

Cray XT Catamount . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 499
Configuring Cray XT for TotalView  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .500
Using TotalView with your Cray XT System . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .501

Cray Linux Environment (CLE) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 502
Support for Cray Abnormal Termination Processing (ATP) . . . . . . . . . . . . . . . . .502
Special Requirements for Using ReplayEngine  . . . . . . . . . . . . . . . . . . . . . . . . . . .502

Debugging Global Arrays Applications  . . . . . . . . . . . . . . . . . . . . . . . . . . . . 504
Debugging Shared Memory (SHMEM) Code . . . . . . . . . . . . . . . . . . . . . . . . 506
Debugging UPC Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507

Invoking TotalView  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
Viewing Shared Objects . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 507
Displaying Pointer to Shared Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 509

Debugging CoArray Fortran (CAF) Programs  . . . . . . . . . . . . . . . . . . . . . . . 511
Invoking TotalView  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
Viewing CAF Programs . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 511
Using CLI with CAF  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 512

Chapter 21  Group, Process, and Thread Control  513
Defining the GOI, POI, and TOI . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 514
Recap on Setting a Breakpoint  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 515
Stepping (Part I) . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 516

Understanding Group Widths  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
Understanding Process Width  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
Understanding Thread Width . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 517
Using Run To and duntil Commands . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 518

Setting Process and Thread Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
Understanding Process/Thread Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 520
Specifying Arenas  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 521
Specifying Processes and Threads . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 522

Defining the Thread of Interest (TOI)  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .522
About Process and Thread Widths  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .522

Specifier Examples  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 524
Setting Group Focus . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 526

Specifying Groups in P/T Sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 527
About Arena Specifier Combinations  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 528
‘All’ Does Not Always Mean ‘All’ . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 531
Setting Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 532
Using the g Specifier: An Extended Example . . . . . . . . . . . . . . . . . . . . . . . . 533
Merging Focuses   . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 535



Contents     xvii

Naming Incomplete Arenas . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 536
Naming Lists with Inconsistent Widths . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 537

Stepping (Part II): Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 538
Using P/T Set Operators  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 540
Creating Custom Groups . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 542

Chapter 22  Scalability in HPC Computing Environments  544
Overview  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 544
Configuring TotalView for Scalability . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546

Process Window’s Process Tab . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 546
dlopen Options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547

dlopen Event Filtering  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 547
Handling dlopen Events in Parallel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 548

MRNet . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 549
TotalView Infrastructure Models  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .549

Using MRNet with TotalView . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 551
General Use . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .551
Using MRNet on Blue Gene  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .555
Using MRNet on Cray Computers  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .560

Chapter 23  Checkpointing  562

Chapter 24  Fine-Tuning Shared Library Use  564
Preloading Shared Libraries  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 565
Controlling Which Symbols TotalView Reads  . . . . . . . . . . . . . . . . . . . . . . . 567

Specifying Which Libraries are Read  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 568
Reading Excluded Information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 569

Part 5:  Using the CUDA Debugger

Chapter 25  About the TotalView CUDA Debugger  571
TotalView CUDA Debugging Model  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 573
Installing the CUDA SDK Tool Chain . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 574
Backward Compatibility with CUDA Device Drivers . . . . . . . . . . . . . . . . . . 575
Directive-Based Accelerator Programming Languages . . . . . . . . . . . . . . . 576

Chapter 26  CUDA Debugging Tutorial  577
Compiling for Debugging . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577

Compiling for Fermi  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 577



Contents     xviii

Compiling for Fermi and Tesla  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578
Compiling for Kepler . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 578

Starting a TotalView CUDA Session  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 579
Loading the CUDA Kernel  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 580
Controlling Execution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 583

Running to a Breakpoint in the GPU code  . . . . . . . . . . . . . . . . . . . . . . . . . . 583
Viewing the Kernel’s Grid Identifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .584

Single-Stepping GPU Code  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 584
Halting a Running Application . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 585

Displaying CUDA Program Elements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
GPU Assembler Display . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
GPU Variable and Data Display  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 586
CUDA Built-In Runtime Variables . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
Type Casting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 587
PTX Registers . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 590



Contents     xix

Enabling CUDA MemoryChecker Feature . . . . . . . . . . . . . . . . . . . . . . . . . . 592
GPU Core Dump Support  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 593
GPU Error Reporting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 594
Displaying Device Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 596

Chapter 27  CUDA Problems and Limitations  597
Hangs or Initialization Failures . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 597
CUDA and ReplayEngine  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 598

Chapter 28  Sample CUDA Program  599

Part 6:  Appendices

Appendix A Glossary 605

Appendix B Licenses 623
3rd-Party Licenses  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623
CUDA License Information  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 623

Appendix C Resources 627
TotalView Family Differences  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 627
TotalView Documentation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 628
Conventions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630
Contacting Us  . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 630

Index 631



About This Guide     1      

About This Guide

Content Organization
This guide describes how to use the TotalView® for HPC debugger, a source- and machine-level debugger for 
multi-process, multi-threaded programs. It is assumed that you are familiar with programming languages, a 
UNIX or Linux operating system, and the processor architecture of the system on which you are running 
TotalView and your program.

This user guide combines information for running the TotalView debugger either from within a Graphic User 
Interface (GUI), or the Command Line Interface (CLI), run within an xterm-like window for typing commands. 

The information here emphasizes the GUI interface, as it is easier to use. Understanding the GUI will also help 
you understand the CLI.

Although TotalView doesn’t change much from platform to platform, differences between platforms are 
mentioned.

The information in this guide is organized into these parts:

• Part I, “Introduction to Debugging with TotalView” contains an overview of TotalView features 
and an introduction to debugging with TotalView.

• Part II, “Debugging Tools and Tasks” describes the function and use of TotalView’s primary set 
of debugging tools, such as stepping (Chapter 7), setting breakpoints (Chapter 8) and 
examining data including arrays (Chapter 9 and Chapter 10). 

This part also includes detail on TotalView’s process/thread model (Chapter 13 and working with multi-
process, multi-threaded programs (Chapter 14).



About This Guide / Audience  2

• Part III, “Using the CLI” discusses the basics of using the Command Line Interface (CLI) for 
debugging. CLI commands are not documented in this book but in the TotalView for HPC Reference 
Guide.

• Part IV, “Advanced Tools and Customization” provides additional information required for setting 
up various MPI and other parallel programming environments, including high performance 
computing environments such as MPICH, OpenMP, UPC, and CAF. Chapter 18 discusses how to get 
the TotalView Debugger Server (tvdsvr) running and how to reconfigure the way that TotalView 
launches the tvdsvr. Chapter 21 builds on previous process/thread discussions to provide more 
detailed configuration information and ways to work in multi-process, multi-threaded 
environments.

In most cases, TotalView defaults work fine and you won’t need much of this information.

• Part V, “Using the CUDA Debugger” describes the CUDA debugger, including a sample application.

Audience
Many of you are sophisticated programmers with knowledge of programming and its methodologies, and almost 
all of you have used other debuggers and have developed your own techniques for debugging the programs that 
you write.

We know you are an expert in your area, whether it be threading, high-performance computing, or client/server 
interactions. So, rather than telling you about what you’re doing, this book tells you about TotalView.

TotalView is a rather easy-to-use product. Nonetheless, we can’t tell you how to use TotalView to solve your prob-
lems because your programs are unique and complex, and we can’t anticipate what you want to do. So, what 
you’ll find in this book is a discussion of the kinds of operations you can perform. This book, however, is not just a 
description of dialog boxes and what you should click on or type. Instead, it tells you how to control your program, 
see a variable’s value, and perform other debugging actions.

Detailed information about dialog boxes and their data fields is in the context-sensitive Help available directly 
from the GUI. In addition, an HTML version of this information is shipped with the documentation and is available 
on our Web site. If you have purchased TotalView, you can also post this HTML documentation on your intranet.



About This Guide / Using the CLI  3

Using the CLI
To use the Command Line Interface (CLI), you need to be familiar with and have experience debugging programs 
with the TotalView GUI. CLI commands are embedded within a Tcl interpreter, so you get better results if you are 
also familiar with Tcl. If you don’t know Tcl, you can still use the CLI, but you lose the ability to program actions that 
Tcl provides; for example, CLI commands operate on a set of processes and threads. By using Tcl commands, you 
can save this set and apply this saved set to other commands.

The following books are excellent sources of Tcl information:

• Ousterhout, John K. Tcl and the Tk Toolkit. Reading, Mass.: Addison Wesley, 1997.

• Welch, Brent B. Practical Programming in Tcl & Tk. Upper Saddle River, N.J.: Prentice Hall PTR, 1999.

There is also a rich set of resources available on the Web. 

The fastest way to gain an appreciation of the actions performed by CLI commands is to scan “CLI Command 
Summary” of the TotalView for HPC Reference Guide, which contains an overview of CLI commands.

Resources
For information on

• TotalView family differences, which details the differences among TotalView Enterprise, TotalView 
Team, and TotalView Individual

• a complete list of TotalView documentation

• conventions used in the documentation

• contact information

please see Appendix C.



     4      

PART I  

Introduction to Debugging 
with TotalView

This part of the TotalView for HPC User Guide introduces TotalView’s basic features and walks through a basic 
debugging session. Also included here is how to use the Remote Display Client, which allows you to connect 
to TotalView remotely.

Chapter 1, “About TotalView,” on page 5
Introduces some of TotalView’s primary features.

Chapter 2, “Basic Debugging,” on page 32
Presents a basic debugging session with TotalView, illustrating tasks such as setting action points and viewing 
data.

Chapter 3, “Accessing TotalView Remotely,” on page 64
Discusses how to start and interact with TotalView when it is executing on another computer.



About TotalView     5      

Chapter 1  

About TotalView

TotalView® for HPC is a powerful tool for debugging, analyzing, and tuning the performance of complex serial, 
multi-process, multi-threaded, and network-distributed programs. It supports a broad range of platforms, 
environments, and languages.

TotalView is designed to handle most types of High Performance Computing (HPC) parallel applications, and 
can be used to debug programs, running processes, or core files. 

This chapter introduces TotalView’s primary components and features, including:

• Sessions Manager for managing and loading debugging sessions, “Sessions Manager” on 
page 7

• Graphical User Interface with powerful data visualization capabilities, “The GUI” on page 8

• Command Line Interface (CLI) for scripting and batch environments, “The CLI” on page 8

• Stepping commands and specialized breakpoints that provide fine-grained control, 
“Stepping and Breakpoints” on page 9

• Examining complex data sets, “Data Display and Visualization” on page 10

• Controlling threads and processes, “Tools for Multi-Threaded and Parallel Applications” on 
page 22

• Automatic batch debugging, “Batch and Automated Debugging” on page 26

• Running TotalView remotely, “Remote Display” on page 27

• Debugging CUDA code running on the host Linux-x86_64 and the NVIDIA® GPU, “CUDA 
Debugger” on page 28

• Debugging remote programs, “Debugging on a Remote Host” on page 27



About TotalView /   6

• Memory debugging capabilities integrated into the debugger, “Memory Debugging” on page 29

• Recording and replaying running programs, “Reverse Debugging” on page 30



About TotalView / Sessions Manager  7

Sessions Manager
The Sessions Manager is a GUI interface to manage your debugging sessions. Use the manager to load a new 
program, to attach to a program, or to debug a core file. The manager keeps track of your debugging sessions, 
enabling you to save, edit or delete any previous session. You can also duplicate a session and then edit its config-
uration to test programs in a variety of ways. 

RELATED TOPICS
Managing debugging sessions “Managing Sessions” on page 119

Loading programs into TotalView 
using the Session Manager

“Loading Programs from the Sessions Manager” on page 98



About TotalView / GUI and Command Line Interfaces  8

GUI and Command Line Interfaces
TotalView provides both an easy-to-learn graphical user interface (GUI) and a Command Line Interface (CLI). The 
CLI and GUI are well integrated, so you can use them both together, launching the CLI from the GUI and invoking 
CLI commands that display data in the GUI. Or you can use either separately without the other. However, 
because of the GUI’s powerful data visualization capabilities and ease of use, we recommend using it (along with 
the CLI if you wish) for most tasks.

The GUI
The GUI is an easy and quick way to access most of TotalView’s features, allowing you to dive on almost any object 
for more information. You can dive on variables, functions, breakpoints, or processes. Data is graphically dis-
played so you can easily analyze problems in array data, memory data, your call tree/graph, or a message queue 
graph. 

The CLI
The Command Line Interface, or CLI, provides an extensive set of commands to enter into a command window. 
These commands are embedded in a version of the Tcl command interpreter. You can enter any Tcl statements 
from any version of Tcl into a CLI window, and you can also make use of TotalView-specific debugging commands. 
These additional commands are native to this version of Tcl, so you can also use Tcl to manipulate your programs. 
The result is that you can use the CLI to create your own commands or perform any kind of repetitive operation. 
For example, the following code shows how to set a breakpoint at line 1038 using the CLI:
dbreak 1038

When you combine Tcl and TotalView, you can simplify your job. For example, the following code sets a group of 
breakpoints:
foreach i {1038 1043 1045} {
   dbreak $i  
}

RELATED TOPICS
GUI Basics and Customizations “Using and Customizing the GUI” on page 138

RELATED TOPICS
Using the CLI Part III, “Using the CLI,” on page 414

CLI commands and reference Chapter 3 of the TotalView for HPC Reference Guide 



About TotalView / Stepping and Breakpoints  9

Stepping and Breakpoints
In TotalView, breakpoints are just a type of action point, and there are four types: 

• A breakpoint stops execution of processes and threads that reach it. 

• An eval point executes a code fragment when it is reached. 

• A barrier point synchronizes a set of threads or processes at a location (“Synchronizing Execution 
with Barrier Points” on page 25). 

• A watchpoint monitors a location in memory and stops execution when it changes (“Setting 
Watchpoints” on page 16).

You can set action points in your program by selecting the boxed line numbers in the Source Code pane of a Pro-

cess window. A boxed line number indicates that the line generates executable code. A  icon appears at the 

line number to indicate that a breakpoint is set on the line. Selecting the  icon clears the breakpoint.

When a program reaches a breakpoint, it stops. You can resume or otherwise control program execution in any 
of the following ways:

• Use the single-step commands described in “Using Stepping Commands” on page 166.

• Use the set program counter command to resume program execution at a specific source line, 
machine instruction, or absolute hexadecimal value. See “Setting the Program Counter” on 
page 173.

• Set breakpoints at lines you choose, and let your program execute to that breakpoint. See “Setting 
Breakpoints and Barriers” on page 179.

• Set conditional breakpoints that cause a program to stop after it evaluates a condition that you 
define, for example, “stop when a value is less than eight.” See “Setting Eval Points” on page 198.

RELATED TOPICS
Detailed information on action points Chapter 8, “Setting Action Points,” on page 174

Stepping commands “Stepping through and Executing your Program” on 
page 165



About TotalView / Data Display and Visualization  10

Data Display and Visualization
TotalView provides comprehensive and flexible tools for developers to explore large and complex data sets. The 
TotalView data window supports browsing through complex structures and arrays. Powerful slicing and filtering 
helps developers manage arrays of thousands or even millions of elements. Data watchpoints provide answers 
to questions about how data is changing. Built-in graphical visualization displays a quick view of complex numeri-
cal data. Type transformations, especially C++ View, help you display data in a meaningful way.

This section includes:

• “Data Display” on page 10

• “Data Visualization” on page 16

•  “C++ View” on page 20

Data Display
All variables in your current routine are displayed in the Process Window’s Stack Frame Pane in its upper right 
corner, Figure 1. If a variable’s value is simple, it is visible here. If the value is not simple, dive on the variable to get 
more information.

NOTE >> You can dive on almost any object in TotalView to display more information about that object. 
To dive, position the cursor over the item and click the middle mouse button or double-click 
the left mouse button. 

Some values in the Stack Frame Pane are bold, meaning that you can click on the value and edit it.

RELATED TOPICS
Viewing and editing data Chapter 9, “Examining and Editing Data and 

Program Elements,” on page 214

Data Visualization Chapter 11, “Visualizing Programs and Data,” on 
page 303



About TotalView / Data Display and Visualization  11

This section includes:

• “Diving in a Variable Window” on page 11

• “Viewing a Variable Value across Multiple Processes or Threads” on page 13

• “Simplifying Array Display” on page 13

• “Viewing a Variable’s Changing Value” on page 16

• “Setting Watchpoints” on page 16

Diving in a Variable Window

Figure 2 shows two Variable Windows, one created by diving on a structure and the second by diving on an array.

Figure 1 – Stack Frame Pane of the Process Window

RELATED TOPICS
Diving in general “About Diving into Objects” on page 152

Displaying non-scalar variables “Displaying Variables” on page 220

Editing variables “Changing the Values of Variables” on page 254 and 
“Changing a Variable’s Data Type” on page 256



About TotalView / Data Display and Visualization  12

 

If the displayed data is not scalar, you can redive on it for more information. When you dive in a Variable Window, 
TotalView replaces the window’s contents with the new information, or you can use the View > Dive Thread in 
New Window command to open a separate window.

For pointers, diving on the variable dereferences the pointer and displays the data pointed to. In this way, you can 
follow linked lists. 

Buttons in the upper right corner ( ) support undives and redives. For example, if you’re following a 
pointer chain, click the center-left arrow to go back to where you just were. Click the center-right arrow to move 
forward. 

Figure 2 – Diving on a Structure and an Array

RELATED TOPICS
Diving in variable windows “Diving in Variable Windows” on page 240

Duplicating variable 
windows

The Window > Duplicate command, in the in-product Help



About TotalView / Data Display and Visualization  13

Viewing a Variable Value across Multiple Processes or Threads

You can simultaneously see the value of a variable in each process or thread using the View > Show Across > 
Thread or View > Show Across > Process commands, Figure 3.

You can export data created by the Show Across command to the Array Visualizer (see “The Array Visualizer” on 
page 17).

Simplifying Array Display

Because arrays frequently have large amounts of data, TotalView provides a variety of ways to simplify their dis-
play, including slicing and filtering, and a special viewer, the Array Viewer.

Slicing and Filtering

The top Variable Window of Figure 4 shows a basic slice operation that displays array elements at positions 
named by the slice. In this case, TotalView is displaying elements 6 through 10 in each of the array’s two 
dimensions. 

The other Variable Window combines a filter with a slice to display data according to some criteria. Here, the filter 
shows only elements with a value greater than 300.

Figure 3 – Viewing Across Processes

RELATED TOPICS
The View > Show Across... command “Displaying a Variable in all Processes or Threads” on 

page 300

Exporting a Show Across view to the Visualizer “Visualizing a “Show Across” Variable Window” on page 302



About TotalView / Data Display and Visualization  14

Figure 4 – Slicing and Filtering Arrays

RELATED TOPICS
Arrays in general Chapter 10, “Examining Arrays,” on page 283

Filtering in arrays “Filtering Array Data Overview” on page 290

Array slices “Displaying Array Slices” on page 284



About TotalView / Data Display and Visualization  15

The Array Viewer

Use the Array Viewer (from the Variable Window’s Tools > Array Viewer command) for another graphical view of 
data in a multi-dimensional array, Figure 5. Think of this as viewing a “plane” of two-dimensional data in your 
array.

The Array Viewer initially displays a slice of data based on values entered in the Variable Window. You can change 
the displayed data by modifying the Expression, Type, or Slice controls.

You can also see the shape of the data using the Visualizer, introduced in this chapter in “The Array Visualizer” 
on page 17. 

Figure 5 – Array Viewer

RELATED TOPICS
The Array Viewer “Viewing Array Data” on page 288



About TotalView / Data Display and Visualization  16

Viewing a Variable’s Changing Value

Variable Windows let you critically examine many aspects of your data. In many cases, however, you may be pri-
marily interested in the variable’s value. For this, use the Expression List Window, Figure 6, to display the values of 
many variables at the same time.

This is particularly useful for viewing variable data about scalar variables in your program.

Setting Watchpoints

The watchpoint — another type of action point — is yet another way to look at data. A TotalView watchpoint can 
stop execution when a variable’s data changes, no matter the cause. That is, you could change data from within 
30 different statements, triggering the watchpoint to stop execution after each of these 30 statements make a 
change. Or, if data is being overwritten, you could set a watchpoint at that location in memory and then wait until 
TotalView stops execution because of an overwrite.

If you associate an expression with a watchpoint (by selecting the Conditional button in the Watchpoint Proper-
ties dialog box to enter an expression), TotalView evaluates the expression after the watchpoint triggers.

Data Visualization
TotalView provides a set of tools to visualize your program activity, including its arrays and MPI message data. 
These include:

Figure 6 – Tools > Expression List Window

RELATED TOPICS
Lists of variables in the Expression List Window “Viewing a List of Variables” on page 246

TotalView’s comprehensive expression system “Evaluating Expressions” on page 327

RELATED TOPICS
About watchpoints in general “Using Watchpoints” on page 206

The Tools > Create Watchpoint command Tools > Create Watchpoint in the in-
product Help



About TotalView / Data Display and Visualization  17

• “The Array Visualizer” on page 17

• “The Parallel Backtrace View” on page 17

• “The Call Tree and Call Graph” on page 18

• “The Message Queue Graph” on page 20

The Array Visualizer

The Variable Window’s Tools > Visualize command shows a graphical representation of a multi-dimensional 
dataset. For instance, Figure 7 shows a sine wave in the Visualizer.

This helps you to quickly see outliers or other issues with your data. 

The Parallel Backtrace View

The Parallel Backtrace View displays the state of every process and thread in a parallel job, allowing you to view 
thousands of processes at once, and helping you to identify stray processes.

Figure 7 – Visualizing an Array

RELATED TOPICS
The Visualizer “Visualizing Programs and Data” on page 303

Using the Tools > Visualize and the Tools > Visual-
ize Distribution commands

The Visualizer Window in the in-product Help



About TotalView / Data Display and Visualization  18

Access the Parallel Backtrace View from the Tools menu of the Variable Window.

This view groups threads by common stack backtrace frames in a text-based tree. Expand or collapse elements to 
drill down and get more information. 

The Call Tree and Call Graph

The Call Tree or Call Graph, accessible from the Process Window using the command Tools > Call Graph, pro-
vides a quick view of application state and is especially helpful for locating outliers and bottlenecks. 

Figure 8 – Parallel Backtrace View

RELATED TOPICS
The Parallel Backtrace View “Parallel Backtrace View” on page 307

Using the Tools > Parallel Backtrace View 
command

Tools > Parallel Backtrace View in the in-
product Help



About TotalView / Data Display and Visualization  19

By default, the Call Tree or Call Graph displays the Call Tree representing the backtrace of all the selected pro-
cesses and threads. 

For multi-process or multi-threaded programs, a compressed process/thread list (ptlist) next to the arrows indi-
cates which threads have a routine on their call stack. You can dive on a routine in the call tree/graph to create a 
group called call_graph that contains all the threads that have the routine you dived on in their call stack.

Figure 9 – Tools > Call Graph Dialog Box

RELATED TOPICS
The Call Tree or Call Graph in more detail “Displaying Call Trees and Call Graphs” on page 304

Using the CLI’s dwhere -group_by option to con-
trol and reduce the backtraces

 dwhere -group_by in the TotalView for HPC Reference 
Guide

About the ptlist "Compressed List Syntax (ptlist)" in the TotalView for HPC 
Reference Guide

Using the Tools > Call Graph command Tools > Call Graph in the in-product Help



About TotalView / Data Display and Visualization  20

The Message Queue Graph

For MPI programs, use the Process Window’s Message Queue Graph (Tools > Message Queue Graph) to display 
your program’s message queue state.

The graph’s Options window (available by clicking on the Options button, above) provides a variety of useful tools, 
such as Cycle Detection to generate reports about cycles in your messages, a helpful way to see when messages 
are blocking or causing deadlocks. Also useful is its filtering capability, which helps you identify pending send and 
receive messages, as well as unexpected messages.

C++ View
Using C++ View, you can format program data in a more useful or meaningful form than its concrete representa-
tion displayed in a running program. This allows you to inspect, aggregate, and check the validity of complex data, 
especially data that uses abstractions such as structures, classes, and templates. 

Figure 10 – A Message Queue Graph

RELATED TOPICS
The Message Queue Graph “Displaying the 

Message Queue Graph Window” on 
page 406

Using the Tools > Message Queue 
Graph command

Tools > Message Queue Graph in the 
in-product Help



About TotalView / Data Display and Visualization  21

RELATED TOPICS
More on C++ View Creating Type Transformations” in the 

TotalView for HPC Reference Guide



About TotalView / Tools for Multi-Threaded and Parallel Applications  22

Tools for Multi-Threaded and Parallel 
Applications
TotalView is designed to debug multi-process, multi-threaded programs, with a rich feature set to support fine-
grained control over individual or multiple threads and processes. This level of control makes it possible to quickly 
resolve problems like deadlocks or race conditions in a complex program that spawns thousands of processes 
and threads across a broad network of servers.

When your program creates processes and threads, TotalView can automatically bring them under its control, 
whether they are local or remote. If the processes are already running, TotalView can acquire them as well, avoid-
ing the need to run multiple debuggers. 

TotalView places a server on each remote processor as it is launched that then communicates with the main 
TotalView process. This debugging architecture gives you a central location from which you can manage and 
examine all aspects of your program.

This section introduces some of TotalView’s primary tools for working with complex parallel applications, and 
includes:

• “Program Using Almost Any Execution Model” on page 22

• “View Process and Thread State” on page 22

• “Control Program Execution” on page 23

Program Using Almost Any Execution Model
TotalView supports the popular parallel execution models MPI and MPICH, OpenMP, ORNL, SGI shared memory 
(shmem), Global Arrays, UPC, and CAF. 

View Process and Thread State
You can quickly view process and thread state in both the Root Window and the Process Window. (You can also 
view the state of all processes and threads in a parallel job using the “The Parallel Backtrace View” on page 17.)

RELATED TOPICS
MPI debugging sessions “Setting Up MPI Debugging Sessions” on page 461

Other parallel environments (not MPI) “Setting Up Parallel Debugging Sessions” on 
page 492



About TotalView / Tools for Multi-Threaded and Parallel Applications  23

The Root Window contains an overview of all processes and threads being debugged, along with their process 
state (i.e. stopped, running, at breakpoint, etc.). You can dive on a process or a thread listed in the Root Window 
to quickly see detailed information. 
 

Control Program Execution
Commands controlling execution operate on the current focus, or target -- either an individual thread or process, 
or a group of threads and processes. You can individually stop, start, step, and examine any thread or process, or 
perform these actions on a group.

Select the target of your action from the toolbar’s pulldown menu, Figure 12.

Figure 11 – The Root Window

RELATED TOPICS
More on process and thread state “Viewing Process and Thread States” on page 374

The Root Window “Using the Root Window” on page 140

The Process Window “Using the Process Window” on page 148

Figure 12 – Selecting a Target from the Toolbar Pulldown



About TotalView / Tools for Multi-Threaded and Parallel Applications  24

You can also synchronize execution across threads or processes using a barrier point, which holds any threads or 
processes in a group until each reaches a particular point.

Using Groups

TotalView automatically organizes your processes and threads into groups, allowing you to view, execute and 
control any individual thread, process, or group of threads and processes. TotalView defines built-in groups, and 
you can define your own custom groups that help support full, asynchronous debugging control over your 
program.

For example, you can:

• Single step one or a small set of processes rather than all of them

• Use Group > Custom Group to create named groups

• Use Run To or breakpoints to control large groups of processes

• Use Watchpoints to watch for variable changes

For instance, here is the Processes Tab after a group containing 10 processes (in dark blue below) is selected in 
the Toolbar’s Group pulldown list. This identifies the processes that will be acted on when you select a command 
such as Go or Step.

RELATED TOPICS
Selecting a target (also called 
focus)

“Using the Toolbar to Select a Target” on page 377

Setting process and thread focus 
using the CLI

“Setting Process and Thread Focus” on page 520

Setting group focus “Setting Group Focus” on page 526

Finely controlling focus “Defining the GOI, POI, and TOI” on page 514

Introduction to barrier points “Synchronizing Execution with Barrier Points” on page 25

RELATED TOPICS
Groups in TotalView “Organizing Chaos” on page 360

How TotalView predefines groups “How TotalView Creates Groups” on page 364

Introduction to setting watchpoints “Setting Watchpoints” on page 16

Creating custom groups “Creating Custom Groups” on page 542



About TotalView / Tools for Multi-Threaded and Parallel Applications  25

Synchronizing Execution with Barrier Points

You can synchronize execution of threads and processes either manually using a hold command, or automati-
cally by setting an action point called a barrier point. These two tools can be used together for fine-grained 
execution control. For instance, if a process or thread is held at a barrier point you can manually release it and 
then run it without first waiting for all other processes or threads in the group to reach that barrier. 

When a process or a thread is held, it ignores any command to resume executing. For example, assume that you 
place a hold on a process in a control group that contains three processes. If you select Group > Go, two of the 
three processes resume executing. The held process ignores the Go command.

RELATED TOPICS
Setting barrier points “Setting Breakpoints and Barriers” on page 179 and 

Using barrier points in a multi-threaded, 
multi-process program

“Using Barrier Points” on page 386

Using the CLI to set barrier points “Using Action Points” on page 431

Strategies for using barrier points “Simplifying What You’re Debugging” on page 370 
and “Breakpoints, Stepping, and Program Execu-
tion” on page 399



About TotalView / Batch and Automated Debugging  26

Batch and Automated Debugging
You can set up unattended batch debugging sessions using TotalView’s powerful scripting tool tvscript. First, 
define a series of events that may occur within the target program. tvscript loads the program under its control, 
sets breakpoints as necessary, and runs the program. At each program stop, tvscript logs the data for your 
review when the job has completed. 

A script file can contain CLI and Tcl commands (Tcl is the basis for TotalView’s CLI).

Here, for example, is how tvscript is invoked on a program:

tvscript \
  -create_actionpoint "method1=>display_backtrace -show_arguments" \
  -create_actionpoint "method2#37=>display_backtrace -show_locals -level 1" \
  -display_specifiers "nowshow_pid,noshow_tid" \
  -maxruntime "00:00:30" \
      filterapp -a 20

You can also execute MPI programs using tvscript. Here is a small example:

tvscript -mpi "Open MP" -tasks 4 \
     -create_actionpoint \
       "hello.c#14=>display_backtrace" \
      ~/tests/MPI_hello

While batch debugging of large-scale MPI applications through tvscript has long been a powerful tool, tvscript 
has recently been enhanced and fully certified to handle 1024 process jobs, and 2048 threads per process, or 
more than two million running operations.

RELATED TOPICS
About tvscript and batch scripting, including 
memory debugging

Batch Scripting and Using the CLI” in Debugging 
Memory Problems with MemoryScape

tvscript syntax and command line options Batch Debugging Using tvscript” in the TotalView 
for HPC Reference Guide



About TotalView / Remote Display  27

Remote Display
Using the Remote Display Client, you can easily set up and operate a TotalView debug session that is running on 
another system. A licensed copy of TotalView must be installed on the remote machine, but you do not need an 
additional license to run the Client.

The Client also provides for submission of jobs to batch queuing systems PBS Pro and Load Leveler.

Debugging on a Remote Host
Using the TotalView Server, you can debug programs located on remote machines. Debugging a remote process 
is similar to debugging a native process, although performance depends on the load on the remote host and net-
work latency. TotalView runs and accesses the process tvdsvr on the remote machine.

RELATED TOPICS
Using the Remote Display Client “Accessing TotalView Remotely” on page 64

RELATED TOPICS
The TotalView Server “Setting Up Remote Debugging Sessions” on 

page 442

The tdvsvr process: “The tvdsvr Command and Its Options” in the 
TotalView for HPC Reference Guide



About TotalView / CUDA Debugger  28

CUDA Debugger
The TotalView CUDA debugger is an integrated debugging tool capable of simultaneously debugging CUDA code 
that is running on the host Linux-x86_64 and the NVIDIA® GPU. CUDA support is an extension to the standard 
version of Linux-x86_64 TotalView, and is capable of debugging 64-bit CUDA programs on Linux-x86_64. Debug-
ging 32-bit CUDA programs is currently not supported.

Supported major features:

• Debug a CUDA application running directly on GPU hardware

• Set breakpoints, pause execution, and single step in GPU code

• View GPU variables in PTX registers, and in local, parameter, global, or shared memory

• Access runtime variables, such as threadIdx, blockIdx, blockDim, etc.

• Debug multiple GPU devices per process

• Support for the CUDA MemoryChecker

• Debug remote, distributed and clustered systems

• All Linux-x86_64 host debugging features are supported, except ReplayEngine

RELATED TOPICS
The CUDA debugger “Using the CUDA Debugger” on page 570

The CLI dcuda command  dcuda in the TotalView for HPC Reference 
Guide



About TotalView / Memory Debugging  29

Memory Debugging
TotalView has a fully integrated version of the MemoryScape product for debugging memory issues. Memory-
Scape is also available as a standalone product. 

MemoryScape can monitor how your program uses malloc() and free() and related functions such as calloc() 
and realloc(). For example, the C++ new operator is almost always built on top of the malloc() function. If it is, 
MemoryScape can track it. 

You must enable memory debugging before you start running your program. Once you have loaded a program to 
debug in TotalView, select Debug > Open MemoryScape to launch the primary MemoryScape window.
 

Figure 13 – MemoryScape home window

RELATED TOPICS
MemoryScape has its own user guide Debugging Memory Problems with MemoryScape.



About TotalView / Reverse Debugging  30

Reverse Debugging
ReplayEngine records all your program’s activities as it executes within TotalView. After recording information, you 
can move forward and backward by function, line, or instruction. You can examine data and state in the past, as if 
it were a live process.

Using ReplayEngine eliminates the cycle of starting and restarting so common in debugging and greatly helps in 
finding hard-to-reproduce bugs. 

NOTE >> ReplayEngine is a separately licensed product for linux-86 and linux-x86-64.

When enabled, ReplayEngine commands are added to the toolbar (at right):

RELATED TOPICS
Reverse debugging is discussed in a 
separate user guide

 Reverse Debugging with ReplayEngine



About TotalView / What’s Next  31

What’s Next
This chapter has presented TotalView’s primary features and tools, but a single chapter cannot provide a com-
plete picture of everything you can do with TotalView. See the rest of this user guide and other books in the 
TotalView documentation for more about TotalView.

If you are a new TotalView user, we recommend reading Getting Started with TotalView Products, which provides 
basic information on TotalView’s most commonly used tools.

You may also wish to work through the introductory tutorial in “Basic Debugging” on page 32.



Basic Debugging     32      

Chapter 2  

Basic Debugging

This chapter illustrates some basic debugging tasks and is based on the shipped program, wave_extended, 
located in the directory installdir/toolworks/totalview.version/platform/examples. This is a simple program 
that creates an array and then increments its values to simulate a wave form which can then be viewed using 
the Visualizer. The program requires user input to provide the number of times to increment.

The first steps when debugging programs with TotalView are similar to those using other debuggers:

• Use the -g option to compile the program. (Compiling is not discussed here. Please see 
“Compiling Programs” on page 85.)

• Start the program under TotalView control. 

• Start the debugging process, including setting breakpoints and examining your program’s data. 

The chapter introduces some of TotalView’s primary tools, as follows:

• “Program Load and Navigation” on page 33

• “Stepping and Executing” on page 38

• “Setting Breakpoints (Action Points)” on page 42

• “Examining Data” on page 49

• “Visualizing Arrays” on page 58



Basic Debugging / Program Load and Navigation  33

Program Load and Navigation
This section discusses how to load a program and looks at the two primary TotalView windows, the Root and Pro-
cess windows. It also illustrates some of TotalView’s navigation tools.

Load the Program to Debug

NOTE >> Before starting TotalView, you must add TotalView to your PATH variable. For information on 
installing or configuring TotalView, see the TotalView for HPC Installation Guide.

1. Start TotalView.
totalview

The Start a Debugging Session dialog launches. 

2. Select A new program to launch the Program Session dialog.



Basic Debugging / Program Load and Navigation  34

3. Provide a name for the session in Session Name field. This can be any string. 

4. In the File Name field, browse to and select the wave_extended program, located in the directory install-
dir/toolworks/totalview.version/platform/examples. Leave all other fields and options as is.  Click Start 
Session to load the program into TotalView.

Note that this is the same as entering the program name as an argument when starting TotalView:
totalview wave_extended

(Note that this invocation assumes that your examples directory is known to TotalView or that you are invoking 
TotalView from within the examples directory.)

The Root and Process Windows

At startup, TotalView launches its two primary windows, the Root Window and the Process Window. With these 
two windows, you can navigate through the various elements of your program. 

RELATED TOPICS
Compiling programs for debugging “Compiling Programs” on page 85

Various ways to start TotalView “Starting TotalView” on page 87

Loading programs “Loading Programs from the Sessions Manager” on page 98



Basic Debugging / Program Load and Navigation  35

The Root Window

The Root Window (the smaller window above) lists all processes and threads under TotalView control. You can 
use the Configure pane, displayed by clicking the button on the bottom right, to specify the specific information 
you want to view.

Since the program has been created but not yet executed, there is just a single process and thread listed.

The Process Window

The Process Window displays a wide range of information about the state of a process and its individual threads.

• The Stack Trace pane displays the call stack with any active threads.

• The Stack Frame pane displays information on the current thread’s variables.

• The Source Pane displays source code for the main() function. Note that the pane’s header reports 
its focus as being in main():

Figure 14 – The Root and Process Windows



Basic Debugging / Program Load and Navigation  36

• Two tabs are visible at the bottom, Action Points, which displays any set action points, and Threads, 
which lists all active threads in the process. The Processes/Ranks tab, if enabled, displays processes 
within the current control group. The Processes/Ranks tab is disabled by default.

Program Navigation
From the Root and Process Windows, you can navigate anywhere in your program. Some examples:

1. Dive on a function

— From the Process Window, in main(), “dive” on the function load_matrix() by double-clicking 
on it. (Click on the text, not on the line number, which would instead add an Action Point.)

NOTE >> Diving simply means clicking on an object to launch a window with detailed infor-
mation. Diving is integral to using TotalView and provides instant access to 
detailed data by drilling down into the object, routine, process, thread, etc. 

The focus in the Source Pane shifts to this function. You can change the focus back to main() using 
the dive stack icons ( ) at the top right. If you click the left arrow, the focus returns to main() and 
the right arrow becomes enabled, allowing you to dive, undo a dive, and then redive.

2. Look up a function

— From the View menu, select Lookup Function, then enter wave:

RELATED TOPICS
The Root Window “Using the Root Window” on page 140

The Process Window “Using the Process Window” on page 148

Processes/Ranks tab “Using the Processes/Ranks and Threads Tabs” on 
page 379



Basic Debugging / Program Load and Navigation  37

The focus shifts to the function wave(). This function happens to be in the same file, wave_ex-
tended.c, but finding, diving, and other navigation tools operate on any file in a project.

3. Find any program element

— From the Edit menu, select Find. 

You can enter any search term, and TotalView returns results from anywhere in your program, includ-
ing from assembler code if it is visible. For instance, a search on “struct” returns several instances:

RELATED TOPICS
Diving on objects “About Diving into Objects” on page 152

Finding program elements “Searching and Navigating Program Elements” on page 156

The Lookup Function “Looking for Functions and Variables” on page 157



Basic Debugging / Stepping and Executing  38

Stepping and Executing
The Process Window’s toolbar features buttons that control stepping and execution.

The following sections explore how these work using the wave_extended example.

NOTE >> These procedures on stepping and execution can be performed independently of the other 
tasks in this chapter, but you must first load the program, as described in “Load the Program 
to Debug” on page 33.

Simple Stepping
Here, we’ll use the commands Step, Run To, and Next, and then note process and thread status. 

1. Step

— Select Step. TotalView stops the program just before the first executable statement, the 
method load_matrix().

All stepping functions are under the Process, Thread, and Group menus. So for the above, you could 
also select Process > Step, or just press the keyboard shortcut s — keyboard shortcuts are all listed 
under the above menus, and can considerably speed debugging tasks.

Note the yellow arrow that shows the current location of the Program Counter, or PC, in the selected 
stack frame.

The process and thread status are displayed in the status bars above the Stack Trace and Stack Frame 
panes:

The Root Window also displays process/thread status. The Process State column displays the state of 
the thread:

Figure 15 – Toolbar



Basic Debugging / Stepping and Executing  39

You can also see that a single Process and Thread have been launched in the Process Window’s 
Thread tab at the bottom of the interface. (1.1 indicates one process and one thread.) If enabled, you 
can also see information about the process in the Processes tab.

The process is blue, meaning that it is stopped. If it were running, it would be green. A single thread 
has been spawned, which reports that it is in main().

— Select Step again to step into the function. (Next would step over, or execute the function, as 
described in Step 3.)

TotalView goes into the load_matrix() function. 

The Source Pane header reports that the program is in load_matrix(), and the PC is at printf(). 

2. Run To

— Select the set_values() function at line 91, then click Run To in the toolbar.

The program attempts to run to the selected line. Note that the PC does not change, and TotalView 
launches a popup:

Because the method set_values() is called after scanf(), the program is waiting for user input. From 
the shell that launched TotalView, enter 5 at the prompt “Please enter number of iterations”, then hit 
Return. (You can enter a different number, but a higher value will require you to wait over more itera-
tions during later discussions.)

‘‘‘



Basic Debugging / Stepping and Executing  40

The PC stops at set_values().

3. Next

— Select Next. The program executes the for loop the number of times you input in the previ-
ous step, and then completes the program by printing “Program is complete.” to the console. 
(If you had instead selected Step, the program would have gone into the set_values() 
function.)

The Next command simply executes any executable code at the location of the PC. If that is a function, 
it fully executes the function. If the PC is instead at a location within a function, it executes that line 
and then moves the PC to the next line. For instance, below the PC is setting a variable value. In this 
case, Next executes line 71, and then moves the PC to line 72. 

 

(Note that the array building the wave is not visible, as there is no program output. To examine or visu-
alize data, including array data, we’ll use the Variable Window and the Visualizer, discussed in “Exam-
ining Data” on page 49 and “Visualizing Arrays” on page 58.)

To just run the program, select Go. This may be useful if you entered a larger number into the console, 
so you can avoid iterating through the for loop numerous times.

Canceling
First, make sure the program has exited, by selecting Kill.

1. Execute until user input is required

— Select Next twice. The “Waiting to reach location” dialog launches.

2. Cancel the operation

— Rather than providing input, in the dialog, select Cancel.

The Stack Trace Pane reports that the process is currently within a system call. The Source Pane dis-
plays assembler code, and its header identifies the library you’re in, rather than the source file. This is 
because no debug information is present for system calls, and TotalView always focuses on the stack 
frame where your PC is, even if it was not built with debug information. 

RELATED TOPICS
Detailed information on 
stepping

“Stepping through and Executing your Pro-
gram” on page 165

Stepping instructions “Using Stepping Commands” on page 166



Basic Debugging / Stepping and Executing  41

In the Stack Trace Pane, main is preceded by C, meaning that TotalView has debug information for that 
frame, and the language is C.

To execute out of the assembler code so you’re back in your code, use the Out command. 

— Select Out several times until the program returns to your code and resumes execution. 
When the dialog “Waiting to reach location” launches, enter a number into the console, click 
Next, and let the program complete.

RELATED TOPICS
Viewing assembler code “Viewing the Assembler Version of Your Code” on page 161 and “View > 

Assembler > By Address” in the in-product Help



Basic Debugging / Setting Breakpoints (Action Points)  42

Setting Breakpoints (Action Points)
In TotalView, a breakpoint is just one type of “action point” of which there are four types:

• Breakpoint - stops execution of the processes or threads that reach it. 

• Evaluation Point - executes a code fragment when it is reached. Enables you to set “conditional 
breakpoints” and perform conditional execution.

• Process Barrier Point - holds each process when it reaches the barrier point until all processes in 
the group have reached the barrier point. Primarily for MPI programs.

• Watchpoint - monitors a location in memory and either stops execution or evaluates an 
expression when the value stored in memory is modified.

This section uses the wave_extended example to set a basic breakpoint as well as an evaluation point, called an 
“eval point.” 

NOTE >> These procedures on working with action points can be performed independently of the other 
sections in this chapter (which starts at “Basic Debugging” on page 32), but you must first load 
the program as described in “Load the Program to Debug” on page 33. 

Basic Breakpoints
1. Set a breakpoint 

— Click a line number. for instance, select line 91, the call to set_values(). TotalView displays a 

 sign, both in the Source Pane at line 91 and in the Action Points tab where all action 
points in a program are listed.

NOTE >> A breakpoint can be set if the line number is boxed in the Source Pane:

RELATED TOPICS
Action points overview “About Action Points” on page 175

Process barrier point “Setting Breakpoints and Barriers” on page 179

Watchpoint “Using Watchpoints” on page 206

Action Points Tab in the Process Window Action Points Tab” in the in-product Help



Basic Debugging / Setting Breakpoints (Action Points)  43

2. Delete/disable/enable a breakpoint 

— To delete the breakpoint, click the Stop icon in the Source Pane, and then re-add it by clicking 
again. You can also select it in the Action Points tab, right-click for a context menu, and select 
Delete.

— To disable a breakpoint, click its icon in the Action Points tab. The icon dims to show it is 
disabled:

Click it again to re-enable it. Again, you can also disable or re-enable a breakpoint using the context 
menu.

3. Run the program

— Click the Go button in the toolbar. 

All panes in the Process Window report that the thread is running, or that it must be stopped for frame 
display. At this point, the program is waiting for user input. 

— Enter a number into the console, then click Go again. 

The program halts execution at the breakpoint. 

4. Set a breakpoint in assembler code

You can also set a breakpoint in assembler code to view specific memory allocation.

— Select View > Source As > Both to view both source and assembler code.

— Set a breakpoint in some assembler code, such as the instruction immediately following the 
existing breakpoint. 

The Source Pane and Action Points tab display two breakpoints, one in source code and one in assem-
bler code.



Basic Debugging / Setting Breakpoints (Action Points)  44

5. Set a breakpoint at a particular location

In a complex program, it may be easier to set a breakpoint using the At Location dialog, which allows you 
to specify where you want the breakpoint without having to first find the source line in the Source Pane. 
Using this dialog, you can set breakpoints on all methods of a class or all virtual functions, a useful tool for 
C++ programs. 

NOTE >> This dialog acts like a toggle, meaning that it sets a breakpoint if none exists at 
the specified location, or deletes an existing breakpoint at that location.

— Select Action Point> At Location and then enter wave to set a breakpoint at the function 
wave(). 

The breakpoint is set and added to the Action Points tab. If a breakpoint already exists at that location, this 
action toggles the setting to delete the breakpoint.



Basic Debugging / Setting Breakpoints (Action Points)  45

Evaluation Points
You can define an action point identified with a code fragment to be executed. This is called an eval point. This 
allows you to test potential fixes for your program, set the values of your program’s variables, or stop a process 
based on some condition. You can also send data to the Visualizer to produce an animated display of changes to 
your program’s data, discussed in “Visualizing Arrays” on page 58.

At each eval point, the code in the eval point is executed before the code on that line. One common use of an eval 
point is to include a goto statement that transfers control to a line number in your program, so you can test pro-
gram patches.

1. Delete any breakpoints

Before setting an eval point, delete all other breakpoints you have set while working through this chapter.

— Select Action Points > Delete All.

2. Set an eval point

— Set a breakpoint on line 85 at the printf() function.

— Open the Action Point Properties dialog by right-clicking on the Stop icon and selecting 
Properties. 

RELATED TOPICS
Action points properties “About Action Points” on page 175 and “Action Point 

Properties” in the in-product Help.

Enabling/disabling action points “Displaying and Controlling Action Points” on 
page 184

Suppressing action points “Suppressing Action Points” on page 185

Breakpoints in assembler code “Setting Machine-Level Breakpoints” on page 188



Basic Debugging / Setting Breakpoints (Action Points)  46

The Action Point Properties dialog box sets and controls an action point. Using this dialog, you can also 
change an action point’s type to breakpoint, barrier point, or eval point, and define the behavior of threads 
and processes when execution reaches this action point.

3. Add an expression

— Select the Evaluate button, to display an Expression box. In the box, enter:
  count = 5;
  goto 88;

— Click OK to close the dialog. This code will be executed before the printf() statement, and 
then will jump to line 88 where the for loop begins. This sets the count to 5 and avoids having 
to enter user input. (Code entered here is specific to TotalView debugging only, and is not 
persisted to your actual source code.)

Note that the Stop icon becomes an Eval icon, both in the Source Pane and in the Action Points tab:

4. Execute the program to observe eval point behavior

— Click Go. If no other breakpoints were planted in your code, the program simply executes 
and prints “Program is complete.”

RELATED TOPICS
Evaluation points in general “Defining Eval Points and Conditional Breakpoints” on 

page 197

Writing expressions in eval points “Expressions in Eval Points and the Evaluate Window” on 
page 329

Action Point Properties dialog box “About Action Points” on page 175 and “Action Point Proper-
ties” in the in-product Help.



Basic Debugging / Setting Breakpoints (Action Points)  47

Saving and Reloading Action Points
You can save a set of action points to load into your program at a later time.

1. Save Action Points

— Select Action Point > Save All to save your action points to a file in the same directory as 
your program. When you save action points, TotalView creates a file named 
program_name.TVD.v3breakpoints, where program_name is the name of your program.

No dialog launches, but a file is created titled wave_extended.TVD.v3breakpoints.

— Select Action Point > Save As, if you wish to name the file yourself and select a directory for 
its location.

A dialog launches where you can enter a custom name and browse to a location.

2. Load Saved Action Points

You can either explicitly load saved action points into a program when it is launched, or you can define a 
preference to load them automatically.

To manually load saved action points:

— After loading your program into TotalView, select Action Point > Load All to load these saved 
actions points into your program.

To automatically load saved action points:

— Select File > Preferences to launch the Preferences window, and then select the Action 
Points tab.

— Click the Load Action Points File Automatically button, then click OK.



Basic Debugging / Setting Breakpoints (Action Points)  48

If you close and then reload the program, your actions points are automatically loaded as well.

(Several other options exist to customize action points behavior. These are not discussed here. Please 
see the Related Topics table below.)

RELATED TOPICS
The CLI command dbreak “dbreak” in the TotalView for HPC Reference Guide

The Action Point Properties dialog box “About Action Points” on page 175 and “Action Point 
Properties” in the in-product Help.

The Action Point > At Location 
command

“Setting Breakpoints at Locations” on page 182

Setting Action Points preferences “Setting Preferences” on page 128 and “Action Points 
Page” in the in-product Help



Basic Debugging / Examining Data  49

Examining Data
Examining data is, of course, a primary focus of any debugging process. TotalView provides multiple tools to 
examine, display, and edit data.

This section discusses viewing built-in data in the Process Window and Expression List Window, and then using 
the Variable Window to look at compound data.

NOTE >> These procedures on examining data can be performed independently of the tasks in other 
sections in this chapter, but you must first load the program (“Load the Program to Debug” on 
page 33). In addition, the discussion assumes an existing eval point has been set as described 
in “Evaluation Points” on page 45.

Viewing Built-in Data
For primitive, built-in types, you can quickly view data values from within the Process Window and can also add 
them to another window, the Expression List Window.

Viewing Variables in the Process Window 

First, we’ll add a breakpoint so the program will stop execution and we can view data.

1. Set a breakpoint

— Add a breakpoint at line 88, the beginning of the for loop in the load_matrix() function.

At this point, you should have two action points: the breakpoint just added, and the eval point added in the 
section “Evaluation Points” on page 45.

— Click Go. The program should stop on the breakpoint you just added.

Now let’s view some data.

2. View variables in the Stack Frame pane 

The Stack Frame pane lists function parameters, local variables, and registers. Scalar values are displayed 
directly, while aggregate types are identified with just type information.

In the Stack Frame pane, note the value of the local variables i and count: i is 1, and count is 5.



Basic Debugging / Examining Data  50

3. View variables in a tool tip 

— In the Source Pane, hover over the variable i to view a tool tip that displays its value:

Viewing Variables in an Expression List Window

The Expression List window is a powerful tool that can list any variable in your program, along with its current or 
previous value and other information. This helps you to monitor variables as your program executes. For scalar 
variables, this is a particularly easy, compact way to view changing values.

1. Create an Expression List

— In the Stack Frame pane, right-click on the variable i, and select Add to Expression List. Then 
do the same for the variable count. The Expression List Window launches, displaying these 
two variables and their values.

2. View the updated values

— Click Go. When the breakpoint is hit, the value of i increments to 2, and this changed value is 
highlighted in yellow in the Expression List window:

— If you continue to hit Go, you can view the value of i increment to 5 before the program 
completes. 

3. Add additional columns to see more data



Basic Debugging / Examining Data  51

— Right-click on the column header and select Type and Last Value. These two columns are 
added to the table:

Viewing Compound Variables Using the Variable Window
For nonscalar variables, such as structures, classes, arrays, common blocks, or data types, you can dive on the 
variable to get more detail. This launches the Variable Window.

(For an overview on diving, see “About Diving into Objects” on page 152.)

This section includes:

•  “Basic Diving” on page 51

•  “Nested Dives” on page 53

• “Rediving and Undiving” on page 54

• “Diving in a New Window” on page 54

• “Displaying an Element in an Array of Structures” on page 55

Basic Diving

First, delete any breakpoints you had entered previously except the eval point set in “Evaluation Points” on 
page 45. (Retaining this eval point simply allows the program to run without user input.)

1. Set a breakpoint

— Add a breakpoint at line 77, at the completion of the set_values() method.

— Click Go. The program runs until the breakpoint.

2. Dive on a variable

RELATED TOPICS
Viewing variables in the Process Window “Displaying Variables” on page 220

Viewing variables in the Expression List Window “Viewing a List of Variables” on page 246



Basic Debugging / Examining Data  52

— Dive on the variable values in the Stack Frame pane (by double-clicking on values or by right-
clicking and selecting Dive). 

The values variable is a struct of type wave_value_t, created to hold a copy of the variables that create 
the wave, as well as other data. 

The Variable Window launches. 

Elements of a Variable Window

The basic elements of the Variable Window include:

— A set of toolbar icons that provide navigation and customizations:

Thread ID ( ) icon to identify the current thread (in a single-threaded program, this is always 
1.1, meaning process 1, thread 1).

Collapse/expand ( ) icons to expand or collapse the contents of a compound type in nested win-
dows.

Up/down ( ) icons to control the level of information about your data. If you select the up arrow, 
more information about your data is displayed.



Basic Debugging / Examining Data  53

Redive/Undive buttons, discussed in “Rediving and Undiving” on page 54.

— The editable fields Expression, Address, and Type. You can add an expression or change the 
address and type for your variable here. Then select Edit > Reset Defaults when you are fin-
ished. (This is beyond the scope of this chapter. See the Related Topics table for more 
information.)

Nested Dives

Since values is a compound type, you can dive again to get more detail about its components. This is called a 
nested dive.

1. Dive on an array

—  Dive on the array wave_value_t in the Value column, by double-clicking it:

This replaces the existing display with the array’s contents. Note the +(plus) sign on the left side of the 
Field column. For nonscalar types, you can click the plus sign to see the type’s components:

2. Run the program and observe changing variable values

RELATED TOPICS
Diving on objects “About Diving into Objects” on page 152 and 

The View > Dive command View > Dive” in the Process Window in the in-product Help

More on the Variable Window “Diving in Variable Windows” on page 240

Editing data in the Variable Window “Changing What the Variable Window Displays” on page 244



Basic Debugging / Examining Data  54

— Click Go so that the program runs and again stops at the breakpoint. Note that the variables 
current_time and value have both changed:

Rediving and Undiving
Note the arrow icons on the top right of the Variable Window. These are the Undive/Redive and Undive 
all/Redive all buttons. Using these buttons, you can navigate up and down into your dive. 

Click the Undive button, for instance, to return to the previous window.

Diving in a New Window

If you wish to have more than one dive level visible at the same time rather than having a dive replace the existing 
window’s data, you can create a duplicate window.

1. Undive

— Click the Undive arrow to return to the initial Variable Window.

2. Launch a new window

— Right-click on the array and select Dive in New Window. Another window launches. Now, 
you can see both the original window and the new, nested dive.

3. Duplicate a window

RELATED TOPICS
More on nested dives “Diving in Variable Windows” on page 240



Basic Debugging / Examining Data  55

Alternatively you can create a duplicate of a window.

— Select the command Window > Duplicate to duplicate the active Variable Window and then 
dive to the desired level in a new window.

Displaying an Element in an Array of Structures

You can display an element in an array of structures as if it were a simple array using the View > Dive In All 
command.

Consider our values struct defined like this:
struct wave_value_t
{
    int x;
    int y;
    double current_time;
    double value;
};

We can select an element within that structure and view it as an array, allowing us to easily see the values of any 
individual element as they change throughout program execution.

1. Dive in All on a variable

— In the nested Variable Window, select the double value.



Basic Debugging / Examining Data  56

— Right-click and select Dive In All. TotalView displays all of the value elements of the values 
array as if they were a single array. 

 

2. Add the value to the Expression List

Remember that you can also view the scalar type value in an Expression List window.

— In the window just launched, right-click again on value and select Add to Expression List. 
The Expression List window launches listing value:

3. Click Go to run your program. You can now view your variable values changing in three windows:



Basic Debugging / Examining Data  57

RELATED TOPICS
Displaying an array of any element “Displaying an Array of Structure’s Elements” on page 242

More on the View > Dive in All command View > Dive in All” in the in-product Help



Basic Debugging / Visualizing Arrays  58

Visualizing Arrays
The Visualizer is a special tool to graphically visualize array data. This is a powerful and easy way to view your pro-
gram’s data during debugging and is useful in discovering anomalies in data value range, numerical spikes, and 
NaNs.

NOTE >> These procedures on visualizing arrays can be performed independently of the other tasks 
discussed in this chapter, but you must first load the program (“Load the Program to Debug” 
on page 33). In addition, the discussion assumes an existing eval point has been set, as 
described in “Evaluation Points” on page 45.

You can launch the Visualizer either directly from the GUI or from within an eval point. 

From the GUI

Select an array in a Variable Window, and then select Tools > Visualizer.

From within an eval point

Invoke the Visualizer using the $visualize command, with this syntax:
$visualize ( array [, slice_string ]) 

Launching from an eval point also provides the ability to stop program execution if desired.

This discussion uses the $visualize command in an eval point to launch the Visualizer to view the waves array. 
This array increments the value of XSIZE and YSIZE to create a visual wave.

Set Up

• Delete any breakpoints previously set except the eval point set at line 85 to suppress user input 
(“Evaluation Points” on page 45).

• Edit that eval point to provide a higher count, for instance, 20. This will allow amore interesting 
wave to build as the values are incremented. (Right-click on its Eval icon, select Properties, and then 
edit the count value:



Basic Debugging / Visualizing Arrays  59

Launching the Visualizer from an Eval Point
1. Add an eval point

— Click on line 63 at the function wave() to add a breakpoint, as the comments suggest.

— Right-click on the breakpoint icon and select Properties to launch the Action Point Proper-
ties dialog.

— Click the Evaluate button to open the Expression field. Enter the following code:
  $visualize(waves,"[::4][::4]");
  $stop;

When the eval point is hit, this code will launch a single Visualizer window that will display every fourth ele-
ment in the major dimension (the X axis), and then program execution will stop. To display the entire array, 
you could just write:
$visualize(waves);   // entire array

(Note that the code comments suggest launching two Visualizer windows. For purposes of this discussion, 
we’ll add just one.)

— Click OK. The Eval Point icon appears:

2. Run the program and view the data



Basic Debugging / Visualizing Arrays  60

At this point, the program should have no regular breakpoints and two eval points:

— Click Go. 

The program runs to the eval point at wave() and then stops. The Visualizer launches, reflecting the 
array’s initial values:

Above are the Visualizer’s two windows: the top window is the Dataset window listing all datasets available 
to visualize (only one dataset has been loaded into the Visualizer at this point); the bottom is the View win-
dow where the graphical display appears.

3. Complete the program

— Click Go several more times (the program will complete once you have clicked Go as many 
times as the value for the variable count in the eval point).

You can watch the wave build, for example:



Basic Debugging / Visualizing Arrays  61

 

4. Run the program without stopping execution

An eval point does not have to stop execution. To let the program run without interruption, just remove the 
$stop command from the Expression field in the Action Point Properties dialog, then click Go.

Viewing Options
The Visualizer shows either a Graph view (2-D plot) or Surface view (3-D plot) of your data. (If the array is one-
dimensional, only the Graph view is available. The Graph view is not discussed here.)

By default, it shows a Surface view for most two-dimensional data, and that is what it shows for the waves array.

The Surface view displays two-dimensional datasets as a surface in two or three dimensions. The dataset’s array 
indices map to the first two dimensions (X and Y axes) of the display, and the values map to the height (Z axis). 

You can further refine the Surface view using the View window’s options. Select File > Options from the View win-
dow to launch the Options dialog. 

Possible options are:

RELATED TOPICS
The Array Visualizer “Array Visualizer” on page 309

More ways to use view arrays “Examining Arrays” on page 283



Basic Debugging / Visualizing Arrays  62

• surface: Displays the array as a three-dimensional surface (the default is to display it as a grid).

• XY: Reorients the view’s XY axes. The Z axis is perpendicular to the display.

• Auto Reduce: Speeds visualization by averaging neighboring elements in the original dataset. 

For example, click surface, then click OK. The view changes from a grid to a 3-D:

The Visualizer has many more options with various other viewing modes and tools. See the Related Topics below 
for references to further discussions.

This completes this tutorial on basic debugging.

RELATED TOPICS
More on the Visualizer “Array Visualizer” on page 309

Visualizer options “Using the Graph Window” on page 315 and “Using 
the Surface Window” on page 317

The Array Viewer (another way of looking at arrays) “Viewing Array Data” on page 288

Displaying slices of arrays “Displaying Array Slices” on page 284

Filtering array data “Filtering Array Data Overview” on page 290



Basic Debugging / Moving On  63

Moving On
• For an overview on TotalView’s features, see “About TotalView” on page 5.

• To learn about parallel debugging tasks, see “Manipulating Processes and Threads” on page 372.

• For detailed information on TotalView’s debugging tools and features, see “Debugging Tools and 
Tasks” on page 82.



Accessing TotalView Remotely     64      

Chapter 3  

Accessing TotalView Remotely

About Remote Display
Using the TotalView Remote Display client, you can start and then view TotalView as it executes on another 
system, so that TotalView need not be installed on your local machine.

Remote Display Supported Platforms
Remote Display is currently bundled into all TotalView releases. 

Supported platforms include: 

• Linux x86 and Linux x86-64

• Microsoft Windows

• Apple Mac OS X Intel 

No license is needed to run the Client, but TotalView running on any supported operating system must be a 
licensed version of TotalView 8.6 or greater. 

Remote Display Components
TotalView Remote Display has three components: 

• The Client is a window running on a Remote Display supported platform (See “Remote Display 
Supported Platforms” on page 64).



Accessing TotalView Remotely / About Remote Display  65

• The Server is invisible, managing the movement of information between the Viewer, the remote 
host, and the Client. The Server can run on all systems that TotalView supports. For example, you 
can run the Client on a Windows system and set up a Viewer environment on an IBM RS/6000 
machine. 

• The Viewer is a window that appears on the Client system. All interactions between this window 
and the system running TotalView are handled by the Server. 

Figure 16 shows how these components interact.

In this figure, the two large boxes represent the computer upon which you execute the Client and the remote 
system upon which TotalView runs. Notice where the Client, Viewer, and Server are located. The small box labeled 
External SSH Host is the gateway machine inside your network. The Client may be either inside our outside your 
firewall. This figure also shows that the Server is created by TotalView or MemoryScape as it is contained within 
these programs and is created after the Client sends a message to TotalView or MemoryScape.

TotalView and the X Window system must be installed on the remote server machine containing the rgb and font 
files in order for the remote display server to start correctly. The bastion nodes (if any) between the remote client 
machine and remote server machine do not require TotalView or X Window file access.

Figure 16 – Remote Display Components



Accessing TotalView Remotely / Installing the Client  66

Installing the Client 
Before installing the Client, TotalView must already be installed.

The files used to install the client are in these locations:

• Remote Display Client files for each supported platform are in the remote_display subdirectory in 
your TotalView installation directory. 

• Clients may also be downloaded from our Web site at http://www.roguewave.com/products-
services/totalview/features/remote-display-client.

Because Remote Display is built into TotalView, you do not need to have a separate license for it. Remote Display 
works with your product’s license. If you have received an evaluation license, you can use Remote Display on 
another system. 

Installing on Linux
The installation procedure for the Client is straight-forward. The remote_display directory contains two tar files 
used on a Linux x86 or a Linux 86-64 system. 

1. Place a tar file within your toolworks installation directory if it is not already there. You can install the Client 
on as many Linux x86 and Linux x86-64 systems as you need, as the Client is unlicensed. This means 
TotalView can be run from any Client, and more than one person can be running Clients simultaneously. 
The only licensing requirement is that you have a license for the platform upon which TotalView will run. Of 
course, the number of users who can run TotalView simultaneously is specified in that product’s license.

2. Type tar xvf name_of_remote_display_file.tar. This creates and populates a remote_display/bin directory.

3. Add the remote_display directory to your PATH environment variable. If you place this directory in your 
PATH, typing remote_display_client.sh invokes the Client. 

Installing on Microsoft Windows
Before installing the Client, TotalView must already be installed on your Linux or UNIX system. The Client file, con-
tained in your remote_display directory, is named TVT_RDC_Installer.release_number.exe. To use the installer:

1. Either copy the exe file to your Windows system or place it in a location that is directly accessible from your 
Windows machine.

2. Double-click on the installer exe file to launch the client setup dialog.

http://www.roguewave.com/products-services/totalview/features/remote-display-client
http://www.roguewave.com/products-services/totalview/features/remote-display-client


Accessing TotalView Remotely / Installing the Client  67

3. Click the Next button and follow the instructions on the displayed screen. As with many Windows applica-
tions, you are asked if the installer should create an entry in the start menu and place an icon on your 
desktop. 

Installing on Apple Mac OS X Intel
Before you install the Client, you must have installed TotalView or MemoryScape. The Client file, contained in your 
remote_display directory, is named TVT_RDC_Installer.<release_number>.dmg. To use the installer:

1. Either copy the dmg file to your Mac OS X system or place it in a location that is directly accessible from 
your Mac machine.

2. Double-click on the installer dmg file and then the TotalViewRemoteDisplayClient.pkg icon to launch the set 
up dialog.



Accessing TotalView Remotely / Installing the Client  68

3. Click the Continue button and follow the instructions on the displayed screen.



Accessing TotalView Remotely / Client Session Basics  69

Client Session Basics
The TotalView Remote Display Client is simple to use. Just enter the required information, and the Client does the 
rest. 

On Linux, invoke the Client with the following:
remote_display_client.sh

On Windows, either click the desktop icon or use the TVT Remote Display item in the start menu to launch the 
remote display dialog.

The Client window displays similarly on Linux or Windows. 

Here are the basic steps:

1. Enter the Remote Host

— Remote Host: The name of the machine upon which TotalView will execute. While the Client 
can execute only on specified systems (see Remote Display Supported Platforms), the 
remote system can be any system upon which you are licensed to run TotalView. 

— User Name dropdown: Your user name, a public key file, or other ssh options.

2. (Optional) As needed, enter hosts in access order...(depending on your network).

Figure 17 – Remote Display Client Window



Accessing TotalView Remotely / Client Session Basics  70

If the Client system cannot directly access the remote host, specify the path. For more information, see 
“Naming Intermediate Hosts” on page 75.

3. Enter settings for the debug session on the Remote Host

Settings required to start TotalView on the remote host. (The TotalView and MemoryScape tabs are identical.)

— Path to TotalView on the Remote Host: The directory on the remote host in which 
TotalView resides, using either an absolute or relative path. “Relative” means relative to your 
home directory. 

— (Optional) Your Executable: Either a complete or relative pathname to the program being 
debugged. If you leave this empty, TotalView begins executing as if you had just typed 
totalview on the remote host. 

— Other options:

You can add any command-line options for TotalView or your program. 

TotalView options are described in the “TotalView Debugger Command Syntax” chapter of the TotalView 
for HPC Reference Guide. 

For arguments to your program, enter them in the same way as you would using the -a command-line 
option.

Additional options include:

• Advanced Options: Press the Advanced Options button to customize client/server interaction and 
server execution, “Advanced Options” on page 73.

• Submit job to batch queueing system: You can submit jobs to the PBS Pro and LoadLeveler 
batch queuing systems, “Submitting a Job to a Batch Queuing System” on page 76.

Launching the Remote Session

Next, press the Launch Debug Session button, which launches a password dialog box.

Figure 18 – Asking for Password



Accessing TotalView Remotely / Client Session Basics  71

Depending on how you have connected, you may be prompted twice for your password: first when Remote Dis-
play is searching ports on a remote system and another when accessing the remote host. You can often simplify 
logging in by using a public key file.

After entering the remote host password, a window opens on the local Client system containing TotalView as well 
as an xterm running on the remote host where you can enter operating system and other commands. If you do 
not add an executable name, TotalView displays its File > New Debugging Session dialog box. If you do enter a 
name, TotalView displays its Process > Startup Parameters dialog box. 

Closing the Remote Session

To close the session:

• From the Client, terminate the Viewer and Server by pressing the End Debug Session button. (The 
Launch Debug Session button changes to this button after you launch the session.) 

• Click Close on the Viewer’s window to remove the Viewer Window. This does not end the 
debugging session, so then select the Client’s End Debug Session button. Using these two steps to 
end the session may be useful when many windows are running on your desktop, and the Viewer 
has obscured the Client.

Closing all Remote Sessions and the Client

To close all remote connections and shut down the Client window, select File > Exit. 

Working on the Remote Host
After launching a remote session, the Client starts the Remote Display Server on the remote host where it creates 
a virtual window. The Server then sends the virtual window to the Viewer window running on your system. The 
Viewer is just another window running on the Client’s system. You can interact with the Viewer window in the 
same way you interact with any window that runs directly on your system.

Behind the scenes, your interactions are sent to the Server, and the Server interacts with the virtual window run-
ning on the remote host. Changes made by this interaction are sent to the Viewer on your system. Performance 
depends on the load on the remote host and network latency.

If you are running the Client on a Windows system, these are the icons available:



Accessing TotalView Remotely / Client Session Basics  72

From left to right, the commands associated with these icons are:

• Connection options

• Connection information

• Full Screen - this does not change the size of the Viewer window

• Request screen refresh

• Send Ctrl-Alt-Del

• Send Ctrl-Esc

• Send Ctrl key press and release

• Send Alt key press and release

• Disconnect 

Figure 19 – Remote Display Client commands on Windows



Accessing TotalView Remotely / Advanced Options  73

Advanced Options
The Advanced Options window in Figure 20 is used to customize Remote Display Client and Server interaction 
and to direct the Server and Remote Display Viewer execution.

Options are:

• Commands: Enter commands to execute before TotalView begins. For example, you can set an 
environment variable or change a directory location.

• Font Path: Specify the remote host’s font path, needed by the Remote Display Server. Remote 
Display checks the obvious places for the font path, but on some architectures, the paths are not 
obvious. 

• Remote Display Viewer Window: The default size of the Remote Display Viewer is dynamically 
computed, taking into account the size of the device on which the Remote Display Client is running. 
You can override this by selecting a custom size, which will be saved with the profile.

• Color Location: Specify the location of the rgb.txt file needed by the Remote Display Server. 
Remote Display checks the obvious places for the location, but on some architectures, its location 
is not obvious. Providing the correct location may improve the startup time. 

• Window Manager: Specify the name of the window manager. The path of the window manager 
you provide must be named in your PATH environment variable. The Server looks for (in order) the 
following window managers on the remote host: icewm, fvwm, twm, and mwm. Specifying a 
window manager may improve the startup time. 

• Display Number: Specify a display number for Remote Display to use when the Client and Server 
connect. The Remote Display Client determines a free display number when connecting to the 
Server, requiring two password entries in some instances. Specifying the display number overrides 
the Remote Display Client determining a free number, and collisions may occur.

Figure 20 – Advanced Options Window



Accessing TotalView Remotely / Advanced Options  74

• ssh Port Number: On most systems, ssh uses port 22 when connecting, but in rare instances 
another port is used. This field allows you to override the default.

The buttons at the bottom are:

• Cancel: Closes the window without saving changes.

• Apply: Saves the changes with the profile, leaving the window open.

• OK: Closes the window and saves the changes with the profile.

• Reset: Reverts back to the previously saved values.



Accessing TotalView Remotely / Naming Intermediate Hosts  75

Naming Intermediate Hosts 
If the Client system does not have direct access to the remote host, you must specify the path, or paths, along 
with how you will access the host. You can enter multiple hosts; the order in which you enter them determines 

the order Remote Display uses to reach your remote host. Use the arrow buttons on the left ( ) to change the 
order.

• Host: The route the Client should take to access the remote host. For instance, this can be a 
network path or an IP address. If your network has a gateway machine, you would name it here in 
addition to other systems in the path to the remote host.

• Access By/Access Value: The most common access method is by a user name, the default. If this is 
incorrect for your environment, use the dropdown menu to select the correct method:

— User Name, i.e. the name you enter into a shell command such as ssh to log in to the host 
machine. Enter this in the Access Value field.

— Public Key File, the file that contains access information, entered into the Access Value field. 

— Other SSH Options, the ssh arguments needed to access the intermediate host. These are 
the same arguments you normally add to the ssh command.

• Commands: Commands (in a comma-separated list) to execute when connected to the remote 
host, before connecting to the next host.

Figure 21 – Access By Options



Accessing TotalView Remotely / Submitting a Job to a Batch Queuing System  76

Submitting a Job to a Batch Queuing System 
TotalView Remote Display can submit jobs to the PBS Pro and LoadLeveler batch queuing systems. 

1. Select a batch system from the Submit job to Batch Queuing System dropdown list, either PBS Pro or 
LoadLeveler. 

The default values are qsub for PBS Pro and llsubmit for LoadLeveler.

The Script to Run field is populated with the default scripts for either system: tv_PBS.csh for PBS Pro and 
tv_LoadLeveler.csh for LoadLeveler. These scripts were installed with TotalView, but can of course be 
changed if your system requires it. For more information, see “Batch Scripts” on page 80.

2. (Optional) Select additional PBS or LoadLeveler options in the Additional Options field.

Any other required command-line options to either PBS or LoadLeveler. Options entered override those in the 
batch script. 

3. Launch by pressing the Launch Debug Session button. 

Behind the scenes, a job is submitted that will launch the Server and the Viewer when it reaches the head 
of the batch queue.

Figure 22 – Remote Display Window: Showing Batch Options



Accessing TotalView Remotely / Setting Up Your Systems and Security  77

Setting Up Your Systems and Security 
In order to maintain a secure environment, Remote Display uses SSH. The Remote Display Server, which runs on 
the remote host, allows only RFB (Remote Frame Buffer) connections from and to the remote host. No incoming 
access to the Server is allowed, and the Server can connect back to the Viewer only over an established SSH con-
nection. In addition, only one Viewer connection is allowed to the Server.

As Remote Display connects to systems, a password is required. If you are allowed to use keyless ssh, you can 
simplify the connection process. Check with your system administrator to confirm that this kind of connection is 
allowed and the ssh documentation for how to generate and store key information. 

Requirements for the Client to connect to the remote host: 

• If you use an LM_LICENSE_FILE environment variable to identify where your license is located, 
ensure that this variable is read in on the remote host. This is performed automatically if the 
variable’s definition is contained within one of the files read by the shell when Remote Display logs 
in. 

• ssh must be available on all non-Windows systems being accessed. 

• X Windows must be available on the remote system.



Accessing TotalView Remotely / Session Profile Management  78

Session Profile Management
The Client saves your information into a profile based on the name entered in the remote host area. You can 
restore these settings by clicking on the profile’s name in the Session Profiles area.

Figure 23 shows two saved profiles.

When you select a profile, the Client populates the right window with that profile’s values. 

If you edit the data in a text field, the Client automatically updates the profile information. If this is not what you 
want, click the Create icon to display a dialog box into which you can enter a new session profile name. The Client 
writes this existing data into a new profile instead of saving it to the original profile. 

Saving a Profile

To save a profile, click the save button ( ) or select File > Profile > Save, then provide a profile name in the 
Profile Name popup.

This command saves the profile information currently displayed in the Client window to a name you provide, 
placing it in the Session Profiles area. You do not need to save changes to the current profile as the Client auto-
matically saves them.

Figure 23 – Session Profiles



Accessing TotalView Remotely / Session Profile Management  79

Deleting a Profile

To delete a profile, click the delete button ( ) or select File > Profile > Delete. This command deletes the cur-
rently selected profile and requires a confirmation.

Sharing Profiles

To import a profile, click the import button ( ) or select File > Profile > Import, and then browse to the profile 
to import. After you import a file, it remains in your Client profile until you delete it. 

To export a profile, click the export button ( ) or select File > Profile > Export, browse to a directory where you 
want to export it, and then name the profile.



Accessing TotalView Remotely / Batch Scripts  80

Batch Scripts
The actions that occur when you select PBS Pro or LoadLeveler within the Submit job to Batch Queueing Sys-
tem are defined in two files: tv_PBS.csh and tv_LoadLever.csh. If the actions defined in these scripts are not 
correct for your environment, you can either change one of these scripts or add a new script, which is the recom-
mended procedure.

Place the script you create into installation_dir/totalview_version/batch. For example, you could place a new script 
file called Run_Large.csh into the installation_dir/toolworks/totalview.8.6.0/batch directory. 

tv_PBS.csh Script 
Here are the contents of the tv_PBS.csh script file:
#!/bin/csh -f 
# 
# Script to submit using PBS 
# 
# These are passed to batch scheduler:: 
# 
# account to be charged 
##PBS -A VEN012 
# 
# pass users environment to the job 
##PBS -V 
# 
# name of the job 
#PBS -N TotalView 
# 
# input and output are combined to standard 
##PBS -o PBSPro_out.txt 
##PBS -e PBSPro_err.txt 
# 
##PBS -l feature=xt3 
# 
#PBS -l walltime=1:00:00,nodes=2:ppn=1 
# 
# 
# Do not remove the following: 
TV_COMMAND 
exit 
#
# end of execution script 
# 

You can uncomment or change any line and add commands to this script. The only lines you cannot change are:



Accessing TotalView Remotely / Batch Scripts  81

TV_COMMAND
exit

tv_LoadLeveler.csh Script 
Here are the contents of the tv_Loadleveler.csh script file:
#! /bin/csh -f 
# @ job_type = bluegene 
#@ output = tv.out.$(jobid).$(stepid) 
#@ error = tv.job.err.$(jobid).$(stepid) 
#@ queue
TV_COMMAND

You can uncomment or change any line and add commands to this script. The only line you cannot change is:
TV_COMMAND



     82      

PART II  

Debugging Tools and Tasks

This part introduces basic tools and features for debugging your programs using TotalView, including:
Chapter 4, “Starting TotalView”

If you just enter totalview in a shell, the Sessions Manager launches where you can configure your debug-
ging session. But you can also bypass the manager and launch TotalView directly. This chapter details the multi-
ple options you have for starting TotalView.

Chapter 5, “Loading and Managing Sessions”
You can set up a debugging session in several ways, depending on your platform. This chapter discusses com-
mon setup scenarios and configurations.

Chapter 6, “Using and Customizing the GUI”
The TotalView GUI provides an extensive set of tools for viewing, navigating, and customization. This chapter 
discusses features specific to TotalView’s interface.

Chapter 7, “Stepping through and Executing your Program”
TotalView provides a wide set of tools for stepping through your program, using either the Process and Group 
menus, toolbar commands, or the CLI.

Chapter 8, “Setting Action Points”
Action points control how your programs execute and what happens when your program reaches statements 
that you define as important. Action points also let you monitor changes to a variable’s value.

Chapter 9, “Examining and Editing Data and Program Elements”
This chapter discusses how to examine the value stored in a variable.

Chapter 10, “Examining Arrays”
Displaying information in arrays presents special problems. This chapter tells how TotalView solves these prob-
lems.

Chapter 11, “Visualizing Programs and Data”
Some TotalView commands and tools are only useful if you’re using the GUI. Here you will find information on 
the Call Graph and Visualizer.



 /   83

Chapter 12, “Evaluating Expressions”
Many TotalView operations such as displaying variables are actually operating upon expressions. Here’s where you’ll 
find details of what TotalView does. This information is not just for advanced users.

Chapter 13, “About Groups, Processes, and Threads”
This chapter is the first of a three-chapter look at the TotalView process/thread model and how to manipulate 
threads and processes while debugging your multi-threaded applications. This chapter contains concept informa-
tion on threads and processes in general. Chapter 14, “Manipulating Processes and Threads” describes To-
talView’s hands-on tools for organizing and viewing thread and process activity and data, while Chapter 21, 
“Group, Process, and Thread Control” includes advanced configuration and customization, useful for finely con-
trolling execution in very complex applications.

Chapter 14, “Manipulating Processes and Threads”
The second (of three) chapter focusing on threads and processes, with an emphasis on hands-on tasks and tools to 
control the view, execution, and focus of a single or group of threads and processes.

Chapter 15, “Debugging Strategies for Parallel Applications”
Because debugging parallel applications can be so complex, this chapter offers a few strategies that can help 
streamline the task.



Starting TotalView     84      

Chapter 4  

Starting TotalView

Before starting TotalView and loading a program to debug, first compile your program for debugging.

When you are ready to start debugging, you have many options for starting TotalView. This chapter discusses:

• “Compiling Programs” on page 85

• “Starting TotalView” on page 87

• “Exiting from TotalView” on page 95



Starting TotalView / Compiling Programs  85

Compiling Programs
The first step in getting a program ready for debugging is to add your compiler’s -g debugging command-line 
option. This option tells your compiler to generate symbol table debugging information; for example:
cc -g -o executable source_program

You can also debug programs that you did not compile using the -g option, or programs for which you do not 
have source code. For more information, see 

The following table presents some general considerations. “Compilers and Platforms in the TotalView for HPC Refer-
ence Guide contains additional considerations.

Compiler Option or 
Library What It Does When to Use It

Debugging symbols 
option (usually -g)

Generates debugging information in the 
symbol table.

Before debugging any program with 
TotalView.

Optimization option 
(usually -O)

Rearranges code to optimize your pro-
gram’s execution.

Some compilers won’t let you use the -O 
option and the -g option at the same time.

Even if your compiler lets you use the -O 
option, don’t use it when debugging your 
program, since strange results often occur.

After you finish debugging your 
program.

multi-process program-
ming library (usually 
dbfork) 

Uses special versions of the fork() and 
execve() system calls.

In some cases, you need to use the
-lpthread option.

For more information about dbfork, see 
“Linking with the dbfork Library” contained in 
the “Compilers and Platforms” Chapter of the 
TotalView for HPC Reference Guide.

Before debugging a multi-process 
program that explicitly calls fork() or 
execve(). 

See “Debugging Processes That Call 
the fork() Function” on page 191 and 
“Debugging Processes that Call the 
execve() Function” on page 191.

RELATED TOPICS
Compilers and platforms "Compilers and Platforms" in the TotalView for HPC Platforms Guide

The dbfork library "Linking with the dbfork Library" in the TotalView for HPC Platforms Guide

Assembler code “Viewing the Assembler Version of Your Code” on page 161



Starting TotalView / Compiling Programs  86

Using File Extensions
When opening a file, TotalView uses the file's extension to determine the programming language used. If you are 
using an unusual extension, you can manually associate your extension with a programming language by setting 
the TV::suffixes variable in a startup file. For more information, see the “TotalView Variables” chapter in the 
TotalView for HPC Reference Guide.

Note that your installation may have its own guidelines for compiling programs. 



Starting TotalView / Starting TotalView  87

Starting TotalView
TotalView can debug programs that run in many different computing environments using many different parallel 
processing modes and systems. This section looks at few of the ways you can start TotalView. See the “TotalView 
Command Syntax” chapter in the TotalView for HPC Reference Guide for more detailed information.

NOTE >> Starting TotalView with no arguments (just entering totalview in your shell) launches the 
Sessions Manager’s Start a Debugging Session dialog, “Starting a Debugging Session” on page 98.

In most cases, the command for starting TotalView looks like the following:
totalview [ executable [ core-files | recording-file ] ] [ options ] 

where executable is the name of the executable file to debug, core-files is the name of one or more core files to 
examine, and recording-file is the name of a ReplayEngine recording to load. 

Your environment may require you to start TotalView in another way. For example, if you are debugging an MPI 
program, you must invoke TotalView on mpirun. For details, see “Setting Up Parallel Debugging Sessions” on 
page 492.

Note that you can use the GUI and the CLI at the same time. Use the Tools > Command Line command to dis-
play the CLI’s window. 

NOTE >> Your installation may have its own procedures and guidelines for running TotalView.

The following examples show different ways that you might begin debugging a program:

CLI: totalviewcli [ executable [ core-files | recording-file ] ] [ options ]



Starting TotalView / Starting TotalView  88

Starting TotalView
totalview Starts TotalView without loading a program or core file. Instead, TotalView launches the Ses-

sions Manager’s Start a Debugging Session dialog where you can choose the type of session 
you plan to debug.

When you select your type of session, the relevant dialog launches.  For instance, if you select A 
new program, the Program Session dialog launches.



Starting TotalView / Starting TotalView  89

Notice the Debug Options tab in the sidebar. Selecting this launches a dialog that enables re-
verse debugging with ReplayEngine and memory debugging with MemoryScape.

On the CLI, enter:

Starting on Mac OS X 

If you installed TotalView on a Macintosh using the application bundle, you can click on the To-
talView icon. If you’ve installed the .dmg version, you can start TotalView from an xterm by typ-
ing:

installdir/TotalView.app/totalview

where installdir is where TotalView is installed.

If TotalView was installed on your system without procmod permission, you will not be able to 
debug programs. If TotalView detects this problem, it displays a dialog box with information on 
how to fix it. 

Creating or Loading a Session
totalview -load_session session_name

Creates a process based on the session values. Sessions that attach to an existing process can-
not be loaded this way; use the -pid command line option instead 

Debugging a Program
totalview executable

Starts TotalView and loads the executable program.

If you installed TotalView on a Macintosh using the application bundle, you can drag your pro-
gram’s executable to the TotalView icon on your desktop.

If you type an executable name, TotalView remembers that name and many of its arguments.

CLI: totalviewcli 
dload executable

CLI: totalviewcli 
 dsession -load session_name

CLI: totalviewcli executable



Starting TotalView / Starting TotalView  90

Debugging a Core File
totalview executable corefiles

Starts TotalView and loads the executable program and one or more associated core-files.

The core-files argument represents one or more core files associated with this executable. You 
can use wild cards in the core file names.

Debugging with a Replay Recording File
totalview executable recording-file

Starts TotalView and loads the executable program and an associated recording-file. The record-
ing file was saved in a previous debugging session that used the Replay feature, and restores 
the state of that debugging session, including all Replay information. 

Passing Arguments to the Program Being Debugged
totalview executable -a args

Starts TotalView and passes all the arguments following the -a option to the executable pro-
gram. When using the -a option, it must be the last TotalView option on the command line. 

If you don’t use the -a option and you want to add arguments after TotalView loads your pro-
gram, add them either using either the File > Debug New Program dialog box or use the 
Process > Startup command.

Debugging a Program Running on Another Computer
totalview executable -remote hostname_or_address[:port]

Starts TotalView on your local host and the tvdsvr command (which implements and controls 
debugging on remote machines) on a remote host. After TotalView begins executing, it loads 
the program specified by executable for remote debugging. You can specify a host name or a 
TCP/IP address. If you need to, you can also enter the TCP/IP port number.

CLI: dattach -c core-files -e executable

CLI: dattach -c recording-file -e executable

CLI: totalviewcli executable -a args

CLI: dset ARGS_DEFAULT {value}

CLI: totalviewcli executable 
-r hostname_or_address[:port]



Starting TotalView / Starting TotalView  91

If TotalView fails to automatically load a remote executable, you may need to disable auto-
launching for this connection and manually start the tvdsvr. (Autolaunching is the process of 
automatically launching tvdsvr processes.) To  disable autolaunching, add the hostname:port-
number suffix to the name entered in the Debug on Host field of the File > Debug New Pro-
gram dialog box. As always, the portnumber is the TCP/IP port number on which TotalView 
server is communicating with TotalView. See “Starting the TotalView Server Manually” on 
page 449 for more information.

NOTE >> TotalView Individual does not allow remote debugging. 

Debugging an MPI Program
totalview

Method 1: In many cases, you can start an MPI program in much the same way as you would 
start any other program. However, you need to select A New Parallel program from the 
Start a Debugging Session dialog box, and enter the MPI version and other information on 
the parallel program to debug.

mpirun -np count -tv executable
Method 2: The MPI mpirun command starts the TotalView executable pointed to by the TO-
TALVIEW environment variable. TotalView then starts your program. This program runs using 
count processes. 

Using gnu_debuglink Files
totalview executable

If you have prepared a gnu_debuglink file, TotalView can access this information. For more in-
formation, see “Using gnu_debuglink Files” within the Compilers and Platforms chapter of the To-
talView for HPC Reference Guide.

RELATED TOPICS
Debugging parallel programs such as 
MPI, UPC, or CAF, including invoking 
TotalView on mpirun

Chapter 20, “Setting Up Parallel Debugging Sessions,” on 
page 492



Starting TotalView / Starting TotalView  92

Remote debugging Chapter 18, “Setting Up Remote Debugging Sessions,” on 
page 442, and “TotalView Debugger Server (tvdsvr) Com-
mand Syntax” in the TotalView for HPC Reference Guide.

The totalview command “TotalView Command Syntax” in the TotalView for HPC Refer-
ence Guide

RELATED TOPICS



Starting TotalView / Initializing TotalView  93

Initializing TotalView
When TotalView begins executing, it reads initialization and startup information from a number of files. The two 
most common are initialization files that you create and preference files that TotalView creates. 

NOTE >> It is sometimes desirable to bypass defaults that have been set in either a global or a private 
initialization file. To bypass the default execution of startup scripts, you can specify -
no_startup_scripts on the TotalView startup command line.

An initialization file stores CLI functions, set variables, and execute actions that TotalView interprets when it begins 
executing. This file, which you must name tvdrc, resides in the .totalview subdirectory contained in your home 
directory. TotalView creates this directory for you the first time it executes.

TotalView can read more than one initialization file. You can place these files in your installation directory, the 
.totalview subdirectory, the directory in which you invoke TotalView, or the directory in which the program 
resides. If an initialization file is present in one or all of these places, TotalView reads and executes each. Only the 
initialization file in your .totalview directory has the name tvdrc. The other initialization files have the name 
.tvdrc. That is, a dot precedes the file name.

NOTE >> Before Version 6.0, you placed your personal .tvdrc file in your home directory. If you do not 
move this file to the .totalview directory, TotalView will still find it. However, if you also have a 
tvdrc file in the .totalview directory, TotalView ignores the .tvdrc file in your home directory.

TotalView automatically writes your preferences file to your .totalview subdirectory. Its name is preferences6.tvd. 
Do not modify this file as TotalView overwrites it when it saves your preferences. 

If you add the -s filename option to either the totalview or totalviewcli shell command, TotalView executes the 
CLI commands contained in filename. This startup file executes after a tvdrc file executes. The -s option lets you, 
for example, initialize the debugging state of your program, run the program you’re debugging until it reaches 
some point where you’re ready to begin debugging, and even create a shell command that starts the CLI.

Figure 24 shows the order in which TotalView executes initialization and startup files.

Figure 24 – Startup and Initialization Sequence

preferences6.tvd.Xdefaults

global tvdinit.tvd

global .tvdrc

-e and -s tvdrc

a local .tvdrc

command options

executable.tvd



Starting TotalView / Initializing TotalView  94

The .Xdefaults file, which is actually read by the server when you start X Windows, is only used by the GUI. The 
CLI ignores it. 

The tvdinit.tvd file resides in the TotalView lib directory. It contains startup macros that TotalView requires. Do 
not edit this file. Instead, if you want to globally set a variable or define or run a CLI macro, create a file named 
.tvdrc and place it in the TotalView lib directory.

As part of the initialization process, TotalView exports three environment variables into your environment: LM_LI-
CENSE_FILE, TVROOT, and either SHLIB_PATH or LD_LIBRARY_PATH.

If you have saved an action point file to the same subdirectory as your program, TotalView automatically reads 
the information in this file when it loads your program.

You can also invoke scripts by naming them in the TV::process_load_callbacks list. For information on using this 
variable, see the “Variables” chapter of the TotalView for HPC Reference Guide.

If you are debugging multi-process programs that run on more than one computer, TotalView caches library 
information in the .totalview subdirectory. If you want to move this cache to another location, set TV::library_-
cache_directory to this location. TotalView can share the files in this cache directory among users.

RELATED TOPICS
The TV::process_load_callbacks variable "TotalView Variables" in the TotalView for HPC Reference 

Guide 

Saving action points “Saving Action Points to a File” on page 213



Starting TotalView / Exiting from TotalView  95

Exiting from TotalView
To exit from TotalView, select File > Exit. You can select this command in the Root, Process, and Variable Win-
dows. After selecting this command, TotalView displays the dialog box shown in Figure 25.

Select Yes to exit. As TotalView exits, it kills all programs and processes that it started. However, programs and 
processes that TotalView did not start continue to execute.

NOTE >> If you have a CLI window open, TotalView also closes this window. Similarly, if you type exit in 
the CLI, the CLI closes GUI windows. If you type exit in the CLI and you have a GUI window 
open, TotalView still displays this dialog box.

Note that if both the CLI and the GUI are open, and you want to exit only from the CLI, type Ctrl+D.

Figure 25 – File > Exit Dialog Box

CLI: exit



Loading and Managing Sessions 96

Chapter 5  

Loading and Managing 
Sessions

This chapter discusses how to set up a TotalView session, based on some of the most-used setup commands 
and procedures. 

There are two primary ways to load programs into TotalView for debugging: the GUI via the Sessions Manager 
(Loading Programs from the Sessions Manager) or the CLI (Loading Programs Using the CLI) using its vari-
ous commands. Both support all debugging session types.

For information on setting up remote debugging, see “Setting Up Remote Debugging Sessions” on page 442. 

For information on setting up parallel debugging sessions, see “Setting Up MPI Debugging Sessions” on 
page 461 and “Setting Up Parallel Debugging Sessions” on page 492.

This chapter contains the following sections (not necessarily in this order):

Setting up Debugging Sessions

• “Loading Programs from the Sessions Manager” on page 98 

— “Starting a Debugging Session” on page 98

— “Debugging a New Program” on page 99

— “Attaching to a Running Program” on page 101

— “Debugging a Core File” on page 106

— “Debugging with a Replay Recording File” on page 107

— “Launching your Last Session” on page 109

• “Loading Programs Using the CLI” on page 109 



NOTE >> Setting up parallel debugging sessions is not discussed in this chapter.  Rather, 
see Chapter 19.

Additional Session Setup Options

• “Adding a Remote Host” on page 111

• “Options: Reverse Debugging, Memory Debugging, and CUDA” on page 113

• “Setting Environment Variables and Altering Standard I/O” on page 115

Managing Debug Sessions

• “Managing Sessions” on page 119

Other Configuration Options

• “Handling Signals” on page 122

• “Setting Search Paths” on page 125

• “Setting Startup Parameters” on page 127

• “Setting Preferences” on page 128



Setting up Debugging Sessions
The easiest way to set up a new debugging session is to use the Sessions Manager, which provides an easy-to-
use interface for configuring sessions and loading programs into TotalView. Alternatively, you can use the CLI. 

“Loading Programs from the Sessions Manager” on page 98

“Loading Programs Using the CLI” on page 109

Loading Programs from the Sessions Manager
TotalView can debug programs on local and remote hosts, and programs that you access over networks and 
serial lines. The File menu of both the Root and Process windows contains a series of debug options to load local 
and remote programs, core files, and processes that are already running.

Each of these debug options launches the Sessions Manager where you can configure a new debug session or 
launch a previous session.

From this menu, you can also select Manage Sessions to edit or delete previously saved debug sessions.

NOTE >> Your license limits the number of programs you can load. For example, TotalView Individual 
limits you to 16 processes or threads.

Starting a Debugging Session

Access the main page of the Sessions Manager either directly from your shell by just entering
totalview

or by selecting File > New Debugging Session in the Root and Process windows. 

Figure 26 – Debugging options from the File Menu



The Start a Debugging Session dialog of the Sessions Manager can configure various types of debugging ses-
sions, depending on your selection. These are:

• “Debugging a New Program” on page 99

• Debugging a parallel application in “Starting MPI Programs Using File > Debug New Parallel 
Program” on page 463

• “Attaching to a Running Program” on page 101

• “Debugging a Core File” on page 106

• “Debugging with a Replay Recording File” on page 107

• “Launching your Last Session” on page 109

Debugging a New Program

To configure a new debugging session, either:

• Select A new program to launch the Program Session dialog, or

• Select File > Debug New Program from the Root or Process windows, if TotalView is already 
running.

Figure 27 – Start a Debugging Session dialog box



The Program Session dialog launches.

1. Enter a session name in the Session Name text box.

NOTE >> Note that any previously entered sessions of the same type are available from 
the Session Name dropdown box. Once selected, you can change any session 
properties and start your debug session. See “Editing or Starting New Sessions in 
a Sessions Window” on page 121.

2. Enter the name of your program in the File Name box or press Browse to browse to and select the file.  
You can enter a full or relative path name. If you have previously entered programs here, they will appear in 
a drop-down list. 

If you enter a file name, TotalView searches for it in the list of directories named using the File > Search Path 
command or listed in your PATH environment variable. 

3. (Optional) Add any custom configurations or options:

— Remote debugging: Select or add a remote host, if the program is to be executed on a 
remote computer. See “Adding a Remote Host” on page 111.

— Program arguments: Enter any program arguments into the Arguments field. 

Figure 28 – Program Session dialog

CLI: dset EXECUTABLE_PATH



Because you are loading the program from within TotalView, you will not have entered the command-
line arguments that the program needs. For detail, see Program Arguments in the In-Product Help.

— Debugging Options: See “Options: Reverse Debugging, Memory Debugging, and CUDA” 
on page 113. 

— Environment variables or standard I/O: See “Setting Environment Variables and Altering 
Standard I/O” on page 115

— Notes: You can add any notes to the session by selecting the Note icon ( ). See “Adding 
Notes to a Session” on page 117.

4. Click Start Session. The Start Session button is enabled once all required information is entered.

Attaching to a Running Program

If a program you’re testing is hung or looping (or misbehaving in some other way), you can attach to it while it is 
running. You can attach to single and multi-process programs, and these programs can be running remotely.

To open the Attach window, select either

•  A running program (attach) on the Start a Debugging Session dialog, or 

• File > Attach to a Running Program from the Root or Process window if TotalView is already 
running.  

A list of processes running on the selected host displays in the Attach to running program(s) dialog.



In the displayed list, processes to which TotalView is already attached are shown in gray text, while the processes 
displayed in black text are not currently running under TotalView control. 

1. Enter a name for this session in the Session Name field.

NOTE >> Any previously entered sessions of the same type are available from the Session 
Name dropdown box. Once selected, you can change any session properties and 
start your debug session. See “Editing or Starting New Sessions in a Sessions 
Window” on page 121.

2. Click on the program’s name under the Program column, and press Start Session. 

While you must link programs that use fork() and execve() with the TotalView dbfork library so that TotalView can 
automatically attach to them when your program creates them, programs that you attach to need not be linked 
with this library.

NOTE >> You cannot attach to processes running on another host if you are using TotalView Individual.

Figure 29 – Attaching to an existing process

CLI: dattach executable pid



Adding a New User

You can enter a user name to see the processes owned by that user. If you wish to attach to a process owned by 
someone else, you need the proper permissions. 

1. Click the  icon to launch the Add username dialog. 

2. Enter a known username, then click OK.

If the username is not recognized, the system returns an error; otherwise, the user is added to the User 
drop-down and selected as the current user.

The selected user’s processes are displayed. Attach to another user’s processes just by clicking the process 
and selecting Start Session. 

If you do not have permissions to attach to the process, an error is returned.

Searching for Processes

You can search for any process using the search box ( ). If found, the process will display in 
the Processes pane.



Attach Options

On the Debug Options tab, two options exist:

• Enabling ReplayEngine, which is an option available to all other debugging sessions (See “Options: 
Reverse Debugging, Memory Debugging, and CUDA” on page 113)

• Placing the processes to which you are attaching into a control group under the Attach Options 
area. 

If you have selected a group in previous TotalView sessions and the group exists in the dropdown, it is 
selected for you. Otherwise, the default is to create a new group to contain all processes attached to in this 
session.

Attaching Errors

If TotalView returns an error while attempting to attach to a process, it is usually because you do not have permis-
sion to attach to that process. For example, the process could not be allocated: 

RELATED TOPICS
Attached process states “Seeing Attached Process States” on page 375

Starting TotalView “Starting TotalView” on page 87

Using the Root Window “Using the Root Window” on page 140

File > Attach to a Running Program Process > Detach in the in-product Help



Or you don’t own the process:

Detaching from Processes

You can either detach from a group of processes or detach from one process.

Use the Group > Detach command to remove attached processes within a control group. As TotalView executes 
this command, it eliminates all of the state information related to these processes. If TotalView didn’t start a pro-
cess, it continues executing in its normal run-time environment.

To detach from processes that TotalView did not create:

1. (Optional) After opening a Process Window on the process, select the Thread > Continuation Signal com-
mand to display the following dialog box.

The examples at the end of TV::thread discussion show setting a signal.

Choose the signal that TotalView sends to the process when it detaches from the process. For example, to 
detach from a process and leave it stopped, set the continuation signal to SIGSTOP.

2. Select OK.

3. Select the Process > Detach command.

When you detach from a process, TotalView removes all breakpoints that you have set in it.

CLI: ddetach



Debugging a Core File

If a process encounters a serious error and dumps a core file, you can load the file to examine it.

To debug a core file, select either

•  A core file or replay recording file on the Start a Debugging Session dialog, or 

•  File > Debug Core or Replay Recording from the Root or Process window if TotalView is already 
running. 

The “Core or Replay Recording File Session” dialog launches. Enter a name for the session and the program and 
core file’s name.

NOTE >> Any previously entered sessions of the same type are available from the Session Name drop-
down box. Once selected, you can change any session properties and start your debug 
session. See “Editing or Starting New Sessions in a Sessions Window” on page 121.

RELATED TOPICS
The Process > Detach command in detail Process > Detach in the in-product Help

The CLI ddetach command ddetach in the TotalView for HPC Reference Guide

The continuation signal Thread > Continuation Signal in the in-product Help

Figure 30 – Open a Core File



If the program and core file reside on another system, enter that system’s name in the Debug on Host area (see 
“Adding a Remote Host” on page 111 for details).

If your operating system can create multi-threaded core files (and most can), TotalView can examine the thread in 
which the problem occurred. It can also show you information about other threads in your program.

When TotalView launches, the Process Window displays the core file, with the Stack Trace, Stack Frame, and 
Source Panes showing the state of the process when it dumped core. The title bar of the Process Window names 
the signal that caused the core dump. The right arrow in the line number area of the Source Pane indicates the 
value of the program counter (PC) when the process encountered the error.

You can examine the state of all variables at the time the error occurred. See “Examining and Editing Data and 
Program Elements” on page 214.

If you start a process while you’re examining a core file, TotalView stops using the core file and switches to this 
new process.

Debugging with a Replay Recording File

Previously saved Replay recording files can be loaded to further debug applications. These recording files contain 
the state of a previous debugging session, including all Replay information.

To debug with a replay recording file, select either

• A core file or replay recording file on the Start a Debugging Session dialog, or

• File > Debug Core or Replay Recording File from the Root or Process window if TotalView is 
already running.

The Core or Replay Recording File Session dialog launches. Enter a name for the session, the program, and 
replay recording file's name.

RELATED TOPICS
Debugging a Core File The File > Debug Core File dialog in the 

in-product Help

The CLI dattach command’s -c core-files option dattach in the TotalView for HPC Reference 
Guide



If the program and replay recording file reside on another system, enter that system's name in the Debug on 
Host area (see “Adding a Remote Host” on page 111 for details).

When TotalView launches, the Process Window displays the replay recording file, with the Stack Trace, Stack 
Frame, and Source Panes showing the state of the process when the replay session was saved. The title bar of 
the Process Window displays “Recording File”. The right arrow in the line number area of the Source Pane indi-
cates the value of the program counter (PC) when the process was saved.

You can examine the state of all variables at the time the replay recording file was saved. See Chapter 9, “Exam-
ining and Editing Data and Program Elements,” on page 214.

Figure 31 – Open a Replay Recording File

RELATED TOPICS
Debugging with a Replay recording file The File > Debug Core or Replay 

Recording File dialog in the in-product 
Help

The CLI dattach command’s -c recording-file option dattach in the TotalView for HPC Reference 
Guide



Launching your Last Session

The initial window of the Sessions Manager displays your most recent session so you can quickly continue a 
debugging session where you left off.

If you click on My last session, TotalView immediately launches based on your last session’s settings, and displays 
the Process Window.

If you do wish to edit any properties of your last session, just select the Manage Sessions button to instead 
launch the Manage Debugging Sessions page.

Loading Programs Using the CLI
When using the CLI, you can load programs in a number of ways. Here are a few examples.

Load a session dsession -load session_name 

If the preference  "Show the Startup Parameters dialog on startup" is selected, this command 
launches the Sessions Manager so you can edit session properties; otherwise, it loads the ses-
sion directly into Totalview and launches the Process and Root windows.

Start a new process
dload -e executable 

Figure 32 – Start a Debugging Session



Open a core file
dattach -c core-files -e executable

If TotalView is not yet running, you can also provide the core file as a startup argument, like so:

totalview executable core-files [ options ]

Open a replay recording session file
dattach -c recording-file -e executable

If TotalView is not yet running, you can also provide the replay recording session file as a 
startup argument, like so:

totalview executable recording-file [ options ]

Load a program using its process ID
dattach executable pid 

Load a program on a remote computer
dload executable -r hostname 

You can type the computer’s name (for example, gandalf.roguewave.com) or an IP address.

Load a poe program
dload -mpi POE -np 2 -nodes \

-starter_args "hfile=~/my_hosts"

RELATED TOPICS
CLI commands "CLI Commands" in the TotalView for HPC Refer-

ence Guide

Using the CLI “Using the CLI” on page 414



Debugging Options and Environment Setup
A debugging session can be customized in a variety of ways. This section discusses

• “Adding a Remote Host” on page 111

• “Options: Reverse Debugging, Memory Debugging, and CUDA” on page 113

• “Setting Environment Variables and Altering Standard I/O” on page 115

• “Adding Notes to a Session” on page 117

Adding a Remote Host
To debug a program running on a remote computer, enter the computer name in the Debug on Host area, or 
select it from the dropdown if already entered. 

To enter a new host, select the Add host button and enter its name or IP address in the displayed dialog box.

Figure 33 – Debug on Host area



You can add multiple hosts separated by a space.  Alternatively, add the IP address. For example:
server1 server2 server3

or
10.5.6.123 10.5.7.124 

If TotalView cannot connect to the host, it displays an error dialog.

To modify the launch string or to view the default string TotalView will use to launch the remote debug session, 
select the Advanced button ( ) to open the Remote Server Launch Command field. 

Figure 34 – Add Host dialog

Figure 35 – Add Host Failure popup

Figure 36 – Remote server launch command



You can edit this string and then click Save as preference to have TotalView save it to your preferences.  Once 
saved, you can view or edit it at File > Preferences > Launch Strings tab.

Note that if you hover your cursor inside the text field, a popup displays the substitutions used in the launch 
string.

If TotalView supports your program’s parallel process runtime library (for example, MPI, UPC, or CAF), it auto-
matically connects to remote hosts. For more information, see Chapter 20, “Setting Up Parallel Debugging 
Sessions,” on page 492.

Options: Reverse Debugging, Memory Debugging, and CUDA
You can choose to enable various additional debugging features for a given session. Select the Debug Options 
tab to launch options.

Depending on the type of debug session, different options are available: 

• The New Program and New Parallel Program windows offer reverse debugging, memory 
debugging, and CUDA debugging options:

Figure 37 – Remote server launch command substitutions

RELATED TOPICS
Editing the server launch command “Customizing Server Launch Commands” on page 455

TotalView command line options “Command-Line Options” in the TotalView for HPC Reference 
Guide

The tvdsr command "The TotalView Debugger Server Command Syntax" in the 
TotalView for HPC Reference Guide

Remote debugging “Setting Up Remote Debugging Sessions” on page 442



— Reverse Debugging. Record all program state while running and then roll back your pro-
gram to any point.

The Enable ReplayEngine check box is visible only on Linux-x86 and Linux-86-64 platforms. If you do 
not have a license for ReplayEngine, enabling the check box has no effect, and TotalView displays an 
error message when your program begins executing. Selecting this check box tells TotalView that it 
should instrument your code so that you can move back to previously executed lines.

— Memory Debugging. Track dynamic memory allocations. Catch common errors, leaks, and 
show reports. 

Enabling memory debugging here is the same as enabling it within MemoryScape or using the Process 
Window’s Debug> Enable Memory Debugging command.

The Enable memory debugging and Suppress memory error notifications check boxes perform 
the same functions as the Enable memory debugging and On memory event, halt execution 
checkboxes do within the Advanced Options on MemoryScape’s Memory Debugging Options page. 
This is the equivalent of the basic Low setting. 

— CUDA Debugging. Detect global memory addressing violations and misaligned memory 
accesses for CUDA-based programs. 

• The Attach to a Running Program window supports only ReplayEngine and a special Attach 
option.  For more information, see “Attaching to a Running Program” on page 101.

Figure 38 – Debug Options for Reverse, Memory or CUDA debugging

RELATED TOPICS
Reverse Debugging “Understanding ReplayEngine” in the ReplayEngine User Guide 

Memory Debugging More on MemoryScape in Debugging Memory Problems with 
MemoryScape



Setting Environment Variables and Altering Standard I/O
When loading the program from within TotalView, you can add any necessary environment variables or alter stan-
dard I/O using the Environment tab.

Environment Variables

Enter environment variables in the field in the Program Environment area. 

CUDA Debugging Part V, “Using the CUDA Debugger,” on page 570

Attach options “Attach Options” on page 104

Figure 39 – Setting Environment Variables and Altering Standard I/O

RELATED TOPICS



Either separate each argument with a space, or place each one on a separate line. If an argument contains 
spaces, enclose the entire argument in double-quotation marks.

At startup, TotalView reads in your environment variables to ensure that your program has access to them when 
the program begins executing. Use the Program Environment area to add additional environment variables or to 
override values of existing variables.

NOTE >> TotalView does not display the variables that were passed to it when you started your debug-
ging session. Instead, this field displays only the variables you added using this command.

The format for specifying an environment variable is name=value. For example, the following definition creates an 
environment variable named DISPLAY whose value is enterprise:0.0:
DISPLAY=enterprise:0.0 

You can also enter this information using the Process Window’s Process > Startup Parameters command.

Standard I/O

Use the controls in the Input Processing and  Standard and Error Output Processing to alter standard input, out-
put, and error. In all cases, name the file to which TotalView will write or from which TotalView will read 
information. Other controls append output to an existing file if one exists instead of overwriting it or merge stan-
dard out and standard error to the same stream.

Figure 40 – Setting environment variables

RELATED TOPICS
Environment options in the File > 
Debug New Program dialog

"Environment Variables" in the in-product Help



You can also enter this information using the Process Window’s Process > Startup Parameters command.

Adding Notes to a Session
On any of the Sessions Manager dialogs for configuring debugging sessions, you can add a note by selecting the 
Note icon ( ). This opens a simple text field where you can enter your note.

Once added, your note is saved and viewable in the Manage Sessions dialog under Comments.

Figure 41 – Resetting Standard I/O

RELATED TOPICS
The standard I/O in the File > 
Debug New Program dialog

"Standard I/O" in the in-product Help

Figure 42 – Adding a note to a session



To edit your note, or any other option for this session, click the Edit button ( ) to launch the relevant session 
window.

Figure 43 – Viewing notes saved in a session



Managing Sessions
TotalView saves the settings for each of your previously-entered debugging sessions, available in the Manage 
Debugging Sessions window of the Sessions Manager. Here, you can edit, duplicate or delete sessions as well as 
start a session and create new sessions.

NOTE >> You can also edit and create new sessions from any Sessions Window. See “Editing or Starting 
New Sessions in a Sessions Window” on page 121

Access the Manage Debugging Sessions window, either from the Start a Debugging Session window of the Ses-
sions Manager or from File -> Manage Sessions if TotalView is already running.

The Manage Debugging Sessions window launches. The left pane lists all sessions you have created. When you 
select a session in the left pane, the right pane displays data about that session.

Figure 44 – Accessing the Manage Sessions page



If you have many sessions, you can search by keyword in the search box ( ). When found, 

TotalView immediately launches the session.

You can edit, delete and duplicate sessions using the icons in the left toolbar.

Figure 45 – Manage Debugging Sessions main page

Icon Action

Creates a new debugging session, launching the Start a Debugging Ses-
sion window of the Sessions Manager.

Duplicates a session, naming it "<Session Name> Copy". You can 
rename and then edit this session. 

Edits a session, launching the appropriate window to change the ses-
sion’s configuration, either New Program, Parallel Program, Running 
Program or Core File.

Deletes the session.



Editing or Starting New Sessions in a Sessions Window
In addition to editing a session using the Manage Debugging Sessions Window (“Managing Sessions” on 
page 119), you can also edit or even create a new session directly from any sessions window.

The Session Name field on each sessions window contains a dropdown that lists all previously created sessions 
of that type. For instance, from the Program Session window, you can access any session created in another Pro-
gram Session:

Similarly, the Attach to a running program dialog displays any previous attach sessions: 

If you select a previous session, you can edit any field’s values, even the Session Name to create an entirely new 
session.  Then just click Start Session to launch that new debugging session.

Figure 46 – Sessions Name dropdown of a Program Session window

Figure 47 – Sessions Name dropdown of an Attach Session window



Other Configuration Options

Handling Signals
If your program contains a signal handler routine, you may need to adjust the way TotalView handles signals. The 
following table shows how TotalView handles UNIX signals by default:

NOTE >> TotalView uses the SIGTRAP and SIGSTOP signals internally. If a process receives either of 
these signals, TotalView neither stops the process with an error nor passes the signal back to 
your program. You cannot alter the way TotalView uses these signals.

On some systems, hardware registers affect how TotalView and your program handle signals such as SIGFPE. For 
more information, see “Interpreting the Status and Control Registers” on page 233 and the “Architectures” 
chapter in the TotalView for HPC Reference Guide.

NOTE >> On an SGI computer, setting the TRAP_FPE environment variable to any value indicates that 
your program traps underflow errors. If you set this variable, however, you also need to use 
the controls in the File > Signals Dialog Box to indicate what TotalView should do with SIGFPE 
errors. (In most cases, you set SIGFPE to Resend.)

Signals Passed Back to Your Program Signals Treated as Errors

SIGHUP SIGIO SIGILL SIGPIPE

SIGINT SIGIO SIGTRAP SIGTERM

SIGQUIT SIGPROF SIGIOT SIGTSTP

SIGKILL SIGWINCH SIGEMT SIGTTIN

SIGALRM SIGLOST SIGFPE SIGTTOU

SIGURG SIGUSR1 SIGBUS SIGXCPU

SIGCONT SIGUSR2 SIGSEGV SIGXFSZ

SIGCHLD SIGSYS



You can change the signal handling mode using the File > Signals command, Figure 48.

The signal names and numbers that TotalView displays are platform-specific. That is, what you see in this box 
depends on the computer and operating system in which your program is executing.

You can change the default way in which TotalView handles a signal by setting the TV::signal_handling_mode 
variable in a .tvdrc startup file. For more information, see “Command-Line Options” in the TotalView for HPC Refer-
ence Guide. 

When your program receives a signal, TotalView stops all related processes. If you don’t want this behavior, clear 
the Stop control group on error signal check box on the Options Page of the File > Preferences Dialog Box. 

When your program encounters an error signal, TotalView opens or raises the Process Window. Clearing the 
Open process window on error signal check box, also found on the Options Page in the File > Preferences 
Dialog Box, tells TotalView not to open or raise windows. 

If processes in a multi-process program encounter an error, TotalView only opens a Process Window for the first 
process that encounters an error. (If it did it for all of them, TotalView would quickly fill up your screen with Pro-
cess Windows.)

Figure 48 – File > Signals Dialog Box

CLI: dset TV::signal_handling_mode

CLI: dset TV::warn_step_throw

CLI: dset TV::GUI::pop_on_error



If you select the Open process window at breakpoint check box on the File > Preferences Action Points Page, 
TotalView opens or raises the Process Window when your program reaches a breakpoint. 

Make your changes by selecting one of the radio buttons described in the following table.

NOTE >> Do not use Ignore for fatal signals such as SIGSEGV and SIGBUS. If you do, TotalView can get 
caught in a signal/resignal loop with your program; the signal immediately reoccurs because 
the failing instruction repeatedly re-executes.

CLI: dset TV::GUI::pop_at_breakpoint

Button Description

Error Stops the process, places it in the error state, and displays an error in the 
title bar of the Process Window. If you have also selected the Stop control 

group on error signal check box, TotalView also stops all related processes. 
Select this button for severe error conditions, such as SIGSEGV and SIGBUS.

Stop Stops the process and places it in the stopped state. Select this button if you 
want TotalView to handle this signal as it would a SIGSTOP signal.

Resend Sends the signal back to the process. This setting lets you test your pro-
gram’s signal handling routines. TotalView sets the SIGKILL and SIGHUP 
signals to Resend since most programs have handlers to handle program 
termination.

Ignore Discards the signal and continues the process. The process does not know that 
something raised a signal. 

RELATED TOPICS
Thread continuation signal command Thread > Continuation Signal in the in-product Help 

The TV::signal_handling_mode 
variable in a .tvdrc startup file

“Command-Line Options” in the TotalView for HPC Reference 
Guide

TotalView preferences The File > Preferences dialog in the in-product Help and 
“Setting Preferences” on page 128



Setting Search Paths
If your source code, executable, and object files reside in different directories, set search paths for these directo-
ries with the File > Search Path command. You do not need to use this command if these directories are already 
named in your environment’s PATH variable. 

These search paths apply to all processes that you’re debugging.

TotalView searches the following directories in order:

4. The current working directory (.) and the directories you specify with the File > Search Path command, in 
the exact order entered.

5. The directory name hint. This is the directory that is within the debugging information generated by your 
compiler.

6. If you entered a full path name for the executable when you started TotalView, TotalView searches this 
directory.

CLI: dset EXECUTABLE_PATH

Figure 49 – File > Search Path Dialog Box



7. If your executable is a symbolic link, TotalView looks in the directory in which your executable actually 
resides for the new file.

Since you can have multiple levels of symbolic links, TotalView continues following links until it finds the 
actual file. After it finds the current executable, it looks in its directory for your file. If the file isn’t there, 
TotalView backs up the chain of links until either it finds the file or determines that the file can’t be found.

8. The directories specified in your PATH environment variable.

9. The src directory within your TotalView installation directory.

The simplest way to enter a search path is select the EXECUTABLE_PATH tab, then type an entry or press Insert 
and use the displayed dialog box to find the directory.

When you enter directories into this dialog box, you must enter them in the order you want them searched, and 
you must enter each on its own line. You can enter directories in the following ways:

• Type path names directly.

• Cut and paste directory information.

• Click the Insert button to display the Select Directory dialog box that lets you browse through the 
file system, interactively selecting directories, as shown in Figure 50.

The current working directory (.) in the File > Search Path Dialog Box is the first directory listed in the window. 
TotalView interprets relative path names as being relative to the current working directory.

If you remove the current working directory from this list, TotalView reinserts it at the top of the list.

Figure 50 – Select Directory Dialog Box



After you change this list of directories, TotalView again searches for the source file of the routine being displayed 
in the Process Window.

You can also specify search directories using the EXECUTABLE_PATH environment variable.

TotalView search path is not usually passed to other processes. For example, it does not affect the PATH of a 
starter process such as poe. Suppose that “.” is in your TotalView path, but it is not in your PATH environment 
variable. In addition, the executable named prog_name is listed in your PWD environment variable. In this case, 
the following command works:
totalview prog_name 

However, the following command does not:
totalview poe -a prog_name 

You will find a complete description of how to use this dialog box in the help.

Setting Startup Parameters
After you load a program, you may want to change a program’s command-line arguments and environment vari-
ables or change the way standard input, output, and error behave. Do this using the Process > Startup 
Parameters command. The displayed dialog box is nearly identical to that displayed when you use the File > 
Debug New Program command, differing only in that it has an Apply button to save your entered parameters, 
rather than a Start Session button.

For information on other options you can edit here, see “Options: Reverse Debugging, Memory Debugging, and 
CUDA” on page 113 and “Setting Environment Variables and Altering Standard I/O” on page 115.

If you are using the CLI, you can set default command line arguments by setting the ARGS_DEFAULT variable. 

Also, the drun and drerun commands let you reset stdin, stdout, and stderr.

RELATED TOPICS
Starting TotalView “Starting TotalView” on page 87

The EXECUTABLE_PATH environment 
variable

The EXECUTABLE_PATH variable in "TotalView Variables" in 
the TotalView for HPC Reference Guide

RELATED TOPICS
The ARGS_DEFAULT variable  " TotalView Variables" in the TotalView for HPC Reference Guide  

and “ dset ARGS_DEFAULT {value}” on page 90

The drun command drun n the TotalView for HPC Reference Guide  

The drerun command drerun in the TotalView for HPC Reference Guide and “Restarting 
Programs” on page 172 



Setting Preferences
The File > Preferences command tailors many TotalView behaviors. This section contains an overview of these 
preferences. See File > Preferences in the in-product Help for more information.

Some settings, such as the prefixes and suffixes examined before loading dynamic libraries, can differ between 
operating systems. If they can differ, TotalView can store a unique value for each. TotalView does this transpar-
ently, which means that you only see an operating system’s values when you are running TotalView on that 
operating system. For example, if you set a server launch string on an SGI computer, it does not affect the value 
stored for other systems. Generally, this occurs for server launch strings and dynamic library paths.

Every preference has a variable that you can set using the CLI. These variables are described in the”Variables” 
chapter of the TotalView for HPC Reference Guide. 

The rest of this section is an overview of these preferences.

Options

This page contains check boxes that are either general in nature or that influence different parts of the system.

Figure 51 – File > Preferences Dialog Box: Options Page



Action Points

The commands on this page indicate whether TotalView should stop anything else when it encounters an action 
point, the scope of the action point, automatic saving and loading of action points, and if TotalView should open 
a Process Window for the process encountering a breakpoint.

Launch Strings

This page sets the launch string that TotalView uses when it launches the tvdsvr remote debugging server, the 
Visualizer, and a source code editor. The initial values are the defaults

Figure 52 – File > Preferences Dialog Box: Action Points Page

Figure 53 – File > Preferences Dialog Box: Launch Strings Page



Bulk Launch

This page configures the TotalView bulk launch system which launches groups of processes simultaneously.

Dynamic Libraries

When debugging large programs, you can sometimes increase performance by loading and processing debug-
ging symbols. This page controls which symbols are added to TotalView when it loads a dynamic library, and how 
many of a library’s symbols are read in.

Figure 54 – File > Preferences Dialog Box: Bulk Launch Page

Figure 55 – File > Preferences Dialog Box: Dynamic Libraries Page



Parallel

The options on this page control whether TotalView stops or continues executing when a process creates a 
thread or goes parallel. By stopping your program, you can set breakpoints and examine code before execution 
begins.

Fonts

This page specifies the fonts used in the user interface and how code is displayed.

Figure 56 – File > Preferences Dialog Box: Parallel Page

Figure 57 – File > Preferences Dialog Box: Fonts Page



Formatting

This page controls how TotalView displays your program’s variables.

Pointer Dive

The options on this page control how TotalView dereferences pointers and casts pointers to arrays.

Figure 58 – File > Preferences Dialog Box: Formatting Page

Figure 59 – File > Preferences Dialog Box: Pointer Dive Page



ReplayEngine

This page controls how ReplayEngine handles recorded history.

The Maximum history size option sets the size in megabytes for ReplayEngine’s history buffer. The default value, 
Unlimited, means ReplayEngine will use as much memory as is available to save recorded history. You can enter a 
new value into the text field or select from a drop-down list, as seen in Figure 61.

Figure 60 – File > Preferences Dialog Box: ReplayEngine



The second option on the ReplayEngine preference page defines the tool’s behavior when the history buffer is 
full. By default, the oldest history will be discarded so that recording can continue. You can change that so that 
the recording process will simply stop when the buffer is full.

Setting Preferences, Options, and X Resources

In most cases, preferences are the best way to set many features and characteristics. In some cases, you need 
have more control. When these situations occur, you can the preferences and other TotalView attributes using 
variables and command-line options.

Older versions of TotalView did not have a preference system. Instead, you needed to set values in your .Xde-
faults file or using a command-line option. For example, setting totalview*autoLoadBreakpoints to true 
automatically loads an executable’s breakpoint file when it loads an executable. Because you can also set this 
option as a preference and set it using the CLI dset command, this X resource has been deprecated. 

NOTE >> Deprecated means that while the feature still exists in the current release, there’s no guaran-
tee that it will continue to work at a later time. We have deprecated all “totalview” X default 
options. TotalView still fully supports Visualizer resources. Information on these Visualizer set-
tings is in the document TotalView XResources.pdf, downloadable from the Rogue Wave 
website at http://www.roguewave.com/help-support/documentation/totalview.

Figure 61 – File > Preferences Dialog Box: ReplayEngine History Option

http://www.roguewave.com/help-support/documentation/totalview


Similarly, documentation for earlier releases told you how to use a command-line option to tell TotalView to auto-
matically load breakpoints, and there were two different command-line options to perform this action. While 
these methods still work, they are also deprecated.

In some cases, you might set a state for one session or you might override one of your preferences. (A preference 
indicates a behavior that you want to occur in all of your TotalView sessions.) This is the function of the com-
mand-line options described in “TotalView Command Syntax” in the TotalView for HPC Reference Guide.

For example, you can use the -bg command-line option to set the background color for debugger windows in the 
session just being invoked. TotalView does not remember changes to its default behavior that you make using 
command-line options. You have to set them again when you start a new session.

RELATED TOPICS
Setting preferences in TotalView “Setting Preferences” on page 128

TotalView variables "TotalView Variables" in the TotalView for HPC Reference 
Guide







Using and Customizing the GUI     138      

Chapter 6  

Using and Customizing the 
GUI

Overview
This chapter contains information about using the TotalView GUI, including:

• “Using Mouse Buttons” on page 139

• “Using the Root Window” on page 140

• “Using the Process Window” on page 148

• “Resizing and Positioning Windows” on page 151

• “About Diving into Objects” on page 152

• “Saving the Data in a Window” on page 155

• “Searching and Navigating Program Elements” on page 156

• “Viewing the Assembler Version of Your Code” on page 161

• “Editing Source Text” on page 164



Using and Customizing the GUI / Using Mouse Buttons  139

Using Mouse Buttons
The buttons on your three-button mouse work like this:

In most cases, a single-click selects an object while and a double-click dives on the object. However, if the field is 
editable, TotalView enters edit mode, so you can alter the selected item's value. 

In some areas, such as the Stack Trace Pane, selecting a line performs an action. In this pane, TotalView dives on 
the selected routine. (In this case, diving means that TotalView finds the selected routine and shows it in the 
Source Pane.)

In the line number area of the Source Pane, a left mouse click sets a breakpoint at that line, displaying a  
icon instead of a line number. 

Selecting the  icon a second time deletes the breakpoint. If you change any of the breakpoint’s properties 

or if you’ve created an eval point (indicated by an  icon), selecting the icon disables it. For more information 
on breakpoints and eval points, see Chapter 8, “Setting Action Points,” on page 174.

Button Action Purpose How to Use It

Left Select Selects or edits object. Scrolls in 
windows and panes.

Move the cursor over the object and click.

Middle Paste Writes information previously 
copied or cut into the clipboard.

Move the cursor to the insertion point and click. Not 
all windows support pasting.

Dive Displays more information or 
replaces window contents.

Move the cursor over an object, then click.

Right Con-
text 
menu

Displays a menu with commonly 
used commands.

Move the cursor over an object and click.

Most windows and panes have context menus; dia-
log boxes do not have context menus.



Using and Customizing the GUI / Using the Root Window  140

Using the Root Window
The Root Window appears when you start TotalView. 

• If you type a program name immediately after the totalview command, TotalView also opens a 
Process Window with the program’s source code. 

• If you do not enter a program name when starting TotalView, TotalView displays its File > New 
Debugging Session dialog box. Use this dialog box to select the type of debug session you wish to 
configure. 

As of TotalView 8.15.0, the Root Window displays a list of aggregated processes and threads — instead of display-
ing one line per each process or thread, it groups them by common properties that you can configure. This 
provides a considerable performance boost when scaling to thousands — or more — threads or processes.

NOTE >> You can choose to display the Root Window from versions prior to TotalView 8.15.0, discussed 
in Using the Old Root Window. The old Root Window, however, does not perform as well for 
high-scale programs. See Chapter 22, “Scalability in HPC Computing Environments,” on 
page 544.

Figure 62 shows the Root Window for an executing multi-threaded multi-process program.

The Root Window groups threads and processes under common properties. The initial default view groups the 
display by control group, process state, function, and thread ID. You can regroup and reduce the display in a num-
ber of ways, based on either process or thread properties, as described in Table 1.

Figure 62 – Root Window



Using and Customizing the GUI / Using the Root Window  141

The various properties here are either process or thread-level, which determines the kind of ptlist displayed in 
the Members column: the members of process-level properties are processes, and the members of thread-level 
properties are threads. 

You can also use the CLI’s dstatus command’s -group_by switch for additional reduction options.

Table 1:  Thread and Process Properties

Process Property Level Description

Control Group Process Control group of the processes in your job. Processes in the same 
job are placed in the same control group by default. If there is only 
one control group in the debug session, this property is omitted 
from the display.

Share Group Process Share group of the processes within a control group. Processes that 
are running the same main executable are placed in the same share 
group by default.

Hostname Process The hostname or IP address of where the process is running.

Process State Process The process execution state, e.g., Nonexistent, Running, Stopped, 
Breakpoint, Watchpoint, etc. The process execution state derives 
from the execution state of the threads it contains.

Thread State Thread The thread execution state, e.g., Running, Stopped, Breakpoint, 
Watchpoint, etc.

Action Point ID Thread The action point (breakpoint or watchpoint) ID of the location of the 
stopped thread. Displays "ap(ID)", where ID is the action point ID or 
"none" if the thread is not stopped at an action point.

Function Thread The function name of the location of the stopped thread. Displays 
the function name or "<unknown address>" if the thread is running 
or the function name is not known.

Source Line Thread The function name of the location of the stopped thread. Displays 
the source file name and line number or "<unknown line>" if the 
thread is running or the source line is not known.

PC Thread The PC of the location of the stopped thread. Displays the program 
counter value or "<unknown address>" if the thread is running.

Process ID Process The debugger process ID (dpid) of the process. Displays dpid.

Thread ID Thread The dpid and debugger thread ID (dtid) of the thread. Displays dpid 
dtid.



Using and Customizing the GUI / Using the Root Window  142

Controlling the Display of Processes and Threads
The Root Window's layout enables you to modify the grouping parameters while viewing the results.

Figure 63 illustrates a 17-process MPI job comprised of a single MPI starter process, e.g., mpiexec (p1), and 16 
MPI processes (0-15). At the highest level, processes are grouped by Process State, then by Function. The indi-
vidual groupings are then sorted in ascending order (Member) by the debugger's process ID. 

• Configure: Show or hide the configuration panel on the right using the Configure button or the 
View > Show Configure Panel menu item.

• Move Up and Move Down: By default, the properties are displayed in a hierarchical manner, such 
that the property at the top of the Configuration Panel forms the highest level grouping, the next 
property forms the second level of grouping subordinate to the first, and so on. Use Move Up and 
Move Down to control where to display a property in the hierarchy.

• Reset: The selected groupings and their relative order are automatically saved across TotalView 
sessions. To revert to the default order, press Reset.

• Nested Attributes: Instead of the default hierarchical display, the properties can "flattened" into a 
single line in which each property is separated by a colon, using the View > Nested Attribute 
menu item. This menu item toggles between the hierarchical and flat display modes.

RELATED TOPICS
The CLI’s dstatus command’s -group_by switch dstatus in the Reference Guide

Figure 63 – Root Window and Process/Thread Display



Using and Customizing the GUI / Using the Root Window  143

• Show MPI Rank: By default, TotalView shows the rank in MPI_COMM_WORLD of MPI processes in 
the compressed ptlist in the Members column. Non-MPI processes are shown using the "pdpid" 
where dpid is the debugger process ID of the process. Use the View > Show MPI Rank menu item 
to toggle between displaying MPI processes using the MPI rank or "pdpid" notation.

• Expand/Collapse All: Minimize or fully expand the entire tree with View > Expand All and View > 
Collapse All.

• Copy/Select All: To copy data to an external program, use the clipboard: Select one or more rows 
using your computer’s keyboard shortcuts, or select Edit > Select All, and copy to the clipboard 
using Edit > Copy.

Default View

By default, the Root Window displays Control Group, Process State, Function and Thread ID in a hierarchical or 
"nested" manner.

Figure 64 shows a 32-process, 32-thread MPI job, each process containing one thread, which is a single-threaded 
MPI starter process (e.g., mpiexec).

Since there is only one control group in the debug session, the control group has been omitted, and the Process 
state becomes the top-level property, in this case displaying two process states:

Figure 64 – Root Window: Default View



Using and Customizing the GUI / Using the Root Window  144

• The first grouping lists the MPI starter process in Breakpoint process state, stopped in function 
MPIR_Breakpoint, and one thread with thread ID 1.1. The Procs column shows the number of 
processes, and the Threads column shows the number of threads displayed in the Members 
column. The Members column shows the dpid the process and dpid.dtid of the threads, displayed 
as a compressed process/thread list ptlist.

• The grouping defined by "Stopped" displays all processes in a Stopped process state, of which 
there are 32, the MPI job size. The membership shows 0-31, which means MPI ranks 0 to 31, 
inclusive. 

Changing the Display

To change the view, select the Configure << button and select or deselect properties. Figure 65 shows a configu-
ration where just the Source Line property is selected.
.

In this example, we've de-selected Process State, Function, and Thread ID and selected Source Line in order to 
group by Source Line instead. 

Because Source Line is a thread property, the Members column now displays only threads. Here are the three 
lines:

• Line 1 is the mpirun process used to launch the tx_basic_mpi mpi program.

• Line 2 displays all the threads at Line 100 in the source file tx_basic_mpi.c. The membership is 0.1, 
which means thread (dtid) 1 in MPI rank 0.

• Line 3 are all the threads that are at line 112 inside that same file, representing the remaining 30 
threads.

Figure 65 – Root Window: Configure Pane, Group by Source Line



Using and Customizing the GUI / Using the Root Window  145

Note that even though the Control Group is selected, it has no grouping effect most of the time and is relevant 
only for debugging multiple jobs at once (which is uncommon), in which case the window would display a sepa-
rate top-level control-group grouping for each job.

Grouping by Status and Source Line

If you select the Thread State, leaving Source Line also selected, you can group by both properties, as in Figure 
66.

Again, there are two groupings in the list: the first is the mpirun process. Note that the second grouping is now 
multi-line:

• The first line of the second grouping displays a single thread, showing both that its status is at 
Breakpoint and that it is at line 100 in tx_basic_mpi.c.

• The second line displays 31 threads, all at a different Breakpoint at line 112 in tx_basic_mpi.c.

Figure 66 – Root Window: Grouped by Status and Source Line



Using and Customizing the GUI / Using the Root Window  146

Grouping by All Properties

For illustration purposes, Figure 67 shows the Root Window configured to group by all properties in their default 
order. This figure also describes each of the groupings in this window.

When you dive on a line in this window, its source is displayed in a Process Window.

Using the Old Root Window
If debugger scalability is not a concern and you prefer the Root Window prior to version TotalView 8.15, you can 
reinstate it. Note, however, that the old Root Window is deprecated and may not be supported in future versions.

To start TotalView using the old Root Window, pass TotalView the -oldroot command option:

Figure 67 – Root Window Showing Two Host Computers

RELATED TOPICS
The dattach command The dattach command in the TotalView for HPC Reference Guide

Displaying manager threads The View > Display Manager Threads command in the in-product Help

Displaying exited threads The View > Display Exited Threads command in the in-product Help



Using and Customizing the GUI / Using the Root Window  147

totalview  -oldroot

To always use the old Root Window by default, set the state variable -TV::GUI::old_root_window to true for 
use when initializing TotalView:
dset TV::GUI::old_root_window true

Suppressing the Root Window
To suppress opening the Root Window entirely when TotalView starts — whether the current or old Root Window 
— use the --norootwin option:
totalview  -norootwin

Note that you can open the Root Window at any time from the Process Window using the Window > Root menu 
item. The Root Window can also be closed at any time without quitting TotalView, if another window is open in 
the same debugging session.

RELATED TOPICS
Using the Root Window from previ-
ous TotalView versions

The oldroot command line option in the TotalView for HPC Reference 
Guide



Using and Customizing the GUI / Using the Process Window  148

Using the Process Window
The Process Window contains various panes that display the code for the process or thread that you’re debugging, 
as well as other related information. The large scrolling list in the middle is the Source Pane. (The contents of 
these panes are discussed later in this section.
)

Figure 68 – A Process Window



Using and Customizing the GUI / Using the Process Window  149

As you examine the Process Window, notice the following:

• The thread ID shown in the Root Window and in the process’s Threads Tab with the Tabs Pane is 
the logical thread ID (TID) assigned by TotalView and the system-assigned thread ID (SYSTID). On 
systems where the TID and SYSTID values are the same, TotalView displays only the TID value. 

In other windows, TotalView uses the pid.tid value to identify a process’s threads.

The Threads Tab shows the threads that currently exist in a process. When you select a different thread in 
this list, TotalView updates the Stack Trace, Stack Frame, and Source Panes to show the information for that 
thread. When you dive on a different thread in the thread list, TotalView finds or opens a new window that 
displays information for that thread. 

• The Stack Trace Pane shows the call stack of routines that the selected thread is executing. You 
can move up and down the call stack by clicking on the routine’s name (stack frame). When you 
select a different stack frame, TotalView updates the Stack Frame and Source Panes with the 
information about the routine you just selected.

• The Stack Frame Pane displays all a routine’s parameters, its local variables, and the registers for 
the selected stack frame.

• The information displayed in the Stack Trace and Stack Frame Panes reflects the state of a process 
when it was last stopped. Consequently, the information is not up-to-date while a thread is running.

• The left margin of the Source Pane displays line numbers and action point icons. You can place a 
breakpoint at any line whose line number is contained within a box indicating that this is 
executable code.

When you place a breakpoint on a line, TotalView places a  icon over the line number. An arrow over 
the line number shows the current location of the program counter (PC) in the selected stack frame.

Each thread has its own unique program counter (PC). When you stop a multi-process or multi-threaded 
program, the routine displayed in the Stack Trace Pane for a thread depends on the thread’s PC. Because 
threads execute asynchronously, threads are stopped at different places. (When your thread hits a break-
point, the default is to stop all the other threads in the process as well.)

• The tabbed area at the bottom contains a set of tabs whose information you can hide or display as 
needed. In addition, the P+, P-, Px, T+, and T- buttons within this area allow you to change the 
Process Window’s context by moving to another process or thread.

The Action Points Tab with the Tabs Pane shows the list of breakpoints, eval points, and watchpoints for the 
process.



Using and Customizing the GUI / Using the Process Window  150

The Threads Tab shows each thread and information about the thread. Selecting a process switches the con-
text to that thread.

The Processes/Ranks tab, if present, displays a grid of all of your program's processes. The grid’s elements 
show process status and indicate the selected group. Selecting a process switches the context to the first 
thread in that process.

The Processes/Ranks Tab was displayed by default in previous versions of TotalView, but now it is off by 
default. This is because it can significantly affect performance, particularly for large, massively parallel appli-
cations. The tab can be turned back on with the command line switch -processgrid and/or by setting 
TV::GUI::process_grid_wanted to true in the .tvdrc file. If you enable this tab in the .tvdrc file, you can 
disable it for a particular session with the -noprocessgrid command line switch.

RELATED TOPICS
More on using the Process Window The “Process Window” in the in-product Help

More on the Processes/Ranks tab The topic Using the Processes/Ranks and 
Threads Tabs in this user guide.



Using and Customizing the GUI / Resizing and Positioning Windows  151

Resizing and Positioning Windows
You can resize most TotalView windows and dialog boxes. While TotalView tries to do the right thing, you can 
push things to the point where shrinking doesn’t work very well. Figure 69 shows a before-and-after look in which 
a dialog box was made too small.

Many programmers like to have their windows always appear in the same position in each session. The following 
two commands can help:

• Window > Memorize: Tells TotalView to remember the position of the current window. The next 
time you bring up this window, it’ll be in this position.

• Window > Memorize All: Tells TotalView to remember the positions of most windows. The next 
time you bring up any of the windows displayed when you used this command, it will be in the 
same position. 

Most modern window managers such as KDE or Gnome do an excellent job managing window position. If you are 
using an older window manager such as twm or mwm, you may want to select the Force window positions 
(disables window manager placement modes) check box option located on the Options Page of the File > 
Preferences Dialog Box. This tells TotalView to manage a window’s position and size. If it isn’t selected, TotalView 
only manages a window’s size.

Figure 69 – Resizing (and Its Consequences)



Using and Customizing the GUI / About Diving into Objects  152

About Diving into Objects
Diving is integral to the TotalView GUI and provides a quick and easy way to get more information about variables, 
processes, threads, functions, and other program elements.

To dive on an element, just click your middle mouse button on it to launch another window with more 
information. 

NOTE >> In some cases, single-clicking performs a dive. For example, single-clicking on a function name 
in the Stack Trace Pane dives into the function. In other cases, double-clicking does the same 
thing. 

Diving on processes and threads in the Root Window is the quickest way to launch a Process Window with more 
information. Diving on variables in the Process Window launches a Variable Window. 

In the Process Window’s Source Pane, if a global variable or function can be dived on, a red dotted box appears 
when your cursor hovers over it, Figure 70.

NOTE >> If you prefer that the cursor remain an arrow when hovering over an element you can dive on, 
specify the option -nohand_cursor when starting TotalView, or set this permanently in .tvdrc 
as “TV::GUI::hand_cursor_enabled {false}”.

The following table describes typical diving operations:  

Figure 70 – Diving on an object in the Source Pane

Items you dive on: Information Displayed:

Process or thread When you dive on a thread in the Root Window, TotalView finds or opens a 
Process Window for that process. If it doesn’t find a matching window, 
TotalView replaces the contents of an existing window and shows you the 
selected process.

Variable The variable displays in a Variable Window.

Expression List Variable Same as diving on a variable in the Source Pane: the variable displays in a 
Variable Window.



Using and Customizing the GUI / About Diving into Objects  153

NOTE >> Diving on a struct or class member that is out of scope does not work.

TotalView tries to reuse windows. For example, if you dive on a variable and that variable is already displayed in a 
window, TotalView pops the window to the top of the display. If you want the information to appear in a separate 
window, use the View > Dive in New Window command. 

NOTE >> Diving on a process or a thread might not create a new window if TotalView determines that it 
can reuse a Process Window. If you really want to see information in two windows, use the 
Process Window Window > Duplicate command.

Routine in the Stack Trace 
Pane

The stack frame and source code for the routine appear in a Process 
Window.

Array element, structure ele-
ment, or referenced memory 
area

The contents of the element or memory area replace the contents that 
were in the Variable Window. This is known as a nested dive.

Pointer TotalView dereferences the pointer and shows the result in a separate 
Variable Window. Given the nature of pointers, you may need to cast the 
result into the logical data type.

Subroutine The source code for the routine replaces the current contents of the 
Source Pane. When this occurs, TotalView places a right angle bracket (>) 
in the process’s title. Every time it dives, it adds another angle bracket, Fig-
ure 71.

A routine must be compiled with source-line information (usually, with the 
-g option) for you to dive into it and see source code. If the subroutine 
wasn’t compiled with this information, TotalView displays the routine’s 
assembler code.

Variable Window TotalView replaces the contents of the Variable Window with information 
about the variable or element.

Expression List Window TotalView displays information about the variable in a separate Variable 
Window.

Figure 71 – Nested Dive

Items you dive on: Information Displayed:



Using and Customizing the GUI / About Diving into Objects  154

When you dive into functions in the Process Window, or when you are chasing pointers or following structure ele-
ments in the Variable Window, you can move back and forth between your selections by using the forward and 
backward buttons. The boxed area of the following figure shows the location of these two controls.

For additional information about displaying variable contents, see “Diving in Variable Windows” on page 240.

You can also use the following additional windowing commands:

• Window > Duplicate: (Variable and Expression List Windows) Creates a duplicate copy of the 
current Variable Window. 

• File > Close: Closes an open window.

• File > Close Relatives: Closes windows that are related to the current window. The current window 
isn’t closed. 

• File  > Close Similar: Closes the current window and all windows similar to it. 

Figure 72 – Backward and Forward Buttons



Using and Customizing the GUI / Saving the Data in a Window  155

Saving the Data in a Window
You can write an ASCII equivalent to most pages and panes by using the File > Save Pane command. This com-
mand can also pipe data to UNIX shell commands.

If the window or pane contains a lot of data, use the Restrict Output option to limit the information TotalView 
writes or sends. For example, you might not want to write a 100 x 100 x 10,000 array to disk. If this option is 
checked (the default), TotalView sends only the number of lines indicated in the Max rows to save box.

When piping information, TotalView sends the entered information to /bin/sh. This means that you can enter a 
series of shell commands. For example, the following is a command that ignores the top five lines of output, com-
pares the current ASCII text to an existing file, and writes the differences to another file:
| tail +5 | diff - file > file.diff

Figure 73 – File > Save Pane Dialog Box



Using and Customizing the GUI / Searching and Navigating Program Elements  156

Searching and Navigating Program Elements
TotalView provides several ways for you to navigate and find information in your source file.

Topics in this section are:

• “Searching for Text” on page 156

• “Looking for Functions and Variables” on page 157 

• “Finding the Source Code for Functions” on page 157 

• “Finding the Source Code for Files” on page 159 

• “Resetting the Stack Frame” on page 160

Searching for Text
You can search for text strings in most windows using the Edit > Find command, which launches the find dialog 
box.

Controls in this dialog box let you:

• Perform case-sensitive searches.

• Wrap searches back to the beginning of the file.

• Keep the dialog box displayed. 

• Search down or up.

After you have found a string, you can find another instance of it by using the Edit > Find Again command.

If you searched for the same string previously, you can select it from the pulldown list on the right side of the Find 
text box.

Figure 74 – Edit > Find Dialog Box



Using and Customizing the GUI / Searching and Navigating Program Elements  157

Looking for Functions and Variables
Having TotalView locate a variable or a function is usually easier than scrolling through your sources to look for it. 
Do this with the View > Lookup Function and View > Lookup Variable commands. Here is the dialog set to look 

for variables:

If TotalView doesn’t find the name and it can find something similar, it displays a dialog box that contains the 
names of functions that might match. 

If the one you want is listed, click on its name and then choose OK to display it in the Source Pane.

Finding the Source Code for Functions
Use the File > Open Source command to search for a function’s declaration. 

Figure 75 – View > Lookup Variable Dialog Box

CLI: dprint variable

Figure 76 – Ambiguous Function Dialog Box

CLI: dlist function-name



Using and Customizing the GUI / Searching and Navigating Program Elements  158

After locating your function, TotalView displays it in the Source Pane. If you didn’t compile the function using the -
g command-line option, TotalView displays disassembled machine code.

When you want to return to the previous contents of the Source Pane, use the Backward button located in the 
upper-right corner of the Source Pane and just below the Stack Frame Pane. In Figure 78, a rectangle surrounds 
this button.

You can also use the View > Reset command to discard the dive stack so that the Source Pane is displaying the 
PC it displayed when you last stopped execution. 

Another method of locating a function’s source code is to dive into a source statement in the Source Pane that 
shows the function being called. After diving, you see the source.

Resolving Ambiguous Names

Sometimes the function name you specify is ambiguous. For example, you might have specified the name of:

• A static function, and your program contains different versions of it. 

• A member function in a C++ program, and multiple classes have a member function with that 
name. 

• An overloaded function or a template function.

Figure 77 – View > Lookup Function Dialog Box

Figure 78 – Undive/Dive Controls



Using and Customizing the GUI / Searching and Navigating Program Elements  159

The following figure shows the dialog box that TotalView displays when it encounters an ambiguous function 
name. You can resolve the ambiguity by clicking the function name. 

If the name being displayed isn’t enough to identify which name you need to select, select the Show full path 
names check box to display additional information.

Finding the Source Code for Files
You can display a file’s source code by selecting the View > Lookup Function command and entering the file 
name in the dialog box shown in Figure 80 

If a header file contains source lines that produce executable code, you can display the file’s code by typing the 
file name here.

Figure 79 – Ambiguous Function Dialog Box

RELATED TOPICS
Using C++ in TotalView “Using C++” on page 331

Figure 80 – View > Lookup Function Dialog Box



Using and Customizing the GUI / Searching and Navigating Program Elements  160

Resetting the Stack Frame
After moving around your source code to look at what’s happening in different places, you can return to the exe-
cuting line of code for the current stack frame by selecting the View > Reset command. This command places 
the PC arrow on the screen. 

This command is also useful when you want to undo the effect of scrolling, or when you move to different loca-
tions using, for example, the View > Lookup Function command.

If the program hasn’t started running, the View > Reset command displays the first executable line in your main 
program. This is useful when you are looking at your source code and want to get back to the first statement that 
your program executes.



Using and Customizing the GUI / Viewing the Assembler Version of Your Code  161

Viewing the Assembler Version of Your Code
You can display your program in source or assembler using these commands:

Source code (Default)
Select the View > Source As > Source command.

Assembler code Select the View > Source As > Assembler command.

Both Source and assembler 
Select the View > Source As > Both command.

The Source Pane divides into two parts. The left pane contains the program’s source code and 
the right contains the assembler version. You can set breakpoints in either of these panes. Set-
ting an action point at the first instruction after a source statement is the same as setting it at 
that source statement.

The following commands display your assembler code by using symbolic or absolute addresses:

NOTE >> You can also display assembler instructions in a Variable Window. For more information, see 
“Displaying Machine Instructions” on page 237.

The following three figures illustrate the different ways TotalView can display assembler code. In Figure 81, the 
second column (the one to the right of the line numbers) shows the absolute address location. The fourth col-
umn shows references using absolute addresses.

Command Display

View > Assembler > By Address Absolute addresses for locations and refer-
ences (default)

View > Assembler > Symbolically Symbolic addresses (function names and off-
sets) for locations and references



Using and Customizing the GUI / Viewing the Assembler Version of Your Code  162

Figure 82 displays information symbolically. The second column shows locations using functions and offsets.

Figure 83 displays the split Source Pane, with the program’s source code on the left and assembler version on the 
right. In this example, the assembler is shown symbolically (by selecting View > Assembler > Symbolically).

Figure 81 – Address Only (Absolute Addresses)

Figure 82 – Assembly Only (Symbolic Addresses)



Using and Customizing the GUI / Viewing the Assembler Version of Your Code  163

NOTE >> When TotalView displays instructions, the arguments are almost always in the following order: 
“source,destination”. On Linux-x86 and Linux x86-64 platforms, this can be confusing as the 
order indicated in AMD and Intel technical literature indicates that the order is usually “desti-
nation,source”. The order in which TotalView displays this information conforms to the GNU 
assembler. This ordering is usually an issue only when you are examining a core dump. 

Figure 83 – Both Source and Assembler (Symbolic Addresses)

RELATED TOPICS
Machine instructions “Displaying Machine Instructions” on page 237

Memory with an unknown data type “Viewing Areas of Memory ($void Data Type)” on 
page 265

Viewing the contents of a location as 
machine instruction

“Viewing Instructions ($code Data Type)” on page 265



Using and Customizing the GUI / Editing Source Text  164

Editing Source Text
Use the File > Edit Source command to examine the current routine in a text editor. TotalView uses an editor 
launch string to determine how to start your editor. TotalView expands this string into a command that TotalView 
sends to the sh shell. 

The default editor is vi. However, TotalView uses the editor named in an EDITOR environment variable, or the edi-
tor you name in the Source Code Editor field of the File > Preferences Launch Strings Page. The online Help for 
this page contains information on setting this preference.



Stepping through and Executing your Program     165      

Chapter 7  

Stepping through and 
Executing your Program

This chapter discusses stepping and program execution, including these sections:

• “Using Stepping Commands” on page 166

• “Executing to a Selected Line” on page 169

• “Executing Out of a Function” on page 170

• “Continuing with a Specific Signal” on page 171

• “Killing (Deleting) Programs” on page 172

• “Restarting Programs” on page 172

• “Setting the Program Counter” on page 173



Stepping through and Executing your Program / Using Stepping Commands  166

Using Stepping Commands
While different programs have different requirements, the most common stepping mode is to set group focus to 
Control and the target to Process or Group. You can now select stepping commands from the Process or 
Group menus or use commands in the toolbar.

Figure 84 illustrates stepping commands.

The arrow indicates that the PC is at line 15. The four stepping commands do the following:

• Next executes line 15. After stepping, the PC is at line 16.

• Step moves into the sub2() function. The PC is at line 21.

• Run To executes all lines until the PC reaches the selected line, which is line 23.

• Out executes all statements within sub1() and exits from the function. The PC is at line 9. If you 
now execute a Step command, TotalView steps into sub3().

Remember the following things about single-stepping commands:

• To cancel a single-step command, select Group > Halt or Process > Halt.

CLI: dfocus g 
dfocus p

Figure 84 – Stepping Illustrated

CLI: dhalt



Stepping through and Executing your Program / Using Stepping Commands  167

• If your program reaches a breakpoint while stepping over a function, TotalView cancels the 
operation and your program stops at the breakpoint.

• If you enter a source-line stepping command and the primary thread is executing in a function that 
has no source-line information, TotalView performs an assembler-level stepping command.

• When TotalView steps through your code, it steps one line at a time. This means that if you have 
more than one statement on a line, a step instruction executes all of the instructions on that line. 

Stepping into Function Calls
The stepping commands execute one line in your program. If you are using the CLI, you can use a numeric argu-
ment that indicates how many source lines TotalView steps. For example, here’s the CLI instruction for stepping 
three lines:
dstep 3

If the source line or instruction contains a function call, TotalView steps into it. If TotalView can’t find the source 
code and the function was compiled with -g, it displays the function’s machine instructions. 

You might not realize that your program is calling a function. For example, if you overloaded an operator, you’ll 
step into the code that defines the overloaded operator.

NOTE >> If the function being stepped into wasn’t compiled with the -g command-line option, TotalView 
always steps over the function.

The GUI has eight Step commands and eight Step Instruction commands. These commands are located on the 
Group, Process, and Thread pulldowns. The difference between them is the focus.

RELATED TOPICS
The dfocus command The  dfocus command in "CLI Commands" in the TotalView 

for HPC Reference Guide

Detailed discussion on stepping “Stepping (Part I)” on page 516, with examples in “Stepping 
(Part II): Examples” on page 538

CLI: dfocus ... dstep 
dfocus ... dstepi



Stepping through and Executing your Program / Using Stepping Commands  168

Stepping Over Function Calls
When you step over a function, TotalView stops execution when the primary thread returns from the function 
and reaches the source line or instruction after the function call.

The GUI has eight Next commands that execute a single source line while stepping over functions, and eight 
Next Instruction commands that execute a single machine instruction while stepping over functions. These 
commands are on the Group, Process, and Thread menus.

If the PC is in assembler code—this can happen, for example, if you halt your program while it’s executing in a 
library—a Next operation executes the next instruction. If you want to execute out of the assembler code so 
you’re back in your code, select the Out command. You might need to select Out a couple of times until you’re 
back to where you want to be.

RELATED TOPICS
The dstep command  dstep in "CLI Commands" in the TotalView for HPC Reference 

Guide

The dstepi command  dstepi in "CLI Commands" in the TotalView for HPC Refer-
ence Guide

CLI: dfocus ... dnext
dfocus ... dnexti

RELATED TOPICS
The dnext command dnext in "CLI Commands" in the TotalView for HPC Reference 

Guide

The dnexti command dnexti in "CLI Commands" in the TotalView for HPC Reference 
Guide



Stepping through and Executing your Program / Executing to a Selected Line  169

Executing to a Selected Line
If you don’t need to stop execution every time execution reaches a specific line, you can tell TotalView to run your 
program to a selected line or machine instruction. After selecting the line on which you want the program to stop, 
invoke one of the eight Run To commands defined within the GUI. These commands are on the Group, Process, 
and Thread menus.

Executing to a selected line is discussed in greater depth in Chapter 21, “Group, Process, and Thread Control,” 
on page 513.

If your program reaches a breakpoint while running to a selected line, TotalView stops at that breakpoint.

If your program calls recursive functions, you can select a nested stack frame in the Stack Trace Pane. When you 
do this, TotalView determines where to stop execution by looking at the following:

• The frame pointer (FP) of the selected stack frame. 

• The selected source line or instruction.

CLI: dfocus ... duntil

CLI: dup and ddown

RELATED TOPICS
Detailed discussion on stepping 
and setting breakpoints

“Stepping and Setting Breakpoints” on page 395

The duntil command duntil in "CLI Commands" in the TotalView for HPC Refer-
ence Guide

The dup command dup in "CLI Commands" in the TotalView for HPC Reference 
Guide

The ddowncommand ddown in "CLI Commands" in the TotalView for HPC Refer-
ence Guide



Stepping through and Executing your Program / Executing Out of a Function  170

Executing Out of a Function
You can step your program out of a function by using the Out commands. The eight Out commands in the GUI 
are located on the Group, Process, and Thread menus.

If the source line that is the goal of the Out operation has more than one statement, TotalView will stop execution 
just after the routine from which it just emerged. For example, suppose that the following is your source line:
routine1; routine2;

Suppose you step into routine1, then use an Out command. While the PC arrow in the Source Pane still points 
to this same source line, the actual PC is just after routine1. This means that if you use a step command, you will 
step into routine2.

The PC arrow does not move when the source line only has one statement on it. The internal PC does, of course, 
change.

You can also return out of several functions at once, by selecting the routine in the Stack Trace Pane that you 
want to go to, and then selecting an Out command.

If your program calls recursive functions, you can select a nested stack frame in the Stack Trace Pane to indicate 
which instance you are running out of.

CLI: dfocus ... dout

RELATED TOPICS
The dout command dout in "CLI Commands" in the TotalView for HPC Reference 

Guide



Stepping through and Executing your Program / Continuing with a Specific Signal  171

Continuing with a Specific Signal
Letting your program continue after sending it a signal is useful when your program contains a signal handler. To 
set this up:

1. Select the Process Window’s Thread > Continuation Signal command.

2. Select the signal to be sent to the thread and then select OK.

The continuation signal is set for the thread contained in the current Process Window. If the operating sys-
tem can deliver multi-threaded signals, you can set a separate continuation signal for each thread. If it can’t, 
this command clears continuation signals set for other threads in the process.

3. Continue execution of your program with commands such as Process > Go, Step, Next, or Detach. 

TotalView continues the threads and sends the specified signals to your process.

NOTE >> To clear the continuation signal, select signal 0 from this dialog box.

You can change the way TotalView handles a signal by setting the TV::signal_handling_mode variable in a .tvdrc 
startup file. For more information, see Chapter 4 of the “TotalView for HPC Reference Guide.”

Figure 85 – Thread > Continuation Signal Dialog Box

RELATED TOPICS
The TV::signal_handling_mode 
command

The TV::signal_handling_mode variable in "TotalView 
Variables" in the TotalView for HPC Reference Guide

Default settings for signals and how to 
change them

“Handling Signals” on page 122



Stepping through and Executing your Program / Killing (Deleting) Programs  172

Killing (Deleting) Programs
To kill (or delete) all the processes in a control group, use the Group > Kill command. The next time you start the 
program, for example, by using the Process > Go command, TotalView creates and starts a fresh master process.

Restarting Programs
You can use the Group > Restart command to restart a program that is running or one that is stopped but hasn’t 
exited.

If the process is part of a multi-process program, TotalView deletes all related processes, restarts the master pro-
cess, and runs the newly created program.

The Group > Restart command is equivalent to the Group > Kill command followed by the Process > Go 
command.

CLI: dfocus g dkill

CLI: drerun



Stepping through and Executing your Program / Setting the Program Counter  173

Setting the Program Counter
TotalView lets you resume execution at a different statement than the one at which it stopped execution by reset-
ting the value of the program counter (PC). For example, you might want to skip over some code, execute some 
code again after changing certain variables, or restart a thread that is in an error state.

Setting the PC can be crucial when you want to restart a thread that is in an error state. Although the PC symbol 
in the line number area points to the source statement that caused the error, the PC actually points to the failed 
machine instruction in the source statement. You need to explicitly reset the PC to the correct instruction. (You 
can verify the actual location of the PC before and after resetting it by displaying it in the Stack Frame Pane, or dis-
playing both source and assembler code in the Source Pane.)

In TotalView, you can set the PC of a stopped thread to a selected source line or a selected instruction. When you 
set the PC to a selected line, the PC points to the memory location where the statement begins. For most situa-
tions, setting the PC to a selected line of source code is all you need to do.

To set the PC to a selected line:

1. If you need to set the PC to a location somewhere in a line of source code, select the View > Source As > 
Both command. 

TotalView responds by displaying assembler code.

2. Select the source line or instruction in the Source Pane. 

TotalView highlights the line.

3. Select the Thread > Set PC command. 

TotalView asks for confirmation, resets the PC, and moves the PC symbol to the selected line.

When you select a line and ask TotalView to set the PC to that line, TotalView attempts to force the thread to con-
tinue execution at that statement in the currently selected stack frame. If the currently selected stack frame is not 
the top stack frame, TotalView asks if it can unwind the stack:
This frame is buried. Should we attempt to unwind the stack? 

If you select Yes, TotalView discards deeper stack frames (that is, all stack frames that are more deeply nested 
than the selected stack frame) and resets the machine registers to their values for the selected frame. If you 
select No, TotalView sets the PC to the selected line, but it leaves the stack and registers in their current state. 
Since you can’t assume that the stack and registers have the right values, selecting No is almost always the wrong 
thing to do.



Setting Action Points     174      

Chapter 8  

Setting Action Points

In TotalView, breakpoints are called "action points." TotalView has four kinds of action points: 

• A breakpoint stops execution of processes and threads that reach it. 

• A barrier point synchronizes a set of threads or processes at a location. 

• An eval point executes a code fragment when it is reached. 

• A watchpoint monitors a location in memory and stops execution when it changes.

This chapter contains the following sections:

• “About Action Points” on page 175

• “Setting Breakpoints and Barriers” on page 179

• “Defining Eval Points and Conditional Breakpoints” on page 197

• “Using Watchpoints” on page 206

• “Saving Action Points to a File” on page 213



Setting Action Points / About Action Points  175

About Action Points 
Actions points specify an action to perform when a thread or process reaches a source line or machine instruc-
tion in your program. TotalView provides four types of action points:

• Breakpoints 

When a thread encounters a breakpoint, it stops at the breakpoint. Other threads in the process also stop. 
You can indicate that you want other related processes to stop, as well. Breakpoints are the simplest kind of 
action point. 

• Barrier points 

Barrier points are similar to simple breakpoints, differing in that you use them to synchronize a group of pro-
cesses or threads. A barrier point holds each thread or process that reaches it until all threads or processes 
reach it. Barrier points work together with the TotalView hold-and-release feature. TotalView supports thread 
barrier and process barrier points.

• Eval points 

An eval point is a breakpoint that has a code fragment associated with it. When a thread or process encoun-
ters an eval point, it executes this code. You can use eval points in a variety of ways, including conditional 
breakpoints, thread-specific breakpoints, countdown breakpoints, and patching code fragments into and 
out of your program. 

• Watchpoints 

A watchpoint tells TotalView to either stop the thread so that you can interact with your program (uncondi-
tional watchpoint), or evaluate an expression (conditional watchpoint). 

The different kinds of action points that you can use are shown in Figure 86 on page 176.

Action Point Properties

All action points share the following common properties.

• You can independently enable or disable action points. A disabled action isn’t deleted; however, 
when your program reaches a disabled action point, TotalView ignores it.

• You can share action points across multiple processes or set them in individual processes.

• Action points apply to the process. In a multi-threaded process, the action point applies to all of the 
threads associated with the process.

• TotalView assigns unique ID numbers to each action point. These IDs appear in several places, 
including the Root Window, the Action Points Tab of the Process Window, and the Action Point > 
Properties Dialog Box.



Setting Action Points / About Action Points  176

Action Point Status Display

In the Process Window, each action point is identified by a symbol:

The  icon is displayed when you create a breakpoint on an assembler statement. 

When your program halts because it encountered an action point, TotalView reports status in several locations. In 
the Root Window, the Process State is displayed with Breakpoint as well as the letters ap followed by a number if 
the Action Point ID checkbox is enabled in the Configure pane. This is the same number as in the Action Points 
tab within the Process Window. In the Process Window, the status lines above the Source Pane also let you know 
that the thread is at a breakpoint. Finally, TotalView places a yellow arrow over the action point’s icon in the Action 
Point tab. For example:

For templated code, an ellipsis (...) is displayed after the address, indicating that additional addresses are associ-
ated with the breakpoint.

Manipulating Action Points

When working with action points, you can use your mouse to quickly manipulate breakpoints. In the line number 

area of the Source Pane, a left mouse click sets a breakpoint at that line, displaying a  icon instead of a line 
number. 

Figure 86 – Action Point Symbols

CLI: dactions -- shows information about action points

All action points display as “@” when you use the dlist command to 
display your source code. Use the dactions command to see what 
type of action point is set. 

Figure 87 – Action Points Tab

Assembler-level action point
Breakpoint
Disabled breakpoint
Barrier breakpoint
Disabled barrier breakpoint
Eval point
Disabled eval point



Setting Action Points / About Action Points  177

Selecting the  icon a second time deletes the breakpoint. If you change any of the breakpoint’s properties 

or if you’ve created an eval point (indicated by an  icon), selecting the icon disables it.

Print Statements vs. Action Points
Print statements are common in debugging, in which you insert printf() or PRINT statements in your code and 
then inspect the output. However, using print statements requires that you recompile your program; further, the 
output may be difficult to navigate as it is likely to be out of order when running multi-process, multi-threaded 
programs. 

You can still use printf() statements if you wish — but more effectively and without recompiling your program. 
Simply add a breakpoint that prints information, using the Action Point Properties, dialog, Figure 88, which adds 
any code you want to a breakpoint.

NOTE >> In this book, the term "breakpoint" is often used interchangeably with the broader TotalView-
specific term "action point." 

A breakpoint with associated code is an eval point. When your program reaches an eval point, TotalView executes 
the code. For instance, in the above case, TotalView prints the value of i. 

RELATED TOPICS
Modifying action point properties The Action Point > Properties dialog box in the in-product Help

Using action points with the CLI “Using Action Points” on page 431 

Figure 88 – Action Point Properties Dialog Box



Setting Action Points / About Action Points  178

Eval points do exactly what you tell them to do. Note that, in Figure 88, TotalView allows your program to con-
tinue to execute because you didn’t tell it to stop. In other words, you don’t have to stop program execution just 
to observe print statement output. 

Figure 89 shows two eval points that do stop execution. 

The eval point in the foreground uses programming language statements and a built-in debugger function to stop 
a loop every 100 iterations. It also prints the value of i. In contrast, the eval point in the background just stops the 
program every 100 times a statement is executed.

These are just a few ways that action points can define print statements. More examples can be seen throughout 
this chapter.

Figure 89 – Setting Conditions



Setting Action Points / Setting Breakpoints and Barriers  179

Setting Breakpoints and Barriers
TotalView has several options for setting breakpoints, including:

• Source-level breakpoints

• Breakpoints that are shared among all processes in multi-process programs

• Assembler-level breakpoints

You can also control whether TotalView stops all processes in the control group when a single member reaches a 
breakpoint.

Topics in this section are:

• “Setting Source-Level Breakpoints” on page 179

• “Setting Breakpoints at Locations” on page 182

• “Displaying and Controlling Action Points” on page 184

• “Setting Machine-Level Breakpoints” on page 188

• “Setting Breakpoints for Multiple Processes” on page 189

• “Setting Breakpoints When Using the fork()/execve() Functions” on page 191

• “Setting Barrier Points” on page 193

Setting Source-Level Breakpoints
Typically, you set and clear breakpoints before you start a process. To set a source-level breakpoint, select a 
boxed line number in the Process Window. (A boxed line number indicates that the line is associated with execut-

able code.) A  icon lets you know that a breakpoint is set immediately before the source statement. 

You can also set a breakpoint while a process is running by selecting a boxed line number in the Process Window. 

Choosing Source Lines

If you’re using C++ templates, TotalView sets a breakpoint in all instantiations of that template. If this isn’t what 
you want, clear the button and then select the Addresses button in the Action Point Properties Dialog Box. You 
can now clear locations where the action point shouldn’t be set.

CLI: @ next to the line number denotes a breakpoint

CLI: dbreak -- to set a breakpoint whenever the CLI displays a prompt



Setting Action Points / Setting Breakpoints and Barriers  180

Initially, addresses are either enabled or disabled, but you can change their state by clicking the checkbox in the 
first column. The checkbox in the columns bar enables or disables all the addresses. This dialog supports select-
ing multiple separate items (Ctrl-Click) or a range of items (Shift-Click or click and drag). Once the desired subset is 
selected, right-click one of the selected items and choose Enable Selection or Disable Selection from the context 
menu.

Filtering

In massively parallel programs, the number of addresses can become very large, so the Addresses dialog has sev-
eral mechanisms to help you manage the data. The search box filters the currently displayed data based on one 
or more space-separated strings or phrases (enclosed in quotes). Remember that data not currently displayed is 
not included in the filtering. It may be helpful to click the Detailed Information checkbox, which displays much 
more complete information, giving you more possibilities for filtering.

Sorting

Clicking on the column labels performs a sort based on the data in that column. Each click toggles between 
ascending and descending order. If entry values in a column are the same, the values of the column to the right 
of the sorted column are examined and sorted based on those values. If the values are the same, the next col-
umn is examined and so on, until different values are found. The Addresses dialog uses a stable sort, i.e. if all the 
entries are the same in the selected column and in the columns to the right, the list is not modified.

Displaying and rearranging columns

Finally, right-clicking in the columns bar presents a context menu for displaying or hiding columns. All are initially 
displayed except Image. You can reorder the columns by selecting a column label and dragging it to a new 
location.

Figure 90 – Action Point and Addresses Dialog Boxes



Setting Action Points / Setting Breakpoints and Barriers  181

Keyboard Shortcuts

To provide easy access to the buttons at the bottom of the Addresses dialog, the following mnemonic keys have 
been assigned.

Similarly, in a multi-process program, you might not want to set the breakpoint in all processes. If this is the case, 
select the Process button.

Button Keyboard Sequence
OK Alt-o
Cancel Alt-c
Help Alt-h

Figure 91 – Setting Breakpoints on Multiple Similar Addresses and on Processes



Setting Action Points / Setting Breakpoints and Barriers  182

Setting Breakpoints at Locations
You can set or delete a breakpoint at a specific function or source-line number without having to first find the 
function or source line in the Source Pane. Do this by entering a line number or function name in the Action 
Point > At Location Dialog Box.

When you’re done, TotalView sets a breakpoint at the location. If you enter a function name, TotalView sets the 
breakpoint at the function’s first executable line. In either case, if a breakpoint already exists at a location, 
TotalView deletes it. 

For detailed information about the kinds of information you can enter in this dialog box, see dbreak in the 
TotalView for HPC Reference Guide.

Ambiguous Functions and Pending Breakpoints

If you type a function name that TotalView has no information about into the Action Point > At Location dialog 
box, it assumes that you have either mistyped the function name or that the library containing the function has 
not yet been loaded into memory. 

Figure 92 – Action Point > At Location Dialog Box

CLI: dbreak sets a breakpoint
ddelete deletes a breakpoint 



Setting Action Points / Setting Breakpoints and Barriers  183

If TotalView cannot find a location to set a breakpoint (or a barrier point), you can tell it to set it anyway because it 
could exist in a shared library or it could be loaded later. These kind of breakpoints are called pending breakpoints. 
When libraries are loaded, TotalView checks for the function’s name. If the name is found, it sets the breakpoint. If 
it isn’t in a newly loaded library, TotalView just keeps on waiting for it to be loaded. You’ll see information in the 
Action Points tab that tells you that the breakpoint is pending.

If the name you type is similar to the name of an existing function, TotalView displays its Ambiguous Function 
dialog box that lets you select which of these existing functions it should set a breakpoint on. If, however, the 
function will be loaded into memory later, you can set a pending breakpoint.

If the name you entered was not similar to any existing function, TotalView just asks if it should set a pending 
breakpoint. This question box is also shown in Figure 94.

Figure 93 – Pending Breakpoints

Figure 94 – Ambiguous Function Dialog Box



Setting Action Points / Setting Breakpoints and Barriers  184

NOTE >> TotalView can only place one action point on an address. Because the breakpoints you specify 
are actually expressions, the locations to which these expressions evaluate can overlap or 
even be the same. Sometimes, and this most often occurs with pending breakpoints in 
dynamically loaded libraries, TotalView cannot tell when action points overlap. If they do, 
TotalView only enables one of the action points and disables all others that evaluate to the 
same address. The actionpoint that TotalView enables is the one with the lowest actionpoint 
ID.

Displaying and Controlling Action Points
The Action Point > Properties Dialog Box sets and controls an action point. Controls in this dialog box also let 
you change an action point’s type to breakpoint, barrier point, or eval point. You can also define what happens to 
other threads and processes when execution reaches this action point.

The following sections explain how you can control action points by using the Process Window and the Action 
Point > Properties Dialog Box.

Figure 95 – Action Point > Properties Dialog Box

CLI: dset SHARE_ACTION_POINT 
dset STOP_ALL
ddisable action-point



Setting Action Points / Setting Breakpoints and Barriers  185

Disabling Action Points

TotalView can retain an action point’s definition and ignore it while your program is executing. That is, disabling an 
action point deactivates it without removing it. 

You can disable an action point by:

• Clearing Enable action point in the Action Point > Properties Dialog Box.

• Selecting the  or  symbol in the Action Points Tab.

• Using the context (right-click) menu.

• Clicking on the Action Points > Disable command.

Deleting Action Points

You can permanently remove an action point by selecting the  or  symbol or selecting the Delete 
button in the Action Point > Properties Dialog Box.

To delete all breakpoints and barrier points, use the Action Point > Delete All command. 

If you make a significant change to the action point, TotalView disables it rather than deleting it when you click the 
symbol.

Enabling Action Points

You can activate a previously disabled action point by selecting a dimmed , , or  symbol in the 
Source or Action Points tab, or by selecting Enable action point in the Action Point > Properties Dialog Box.

Suppressing Action Points

You can tell TotalView to ignore action points by using the Action Point > Suppress All command. 

The command ddisable -a is the closest CLI command to the GUI Suppress All feature. However, ddisable -a 
does not actually put TotalView into suppressed action point mode and you can still set and manipulate action 
points. Be aware that the ddisable -a command in the CLI operates only on the current focus. See the TotalView 
for HPC Reference Guide for more discussion.

CLI: ddisable action-point

CLI: ddelete

CLI: denable

CLI: ddisable -a



Setting Action Points / Setting Breakpoints and Barriers  186

When you suppress action points, you disable them. After you suppress an action point, TotalView changes the 
symbol it uses within the Source Pane’s line number area. In all cases, the icon's color is lighter. Selecting Sup-
press All in the Action Point menu places TotalView in a suppressed action point mode such that no action points 
are enabled in any process within the entire debugging session.  While in this mode, you are unable to create new 
action points or enable any that are currently disabled.

You can make previously suppressed action points active and allow the creation of new ones by again selecting 
the Action Point > Suppress All command, which functions as a toggle.

The command denable -a is the closest CLI command to turning off Suppress All from within the GUI. However, 
the denable -a feature in the CLI operates only on the current focus. See the TotalView for HPC Reference Guide for 
more discussion.

Setting Breakpoints on Classes and Functions
The Action Point > At Location dialog box lets you set breakpoints on all functions within a class or on a virtual 
function. The All Methods in Class and All Virtual Functions and Overrides check boxes tell TotalView that it 
should set multiple breakpoints. Each place that TotalView sets a breakpoint will have its own breakpoint icon. For 
example, if there are ten class functions, each will have its own unique breakpoint.

TotalView tells you that the action point is set on a virtual function or a class in the Action Points tab. If you dive on 
the action point in this tab, TotalView brings up its Ambiguous Function dialog box so that you can select which it 
should display. You may want to select the Show full path names check box if you can’t tell which you want from 
the function’s signature.

If a function name is overloaded, the debugger sets a breakpoint on each of these functions.

If you only want breakpoints on some functions, you will need to select the breakpoint and then get to the Prop-
erties Window. Do this either by right-clicking on the breakpoint and click Properties or by selecting the Action 
Point > Properties command, and then clicking Addresses.

CLI: denable -a

Figure 96 – Action Point > At Location Dialog Box



Setting Action Points / Setting Breakpoints and Barriers  187

You can now individually add or remove breakpoints.Initially, addresses are either enabled or disabled, but you 
can change their state by clicking the checkbox in the first column. The checkbox in the columns bar enables or 
disables all the addresses. This dialog supports selecting multiple separate items (Ctrl-Click) or a range of items 
(Shift-Click or click and drag). Once the desired subset is selected, right-click one of the selected items and choose 
Enable Selection or Disable Selection from the context menu.

Filtering

In massively parallel programs, the number of addresses can become very large, so the Addresses dialog has sev-
eral mechanisms to help you manage the data. The search box filters the currently displayed data based on one 
or more space-separated strings or phrases (enclosed in quotes). Remember that data not currently displayed is 
not included in the filtering. It may be helpful to click the Detailed Information checkbox, which displays much 
more complete information, giving you more possibilities for filtering.

Sorting

Clicking on the column labels performs a sort based on the data in that column. Each click toggles between 
ascending and descending order. If entry values in a column are the same, the values of the column to the right 
of the sorted column are examined and sorted based on those values. If the values are the same, the next col-
umn is examined and so on, until different values are found. The Addresses dialog uses a stable sort, i.e. if all the 
entries are the same in the selected column and in the columns to the right, the list is not modified.

Displaying and rearranging columns

Finally, right-clicking in the columns bar presents a context menu for displaying or hiding columns. All are initially 
displayed except Image. You can reorder the columns by selecting a column label and dragging it to a new 
location.

Figure 97 – Action Point and Addresses Dialog Boxes



Setting Action Points / Setting Breakpoints and Barriers  188

Keyboard Shortcuts

To provide easy access to the buttons at the bottom of the Addresses dialog, the following mnemonic keys have 
been assigned.

Setting Machine-Level Breakpoints

To set a machine-level breakpoint, you must first display assembler code. You can now select an instruction. 
TotalView replaces some line numbers with a dotted box ( )—this indicates the line is the beginning of a 
machine instruction. If a line has a line number, this is the line number that appears in the Source Pane. Since 
instruction sets on some platforms support variable-length instructions, you might see a different number of 

lines associated with a single line contained in the dotted box. The  icon appears, indicating that the break-
point occurs before the instruction executes.

If you set a breakpoint on the first instruction after a source statement, however, TotalView assumes that you are 
creating a source-level breakpoint, not an assembler-level breakpoint.

If you set machine-level breakpoints on one or more instructions generated from a single source line, and then 

display source code in the Source Pane, TotalView displays an  icon (Figure 86 on page 176) on the line 
number. To see the actual breakpoint, you must redisplay assembler instructions.

When a process reaches a breakpoint, TotalView does the following:

• Suspends the process.

Button Keyboard Sequence
OK Alt-o
Cancel Alt-c
Help Alt-h

Figure 98 – Breakpoint at Assembler Instruction



Setting Action Points / Setting Breakpoints and Barriers  189

• Displays the PC arrow icon ( ) over the stop sign to indicate that the PC is at the breakpoint.

• Displays At Breakpoint in the Process Window title bar and other windows.

• Updates the Stack Trace and Stack Frame Panes and all Variable windows.

Setting Breakpoints for Multiple Processes 
In all programs, including multi-process programs, you can set breakpoints in parent and child processes before 
you start the program and while the program is executing. Do this using the Action Point > Properties Dialog 
Box.

This dialog box provides the following controls for setting breakpoints:

Figure 99 – PC Arrow Over a Stop Icon

RELATED TOPICS
Displaying assembler code “Viewing the Assembler Version of Your Code” on page 161

Barrier points “Setting Breakpoints and Barriers” on page 179

Figure 100 – Action Point > Properties Dialog Box



Setting Action Points / Setting Breakpoints and Barriers  190

• When Hit, Stop

When your thread hits a breakpoint, TotalView can also stop the thread’s control group or the process in 
which it is running.

• Plant in share group

When checked, TotalView enables the breakpoint in all members of this thread’s share group at the same 
time. When unchecked, you must individually enable and disable breakpoints in each member of the share 
group.

The Processes button specifies which process in a multi-process program will have enabled breakpoints. If Plant 
in share group is selected, this button is disabled since a breakpoint will be set in all of the processes. 

You can preset many of the properties in this dialog box by selecting the File > Preferences command. Use the 
Action Points page to set action point preferences.

You can find additional information about this dialog box in the online Help.

If you select the Evaluate button in the Action Point > Properties Dialog Box, you can add an expression to the 
action point. This expression is attached to control and share group members. 

If you’re trying to synchronize your program’s threads, you need to set a barrier point. 

CLI: dset STOP_ALL
dbreak -p | -g | -t

CLI: dset SHARE_ACTION_POINT

Figure 101 – File > Preferences: Action Points Page



Setting Action Points / Setting Breakpoints and Barriers  191

Setting Breakpoints When Using the fork()/execve() Functions
You must link with the dbfork library before debugging programs that call the fork() and execve() functions. See 
“Compiling Programs” on page 85.

Debugging Processes That Call the fork() Function

By default, TotalView places breakpoints in all processes in a share group. (For information on share groups, see 
“Organizing Chaos” on page 360.) When any process in the share group reaches a breakpoint, TotalView stops all 
processes in the control group. This means that TotalView stops the control group that contains the share group. 
This control can contain more than one share group. 

To override these defaults:

1. Dive into the line number to display the Action Point > Properties Dialog Box. 

2. Clear the Plant in share group check box and make sure that the Group radio button is selected.

Debugging Processes that Call the execve() Function

Shared breakpoints are not set in children that have different executables. 

To set the breakpoints for children that call the execve() function:

1. Set the breakpoints and breakpoint options in the parent and the children that do not call the execve() 
function.

2. Start the multi-process program by displaying the Group > Go command.

When the first child calls the execve() function, TotalView displays the following message:

RELATED TOPICS
Using various programming languages 
in expressions

“Using Programming Language Elements” on page 333

Barrier points “Setting Breakpoints and Barriers” on page 179 and “Setting Bar-
rier Points” on page 193

Action Point > Properties dialog box  Action Point > Properties dialog box in the in-product Help

CLI: dset SHARE_ACTION_POINT false



Setting Action Points / Setting Breakpoints and Barriers  192

Process name has exec’d name.
Do you want to stop it now? 

3. Answer Yes. 

TotalView opens a Process Window for the process. (If you answer No, you won’t have an opportunity to set 
breakpoints.)

4. Set breakpoints for the process. 

After you set breakpoints for the first child using this executable, TotalView won’t prompt when other chil-
dren call the execve() function. This means that if you do not want to share breakpoints in children that use 
the same executable, dive into the breakpoints and set the breakpoint options.

5. Select the Group > Go command.

Example: Multi-process Breakpoint 

The following program excerpt illustrates the places where you can set breakpoints in a multi-process program:
1  pid = fork();
2  if (pid == -1)
3    error ("fork failed");
4  else if (pid == 0)
5    children_play();
6  else
7    parents_work();

The following table describes what happens when you set a breakpoint at different places:

CLI: G 

Line Number Result

1 Stops the parent process before it forks.

2 Stops both the parent and child processes.

3 Stops the parent process if the fork() function failed.

5 Stops the child process.

7 Stops the parent process.

RELATED TOPICS
Share groups and TotalView’s default design 
for organizing multiple processes into groups

“Organizing Chaos” on page 360

The dbfork library “Compiling Programs” on page 85, and "Linking with the 
dbfork Library" in the TotalView for HPC Platforms Guide 



Setting Action Points / Setting Breakpoints and Barriers  193

Setting Barrier Points
A barrier breakpoint is similar to a simple breakpoint, differing only in that it holds processes and threads that 
reach the barrier point. Other processes and threads continue to run. TotalView holds these processes or 
threads until all processes or threads defined in the barrier point reach this same place. When the last one 
reaches a barrier point, TotalView releases all the held processes or threads, but they do not continue executing 
until you explicitly restart execution. In this way, barrier points let you synchronize your program’s execution.

Topics in this section are:

• “About Barrier Breakpoint States” on page 193

• “Setting a Barrier Breakpoint” on page 194

• “Creating a Satisfaction Set” on page 195

• “Hitting a Barrier Point” on page 195

• “Releasing Processes from Barrier Points” on page 196

• “Deleting a Barrier Point” on page 196

• “Changing Settings and Disabling a Barrier Point” on page 196

About Barrier Breakpoint States

Processes and threads at a barrier point are held or stopped, as follows:

Held A held process or thread cannot execute until all the processes or threads in its group are at 
the barrier, or until you manually release it. The various go and step commands from the 
Group, Process, and Thread menus cannot start held processes.

Stopped When all processes in the group reach a barrier point, TotalView automatically releases them. 
They remain stopped at the barrier point until you tell them to resume executing. 

You can manually release held processes and threads with the Hold and Release commands found in the 
Group, Process, and Thread menus. When you manually release a process, the go and step commands become 
available again. 

CLI: dbarrier

RELATED TOPICS
How to hold and release threads and 
processes

“Holding and Releasing Processes and Threads” on page 383

CLI: dfocus ... dhold
dfocus ... dunhold



Setting Action Points / Setting Breakpoints and Barriers  194

You can reuse the Hold command to again toggle the hold state of the process or thread. See “Holding and 
Releasing Processes and Threads” on page 383 for more information.

When a process or thread is held, TotalView displays Stopped next to the relevant process or thread in the Pro-
cess State column of the Root Window.

Setting a Barrier Breakpoint

You can set a barrier breakpoint by using the Action Point > Set Barrier command or from the Action Point > 
Properties Dialog Box. As an alternative, you can right-click on the line. From the displayed context menu, you 
can select the Set Barrier command.

You most often use barrier points to synchronize a set of threads. When a thread reaches a barrier, it stops, just 
as it does for a breakpoint. The difference is that TotalView prevents—that is, holds—each thread reaching the 
barrier from responding to resume commands (for example, step, next, or go) until all threads in the affected set 
arrive at the barrier. When all threads reach the barrier, TotalView considers the barrier to be satisfied and 
releases all of the threads being held there. They are just released; they are not continued. That is, they are left stopped 
at the barrier. If you continue the process, those threads also run. 

If you stop a process and then continue it, the held threads, including the ones waiting at an unsatisfied barrier, 
do not run. Only unheld threads run.

Figure 102 – Action Point > Properties Dialog Box



Setting Action Points / Setting Breakpoints and Barriers  195

The When Hit, Stop radio buttons indicate what other threads TotalView stops when execution reaches the 
breakpoint, as follows:

After all processes or threads reach the barrier, TotalView releases all held threads. Released means that these 
threads and processes can now run. 

The When Done, Stop radio buttons tell TotalView what else it should stop, as follows: 

Creating a Satisfaction Set

For even more control over what TotalView stops, you can select a satisfaction set. This setting tells TotalView 
which processes or threads must be held before it can release the group. That is, the barrier is satisfied when 
TotalView has held all of the indicated processes or threads. The choices from the drop-down menu for the Sat-
isfaction group are Control, Share, and Workers. The default setting, Control, affects all the processes 
controlled by TotalView. The Share setting affects all the processes that share the same image as the current exe-
cutable where the barrier point is set. For multi-threaded programs, to hold the threads at the barrier point, use 
the Workers setting, which holds at the thread level. Control and Share settings hold at the process level. 

When you set a barrier point, TotalView places it in every process in the share group.

Hitting a Barrier Point

If you run one of the processes or threads in a group and it hits a barrier point, the Root Window displays 
Stopped in the Process State column for that process’s or thread’s entry, and the main Process Window displays 
Held in the title bar.

Scope What TotalView does:

Group Stops all threads in the current thread’s control group.

Process Stops all threads in the current thread’s process.

Thread Stops only this thread.

CLI: dbarrier -stop_when_hit

Scope What TotalView does:

Group Stops all threads in the current thread’s control group.

Process Stops all threads in the current thread’s process.

Thread Stops only this thread.

CLI: dbarrier -stop_when_done

CLI: dstatus



Setting Action Points / Setting Breakpoints and Barriers  196

If you create a barrier and all the process’s threads are already at that location, TotalView won’t hold any of them. 
However, if you create a barrier and all of the processes and threads are not at that location, TotalView holds any 
thread that is already there.

Releasing Processes from Barrier Points

TotalView automatically releases processes and threads from a barrier point when they hit that barrier point and 
all other processes or threads in the group are already held at it.

Deleting a Barrier Point

You can delete a barrier point in the following ways:

• Use the Action Point > Properties Dialog Box.

• Click the  icon in the line number area.

Changing Settings and Disabling a Barrier Point

Setting a barrier point at the current PC for a stopped process or thread holds the process there. If, however, all 
other processes or threads affected by the barrier point are at the same PC, TotalView doesn’t hold them. 
Instead, TotalView treats the barrier point as if it were an ordinary breakpoint. 

TotalView releases all processes and threads that are held and which have threads at the barrier point when you 
disable the barrier point. You can disable the barrier point in the Action Point > Properties Dialog Box by select-
ing Enable action point at the bottom of the dialog box. 

CLI: ddelete

CLI: ddisable 



Setting Action Points / Defining Eval Points and Conditional Breakpoints  197

Defining Eval Points and 
Conditional Breakpoints
TotalView lets you define eval points. These are action points at which you have added a code fragment that 
TotalView executes. You can write the code fragment in C, Fortran, or assembler.

NOTE >> Assembler support is currently available on the IBM AIX operating systems. You can enable or 
disable TotalView’s ability to compile eval points.

NOTE >> When running on many AIX systems, you can improve the performance of compiled expres-
sions by using the -aix_use_fast_trap command when starting TotalView. For more 
information, see the TotalView Release Notes, available from the Rogue Wave web site. Search 
for “fast trap.”

Topics in this section are:

• “Setting Eval Points” on page 198

• “Creating Conditional Breakpoint Examples” on page 199

• “Patching Programs” on page 200

• “About Interpreted and Compiled Expressions” on page 202

• “Allocating Patch Space for Compiled Expressions” on page 203

You can do the following when you use eval points:

• Include instructions that stop a process and its relatives. If the code fragment can make a decision 
whether to stop execution, it is called a conditional breakpoint. 

• Test potential fixes for your program.

• Set the values of your program’s variables.

• Automatically send data to the Visualizer. This can produce animated displays of the changes in 
your program’s data.

You can set an eval point at any source line that generates executable code (marked with a box surrounding a line 
number) or a line that contains assembler-level instructions. This means that if you can set a breakpoint, you can 
set an eval point.



Setting Action Points / Defining Eval Points and Conditional Breakpoints  198

At each eval point, TotalView or your program executes the code contained in the eval point before your program 
executes the code on that line. Although your program can then go on to execute this source line or instruction, 
it can do the following instead:

• Include a goto in C or Fortran that transfers control to a line number in your program. This lets you 
test program patches.

• Execute a TotalView function. These functions can stop execution and create barriers and 
countdown breakpoints. For more information on these statements, see “Using Built-in Variables 
and Statements” on page 344.

TotalView evaluates code fragments in the context of the target program. This means that you can refer to pro-
gram variables and branch to places in your program.

NOTE >> If you call a function from an eval point and there’s a breakpoint within that function, 
TotalView will stop execution at that point. Similarly, if there’s an eval point in the function, 
TotalView also evaluates that eval point.

Eval points only modify the processes being debugged—they do not modify your source program or create a per-
manent patch in the executable. If you save a program’s action points, however, TotalView reapplies the eval point 
whenever you start a debugging session for that program. 

NOTE >> You should stop a process before setting an eval point in it. This ensures that the eval point is 
set in a stable context.

Setting Eval Points
This section contains the steps you must follow to create an eval point. These steps are as follows:

1. Display the Action Point > Properties Dialog Box. You can do this, for example, by right-clicking 
a icon and selecting Properties or by selecting a line and then invoking the command from the 
menu bar.

2. Select the Evaluate button at the top of the dialog box.

RELATED TOPICS
Saving eval points “Saving Action Points to a File” on page 213

Writing code for an expression “Using Programming Language Elements” on page 333

TotalView’s expression system “Evaluating Expressions” on page 327

Using built-in TotalView statements to con-
trol execution

“Using Built-In Statements” on page 345



Setting Action Points / Defining Eval Points and Conditional Breakpoints  199

3. Select the button for the language in which you plan to write the fragment.

4. Type the code fragment. For information on supported C, Fortran, and assembler language constructs, see 
“Using Programming Language Elements” on page 333.

5. For multi-process programs, decide whether to share the eval point among all processes in the program’s 
share group. By default, TotalView selects the Plant in share group check box for multi-process programs, 
but you can override this by clearing this setting.

6. Select the OK button to confirm your changes. 

If the code fragment has an error, TotalView displays an error message. Otherwise, it processes the code, 
closes the dialog box, and places an icon on the line number in the Source Pane.

The variables that you refer to in your eval point can either have a global scope or be local to the block of the line 
that contains the eval point. If you declare a variable in the eval point, its scope is the block that contains the eval 
point unless, for example, you declare it in some other scope or declare it to be a static variable.

Creating Conditional Breakpoint Examples
The following are examples that show how you can create conditional breakpoints:

• The following example defines a breakpoint that is reached whenever the counter variable is 
greater than 20 but less than 25:
if (counter > 20 && counter < 25) $stop;

• The following example defines a breakpoint that stops execution every tenth time that TotalView 
executes the $count function
$count 10

• The following example defines a breakpoint with a more complex expression:
$count my_var * 2

When the my_var variable equals 4, the process stops the eighth time it executes the $count function. After 
the process stops, TotalView reevaluates the expression. If my_var equals 5, the process stops again after 
the process executes the $count function ten more times.

The TotalView internal counter is a static variable, which means that TotalView remembers its value every time it 
executes the eval point. Suppose you create an eval point within a loop that executes 120 times and the eval 
point contains $count 100. Also assume that the loop is within a subroutine. As expected, TotalView stops execu-
tion the 100th time the eval point executes. When you resume execution, the remaining 20 iterations occur.

The next time the subroutine executes, TotalView stops execution after 80 iterations because it will have counted 
the 20 iterations from the last time the subroutine executed.

CLI: dbreak -e
dbarrier -e



Setting Action Points / Defining Eval Points and Conditional Breakpoints  200

There is good reason for this behavior. Suppose you have a function that is called from lots of different places 
from within your program. Because TotalView remembers every time a statement executes, you could, for exam-
ple, stop execution every 100 times the function is called. In other words, while $count is most often used within 
loops, you can use it outside of them as well. 

For descriptions of the $stop, $count, and variations on $count, see “Using Built-in Variables and Statements” 
on page 344.

Patching Programs
Eval points let you patch your programs and route around code that you want replaced, supporting:

• Branching around code that you don’t want your program to execute.

• Adding new statements.

In many cases, correcting an error means that you will do both operations: use a goto to branch around incorrect 
lines and add corrections.

For example, suppose you need to change several statements. Just add these to an action point, then add a goto 
(C) or GOTO (Fortran) statement that jumps over the code you no longer want executed. For example, the eval 
point in Figure 103 executes three statements and then skips to line 656.

Branching Around Code

The following example contains a logic error where the program dereferences a null pointer:
1  int check_for_error (int *error_ptr)

Figure 103 – Patching Using an Eval Point



Setting Action Points / Defining Eval Points and Conditional Breakpoints  201

2  {
3    *error_ptr = global_error;
4    global_error = 0;
5    return (global_error != 0);
6  }

The error occurs because the routine that calls this function assumes that the value of error_ptr can be 0. The 
check_for_error() function, however, assumes that error_ptr isn’t null, which means that line 3 can dereference 
a null pointer.

You can correct this error by setting an eval point on line 3 and entering:
if (error_ptr == 0) goto 4;

If the value of error_ptr is null, line 3 isn’t executed. Note that you are not naming a label used in your program. 
Instead, you are naming one of the line numbers generated by TotalView.

Adding a Function Call

The example in the previous section routed around the problem. If all you wanted to do was monitor the value of 
the global_error variable, you can add a printf() function call that displays its value. For example, the following 
might be the eval point to add to line 4:
printf ("global_error is %d\n", global_error);

TotalView executes this code fragment before the code on line 4; that is, this line executes before global_error is 
set to 0. 

Correcting Code

The following example contains a coding error: the function returns the maximum value instead of the minimum 
value:
1  int minimum (int a, int b)
2  {
3    int result;        /* Return the minimum */
4    if (a < b)
5      result = b;
6    else
7      result = a;
8    return (result);
9  }

Correct this error by adding the following code to an eval point at line 4:
if (a < b) goto 7; else goto 5;

This effectively replaces the if statement on line 4 with the code in the eval point.



Setting Action Points / Defining Eval Points and Conditional Breakpoints  202

About Interpreted and Compiled Expressions
On all platforms, TotalView can interpret your eval points. On IBM AIX platforms, TotalView can also compile them. 
Compiling the expressions in eval points is not the default so you must explicitly request it.

With compiled eval points, performance will be significantly better, particularly if your program is using multi-pro-
cessors. This is because interpreted eval points are single-threaded through the TotalView process. In contrast, 
compiled eval points execute on each processor.

The TV::compile_expressions CLI variable enables or disables compiled expressions. See “Operating Systems” in 
the TotalView for HPC Reference Guide for information about how TotalView handles expressions on specific 
platforms.

NOTE >> Using any of the following functions forces TotalView to interpret the eval point rather than 
compile it: $clid, $duid, $nid, $processduid, $systid, $tid, $pid, and $visualize.

About Interpreted Expressions

Interpreted expressions are interpreted by TotalView. Interpreted expressions run slower, possibly much slower, 
than compiled expressions. With multi-process programs, interpreted expressions run even more slowly because 
processes may need to wait for TotalView to execute the expression. 

When you debug remote programs, interpreted expressions always run slower because the TotalView process on 
the host, not the TotalView server (tvdsvr) on the client, interprets the expression. For example, an interpreted 
expression could require that 100 remote processes wait for the TotalView process on the host machine to eval-
uate one interpreted expression. In contrast, if TotalView compiles the expression, it evaluates them on each 
remote process.

NOTE >> Whenever a thread hits an interpreted eval point, TotalView stops execution. This means that 
TotalView creates a new set of lockstep groups. Consequently, if goal threads contain inter-
preted patches, the results are unpredictable.

About Compiled Expressions

TotalView compiles, links, and patches expressions into the target process. Because the target thread executes 
this code, eval points and conditional breakpoints execute very quickly. (Conditional watchpoints are always inter-
preted.) Also, this code doesn’t communicate with the TotalView host process until it needs to.



Setting Action Points / Defining Eval Points and Conditional Breakpoints  203

If the expression executes a $stop function, TotalView stops executing the compiled expression. At this time, you 
can single-step through it and continue executing the expression as you would the rest of your code.

If you plan to use many compiled expressions or your expressions are long, you may need to think about allocat-
ing patch space. For more information, see he section “Allocating Patch Space for Compiled Expressions” on 
page 203.

Allocating Patch Space for Compiled Expressions
TotalView must either allocate or find space in your program to hold the code that it generates for compiled 
expressions. Since this patch space is part of your program’s address space, the location, size, and allocation 
scheme that TotalView uses might conflict with your program. As a result, you may need to change how TotalView 
allocates this space. 

You can choose one of the following patch space allocation schemes:

• Dynamic patch space allocation: Tells TotalView to dynamically find the space for your 
expression’s code.

• Static patch space allocation: Tells TotalView to use a statically allocated area of memory.

Figure 104 – Stopped Execution of Compiled Expressions

RELATED TOPICS
The TV::compile_expressions variable TV::compile_expressions  in "TotalView Variables" 

in the TotalView for HPC Reference Guide 



Setting Action Points / Defining Eval Points and Conditional Breakpoints  204

Allocating Dynamic Patch Space 

Dynamic patch space allocation means that TotalView dynamically allocates patch space for code fragments. If you 
do not specify the size and location for this space, TotalView allocates 1 MB. TotalView creates this space using 
system calls. 

TotalView allocates memory for read, write, and execute access in the addresses shown in the following table: 

NOTE >> You can allocate dynamic patch space only for the computers listed in this table.

If the default address range conflicts with your program, or you would like to change the size of the dynamically 
allocated patch space, you can change the following:

• Patch space base address by using the -patch_area_base command-line option.

• Patch space length by using the -patch_area_length command-line option.

Allocating Static Patch Space 

TotalView can statically allocate patch space if you add a specially named array to your program. When TotalView 
needs to use patch space, it uses the space created for this array. 

You can include, for example, a 1 MB statically allocated patch space in your program by adding the TVDB_-
patch_base_address data object in a C module. Because this object must be 8-byte aligned, declare it as an array 
of doubles; for example:
        /* 1 megabyte == size TV expects */
#define PATCH_LEN 0x100000 
double TVDB_patch_base_address [PATCH_LEN / sizeof(double)]

If you need to use a static patch space size that differs from the 1 MB default, you must use assembler language. 
The following table shows sample assembler code for IBM AIX-Power and Blue Gene/Q:

Platform Address Range

IBM AIX (-q32) 0xEFF00000 - 0xEFFFFFFF 

IBM AIX (-q64) 0x07f0000000000000 - 0x07ffffffffffffff

RELATED TOPICS
TheTV::comline_patch_area_base variable TV::comline_patch_area_base in "TotalView 

Variables" in the TotalView for HPC Reference 
Guide 

The  TV::comline_patch_area_length variable TV::comline_patch_area_length in "TotalView 
Variables" in the TotalView for HPC Reference 
Guide 



Setting Action Points / Defining Eval Points and Conditional Breakpoints  205

To use the static patch space assembler code:

1. Use an ASCII editor and place the assembler code into a file named tvdb_patch_space.s.

2. Replace the PATCH_SIZE tag with the decimal number of bytes you want. This value must be a multiple of 8.

3. Assemble the file into an object file by using a command such as:

cc -c tvdb_patch_space.s

4. Link the resulting tvdb_patch_space.o into your program.

Platform Assembler Code

IBM AIX-Power .csect .data{RW}, 3
.globl TVDB_patch_base_address
.globl TVDB_patch_end_address

TVDB_patch_base_address:
.space PATCH_SIZE

TVDB_patch_end_address:

Blue Gene/Q     .section .TVDB_patch_space,"awx"
    .globl TVDB_patch_base_address
    .globl TVDB_patch_end_address
TVDB_patch_base_address:
    .space 1024*1024,0
TVDB_patch_end_address:
    .previous



Setting Action Points / Using Watchpoints  206

Using Watchpoints
TotalView lets you monitor the changes that occur to memory locations by creating a special type of action point 
called a watchpoint. You most often use watchpoints to find a statement in your program that is writing to places 
to which it shouldn’t be writing. This can occur, for example, when processes share memory and more than one 
process writes to the same location. It can also occur when your program writes off the end of an array or when 
your program has a dangling pointer.

Topics in this section are:

• “Using Watchpoints on Different Architectures” on page 206

• “Creating Watchpoints” on page 208

• “Watching Memory” on page 210

• “Triggering Watchpoints” on page 210

• “Using Conditional Watchpoints” on page 211

TotalView watchpoints are called modify watchpoints because TotalView only triggers a watchpoint when your 
program modifies a memory location. If a program writes a value into a location that is the same as what is 
already stored, TotalView doesn’t trigger the watchpoint because the location’s value did not change.

For example, if location 0x10000 has a value of 0 and your program writes a value of 0 to this location, TotalView 
doesn’t trigger the watchpoint, even though your program wrote data to the memory location. See “Triggering 
Watchpoints” on page 210 for more details on when watchpoints trigger.

You can also create conditional watchpoints. A conditional watchpoint is similar to a conditional breakpoint in that 
TotalView evaluates the expression when the value in the watched memory location changes. You can use condi-
tional watchpoints for a number of purposes. For example, you can use one to test whether a value changes its 
sign—that is, it becomes positive or negative—or whether a value moves above or below some threshold value.

Using Watchpoints on Different Architectures
The number of watchpoints, and their size and alignment restrictions, differ from platform to platform. This is 
because TotalView relies on the operating system and its hardware to implement watchpoints.

RELATED TOPICS
Breakpoints and barrier points “Setting Breakpoints and Barriers” on page 179

Defining eval points and conditional 
breakpoints

“Defining Eval Points and Conditional Breakpoints” on 
page 197



Setting Action Points / Using Watchpoints  207

Watchpoint support depends on the target platform where your application is running, not on the host platform 
where TotalView is running. For example, if you are running TotalView on host platform "H" (where watchpoints 
are not supported), and debugging a program on target platform "T" (where watchpoints are supported), you can 
create a watchpoint in a process running on "T", but not in a process running on "H".

NOTE >> Watchpoints are not available on the following target platforms: Mac OS X, and Linux-Power.

The following list describes constraints that exist on each platform:

Computer Constraints

Blue Gene/L and Blue 
Gene/P

On Blue Gene/L and Blue Gene/P,  you can create one watchpoint. TotalView sets the 
data address compare (DAC) registers of the PPC440 Embedded Processor to watch 
for memory writes to a range of addresses, specified by a watched address and 
length. The watchpoint triggers if the referenced data address is greater than or 
equal to the watched address and less than the watched address plus length.

Blue Gene/Q On Blue Gene/Q, you can create two watchpoints. TotalView sets a watchpoint using 
the IBM CDTI debugging interface for memory writes to a range of addresses, speci-
fied by a watched address and length. The watchpoint triggers if the referenced data 
address is greater than or equal to the watched address and less than the watched 
address plus length. The watched length must be a power of 2, and the watched 
address must be aligned to that power of 2; that is, (address % length) == 0.

IBM AIX You can create one watchpoint on AIX 4.3.3.0-2 (AIX 4.3R) or later systems running 
64-bit chips. These are Power3 and Power4 systems. (AIX 4.3R is available as APAR 
IY06844.) A watchpoint cannot be longer than 8 bytes, and you must align it within 
an 8-byte boundary. If your watchpoint is less than 8 bytes and it doesn’t span an 8-
byte boundary, TotalView figures out what to do.

You can create compiled conditional watchpoints when you use this system. When 
watchpoints are compiled, they are evaluated by the process rather than having to 
be evaluated in TotalView where all evaluations are single-threaded and must be 
sent from separately executing processes. Only systems having fast traps can have 
compiled watchpoints.

Linux x86 You can create up to four watchpoints and each must be 1, 2, or 4 bytes in length, 
and a memory address must be aligned for the byte length. That is, you must align a 
4-byte watchpoint on a 4-byte address boundary, and you must align a 2-byte 
watchpoint on a 2-byte boundary, and so on.

Linux x86-64 (AMD and 
Intel)

You can create up to four watchpoints and each must be 1, 2, 4, or 8 bytes in length, 
and a memory address must be aligned for the byte length. For example, you must 
align a 4-byte watchpoint on a 4-byte address boundary.



Setting Action Points / Using Watchpoints  208

Typically, a debugging session doesn’t use many watchpoints. In most cases, you are only monitoring one mem-
ory location at a time. Consequently, restrictions on the number of values you can watch seldom cause problems.

Creating Watchpoints
Watchpoints are created by using either the Action Points> Create Watchpoint command in the Process Win-
dow or the Tools > Create Watchpoint Dialog Box. (If your platform doesn’t support watchpoints, TotalView dims 
this menu item.) Here are some things you should know:

• You can also set watchpoints by right-clicking within the Process and Variable Windows and then 
select Create Watchpoint from the context menu.

• You can select an expression within the Source and Stack Frame panes and then use a context 
menu or select the Action Points > Create Watchpoint command. If you invoke either of these 
commands and TotalView cannot determine where to set the expression, it displays a dialog box 
into which you type the variable’s name.

• If you select the Tools > Create Watchpoint command and a compound variable such an array or 
structure is being displayed, TotalView sets the watchpoint on the first element. However, if you 
select an element before invoking this command, TotalView sets the watchpoint on that element.

Linux-PowerLE On Linux-PowerLE platforms (but not Linux-Power big-endian platforms) TotalView 
uses the Linux kernel's ptrace() PowerPC hardware debug extension to plant 
watchpoints. The ptrace() interface implements a “hardware breakpoint” abstrac-
tion that reflects the capabilities of PowerPC BookE and server processors. If 
supported at all, the number of watchpoints varies by processor type. Typically, the 
PowerPC supports at least 1 watchpoint up to 8 bytes long. Systems with the DAWR 
feature support a watchpoint up to 512 bytes long. The watchpoint triggers if the 
referenced data address is greater than or equal to the watched address and less 
than the watched address plus length. Alignment constraints may apply. For exam-
ple, the watched length may be required to be a power of 2, and the watched 
address may need to be aligned to that power of 2; that is, 
(address % length) == 0.

Linux IA-64 You can create up to four watchpoints. The length of the memory being watched 
must be a power of 2 and the address must be aligned to that power of 2; that is, 
(address % length) == 0.

Solaris SPARC and Solaris 
x86

TotalView supports watchpoints on Solaris 7 or later operating systems. These oper-
ating systems let you create hundreds of watchpoints, and there are no alignment 
or size constraints. However, watchpoints can’t overlap.

Computer Constraints



Setting Action Points / Using Watchpoints  209

If you set a watchpoint on a stack variable, TotalView reports that you’re trying to set a watchpoint on “non-global” 
memory. For example, the variable is on the stack or in a block and the variable will no longer exist when the stack 
is popped or control leaves the block. In either of these cases, it is likely that your program will overwrite the 
memory and the watchpoint will no longer be meaningful. See “Watching Memory” on page 210 for more 
information.

After you select a Create Watchpoint command, TotalView displays its Watchpoint Properties dialog box.

Controls in this dialog box let you create unconditional and conditional watchpoints. When you set a watchpoint, 
you are setting it on the complete contents of the information being displayed in the Variable Window. For exam-
ple, if the Variable Window displays an array, you can only set a watchpoint on the entire array (or as many bytes 
as TotalView can watch.) If you only want to watch one array element, dive on the element and then set the watch-
point. Similarly, if the Variable Window displays a structure and you only want to watch one element, dive on the 
element before you set the watchpoint.

Displaying Watchpoints 

The watchpoint entry, indicated by UDWP (Unconditional Data Watchpoint) and CDWP (Conditional Data Watch-
point), displays the action point ID, the amount of memory being watched, and the location being watched.

Figure 105 – Tools > Watchpoint Dialog Boxes

RELATED TOPICS
The Tools > Create Watchpoint command  Tools > Create Watchpoint in the in-product Help  



Setting Action Points / Using Watchpoints  210

If you select a watchpoint, TotalView toggles the enabled/disabled state of the watchpoint.

Watching Memory
A watchpoint tracks a memory location—it does not track a variable. This means that a watchpoint might not per-
form as you would expect it to when watching stack or automatic variables. For example, suppose that you want 
to watch a variable in a subroutine. When control exits from the subroutine, the memory allocated on the stack 
for this subroutine is deallocated. At this time, TotalView is watching unallocated stack memory. When the stack 
memory is reallocated to a new stack frame, TotalView is still watching this same position. This means that 
TotalView triggers the watchpoint when something changes this newly allocated memory. 

Also, if your program reinvokes a subroutine, it usually executes in a different stack location. TotalView cannot 
monitor changes to the variable because it is at a different memory location.

All of this means that in most circumstances, you shouldn’t place a watchpoint on a stack variable. If you need to 
watch a stack variable, you will need to create and delete the watchpoint each time your program invokes the 
subroutine.

This doesn’t mean you can’t place a watchpoint on a stack or heap variable. It just means that what happens is 
undefined after this memory is released. For example, after you enter a routine, you can be assured that memory 
locations are always tracked accurately until the memory is released.

NOTE >> In some circumstances, a subroutine may be called from the same location. This means that 
its local variables might be in the same location. So, you might want to try.

If you place a watchpoint on a global or static variable that is always accessed by reference (that is, the value of a 
variable is always accessed using a pointer to the variable), you can set a watchpoint on it because the memory 
locations used by the variable are not changing.

Triggering Watchpoints
When a watchpoint triggers, the thread’s program counter (PC) points to the instruction following the instruction 
that caused the watchpoint to trigger. If the memory store instruction is the last instruction in a source statement, 
the PC points to the source line following the statement that triggered the watchpoint. (Breakpoints and watch-
points work differently. A breakpoint stops before an instruction executes. In contrast, a watchpoint stops after an 
instruction executes.)



Setting Action Points / Using Watchpoints  211

Using Multiple Watchpoints

If a program modifies more than one byte with one program instruction or statement, which is normally the case 
when storing a word, TotalView triggers the watchpoint with the lowest memory location in the modified region. 
Although the program might be modifying locations monitored by other watchpoints, TotalView only triggers the 
watchpoint for the lowest memory location. This can occur when your watchpoints are monitoring adjacent 
memory locations and a single store instruction modifies these locations.

For example, suppose that you have two 1-byte watchpoints, one on location 0x10000 and the other on location 
0x10001. Also suppose that your program uses a single instruction to store a 2-byte value at locations 0x10000 
and 0x10001. If the 2-byte storage operation modifies both bytes, the watchpoint for location 0x10000 triggers. 
The watchpoint for location 0x10001 does not trigger.

Here’s a second example. Suppose that you have a 4-byte integer that uses storage locations 0x10000 through 
0x10003, and you set a watchpoint on this integer. If a process modifies location 0x10002, TotalView triggers the 
watchpoint. Now suppose that you’re watching two adjacent 4-byte integers that are stored in locations 0x10000 
through 0x10007. If a process writes to locations 0x10003 and 0x10004 (that is, one byte in each), TotalView trig-
gers the watchpoint associated with location 0x10003. The watchpoint associated with location 0x10004 does 
not trigger. 

Copying Previous Data Values 

TotalView keeps an internal copy of data in the watched memory locations for each process that shares the 
watchpoint. If you create watchpoints that cover a large area of memory or if your program has a large number of 
processes, you increase TotalView’s virtual memory requirements. Furthermore, TotalView refetches data for each 
memory location whenever it continues the process or thread. This can affect performance.

Using Conditional Watchpoints
If you associate an expression with a watchpoint (by selecting the Conditional button in the Watchpoint Proper-
ties dialog box entering an expression), TotalView evaluates the expression after the watchpoint triggers. The 
programming statements that you can use are identical to those used when you create an eval point, except that 
you can’t call functions from a watchpoint expression. 

The variables used in watchpoint expressions must be global. This is because the watchpoint can be triggered 
from any procedure or scope in your program. 

NOTE >> Fortran does not have global variables. Consequently, you can’t directly refer to your pro-
gram’s variables.

TotalView has two variables that are used exclusively with conditional watchpoint expressions:

$oldval The value of the memory locations before a change is made.



Setting Action Points / Using Watchpoints  212

$newval The value of the memory locations after a change is made.

The following is an expression that uses these values:
if (iValue != 42 && iValue != 44) {
    iNewValue = $newval; iOldValue = $oldval; $stop;} 

When the value of the iValue global variable is neither 42 nor 44, TotalView stores the new and old memory val-
ues in the iNewValue and iOldValue variables. These variables are defined in the program. (Storing the old and 
new values is a convenient way of letting you monitor the changes made by your program.)

The following condition triggers a watchpoint when a memory location’s value becomes negative:
if ($oldval >= 0 && $newval < 0) $stop

And, here is a condition that triggers a watchpoint when the sign of the value in the memory location changes:
if ($newval * $oldval <= 0) $stop

Both of these examples require that you set the Type for $oldval/$newval field in the Watchpoint Properties 
Dialog Box. 

For more information on writing expressions, see “Using Programming Language Elements” on page 333.

If a watchpoint has the same length as the $oldval or $newval data type, the value of these variables is apparent. 
However, if the data type is shorter than the length of the watch region, TotalView searches for the first changed 
location in the watched region and uses that location for the $oldval and $newval variables. (It aligns data in the 
watched region based on the size of the data’s type. For example, if the data type is a 4-byte integer and byte 7 in 
the watched region changes, TotalView uses bytes 4 through 7 of the watchpoint when it assigns values to these 
variables.)

For example, suppose you’re watching an array of 1000 integers called must_be_positive, and you want to trig-
ger a watchpoint as soon as one element becomes negative. You declare the type for $oldval and $newval to be 
int and use the following condition:
if ($newval < 0) $stop;

When your program writes a new value to the array, TotalView triggers the watchpoint, sets the values of $oldval 
and $newval, and evaluates the expression. When $newval is negative, the $stop statement halts the process.

This can be a very powerful technique for range-checking all the values your program writes into an array. 
(Because of byte length restrictions, you can only use this technique on Solaris.)

NOTE >> On all platforms except for IBM AIX, TotalView always interprets conditional watchpoints; it 
never compiles them. Because interpreted watchpoints are single-threaded in TotalView, 
every process or thread that writes to the watched location must wait for other instances of 
the watchpoint to finish executing. This can adversely affect performance. 



Setting Action Points / Saving Action Points to a File  213

Saving Action Points to a File
You can save a program’s action points to a file. TotalView then uses this information to reset these points when 
you restart the program. When you save action points, TotalView creates a file named pro-
gram_name.TVD.v3breakpoints, where program_name is the name of your program.

NOTE >> TotalView does not save watchpoints because memory addresses can change radically every 
time you restart TotalView and your program. 

Use the Action Point > Save All command to save your action points to a file. TotalView places the action points 
file in the same directory as your program. In contrast, the Action Point > Save As command lets you name the 
file to which TotalView saves this information.

If you’re using a preference to automatically save breakpoints, TotalView automatically saves action points to a 
file. Alternatively, starting TotalView with the -sb option (see “TotalView Command Syntax” in the TotalView for HPC 
Reference Guide) also tells TotalView to save your breakpoints.

At any time, you can restore saved action points if you use the Action Points > Load All command. After invoking 
this command, TotalView displays a File Explorer Window that you can use to navigate to or name the saved file. 

You control automatic saving and loading by setting preferences. (See File > Preferences in the online Help for 
more information.)

CLI: dactions -save filename

CLI: dactions -load filename

CLI: dset TV::auto_save_breakpoints

RELATED TOPICS
The TV::auto_save_breakponts variable  TV::auto_save_breakponts in "TotalView Vari-

ables" in the TotalView for HPC Reference Guide

The TV::auto_load_breakpoints variable TV::auto_load_breakpoints in "TotalView Vari-
ables" in the TotalView for HPC Reference Guide



Examining and Editing Data and Program Elements     214      

Chapter 9  

Examining and Editing Data 
and Program Elements

This chapter explains how to examine and edit data and view the various elements of your program, with the 
following sections:

• “Changing How Data is Displayed” on page 215

• “Displaying Variables” on page 220

• “Diving in Variable Windows” on page 240

• “Viewing a List of Variables” on page 246

• “Changing the Values of Variables” on page 254

• “Changing a Variable’s Data Type” on page 256

• “Changing the Address of Variables” on page 267

• “Displaying C++ Types” on page 268

• “C++View” on page 270

• “Displaying Fortran Types” on page 271

• “Displaying Thread Objects” on page 278

• “Scoping and Symbol Names” on page 280

This chapter does not discuss array data. For that information, see Chapter 10, “Examining Arrays,” on 
page 283.



Examining and Editing Data and Program Elements / Changing How Data is Displayed  215

Changing How Data is Displayed
When a debugger displays a variable, it relies on the definitions of the data used by your compiler. The following 
two sections show how you can change the way TotalView displays this information:

• “Displaying STL Variables” on page 215

• “Changing Size and Precision” on page 218

Displaying STL Variables
The C++ STL (Standard Template Library) greatly simplifies access to data. Since it offers standard and prepack-
aged ways to organize data, you do not have to be concerned with the mechanics of the access method. The 
disadvantage to using the STL while debugging is that the information debuggers display is organized according 
to the compiler’s view of the data, rather than the STL’s logical view. For example, here is how your compiler sees 
a map compiled using the GNU C++ compiler (gcc):

Most of the information is generated by the STL template and, in most cases, is not interesting. In addition, the 
STL does not aggregate the information in a useful way.

Figure 106 – An Untransformed Map



Examining and Editing Data and Program Elements / Changing How Data is Displayed  216

STLView solves these problems by rearranging (that is, transforming) the data so that you can easily examine it. 
For example, here is the transformed map.

Figure 107 – A Transformed Map



Examining and Editing Data and Program Elements / Changing How Data is Displayed  217

Figure 108 shows an untransformed and transformed list and vector. 

NOTE >> By default, TotalView transforms STL strings, vectors, lists, maps, multimaps, sets, and multi-
sets. You can create transformations for other STL containers. See "Creating Type 
Transformations" in the TotalView for HPC Reference Guide for more information.

Figure 108 – List and Vector Transformations



Examining and Editing Data and Program Elements / Changing How Data is Displayed  218

By default, TotalView transforms STL types. If you need to look at the untransformed data structures, clear the 
View simplified STL containers (and user-defined transformations) checkbox on the Options Page of the File 
> Preference Dialog Box. 

Following pointers in an STL data structure to retrieve values can be time-consuming. By default, TotalView only 
follows 500 pointers. You can change this by altering the value of the TV::ttf_ max_length variable.

Changing Size and Precision
If the default formats that TotalView uses to display a variable’s value doesn’t meet your needs, you can use the 
Formatting Page of the File > Preferences Dialog Box to indicate the precision for simple data types. 

After selecting one of the data types listed on the left side of the Formatting Page, you can set how many charac-
ter positions a value uses when TotalView displays it (Min Width) and how many numbers to display to the right 
of the decimal place (Precision). You can also tell TotalView how to align the value in the Min Width area, and if it 
should pad numbers with zeros or spaces.

CLI: dset TV::ttf { true | false }

RELATED TOPICS
General information on creating custom type 
transformations

"Creating Type Transformations" in the TotalView for HPC Refer-
ence Guide

Transforming C++ types “Displaying C++ Types” on page 268

Figure 109 – File > Preferences Formatting Page



Examining and Editing Data and Program Elements / Changing How Data is Displayed  219

Although the way in which these controls relate and interrelate may appear to be complex, the Preview area 
shows you the result of a change. Play with the controls for a minute or so to see what each control does. You 
may need to set the Min Width value to a larger number than you need it to be to see the results of a change. 
For example, if the Min Width value doesn’t allow a number to be justified, it could appear that nothing is 
happening.

CLI: You can set these properties from within the CLI. To obtain a list of variables that you can set, 
type “dset TV::data_format*”.

RELATED TOPICS
The Formatting Page in the File > 
Preferences menu

The File > Preferences Formatting Page in the in-product 
Help

Data format CLI variables A list of the TotalView data format variables in the TotalView 
for HPC Reference Guide



Examining and Editing Data and Program Elements / Displaying Variables  220

Displaying Variables
The Process Window Stack Frame Pane displays variables that are local to the current stack frame. This pane 
does not show the data for nonsimple variables, such as pointers, arrays, and structures. To see this information, 
dive on the variable. 

NOTE >> Dive on a variable by clicking your middle mouse button on it. If your mouse doesn’t have 
three buttons, you can single- or double-click on an item.

If you place your mouse cursor over a variable or an expression, TotalView displays its value in a tooltip window.

If TotalView cannot evaluate the object moused over, it still displays basic information. For example, if you place 
the mouse over a structure, the tooltip reports the kind of structure. In all cases, the displayed information is sim-
ilar to the same information entered in the Expression List Window.

If you dive on simple variables or registers, TotalView still brings up a Variable Window and you do see some addi-
tional information about the variable or register. 

Figure 110 – A Tooltip



Examining and Editing Data and Program Elements / Displaying Variables  221

Although a Variable Window is the best way to see all of an array’s elements or all elements in a structure, using 
the Expression List Window is easier for variables with one value. Using it also cuts down on the number of win-
dows that are open at any one time. For more information, see “Viewing a List of Variables” on page 246.

The following sections discuss how you can display variable information:

• “Displaying Program Variables” on page 221

• “Seeing Value Changes” on page 223

• “Displaying Variables in the Current Block” on page 225

• “Viewing Variables in Different Scopes as Program Executes” on page 226

• “Scoping Issues” on page 227

• “Browsing for Variables” on page 230

• “Displaying Local Variables and Registers” on page 232

• “Dereferencing Variables Automatically” on page 234

• “Displaying Areas of Memory” on page 236

• “Displaying Machine Instructions” on page 237

• “Rebinding the Variable Window” on page 238

• “Closing Variable Windows” on page 239

Displaying Program Variables
You can display local and global variables by:

• Diving into the variable in the Source or Stack Panes.

• Selecting the View > Lookup Variable command. When prompted, enter the name of the variable.

• Using the Tools > Program Browser command.

RELATED TOPICS
Diving in variable windows “Diving in Variable Windows” on page 240

More on examining and editing data “Examining and Editing Data and Program Elements” on page 214

Details on the Variable Window The "Variable Window" in the in-product Help 

Viewing lists of variables “Viewing a List of Variables” on page 246 

CLI: dprint variable



Examining and Editing Data and Program Elements / Displaying Variables  222

After using one of these methods, TotalView displays a Variable Window that contains the information you want. 
The Variable Window can display simple variables, such as ints, sets of like elements such as arrays, or more com-
plicated variables defined as structures and arrays of structures.

If you keep a Variable Window open while a process or thread is running, the information being displayed might 
not be accurate. TotalView updates the window when the process or thread stops. If TotalView can’t find a stack 
frame for a displayed local variable, the variable’s status is sparse, since the variable no longer exists. The Status 
area can contain other information that alerts you to issues and problems with a variable.

When you debug recursive code, TotalView doesn’t automatically refocus a Variable Window onto different 
instances of a recursive function. If you have a breakpoint in a recursive function, you need to explicitly open a 
new Variable Window to see the local variable’s value in that stack frame. 

Select the View > Compilation Scope > Floating command to tell TotalView that it can refocus a Variable Win-
dow on different instances. For more information, see “Viewing Variables in Different Scopes as Program 
Executes” on page 226.

Controlling the Displayed Information

TotalView can display more information about your variable than its value. This information is sometimes called 

meta-information. You can control how much of this meta-information it displays by clicking on the More  and 

Less  buttons.

Figure 111 – Variable Window for a Global Variable

CLI: dwhere, dup, and dprint
Use dwhere to locate the stack frame, use dup to move to it, and then use dprint 
to display the value.

RELATED TOPICS
Using the Process Window “Using the Process Window” on page 148

Viewing lists of variables “Viewing a List of Variables” on page 246 



Examining and Editing Data and Program Elements / Displaying Variables  223

As the button names indicate, clicking More displays more meta-information and clicking Less displays less of it.

The two most useful fields are Type, which shows you what your variable’s actual type is, and Expression, which 
allows you to control what is being displayed. This is sometimes needed because TotalView tries to show the type 
in the way that it thinks you declared it in your program.

The online help describes all the meta-information fields.

Seeing Value Changes
TotalView reports when a variable’s value changes in several ways.

Figure 112 – Variable Window: Using More and Less



Examining and Editing Data and Program Elements / Displaying Variables  224

• When your program stops at a breakpoint, TotalView adds a yellow highlight to the variable’s value 
if it has changed,Figure 113 

If the thread is stopped for another reason—for example, you’ve stepped the thread—and the value has 
changed, TotalView does not add yellow highlighting to the line.

• You can tell TotalView to display the Last Value column. Do this by selecting Last Value in the 
column menu, which is displayed after you click on the column menu ( ) icon, Figure 114.

Notice that TotalView has highlighted all items that have changed within an array. In a similar fashion it can 
show the individual items that have changed within a structure.

In general, TotalView only retains the value for data items displayed within the Variable Window. At times, 
TotalView may track adjacent values within arrays and structures, but you should not rely on additional items 
being tracked.

Figure 113 – Variable Window With “Change” Highlighting

Figure 114 – Variable Window Showing Last Value Column



Examining and Editing Data and Program Elements / Displaying Variables  225

NOTE >> When you scroll the Variable Window, TotalView discards the information it is tracking and 
fetches new information. So, while the values may have changed, TotalView does not have 
information about this change. That is, TotalView only tracks what is visible. Similarly, when 
you scroll back to previously displayed values, TotalView needs to refetch this information. 
Because it is “new” information, no “last values” exist.

The Expression List window, described in “Viewing a List of Variables” on page 246, also highlights data and can 
display a Last Value column.

Seeing Structure Information

When TotalView displays a Variable Window, it displays structures in a compact form, concealing the elements 
within the structure. Click the + button to display these elements, or select the View > Expand All command to 
see all entries. If you want to return the display to a more compact form, you can click the - button to collapse 
one structure, or select the View > Collapse All command to return the window to what it was when you first 
opened it.

If a substructure contains more than about forty elements, TotalView does not let you expand it in line. That is, it 
does not place a + symbol in front of the substructure. To see the contents of this substructure, dive on it.

Similarly, if a structure contains an array as an element, TotalView only displays the array within the structure if it 
has fewer than about forty elements. To see the contents of an embedded array, dive on it.

Displaying Variables in the Current Block
In many cases, you may want to see all of the variables in the current block. If you dive on a block label in the 
Stack Frame Pane, TotalView opens a Variable Window that contains just those variables.



Examining and Editing Data and Program Elements / Displaying Variables  226

After you dive on a variable in this block window, TotalView displays a Variable Window for that scoped variable. In 
this figure, block $b1 has two nested blocks. 

Viewing Variables in Different Scopes as Program Executes
When TotalView displays a Variable Window, it understands the scope in which the variable exists. As your pro-
gram executes, this scope doesn’t change. In other words, if you’re looking at variable my_var in one routine, and 
you then execute your program until it is within a second subroutine that also has a my_var variable, TotalView 
does not change the scope so that you are seeing the in scope variable. 

If you would like TotalView to update a variable’s scope as your program executes, select the View > Compilation 
Scope > Floating command. This tells TotalView that, when execution stops, it should look for the variable in the 
current scope. If it finds the variable, it displays the variable contained within the current scope.

Select the View > Compilation Scope > Fixed command to return TotalView to its default behavior, which is not 
to change the scope.

Selecting floating scope can be very handy when you are debugging recursive routines or have routines with 
identical names. For example, i, j, and k are popular names for counter variables.

Figure 115 – Displaying Scoped Variables

RELATED TOPICS
Using the Process Window “Using the Process Window” on page 148



Examining and Editing Data and Program Elements / Displaying Variables  227

Scoping Issues

When you dive into a variable from the Source Pane, the scope that TotalView uses is that associated with the cur-
rent frame’s PC; for example:
1: void f()
2: {
3:    int x;
4: }
5:
6: int main()
7: {
8:    int x;
9:}

If the PC is at line 3, which is in f(), and you dive on the x contained in main(), TotalView displays the value for the 
x in f(), not the x in main(). In this example, the difference is clear: TotalView chooses the PC’s scope instead of 
the scope at the place where you dove. If you are working with templated and overloaded code, determining the 
scope can be impossible, since the compiler does not retain sufficient information. In all cases, you can click the 
More button within the Variable window to see more information about your variable. The Valid in Scope field 
can help you determine which instance of a variable you have located.

You can use the View > Lookup Variable command to locate the instance you are interested in.

Freezing Variable Window Data
Whenever execution stops, TotalView updates the contents of Variable Windows. More precisely, TotalView 
reevaluates the data based on the Expression field. If you do not want this reevaluation to occur, use the Variable 
Window’s View > Freeze command. This tells TotalView that it should not change the information that is 
displaying. 

After you select this command, TotalView adds a marker to the window indicating that the data is frozen.



Examining and Editing Data and Program Elements / Displaying Variables  228

Selecting the View > Freeze command a second time removes the freeze. TotalView again evaluates this win-
dow’s expression whenever execution stops.

In most cases, you’ll want to compare the frozen information with an unfrozen copy. Do this by selecting the Win-
dow > Duplicate command before you freeze the display. As these two windows are identical, it doesn’t matter 
which one you freeze. However, if you use the Duplicate command after you freeze the display, be aware that the 
new duplicated window will continue to update normally. The ‘freeze’ state of a window is not retained when 
using the Window > Duplicate command.

Locking the Address
Sometimes you want only to freeze the address, not the data at that address. Do this by selecting the View > 
Lock Address command. Figure 117 shows two Variable Windows, one of which has had its address locked.

Figure 116 – Variable Window Showing Frozen State



Examining and Editing Data and Program Elements / Displaying Variables  229

Freezing the address lets you continually reevaluate what is at that address as execution progresses. Here are 
two situations where you might want to do this:

• You need to look at a heap address access through a set of dive operations rooted in a stack frame 
that has become stale. 

• You dive on a *this pointer to see the actual value after *this goes stale.

Figure 117 – Locked and Unlocked Variable Windows



Examining and Editing Data and Program Elements / Displaying Variables  230

Browsing for Variables
The Process Window Tools > Program Browser command displays a window that contains all your executable’s 
components. By clicking on a library or program name, you can access all of the variables contained in it.

The window at the top of the figure shows programs and libraries that are loaded. If you have loaded more than 
one program with the File > Debug New Program command, TotalView displays information only for the cur-
rently selected process. After diving on an entry in this window (labeled Dive 1), TotalView displays a Variable 
Window that contains a list of files that make up the program, as well as other related information. 

Diving on an entry in this Variable Window (Dive 2 in this figure) changes the display to contain variables and 
other information related to the file. A list of functions defined within the program is at the end of this list.

Diving on a function changes the Variable Window again. The window shown at the top of the next figure was cre-
ated by diving on one of these functions. The window shown in the center is the result of diving on a block in that 
subroutine. The bottom window shows a variable.

Figure 118 – Program Browser and Variable Windows (Part 1)



Examining and Editing Data and Program Elements / Displaying Variables  231

If you dive on a line in a Variable Window, the new contents replace the old contents, and you can use the undive/

redive  buttons to move back and forth.

If you are examining a complex program with large numbers of subroutines at file scope, often a result of a large 
number of include files and/or template class expansions, you may experience a performance slowdown. By 
default, the windows in this view display as much information as possible, including all symbols for all subroutines 
in a file scope. You can restrict views to initially show only the names of subroutines within a file scope by adding 
this to your .tvdrc file:
dset TV::recurse_subroutines false

You can then still examine the symbols within a particular subroutine by diving on that subroutine.

Figure 119 – Program Browser and Variable Window (Part 2)



Examining and Editing Data and Program Elements / Displaying Variables  232

Displaying Local Variables and Registers
In the Stack Frame Pane, diving on a function’s parameter, local variable, or register displays information in a Vari-
able Window. You can also dive on parameters and local variables in the Source Pane. The displayed Variable 
Window shows the name, address, data type, and value for the object.

The window at the top of the figure shows the result of diving on a register, while the bottom window shows the 
results of diving on an array variable.

You can also display local variables by using the View > Lookup Variable command. 

RELATED TOPICS
Diving in variable windows “Diving in Variable Windows” on page 240

Details on the Variable Window The "Variable Window" in the in-product Help 

Figure 120 – Diving on Local Variables and Registers

CLI: dprint variable
This command lets you view variables and expressions without having to select or find them.

RELATED TOPICS
Diving in variable windows “Diving in Variable Windows” on page 240



Examining and Editing Data and Program Elements / Displaying Variables  233

Interpreting the Status and Control Registers

The Stack Frame Pane in the Process Window lists the contents of CPU registers for the selected frame—you 
might need to scroll past the stack local variables to see them.

For your convenience, TotalView displays the bit settings of many CPU registers symbolically. For example, 
TotalView symbolically displays registers that control rounding and exception enable modes. You can edit the val-
ues of these registers and then resume program execution. For example, you might do this to examine the 
behavior of your program with a different rounding mode.

Since the registers that are displayed vary from platform to platform, see “Architectures” in the TotalView for HPC 
Reference Guide for information on how TotalView displays this information on your CPU. For general information 
on editing the value of variables (including registers), see “Displaying Areas of Memory” on page 236. To learn 
about the meaning of these registers, see the documentation for your CPU.

Using the Process Window “Using the Process Window” on page 148

Details on the Variable Window The "Variable Window" in the in-product Help 

CLI: dprint register 
You must quote the initial $ character in the register name; for example, dprint \$r1.

RELATED TOPICS



Examining and Editing Data and Program Elements / Displaying Variables  234

Dereferencing Variables Automatically 
In most cases, you want to see what a pointer points to, rather than what the value of its variable is. Using the 
controls on the File > Preferences Pointer Dive tab, you can tell TotalView to automatically dereference pointers 
(Figure 121). 

Dereferencing pointers is especially useful when you want to visualize the data linked together with pointers, 
since it can present the data as a unified array. Because the data appears as a unified array, you can use 
TotalView’s array manipulation commands and the Visualizer to view the data.

Each pulldown list on the Pointer Dive tab has three settings: No, Yes, and Yes (don’t push). No means do not 
automatically dereference pointers. Yes means automatically dereference pointers, and allow use of the Back 
command to see the undereferenced pointer value. Yes (don’t push) also enables automatic dereferencing, but 
disallows use of the Back command to see the pointer value.

Automatic dereferencing can occur in the following situations:

• When TotalView initially displays a value.

Figure 121 – File > Preferences Pointer Dive Page

CLI: TV::auto_array_cast_bounds
TV::auto_deref_in_all_c
TV::auto_deref_in_all_fortran
TV::auto_deref_initial_c
TV::auto_deref_initial_fortran
TV::auto_deref_nested_c
TV::auto_deref_nested_fortran



Examining and Editing Data and Program Elements / Displaying Variables  235

• When you dive on a value in an aggregate or structure.

• When you use the Dive in All command.

Examining Memory
TotalView lets you display the memory used by a variable in different ways. If you select the View > Examine For-
mat > Structured or View > Examine Format > Raw commands from within the Variable Window, TotalView 
displays raw memory contents. Figure 122 shows a structured view.

NOTE >> The way this command displays data is similar to the way dump commands such as od that 
exist in your operating system display data. 

Figure 122 – View > Examine Format > Stuctured Display



Examining and Editing Data and Program Elements / Displaying Variables  236

When displaying a structured view, the left portion of the Variable Window shows the elements of the data, 
whether it be a structure or an array. The right portion shows the value of the data in the way that it is normally 
displayed within TotalView. The right-most column displays the raw memory data. By default, this information is 
displayed in hexadecimal. However, you can change it to other formats by selecting a representation within the 
Format pulldown. Figure 123 shows a raw display with this pulldown extended:

In either the raw or structured display, you can change the number of bytes grouped together and the range of 
memory being displayed.

If you select the View > Block Status command, TotalView will also give you additional information about mem-
ory. For example, you are told if the memory is in a text, data, or bss section. (If you see unknown, you are 
probably seeing a stack variable.)

In addition, if you right-click on the header area of the table, a context menu lets you add a Status column. This 
column contains information such as “Allocated”, “PostGuard”, “Corrupted PreGuard”, etc.

If you have enabled the Memory Debugger, this additional information includes whether memory is allocated or 
deallocated, or being used by a guard block, or hoarded.

Displaying Areas of Memory
You can display areas of memory using hexadecimal, octal, or decimal values. Do this by selecting the View > 
Lookup Variable command, and then entering one of the following in the dialog box that appears:

• An address 

When you enter a single address, TotalView displays the word of data stored at that address.

Figure 123 – View > Examine Format > Raw Display

CLI: dprint address



Examining and Editing Data and Program Elements / Displaying Variables  237

• A pair of addresses 

When you enter a pair of addresses, TotalView displays the data (in word increments) from the first to the 
last address. To enter a pair of addresses, enter the first address, a comma, and the last address.

NOTE >> All octal constants must begin with 0 (zero). Hexadecimal constants must begin 
with 0x.

The Variable Window for an area of memory displays the address and contents of each word.

TotalView displays the memory area’s starting location at the top of the window’s data area. In the window, 
TotalView displays information in hexadecimal and decimal notation.

If a Variable Window is already being displayed, you can change the type to $void and add an array specifier. If 
you do this, the results are similar to what is shown in this figure.

You can also edit the value listed in the Value field for each machine instruction.

Displaying Machine Instructions
You can display the machine instructions for entire routines as follows:

• Dive on the address of an assembler instruction in the Source Pane (such as main+0x10 or 0x60). 
A Variable Window displays the instructions for the entire function, and highlights the instruction 
you dove on.

• Dive on the PC in the Stack Frame Pane. A Variable Window displays the instructions for the entire 
function that contains the PC, and also highlights the instruction pointed to by the PC.

CLI: dprint address,address

Figure 124 – Variable Window for an Area of Memory



Examining and Editing Data and Program Elements / Displaying Variables  238

• Cast a variable to type $code or array of $code. For example:

$code[20]

displays twenty code instructions, as shown in Figure 125.

The Variable Window lists the following information about each machine instruction:

Offset+Label The symbolic address of the location as a hexadecimal offset from a routine name.

Code The hexadecimal value stored in the location.

Instruction The instruction and operands stored in the location.

Rebinding the Variable Window
When you restart your program, TotalView must identify the thread in which the variable existed. For example, 
suppose variable my_var was in thread 3.6. When you restart your program, TotalView tries to rebind the thread 
to a newly created thread. Because the order in which the operating system starts and executes threads can dif-
fer, there’s no guarantee that the thread 3.6 in the current context is the same thread as what it was previously. 
Problems can occur. To correct rebinding issues, use the Threads box in the upper left-hand corner of the Vari-
able Window to specify the thread to which you want to bind the variable.

Another way to use the Threads box is to change to a different thread to see the variable or expression’s value 
there. For example, suppose variable my_var is being displayed in thread 3.4. If you type 3.5 in the Threads box, 
TotalView updates the information in the Expression List Window so that it is what exists in thread 3.5.

Figure 125 – Variable Window with Machine Instructions



Examining and Editing Data and Program Elements / Displaying Variables  239

Closing Variable Windows
When you finish analyzing the information in a Variable Window, use the File > Close command to close the win-
dow. You can also use the File > Close Similar command to close all Variable Windows.



Examining and Editing Data and Program Elements / Diving in Variable Windows  240

Diving in Variable Windows
If the variable being displayed in a Variable Window is a pointer, structure, or array, you can dive on the value. This 
new dive, which is called a nested dive, tells TotalView to replace the information in the Variable Window with infor-
mation about the selected variable. If this information contains nonscalar data types, you can also dive on these 
data types. Although a typical data structure doesn’t have too many levels, repeatedly diving on data lets you fol-
low pointer chains. That is, diving lets you see the elements of a linked list.

TotalView lets you see a member of an array of structures as a single array across all the structures. See “Display-
ing an Array of Structure’s Elements” on page 242 for more information.

TotalView remembers your dives. This means that you can use the undive/redive buttons to view where you 
already dove.

Figure 126 – Undive/Redive Buttons



Examining and Editing Data and Program Elements / Diving in Variable Windows  241

The following figure shows a Variable Window after diving into a pointer variable named sp with a type of 
simple*. The first Variable Window, which is called the base window, displays the value of sp. (This is Window 1 in 
Figure 127.)

The nested dive window (Window 2 in this figure) shows the structure referenced by the simple* pointer. 

You can manipulate Variable Windows and nested dive windows by using the undive/redive buttons, as follows:

• To undive from a nested dive, click the undive arrow button. The previous contents of the Variable 
Window appear.

• To undive from all your dive operations, click the undive all arrow button.

• To redive after you undive, click the redive arrow button. TotalView restores a previously executed 
dive operation.

• To redive from all your undive operations, click on the Redive All arrow button.

If you dive on a variable that already has a Variable Window open, the Variable Window pops to the top of the 
window display. 

If you select the Window > Duplicate command, a new Variable Window appears, which is a duplicate of the cur-
rent Variable Window. 

Figure 127 – Nested Dives



Examining and Editing Data and Program Elements / Diving in Variable Windows  242

Displaying an Array of Structure’s Elements
The View > Dive In All command, which is also available when you right-click on a field, lets you display an ele-
ment in an array of structures as if it were a simple array. For example, suppose you have the following Fortran 
definition:
type i_c
   integer r
   complex c
end type i_C
   
type(i_c), target :: rc2(3,4)

After selecting an r element, select the View > Dive In All command. TotalView displays all of the r elements of 
the rc2 array as if they were a single array.

The View > Dive in All command can also display the elements of a C array of structures as arrays. Figure 129 
shows a unified array of structures and a multidimensional array in a structure.

RELATED TOPICS
Diving into objects “About Diving into Objects” on page 152

Figure 128 – Displaying a Fortran Structure



Examining and Editing Data and Program Elements / Diving in Variable Windows  243

NOTE >> As the array manipulation commands (described in Chapter 10) generally work on what’s dis-
played and not what is stored in memory, TotalView commands that refine and display array 
information work on this virtual array. For example, you can visualize the array, obtain statis-
tics about it, filter elements in it, and so on. 

Figure 129 – Displaying C Structures and Arrays



Examining and Editing Data and Program Elements / Diving in Variable Windows  244

Figure 130 is a high-level look at what a dive in all operation does. 

In this figure, the rounded rectangle represents a Variable Window. On the left is an array of five structures. After 
you select the Dive in All command with element a selected, TotalView replaces the contents of your Variable 
Window with an array that contains all of these a elements. 

Changing What the Variable Window Displays
When TotalView displays a Variable Window, the Expression field contains either a variable or an expression. 
Technically, a variable is also an expression. For example, my_var.an_element is actually an addressing expres-
sion. Similarly, my_var.an_element[10] and my_var[10].an_element are also expressions, since both TotalView 
and your program must figure out where the data associated with the element resides. 

The expression in the Expression field is dynamic. That is, you can tell TotalView to evaluate what you enter 
before trying to obtain a memory address. For example, if you enter my_var.an_element[i], TotalView evaluates 
the value of i before it redisplays your information. A more complicated example is my_var.an_element[i+1]. In 
this example, TotalView must use its internal expression evaluation system to create a value before it retrieves 
data values. 

You can replace the variable expression with something completely different, such as i+1, and TotalView simply 
displays the value produced by evaluating the expression.

Figure 130 – Dive in All

RELATED TOPICS
Arrays “Examining Arrays” on page 283

Structures “Viewing Structures” on page 259

a
b
c

a
b
c

a
b
c

a
b
c

a
b
c

a
a
a
a
a



Examining and Editing Data and Program Elements / Diving in Variable Windows  245

Chapter 12, “Evaluating Expressions,” on page 327 has a discussion of the evaluation system and typing expres-
sions in an eval point in the Tools > Evaluate Window. In contrast, the expressions you can type in the Expression 
List Window are restricted, with the principal restriction being that what you type cannot have side effects. For 
example, you cannot use an expression that contains a function call or an operator that changes memory, such 
as ++ or --. 



Examining and Editing Data and Program Elements / Viewing a List of Variables  246

Viewing a List of Variables
 As you debug your program, you may want to monitor a variable’s value as your program executes. For many 
types of information, the Expression List Window offers a more compact display than the Variable Window for 
displaying scalar variables. 

For more information, see the Tools > Expression List Command.

The topics discussing the Expression List Window are:

• “Entering Variables and Expressions” on page 246

• “Seeing Variable Value Changes in the Expression List Window” on page 248

• “Entering Expressions into the Expression Column” on page 249

• “Using the Expression List with Multi-process/Multi-threaded Programs” on page 250

• “Reevaluating, Reopening, Rebinding, and Restarting” on page 251

• “Seeing More Information” on page 251

• “Sorting, Reordering, and Editing” on page 252

Entering Variables and Expressions 
To display an initial, empty window, select the Tools > Expression List command.

You can place information in the first column of the Expression List Window in the following ways:

• Enter it into a blank cell in the Expression column. When you do this, the context is the current PC 
in the process and thread indicated in the Threads box. If you type my_var in the window shown 
in the previous section, you would type the value of my_var in process 1, thread 1.

Figure 131 – The Tools > Expression List Window



Examining and Editing Data and Program Elements / Viewing a List of Variables  247

• Right-click on a line in the Process Window Source or Stack Frame Panes. From the displayed 
context menu, select Add to Expression List. Here is the context menu that TotalView displays in 
the Source Pane:

• Right-click on something in a Variable Window. Select Add to Expression List from the displayed 
context menu. You can also use the View > Add to Expression List command.

When you enter information in the Tools > Expression List Window, where you place the cursor and what you 
select make a difference. If you click on a variable or select a row in the Variable Window, TotalView adds that vari-
able to the Expression List Window. If you instead select text, TotalView adds that text. What’s the difference? 
Figure 131 on page 246 shows three variations of d1_array, each obtained in a different way, as follows:

• The first entry was added by selecting just part of what was displayed in the Source Pane. 

• The second entry was added by selecting a row in the Variable Window.

• The third entry was added by clicking at a random point in the variable’s text in the Source Pane.

You can tell TotalView to look for a variable in the scope that exists when your program stops executing, rather 
than keeping it locked to the scope from which it was added to the Tools > Expression List Window. Do this by 
right-clicking an item, then selecting Compilation Scope > Floating from the context menu. 

For more information, see “Viewing Variables in Different Scopes as Program Executes” on page 226.

Figure 132 – Expression List Window Context Menu



Examining and Editing Data and Program Elements / Viewing a List of Variables  248

Seeing Variable Value Changes in the Expression List Window
TotalView can tell you when a variable’s value changes in several ways.

• When your program stops at a breakpoint, TotalView adds a yellow highlight to the variable’s value 
if it has changed, Figure 133.

If the thread is stopped for another reason—for example, you’ve stepped the thread—and the value has 
changed, TotalView does not add yellow highlighting to the line.

• You can tell TotalView to display the Last Value column. Do this by selecting Last Value in the 
column menu, which is displayed after you click on the column menu ( ) icon.

Notice that TotalView has highlighted all items that have changed within an array. In a similar fashion it can 
show the individual items that have changed within a structure.

Figure 133 – Expression List Window With “Change” Highlighting

Figure 134 – Variable Window Showing Last Value Column



Examining and Editing Data and Program Elements / Viewing a List of Variables  249

Entering Expressions into the Expression Column
The following Expression List Window shows four different types of expressions.

The expressions in this window are:

i A variable with one value. The Value column shows its value. 

d1_array An aggregate variable; that is, an array, a structure, a class, and so on. Its value cannot be dis-
played in one line. Consequently, TotalView just gives you some information about the variable. 
To see more information, dive on the variable. After diving, TotalView displays the variable in a 
Variable Window.

When you place an aggregate variable in the Expression column, you need to dive on it to get 
more information.

d1_array[1].d1_v
An element in an array of structures. If TotalView can resolve what you enter in the Expression 
column into a single value, it displays a value in the Value column. If TotalView can’t, it displays 
information in the same way that it displays information in the d1_array example.

d1_array[i-1].d1_v
An element in an array of structures. This expression differs from the previous example in that 
the array index is an expression. Whenever execution stops in the current thread, TotalView re-
evaluates the i-1 expression. This means that TotalView might display the value of a different 
array item every time execution stops.

The expressions you enter cannot include function calls.

You can also enter methods and functions within an Expression. Figure 136 shows two get methods and a get 
method used in an expression.

Figure 135 – The Tools > Expression List Window



Examining and Editing Data and Program Elements / Viewing a List of Variables  250

In a similar fashion, you can even directly enter functions, Figure 137.

Using the Expression List with Multi-process/Multi-threaded 
Programs
You can change the thread in which TotalView evaluates your expressions by typing a new thread value in the 
Threads box at the top of the window. A second method is to select a value by using the drop-down list in the 
Threads box. 

When you use an Add to Expression List command, TotalView checks whether an Expression List Window is 
already open for the current thread. If one is open, TotalView adds the variable to the bottom of the list. If an 
Expression List Window isn’t associated with the thread, TotalView duplicates an existing window, changes the 
thread of the duplicated window, and then adds the variable to all open Tools > Expression List Windows. That 
is, you have two Tools > Expression List Windows. Each has the same list of expressions. However, the results of 
the expression evaluation differ because TotalView is evaluating them in different threads.

In all cases, the list of expressions in all Tools > Expression List Windows is the same. What differs is the thread 
in which TotalView evaluates the window’s expressions.

Similarly, if TotalView is displaying two or more Tools > Expression List Windows, and you send a variable from 
yet another thread, TotalView adds the variable to all of them, duplicates one of them, and then changes the 
thread of the duplicated window.

Figure 136 – Using Methods in the Tools > Expression List Window

Figure 137 – Using Functions in the Tools > Expression List Window



Examining and Editing Data and Program Elements / Viewing a List of Variables  251

Reevaluating, Reopening, Rebinding, and Restarting
This section explains what happens in the Tools > Expression List Window as TotalView performs various 
operations.

Reevaluating Contents

TotalView reevaluates the value of everything in the Tools > Expression List Window Expression column when-
ever your thread stops executing. More precisely, if a thread stops executing, TotalView reevaluates the contents 
of all Tools > Expression List Windows associated with the thread. In this way, you can see how the values of 
these expressions change as your program executes.

You can use the Window > Update All command to update values in all other Tools > Expression List Windows.

Reopening Windows

If you close all open Tools > Expression List Windows and then reopen one, TotalView remembers the expres-
sions you added previously. That is, if the window contains five variables when you close it, it has the same five 
variables when you open it. The thread TotalView uses to evaluate the window’s contents is based on the Process 
Window from which you invoked the Tools > Expressions List command.

Rebinding Windows

The values displayed in an Expression List Window are the result of evaluating the expression in the thread indi-
cated in the Threads box at the top of the window. To change the thread in which TotalView evaluates these 
expressions, you can either type a new thread value in the Threads box or select a thread from the pulldown list 
in the Threads box. (Changing the thread to evaluate expressions in that thread’s context is called rebinding.)

Restarting a Program

When you restart your program, TotalView attempts to rebind the expressions in a Tools > Expression List Win-
dow to the correct thread. Unfortunately, it is not possible to select the right thread with 100% accuracy. For 
example, the order in which your operating system creates threads can differ each time you run your program. 
Or, your program’s logic can cause threads to be created in a different order. 

You may need to manually change the thread by using the Threads box at the top of the window.

Seeing More Information
When you first open the Tools > Expression List Window, it contains two columns, but TotalView can display 
other columns. If you right-click on a column heading line, TotalView displays a context menu that indicates all 
possible columns. Clicking on a heading name listed in the context menu changes if from displayed to hidden or 
vice versa.



Examining and Editing Data and Program Elements / Viewing a List of Variables  252

Even when you add additional columns, the Expression List Window might not show you what you need to know 
about a variable. If you dive on a row (or select Dive from a context menu), TotalView opens a Variable Window 
for what you just dove on.

You can combine the Expression List Window and diving to bookmark your data. For example, you can enter the 
names of structures and arrays. When you want to see information about them, dive on the name. In this way, 
you don’t have to clutter up your screen with the Variable Windows that you don’t need to refer to often.

Sorting, Reordering, and Editing
This section describes operations you can perform on Tools > Expression List Window data.

Sorting Contents

You can sort the contents of the Tools > Expression List Window by clicking on the column header. After you 
click on the header, TotalView adds an indicator that shows that the column was sorted and the way in which it 
was sorted. In the figure in the previous topic, the Value column is sorted in ascending order. 

Reordering Row Display

The up and down arrows ( ) on the right side of the Tools > Expression List Window toolbar let you change 
the order in which TotalView displays rows. For example, clicking the down arrow moves the currently selected 
row (indicated by the highlight) one row lower in the display.

Editing Expressions

You can change an expression by clicking in it, and then typing new characters and deleting others. Select Edit > 
Reset Defaults to remove all edits you have made. When you edit an expression, TotalView uses the scope that 
existed when you created the variable.

Figure 138 – The Tools > Expression List Window Showing Column Selector



Examining and Editing Data and Program Elements / Viewing a List of Variables  253

Changing Data Type

You can edit an expression’s data type by displaying the Type column and making your changes. Select Edit > 
Reset Defaults to remove all edits you have made.

Changing an Expression’s Value

You can change an expression’s value if that value is stored in memory by editing the contents of the Value 
column.

About Other Commands

You can also use the following commands when working with expressions:

Edit > Delete Expression
Deletes the selected row. This command is also on a context (right-click) menu. If you have 
more than one Expression List Window open, deleting a row from one window deletes the 
row from all open windows.

Edit > Delete All Expressions
Deletes all of the Expression List Window rows. If you have more than one Expression List 
Window open, deleting all expressions from one window deletes all expressions in all win-
dows.

View > Dive Displays the expression or variable in a Variable Window. Although this command is also on a 
context menu, you can just double-click or middle-click on the variable’s name instead.

 Edit >Duplicate Expression
Duplicates the selected column. You would duplicate a column to see a similar variable or ex-
pression. For example, if myvar_looks_at[i] is in the Expression column, duplicating it and 
then modifying the new row is an easy way to see myvar_looks_at[i] and myvar_-
looks_at[i+j-k] at the same time.

This command is also on a context menu.



Examining and Editing Data and Program Elements / Changing the Values of Variables  254

Changing the Values of Variables
You can change the value of any variable or the contents of any memory location displayed in a Variable Window, 
Expression List Window, or Stack Frame Pane by selecting the value and typing the new value. In addition to typ-
ing a value, you can also type an expression. For example, you can enter 12*12 as shown in the following figure. 
You can include logical operators in all TotalView expressions. 

In most cases, you can edit a variable’s value. If you right-click on a variable and the Change Value command isn’t 
faded, you can edit the displayed value.

TotalView does not let you directly change the value of bit fields; you can use the Tools > Evaluate Window to 
assign a value to a bit field. See Chapter 12, “Evaluating Expressions,” on page 327. 

CLI: set my_var [expr 1024*1024]
dassign int8_array(3) $my_var

Figure 139 – Using an Expression to Change a Value

CLI: Tcl lets you use operators such as & and | to manipulate bit fields on Tcl values.



Examining and Editing Data and Program Elements / Changing the Values of Variables  255

RELATED TOPICS
Editing text in source code “Editing Source Text” on page 164

Details on the Variable Window The "Variable Window" in the in-product Help 



Examining and Editing Data and Program Elements / Changing a Variable’s Data Type  256

Changing a Variable’s Data Type
The data type declared for the variable determines its format and size (amount of memory). For example, if you 
declare an int variable, TotalView displays the variable as an integer.

The following sections discuss the different aspects of data types:

• “Displaying C and C++ Data Types” on page 256

• “Viewing Pointers to Arrays” on page 258

• “Viewing Arrays” on page 258

• “Viewing typedef Types” on page 259

• “Viewing Structures” on page 259

• “Viewing Unions” on page 260

• “Casting Using the Built-In Types” on page 261

• “Type-Casting Examples” on page 266

You can change the way TotalView displays data in the Variable Window and the Expression List Window by edit-
ing the data type. This is known as casting. TotalView assigns types to all data types, and in most cases, they are 
identical to their programming language counterparts.

When a C or C++ variable is displayed in TotalView, the data types are identical to their C or C++ type representa-
tions, except for pointers to arrays. TotalView uses a simpler syntax for pointers to arrays. (See “Viewing Pointers 
to Arrays” on page 258.) Similarly, when Fortran is displayed in TotalView, the types are identical to their Fortran 
type representations for most data types, including INTEGER, REAL, DOUBLE PRECISION, COMPLEX, LOGICAL, 
and CHARACTER. 

If the window contains a structure with a list of fields, you can edit the data types of the listed fields.

NOTE >> When you edit a data type, TotalView changes how it displays the variable in the current win-
dow. Other windows listing the variable do not change.

Displaying C and C++ Data Types
The syntax for displaying data is identical to C and C++ language cast syntax for all data types except pointers to 
arrays. That is, you use C and C++ cast syntax for data types. For example, you can cast using types such as int, 
char, unsigned, float, double, union, all named struct types, and so on. In addition, TotalView has a built-in type 
called $string. Unless you tell it otherwise, TotalView maps char arrays to this type. (For information on wide 
characters, see “Viewing Wide Character Arrays ($wchar Data Types)” on page 264.)



Examining and Editing Data and Program Elements / Changing a Variable’s Data Type  257

Read TotalView types from right to left. For example, $string*[20]* is a pointer to an array of 20 pointers to 
$string. 

The following table shows some common TotalView data types:

You can enter C and C++ Language cast syntax in the Type field. Figure 140 shows three different ways to cast:

The two Variable Windows cast the same data in the same way. In the top-left window, a cast was used in the 
Expression field. In the other Variable Window, the data type was changed from int to $char. In the first cast, 
TotalView changed the Type for you. In the second, it did not alter the Expression field.

Data Type String Description

int Integer

int* Pointer to an integer

int[10] Array of 10 integers

$string Null-terminated character string

$string** Pointer to a pointer to a null-terminated character string

$string*[20]* Pointer to an array of 20 pointers to null-terminated strings

Figure 140 – Three Casting Examples



Examining and Editing Data and Program Elements / Changing a Variable’s Data Type  258

The Expression List Window contains two casting examples. The first casts a function’s returned value to long 
long. The second is the same cast as was made in the two Variable Windows.

TotalView also lets you cast a variable into an array. In the GUI, add an array specifier to the Type declaration. For 
example, adding [3] to a variable declared as an int changes it into an array of three ints.

When TotalView displays some complex arrays and structures, it displays the compound object or array types in 
the Variable Window. 

NOTE >> Editing a compound object or array data type can produce undesirable results. TotalView tries 
to give you what you ask for, so if you get it wrong, the results are unpredictable. Fortunately, 
the remedy is quite simple: close the Variable Window and start over again.

The following sections discuss more complex data types.

• “Viewing Pointers to Arrays” on page 258

• “Viewing Arrays” on page 258

• “Viewing typedef Types” on page 259

• “Viewing Structures” on page 259

• “Viewing Unions” on page 260

Viewing Pointers to Arrays
Suppose you declared a variable vbl as a pointer to an array of 23 pointers to an array of 12 objects of type 
mytype_t. The C language declaration for this is:
mytype_t (*(*vbl)[23]) [12];

Here is how you would cast the vbl variable to this type:
(mytype_t (*(*)[23])[12])vbl

The TotalView cast for vbl is:
mytype_t[12]*[23]*

Viewing Arrays
When you specify an array, you can include a lower and upper bound separated by a colon (:).

NOTE >> See Chapter 10, “Examining Arrays,” on page 283 for more information on arrays.



Examining and Editing Data and Program Elements / Changing a Variable’s Data Type  259

By default, the lower bound for a C or C++ array is 0, and the lower bound for a Fortran array is 1. In the following 
example, an array of ten integers is declared in C and then in Fortran:
int a[10];
integer a(10)

The elements of the array range from a[0] to a[9] in C, while the elements of the equivalent Fortran array range 
from a(1) to a(10).

TotalView also lets you cast a variable to an array. In the GUI, just add an array specifier to the Type declaration. 
For example, adding (3) to a variable declared as an integer changes it to an array of three integers.

When the lower bound for an array dimension is the default for the language, TotalView displays only the extent 
(that is, the number of elements in the dimension). Consider the following Fortran array declaration:
integer a(1:7,1:8)

Since both dimensions of this Fortran array use the default lower bound, which is 1, TotalView displays the data 
type of the array by using only the extent of each dimension, as follows:
integer(7,8)

If an array declaration doesn’t use the default lower bound, TotalView displays both the lower bound and upper 
bound for each dimension of the array. For example, in Fortran, you declare an array of integers with the first 
dimension ranging from -1 to 5 and the second dimension ranging from 2 to 10, as follows:
integer a(-1:5,2:10)

TotalView displays this the same way.

When editing an array’s dimension, you can enter just the extent (if using the default lower bound), or you can 
enter the lower and upper bounds separated by a colon.

TotalView also lets you display a subsection of an array, or filter a scalar array for values that match a filter expres-
sion. See “Displaying Array Slices” on page 284 and “Filtering Array Data Overview” on page 290 for more 
information.

Viewing typedef Types
TotalView recognizes the names defined with typedef, and displays these user-defined types; for example:
typedef double *dptr_t;
dptr_t p_vbl;

TotalView displays the type for p_vbl as dptr_t.

Viewing Structures
TotalView lets you use the struct keyword as part of a type string. In most cases, this is optional. 



Examining and Editing Data and Program Elements / Changing a Variable’s Data Type  260

NOTE >> This behavior depends upon which compiler you are using. In most cases, you’ll see what is 
described here.

If you have a structure and another data type with the same name, however, you must include the struct key-
word so that TotalView can distinguish between the two data types.

If you use a typedef statement to name a structure, TotalView uses the typedef name as the type string. Other-
wise, TotalView uses the structure tag for the struct.

Viewing Unions
TotalView displays a union in the same way that it displays a structure. Even though the fields of a union are over-
laid in storage, TotalView displays the fields on separate lines.

CLI: dprint variable

Figure 141 – Displaying a Union



Examining and Editing Data and Program Elements / Changing a Variable’s Data Type  261

Casting Using the Built-In Types
TotalView provides a number of predefined types. These types are preceded by a $. You can use these built-in 
types anywhere you can use the ones defined in your programming language. These types are also useful in 
debugging executables with no debugging symbol table information. The following table describes the built-in 
types:

Type String Language Size Description

$address C void* Void pointer (address).

$char C char Character.

$character Fortran character Character.

$code C architecture-
dependent

Machine instructions.

The size used is the number of bytes required to hold the 
shortest instruction for your computer.

$complex Fortran complex Single-precision floating-point complex number.

The complex types contain a real part and an imaginary part, 
which are both of type real.

$complex_8 Fortran complex*8 A real*4-precision floating-point complex number.

The complex*8 types contain a real part and an imaginary 
part, which are both of type real*4.

$complex_16 Fortran complex*16 A real*8-precision floating-point complex number.

The complex*16 types contain a real part and an imaginary 
part, which are both of type real*8.

$double C double Double-precision floating-point number.

$double_precision Fortran double 
precision

Double-precision floating-point number.

$extended C architecture-
dependent; 
often long 
double

Extended-precision floating-point number. Extended-preci-
sion numbers must be supported by the target architecture. 
In addition, the format of extended floating point numbers 
varies depending on where it's stored. For example, the x86 
register has a special 10-byte format, which is different than 
the in-memory format. Consult your vendor’s architecture 
documentation for more information.

$float C float Single-precision floating-point number.

$int C int Integer.

$integer Fortran integer Integer.

$integer_1 Fortran integer*1 One-byte integer.



Examining and Editing Data and Program Elements / Changing a Variable’s Data Type  262

$integer_2 Fortran integer*2 Two-byte integer.

$integer_4 Fortran integer*4 Four-byte integer.

$integer_8 Fortran integer*8 Eight-byte integer.

$logical Fortran logical Logical.

$logical_1 Fortran logical*1 One-byte logical.

$logical_2 Fortran logical*2 Two-byte logical.

$logical_4 Fortran logical*4 Four-byte logical.

$logical_8 Fortran logical*8 Eight-byte logical.

$long C long Long integer.

$long_long C long long Long long integer.

$real Fortran real Single-precision floating-point number.

When using a value such as real, be careful that the actual 
data type used by your computer is not real*4 or real*8, since 
different results can occur.

$real_4 Fortran real*4 Four-byte floating-point number.

$real_8 Fortran real*8 Eight-byte floating-point number.

$real_16 Fortran real*16 Sixteen-byte floating-point number.

$short C short Short integer.

$string C char Array of characters.

$void C long Area of memory.

$wchar C platform-
specific 

Platform-specific wide character used by wchar_t data types

$wchar_s16 C 16 bits Wide character whose storage is signed 16 bits (not currently 
used by any platform)

$wchar_u16 C 16 bits Wide character whose storage is unsigned 16 bits 

$wchar_s32 C 32 bits Wide character whose storage is signed 32 bits 

$wchar_u32 C 32 bits Wide character whose storage is unsigned 32 bits 

$wstring C platform-
specific 

Platform-specific string composed of $wchar characters

$wstring_s16 C 16 bits String composed of $wchar_s16 characters (not currently 
used by any platform)

$wstring_u16 C 16 bits String composed of $wchar_u16 characters

Type String Language Size Description



Examining and Editing Data and Program Elements / Changing a Variable’s Data Type  263

Viewing Character Arrays ($string Data Type)

If you declare a character array as char vbl[n], TotalView automatically changes the type to $string[n]; that is, a 
null-terminated, quoted string with a maximum length of n. This means that TotalView displays an array as a 
quoted string of n characters, terminated by a null character. Similarly, TotalView changes char* declarations to 
$string* (a pointer to a null-terminated string). 

Since most character arrays represent strings, the TotalView $string type can be very convenient. But if this isn’t 
what you want, you can change the $string type back to a char (or char[n]), to display the variable as you 
declared it.

$wstring_s32 C 32 bits String composed of $wchar_s32 characters

$wstring_u32 C 32 bits String composed of $wchar_u32 characters 

Type String Language Size Description



Examining and Editing Data and Program Elements / Changing a Variable’s Data Type  264

Viewing Wide Character Arrays ($wchar Data Types)

If you create an array of wchar_t wide characters, TotalView automatically changes the type to $wstring[n]; that 
is, it is displayed as a null-terminated, quoted string with a maximum length of n. For an array of wide characters, 
the null terminator is L’0’. Similarly, TotalView changes wchar_t* declarations to $wstring* (a pointer to a null-
terminated string).

Figure 142 shows the declaration of two wide characters in the Process Window. The Expression List Window 
shows how TotalView displays their data. The L in the data indicates that TotalView is displaying a wide literal.

Since most wide character arrays represent strings, the $wstring type can be very convenient. But if this isn’t 
what you want, you can change the $wstring type back to a wchar_t (or wchar[n] or $wchar or $wchar[n]), to 
display the variable as you declared it.

If the wide character uses from 9 to 16 bits, TotalView displays the character using the following universal-charac-
ter code representation:

\uXXXX

X represents a hexadecimal digit. If the character uses from 17 to 32 bits, TotalView uses the following 
representation:

\UXXXXXXXX

Figure 142 – Displaying wchar_t Data



Examining and Editing Data and Program Elements / Changing a Variable’s Data Type  265

NOTE >> Platforms and compilers differ in the way they represent wchar_t. In consequence, TotalView 
allows you to see this information in platform-specific ways. For example, you can cast a string 
to $wstring_s16 or $wstring_s32. In addition, many compilers have problems either using 
wide characters or handing off information about wide characters so they can be interpreted 
by any debugger (not just TotalView). For information on supported compilers, see the 
TotalView Release Notes at http://www.roguewave.com/help-support/documentation/
totalview.

Viewing Areas of Memory ($void Data Type)

TotalView uses the $void data type for data of an unknown type, such as the data contained in registers or in an 
arbitrary block of memory. The $void type is similar to the int type in the C Language.

If you dive on registers or display an area of memory, TotalView lists the contents as a $void data type. If you dis-
play an array of $void variables, the index for each object in the array is the address, not an integer. This address 
can be useful when you want to display large areas of memory.

If you want, you can change a $void to another type. Similarly, you can change any type to a $void to see the vari-
able in decimal and hexadecimal formats.

Viewing Instructions ($code Data Type)

TotalView uses the $code data type to display the contents of a location as machine instructions. To look at disas-
sembled code stored at a location, dive on the location and change the type to $code. To specify a block of 
locations, use $code[n], where n is the number of locations being displayed.

Viewing Opaque Data

An opaque type is a data type that could be hidden, not fully specified, or defined in another part of your pro-
gram. For example, the following C declaration defines the data type for p to be a pointer to struct foo, and foo 
is not yet defined:
struct foo;
struct foo *p;

When TotalView encounters a variable with an opaque type, it searches for a struct, class, union, or enum defi-
nition with the same name as the opaque type. If TotalView doesn’t find a definition, it displays the value of the 
variable using an opaque type name; for example:

RELATED TOPICS
Viewing assembler code “Viewing the Assembler Version of Your Code” on page 161

http://www.roguewave.com/help-support/documentation/totalview
http://www.roguewave.com/help-support/documentation/totalview


Examining and Editing Data and Program Elements / Changing a Variable’s Data Type  266

(Opaque foo) 

Some compilers do not store sufficient information for TotalView to locate the type. This could be the reason why 
TotalView uses the opaque type.

You can tell TotalView to use the correct data type by having it read the source file. For example, if TotalView is 
showing you (Opaque foo) and you know that struct foo is defined in source file foo.c, use the File > Open 
Source Command. While this command’s primary purpose is to display the file within the Process Window, it also 
causes TotalView to read the file’s debugging information. As a side-effect, struct foo should now be defined. 
Because TotalView now knows its definition, it can resolve the opaque type.

Type-Casting Examples
This section contains three type-casting examples:

• Displaying Declared Arrays

• Displaying Allocated Arrays

• Displaying the argv Array

Displaying Declared Arrays

TotalView displays arrays the same way it displays local and global variables. In the Stack Frame or Source Pane, 
dive on the declared array. A Variable Window displays the elements of the array.

Displaying Allocated Arrays

The C Language uses pointers for dynamically allocated arrays; for example:
int *p = malloc(sizeof(int) * 20);

Since TotalView doesn’t know that p actually points to an array of integers, you need to do several things to dis-
play the array:

1. Dive on the variable p of type int*.

2. Change its type to int[20]*.

3. Dive on the value of the pointer to display the array of 20 integers.

Displaying the argv Array

Typically, argv is the second argument passed to main(), and it is either a char **argv or char *argv[ ]. Suppose 
argv points to an array of three pointers to character strings. Here is how you can edit its type to display an array 
of three pointers:

CLI: dprint array-name



Examining and Editing Data and Program Elements / Changing the Address of Variables  267

1. Select the type string for argv.

2. Edit the type string by using the field editor commands. Change it to:

$string*[3]*

3. To display the array, dive on the value field for argv.

Changing the Address of Variables
You can edit the address of a variable in a Variable Window by editing the value shown in the Address field. When 
you edit this address, the Variable Window shows the contents of the new location.

You can also enter an address expression such as 0x10b8 - 0x80 in this area.

CLI: dprint argv

CLI: dprint {($string*[3]*)argv}

Figure 143 – Editing the argv Argument



Examining and Editing Data and Program Elements / Displaying C++ Types  268

Displaying C++ Types

Viewing Classes
TotalView displays C++ classes and accepts class as a keyword. When you debug C++, TotalView also accepts the 
unadorned name of a class, struct, union, or enum in the type field. TotalView displays nested classes that use 
inheritance, showing derivation by indentation.

NOTE >> Some C++ compilers do not write accessibility information. In these cases, TotalView cannot 
display this information.

For example, Figure 144 displays an object of a class c.

Its definition is as follows:
class b {
   char * b_val;
public:
   b() {b_val = “b value“;} 
};

RELATED TOPICS
STL variable display “Displaying STL Variables” on page 215

Changing the data type of a variable “Changing a Variable’s Data Type” on page 256

A variable’s scope “Scoping and Symbol Names” on page 280

Figure 144 – Displaying C++ Classes That Use Inheritance



Examining and Editing Data and Program Elements / Displaying C++ Types  269

 
class d : virtual public b {
   char * d_val;
public:
   d() {d_val = “d value“;} 
};
 
class e {
   char * e_val;
 public:
   e() {e_val = “e value“;} 
};
 
class c : public d, public e {
   char * c_val;
 public:
   c() {c_val = “c value“;} 
};

TotalView tries to display the correct data when you change the type of a Variable Window while moving up or 
down the derivation hierarchy. Unfortunately, many compilers do not contain the information that TotalView 
needs so you might need to cast your class.

RELATED TOPICS
More on using C++ with TotalView “Using C++” on page 331



Examining and Editing Data and Program Elements / C++View  270

C++View
C++View (CV) is a facility that allows you to format program data in a more useful or meaningful form than the 
concrete representation that you see in TotalView when you inspect data in a running program. To use C++View, 
you must write a function for each type whose format you would like to control. The signature of the function 
must be:

int TV_ttf_display_type ( const T *p )

where T is the type. Your function must use a TotalView-provided API to communicate the formatted representa-
tion of your data to TotalView. 

When TotalView needs to display data, it checks to see if there is a function registered for the type to which the 
data belong. If there is, TotalView calls that function, and uses the results generated. Otherwise, if there is no 
matching function defined, TotalView presents the data in their raw form.

For complete details on using C++View, refer to the C++View chapter in the TotalView for HPC Reference Guide.

C++View is available from the Preferences window. (See “Setting Preferences” on page 128.)



Examining and Editing Data and Program Elements / Displaying Fortran Types  271

Displaying Fortran Types
TotalView lets you display FORTRAN 77 and Fortran 90 data types. 

The topics in this section describe the various types and how the debugger handles them:

• “Displaying Fortran Common Blocks” on page 271

• “Displaying Fortran Module Data” on page 273

• “Debugging Fortran 90 Modules” on page 274

• “Viewing Fortran 90 User-Defined Types” on page 275

• “Viewing Fortran 90 Deferred Shape Array Types” on page 276

• “Viewing Fortran 90 Pointer Types” on page 276

• “Displaying Fortran Parameters” on page 277

Displaying Fortran Common Blocks 
For each common block defined in the scope of a subroutine or function, TotalView creates an entry in that func-
tion’s common block list. The Stack Frame Pane displays the name of each common block for a function. The 
names of common block members have function scope, not global scope.

CLI: dprint variable-name



Examining and Editing Data and Program Elements / Displaying Fortran Types  272

If you dive on a common block name in the Stack Frame Pane, the debugger displays the entire common block in 
a Variable Window, as shown in Figure 145.)

Window 1 in this figure shows a common block list in a Stack Frame Pane. After several dives, Window 2 con-
tains the results of diving on the common block.

If you dive on a common block member name, TotalView searches all common blocks in the function’s scope for a 
matching member name, and displays the member in a Variable Window.

Figure 145 – Diving on a Common Block List in the Stack Frame Pane



Examining and Editing Data and Program Elements / Displaying Fortran Types  273

Displaying Fortran Module Data
TotalView tries to locate all data associated with a Fortran module and display it all at once. For functions and 
subroutines defined in a module, TotalView adds the full module data definition to the list of modules displayed 
in the Stack Frame Pane.

TotalView only displays a module if it contains data. Also, the amount of information that your compiler gives 
TotalView can restrict what is displayed.

Although a function may use a module, TotalView doesn’t always know if the module was used or what the true 
names of the variables in the module are. If this happens, either of the following occurs:

• Module variables appear as local variables of the subroutine.

• A module appears on the list of modules in the Stack Frame Pane that contains (with renaming) 
only the variables used by the subroutine. 

Alternatively, you can view a list of all the known modules by using the Tools > Fortran Modules command. 
Because Fortran modules display in a Variable Window, you can dive on an entry to display the actual module 
data, as shown in Figure 146.

CLI: dprint variable-name



Examining and Editing Data and Program Elements / Displaying Fortran Types  274

NOTE >> If you are using the SUNPro compiler, TotalView can only display module data if you force 
TotalView to read the debug information for a file that contains the module definition or a 
module function. For more information, see “Finding the Source Code for Functions” on 
page 157.

Debugging Fortran 90 Modules
Fortran 90 lets you place functions, subroutines, and variables inside modules. You can then include these mod-
ules elsewhere by using a USE command. When you do this, the names in the module become available in the 
using compilation unit, unless you either exclude them with a USE ONLY statement or rename them. This means 
that you don’t need to explicitly qualify the name of a module function or variable from the Fortran source code. 

When debugging this kind of information, you need to know the location of the function being called. Conse-
quently, TotalView uses the following syntax when it displays a function contained in a module:

modulename`functionname

Figure 146 – Fortran Modules Window



Examining and Editing Data and Program Elements / Displaying Fortran Types  275

You can also use this syntax in the File > Debug New Program and View > Lookup Variable commands.

Fortran 90 also lets you create a contained function that is only visible in the scope of its parent and siblings. 
There can be many contained functions in a program, all using the same name. If the compiler gave TotalView the 
function name for a nested function, TotalView displays it using the following syntax:

parentfunction()`containedfunction

Viewing Fortran 90 User-Defined Types
A Fortran 90 user-defined type is similar to a C structure. TotalView displays a user-defined type as type(name), 
which is the same syntax used in Fortran 90 to create a user-defined type. For example, the following code frag-
ment defines a variable typ2 of type(whopper):
TYPE WHOPPER
   LOGICAL, DIMENSION(ISIZE) :: FLAGS
   DOUBLE PRECISION, DIMENSION(ISIZE) :: DPSA
   DOUBLE PRECISION, DIMENSION(:), POINTER :: DPPA
END TYPE WHOPPER
 
TYPE(WHOPPER), DIMENSION(:), ALLOCATABLE :: TYP2

TotalView displays this type, as shown in Figure 147.

CLI: dprint module_name‘variable_name

Figure 147 – Fortran 90 User-Defined Type



Examining and Editing Data and Program Elements / Displaying Fortran Types  276

Viewing Fortran 90 Deferred Shape Array Types
Fortran 90 lets you define deferred shape arrays and pointers. The actual bounds of a deferred shape array are 
not determined until the array is allocated, the pointer is assigned, or, in the case of an assumed shape argument 
to a subroutine, the subroutine is called. TotalView displays the type of deferred shape arrays as type(:).

When TotalView displays the data for a deferred shape array, it displays the type used in the definition of the vari-
able and the actual type that this instance of the variable has. The actual type is not editable, since you can 
achieve the same effect by editing the definition’s type. The following example shows the type of a deferred 
shape rank 2 array of real data with runtime lower bounds of -1 and 2, and upper bounds of 5 and 10:
       Type: real(:,:)
Actual Type: real(-1:5,2:10)
      Slice: (:,:) 

Viewing Fortran 90 Pointer Types
A Fortran 90 pointer type lets you point to scalar or array types. 

TotalView implicitly handles slicing operations that set up a pointer or assumed shape subroutine argument so 
that indices and values it displays in a Variable Window are the same as in the Fortran code; for example:
integer, dimension(10), target :: ia
integer, dimension(:), pointer :: ip
do i = 1,10
   ia(i) = i
end do
ip => ia(10:1:-2)



Examining and Editing Data and Program Elements / Displaying Fortran Types  277

After diving through the ip pointer, TotalView displays the windows shown in Figure 148:

The address displayed is not that of the array’s base. Since the array’s stride is negative, array elements that fol-
low are at lower absolute addresses. Consequently, the address displayed is that of the array element that has 
the lowest index. This might not be the first displayed element if you used a slice to display the array with 
reversed indices.

Displaying Fortran Parameters
A Fortran PARAMETER defines a named constant. If your compiler generates debug information for parameters, 
they are displayed in the same way as any other variable. However, some compilers do not generate information 
that TotalView can use to determine the value of a PARAMETER. This means that you must make a few changes to 
your program if you want to see this type of information.

If you’re using Fortran 90, you can define variables in a module that you initialize to the value of these PARAMETER 
constants; for example:
INCLUDE ‘PARAMS.INC’
MODULE CONSTS
SAVE
INTEGER PI_C = PI
...
END MODULE CONSTS

Figure 148 – Fortran 90 Pointer Value



Examining and Editing Data and Program Elements / Displaying Thread Objects  278

The PARAMS.INC file contains your parameter definitions. You then use these parameters to initialize variables in 
a module. After you compile and link this module into your program, the values of these parameter variables are 
visible.

If you’re using FORTRAN 77, you can achieve the same results if you make the assignments in a common block 
and then include the block in main(). You can also use a block data subroutine to access this information.

Displaying Thread Objects
On IBM AIX systems, TotalView can display information about mutexes and conditional variables, read/write locks 
and data keys. You can obtain this information by selecting the Tools > Thread Objects command. After selecting 
this command, TotalView displays a window that contains four tabs. Figure 149 shows examples based on AIX.



Examining and Editing Data and Program Elements / Displaying Thread Objects  279

Diving on any line in these windows displays a Variable Window that contains additional information about the 
item. Some notes:

• If you’re displaying data keys, many applications initially set keys to 0 (the NULL pointer value). 
TotalView doesn’t display a key’s information, however, until a thread sets a non-NULL value to the 
key.

• If you select a thread ID in a data key window, you can dive on it using the View > Dive Thread and 
View > Dive Thread in New Window commands to display a Process Window for that thread ID.

The online Help contains information on the contents of the displayed windows. 

Figure 149 – Thread Objects Page on an IBM AIX Computer



Examining and Editing Data and Program Elements / Scoping and Symbol Names  280

Scoping and Symbol Names
TotalView assigns a unique name to every element in your program based on the scope in which the element 
exists. A scope defines the part of a program that knows about a symbol. For example, the scope of a variable that 
is defined at the beginning of a subroutine is all the statements in the subroutine. The variable’s scope does not 
extend outside of this subroutine. A program consists of multiple scopes. Of course, a block contained in the sub-
routine could have its own definition of the same variable. This would hide the definition in the enclosing scope. 

All scopes are defined by your program’s structure. Except for the simplest of programs, scopes are embedded in 
other scopes. The only exception is the outermost scope, which is the one that contains main(), which is not 
embedded. Every element in a program is associated with a scope. 

To see the scope in which a variable is valid, click the More button in the Variable Window until the scope fields 
are visible. The Variable Window now includes additional information about your variable, as is shown in Figure 
150.

The Valid in Scope list indicates the scope in which the variable resides. That is, when this scope is active, the 
variable is defined. The Compiled in Scope list can differ if you modify the variable with an expression. It indi-
cates where variables in this expression have meaning.

Figure 150 – Variable Window: Showing Variable Properties



Examining and Editing Data and Program Elements / Scoping and Symbol Names  281

When you tell the CLI or the GUI to execute a command, TotalView consults the program’s symbol table to dis-
cover which object you are referring to—this process is known as symbol lookup. Symbol lookup is performed 
with respect to a particular context, and each context uniquely identifies the scope to which a symbol name 
refers.

Qualifying Symbol Names
The way you describe a scope is similar to the way you specify a file. The scopes in a program form a tree, with the 
outermost scope (which is your program) as the root. At the next level are executable files and dynamic libraries; 
further down are compilation units (source files), procedures, modules, and other scoping units (for example, 
blocks) supported by the programming language. Qualifying a symbol is equivalent to describing the path to a file 
in UNIX file systems. 

A symbol is fully scoped when you name all levels of its tree. The following example shows how to scope a symbol 
and also indicates parts that are optional:

[##executable-or-lib#][file#][procedure-or-line#]symbol

The pound sign (#) separates elements of the fully qualified name. 

NOTE >> Because of the number of different types of elements that can appear in your program, a 
complete description of what can appear and their possible order is complicated and unread-
able. In contrast, after you see a name in the Stack Frame Pane, it is easy to read a variable’s 
scoped name.

TotalView interprets most programs and components as follows:

• If a qualified symbol begins with ##, the name that follows indicates the name of the executable or 
shared library (just as an absolute file path begins with a directory immediately in the root 
directory). If you omit the executable or library component, the qualified symbol doesn’t begin with 
#.

• The source file’s name can appear after the possibly omitted executable or shared library.

• Because programming languages typically do not let you name blocks, that portion of the qualifier 
is specified using the symbols $b followed by a number that indicates which block. For example, 
the first unnamed block is named $b1, the second is $b2, and so on. 

RELATED TOPICS
Issues with scoping “Scoping Issues” on page 227

Variables in a current block “Displaying Variables in the Current Block” on page 225



Examining and Editing Data and Program Elements / Scoping and Symbol Names  282

 

RELATED TOPICS
Issues with scoping “Scoping Issues” on page 227

The dbreak command dbreak command description 

Breakpoints at locations “Setting Breakpoints at Locations” on page 182

Lookup Function The View > Lookup Function topic in the in-product help

Lookup Variable The View > Lookup Variable topic in the in-product help



Examining Arrays     283      

Chapter 10  

Examining Arrays

This chapter explains how to examine and change array data as you debug your program. Since arrays also 
appear in the Variable Window, you need to be familiar with the information in Chapter 9, “Examining and 
Editing Data and Program Elements,” on page 214. 

The topics in this chapter are:

• “Examining and Analyzing Arrays” on page 284

• “Displaying a Variable in all Processes or Threads” on page 300

• “Visualizing Array Data” on page 302



Examining Arrays / Examining and Analyzing Arrays  284

Examining and Analyzing Arrays
TotalView can quickly display very large arrays in Variable Windows. An array can be the elements that you define 
in your program, or it can be an area of memory that you cast into an array. 

If an array extends beyond the memory section in which it resides, the initial portion of the array is formatted cor-
rectly. If memory isn’t allocated for an array element, TotalView displays Bad Address in the element’s subscript.

Topics in this section are:

• “Displaying Array Slices” on page 284

• “Array Slices and Array Sections” on page 287

• “Viewing Array Data” on page 288

• “Filtering Array Data Overview” on page 290

• “Sorting Array Data” on page 296

• “Obtaining Array Statistics” on page 297

Displaying Array Slices
TotalView lets you display array subsections by editing the Slice field in an array’s Variable Window. (An array sub-
section is called a slice.) The Slice field contains placeholders for all array dimensions. For example, the following 
is a C declaration for a three-dimensional array: 
integer an_array[10][20][5] 

Because this is a three-dimensional array, the initial slice definition is [:][:][:]. This lets you know that the array has 
three dimensions and that TotalView is displaying all array elements.

The following is a deferred shape array definition for a two-dimensional array variable:
integer, dimension (:,:) :: another_array

The TotalView slice definition is (:,:). 

TotalView displays as many colons (:) as there are array dimensions. For example, the slice definition for a one-
dimensional array (a vector) is [:] for C arrays and (:) for Fortran arrays.

Using Slices and Strides

A slice has the following form:

CLI: dprint -slice “\[n:m\]” an_array
dprint -slice “(n:m,p:q)” an_array



Examining Arrays / Examining and Analyzing Arrays  285

lower_bound:upper_bound[:stride]

The stride, which is optional, tells TotalView to skip over elements and not display them. Adding a stride to a slice 
tells the debugger to display every stride element of the array, starting at the lower_bound and continuing through 
the upper_bound, inclusive.

For example, a slice of [0:9:9] used on a ten-element C array tells TotalView to display the first element and last 
element, which is the ninth element beyond the lower bound.

If the stride is negative and the lower bound is greater than the upper bound, TotalView displays a dimension 
with its indices reversed. That is, TotalView treats the slice as if it was defined as follows:

[upperbound : lowerbound : stride]

For example, the following definition tells TotalView to display an array beginning at its last value and moving to 
its first:
[::-1]

This syntax differs from Fortran 90 syntax in that Fortran 90 requires that you explicitly enter the upper and lower 
bounds when you’re reversing the order for displaying array elements.

Because the default value for the stride is 1, you can omit the stride (and the colon that precedes it) from your 
definition. For example, the following two definitions display array elements 0 through 9:
[0:9:1]
[0:9]

If the lower and upper bounds are the same, just use a single number. For example, the following two definitions 
tell TotalView to display array element 9:
[9:9:1]
[9]

NOTE >> The lower_bound, upper_bound, and stride must be constants. They cannot be expressions.

Example 1

A slice declaration of [::2] for a C or C++ array (with a default lower bound of 0) tells TotalView to display elements 
with even indices of the array; that is, 0, 2, 4, and so on. However, if this were defined for a Fortran array (where 
the default lower bound is 1), TotalView displays elements with odd indices of the array; that is, 1, 3, 5, and so on. 

CLI: dprint an_array(n:m:p,q:r:s)



Examining Arrays / Examining and Analyzing Arrays  286

Example 2

Figure 151 displays a stride of (::9,::9). This definition displays the four corners of a ten-element by ten-element 
Fortran array.

Example 3

You can use a stride to invert the order and skip elements. For example, the following slice begins with the upper 
bound of the array and displays every other element until it reaches the lower bound of the array: 
(::-2)

Using (::-2) with a Fortran integer(10) array tells TotalView to display the elements 10, 8, 6, 4, and 2.

Example 4

You can simultaneously invert the array’s order and limit its extent to display a small section of a large array. The 
following figure shows how to specify a (2:3,7::-1) slice with an integer*4(-1:5,2:10) Fortran array.

After you enter this slice value, TotalView only shows elements in rows 2 and 3 of the array, beginning with col-
umn 10 and ending with column 7.

Figure 151 – Stride Displaying the Four Corners of an Array

Figure 152 – Fortran Array with Inverse Order and Limited Extent



Examining Arrays / Examining and Analyzing Arrays  287

Using Slices in the Lookup Variable Command

When you use the View > Lookup Variable command to display a Variable Window, you can include a slice 
expression as part of the variable name. Specifically, if you type an array name followed by a set of slice descrip-
tions in the View > Lookup Variable command dialog box, TotalView initializes the Slice field in the Variable 
Window to this slice description. 

If you add subscripts to an array name in the View > Lookup Variable dialog box, TotalView will look up just that 
array element.

You can, of course, type an expression into the View > Lookup Variable dialog box; for example, you could type 
small_array(i-1,j-1). 

Array Slices and Array Sections
An array slice allows you to see a part of an array. The slice allows you to remove parts of the array you do not 
want to see. For example, if you have a 10,000 element array, you could tell TotalView that it should only display 
100 of these elements. Fortran has introduced the concept of an array section. When you create an array section, 
you are creating a new array that is a subset of the old array. Because it is a new array, its first array index is 1. 

In Figure 153, the top left Variable Window displays an eleven-element array slice. The bottom right Variable Win-
dow displays an eleven-element array.

CLI: dprint small_array(5,5)



Examining Arrays / Examining and Analyzing Arrays  288

While the data in both is identical, notice that the array numbering is different. In addition, the array slice shows 
an address for the array. The section, however, only exists within TotalView. Consequently, there is no address 
associated with it.

Viewing Array Data
TotalView provides another way to look at the data in a multi-dimensional array. The Variable Window’s Tools > 
Array Viewer command opens a window that presents a slice of array data in a table format, Figure 154. You can 
think of this as viewing a “plane” of two-dimensional data in your array.

Figure 153 – An Array Slice and an Array Section



Examining Arrays / Examining and Analyzing Arrays  289

When the Array Viewer opens, the initial slice of displayed data depends on the values you entered in the Variable 
Window. You can change the displayed data by modifying the Expression, Type, or slice controls in the Array 
Viewer and then pressing the Update View button.

Expression Field

The Expression field contains an array expression based on the value you entered in the Variable Window. You 
can control the display by changing the value of this field; for example, you can cast the array to another array 
expression.

Type Field

The Type field also reflects the data you initially entered in the Variable Window. You can modify the type to cast 
the array to a different array type.

Figure 154 – Array Viewer



Examining Arrays / Examining and Analyzing Arrays  290

Slice Definition

Initially, TotalView selects the array slice by placing the appropriate array dimension as the row and the column, 
setting the indices for the lower and upper bounds of the dimensions with a stride of one. Any additional dimen-
sions are held at 0. This is the slice or plane of data that is displayed in the table.

You have full control over all settings, including the ability to change which dimensions appear as rows and col-
umns, as well as their indices and strides. As you change the row and column dimensions, the controls for the 
other dimensions are enabled/disabled accordingly. You can change the indices of the other dimensions to fur-
ther refine the slice of data. The section “Using Slices and Strides” on page 284 provides more information on 
slicing arrays.

Update View Button

When you have finished making changes to the expression, type, and/or slice settings, press the Update View 
button to update the data in the table display.

Data Format Selection Box

The selection box at the top left corner of the data table allows you to select the format for displaying the data. 
The table automatically refreshes in the selected format.

The Slice field at the top right corner of the data table reflects the displayed slice of data.

Filtering Array Data Overview
You can restrict what TotalView displays in a Variable Window by adding a filter to the window. You can filter 
arrays of type character, integer, or floating point. Your filtering options are:

• Arithmetic comparison to a constant value

• Equal or not equal comparison to IEEE NaNs, Infs, and Denorms

• Within a range of values, inclusive or exclusive

• General expressions 

When an element of an array matches the filter expression, TotalView includes the element in the Variable Win-
dow display. 

The following topics describe filtering options:

• “Filtering Array Data” on page 291

• “Filtering by Comparison” on page 291

• “Filtering for IEEE Values” on page 292



Examining Arrays / Examining and Analyzing Arrays  291

• “Filtering a Range of Values” on page 294

• “Creating Array Filter Expressions” on page 295

• “Using Filter Comparisons” on page 295

Filtering Array Data

The procedure for filtering an array is simple: select the Filter field, enter the array filter expression, and then 
press Enter.

TotalView updates the Variable Window to exclude elements that do not match the filter expression. TotalView 
only displays an element if its value matches the filter expression and the slice operation.

If necessary, TotalView converts the array element before evaluating the filter expression. The following conver-
sion rules apply:

• If the filter operand or array element type is floating point, TotalView converts the operand to a 
double-precision floating-point value. TotalView truncates extended-precision values to double 
precision. Converting integer or unsigned integer values to double-precision values might result in 
a loss of precision. TotalView converts unsigned integer values to nonnegative double-precision 
values.

• If the filter operand or the array element is an unsigned integer, TotalView converts the operand to 
an unsigned 64-bit integer.

• If both the filter operand and array element are of type integer, TotalView converts the values to a 
64-bit integer.

TotalView conversion operations modify a copy of the array’s elements—conversions never alter the actual array 
elements.

To stop filtering an array, delete the contents of the Filter field in the Variable Window and press Enter. TotalView 
then updates the Variable Window so that it includes all elements.

Filtering by Comparison

The simplest filters are ones whose formats are as follows:

operator value

where operator is either a C/C++ or Fortran-style comparison operator, and value is a signed or unsigned integer 
constant or a floating-point number. For example, the filter for displaying all values greater than 100 is:
> 100 

The following table lists the comparison operators:



Examining Arrays / Examining and Analyzing Arrays  292

Figure 155 shows an array whose filter is < 0. This tells TotalView to display only array elements whose value is 
less than 0 (zero).

If the value you are using in the comparison is an integer constant, TotalView performs a signed comparison. If 
you add the letter u or U to the constant, TotalView performs an unsigned comparison.

Filtering for IEEE Values

You can filter IEEE NaN, Infinity, or denormalized floating-point values by specifying a filter in the following form:

operator ieee-tag

The only comparison operators you can use are equal and not equal. 

The ieee-tag represents an encoding of IEEE floating-point values, as the following table describes: 
 

Comparison C/C++ Operator Fortran Operator

Equal == .eq.

Not equal != .ne.

Less than < .lt.

Less than or equal <= .le.

Greater than > .gt.

Greater than or equal >= .ge.

Figure 155 – Array Data Filtering by Comparison

IEEE Tag Value Meaning

$nan NaN (Not a number), either quiet or signaling

$nanq Quiet NaN



Examining Arrays / Examining and Analyzing Arrays  293

Figure 156 shows an example of filtering an array for IEEE values. The bottom window in this figure shows how 
TotalView displays the unfiltered array. Notice the NaNQ, and NaNS, INF, and -INF values. The other two windows 
show filtered displays: the top window shows only infinite values; the second window only shows the values of 
denormalized numbers.

$nans Signaling NaN

$inf Infinity, either positive or negative

$pinf Positive Infinity

$ninf Negative Infinity

$denorm Denormalized number, either positive or negative

$pdenorm Positive denormalized number

$ndenorm Negative denormalized number

Figure 156 – Array Data Filtering for IEEE Values

IEEE Tag Value Meaning



Examining Arrays / Examining and Analyzing Arrays  294

If you are writing an expression, you can use the following Boolean functions to check for a particular type of 
value:
 

Filtering a Range of Values

You can also filter array values by specifying a range, as follows: 

[>] low-value : [<] high-value

where low-value specifies the lowest value to include, and high-value specifies the highest value to include, sepa-
rated by a colon. The high and low values are inclusive unless you use less-than (<) and greater-than (>) symbols. 
If you specify a > before low-value, the low value is exclusive. Similarly, a < before high-value makes it exclusive.

The values of low-value and high-value must be constants of type integer, unsigned integer, or floating point. The 
data type of low-value must be the same as the type of high-value, and low-value must be less than high-value. If low-

value and high-value are integer constants, you can append the letter u or U to the value to force an unsigned 
comparison. The following figure shows a filter that tells TotalView to only display values greater than 63, but less 
than 512. (See Figure 157.)

IEEE Intrinsic Meaning

$is_denorm(value) Is a denormalized number, either positive or negative

$is_finite(value) Is finite

$is_inf(value) Is Infinity, either positive or negative

$is_nan(value) Is a NaN (Not a number), either quiet or signaling

$is_ndenorm(value) Is a negative denormalized number

$is_ninf(value) Is negative Infinity

$is_nnorm(value) Is a negative normalized number

$is_norm(value) Is a normalized number, either positive or negative

$is_nzero(value) Is negative zero

$is_pdenorm(value) Is a positive denormalized number

$is_pinf(value) Is positive Infinity

$is_pnorm(value) Is a positive normalized number

$is_pzero(value) Is positive zero

$is_qnan(value) Is a quiet NaN

$is_snan(value) Is a signaling NaN

$is_zero(value) Is zero, either positive or negative



Examining Arrays / Examining and Analyzing Arrays  295

Creating Array Filter Expressions

The filtering capabilities described in the previous sections are those that you use most often. In some circum-
stances, you may need to create a more general expression. When you create a filter expression, you’re creating a 
Fortran or C Boolean expression that TotalView evaluates for every element in the array or the array slice. For 
example, the following expression displays all array elements whose contents are greater than 0 and less than 
50, or greater than 100 and less than 150:
($value > 0 && $value < 50) ||
          ($value > 100 && $value < 150)

Here’s the Fortran equivalent:
($value .gt. 0 && $value .lt. 50) .or.
          ($value .gt. 100 .and. $value .lt.150)

The $value variable is a special TotalView variable that represents the current array element. You can use this 
value when creating expressions.

Notice how the and and or operators are used in these expressions. The way in which TotalView computes the 
results of an expression is identical to the way it computes values at an eval point. For more information, see 
“Defining Eval Points and Conditional Breakpoints” on page 197.

Using Filter Comparisons

TotalView provides several different ways to filter array information. For example, the following two filters display 
the same array items:
> 100
$value > 100

The following filters display the same array items:
>0:<100

Figure 157 – Array Data Filtering by Range of Values



Examining Arrays / Examining and Analyzing Arrays  296

$value > 0 && $value < 100

The only difference is that the first method is easier to type than the second, so you’re more likely to use the sec-
ond method when you’re creating more complicated expressions.

Sorting Array Data
TotalView lets you sort the displayed array data into ascending or descending order. (It does not sort the actual 
data.) To sort (or remove the sort), click the Value label.

• The first time you click, TotalView sorts the array’s values into ascending order.

• The next time you click on the header, TotalView reverses the order, sorting the array’s values into 
descending order.

• If you click again on the header, TotalView returns the array to its unsorted order.

Here is an example that sorts an array into descending order:

When you sort an array’s values, you are just rearranging the information that’s displayed in the Variable Window. 
Sorting does not change the order in which values are stored in memory. If you alter what TotalView is displaying 
by using a filter or a slice, TotalView just sorts the values that could be displayed; it doesn’t sort all of the array. 

If you are displaying the array created by a Show across command—see “Displaying a Variable in all Processes 
or Threads” on page 300 for more information—you can sort your information by process or thread.

Figure 158 – Sorted Variable Window



Examining Arrays / Examining and Analyzing Arrays  297

Obtaining Array Statistics
The Tools > Statistics command displays a window that contains information about your array. Figure 159 
shows an example.

If you have added a filter or a slice, these statistics describe only the information currently being displayed; they 
do not describe the entire unfiltered array. For example, if 90% of an array’s values are less than 0 and you filter 
the array to show only values greater than 0, the median value is positive even though the array’s real median 
value is less than 0.

NOTE >> Array statistics are available through the CLI, as switches to the dprint command. See the 
dprint description in the Reference Guide for details.

TotalView displays the following statistics:

• Checksum 

Figure 159 – Array Statistics Window



Examining Arrays / Examining and Analyzing Arrays  298

A checksum value for the array elements.

• Count 

The total number of displayed array values. If you’re displaying a floating-point array, this number doesn’t 
include NaN or Infinity values. 

• Denormalized Count 

A count of the number of denormalized values found in a floating-point array. This includes both negative 
and positive denormalized values as defined in the IEEE floating-point standard. Unlike other floating-point 
statistics, these elements participate in the statistical calculations.

• Infinity Count 

A count of the number of infinity values found in a floating-point array. This includes both negative and pos-
itive infinity as defined in the IEEE floating-point standard. These elements do not participate in statistical 
calculations. 

• Lower Adjacent 

This value provides an estimate of the lower limit of the distribution. Values below this limit are called outli-
ers. The lower adjacent value is the first quartile value minus the value of 1.5 times the difference between 
the first and third quartiles.

• Maximum 

The largest array value.

• Mean 

The average value of array elements.

• Median 

The middle value. Half of the array’s values are less than the median, and half are greater than the median.

• Minimum 

The smallest array value.

• NaN Count 

A count of the number of NaN (not a number) values found in a floating-point array. This includes both sig-
naling and quiet NaNs as defined in the IEEE floating-point standard. These elements do not participate in 
statistical calculations.

• Quartiles, First and Third 

Either the 25th or 75th percentile values. The first quartile value means that 25% of the array’s values are 
less than this value and 75% are greater than this value. In contrast, the third quartile value means that 75% 
of the array’s values are less than this value and 25% are greater.

• Standard Deviation 



Examining Arrays / Examining and Analyzing Arrays  299

The standard deviation for the array’s values.

• Sum 

The sum of all the displayed array’s values.

• Upper Adjacent 

This value provides an estimate of the upper limit of the distribution. Values above this limit are called out-
liers. The upper adjacent value is the third quartile value plus the value of 1.5 times the difference between 
the first and third quartiles.

• Zero Count 

The number of elements whose value is 0.



Examining Arrays / Displaying a Variable in all Processes or Threads  300

Displaying a Variable in all Processes or 
Threads
When you’re debugging a parallel program running many instances of the same executable, you usually need to 
view or update the value of a variable in all of the processes or threads at once.

Before displaying a variable’s value in all threads or processes, you must display an instance of the variable in a 
Variable Window. In this window, use one of the following commands:

• View > Show Across > Process, displays the value of the variable in all processes.

• View > Show Across > Thread, displays the value of a variable in all threads within a single 
process.

• View > Show Across > None, returns the window to what it was before you used other Show 
Across commands.

NOTE >> You cannot simultaneously Show Across processes and threads in the same Variable Window.

After selecting a command, the Variable Window provides an array-like display of the value of the variable in each 
process or thread. Figure 160 shows a simple, scalar variable in each of the processes in an OpenMP program. 

When looking for a matching stack frame, TotalView matches frames starting from the top frame, and considers 
calls from different memory or stack locations to be different calls. For example, the following definition of 
recurse() contains two additional calls to recurse(). Each of these calls generates a nonmatching call frame.
void recurse(int i) {
    if (i <= 0)
       return;

Figure 160 – Viewing Across Threads



Examining Arrays / Displaying a Variable in all Processes or Threads  301

    if (i & 1)
       recurse(i - 1);
    else
       recurse(i - 1);
}

If the variables are at different addresses in the different processes or threads, the field to the left of the Address 
field displays Multiple, and the unique addresses appear with each data item.

TotalView also lets you Show Across arrays and structures. When you Show Across an array, TotalView displays 
each element in the array across all processes. You can use a slice to select elements to be displayed in an 
“across” display. The following figure shows the result of applying a Show Across > Processes command to an 
array of structures.

Diving on a “Show Across” Pointer
You can dive through pointers in a Show Across display. This dive applies to the associated pointer in each pro-
cess or thread.

Editing a “Show Across” Variable
If you edit a value in a “Show Across” display, TotalView asks if it should apply this change to all processes or 
threads or only the one in which you made a change. This is an easy way to update a variable in all processes.

Figure 161 – Viewing across an Array of Structures

RELATED TOPICS
Viewing a structure’s elements as an array “Displaying an Array of Structure’s Elements” on page 242



Examining Arrays / Visualizing Array Data  302

Visualizing Array Data
The Visualizer lets you create graphical images of array data. This presentation lets you see your data in one 
glance and can help you quickly find problems with your data while you are debugging your programs.

You can execute the Visualizer from within TotalView, or you can run it from the command line to visualize data 
dumped to a file in a previous TotalView session.

For information about running the Visualizer, see Chapter 11, “Visualizing Programs and Data,” on page 303. 

Visualizing a “Show Across” Variable Window
You can export data created by using a Show Across command to the Visualizer by using the Tools > Visualize 
command. When visualizing this kind of data, the process (or thread) index is the first axis of the visualization. 
This means that you must use one less data dimension than you normally would. If you do not want the process/
thread axis to be significant, you can use a normal Variable Window, since all of the data must be in one process.



Visualizing Programs and Data     303      

Chapter 11  

Visualizing Programs and 
Data

TotalView provides a set of tools to visualize your program activity, including its arrays, and MPI message data. 
This chapter describes:

• “Displaying Call Trees and Call Graphs” on page 304

• “Parallel Backtrace View” on page 307

• “Array Visualizer” on page 309



Visualizing Programs and Data / Displaying Call Trees and Call Graphs  304

Displaying Call Trees and Call Graphs
Debugging is an art, not a science. Debugging often requires the intuition to guess what a program is doing and 
where to look for problems. Just locating a problem can be 90% or more of the effort. A call tree or call graph can 
help you understand what your program is doing so that you can understand how your program is executing. 

To display a call tree or call graph, select Tools > Call Graph from the Process Window. A sample call tree is 
shown in Figure 162.

The call tree or call graph shows all currently active routines linked by arrows indicating if one routine is called by 
another. The display is dynamic in that it shows activity at the moment it is created. The Update button recreates 
the display.

You can toggle between displaying a call tree or call graph for specific processes and threads using the controls at 
the top of this window. By default, TotalView displays a tree representing the backtrace of all the selected pro-
cesses and threads. To change to a Graph Style display, deselect the Tree button.

For multi-process or multi-threaded programs, a compressed process/thread list (ptlist) next to the arrows indi-
cates which threads have a routine on their call stack. 

Figure 162 – Tools > Call Graph Dialog Box



Visualizing Programs and Data / Displaying Call Trees and Call Graphs  305

Similar to the CLI's dwhere -group_by option, the dropdown in the call tree window enables you to aggregate the 
backtraces according to different properties, as follows:

• function: Equivalence based on the name of the function containing the PC for the frame. This is 
the default.

• function+line: Equivalence based on the name of the function and the file and line number 
containing the PC for the frame.

• function+offset: Equivalence based on the name of the function containing the PC for the frame 
and offset from the beginning of the function to the PC for the frame.

For example, Figure 163 displays the call tree grouped by function and line:

Figure 163 – Tools > Call Graph grouped by function and line



Visualizing Programs and Data / Displaying Call Trees and Call Graphs  306

Diving on a routine within the call tree or call graph creates a group called call_graph, containing all the threads 
that have the routine you dived on in its call stack. If you look at the Process Window’s Processes tab, you’ll see 
that the call_graph set is selected in the scope pulldown. 

In addition, the context of the Process Window changes to the first thread in the set.

As you begin to understand your program, you will see that this diagram reflects your program’s rhythm and 
dynamic. As you examine and understand this structure, you will sometimes see things that don’t look right — 
these are often places where you should look for problems.

Diving on a routine that doesn’t look right can isolate the processes into their own group so that you can find out 
what is occurring there. Be aware that diving on a routine overwrites the group, so if you want to preserve the 
group, use the Groups > Custom Groups command to make a copy.

A call tree or call graph can also reveal bottlenecks. For example, if one routine is used by many other routines 
and controls a shared resource, this thread might be negatively affecting performance.



Visualizing Programs and Data / Parallel Backtrace View  307

Parallel Backtrace View
The Parallel Backtrace View displays in a single window the state of every process and thread in a parallel job, 
including the host, status, process ID, rank, and location. In this way, you can view thousands of processes at 
once, helping identify stray processes.

Access the Parallel Backtrace View from the Tools menu.

The Parallel Backtrace View shows the position of a program’s processes and threads at the same time, displayed 
as a branching tree with the number and location of each process or thread at each point, as follows:

• Processes: the number of processes/threads at a particular location, shown as a branching tree. 
Expanding the branch shows the next level of the call hierarchy, eventually down to the line of 
source code. At each level the number of processes in the first column may change.

• Location: the location of the process/thread with line number if applicable.

• PC: the program counter of the process/thread.

• Host: the node on which the process/thread is executing.

• Rank: the thread rank of a parallel program. N/A indicates no rank.

• ID: a compressed ptlist composed of a process and thread count, followed by square-bracket-
enclosed list of process and thread ranges separated by dot (.). See ptlist in the Reference Guide for 
more information.

• Status: process status.

Figure 164 – Parallel Backtrace View



Visualizing Programs and Data / Parallel Backtrace View  308

Diving (with the right mouse button) on each expanded item displays its process window

The progress indicator in the upper right reports the progress of collecting and displaying information.

Using the Show Backtrace toggle in the upper left hides the intervening branches and displays the start routine 
and current execution location of the processes or threads. This removes some of the clutter in the display, as 
shown above.

If a thread/process state changes, the data becomes stale, and an alert is displayed at the bottom of the window, 
Figure 166. 

Use the Update button to refresh the display.

Figure 165 – Parallel Backtrace View without Branches

Figure 166 – Stale Data Message

RELATED TOPICS
The dcalltree command dcalltree in “CLI Commands” in the TotalView for HPC Reference Guide



Visualizing Programs and Data / Array Visualizer  309

Array Visualizer
The TotalView Visualizer creates graphic images of your program’s array data. Topics in this section are:

• “Command Summary” on page 309

• “How the Visualizer Works” on page 310

• “Viewing Data Types in the Visualizer” on page 311

• “Visualizing Data Manually” on page 312

• “Using the Visualizer” on page 312

• “Using the Graph Window” on page 315

• “Using the Surface Window” on page 317

• “Visualizing Data Programmatically” on page 322

• “Launching the Visualizer from the Command Line” on page 323

• “Configuring TotalView to Launch the Visualizer” on page 323

NOTE >> The Visualizer is available on all platforms other than Linux Alpha. If you are using a release 
older than 7.0.1, see the documentation for that release.

Command Summary
This section summarizes Visualizer commands.

Action Click or Press

Camera mode Actor mode

Rotate camera around focal 
point (surface only)

Rotate actor around focal point 
(surface only)

Left mouse button

Zoom Scale Right mouse button

Pan Translate Middle mouse button or
Shift-left mouse button

Other Functions

Pick (show value) p

Camera mode: mouse events affect the camera position and focal 
point. (The axis moves and you don’t.)

c



Visualizing Programs and Data / Array Visualizer  310

How the Visualizer Works 
The Visualizer is a stand-alone program to which TotalView sends information. Because it is separate, you can use 
it in multiple ways:

• You can see your program’s data while debugging in TotalView.

• You can save the data that would be sent to the Visualizer, and view it later by invoking the 
Visualizer from the command line.

• You can use a third party tool to read the datastream sent by TotalView, rather than using the 
Visualizer. 

Actor mode: mouse events affect the actor that is under the 
mouse pointer. (You move and the axis doesn’t.)

a

Joystick mode: motion occurs continuously while a mouse button 
is pressed

j

Trackball mode: motion occurs only when the mouse button is 
pressed and the mouse pointer moves.

t

Wireframe view w

Surface view s

Reset r

Initialize I

Exit or Quit Ctrl-Q

Figure 167 – TotalView Visualizer Relationships

Action Click or Press

Launch Third
Party Visualizer

Launch Visualizer
from Command Line

TotalView
Visualizer

Third Party
Visualizer

Launch Visualizer
from TotalView

Save Data
to File

Visualizer
Data File

TotalView 



Visualizing Programs and Data / Array Visualizer  311

NOTE >> For more information on adapting a third-party visualizer so that it can be used with 
TotalView, see “Adapting a Third Party Visualizer” on page 325.

Viewing Data Types in the Visualizer
The data selected for visualization is called a dataset. TotalView treats stack variables at different recursion levels 
or call paths as different datasets.

TotalView can visualize one- and two-dimensional arrays of integer or floating-point data. If an array has more 
than two dimensions, you can visualize part of it using an array slice that creates a subarray with fewer dimen-
sions. Figure 168 shows a three-dimensional variable sliced so that one of the dimensions is invariant.

Viewing Data

Different datasets can require different views to display their data. For example, a graph is more suitable for dis-
playing one- or two-dimensional datasets if one of the dimensions has a small extent. However, a surface view is 
better for displaying a two-dimensional dataset. 

When TotalView launches the Visualizer, one of the following actions occurs: 

• If the Visualizer is displaying the dataset, it raises the dataset’s window to the top of the desktop. If 
you had minimized the window, the Visualizer restores it.

Figure 168 – A Three-Dimensional Array Sliced into Two Dimensions

RELATED TOPICS
Other ways to examine arrays “Examining Arrays” on page 283



Visualizing Programs and Data / Array Visualizer  312

• If you previously visualized a dataset but you’ve killed its window, the Visualizer creates a new 
window using the most recent visualization method.

• If you haven’t visualized the dataset, the Visualizer chooses an appropriate method. You can 
disable this feature by using the Options > Auto Visualize command in the Visualizer Directory 
Window.

Visualizing Data Manually 
Before you can visualize an array:

• Open a Variable Window the array. 

• Stop program execution when the array’s values reflect what you want to visualize.

You can restrict the visualized data by editing the Slice field. (See “Displaying Array Slices” on page 284.) Limiting 
the amount of data increases the speed of the Visualizer. 

After selecting the Variable Window Tools > Visualize command, the Visualizer creates its window. 

NOTE >> As you step through your program, be aware that the data sent to the Visualizer is not auto-
matically updated; explicitly update the display using Tools > Visualize.

TotalView can visualize variables across threads or processes. (See “Visualizing a “Show Across” Variable Win-
dow” on page 302.) In this case, the Visualizer uses the process or thread index as one dimension, meaning that 
you can visualize only scalar or vector information. If you do not want the process or thread index to be a dimen-
sion, do not use a Show Across command.

Using the Visualizer
The Visualizer uses two types of windows: 

• Dataset Window 

This window contains the datasets that you can visualize. Use this window to set global options and to create 
views of your datasets. Commands in this window provide different views of the same data by allowing you 
to open more than one View Window.

• View Window 

These windows actually display your data. The commands in a View Window set viewing options and change 
the way the Visualizer displays your data. 



Visualizing Programs and Data / Array Visualizer  313

In Figure 169, the top window is a Dataset Window. The two remaining windows show a surface and a graph view. 

Using Dataset Window Commands

The Dataset Window lists the datasets you can display. Double-click on a dataset to display it. 

The View menu supports either Graph or Surface visualization. When TotalView sends a new dataset to the Visu-
alizer, the Visualizer updates its dataset list. To delete a dataset from the list, click on it, display the File menu, and 
then select Delete. (It’s usually easier to just close the Visualizer.)

The following commands are in the Dataset Window menu bar:

File > Delete Deletes the currently selected dataset. It removes the dataset from the list and destroys the 
View Window that displays it.

File > Exit Closes all windows and exits the Visualizer.

View > Graph Creates a new Graph Window; see “Using the Graph Window” on page 315.

View > Surface Creates a new Surface Window; see “Using the Surface Window” on page 317.

Figure 169 – Sample Visualizer Windows



Visualizing Programs and Data / Array Visualizer  314

Options > Auto Visualize
This item is a toggle; when enabled, the Visualizer automatically visualizes new datasets as they 
are read. Typically, this option is left on. If, however, you have large datasets and want to config-
ure how the Visualizer displays the graph, disable this option.

Using View Window Commands

View Windows display graphic images of your data. Figure 170 shows a graph view and a surface view. The View 
Window’s title is the text that appears in the Dataset Window.

The View Window menu commands are:

File > Close Closes the View Window.

File > Dataset Raises the Dataset Window to the front of the desktop. If you minimized the Dataset Window, 
the Visualizer restores it.

File > Delete Deletes the View Window dataset from the list. This also destroys other View Windows that 
view the dataset.

File > Options Pops up a window of viewing options. 

Window > Duplicate Base Window 
Creates a new View Window with the same visualization method and dataset as the current 
View Window. 

Figure 170 – Graph and Surface Visualizer Windows



Visualizing Programs and Data / Array Visualizer  315

Ways to view data

The drawing area displays the image of your data. You can interact with the drawing area to alter the view of your 
data. For example:

• If the Visualizer is displaying a surface, you can rotate the surface to view it from different angles. 

• You can get the value and indices of the dataset element nearest the cursor by clicking on it and 
typing “P”. A pop-up window displays the information. 

These operations are discussed in “Using the Graph Window” on page 315 and “Using the Surface Win-
dow” on page 317.

Using the Graph Window 
The Graph Window displays a two-dimensional graph of one- or two-dimensional datasets. If the dataset is two-
dimensional, the Visualizer displays multiple graphs. When you first create a Graph Window on a two-dimensional 
dataset, the Visualizer uses the dimension with the larger number of elements for the X axis. It then draws a sep-
arate graph for each subarray that has the smaller number of elements. If you don’t like this choice, you can 
transpose the data by selecting a checkbox within the File > Options Dialog Box. 

NOTE >> You probably don’t want to use a graph to visualize two-dimensional datasets with large 
extents in both dimensions as the display can be very cluttered. If you try, the Visualizer 
shows only the first ten.



Visualizing Programs and Data / Array Visualizer  316

You can display graphs with points for each element of the dataset, with lines connecting dataset elements, or 
with both lines and points, as demonstrated in Figure 171.

If the Visualizer is displaying more than one graph, each is a different color. The X axis is annotated with the indi-
ces of the long dimension. The Y axis shows you the data value.

Displaying Graph Views 

The File > Options Dialog Box controls graph display. (A different dialog box appears if the Visualizer is displaying 
a surface view.)

Options:

Lines Displays lines connecting dataset elements.

Points Displays points (markers) for dataset elements.

Transpose Inverts which axis is held constant when generating a graph of a two-dimensional object. For 
other than two dimensions, this option is not available.

Figure 173 shows a sine wave displayed in three different ways:

Figure 171 – Visualizer Graph View Window

Figure 172 – Graph Options Dialog Box



Visualizing Programs and Data / Array Visualizer  317

To see the value of a dataset’s element, place your cursor near a graph marker, and type “P”. The bottom graph in 
Figure 173 shows the value of a data point. 

Using the Surface Window
The Surface Window displays two-dimensional datasets as a surface in two or three dimensions. The dataset’s 
array indices map to the first two dimensions (X and Y axes) of the display. Figure 174 shows a surface view:

Figure 173 – Sine wave Displayed in Three Ways



Visualizing Programs and Data / Array Visualizer  318

Figure 175 shows a three-dimensional surface that maps element values to the height (Z axis).

Displaying Surface Views

The Surface Window File > Options command controls surface display, Figure 176 (A different dialog box con-
trols Graph View.)

Figure 174 – A Surface View

Figure 175 – A Surface View of a Sine Wave



Visualizing Programs and Data / Array Visualizer  319

Options: 

Surface Displays the array’s data as a three-dimensional surface; otherwise, displays the surface as a 
grid. 

XY Reorients the view’s XY axes. The Z axis is perpendicular to the display.

Auto Reduce Derives the displayed surface by averaging neighboring elements in the original dataset, in or-
der to speed visualization by reducing surface resolution. Clear this option to accurately visual-
ize all dataset elements.

This option supports either viewing all your data points — which takes longer to appear in the 
display — or viewing the data average over a number of nearby points. 

Figure 176 – Surface Options Dialog Box



Visualizing Programs and Data / Array Visualizer  320

Figure 177 shows different views of the same data, based on Surface and XY options.

To restore initial state of translation, rotation, and scaling options, select View > Initialize View.

Manipulating Surface Data 

The Surface Window supports various viewing modes. Camera mode is the default, in which the Visualizer 
behaves as a “camera” moving around the object. Actor mode, by contrast, displays the object as if you, the 
viewer, were changing position. The difference between these is subtle. In some circumstances, actions such as 
pan and zoom in camera mode can also add a slight rotation to the object. 

From within TotalView, you can see only one array at a time. However, if you combine multiple datasets and visu-
alize them externally, the differences between camera and actor mode can help differentiate the objects.

Figure 177 – Four Surface Views



Visualizing Programs and Data / Array Visualizer  321

The following table defines all surface view general commands. Command letters can be typed in either upper- or 
lower-case.

The following table defines the actions you can perform using your mouse:

Action Press

Pick (show value): Displays the value of the data point at the 
cursor.

p

Camera mode: Mouse events affect the camera position and 
focal point. (Axes move, and you don’t.)

c 

Actor mode: Mouse events affect the actor under the mouse 
pointer. (You move, not the axes.)

a 

Joystick mode: Motion occurs continuously while you press a 
mouse button.

j

Trackball mode: Motion occurs only when you press the 
mouse button and you move the mouse pointer.

t

Wireframe view: Displays the surface as a mesh. (This is the 
same as not checking the Surface option.)

w

Surface view: Displays the surface as a solid. (This is the same 
as having checked the Surface option.)

s

Reset: Removes the changes you’ve made to the way the Visual-
izer displays an object.

r

Initialize: Restores the object to its initial state before you inter-
acted with the Visualizer. As this is a menubar accelerator, the 
window must have focus.

i

Exit or Quit: Close the Visualizer. Ctrl-Q

Action Click or Press

Camera mode Actor mode

Rotate camera around 
focal point (surface 
only)

Rotate actor around 
focal point (surface 
only)

Left mouse button

Zoom: Zooms in on the 
object.

Scale: the object 
appears to get larger

Right mouse button

Pan: Moves the “cam-
era”. For example, 
moving the camera up 
means the object 
moves down.

Translate: The object 
moves in the direction 
you pull it.

Middle mouse button or
Shift-left mouse button



Visualizing Programs and Data / Array Visualizer  322

Visualizing Data Programmatically
The $visualize function supports data visualization from within eval points and the Tools > Evaluate Window. 
Because you can enter more than one $visualize function within an eval point or Evaluate Window, you can 
simultaneously visualize multiple variables.

If you enter the $visualize function in an eval point, TotalView interprets rather than compiles the expression, 
which can greatly decrease performance. See “Defining Eval Points and Conditional Breakpoints” on page 197 
for information about compiled and interpreted expressions.

Using the $visualize function in an eval point lets you animate the changes that occur in your data, because the 
Visualizer updates the array’s display every time TotalView reaches the eval point. Here is this function’s syntax:

$visualize ( array [, slice_string ])

The array argument names the dataset being visualized. The optional slice_string argument is a quoted string that 
defines a constant slice expression that modifies the array parameter’s dataset. In Fortran, you can use either a 
single (’) or double (") quotation mark. You must use a double quotation mark in C or C++.

The following examples show how you can use this function. Notice that the array’s dimension ordering differs 
between C/C++ and Fortran.

C and C++
$visualize(my_array); 
$visualize (my_array,"[::2][10:15]"); 
$visualize (my_array,"[12][:]"); 

Fortran 
$visualize (my_array) 
$visualize (my_array,’(11:16,::2)’) 
$visualize (my_array,’(:,13)’) 

The first example in each programming language group visualizes the entire array. The second example selects 
every second element in the array’s major dimension; it also clips the minor dimension to all elements in the 
range. The third example reduces the dataset to a single dimension by selecting one subarray.

You may need to cast your data so that TotalView knows what the array’s dimensions are. For example, here is a C 
function that passes a two-dimensional array parameter that does not specify the major dimension’s extent.
void my_procedure (double my_array[][32])
{ /* procedure body */ }

You would need to cast this before TotalView can visualize it. For example:
$visualize (*(double[32][32]*)my_array);

Sometimes, it’s hard to know what to specify. You can quickly refine array and slice arguments, for example, by 
entering the $visualize function into the Tools > Evaluate Dialog Box. When you select the Evaluate button, you 
quickly see the result. You can even use this technique to display several arrays simultaneously.



Visualizing Programs and Data / Array Visualizer  323

Launching the Visualizer from the Command Line
To start the Visualizer from the shell, use the following syntax: 

visualize [ -file filename | -persist ]

where:

-file filename Reads data from filename instead of reading from standard input. For information on creating 
this file, see “Setting the Visualizer Launch Command” on page 325.

-persist Continues to run after encountering an EOF (End-of-File) on standard input. If you don’t use 
this option, the Visualizer exits as soon as it reads all the data.

By default, the Visualizer reads its datasets from standard input and exits when it reads an EOF. When started by 
TotalView, the Visualizer reads its data from a pipe, ensuring that the Visualizer exits when TotalView does. If you 
want the Visualizer to continue to run after it exhausts all input, invoke it by using the -persist option.

If you want to read data from a file, invoke the Visualizer with the -file option:

visualize -file my_data_set_file 

The Visualizer reads all the datasets in the file. This means that the images you see represent the last versions of 
the datasets in the file.

The Visualizer supports the generic X toolkit command-line options. For example, you can start the Visualizer with 
the Directory Window minimized by using the -iconic option. Your system manual page for the X server or the X 
Window System User’s Guide by O’Reilly & Associates lists the generic X command-line options in detail. 

You can also customize the Visualizer by setting X resources in your resource files or on the command line with 
the -xrm resource_setting option. 

Configuring TotalView to Launch the Visualizer 
TotalView launches the Visualizer when you select the Tools > Visualize command from the Variable Window. It 
also launches it when using a $visualize function in an eval point and the Tools > Evaluate Dialog Box.

RELATED TOPICS
Eval points and conditional breakpoints “Defining Eval Points and Conditional Breakpoints” on page 197

Writing expressions in various TotalView-
supported languages

“Using Programming Language Elements” on page 333



Visualizing Programs and Data / Array Visualizer  324

You can disable visualization entirely. This lets you turn off visualization when your program executes code that 
contains eval points, without having to individually disable them all. 

To change the Visualizer launch options interactively, select File > Preferences, and then select the Launch 
Strings Tab.

Options: 

• Customize the command used to start a visualizer by entering the visualizer’s start up command in 
the Command edit box. 

• Change the autolaunching option. If you want to disable visualization, clear the Enable Visualizer 
launch check box. 

• Change the maximum permissible rank. Edit the value in the Maximum array rank field to save 
the data exported from TotalView or display it in a different visualizer. A rank’s value can range from 
1 to 16.

Setting the maximum permissible rank to either 1 or 2 (the default is 2) ensures that the Visualizer can use 
your data—the Visualizer displays only two dimensions of data. This limit doesn’t apply to data saved in files 
or to third-party visualizers that can display more than two dimensions of data. 

• Clicking the Defaults button returns all values to their default values. This reverts options to their 
default values even if you have used X resources to change them. 

If you disable visualization while the Visualizer is running, TotalView closes its connection to the Visualizer. If you 
reenable visualization, TotalView launches a new Visualizer process the next time you visualize something. 

Figure 178 – File > Preferences Launch Strings Page



Visualizing Programs and Data / Array Visualizer  325

Setting the Visualizer Launch Command

You can change the shell command that TotalView uses to launch the Visualizer by editing the Visualizer launch 
command. (In most cases, the only reason you’d do this is if you’re having path problems or you’re running a dif-
ferent visualizer.) You can also change what’s entered here so that you can view this information at another time; 
for example: 
cat > your_file 

Later, you can visualize this information by typing either:
visualize -persist < your_file 
visualize -file your_file

You can preset the Visualizer launch options by setting X resources.

Adapting a Third Party Visualizer
TotalView passes a stream of datasets to the Visualizer encoded in the format described below, thus supporting 
the use of this data with other programs, with these requirements: 

• TotalView and the Visualizer must be running on the same machine architectures; that is, TotalView 
assumes that word lengths, byte order, and floating-point representations are identical. While 
sufficient information in the dataset header exists to detect when this is not the case (with the 
exception of floating-point representation), no method for translating this information is supplied.

• TotalView transmits datasets down the pipe in a simple unidirectional flow. There is no 
handshaking protocol in the interface. This requires the Visualizer to be an eager reader on the 
pipe. If the Visualizer does not read eagerly, the pipe will back up and block TotalView.

Visualizer dataset format

The dataset format is described in the TotalView distribution in a header file named include/visualize.h in the 
TotalView installation directory. Each dataset is encoded with a fixed-length header followed by a stream of array 
elements. The header contains the following fields: 

vh_axis_order Contains one of the constants vis_ao_row_major or vis_ao_column_major.

vh_dims Contains information on each dimension of the dataset. This includes a base, count, and stride. 
Only the count is required to correctly parse the dataset. The base and stride give information 
only on the valid indices in the original data.

Note that all VIS_MAXDIMS of dimension information is included in the header, even if the 
data has fewer dimensions.

RELATED TOPICS
The File > Preferences command  File > Preferences in the in-product Help



Visualizing Programs and Data / Array Visualizer  326

vh_effective_rank
Contains the number of dimensions that have an extent larger than 1.

vh_id Contains the dataset ID. Every dataset in a stream of datasets is numbered with a unique ID so 
that updates to a previous dataset can be distinguished from new datasets.

vh_item_count Contains the total number of expected elements.

vh_item_length Contains the length (in bytes) of a single element of the array.

vh_magic Contains VIS_MAGIC, a symbolic constant to provide a check that this is a dataset header and 
that byte order is compatible.

vh_title Contains a plain text string of length VIS_MAXSTRING that annotates the dataset.

vh_type Contains one of the constants vis_signed_int, vis_unsigned_int, or vis_float.

vh_version Contains VIS_VERSION, a symbolic constant to provide a check that the reader understands 
the protocol.

Types in the dataset are encoded by a combination of the vh_type field and the vh_item_length field. This allows 
the format to handle arbitrary sizes of both signed and unsigned integers, and floating-point numbers.

The vis_float constant corresponds to the default floating-point format (usually, IEEE) of the target machine. The 
Visualizer does not handle values other than the default on machines that support more than one floating-point 
format.

Although a three-byte integer is expressible in the Visualizer’s dataset format, it is unlikely that the Visualizer will 
handle one. The Visualizer handles only data types that correspond to the C data types permitted on the machine 
where the Visualizer is running.

Similarly, the long double type varies significantly depending on the C compiler and target machine. Therefore, 
visualization of the long double type is unlikely to work if you run the Visualizer on a machine different from the 
one where you extracted the data. 

In addition, be aware of these data type differences if you write your own visualizer and plan to run it on a 
machine that is different from the one where you extract the data.

The data following the header is a stream of consecutive data values of the type indicated in the header. Consec-
utive data values in the input stream correspond to adjacent elements in vh_dims[0].

You can verify that your reader’s idea of the size of this type is consistent with TotalView by checking that the 
value of the n_bytes field of the header matches the product of the size of the type and the total number of array 
elements.



Evaluating Expressions     327      

Chapter 12  

Evaluating Expressions

Whether you realize it or not, you’ve been telling TotalView to evaluate expressions and you’ve even been 
entering them. In every programming language, variables are actually expressions—actually they are lvalues—
whose evaluation ends with the interpretation of memory locations into a displayable value. Structure, pointer 
and array variables, particularly arrays where the index is also a variable, are slightly more complicated. 

While debugging, you also need to evaluate expressions that contain function calls and programming lan-
guage elements such as for and while loops.

This chapter discusses what you can do evaluating expressions within TotalView. The topics discussed are:

• “Why is There an Expression System?” on page 328

• “Using Programming Language Elements” on page 333

• “Using the Evaluate Window” on page 337

• “Using Built-in Variables and Statements” on page 344

• “Expression Evaluation with ReplayEngine” on page 348



Evaluating Expressions / Why is There an Expression System?  328

Why is There an Expression System?
Either directly or indirectly, accessing and manipulating data requires an evaluation system. When your program 
(and TotalView, of course) accesses data, it must determine where this data resides. The simplest data lookups 
involve two operations: looking up an address in your program’s symbol table and interpreting the information 
located at this address based on a variable’s datatype. For simple variables such as an integer or a floating point 
number, this is all pretty straightforward. 

Looking up array data is slightly more complicated. For example, if the program wants my_var[9]—this chapter 
will most often use C and C++ notation rather than Fortran—it looks up the array’s starting address, then applies 
an offset to locate the array’s 10th element. In this case, if each array element uses 32 bits, my_var[9] is located 9 
times 32 bits away.

In a similar fashion, your program obtains information about variables stored in structures and arrays of 
structures.

Structures complicate matters slightly. For example ptr->my_var requires three operations: extract the data con-
tained within address of the my_var variable, use this information to access the data at the address being 
pointed to, then display the data according to the variable’s datatype.

Accessing an array element such as my_var[9] where the array index is an integer constant is rare in most pro-
grams. In most cases, your program uses variables or expressions as array indices; for example, my_var[cntr] or 
my_var[cntr+3]. In the later case, TotalView must determine the value of cntr+3 before it can access an array 
element.

Using variables and expressions as array indices are common. However, the array index can be (and often is) an 
integer returned by a function. For example:
my_var[access_func(first_var, second_var)+2] 

In this example, a function with two arguments returns a value. That returned value is incremented by two, and 
the resulting value becomes the array index. Here is an illustration showing TotalView accessing the my_var array 
in the four ways discussed in this section:

Figure 179 – Expression List Window: Accessing Array Elements



Evaluating Expressions / Why is There an Expression System?  329

In Fortran and C, access to data is usually through variables with some sort of simple evaluation or a function. 
Access to variable information can be the same in C++ as it is in these languages. However, accessing private vari-
ables within a class almost always uses a method. For example:
myDataStructureList.get_current_place() 

TotalView built-in expression evaluation system is able to understand your class inheritance structure in addition 
to following C++ rules for method invocation and polymorphism. (This is discussed in “Using C++” on page 331.)

Calling Functions: Problems and Issues
Unfortunately, calling functions in the expression system can cause problems. Some of these problems are:

• What happens if the function has a side effect For example, suppose you have entered 
my_var[cntr] in one row in an Expression List Window, followed by my_var[++cntr] in another. If 
cntr equals 3, you’ll be seeing the values of my_var[3] and my_var[4]. However, since cntr now 
equals 4, the first entry is no longer correct.

• What happens when the function crashes (after all you are trying to debug problems), doesn’t 
return, returns the wrong value, or hits a breakpoint?

• What does calling functions do to your debugging interaction if evaluation takes an excessive 
amount of time?

• What happens if a function creates processes and threads? Or worse, kills them?

In general, there are some protections in the code. For example, if you’re displaying items in an Expression List 
Window, TotalView avoids being in an infinite loop by only evaluating items once. This does mean that the infor-
mation is only accurate at the time at which TotalView made the evaluation.

In most other cases, you’re basically on your own. If there’s a problem, you’ll get an error message. If something 
takes too long, you can press the Halt button. But if a function alters memory values or starts or stops processes 
or threads and you can’t live with it, you’ll need to restart your program. However, if an error occurs while using 
the Evaluate Window, pressing the Stop button pops the stack, leaving your program in the state it was in before 
you used the Evaluate command. However, changes made to heap variables will, of course, not be undone.

Expressions in Eval Points and the Evaluate Window
Expression evaluation is not limited to a Variable Window or an Expression List Window. You can use expressions 
within eval points and in the Tools > Evaluate Window. The expressions you type here also let you use program-
ming language constructs. For example, here’s a trivial example of code that can execute within the Evaluate 
Window:
int i, j, k;
j = k = 10;
for (i=0; i< 20; i++)



Evaluating Expressions / Why is There an Expression System?  330

{
    j = j + access_func(i, k);
}
j;

This code fragment declares a couple of variables, runs them through a for loop, then displays the value of j. In all 
cases, the programming language constructs being interpreted or compiled within TotalView are based on code 
within TotalView. TotalView is not using the compiler you used to create your program or any other compiler or 
interpreter on your system. 

Notice the last statement inFigure 180. TotalView displays the value returned by the last statement. This value is 
displayed. (See “Displaying the Value of the Last Statement” on page 330.)

TotalView assumes that there is always a return value, even if it’s evaluating a loop or the results of a subroutine 
returning a void. The results are, of course, not well-defined. If the value returned is not well-defined, TotalView 
displays a zero in the Result area.

The code within eval points and the Evaluate Window does not run in the same address space as that in which 
your program runs. Because TotalView is a debugger, it knows how to reach into your program’s address space. 
The reverse isn’t true: your program can’t reach into the TotalView address space. This forces some limitations 
upon what you can do. In particular, you can not enter anything that directly or indirectly needs to pass an 
address of a variable defined within the TotalView expression into your program. Similarly, invoking a function that 
expects a pointer to a value and whose value is created within TotalView can’t work. However, you can invoke a 
function whose parameter is an address and you name something within that program’s address space. For 
example, you could say something like adder(an_array) if an_array is contained within your program.

Figure 180 – Displaying the Value of the Last Statement



Evaluating Expressions / Why is There an Expression System?  331

Using C++
The TotalView expression system is able to interpret the way you define your classes and their inheritance hierar-
chy. For example, if you declare a method in a base class and you invoke upon an object instantiated from a 
derived class, TotalView knows how to access the function. It also understands when a function is virtual. For 
example, assume that you have the following declarations:
class Circle : public Shape {
public:
    ...
    virtual double area();
    virtual double area(int);
    double area(int, int);

Figure 181 shows an expression list calling an overloaded function. It also shows a setter (mutator) that changes 
the size of the circle object. A final call to area shows the new value.

Figure 181 – Expression List Window: Showing Overloads



Evaluating Expressions / Why is There an Expression System?  332

If your object is instantiated from a class that is part of an inheritance hierarchy, TotalView shows you the hierar-
chy when you dive on the object.

Figure 182 – Class Casting



Evaluating Expressions / Using Programming Language Elements  333

Using Programming Language Elements

Using C and C++ 
This section contains guidelines for using C and C++ in expressions.

• You can use C-style (/* comment */) and C++-style (// comment) comments; for example:
// This code fragment creates a temporary patch
i = i + 2; /* Add two to i */ 

• You can omit semicolons if the result isn’t ambiguous.

• You can use dollar signs ($) in identifiers. However, we recommend that you do not use dollar signs 
in names created within the expression system.

NOTE >> If your program does not use a templated function within a library, your compiler may not 
include a reference to the function in the symbol table. That is, TotalView does not create tem-
plate instances. In some cases, you might be able to overcome this limitation by preloading 
the library. However, this only works with some compilers. Most compilers only generate STL 
operators if your program uses them.

You can use the following C and C++ data types and declarations:

• You can use all standard data types such as char, short, int, float, and double, modifiers to these 
data types such as long int and unsigned int, and pointers to any primitive type or any named 
type in the target program.

• You can only use simple declarations. Do not define stuct, class, enum or union types or variables. 

You can define a pointer to any of these data types. If an enum is already defined in your program, you can 
use that type when defining a variable.

• The extern and static declarations are not supported.

You can use the following the C and C++ language statements.

• You can use the goto statement to define and branch to symbolic labels. These labels are local to 
the window. You can also refer to a line number in the program. This line number is the number 
displayed in the Source Pane. For example, the following goto statement branches to source line 
number 432 of the target program: 
goto 432; 

• Although you can use function calls, you can’t pass structures.

• You can use type casting.



Evaluating Expressions / Using Programming Language Elements  334

• You can use assignment, break, continue, if/else structures, for, goto, and while statements. 
Creating a goto that branches to another TotalView evaluation is undefined.

Using Fortran 
When writing code fragments in Fortran, you need to follow these guidelines:

• In general, you can use free-form syntax. You can enter more than one statement on a line if you 
separate the statements with semi-colons (;). However, you cannot continue a statement onto 
more than one line. 

• You can use GOTO, GO TO, ENDIF, and END IF statements; Although ELSEIF statements aren’t 
allowed, you can use ELSE IF statements.

• Syntax is free-form. No column rules apply.

• The space character is significant and is sometimes required. (Some Fortran 77 compilers ignore all 
space characters.) For example:

You can use the following data types and declarations in a Fortran expression:

• You can use the INTEGER, REAL, DOUBLE PRECISION, and COMPLEX data types.

• You can’t define or declare variables that have implied or derived data types.

• You can only use simple declarations. You can’t use a COMMON, BLOCK DATA, EQUIVALENCE, 
STRUCTURE, RECORD, UNION, or array declaration.

• You can refer to variables of any type in the target program.

• TotalView assumes that integer (kind=n) is an n-byte integer.

Fortran Statements

You can use the Fortran language statements:

• You can use assignment, CALL (to subroutines, functions, and all intrinsic functions except 
CHARACTER functions in the target program), CONTINUE, DO, GOTO, IF (including block IF, ENDIF, 
ELSE, and ELSE IF), and RETURN (but not alternate return) statements. 

• If you enter a comment in an expression, precede the comment with an exclamation point (!).

Valid Invalid

DO 100 I=1,10 DO100I=1,10 

CALL RINGBELL CALL RING BELL 

X .EQ. 1 X.EQ.1 



Evaluating Expressions / Using Programming Language Elements  335

• You can use array sections within expressions. For more information, see “Array Slices and Array 
Sections” on page 287.

• A GOTO statement can refer to a line number in your program. This line number is the number that 
appears in the Source Pane. For example, the following GOTO statement branches to source line 
number 432: 

GOTO $432; 

You must use a dollar sign ($) before the line number so that TotalView knows that you’re referring to a 
source line number rather than a statement label. 

You cannot branch to a label within your program. You can instead branch to a TotalView line number.

• The following expression operators are not supported: CHARACTER operators and the .EQV., 
.NEQV., and .XOR. logical operators.

• You can’t use subroutine function and entry definitions.

• You can’t use Fortran 90 pointer assignment (the => operator).

• You can’t call Fortran 90 functions that require assumed shape array arguments.

Fortran Intrinsics

TotalView supports some Fortran intrinsics. You can use these supported intrinsics as elements in expressions. 
The classification of these intrinsics into groups is that contained within Chapter 13 of the Fortran 95 Handbook, 
by Jeanne C. Adams, et al., published by the MIT Press. 

TotalView does not support the evaluation of expressions involving complex variables (other than as the argu-
ments for real or aimag). In addition, we do not support function versions. For example, you cannot use dcos 
(the double-precision version of cos).

The supported intrinsics are:

• Bit Computation functions: btest, iand, ibclr, ibset, ieor, ior, and not.

• Conversion, Null and Transfer functions: achar, aimag, char, dble, iachar, ichar, int, and real.

• Inquiry and Numeric Manipulation Functions: bit_size.

• Numeric Computation functions: acos, asin, atan, atan2, ceiling, cos, cosh, exp, floor, log, log10, 
pow, sin, sinh, sqrt, tan, and tanh.

Complex arguments to these functions are not supported. In addition, on MacIntosh and AIX, the log10, ceil-
ing, and floor intrinsics are not supported.

The following are not supported:

• Array functions



Evaluating Expressions / Using Programming Language Elements  336

• Character computation functions.

• Intrinsic subroutines

NOTE >> If you statically link your program, you can only use intrinsics that are linked into your code. In 
addition, if your operating system is Mac OS X, AIX, or Linux/Power, you can only use math 
intrinsics in expressions if you directly linked them into your program. The ** operator uses 
the pow function. Consequently, it too must either be used within your program or directly 
linked. In addition, ceiling and log10 are not supported on these three platforms.



Evaluating Expressions / Using the Evaluate Window  337

Using the Evaluate Window
TotalView lets you open a window to evaluate expressions in the context of a particular process and evaluate 
them in C, Fortran, or assembler. 

NOTE >> Not all platforms let you use assembler constructs. See “Architectures” in the TotalView for HPC 
Reference Guide for details.

You can use the Tools > Evaluate Dialog Box in many different ways. The following are two examples:

• Expressions can contain loops, so you can use a for loop to search an array of structures for an 
element set to a certain value. In this case, you use the loop index at which the value is found as the 
last expression in the expression field.

• Because you can call subroutines, you can test and debug a single routine in your program without 
building a test program to call it.

NOTE >> Although the CLI does not have an evaluate command, the information in the following sec-
tions does apply to the expression argument of the dbreak, dbarrier, dprint, and dwatch 
commands.

To evaluate an expression: Display the Evaluate Dialog Box by selecting the Tools > Evaluate command. 

An Evaluate Dialog Box appears. If your program hasn’t yet been created, you won’t be able to use any of the pro-
gram’s variables or call any of its functions.

1. Select a button for the programming language you’re writing the expression in (if it isn’t already selected).

2. Move to the Expression field and enter a code fragment. For a description of the supported language con-
structs, see “Using Built-in Variables and Statements” on page 344.

Below is a sample expression. The last statement in this example assigns the value of my_var1-3 back to 
my_var1. Because this is the last statement in the code fragment, the value placed in the Result field is the 
same as if you had just typed my_var1-3.



Evaluating Expressions / Using the Evaluate Window  338

3. Click the Evaluate button. 

If TotalView finds an error, it places the cursor on the incorrect line and displays an error message. Other-
wise, it interprets (or on some platforms, compiles and executes) the code, and displays the value of the last 
expression in the Result field. 

While the code is being executed, you can’t modify anything in the dialog box. TotalView might also display a 
message box that tells you that it is waiting for the command to complete, Figure 183.

If you click Cancel, TotalView stops execution.

Since TotalView evaluates code fragments in the context of the target process, it evaluates stack variables accord-
ing to the current program counter. If you declare a variable, its scope is the block that contains the program 
counter unless, for example, you declare it in some other scope or declare it to be a static variable.

If the fragment reaches a breakpoint (or stops for any other reason), TotalView stops evaluating your expression. 
Assignment statements in an expression can affect the target process because they can change a variable’s value.

The controls at the top of the dialog box let you refine the scope at which TotalView evaluates the information you 
enter. For example, you can evaluate a function in more than one process. The following figure shows TotalView 
displaying the value of a variable in multiple processes, and then sending the value as it exists in each process to 
a function that runs on each of these processes.

Figure 183 – Waiting to Complete Message Box



Evaluating Expressions / Using the Evaluate Window  339

See Chapter 21, “Group, Process, and Thread Control,” on page 513 for information on using the P/T set con-
trols at the top of this window.

Writing Assembler Code 
On the RS/6000 IBM AIX operating system, TotalView lets you use assembler code in eval points, conditional 
breakpoints, and in the Tools > Evaluate Dialog Box. However, if you want to use assembler constructs, you must 
enable compiled expressions. See “About Interpreted and Compiled Expressions” on page 202 for instructions.

Figure 184 – Evaluating Information in Multiple Processes



Evaluating Expressions / Using the Evaluate Window  340

To indicate that an expression in the breakpoint or Evaluate Dialog Box is an assembler expression, click the 
Assembler button in the Action Point > Properties Dialog Box.

You write assembler expressions in the target machine’s native assembler language and in a TotalView assembler 
language. However, the operators available to construct expressions in instruction operands, and the set of avail-
able pseudo-operators, are the same on all machines, and are described below.

The TotalView assembler accepts instructions using the same mnemonics recognized by the native assembler, 
and it recognizes the same names for registers that native assemblers recognize. 

Some architectures provide extended mnemonics that do not correspond exactly with machine instructions and 
which represent important, special cases of instructions, or provide for assembling short, commonly used 
sequences of instructions. The TotalView assembler recognizes mnemonics if:

• They assemble to exactly one instruction.

• The relationship between the operands of the extended mnemonics and the fields in the 
assembled instruction code is a simple one-to-one correspondence.

Assembler language labels are indicated as name: and appear at the beginning of a line. You can place a label 
alone on a line. The symbols you can use include labels defined in the assembler expression and all program 
symbols.

The TotalView assembler operators are described in the following table: 

Figure 185 – Using Assembler Expressions

Operators Description

+ Plus

- Minus (also unary)



Evaluating Expressions / Using the Evaluate Window  341

The TotalView assembler pseudo-operations are as follows:

* Multiplication

# Remainder

/ Division

& Bitwise AND

^ Bitwise XOR

! Bitwise OR NOT (also unary minus, bitwise NOT)

| Bitwise OR

(expr) Grouping

<< Left shift

>> Right shift

“text” Text string, 1-4 characters long, is right-justified in a 32-bit word 

hi16 (expr) Low 16 bits of operand expr

hi32 (expr) High 32 bits of operand expr

lo16 (expr) High 16 bits of operand expr

lo32 (expr) Low 32 bits of operand expr

Pseudo Ops Description

$debug [ 0 | 1 ] Internal debugging option.
With no operand, toggle debugging;
0 => turn debugging off
1 => turn debugging on

$hold
$holdprocess 

Hold the process

$holdstopall
$holdprocessstopall 

Hold the process and stop the control group

$holdthread Hold the thread

$holdthreadstop
$holdthreadstopprocess 

Hold the thread and stop the process

$holdthreadstopall Hold the thread and stop the control group

$long_branch expr Branch to location expr using a single instruction in an architecture-
independent way; using registers is not required

Operators Description



Evaluating Expressions / Using the Evaluate Window  342

$ptree Internal debugging option.
Print assembler tree

$stop
$stopprocess 

Stop the process

$stopall Stop the control group

$stopthread Stop the thread

name=expr Same as def name,expr

align expr [, expr ] Align location counter to an operand 1 alignment; use operand 2 (or 0) 
as the fill value for skipped bytes    

ascii string Same as string

asciz string Zero-terminated string

bss name,size-expr[,expr] Define name to represent size-expr bytes of storage in the bss section 
with alignment optional expr; the default alignment depends on the 
size: 

if size-expr >= 8 then 8 else
if size-expr >= 4 then 4 else 
if size-expr >= 2 then 2 else 1

byte expr [, expr ] ... Place expr values into a series of bytes

comm name,expr Define name to represent expr bytes of storage in the bss section; name 
is declared global; alignment is as in bss without an alignment 
argument

data Assemble code into data section (data)

def name,expr Define a symbol with expr as its value

double expr [, expr ] ... Place expr values into a series of doubles

equiv name,name Make operand 1 an abbreviation for operand 2

fill expr, expr, expr Fill storage with operand 1 objects of size operand 2, filled with value 
operand 3

float expr [, expr ] ... Place expr values into a series of floating point numbers

global name Declare name as global

half expr [, expr ] ... Place expr values into a series of 16-bit words

lcomm name,expr[,expr] Identical to bss

lsym name,expr Same as def name,expr but allows redefinition of a previously defined 
name

Pseudo Ops Description



Evaluating Expressions / Using the Evaluate Window  343

org expr [, expr ] Set location counter to operand 1 and set operand 2 (or 0) to fill 
skipped bytes

quad expr [, expr ] ... Place expr values into a series of 64-bit words

string string Place string into storage

text Assemble code into text section (code)

word expr [, expr ] ... Place expr values into a series of 32-bit words

zero expr Fill expr bytes with zeros

Pseudo Ops Description



Evaluating Expressions / Using Built-in Variables and Statements  344

Using Built-in Variables and Statements
TotalView contains a number of built-in variables and statements that can simplify your debugging activities. You 
can use these variables and statements in eval points and in the Tools > Evaluate Dialog Box.

Topics in this section are:

• “Using TotalView Variables” on page 344

• “Using Built-In Statements” on page 345

Using TotalView Variables
TotalView variables that let you access special thread and process values. All variables are 32-bit integers, which is 
an int or a long on most platforms. The following table describes built-in variables:

The built-in variables let you create thread-specific breakpoints from the expression system. For example, the 
$tid variable and the $stop built-in function let you create a thread-specific breakpoint, as the following code 
shows:

RELATED TOPICS
Creating an eval or conditional breakpoint “Defining Eval Points and Conditional Breakpoints” on page 197

How to use watchpoints “Using Watchpoints” on page 206

Name Returns

$clid The cluster ID. (Interpreted expressions only.)

$duid The TotalView-assigned Debugger Unique ID (DUID). (Inter-
preted expressions only.)

$newval The value just assigned to a watched memory location. 
(Watchpoints only.)

$nid The node ID. (Interpreted expressions only.)

$oldval The value that existed in a watched memory location before a 
new value modified it. (Watchpoints only.)

$pid The process ID.

$processduid The DUID (debugger ID) of the process. (Interpreted expres-
sions only.)

$systid The thread ID assigned by the operating system. When this is 
referenced from a process, TotalView throws an error. 

$tid The thread ID assigned by TotalView. When this is referenced 
from a process, TotalView throws an error.



Evaluating Expressions / Using Built-in Variables and Statements  345

if ($tid == 3)
   $stop;

This tells TotalView to stop the process only when the third thread evaluates the expression. 

You can also create complex expressions using these variables; for example:
if ($pid != 34 && $tid > 7)
   printf (“Hello from %d.%d\n”, $pid, $tid);

Using any of the following variables means that the eval point is interpreted instead of compiled: $clid, $duid, 
$nid, $processduid, $systid, $tid, and $visualize. In addition, $pid forces interpretation on AIX.

You can’t assign a value to a built-in variable or obtain its address.

Using Built-In Statements
TotalView statements help you control your interactions in certain circumstances. These statements are available 
in all languages, and are described in the following table. The most commonly used statements are $count, 
$stop, and $visualize.

Statement Use

$count expression

$countprocess expression

Sets a process-level countdown breakpoint. 

When any thread in a process executes this statement for the number of 
times specified by expression, the process stops. The other processes in the 
control group continue to execute.

$countall expression Sets a program-group-level countdown breakpoint.

All processes in the control group stop when any process in the group exe-
cutes this statement for the number of times specified by expression. 



Evaluating Expressions / Using Built-in Variables and Statements  346

$countthread expression Sets a thread-level countdown breakpoint. 

When any thread in a process executes this statement for the number of 
times specified by expression, the thread stops. Other threads in the pro-
cess continue to execute. 

If the target system cannot stop an individual thread, this statement per-
forms the same as $countprocess.

A thread evaluates expression when it executes $count for the first time. This 
expression must evaluate to a positive integer. When TotalView first 
encounters this variable, it determines a value for expression. TotalView 
does not reevaluate until the expression actually stops the thread. This 
means that TotalView ignores changes in the value of expression until it hits 
the breakpoint. After the breakpoint occurs, TotalView reevaluates the 
expression and sets a new value for this statement.

The internal counter is stored in the process and shared by all threads in 
that process.

$hold
$holdprocess

Holds the current process.

If all other processes in the group are already held at this eval point, 
TotalView releases all of them. If other processes in the group are running, 
they continue to run.

$holdstopall
$holdprocessstopall

Like $hold, except that any processes in the group which are running are 
stopped. The other processes in the group are not automatically held by this 
call—they are just stopped.

$holdthread Freezes the current thread, leaving other threads running. 

$holdthreadstop
$holdthreadstopprocess

Like $holdthread, except that it stops the process. The other processes in 
the group are left running.

$holdthreadstopall Like $holdthreadstop, except that it stops the entire group.

$stop
$stopprocess

Sets a process-level breakpoint. The process that executes this statement 
stops; other processes in the control group continue to execute.

$stopall Sets a program-group-level breakpoint. All processes in the control group 
stop when any thread or process in the group executes this statement.

Statement Use



Evaluating Expressions / Using Built-in Variables and Statements  347

$stopthread Sets a thread-level breakpoint. Although the thread that executes this 
statement stops, all other threads in the process continue to execute. If the 
target system cannot stop an individual thread, this statement performs 
the same as to $stopprocess.

$visualize(expression[,slice]) Visualizes the data specified by expression and modified by the optional slice 
value. Expression and slice must be expressed using the code fragment’s lan-
guage. The expression must return a dataset (after modification by slice) that 
can be visualized. slice is a quoted string that contains a slice expression. 
For more information on using $visualize in an expression, see “Using the 
Visualizer” on page 312.

Statement Use



Evaluating Expressions / Expression Evaluation with ReplayEngine  348

Expression Evaluation with ReplayEngine
When you enable ReplayEngine, you still have the ability to evaluate expressions, but the behavior is different. In 
regular, forward debugging, your expression may change the state of your program, for example, by changing the 
value of a variable. But when ReplayEngine is enabled, expression evaluation takes place in a separate, temporary 
space, and the results have no side effects in your program. When the evaluation is complete, the temporary 
space is released and any changes resulting from the evaluation no longer exist. 

This is important to remember if you are actually counting on an expression evaluation to change something in 
your program. Note, too, that this is true even when ReplayEngine is in Record mode. If you want to regain the 
ability to affect your program state through expressions, you need to disable ReplayEngine.

With ReplayEngine enabled and in Record mode, there are still two ways to change memory or registers: with the 
CLI dassign command, and by directly editing the value in the TotalView user interface. However, an attempt to 
modify memory or registers in this way in Replay mode results in an error or the new value being discarded.

Expressions can call functions when ReplayEngine is enabled, but if the called function stops for any reason, for 
example, hits a breakpoint or receives a signal, the expression is suspended and limitations are imposed. You can 
continue to debug forward in a function called from an expression, but you cannot debug backwards until the 
expression evaluation is complete. Using an expression to write to stdout and stderr (file descriptors 1 and 2) is 
allowed with the following limitations: Writes to those file descriptors work for any type of file in Record mode. 
However, writes to those file descriptors fail in Playback mode unless the file is a TTY.

All of the above also applies to the transformations in C++View.



About Groups, Processes, and Threads     349      

Chapter 13  

About Groups, Processes, 
and Threads

While the specifics of how multi-process, multi-threaded programs execute differ greatly between hardware 
platforms, operating systems, and compilers, all share some general characteristics. This chapter defines a 
general model for conceptualizing the way processes and threads execute and introduces the concepts of 
threads, processes, and groups. Chapter 21, “Group, Process, and Thread Control,” on page 513 is a more 
exacting and comprehensive look at these topics.

This chapter contains the following sections:

• “A Couple of Processes” on page 350

• “Threads” on page 353

• “Complicated Programming Models” on page 355

• “Types of Threads” on page 357

• “Organizing Chaos” on page 360

• “How TotalView Creates Groups” on page 364

• “Simplifying What You’re Debugging” on page 370



About Groups, Processes, and Threads / A Couple of Processes  350

A Couple of Processes
When programmers write single-threaded, single-process programs, they can almost always answer the question 
“Do you know where your program is?” These types of programs are rather simple, looking something like Figure 
186.

If you use any debugger on these types of programs, you can almost always figure out what’s going on. Before the 
program begins executing, you set a breakpoint, let the program run until it hits the breakpoint, and then inspect 
variables to see their values. If you suspect that there’s a logic problem, you can step the program through its 
statements to see where things are going wrong.

What is actually occurring, however, is a lot more complicated, since other programs are always executing on 
your computer. For example, your computing environment could have daemons and other support programs 
executing, and your program can interact with them.

These additional processes can simplify your program because it can hand off some tasks and not have to focus 
on how that work gets done.

Figure 187 shows a very simple architecture in which the application program just sends requests to a daemon.

The type of architecture shown in Figure 188 is more typical. In this example, an email program communicates 
with a daemon on one computer. After receiving a request, this daemon sends data to an email daemon on 
another computer, which then delivers the data to another mail program.

Figure 186 – A Uniprocessor

Figure 187 – A Program and Daemons

A Computer

A 
Process

A Computer

A User
Program

Daemons 
and 

Support 
Programs



About Groups, Processes, and Threads / A Couple of Processes  351

This architecture has one program handing off work to another. After the handoff, the programs do not interact. 
The program handing off the work just assumes that the work gets done. Some programs can work well like this. 
Most don’t. Most computational jobs do better with a model that allows a program to divide its work into smaller 
jobs, and parcel this work to other computers. Said in a different way, this model has other machines do some of 
the first program’s work. To gain any advantage, however, the work a program parcels out must be work that it 
doesn’t need right away. In this model, the two computers act more or less independently. And, because the first 
computer doesn’t have to do all the work, the program can complete its work faster.

Using more than one computer doesn’t mean that less computer time is being used. Overhead due to sending 
data across the network and overhead for coordinating multi-processing always means more work is being done. 
It does mean, however, that your program finishes sooner than if only one computer were working on the 
problem. 

The TotalView Server Solution to Debugging Across Computers

One problem with this model is how a programmer debugs behavior on the second computer. One solution is to 
have a debugger running on each computer. The TotalView solution to this debugging problem places a server 
on each remote processor as it is launched. These servers then communicate with the main TotalView process. 
This debugging architecture gives you one central location from which you can manage and examine all aspects 
of your program.

Figure 188 – Mail Using Daemons to Communicate

Figure 189 – Two Computers Working on One Problem

Computer A Computer B

A User
Program

A User
Program

Computer A Computer B

Sends Work

Receives 
Results

Uses Results



About Groups, Processes, and Threads / A Couple of Processes  352

NOTE >> TotalView can also attach to programs already running on other computers. In other words, 
programs don’t have to be started from within TotalView to be debugged by TotalView.

In all cases, it is far easier to initially write your program so that it only uses one computer. After it is working, you 
can split up its work so that it uses other computers. It is likely that any problems you find will occur in the code 
that splits the program or in the way the programs manipulate shared data, or in some other area related to the 
use of more than one thread or process. 

NOTE >> Initially designing a multi-process application as a single-process program may not always be 
practical. For instance, some algorithms may take weeks to execute a program on one 
computer.

RELATED TOPICS
How TotalView organizes groups, 
processes, and threads

“Group, Process, and Thread Control” on page 513

Debugging remotely “Setting Up Remote Debugging Sessions” on page 442

Attaching to a running program “Attaching to a Running Program” on page 101



About Groups, Processes, and Threads / Threads  353

Threads
The operating system owns the daemon programs discussed in the previous section A Couple of Processes. 
These daemons perform a variety of activities, from managing computer resources to providing standard ser-
vices such as printing. 

While operating systems can have many independently executing components, a program can as well, accom-
plished in various ways. One programming model splits the work off into somewhat independent tasks within the 
same process. This is the threads model.

Figure 190 also shows the daemon processes that are executing. (The figures in the rest of this chapter won’t 
show these daemons.)

In this computing model, a program (the main thread) creates threads. If they need to, these newly created 
threads can also create threads. Each thread executes relatively independently from other threads. You can, of 
course, program them to share data and to synchronize how they execute.

The debugging issue here is similar to the problem of processes running on different machines. In both, a debug-
ger must intervene with more than one executing entity, having to understand multiple address spaces and 
multiple contexts.

NOTE >> Little difference exists between a multi-threaded or a multi-process program when using 
TotalView. The way in which TotalView displays process information is very similar to how it 
displays thread information.

Figure 190 – Threads

A thread

A daemon



About Groups, Processes, and Threads / Threads  354

RELATED TOPICS
TotalView’s design on organizing groups, pro-
cesses, and threads

“Group, Process, and Thread Control” on page 513

Debugging multi-threaded, multi-process 
programs

“Manipulating Processes and Threads” on page 372

Setting breakpoints “Setting Breakpoints for Multiple Processes” on 
page 189

“Setting Breakpoints When Using the fork()/execve() 
Functions” on page 191

Barrier points in multi-threaded programs “Setting Barrier Points” on page 193



About Groups, Processes, and Threads / Complicated Programming Models  355

Complicated Programming Models
While most computers have one or two processors, high-performance computing often uses computers with 
many more. And as hardware prices decrease, this model is starting to become more widespread. Having more 
than one processor means that the threads model in Figure 190 changes to something similar to that shown in 
Figure 191. 

This figure shows four cores in one computer, each of which has three threads. (Only four cores are shown even 
though many more could be on a chip.) This architecture is an extension to the model that links more than one 
computer together. Its advantage is that the processor doesn’t need to communicate with other processors over 
a network as it is completely self-contained. 

The next step is to join many multi-processor computers together. Figure 192 shows five computers, each with 
four processors, with each processsor running three threads. If this figure shows the execution of one program, 
then the program is using 60 threads.

Figure 191 – Four-Processor Computer



About Groups, Processes, and Threads / Complicated Programming Models  356

This figure depicts only processors and threads. It doesn’t have any information about the nature of the pro-
grams and threads or even whether the programs are copies of one another or represent different executables.

At any time, it is next to impossible to guess which threads are executing and what a thread is actually doing. Even 
more complex, many multi-processor programs begin by invoking a process such as mpirun or IBM poe, whose 
function is to distribute and control the work being performed. In this kind of environment, a program is using 
another program to control the workflow across processors. 

In this model, traditional debuggers and solutions don’t work. TotalView, on the other hand, organizes this mass 
of executing procedures for you, distinguishing between threads and processes that the operating system uses 
from those that your program uses.

Figure 192 – Four Processors on a Network



About Groups, Processes, and Threads / Types of Threads  357

Types of Threads
All threads aren’t the same. Figure 193 shows a program with three threads.

Assume that all these threads are user threads; that is, they are threads that perform some activity that you’ve 
programmed. 

NOTE >> Many computer architectures have something called user mode, user space, or something 
similar. In TotalView, the definition of a user thread is simply a unit of execution created by a 
program.

Because the program creates user threads to do its work, they are also called worker threads.

Figure 193 – Threads (again)

A thread



About Groups, Processes, and Threads / Types of Threads  358

Other threads can also be executing. For example, there are always threads that are part of the operating envi-
ronment. These threads are called manager threads. Manager threads exist to help your program get its work 
done. In Figure 194, the horizontal threads at the bottom are user-created manager threads.

All threads are not created equal, and all threads do not execute equally. Many programs also create manager-
like threads. Since these user-created manager threads perform services for other threads, they are called service 
threads, Figure 195.

These service threads are also worker threads. For example, the sole function of a user service thread might be to 
send data to a printer in response to a request from the other two threads. 

Figure 194 – User and Service Threads

Figure 195 – User, Service, and Manager Threads

User Thread

Manager Thread

User Threads

User Service Thread

Manager Thread



About Groups, Processes, and Threads / Types of Threads  359

One reason you need to know which of your threads are service threads is that a service thread performs differ-
ent types of activities than your other threads. Because their activities are different, they are usually developed 
separately and, in many cases, are not involved with the fundamental problems being solved by the program. 
Here are two examples: 

• The code that sends messages between processes is far different than the code that performs fast 
Fourier transforms. Its bugs are quite different than the bugs that create the data that is being 
transformed.

• A service thread that queues and dispatches messages sent from other threads might have bugs, 
but the bugs are different than the rest of your code, and you can handle them separately from the 
bugs that occur in nonservice user threads. 

Being able to distinguish between the two kinds of threads means that you can focus on the threads and pro-
cesses that actively participate in an activity, rather than on threads performing subordinate tasks.

Although Figure 195 shows five threads, most of your debugging effort will focus on just two threads. 

RELATED TOPICS
TotalView’s design on organizing groups, pro-
cesses, and threads

“Group, Process, and Thread Control” on page 513

Setting the focus “Setting Process and Thread Focus” on page 520 and

“Setting Group Focus” on page 526



About Groups, Processes, and Threads / Organizing Chaos  360

Organizing Chaos
It is possible to debug programs that are running thousands of processes and threads across hundreds of com-
puters by individually looking at each. However, this is almost always impractical. The only workable approach is 
to organize your processes and threads into groups and then debug your program by using these groups. In 
other words, in a multi-process, multi-threaded program, you are most often not programming each process or 
thread individually. Instead, most high-performance computing programs perform the same or similar activities 
on different sets of data.

TotalView cannot know your program’s architecture; however, it can make some intelligent guesses based on 
what your program is executing and where the program counter is. Using this information, TotalView automati-
cally organizes your processes and threads into the following predefined groups:

• Control Group: All the processes that a program creates. These processes can be local or remote. 
If your program uses processes that it did not create, TotalView places them in separate control 
groups. For example, a client/server program that has two distinct executables that run 
independently of one another has each executable in a separate control group. In contrast, 
processes created by fork()/exec() are in the same control group.

• Share Group: All the processes within a control group that share the same code. Same code means 
that the processes have the same executable file name and path. In most cases, your program has 
more than one share group. Share groups, like control groups, can be local or remote.

• Workers Group: All the worker threads within a control group. These threads can reside in more 
than one share group.

• Lockstep Group: All threads that are at the same PC (program counter). This group is a subset of a 
workers group. A lockstep group only exists for stopped threads. By definition, all members of a 
lockstep group are within the same workers group. That is, a lockstep group cannot have members 
in more than one workers group or more than one control group. A lockstep group only means 
anything when the threads are stopped.

The control and share groups contain only processes; the workers and lockstep groups contain only threads.

TotalView lets you manipulate processes and threads individually and by groups. In addition, you can create your 
own groups and manipulate a group’s contents (to some extent). For more information, see Chapter 21, “Group, 
Process, and Thread Control,” on page 513.



About Groups, Processes, and Threads / Organizing Chaos  361

Figure 196 shows a processor running five processes (ignoring daemons and other programs not related to your 
program) and the threads within the processes, along with a control group and two share groups within the con-
trol group. 

Many of the elements in this figure are used in other figures in this book. These elements are as follows:

CPU The one outer square represents the CPU. All elements in the drawing operate within one CPU.

Processes The five white inner squares represent processes being executed by the CPU.

Control Group The large rounded rectangle that surrounds the five processes shows one control group. This 
diagram doesn’t indicate which process is the main procedure. 

Share Groups The two smaller rounded rectangles having yellow dashed lines surround processes in a share 
group. This drawing shows two share groups within one control group. The three processes in 
the first share group have the same executable. The two processes in the second share group 
share a second executable. 

The control group and the share group contain only processes.

Figure 197 shows how TotalView organizes the threads in the previous figure, adding a workers group and two 
lockstep groups.

Figure 196 – Five-Processes: Their Control and Share Groups

Control Group

Share Group 2

Share Group 1

One Process

The CPU



About Groups, Processes, and Threads / Organizing Chaos  362

NOTE >> This figure doesn’t show the control group since it encompasses everything in this figure. That 
is, this example’s control group contains all of the program’s lockstep, share, and worker 
group’s processes and threads.

The additional elements in this figure are as follows:

Workers Group All nonmanager threads within the control group make up the workers group. This group in-
cludes service threads.

Lockstep Groups Each share group has its own lockstep group. The previous figure shows two lockstep 
groups, one in each share group. 

Service Threads Each process has one service thread. A process can have any number of service threads, but 
this figure shows only one.

Manager Threads The ten manager threads are the only threads that do not participate in the workers group. 

Figure 197 – Five Processes: Adding Workers and Lockstep Groups

Share Group 1

Workers Group

Lockstep Group 1

Lockstep Group 2

Share Group 2

Manager Threads

A Service Thread



About Groups, Processes, and Threads / Organizing Chaos  363

Figure 198 extends Figure 197 to show the same kinds of information executing on two processors. 

This figure differs from others in this section because it shows ten processes executing within two processors 
rather than five processes within one processor. Although the number of processors has changed, the number of 
control and share groups is unchanged. Note that, while this makes a nice example, most programs are not this 
regular.

Figure 198 – Five Processes and Their Groups on Two Computers

RELATED TOPICS
TotalView’s design on organizing 
groups, processes, and threads

“Group, Process, and Thread Control” on page 513

Setting the focus “Setting Process and Thread Focus” on page 520 and

“Setting Group Focus” on page 526



About Groups, Processes, and Threads / How TotalView Creates Groups  364

How TotalView Creates Groups
TotalView places processes and threads in groups as your program creates them, except for the lockstep groups 
that are created or changed whenever a process or thread hits an action point or is stopped for any reason. 
There are many ways to build this type of organization. The following steps indicate how TotalView might do this.

Step 1

TotalView and your program are launched, and your program begins executing. 

• Control group: The program is loaded and creates a group.

• Share group: The program begins executing and creates a group.

• Workers group: The thread in the main() routine is the workers group.

• Lockstep group: There is no lockstep group because the thread is running. (Lockstep groups 
contain only stopped threads.)

Step 2

The program creates a thread.

• Control group: The control group is unchanged.

Figure 199 – Step 1: A Program Starts

Figure 200 – Step 2: A Thread is Started



About Groups, Processes, and Threads / How TotalView Creates Groups  365

• Share group: The share group is unchanged.

• Workers group: TotalView adds the thread to the existing group.

• Lockstep group: There are no lockstep groups because the threads are running.

Step 3

The first process uses the exec() function to create a second process, Figure 201.

• Control group: The group is unchanged.

• Share group: TotalView creates a second share group with the process created by the exec() 
function as a member. TotalView removes this process from the first share group.

• Workers group: Both threads are in the workers group.

• Lockstep group: There are no lockstep groups because the threads are running.

Step 4

The first process hits a breakpoint.

• Control group: The group is unchanged.

• Share group: The groups are unchanged.

• Workers group: The group is unchanged.

• Lockstep group: TotalView creates a lockstep group whose member is the thread of the current 
process. (In this example, each thread is its own lockstep group.)

Figure 201 – Step 3: Creating a Process using exec()



About Groups, Processes, and Threads / How TotalView Creates Groups  366

Step 5

The program is continued and TotalView starts a second version of your program from the shell. You attach to it 
within TotalView and put it in the same control group as your first process. 

• Control group: TotalView adds a third process.

• Share group: TotalView adds this third process to the first share group.

• Workers group: TotalView adds the thread in the third process to the group.

• Lockstep group: There are no lockstep groups because the threads are running.

Step 6

Your program creates a process on another computer. 

• Control group: TotalView extends the control group so that it contains the fourth process, which is 
running on the second computer.

Figure 202 – Step 5: Creating a Second Version

Figure 203 – Step 6: Creating a Remote Process



About Groups, Processes, and Threads / How TotalView Creates Groups  367

• Share group: The first share group now contains this newly created process, even though it is 
running on the second computer. 

• Workers group: TotalView adds the thread within this fourth process to the workers group.

• Lockstep group: There are no lockstep groups because the threads are running.

Step 7

A process within the control group creates a thread. This adds a second thread to one of the processes. 

• Control group: The group is unchanged.

• Share group: The group is unchanged.

• Workers group: TotalView adds a fifth thread to this group.

• Lockstep group: There are no lockstep groups because the threads are running.

Figure 204 – Step 7: Creating a Thread



About Groups, Processes, and Threads / How TotalView Creates Groups  368

Step 8

A breakpoint is set on a line in a process executing in the first share group. By default, TotalView shares the break-
point. The program executes until all three processes are at the breakpoint.

• Control group: The group is unchanged.

• Share group: The groups are unchanged.

• Workers group: The group is unchanged.

• Lockstep groups: TotalView creates a lockstep group whose members are the four threads in the 
first share group. 

Step 9

You tell TotalView to step the lockstep group. 

• Control group: The group is unchanged.

Figure 205 – Step 8: Hitting a Breakpoint

Figure 206 – Step 9: Stepping the Lockstep Group



About Groups, Processes, and Threads / How TotalView Creates Groups  369

• Share group: The groups are unchanged.

• Workers group: The group is unchanged.

• Lockstep group: The lockstep groups are unchanged. (There are other lockstep groups as 
explained in Chapter 21, “Group, Process, and Thread Control,” on page 513.)

What Comes Next

This example could continue to create a more complicated system of processes and threads. However, adding 
more processes and threads would not change the described behavior.



About Groups, Processes, and Threads / Simplifying What You’re Debugging  370

Simplifying What You’re Debugging
The reason you’re using a debugger is because your program isn’t operating correctly, and the method you think 
will solve the problem is to stop your program’s threads, examine the values assigned to variables, and step your 
program so you can observe execution. 

Unfortunately, your multi-process, multi-threaded program and the computers upon which it executes are run-
ning several threads or processes that you want TotalView to ignore. For example, you don’t want to examine 
manager and service threads that the operating system, your programming environment, and your program 
create.

Also, most of us are incapable of understanding exactly how a program is acting when perhaps thousands of pro-
cesses are executing asynchronously. Fortunately, only a few problems require full asynchronous behavior at all 
times. 

One of the first simplifications you can make is to change the number of processes. For example, suppose you 
have a buggy MPI program running on 128 processors. Your first step might be to have it execute in an 8-proces-
sor environment.

After the program is running under TotalView control, run the process being debugged to an action point so that 
you can inspect the program’s state at that point. In many cases, because your program has places where pro-
cesses are forced to wait for an interaction with other processes, you can ignore what they are doing. 

NOTE >> TotalView lets you control as many groups, processes, and threads as you need to control. 
Although you can control each one individually, it would be very complicated to try to control 
large numbers of these independently. TotalView creates and manages groups so that you can 
focus on portions of your program.

In most cases, you don’t need to interact with everything that is executing. Instead, you want to focus on one pro-
cess and the data that this process manipulates. Things get complicated when the process being investigated is 
using data created by other processes, and these processes might be dependent on other processes.

The following is a typical way to use TotalView to locate problems: 

1. At some point, make sure that the groups you are manipulating do not contain service or manager threads. 
(You can remove processes and threads from a group by using the Group > Custom Group command.)

2. Place a breakpoint in a process or thread and begin investigating the problem. In many cases, you are set-
ting a breakpoint at a place where you hope the program is still executing correctly. Because you are 
debugging a multi-process, multi-threaded program, set a barrier point so that all threads and processes 
stop at the same place.

CLI:  dgroups -remove



About Groups, Processes, and Threads / Simplifying What You’re Debugging  371

NOTE >> Don’t step your program unless you need to individually look at a thread. Using 
barrier points is much more efficient. Barrier points are discussed in “Setting Bar-
rier Points” on page 193 and online in the Action Point area within the TotalView 
Tips archive at http://kb.roguewave.com/kb/.

3. After execution stops at a barrier point, look at the contents of your variables. Verify that your program 
state is actually correct.

4. Begin stepping your program through its code. In most cases, step your program synchronously or set bar-
riers so that everything isn’t running freely.

Things begin to get complicated at this point. You’ve been focusing on one process or thread. If another pro-
cess or thread modifies the data and you become convinced that this is the problem, you need to go off to 
it and see what’s going on.

Keep your focus narrow so that you’re investigating only a limited number of behaviors. This is where debugging 
becomes an art. A multi-process, multi-threaded program can be doing a great number of things. Understanding 
where to look when problems occur is the art.

For example, you most often execute commands at the default focus. Only when you think that the problem is 
occurring in another process do you change to that process. You still execute in the default focus, but this time 
the default focus changes to another process.

Although it seems like you’re often shifting from one focus to another, you probably will do the following:

• Modify the focus so that it affects just the next command. If you are using the GUI, you might select 
this process and thread from the list displayed in the Root Window. If you are using the CLI, you use 
the dfocus command to limit the scope of a future command. For example, the following is the CLI 
command that steps thread 7 in process 3:
dfocus t3.7 dstep 

• Use the dfocus command to change focus temporarily, execute a few commands, and then return 
to the original focus.

RELATED TOPICS
Detailed information on TotalView 
threads, processes, and groups

“Group, Process, and Thread Control” on page 513

Solving problems when starting MPI 
applications

“Starting MPI Issues” on page 489

Setting barrier points “Setting Barrier Points” on page 193

More specific debugging tips for parallel 
applications

Chapter 15, “Debugging Strategies for Parallel Applications,” 
on page 398

http://kb.roguewave.com/kb/?CategoryID=101&Msg=


Manipulating Processes and Threads     372      

Chapter 14  

Manipulating Processes and 
Threads

This chapter illustrates some foundational parallel debugging tasks and is based on the shipped program, 
wave_extended_threads, located in the directory installdir/toolworks/totalview.version/platform/examples. 
This is a simple program that creates an array and then increments its values to simulate a wave form which 
can then be viewed using the Visualizer. The program requires user input to provide the number of times to 
increment.

The first steps when debugging programs with TotalView are similar to those using other debuggers:

• Use the -g option to compile the program. (Compiling is not discussed here. Please see 
“Compiling Programs” on page 85.)

• Start the program under TotalView control. 

• Start the debugging process, including setting breakpoints and examining your program’s data. 

When working with multi-process, multi-threaded programs, you have many options for controlling thread 
and process execution, viewing specific threads and processes, and organizing processes in to groups in 
order to better view the various elements of your program. This chapter includes:

• “Viewing Process and Thread States” on page 374

• “Using the Toolbar to Select a Target” on page 377

• “Stopping Processes and Threads” on page 378

• “Using the Processes/Ranks and Threads Tabs” on page 379

• “Updating Process Information” on page 382

• “Holding and Releasing Processes and Threads” on page 383

• “Using Barrier Points” on page 386



Manipulating Processes and Threads /   373

• “Barrier Point Illustration” on page 387

• “Examining Groups” on page 389

• “Placing Processes in Groups” on page 391

• “Starting Processes and Threads” on page 392

• “Creating a Process Without Starting It” on page 393

• “Creating a Process by Single-Stepping” on page 394

• “Stepping and Setting Breakpoints” on page 395



Manipulating Processes and Threads / Viewing Process and Thread States  374

Viewing Process and Thread States
Process and thread states are displayed in the following:

• The Root Window.

• The information within the File > Attach to a Running Program dialog.

• The process and thread status bars of the Process Window.

• The Threads tab of the Process Window.

Figure 207 shows TotalView displaying process state information in the Root Window.

When you use either of these commands, TotalView also displays state information.

The Status of a process includes the process location, the process ID, and the state of the process. (These char-
acters are explained in “Seeing Attached Process States” on page 375.) 

CLI: dstatus and dptsets

Figure 207 – Root Window Showing Process and Thread Status



Manipulating Processes and Threads / Viewing Process and Thread States  375

If you need to attach to a process that is not yet being debugged, open the  File > Attach to a Running Program 
dialog. TotalView displays all processes associated with your username. Notice that some of the processes will be 
dim (drawn in a lighter font). This indicates either you cannot attach to the process or you’re already attached to 
it. 

Notice that the status bars in the Process Window also display status information, Figure 208.

NOTE >> If the thread ID that TotalView assigns is the same as the operating system thread ID, 
TotalView only displays ID. If you are debugging an MPI program, TotalView displays the 
thread’s rank number.

Seeing Attached Process States
The Root Window displays the Process and/or Thread State. To view these states, enable the “Process State” and/
or “Thread State” check boxes in the Configure pane. Once enabled, the states display in the first column.

.

Seeing Unattached Process States
TotalView derives the state information for a process displayed in the File > Attach to a Running Program dialog 
box from the operating system. The state characters TotalView uses to summarize the state of an unattached 
process do not necessarily match those used by the operating system. The following table describes the state 
indicators that TotalView displays:

Figure 208 – Process and Thread Labels in the Process Window

RELATED TOPICS
The Root Window “Using the Root Window” on page 140

The Process Window “Using the Process Window” on page 148

Process state definition and 
display

“Seeing Attached Process States” on page 375

CLI: The CLI prints out a word indicating the state; for example, 
“breakpoint.”



Manipulating Processes and Threads / Viewing Process and Thread States  376

State Code State Description

I Idle

R Running

S Sleeping

T Stopped

Z Zombie (no apparent owner)



Manipulating Processes and Threads / Using the Toolbar to Select a Target  377

Using the Toolbar to Select a Target
The Process Window toolbar has a dropdown list that controls process and thread focus. The selection in this 
dropdown list defines the focus, or target of the toolbar commands. (The selected target in this pulldown is also 
called a scope modifier.)

For example, if you select a thread and then select Step, TotalView steps the current thread. If Process (workers) 
is selected and you select Halt, TotalView halts all processes associated with the current thread’s workers group. 
If you are running a multi-process program, other processes continue to execute.

In a multi-process, multi-threaded program, this is important, as TotalView needs to know which processes and 
threads to act on. 

In the CLI, specify this target using the dfocus command. 

NOTE >> Chapter 21, “Group, Process, and Thread Control,” on page 513 describes how TotalView man-
ages processes and threads. While TotalView gives you the ability to control the precision your 
application requires, most applications do not need this level of interaction. In almost all 
cases, using the controls in the toolbar gives you all the control you need.

Figure 209 – The Toolbar

RELATED TOPICS
The Processes/Ranks tab in the Pro-
cess Window

“Using the Processes/Ranks and Threads 
Tabs” on page 379

How to create custom groups “Creating Custom Groups” on page 542



Manipulating Processes and Threads / Stopping Processes and Threads  378

Stopping Processes and Threads
To stop a group, process, or thread, select a Halt command from the Group, Process, or Thread pulldown 
menus in the menubar.

The three Halt commands differ in the scope of what they halt. In all cases, TotalView uses the current thread, 
which is called the thread of interest or TOI, to determine what else it will halt. For example, selecting Process > 
Halt tells TotalView to determine the process in which the TOI is running. It then halts this process. Similarly, if you 
select Group > Halt, TotalView determines what processes are in the group in which the current thread partici-
pates. It then stops all of these processes.

NOTE >> For more information on the Thread of Interest, see “Defining the GOI, POI, and TOI” on 
page 514.

When you select the Halt button in the toolbar instead of the commands in the menubar, TotalView decides 
what it should stop based on what is set in the toolbar pulldown list.

After entering a Halt command, TotalView updates any windows that can be updated. When you restart the pro-
cess, execution continues from the point where TotalView stopped the process.

CLI: dhalt 
Halts a group, process, or thread. Setting the focus changes the scope.



Manipulating Processes and Threads / Using the Processes/Ranks and Threads Tabs  379

Using the Processes/Ranks and Threads Tabs

The Processes Tab
The Processes Tab was displayed by default in previous versions of TotalView, but now it is off by default. This is 
because it can significantly affect performance, particularly for large, massively parallel applications. The tab can 
be turned back on with the command line switch -processgrid and/or by setting TV::GUI::process_grid_wanted 
to true in the .tvdrc file. If you enable this tab in the .tvdrc file, you can disable it for a particular session with 
the -noprocessgrid command line switch.

The Processes tab, which is called a Ranks tab if you are running an MPI program, contains a grid. Each block in 
the grid represents one process. The color that TotalView uses to display a process indicates the process’s state, 
as follows:

Figure 210 shows a tab with processes in three different states:

If you select a group by using the Process Window’s group selector pulldown (see “Using the Toolbar to Select a 
Target” on page 377 for information), TotalView dims the blocks for processes not in the group, Figure 211.

Color Meaning

Blue Stopped; usually due to another process or thread hitting a 
breakpoint.

Orange At breakpoint.

Green All threads in the process are running or can run.

Red The Error state. Signals such as SIGSEGV, SIGBUS, and SIGFPE can indi-
cate an error in your program. 

Gray The process has not begun running.

Figure 210 – The Processes Tab

CLI: dptsets



Manipulating Processes and Threads / Using the Processes/Ranks and Threads Tabs  380

If you click on a block, the context within the Process Window changes to the first thread in that process.

Clicking on the P+ and P- buttons in the tab bar changes the process being displayed within the Process Window. 
Click on Px to launch a Jump To dialog in which you can specify a particular process or thread to focus on, Figure 
212.

The Threads Tab
The Threads Tab displays information about the state of your threads. Clicking on a thread tells TotalView to shift 
the focus within the Process Window to that thread.

Figure 211 – The Processes Tab: Showing Group Selection

CLI: dfocus

Figure 212 – The Jump To Dialog

RELATED TOPICS
Custom group creation “Creating Custom Groups” on page 542

More on controlling processes and 
threads

“Using the Toolbar to Select a Target” on 
page 377

Figure 213 – The Threads Tab



Manipulating Processes and Threads / Using the Processes/Ranks and Threads Tabs  381

Clicking on the T+ and T- buttons in the tab bar also changes the thread being displayed within the Process 
Window.



Manipulating Processes and Threads / Updating Process Information  382

Updating Process Information
Normally, TotalView updates information only when the thread being executed stops executing. You can force 
TotalView to update a window by using the Window > Update command. You need to use this command if you 
want to see what a variable’s value is while your program is executing. 

NOTE >> When you use this command, TotalView momentarily stops execution to obtain update infor-
mation, then restarts the thread. 



Manipulating Processes and Threads / Holding and Releasing Processes and Threads  383

Holding and Releasing Processes and Threads
Many times when you are running a multi-process or multi-threaded program, you want to synchronize execution 
to the same place. You can do this manually using a hold command, or automatically by setting a barrier point.

When a process or a thread is held, it ignores any command to resume executing. For example, assume that you 
place a hold on a process in a control group that contains three processes. If you select Group > Go, two of the 
three processes resume executing. The held process ignores the Go command.

Use the Release command to remove the hold. When you release a process or a thread, it can resume execu-
tion, but you still need to tell it to do so. That is, you must resume execution with a command such as Go, Out, or 
Step.

Manually holding and releasing processes and threads is useful when:

• You need to run a subset of the processes and threads. You can manually hold all but the ones you 
want to run.

• A process or thread is held at a barrier point and you want to run it without first running all the 
other processes or threads in the group to that barrier. In this case, you release the process or the 
thread manually and then run it. 

See “Setting Barrier Points” on page 193 for more information on manually holding and releasing barrier 
breakpoints.

When TotalView is holding a process, the Root Window displays Stopped, and the Process Window displays a 
held indicator, which is the uppercase letter H. When TotalView is holding a thread, it displays a lowercase h.

You can hold or release a thread, process, or group of processes in one of the following ways:

• You can hold a group of processes using the Group > Hold command.

• You can release a group of processes using the Group > Release command.

• You can toggle the hold/release state of a process by selecting and clearing the Process > Hold 
command.

• You can toggle the hold/release state of a thread by selecting and clearing the Thread > Hold 
command.

If a process or a thread is running when you use a hold or release command, TotalView stops the process or 
thread and then holds it. TotalView lets you hold and release processes independently from threads.

CLI: dhold and dunhold
Setting the focus changes the scope.



Manipulating Processes and Threads / Holding and Releasing Processes and Threads  384

The Process pulldown menu contains the commands Hold Threads and Release Threads, which act on all the 
threads in a multi-process program. The result is seldom what you actually want as you really do want something 
to run. You can select one or more threads and use the  Thread > Hold toggle command to clear them so that 
TotalView lets them run. This may appear awkward, but it is actually an easy way to run just one or more threads 
when your program has a lot of threads. You can verify that you’re doing the right thing by looking at the thread 
status in the Root Window.

Here are some examples of using hold commands:

CLI: dhold -thread
dhold -process
dunhold -thread

Held/Release 
State What Can Be Run Using Process > Go

This figure shows a process with three threads. Before you do 
anything, all threads in the process can be run.

Select the Process > Hold toggle. The blue shading indicates 
that you held the process.

Nothing runs when you select Process > Go.

Go to the Threads menu. The button next to the Hold com-
mand isn’t selected. This is because the thread hold state is 
independent from the process hold state.

Select it. The circle indicates that thread 1 is held. At this time, 
there are two different holds on thread 1. One is at the pro-
cess level; the other is at thread level.

Nothing will run when you select Process > Go.

Select the Process > Hold command.

Select Process > Go. The second and third threads run.

Select Process > Release Threads. This releases the hold placed 
on the first thread by the Thread > Hold command. You could 
also release the thread individually with Thread > Hold.

When you select Process > Go, all threads run.



Manipulating Processes and Threads / Holding and Releasing Processes and Threads  385

RELATED TOPICS
Barrier points “Setting Barrier Points” on page 193

The CLI dbarrier command dbarrier in the "CLI Commands" in the 
TotalView for HPC Reference Guide



Manipulating Processes and Threads / Using Barrier Points  386

Using Barrier Points
Because threads and processes are often executing different instructions, keeping threads and processes 
together is difficult. The best strategy is to define places where the program can run freely and places where you 
need control. This is where barrier points come in.

To keep things simple, this section only discusses multi-process programs. You can do the same types of opera-
tions when debugging multi-threaded programs.

Why breakpoints don’t work 
(part 1)

If you set a breakpoint that stops all processes when it is hit and you let your processes run using the Group > Go 
command, you might get lucky and have all of your threads reach the breakpoint together. More likely, though, 
some processes won’t have reached the breakpoint and TotalView will stop them wherever they happen to be. To 
get your processes synchronized, you would need to find out which ones didn’t get there and then individually 
get them to the breakpoint using the Process > Go command. You can’t use the Group > Go command since this 
also restarts the processes stopped at the breakpoint.

Why breakpoints don’t work 
(part 2)

If you set the breakpoint’s property so that only the process hitting the breakpoint stops, you have a better 
chance of getting all your processes there. However, you must be careful not to have any other breakpoints 
between where the program is currently at and the target breakpoint. If processes hit these other breakpoints, 
you are once again left to run processes individually to the breakpoint. 

Why single stepping doesn’t work

Single stepping is just too tedious if you have a long way to go to get to your synchronization point, and stepping 
just won’t work if your processes don’t execute exactly the same code. 

Why barrier points work

If you use a barrier point, you can use the Group > Go command as many times as it takes to get all of your pro-
cesses to the barrier, and you won’t have to worry about a process running past the barrier.

The Root Window shows you which processes have hit the barrier, grouping all held processes under Break-
point in the first column.

RELATED TOPICS
Barrier points “Setting Barrier Points” on page 193

The CLI dbarrier command dbarrier in "CLI Commands" in the TotalView 
for HPC Reference Guide



Manipulating Processes and Threads / Using Barrier Points  387

Barrier Point Illustration
Creating a barrier point tells TotalView to hold a process when it reaches the barrier. Other processes that can 
reach the barrier but aren’t yet at it continue executing. One-by-one, processes reach the barrier and, when they 
do, TotalView holds them.

When a process is held, it ignores commands that tell it to execute. This means, for example, that you can’t tell it 
to go or to step. If, for some reason, you want the process to execute, you can manually release it using either the 
Group > Release or Process > Release Threads command.

When all processes that share a barrier reach it, TotalView changes their state from held to released, which means 
they no longer ignore a command that tells them to begin executing.

The following figure shows seven processes that are sharing the same barrier. (Processes that aren’t affected by 
the barrier aren’t shown.)

• First block: All seven processes are running freely.

• Second block: One process hits the barrier and is held. Six processes are executing.

• Third block: Five of the processes have now hit the barrier and are being held. Two are executing.

• Fourth block: All processes have hit the barrier. Because TotalView isn’t waiting for anything else to 
reach the barrier, it changes the processes’ states to released. Although the processes are released, 
none are executing.

For more information on barriers, see “Setting Barrier Points” on page 193.

Figure 214 – Running To Barriers

Barrier Barrier Barrier

Running Freely One Held None Held

Barrier

Five Held
All Released



Manipulating Processes and Threads / Using Barrier Points  388

RELATED TOPICS
Barrier points “Setting Barrier Points” on page 193

The CLI dbarrier command dbarrier in "CLI Commands" in the TotalView 
for HPC Reference Guide



Manipulating Processes and Threads / Examining Groups  389

Examining Groups
When you debug a multi-process program, TotalView adds processes to both a control and a share group as the 
process starts. These groups are not related to either UNIX process groups. (See Chapter 13, “About Groups, 
Processes, and Threads,” on page 349 for information on groups.) 

Because a program can have more than one control group and more than one share group, TotalView decides 
where to place a process based on the type of system call—which can either be fork() or execve()—that created 
or changed the process. The two types of process groups are:

Control Group The parent process and all related processes. A control group includes children that a process 
forks (processes that share the same source code as the parent). It also includes forked chil-
dren that subsequently call a function such as execve(). That is, a control group can contain 
processes that don’t share the same source code as the parent.

Control groups also include processes created in parallel programming disciplines like MPI.

Share Group The set of processes in a control group that shares the same source code. Members of the 
same share group share action points. 

NOTE >> See Chapter 21, “Group, Process, and Thread Control,” on page 513 for a complete discussion 
of groups. 

TotalView automatically creates share groups when your processes fork children that call the execve() function, 
or when your program creates processes that use the same code as some parallel programming models such as 
MPI do.

TotalView names processes according to the name of the source program, using the following naming rules:

• TotalView names the parent process after the source program.

• The name for forked child processes differs from the parent in that TotalView appends a numeric 
suffix (.n). If you’re running an MPI program, the numeric suffix is the process’s rank in 
COMM_WORLD. 

• If a child process calls the execve() function after it is forked, TotalView places a new executable 
name in angle brackets (<>).

In Figure 215, assume that the generate process doesn’t fork any children, and that the filter process forks two 
child processes. Later, the first child forks another child, and then calls the execve() function to execute the expr 
program. In this figure, the middle column shows the names that TotalView uses.



Manipulating Processes and Threads / Examining Groups  390

Figure 215 – Control and Share Groups Example

RELATED TOPICS
Custom group creation “Creating Custom Groups” on page 542

Understanding threads and pro-
cesses and how TotalView organizes 
them

About Groups, Processes, and Threads

TotalView’s process/thread model in 
detail

Group, Process, and Thread Control

Control 
Group 2

Share Group 1

Share Group 2

Share Group 3

filter
filter.1
filter.2

filter<expr>.1.1
generate

parent process #1
child process #1
child process #2

grandchild process #1
parent process #2

Process Groups

Control 
Group 1

Process Names Relationship



Manipulating Processes and Threads / Placing Processes in Groups  391

Placing Processes in Groups
TotalView uses your executable’s name to determine the share group that the program belongs to. If the path 
names are identical, TotalView assumes that they are the same program. If the path names differ, TotalView 
assumes that they are different, even if the file name in the path name is the same, and places them in different 
share groups.

RELATED TOPICS
Using the Group > Edit Group command Group > Edit Group in the in-product 

Help 



Manipulating Processes and Threads / Starting Processes and Threads  392

Starting Processes and Threads
To start a process, select a Go command from the Group, Process, or Thread pulldown menus. 

After you select a Go command, TotalView determines what to execute based on the current thread. It uses this 
thread, which is called the Thread of Interest (TOI), to decide other threads that should run. For example, if you 
select Group > Go, TotalView continues all threads in the current group that are associated with this thread.

The commands you will use most often are Group > Go and Process > Go. The Group > Go command creates 
and starts the current process and all other processes in the multi-process program. There are some limitations, 
however. TotalView only resumes a process if the following are true: 

• The process is not being held.

• The process already exists and is stopped. 

• The process is at a breakpoint. 

Using a Group > Go command on a process that’s already running starts the other members of the process’s 
control group.

If the process hasn’t yet been created, a Go command creates and starts it. Starting a process means that all 
threads in the process resume executing unless you are individually holding a thread. 

NOTE >> TotalView disables the Thread > Go command if asynchronous thread control is not available. 
If you enter a thread-level command in the CLI when asynchronous thread controls aren’t 
available, TotalView tries to perform an equivalent action. For example, it continues a process 
instead of a thread.

For a single-process program, the Process > Go and Group > Go commands are equivalent. For a single-
threaded process, the Process > Go and Thread > Go commands are equivalent.

CLI: dfocus g dgo 
Abbreviation: G

CLI: dgo



Manipulating Processes and Threads / Creating a Process Without Starting It  393

Creating a Process Without Starting It
The Process > Create command creates a process and stops it before the first statement in your program exe-
cutes. If you link a program with shared libraries, TotalView allows the dynamic loader to map into these libraries. 
Creating a process without starting it is useful when you need to do the following:

• Create watchpoints or change the values of global variables after a process is created, but before it 
runs.

• Debug C++ static constructor code.

CLI: dstepi 
While there is no CLI equivalent to the Process > Create command, exe-
cuting the dstepi command produces the same effect.



Manipulating Processes and Threads / Creating a Process by Single-Stepping  394

Creating a Process by Single-Stepping
The TotalView single-stepping commands let you create a process and run it to the beginning of your program. 
The single-stepping commands available from the Process menu are as shown in the following table:

If a group-level or thread-level stepping command creates a process, the behavior is the same as if it were a pro-
cess-level command.

NOTE >> Chapter 21, “Group, Process, and Thread Control,” on page 513 contains a detailed discussion 
of setting the focus for stepping commands.

GUI command CLI command Creates the process and ...

Process > Step dfocus p dstep Runs it to the first line of the main() routine.

Process > Next dfocus p dnext Runs it to the first line of the main() routine; this 
is the same as Process > Step.

Process >                  
Step Instruction

dfocus p dstepi Stops it before any of your program executes.

Process > 
Next Instruction

dfocus p dnexti Runs it to the first line of the main() routine. This 
is the same as Process > Step.



Manipulating Processes and Threads / Stepping and Setting Breakpoints  395

Stepping and Setting Breakpoints
Several of the single-stepping commands require that you select a source line or machine instruction in the 
Source Pane. To select a source line, place the cursor over the line and click your left mouse button. If you select 
a source line that has more than one instantiation, TotalView will try to do the right thing. For example, if you 
select a line within a template so you can set a breakpoint on it, you’ll actually set a breakpoint on all of the tem-
plate’s instantiations. If this isn’t what you want, select the Addresses button in the Action Point > Properties 
Dialog Box to change which instantiations will have a breakpoint.

Initially, addresses are either enabled or disabled, but you can change their state by clicking the checkbox in the 
first column. The checkbox in the columns bar enables or disables all the addresses. This dialog supports select-
ing multiple separate items (Ctrl-Click) or a range of items (Shift-Click or click and drag). Once the desired subset is 
selected, right-click one of the selected items and choose Enable Selection or Disable Selection from the context 
menu.

Filtering

In massively parallel programs, the number of addresses can become very large, so the Addresses dialog has sev-
eral mechanisms to help you manage the data. The search box filters the currently displayed data based on one 
or more space-separated strings or phrases (enclosed in quotes). Remember that data not currently displayed is 
not included in the filtering. It may be helpful to click the Detailed Information checkbox, which displays much 
more complete information, giving you more possibilities for filtering.

Figure 216 – Action Point and Addresses Dialog Boxes



Manipulating Processes and Threads / Stepping and Setting Breakpoints  396

Sorting

Clicking on the column labels performs a sort based on the data in that column. Each click toggles between 
ascending and descending order. If entry values in a column are the same, the values of the column to the right 
of the sorted column are examined and sorted based on those values. If the values are the same, the next col-
umn is examined and so on, until different values are found. The Addresses dialog uses a stable sort, i.e. if all the 
entries are the same in the selected column and in the columns to the right, the list is not modified.

Displaying and rearranging columns

Finally, right-clicking in the columns bar presents a context menu for displaying or hiding columns. All are initially 
displayed except Image. You can reorder the columns by selecting a column label and dragging it to a new 
location.

Keyboard Shortcuts

To provide easy access to the buttons at the bottom of the Addresses dialog, the following mnemonic keys have 
been assigned.

Similarly, if TotalView cannot figure out which instantiation to set a breakpoint at, it displays its Address Dialog 
Box.

Button Keyboard Sequence
OK Alt-o
Cancel Alt-c
Help Alt-h

Figure 217 – Ambiguous Address Dialog Box



Manipulating Processes and Threads / Stepping and Setting Breakpoints  397

RELATED TOPICS
Action points “Setting Action Points” on page 174



Debugging Strategies for Parallel Applications     398      

Chapter 15  

Debugging Strategies for 
Parallel Applications

This chapter provides tips and strategies for debugging parallel programs, including:

• “General Parallel Debugging Tips” on page 399

— “Breakpoints, Stepping, and Program Execution” on page 399

— “Viewing Processes, Threads, and Variables” on page 400

— “Restarting from within TotalView” on page 401

— “Attaching to Processes Tips” on page 401

• “MPI Debugging Tips and Tools” on page 405

— “MPI Display Tools” on page 405

— “MPICH Debugging Tips” on page 411

• “IBM PE Debugging Tips” on page 413

RELATED TOPICS
A general discussion on ways to simplify the debug-
ging of complex, multi-threaded and multi-process 
applications

“Simplifying What You’re Debugging” on page 370



Debugging Strategies for Parallel Applications / General Parallel Debugging Tips  399

General Parallel Debugging Tips
This section provides debugging tips relevant to most parallel programs.

Breakpoints, Stepping, and Program Execution

Setting Breakpoint Behavior 

When you’re debugging message-passing and other multi-process programs, it is usually easier to understand 
the program’s behavior if you change the default stopping action of breakpoints and barrier breakpoints. By 
default, when one process in a multi-process program hits a breakpoint, TotalView stops all other processes. 

To change the default stopping action of breakpoints and barrier breakpoints, you can set debugger preferences. 
The online Help contains information on these preference. These preferences tell TotalView whether to continue 
to run when a process or thread hits the breakpoint.

These options affect only the default behavior. You can choose a behavior for a breakpoint by setting the break-
point properties in the File > Preferences Action Points Page. See “Setting Breakpoints for Multiple Processes” 
on page 189.

Synchronizing Processes 

TotalView has two features that make it easier to get all of the processes in a multi-process program synchronized 
and executing a line of code. Process barrier breakpoints and the process hold/release features work together to 
help you control the execution of your processes. See “Setting Barrier Points” on page 193.

The Process Window Group > Run To command is a special stepping command. It lets you run a group of pro-
cesses to a selected source line or instruction. See “Stepping (Part I)” on page 516.

Using Group Commands 

Group commands are often more useful than process commands. 

It is often more useful to use the Group > Go command to restart the whole application instead of the Process > 
Go command. 

You would then use the Group > Halt command instead of Process > Halt to stop execution. 

CLI: dfocus g dgo 
Abbreviation: G

CLI: dfocus g dhalt 
Abbreviation: H



Debugging Strategies for Parallel Applications / General Parallel Debugging Tips  400

The group-level single-stepping commands such as Group > Step and Group > Next let you single-step a group 
of processes in a parallel. See “Stepping (Part I)” on page 516.

Stepping at Process Level 

If you use a process-level single-stepping command in a multi-process program, TotalView may appear to hang (it 
continuously displays the watch cursor). If you single-step a process over a statement that can’t complete without 
allowing another process to run, and that process is stopped, the stepping process appears to hang. This can 
occur, for example, when you try to single-step a process over a communication operation that cannot complete 
without the participation of another process. When this happens, you can abort the single-step operation by 
selecting Cancel in the Waiting for Command to Complete Window that TotalView displays. As an alternative, 
consider using a group-level single-step command.

NOTE >> Rogue Wave receives many bug reports on hung processes, usually because one process is 
waiting for another. Using the Group debugging commands almost always solves this 
problem. 

Viewing Processes, Threads, and Variables

Identifying Process and Thread Execution 

The Root Window helps you determine where various processes and threads are executing. When you select a 
line of code in the Process Window, the Root Window updates to show which processes and threads are execut-
ing that line. 

Viewing Variable Values 

You can view the value of a variable that is replicated across multiple processes or multiple threads in a single 
Variable Window. See “Displaying a Variable in all Processes or Threads” on page 300.

CLI: dfocus g dstep 
Abbreviation: S
dfocus g dnext 
Abbreviation: N

CLI: Type Ctrl+C



Debugging Strategies for Parallel Applications / General Parallel Debugging Tips  401

Restarting from within TotalView 
You can restart a parallel program at any time. If your program runs past the point you want to examine, you can 
kill the program by selecting the Group > Kill command. This command kills the master process and all the slave 
processes. Restarting the master process (for example, mpirun or poe) recreates all of the slave processes. Start 
up is faster when you do this because TotalView doesn’t need to reread the symbol tables or restart its tvdsvr 
processes, since they are already running.

Attaching to Processes Tips
In a typical multi-process job, you’re interested in some processes and not as much in others. By default, 
TotalView tries to attach to all of the processes that your program starts. If there are a lot of processes, there can 
be considerable overhead involved in opening and communicating with the jobs.

You can minimize this overhead by using the Attach Subset dialog box, shown in Figure 218.

CLI: dfocus g dkill

Figure 218 – Group > Attach Subset Dialog Box



Debugging Strategies for Parallel Applications / General Parallel Debugging Tips  402

NOTE >> You can start MPI jobs in two ways. One requires that the starter program be under TotalView 
control and have special instrumentation for TotalView, while the other does not. In the first 
case, you will enter the name of the starter program on the command line. The other requires 
that you enter information into the File > Debug New Program or File > Debug New Parallel 
Program > dialog boxes. The Attach Subset command is available only if you directly name a 
starter program on the command line.

The Subset Attach dialog box can be launched in multiple ways. It is automatically available when you launch your 
job with the parallel preference set to “Ask what to do.” (See Figure 220). It is also available through other menu 
options after the job has been started, as discussed later in this section.

Selecting check boxes in the Attach column defines the processes to attach to. Although your program will launch 
all these processes, TotalView attaches only to the those you have selected.

The Attach All and Detach All buttons elect or deselect all the processes at once. You can then use the check 
boxes to select and deselect individual processes. For example, to attach to only a few processes in a lengthy list, 
use Detach All and then select those to which TotalView should attach.

The Filter controls restrict which processes are displayed; filtering is unrelated to attaching or detaching. 

• The Communicator control specifies that the processes displayed must be involved with the 
communicators that you select. For example, if something goes wrong that involves a 
communicator, selecting it from the list displays only the processes that use that communicator. 
You can then use Attach All to attach to only those processes.

• The Talking to Rank control limits the processes displayed to those that receive messages from 
the indicated ranks. In addition to your rank numers, you can also select All or MPI_ANY_SOURCE.

• The Array of Ranks option is automatically selected and the array name displayed if you have 
invoked Tools > Attach Subset (Array of Ranks) from the Variable Window. In this case, the dialog 
box will only display the list of processes whose ranks match the array elements.

• The List of Ranks control allows you to enter rank numbers to filter on. Use a dash to indicate a 
range of ranks, and commas to indicate individual ranks. For example: 3, 10-16, 24.

• The three checkboxes in the Message Type area add yet another qualifier. Checking a box displays 
only communicators that are involved with a Send, Receive, or Unexpected message.

The Halt Control Group button is not active if the dialog box is launched after the job is already started. It is 
active only at the initial startup of a parallel job. You typically want to halt processes to allow the setting of 
breakpoints. 

Many applications place values that indicate ranks in an array variable so that the program can refer to them as 
needed. You can display the variable in a Variable Window and then select the Tools > Attach Subset (Array of 
Ranks) command to display this dialog box. (See the Array of Ranks explanation above.)



Debugging Strategies for Parallel Applications / General Parallel Debugging Tips  403

You can use the Group > Attach Subset command at any time, but you would probably use it immediately 
before TotalView launches processes. Unless you have set preferences otherwise, TotalView stops and asks if you 
want it to stop your processes. When selected, the Halt control group check box also stops a process just before 
it begins executing. 

If you click Yes, when the job stops the starter process should be at a “magic breakpoint.” These are set by 
TotalView behind the scene, and usually not visible. The other processes may or may not be at a “magic 
breakpoint.”

The commands on the Parallel Page in the File > Preferences Dialog Box control what TotalView does when your 
program goes parallel.

NOTE >> TotalView displays the preceding question box only when you directly name a starter program 
on the command line.

Figure 219 – Stop Before Going Parallel Question Box

Figure 220 – File > Preferences: Parallel Page



Debugging Strategies for Parallel Applications / General Parallel Debugging Tips  404

The radio buttons in the When a job goes parallel or calls exec() area:

• Stop the group: Stops the control group immediately after the processes are created.

• Run the group: Allows all newly created processes in the control group to run freely.

• Ask what to do: Asks whether TotalView should start the created processes.

The radio buttons in the When a job goes parallel area:

• Attach to all: Automatically attaches to all processes at executing.

• Attach to none: Does not attach to any created process at execution.

• Ask what to do: Asks what processes to attach to. For this option, the same dialog box opens as 
that displayed for Group > Attach Subset. TotalView then attaches to the processes that you have 
selected. Note that this dialog box isn’t displayed when you set the preference; rather, it controls 
behavior when your program actually creates parallel processes.

CLI: dset TV::parallel_stop

CLI: dset TV::parallel_attach



Debugging Strategies for Parallel Applications / MPI Debugging Tips and Tools  405

MPI Debugging Tips and Tools
TotalView provides specific tools to view MPI program status, including rank and message queues.

This section discusses these display tools as well as any other information specific to an MPI program.

MPI Display Tools

MPI Rank Display

The Processes/Ranks Tab at the bottom of the Process Window displays the status of each rank. For example, in 
Figure 221, one rank is at a breakpoint, two are running, and five are stopped.

Figure 221 – Ranks Tab

RELATED TOPICS
Creating Custom Groups “Creating Custom Groups” on page 542

The Processes/Rank Tab “Using the Processes/Ranks and Threads Tabs” on page 379.



Debugging Strategies for Parallel Applications / MPI Debugging Tips and Tools  406

Displaying the Message Queue Graph Window

TotalView can graphically display your MPI program’s message queue state.  Select the Process Window Tools > 
Message Queue Graph command to display a graph of the current message queue state.

If you want to restrict the display, select the Options button, Figure 223.

Here, you can alter the way in which TotalView displays ranks within this window—for example, as a grid or in a 
circle. 

Figure 222 – Tools > Message Queue Graph Window

Figure 223 – Tools > Message Queue Graph Options Window



Debugging Strategies for Parallel Applications / MPI Debugging Tips and Tools  407

Use the commands within the Cycle Detection tab to receive reports about cycles in your messages. This is a 
quick and efficient way to detect when messages are blocking one another and causing deadlocks.

Perhaps the most used of these tabs is Filter.

The button colors used for selecting messages are the same as those used to draw the lines and arrows in the 
Message Queue Graph Window, as follows:

• Green: Pending Sends

• Blue: Pending Receives

• Red: Unexpected Messages

You can directly select which ranks you want displayed in the lower part of the window. The Filter on specified 
message tags area lets you name the tags to be used as filters. Finally, you can select a group or a communicator 
in the group pulldown. If you have created your own communicators and groups, they appear here.

Changes made within the Options dialog box do not occur until you click Apply. The graph window then updates 
to reflect your changes.

The message queue graph shows your program’s state at a particular instant. Select Update to fetch new infor-
mation and redraw the graph. 

The numbers in the boxes within the Message Queue Graph Window indicate the MPI message source or desti-
nation process rank. Diving on a box opens a Process Window for that process. 

The numbers next to the arrows indicate the MPI message tags that existed when TotalView created the graph. 
Diving on an arrow displays the Tools > Message Queue Window, with detailed information about the messages. 
If TotalView has not attached to a process, it displays this information in a grey box.

You can use the Message Queue Graph Window in many ways, including the following:

Figure 224 – Tools > Message Queue Graph Options. Filter Tab



Debugging Strategies for Parallel Applications / MPI Debugging Tips and Tools  408

• Pending messages often indicate that a process can’t keep up with the amount of work it is 
expected to perform. These messages indicate places where you may be able to improve your 
program’s efficiency.

• Unexpected messages can indicate that something is wrong with your program because the 
receiving process doesn’t know how to process the message. The red lines indicate unexpected 
messages.

• After a while, the shape of the graph tends to tell you something about how your program is 
executing. If something doesn’t look right, you will want to determine why.

• You can change the shape of the graph by dragging nodes or arrows. This is often useful when 
you’re comparing sets of nodes and their messages with one another. By default, TotalView does 
not persist changes to the graph shape. This means that if you select Update after you arrange the 
graph, your changes are lost. To retain your changes, select Keep nodes as positioned from with 
the Options dialog box.

Displaying the Message Queue

The Tools > Message Queue Window displays your MPI program’s message queue state textually. This can be 
useful when you need to find out why a deadlock occurred.

MPI versions that support message queue display are described in the Platforms Guide. This document is also 
available on the Web site at http://www.roguewave.com/help-support/documentation/totalview.

http://www.roguewave.com/help-support/documentation/totalview


Debugging Strategies for Parallel Applications / MPI Debugging Tips and Tools  409

About the Message Queue Display

After an MPI process returns from the call to MPI_Init(), you can display the internal state of the MPI library by 
selecting the Tools > Message Queue command, Figure 225. 

This window displays the state of the process’  MPI communicators. If user-visible communicators are imple-
mented as two internal communicator structures, TotalView displays both. One is used for point-to-point 
operations and the other is used for collective operations. 

NOTE >> You cannot edit any of the fields in the Message Queue Window. 

The contents of the Message Queue Window are valid only when a process is stopped. 

Using Message Operations

For each communicator, TotalView displays a list of pending receive operations, pending unexpected messages, 
and pending send operations. Each operation has an index value displayed in brackets ([n]). 

Figure 225 – Message Queue Window

RELATED TOPICS
Message Queue field descriptions available for display "Message Queue Window" in the in-product help

Message operations "Message Operations" in the in-product Help



Debugging Strategies for Parallel Applications / MPI Debugging Tips and Tools  410

Diving on MPI Processes

To display more detail, you can dive into fields in the Message Queue Window. When you dive into a process field, 
TotalView does one of the following:

• Raises its Process Window if it exists.

• Sets the focus to an existing Process Window on the requested process.

• Creates a new Process Window for the process if a Process Window doesn’t exist.

Diving on MPI Buffers

When you dive into the buffer fields, TotalView opens a Variable Window. It also guesses the correct format for 
the data based on the buffer length and data alignment. You can edit the Type field within the Variable Window, if 
necessary. 

NOTE >> TotalView doesn’t use the MPI data type to set the buffer type.

About Pending Receive Operations

TotalView displays each pending receive operation in the Pending receives list. Figure 226 shows an example of 
an MPICH pending receive operation.

Figure 226 – Message Queue Window Showing Pending Receive Operation



Debugging Strategies for Parallel Applications / MPI Debugging Tips and Tools  411

NOTE >> TotalView displays all receive operations maintained by the IBM MPI library. Set the environ-
ment variable MP_EUIDEVELOP to DEBUG to make blocking operations visible; otherwise, the 
library maintains only nonblocking operations. For more details on this variable, see the IBM 
Parallel Environment Operations and Use manual.

About Unexpected Messages

The Unexpected messages portion of the Message Queue Window shows information for retrieved and 
enqueued messages that are not yet matched with a receive operation.

Some MPI libraries, such as MPICH, only retrieve messages that have already been received as a side effect of 
calls to functions such as MPI_Recv() or MPI_Iprobe(). (In other words, while some versions of MPI may know 
about the message, the message may not yet be in a queue.) This means that TotalView can’t list a message until 
after the destination process makes a call that retrieves it.

About Pending Send Operations

TotalView displays each pending send operation in the Pending sends list. 

MPICH does not normally keep information about pending send operations. If you want to see them, start your 
program under TotalView control and use the mpirun -ksq or -KeepSendQueue command.

Depending on the device for which MPICH was configured, blocking send operations may or may not be visible. 
However, if TotalView doesn’t display them, you can see that these operations occurred because the call is in the 
stack backtrace.

If you attach to an MPI program that isn’t maintaining send queue information, TotalView displays the following 
message:
Pending sends : no information available

MPICH Debugging Tips
These debugging tips apply only to MPICH:

• Passing options to mpirun 

You can pass options to TotalView using the MPICH mpirun command. 

To pass options to TotalView when running mpirun, you can use the TOTALVIEW environment variable. For 
example, you can cause mpirun to invoke TotalView with the -no_stop_all option, as in the following C shell 
example: 
setenv TOTALVIEW "totalview -no_stop_all" 

• Using ch_p4 



Debugging Strategies for Parallel Applications / MPI Debugging Tips and Tools  412

If you start remote processes with MPICH/ch_p4, you may need to change the way TotalView starts its serv-
ers. 

By default, TotalView uses ssh to start its remote server processes. This is the same behavior as ch_p4 uses. 
If you configure ch_p4 to use a different start-up mechanism from another process, you probably also need 
to change the way that TotalView starts the servers. 

RELATED TOPICS
MPICH configuration and session 
setup

“MPICH Applications” on page 468 and “MPICH2 Applications” on 
page 472

tvdsvr and ssh “TotalView Server Launch Options and Commands” on page 452

ssh specifically “Setting the Single-Process Server Launch Command” on page 455



Debugging Strategies for Parallel Applications / IBM PE Debugging Tips  413

IBM PE Debugging Tips
These debugging tips apply only to IBM MPI (PE):

• Avoid unwanted timeouts 

Timeouts can occur if you place breakpoints that stop other processes too soon after calling MPI_Init() or 
MPL_Init(). If you create “stop all” breakpoints, the first process that gets to the breakpoint stops all the 
other parallel processes that have not yet arrived at the breakpoint. This can cause a timeout. 

To turn the option off, select the Process Window Action Point > Properties command while the line with 
the stop symbol is selected. After the Properties Dialog Box appears, select the Process button in the When 
Hit, Stop area, and also select the Plant in share group button.

• Control the poe process 

Even though the poe process continues under debugger control, do not attempt to start, stop, or otherwise 
interact with it. Your parallel tasks require that poe continues to run. For this reason, if poe is stopped, 
TotalView automatically continues it when you continue any parallel task.

• Avoid slow processes due to node saturation 

If you try to debug a PE program in which more than three parallel tasks run on a single node, the parallel 
tasks on each node can run noticeably slower than they would run if you were not debugging them.

In general, the number of processes running on a node should be the same as the number of processors 
in the node.

This becomes more noticeable as the number of tasks increases, and, in some cases, the parallel tasks does 
not progress. This is because PE uses the SIGALRM signal to implement communications operations, and 
AIX requires that debuggers must intercept all signals. As the number of parallel tasks on a node increases, 
TotalView becomes saturated and can’t keep up with the SIGALRM signals being sent, thus slowing the tasks. 

CLI: dbarrier location -stop_when_hit process

RELATED TOPICS
Detail on IBM PE configuration 
and session setup

“IBM MPI Parallel Environment (PE) Applications” on page 476



     414      

PART III  

Using the CLI

The chapters in this part of the book deal exclusively with the CLI. Most CLI commands must have a process/
thread focus for what they do. See Chapter 21, “Group, Process, and Thread Control,” on page 513 for more 
information.

Chapter 16, “Using the Command Line Interface (CLI)”
You can use CLI commands without knowing much about Tcl, which is the approach taken in this chapter. This 
chapter tells you how to enter CLI commands and how the CLI and TotalView interact with one another when 
used in a nongraphical way.

Chapter 17, “Seeing the CLI at Work”
While you can use the CLI as a stand-alone debugger, using the GUI is usually easier. You will most often use the 
CLI when you need to debug programs using very slow communication lines or when you need to create debug-
ging functions that are unique to your program. This chapter presents a few Tcl macros in which CLI commands 
are embedded. 
Most of these examples are simple, designed to give you a feel for what you can do.



Using the Command Line Interface (CLI)     415      

Chapter 16  

Using the Command Line 
Interface (CLI)

The two components of the Command Line Interface (CLI) are the Tcl-based programming environment and 
the commands added to the Tcl interpreter that lets you debug your program. This chapter looks at how 
these components interact, and describes how you specify processes, groups, and threads.

This chapter emphasizes interactive use of the CLI rather than using the CLI as a programming language 
because many of its concepts are easier to understand in an interactive framework. However, everything in 
this chapter can be used in both environments. 

This chapter contains the following sections:

• “About the Tcl and the CLI” on page 416

• “Starting the CLI” on page 418

• “About CLI Output” on page 422

• “Using Command Arguments” on page 424

• “Using Namespaces” on page 425

• “About the CLI Prompt” on page 426

• “Using Built-in and Group Aliases” on page 427

• “How Parallelism Affects Behavior” on page 428

• “Controlling Program Execution” on page 430



Using the Command Line Interface (CLI) / About the Tcl and the CLI  416

About the Tcl and the CLI
The CLI is built in version 8.0 of Tcl, so TotalView CLI commands are built into Tcl. This means that the CLI is not a 
library of commands that you can bring into other implementations of Tcl. Because the Tcl you are running is the 
standard 8.0 version, the CLI supports all libraries and operations that run using version 8.0 of Tcl. 

Integrating CLI commands into Tcl makes them intrinsic Tcl commands. This lets you enter and execute all CLI 
commands in exactly the same way as you enter and execute built-in Tcl commands. As CLI commands are also 
Tcl commands, you can embed Tcl primitives and functions in CLI commands, and embed CLI commands in 
sequences of Tcl commands.

For example, you can create a Tcl list that contains a list of threads, use Tcl commands to manipulate that list, and 
then use a CLI command that operates on the elements of this list. You can also create a Tcl function that dynam-
ically builds the arguments that a process uses when it begins executing.

About The CLI and TotalView
Figure 227 illustrates the relationship between the CLI, the GUI, the TotalView core, and your program:

The CLI and GUI are components that communicate with the TotalView core, which is what actually does the 
work. In this figure, the dotted arrow between the GUI and the CLI indicates that you can invoke the CLI from the 
GUI. The reverse is not true: you can’t invoke the GUI from the CLI.

In turn, the TotalView core communicates with the processes that make up your program, receives information 
back from these processes, and passes information back to the component that sent the request. If the GUI is 
also active, the core also updates the GUI’s windows. For example, stepping your program from within the CLI 
changes the PC in the Process Window, updates data values, and so on.

Figure 227 – The CLI, GUI and TotalView

CLI GUI

Core

Process 1
Thread 1

Thread 2

Process 2
Thread 1

Thread 2

Program being debugged

TotalView
Tcl



Using the Command Line Interface (CLI) / About the Tcl and the CLI  417

Using the CLI Interface
You interact with the CLI by entering a CLI or Tcl command. (Entering a Tcl command does exactly the same thing 
in the CLI as it does when interacting with a Tcl interpreter.) Typically, the effect of executing a CLI command is 
one or more of the following:

• The CLI displays information about your program.

• A change takes place in your program’s state.

• A change takes place in the information that the CLI maintains about your program.

After the CLI executes your command, it displays a prompt. Although CLI commands are executed sequentially, 
commands executed by your program might not be. For example, the CLI doesn’t require that your program be 
stopped when it prompts for and performs commands. It only requires that the last CLI command be complete 
before it can begin executing the next one. In many cases, the processes and threads being debugged continue 
to execute after the CLI has finished doing what you asked it to do.

If you need to stop an executing command or Tcl macro, press Ctrl+C while the command is executing. If the CLI 
is displaying its prompt, typing Ctrl+C stops any executing processes.

Because actions are occurring constantly, state information and other kinds of messages that the CLI displays are 
usually mixed in with the commands that you type. You might want to limit the amount of information TotalView 
displays by setting the VERBOSE variable to WARNING or ERROR. (For more information, see the “Variables” 
chapter in the TotalView for HPC Reference Guide.)



Using the Command Line Interface (CLI) / Starting the CLI  418

Starting the CLI
You can start the CLI in one of the following ways:

• You can start the CLI from the GUI by selecting the Tools > Command Line command in the Root 
or Process Windows. After selecting this command, TotalView opens a window into which you can 
enter CLI commands.

• You can start the CLI directly from a shell prompt by typing totalviewcli. (This assumes that the 
TotalView binary directory is in your path.)

Figure 228 is a snapshot of a CLI window that shows part of a program being debugged. 

If you have problems entering and editing commands, it might be because you invoked the CLI from a shell or 
process that manipulates your stty settings. You can eliminate these problems if you use the stty sane CLI com-
mand. (If the sane option isn’t available, you have to change values individually.)

If you start the CLI with the totalviewcli command, you can use all of the command-line options that you can use 
when starting TotalView, except those that have to do with the GUI. (In some cases, TotalView displays an error 
message if you try. In others, it just ignores what you did.)

Information on command-line options is in the "TotalView Command Syntax" chapter of the TotalView for HPC Ref-
erence Guide.

Figure 228 – CLI xterm Window

RELATED TOPICS
All the ways to start TotalView “Starting TotalView” on page 87

How to perform remote debugging “Setting Up Remote Debugging Sessions” on page 442



Using the Command Line Interface (CLI) / Starting the CLI  419

Startup Example
The following is a very small CLI script:
#
source make_actions.tcl
#
dload fork_loop
dset ARGS_DEFAULT {0 4 -wp} 
dstep
catch {make_actions fork_loop.cxx} msg
puts $msg

This script begins by loading and interpreting the make_actions.tcl file, which was described in Chapter 17, “See-
ing the CLI at Work,” on page 432. It then loads the fork_loop executable, sets its default startup arguments, and 
steps one source-level statement.

If you stored this in a file named fork_loop.tvd, you can tell TotalView to start the CLI and execute this file by 
entering the following command:
totalviewcli -s fork_loop.tvd

The following example places a similar set of commands in a file that you invoke from the shell:
#!/bin/sh
# Next line executed by shell, but ignored by Tcl because: \

exec totalviewcli -s "$0" "$@"
#
source make_actions.tcl
#
dload fork_loop
dset ARGS_DEFAULT {0 4 -wp}
dstep
catch {make_actions fork_loop.cxx} msg
puts $msg

The only real difference between the last two examples is the first few lines in the file. In this second example, the 
shell ignores the backslash continuation character; Tcl processes it. This means that the shell executes the exec 
command while Tcl will ignore it.

Setting up for MPI debugging “Setting Up MPI Debugging Sessions” on page 461

Setting up for non-MPI parallel 
debugging

“Setting Up Parallel Debugging Sessions” on page 492

RELATED TOPICS



Using the Command Line Interface (CLI) / Starting the CLI  420

Starting Your Program
The CLI lets you start debugging operations in several ways. To execute your program from within the CLI, enter a 
dload command followed by the drun command. 

NOTE >> If your program is launched from a starter program such as srun or yod, use the drerun com-
mand rather than drun to start your program. If you use drun, default arguments to the 
process are suppressed; drerun passes them on.

The following example uses the totalviewcli command to start the CLI. This is followed by dload and drun com-
mands. Since this was not the first time the file was run, breakpoints exist from a previous session.

NOTE >> In this listing, the CLI prompt is “d1.<>”. The information preceding the greater-than symbol 
(>) symbol indicates the processes and threads upon which the current command acts. The 
prompt is discussed in “About the CLI Prompt” on page 426.

% totalviewcli
d1.<> dload arraysAlpha   #load the arraysAlpha program
1
d1.<> dactions            # Show the action points
No matching breakpoints were found
d1.<> dlist -n 10 75
    75       real16_array (i, j) = 4.093215 * j+2
    76 #endif
    77 26    continue
    78 27    continue
    79
    80 do 40 i = 1, 500
    81    denorms(i) = x'00000001'
    82 40 continue
    83 do 42 i = 500, 1000
    84    denorms(i) = x'80000001'
d1.<> dbreak 80            # Add two action points
1
d1.<> dbreak 83
2
d1.<> drun        # Run the program to the action point

This two-step operation of loading and running supports setting action points before execution begins, as well as 
executing a program more than once. At a later time, you can use drerun to restart your program, perhaps send-
ing it new arguments. In contrast, reentering the dload command tells the CLI to reload the program into 
memory (for example, after editing and recompiling the program). 

The dload command always creates a new process. The new process is in addition to any existing processes for 
the program because the CLI does not shut down older processes when starting the new one.



Using the Command Line Interface (CLI) / Starting the CLI  421

The dkill command terminates one or more processes of a program started by using a dload, drun, or drerun 
command. The following example continues where the previous example left off:
d1.<> dkill             # kills process
d1.<> drun              # runs program from start
d1.<> dlist -e -n 3     # shows lines about current spot
   79 
   80@>      do 40 i = 1, 500
   81            denorms(i) = x'00000001'
d1.<> dwhat master_array # Tell me about master_array
In thread 1.1:
Name: master_array; Type: integer(100); 
    Size: 400 bytes; Addr: 0x140821310
    Scope: ##arraysAlpha#arrays.F#check_fortran_arrays 
    (Scope class: Any)
    Address class: proc_static_var 
    (Routine static variable)
d1.<> dgo                      # Start program running 
d1.<> dwhat denorms            # Tell me about denorms
In thread 1.1:
Name: denorms; Type: <void>; Size: 8 bytes; 
    Addr: 0x1408214b8
    Scope: ##arraysAlpha#arrays.F#check_fortran_arrays
    (Scope class: Any)
    Address class: proc_static_var 
    (Routine static variable)
d1.<> dprint denorms(0)       # Show me what is stored
 denorms(0) = 0x0000000000000001 (1)
d1.<> 

Because information is interleaved, you may not realize that the prompt has appeared. It is always safe to use the 
Enter key to have the CLI redisplay its prompt. If a prompt isn’t displayed after you press Enter, you know that the 
CLI is still executing.



Using the Command Line Interface (CLI) / About CLI Output  422

About CLI Output
A CLI command can either print its output to a window or return the output as a character string. If the CLI exe-
cutes a command that returns a string value, it also prints the returned string. Most of the time, you won’t care 
about the difference between printing and returning-and-printing. Either way, the CLI displays information in your 
window. And, in both cases, printed output is fed through a simple more processor. (This is discussed in more 
detail in the next section.)

In the following two cases, it matters whether the CLI directly prints output or returns and then prints it:

• When the Tcl interpreter executes a list of commands, the CLI only prints the information returned 
from the last command. It doesn’t show information returned by other commands.

• You can only assign the output of a command to a variable if the CLI returns a command’s output. 
You can’t assign output that the interpreter prints directly to a variable, or otherwise manipulate it, 
unless you save it using the capture command.

For example, the dload command returns the ID of the process object that was just created. The ID is normally 
printed—unless, of course, the dload command appears in the middle of a list of commands; for example:
{dload test_program;dstatus}

In this example, the CLI doesn’t display the ID of the loaded program, since the dload command was not the last 
command. 

When information is returned, you can assign it to a variable. For example, the next command assigns the ID of a 
newly created process to a variable:
set pid [dload test_program]

Because you can’t assign the output of the help command to a variable, the following doesn’t work:
set htext [help]

This statement assigns an empty string to htext because the help command doesn’t return text. It just prints it. 

To save the output of a command that prints its output, use the capture command. For example, the following 
example writes the help command’s output into a variable:
set htext [capture help]

NOTE >> You can capture the output only from commands. You can’t capture the informational mes-
sages displayed by the CLI that describe process state. If you are using the GUI, TotalView also 
writes this information to the Log Window. You can display this information by using the Tools 
> Event Log command.



Using the Command Line Interface (CLI) / About CLI Output  423

‘more’ Processing
When the CLI displays output, it sends data through a simple more-like process. This prevents data from scrolling 
off the screen before you view it. After you see the MORE prompt, press Enter to see the next screen of data. If 
you type q (followed by pressing the Enter key), the CLI discards any data it hasn’t yet displayed.

You can control the number of lines displayed between prompts by using the dset command to set the 
LINES_PER_SCREEN CLI variable. (For more information, see the TotalView for HPC Reference Guide.)



Using the Command Line Interface (CLI) / Using Command Arguments  424

Using Command Arguments
The default command arguments for a process are stored in the ARGS(num) variable, where num is the CLI ID for 
the process. If you don’t set the ARGS(num) variable for a process, the CLI uses the value stored in the ARGS_DE-
FAULT variable. TotalView sets the ARGS_DEFAULT variable when you use the -a option when starting the CLI or 
the GUI. 

NOTE >> The -a option tells TotalView to pass everything that follows on the command line to the 
program. 

For example:
totalviewcli -a argument-1, argument-2, ...

To set (or clear) the default arguments for a process, you can use the dset (or dunset) command to modify the 
ARGS() variables directly, or you can start the process with the drun command. For example, the following clears 
the default argument list for process 2:
dunset ARGS(2)

The next time process 2 is started, the CLI uses the arguments contained in ARGS_DEFAULT.

You can also use the dunset command to clear the ARGS_DEFAULT variable; for example:
dunset ARGS_DEFAULT

All commands (except the drun command) that can create a process—including the dgo, drerun, dcont, dstep, 
and dnext commands—pass the default arguments to the new process. The drun command differs in that it 
replaces the default arguments for the process with the arguments that are passed to it.

RELATED TOPICS
The ARGS variable  ARGS in "TotalView Variables" in the TotalView for HPC 

Reference Guide

The ARGS_DEFAULT variable ARGS_DEFAULT in "TotalView Variables" in the 
TotalView for HPC Reference Guide

The Process > Startup Parameters command Process > Startup Parameters in the 
in-product Help



Using the Command Line Interface (CLI) / Using Namespaces  425

Using Namespaces
CLI interactive commands exist in the primary Tcl namespace (::). Some of the TotalView state variables also 
reside in this namespace. Seldom-used functions and functions that are not primarily used interactively reside in 
other namespaces. These namespaces also contain most TotalView state variables. (The variables that appear in 
other namespaces are usually related to TotalView preferences.) TotalView uses the following namespaces:

TV:: Contains commands and variables that you use when creating functions. They can be used in-
teractively, but this is not their primary role.

TV::GUI:: Contains state variables that define and describe properties of the user interface, such as win-
dow placement and color. 

If you discover other namespaces beginning with TV, you have found a namespace that contains private func-
tions and variables. These objects can (and will) disappear, so don’t use them. Also, don’t create namespaces that 
begin with TV, since you can cause problems by interfering with built-in functions and variables.

The CLI dset command lets you set the value of these variables. You can have the CLI display a list of these vari-
ables by specifying the namespace; for example:
dset TV:: 

You can use wildcards with this command. For example, dset TV::au* displays all variables that begin with “au”.

RELATED TOPICS
CLI namespace commands "CLI Namespace Commands" in the TotalView for HPC Reference Guide

TotalView variables  "TotalView Variables" in the TotalView for HPC Reference Guide



Using the Command Line Interface (CLI) / About the CLI Prompt  426

About the CLI Prompt
The appearance of the CLI prompt lets you know that the CLI is ready to accept a command. This prompt lists the 
current focus, and then displays a greater-than symbol (>) and a blank space. (The current focus is the processes 
and threads to which the next command applies.) For example:

d1.<> The current focus is the default set for each command, focusing on the first user thread in pro-
cess 1.

g2.3> The current focus is process 2, thread 3; commands act on the entire group.

t1.7> The current focus is thread 7 of process 1.

gW3.> The current focus is all worker threads in the control group that contains process 3.

p3/3 The current focus is all processes in process 3, group 3.

You can change the prompt’s appearance by using the dset command to set the PROMPT state variable; for 
example:
dset PROMPT "Kill this bug! > "



Using the Command Line Interface (CLI) / Using Built-in and Group Aliases  427

Using Built-in and Group Aliases
Many CLI commands have an alias that lets you abbreviate the command’s name. (An alias is one or more charac-
ters that Tcl interprets as a command or command argument.) 

NOTE >> The alias command, which is described in the TotalView for HPC Reference Guide, lets you cre-
ate your own aliases. 

For example, the following command tells the CLI to halt the current group:
dfocus g dhalt

Using an abbreviation is easier. The following command does the same thing:
f g h

You often type less-used commands in full, but some commands are almost always abbreviated. These com-
mands include dbreak (b), ddown (d), dfocus (f), dgo (g), dlist (l), dnext (n), dprint (p), dstep (s), and dup (u).

The CLI also includes uppercase group versions of aliases for a number of commands, including all stepping com-
mands. For example, the alias for dstep is s; in contrast, S is the alias for dfocus g dstep. (The first command tells 
the CLI to step the process. The second steps the control group.) 

Group aliases differ from the group-level command that you type interactively, as follows:

• They do not work if the current focus is a list. The g focus specifier modifies the current focus, and 
can only be applied if the focus contains just one term.

• They always act on the group, no matter what width is specified in the current focus. Therefore, 
dfocus t S does a step-group command.



Using the Command Line Interface (CLI) / How Parallelism Affects Behavior  428

How Parallelism Affects Behavior
A parallel program consists of some number of processes, each involving some number of threads. Processes fall 
into two categories, depending on when they are created: 

• Initial process 

A pre-existing process from the normal run-time environment (that is, created outside TotalView), or one that 
was created as TotalView loaded the program.

• Spawned process 

A new process created by a process executing under CLI control.

TotalView assigns an integer value to each individual process and thread under its control. This process/thread 
identifier can be the system identifier associated with the process or thread. However, it can be an arbitrary value 
created by the CLI. Process numbers are unique over the lifetime of a debugging session; in contrast, thread 
numbers are only unique while the process exists. 

Process/thread notation lets you identify the component that a command targets. For example, if your program 
has two processes, and each has two threads, four threads exist:

Thread 1 of process 1

Thread 2 of process 1

Thread 1 of process 2

Thread 2 of process 2

You identify the four threads as follows:

1.1—Thread 1 of process 1 

1.2—Thread 2 of process 1

2.1—Thread 1 of process 2

2.2—Thread 2 of process 2

Types of IDs
Multi-threaded, multi-process, and distributed programs contain a variety of IDs. The following types are used in 
the CLI and the GUI:

RELATED TOPICS
An overview of threads and processes and how 
TotalView organizes them into groups

“About Groups, Processes, and Threads” on page 349

More detail on the TotalView thread/process model 
and how to create custom groups

“Group, Process, and Thread Control” on page 513



Using the Command Line Interface (CLI) / How Parallelism Affects Behavior  429

System PID This is the process ID and is generally called the PID. 

System TID This is the ID of the system kernel or user thread. On some systems (for example, AIX), the TIDs 
have no obvious meaning. On other systems, they start at 1 and are incremented by 1 for each 
thread.

TotalView thread ID
This is usually identical to the system TID. On some systems (such as AIX) where the threads 
have no obvious meaning, TotalView uses its own IDs.

pthread ID This is the ID assigned by the Posix pthreads package. If this differs from the system TID, the TID 
is a pointer value that points to the pthread ID.

Debugger PID This is an ID created by TotalView that lets it identify processes. It is a sequentially numbered 
value beginning at 1 that is incremented for each new process. If the target process is killed and 
restarted (that is, you use the dkill and drun commands), the TotalView PID does not change. 
The system PID changes, however, since the operating system has created a new target pro-
cess.



Using the Command Line Interface (CLI) / Controlling Program Execution  430

Controlling Program Execution
Knowing what’s going on and where your program is executing is simple in a serial debugging environment. Your 
program is either stopped or running. When it is running, an event such as arriving at a breakpoint can occur. This 
event tells TotalView to stop the program. Sometime later, you tell the serial program to continue executing. 
Multi-process and multi-threaded programs are more complicated. Each thread and each process has its own 
execution state. When a thread (or set of threads) triggers a breakpoint, TotalView must decide what it should do 
about other threads and processes because it may need to stop some and let others continue to run. 

Advancing Program Execution
Debugging begins by entering a dload or dattach command. If you use the dload command, you must use the 
drun (or perhaps drerun if there’s a starter program) command to start the program executing. These three 
commands work at the process level and you can’t use them to start individual threads. (This is also true for the 
dkill command.) 

To advance program execution, you enter a command that causes one or more threads to execute instructions. 
The commands are applied to a P/T set. (P/T sets are discussed in Chapter 13, “About Groups, Processes, 
and Threads,” on page 349 and Chapter 21, “Group, Process, and Thread Control,” on page 513.) Because the 
set doesn’t have to include all processes and threads, you can cause some processes to be executed while hold-
ing others back. You can also advance program execution by increments, stepping the program forward, and you 
can define the size of the increment. For example, dnext 3 executes the next three statements, and then pauses 
what you’ve been stepping.

Typically, debugging a program means that you have the program run, and then you stop it and examine its state. 
In this sense, a debugger can be thought of as a tool that lets you alter a program’s state in a controlled way, and 
debugging is the process of stopping a process to examine its state. However, the term stop has a slightly differ-

RELATED TOPICS
Tasks for working with a multi-process, multi-
threaded application

“Manipulating Processes and Threads” on page 372

Stepping commands “Using Stepping Commands” on page 166

The dload command dload in "CLI Commands" in the TotalView for HPC Refer-
ence Guide

The dattach command dattach in "CLI Commands" in the TotalView for HPC Refer-
ence Guide

The drun command drun in "CLI Commands" in the TotalView for HPC Refer-
ence Guide

The dkill command dkill in "CLI Commands" in the TotalView for HPC Reference 
Guide



Using the Command Line Interface (CLI) / Controlling Program Execution  431

ent meaning in a multi-process, multi-threaded program. In these programs, stopping means that the CLI holds 
one or more threads at a location until you enter a command that tells them to start executing again. Other 
threads, however, may continue executing.

For more detailed information on debugging in general, see Part II, “Debugging Tools and Tasks,” on page 82.

Using Action Points
Action points tell the CLI to stop a program’s execution. You can specify the following types of action points:

• A breakpoint (see dbreak in the TotalView for HPC Reference Guide) stops the process when the 
program reaches a location in the source code. 

• A watchpoint (see dwatch in the TotalView for HPC Reference Guide) stops the process when the 
value of a variable is changed.

• A barrier point (see dbarrier in the TotalView for HPC Reference Guide), as its name suggests, 
effectively prevents processes from proceeding beyond a point until all other related processes 
arrive. This gives you a method for synchronizing the activities of processes. (You can only set a 
barrier point on processes; you can’t set then on individual threads.) 

• An eval point (see dbreak in the TotalView for HPC Reference Guide) lets you programmatically 
evaluate the state of the process or variable when execution reaches a location in the source code. 
An eval point typically does not stop the process; instead, it performs an action. In most cases, an 
eval point stops the process when some condition that you specify is met.

NOTE >> For extensive information on action points, see “Setting Action Points” on page 174.

Each action point is associated with an action point identifier. You use these identifiers when you need to refer to 
the action point. Like process and thread identifiers, action point identifiers are assigned numbers as they are 
created. The ID of the first action point created is 1; the second ID is 2, and so on. These numbers are never 
reused during a debugging session.

The CLI and the GUI let you assign only one action point to a source code line, but you can make this action point 
as complex as you need it to be. 



Seeing the CLI at Work     432      

Chapter 17  

Seeing the CLI at Work

The CLI is a command-line debugger that is completely integrated with TotalView. You can use it and never 
use the TotalView GUI, or you can use it and the GUI simultaneously. Because the CLI is embedded in a Tcl 
interpreter, you can also create debugging functions that exactly meet your needs. When you do this, you can 
use these functions in the same way that you use TotalView’s built-in CLI commands. 

This chapter contains macros that show how the CLI programmatically interacts with your program and with 
TotalView. Reading examples without bothering too much with details gives you an appreciation for what the 
CLI can do and how you can use it. With a basic knowledge of Tcl, you can make full use of all CLI features.

In each macro in this chapter, all Tcl commands that are unique to the CLI are displayed in bold. These macros 
perform the following tasks:

• “Setting the CLI EXECUTABLE_PATH Variable” on page 433

• “Initializing an Array Slice” on page 434

• “Printing an Array Slice” on page 435

• “Writing an Array Variable to a File” on page 437

• “Automatically Setting Breakpoints” on page 438



Seeing the CLI at Work / Setting the CLI EXECUTABLE_PATH Variable  433

Setting the CLI EXECUTABLE_PATH Variable
 The following macro recursively descends through all directories, starting at a location that you enter. (This is 
indicated by the root argument.) The macro ignores directories named in the filter argument. The result is set as 
the value of the CLI EXECUTABLE_PATH state variable. 

See also the TotalView for HPC Reference Guide’s entry for the EXECUTABLE_PATH variable
# Usage:
#
# rpath [root] [filter]
#
# If root is not specified, start at the current 
# directory. filter is a regular expression that removes
# unwanted entries. If it is not specified, the macro
# automatically filters out CVS/RCS/SCCS directories.
#
# The search path is set to the result. 
 
proc rpath {{root "."} {filter "/(CVS|RCS|SCCS)(/|$)"}} {
 
   # Invoke the UNIX find command to recursively obtain 
   # a list of all directory names below "root".
   set find [split [exec find $root -type d -print] \n]
 
   set npath ""
 
   # Filter out unwanted directories.
   foreach path $find {
      if {! [regexp $filter $path]} {
         append npath ":"
         append npath $path
      }
   }
 
   # Tell TotalView to use it.
   dset EXECUTABLE_PATH $npath 
}

In this macro, the last statement sets the EXECUTABLE_PATH state variable. This is the only statement that is 
unique to the CLI. All other statements are standard Tcl.

The dset command, like most interactive CLI commands, begins with the letter d. (The dset command is only 
used in assigning values to CLI state variables. In contrast, values are assigned to Tcl variables by using the stan-
dard Tcl set command.) 



Seeing the CLI at Work / Initializing an Array Slice  434

Initializing an Array Slice
The following macro initializes an array slice to a constant value:
array_set (var lower_bound upper_bound val) {
   for {set i $lower_bound} {$i <= $upper_bound} {incr i}{
      dassign $var\($i) $val 
   }
}

The CLI dassign command assigns a value to a variable. In this case, it is setting the value of an array element. 
Use this function as follows:
d1.<> dprint list3 
 list3 = {
   (1) = 1 (0x0000001)
   (2) = 2 (0x0000001)
   (3) = 3 (0x0000001)
 }
d1.<> array_set list 2 3 99
d1.<> dprint list3 
 list3 = {
   (1) = 1 (0x0000001)
   (2) = 99 (0x0000063)
   (3) = 99 (0x0000063)
 }

For more information on slices, see “Displaying Array Slices” on page 284.



Seeing the CLI at Work / Printing an Array Slice  435

Printing an Array Slice
The following macro prints a Fortran array slice. This macro, like others shown in this chapter, relies heavily on Tcl 
and uses unique CLI commands sparingly.
proc pf2Dslice {anArray i1 i2 j1 j2 {i3 1} {j3 1} \
         {width 20}} {
   for {set i $i1} {$i <= $i2} {incr i $i3} {
      set row_out ""
      for {set j $j1} {$j <= $j2} {incr j $j3} {
         set ij [capture dprint $anArray\($i,$j\)]
         set ij [string range $ij \
               [expr [string first "=" $ij] + 1] end]
         set ij [string trimright $ij]
         if {[string first "-" $ij] == 1} {
            set ij [string range $ij 1 end]}
         append ij "                       "
         append row_out " " \
               [string range $ij 0 $width] " "
      }
      puts $row_out
   }
}

NOTE >> The CLI’s dprint command lets you specify a slice. For example, you can type: dprint a(1:4,1:4).

After invoking this macro, the CLI prints a two-dimensional slice (i1:i2:i3, j1:j2:j3) of a Fortran array to a numeric 
field whose width is specified by the width argument. This width doesn’t include a leading minus sign (-).

All but one line is standard Tcl. This line uses the dprint command to obtain the value of one array element. This 
element’s value is then captured into a variable. The CLI capture command allows a value that is normally printed 
to be sent to a variable. For information on the difference between values being displayed and values being 
returned, see “About CLI Output” on page 422.



Seeing the CLI at Work / Printing an Array Slice  436

The following shows how this macro is used:
d1.<> pf2Dslice a 1 4 1 4 
    0.841470956802 0.909297406673 0.141120001673-0.756802499294
    0.909297406673-0.756802499294-0.279415488243 0.989358246326
    0.141120001673-0.279415488243 0.412118494510-0.536572933197
   -0.756802499294 0.989358246326-0.536572933197-0.287903308868
d1.<> pf2Dslice a 1 4 1 4 1 1 17 
    0.841470956802 0.909297406673 0.141120001673-0.756802499294
    0.909297406673-0.756802499294-0.279415488243 0.989358246326
    0.141120001673-0.279415488243 0.412118494510-0.536572933197
   -0.756802499294 0.989358246326-0.536572933197-0.287903308868
d1.<> pf2Dslice a 1 4 1 4 2 2 10
    0.84147095    0.14112000 
    0.14112000    0.41211849 
d1.<> pf2Dslice a 2 4 2 4 2 2 10
   -0.75680249    0.98935824 
    0.98935824   -0.28790330 
d1.<> 



Seeing the CLI at Work / Writing an Array Variable to a File  437

Writing an Array Variable to a File
It often occurs that you want to save the value of an array so that you can analyze its results at a later time. The 
following macro writes array values to a file:
proc save_to_file {var fname} {
   set values [capture dprint $var]
   set f [open $fname w]

   puts $f $values
   close $f
}

The following example shows how you might use this macro. Using the exec command tells the shell’s cat com-
mand to display the file that was just written.
d1.<> dprint list3 
 list3 = {
   (1) = 1 (0x00000001)
   (2) = 2 (0x00000002)
   (3) = 3 (0x00000003)
 }
d1.<> save_to_file list3 foo 
d1.<> exec cat foo 
 list3 = {
   (1) = 1 (0x00000001)
   (2) = 2 (0x00000002)
   (3) = 3 (0x00000003)
 }
d1.<>



Seeing the CLI at Work / Automatically Setting Breakpoints  438

Automatically Setting Breakpoints
In many cases, your knowledge of what a program is doing lets you make predictions as to where problems are 
occurring. The following CLI macro parses comments that you can include in a source file and, depending on the 
comment’s text, sets a breakpoint or an eval point.

(For detailed information on action points, see “Setting Action Points” on page 174.)

Following this macro is an excerpt from a program that uses it.
# make_actions: Parse a source file, and insert
# evaluation and breakpoints according to comments.
#
proc make_actions {{filename ""}} {
   
   if {$filename == ""} {
      puts "You need to specify a filename"
      error "No filename"
   }
   
      # Open the program’s source file and initialize a
      # few variables.
   set fname [set filename]
   set fsource [open $fname r]
   set lineno 0
   set incomment 0
   
      # Look for "signals" that indicate the type of
      # action point; they are buried in the comments.
   while {[gets $fsource line] != -1} {
      incr lineno
      set bpline $lineno
   
            # Look for a one-line eval point. The 
            # format is ... /* EVAL: some_text */.
            # The text after EVAL and before the "*/" in
            # the comment is assigned to "code".
      if [regexp "/\\* EVAL: *(.*)\\*/" $line all code] {
         dbreak $fname\#$bpline -e $code 
         continue
      }
   
            # Look for a multiline eval point.
      if [regexp "/\\* EVAL: *(.*)" $line all code] {
            # Append lines to "code".
         while {[gets $fsource interiorline] != -1} {
            incr lineno
   



Seeing the CLI at Work / Automatically Setting Breakpoints  439

            # Tabs will confuse dbreak.
            regsub -all \t $interiorline \
                  "  " interiorline
   
            # If "*/" is found, add the text to "code", 
            # then leave the loop. Otherwise, add the 
            # text, and continue looping.
            if [regexp "(.*)\\*/" $interiorline \
                  all interiorcode]{
               append code \n $interiorcode
               break
            } else {
               append code \n $interiorline
            }
         }
         dbreak $fname\#$bpline -e $code 
         continue
      }
            # Look for a breakpoint.
      if [regexp "/\\* STOP: .*" $line] {
         dbreak $fname\#$bpline 
         continue
      }
            # Look for a command to be executed by Tcl.
      if [regexp "/\\* *CMD: *(.*)\\*/" $line all cmd] {
         puts "CMD: [set cmd]"
         eval $cmd 
      }
   }
   close $fsource
}

The only similarity between this macro and the previous three is that almost all of the statements are Tcl. The only 
purely CLI commands are the instances of the dbreak command that set eval points and breakpoints. 

The following excerpt from a larger program shows how to embed comments in a source file that is read by the 
make_actions macro:
...
struct struct_bit_fields_only {
   unsigned f3 : 3;
   unsigned f4 : 4;
   unsigned f5 : 5;
   unsigned f20 : 20;
   unsigned f32 : 32;
} sbfo, *sbfop = &sbfo;
...
int main()
{



Seeing the CLI at Work / Automatically Setting Breakpoints  440

   struct struct_bit_fields_only *lbfop = &sbfo;
...
   int i;
   int j;

   sbfo.f3 = 3;
   sbfo.f4 = 4;
   sbfo.f5 = 5;
   sbfo.f20 = 20;
   sbfo.f32 = 32;
...
   /* TEST: Check to see if we can access all the 
      values */
   i=i;   /* STOP: */
   i=1;   /* EVAL: if (sbfo.f3 != 3) $stop; */
   i=2;   /* EVAL: if (sbfo.f4 != 4) $stop; */
   i=3;   /* EVAL: if (sbfo.f5 != 5) $stop; */
   ...
   return 0;
}

The make_actions macro reads a source file one line at a time. As it reads these lines, the regular expressions 
look for comments that begin with /* STOP, /* EVAL, and /* CMD. After parsing the comment, it sets a break-
point at a stop line, an eval point at an eval line, or executes a command at a cmd line. 

Using eval points can be confusing because eval point syntax differs from that of Tcl. In this example, the $stop 
function is built into the CLI. Stated differently, you can end up with Tcl code that also contains C, C++, Fortran, 
and TotalView functions, variables, and statements. Fortunately, you only use this kind of mixture in a few places 
and you’ll know what you’re doing.



     441      

PART IV  

Advanced Tools and 
Customization

This part discusses tools and configurations that are either specific to a particular environment or setup, or 
that are used only in advanced customizations or other non-routine ways.

Chapter 18, “Setting Up Remote Debugging Sessions”
When you are debugging a program that has processes executing on a remote computer, TotalView launches 
server processes for these remote processes. Usually, you don’t need to know much about this. The primary fo-
cus of this chapter is what to do when you have problems.

Chapter 19, “Setting Up MPI Debugging Sessions”
Setting up an MPI debugging session may require special startup or environment configuration. This chapter 
details any non-default configuration information for individual platforms.
Debugging other kinds of parallel programs is discussed in the next chapter.

Chapter 20, “Setting Up Parallel Debugging Sessions”
You can debug programs created using many different parallel environments, such as OpenMP, SHMEM, Global 
Arrays, UPC, CAF, and the like. This chapter discusses how to set up these environments.

Chapter 21, “Group, Process, and Thread Control”
In a multi-process, multi-threaded program, you may need to finely control execution. This chapter discusses 
the TotalView process/thread model, how to direct a command to a specific process or thread, and how to cre-
ate custom groups of processes.

Chapter 22, “Scalability in HPC Computing Environments”
When working in an HPC environment, you can configure TotalView for maximum scalability, including the use of 
MRNet, a tree-based overlay network that supports scalable communication.



Setting Up Remote Debugging Sessions     442      

Chapter 18  

Setting Up Remote 
Debugging Sessions

About Remote Debugging
Debugging a remote process with TotalView is similar to debugging a native process, with these primary 
differences:

• The remote server hosting the processes to debug must be running the TotalView Server 
process tvdsvr, automatically launched by TotalView in most cases.

• TotalView performance depends on your network’s performance. If the network is overloaded, 
debugging can be slow.

NOTE >> You cannot debug remote processes using TotalView Individual.

TotalView can automatically launch tvdsvr either: 

• Independently on each remote host, called single-process server launch.

• As a bulk job, launching all remote processes at the same time, called bulk server launch.

Because TotalView can automatically launch tvdsvr, programs that launch remote processes rarely require 
any special handling. When using TotalView, it doesn’t matter whether a process is local or remote.

NOTE >> When debugging programs remotely, the architecture of the remote machine must be 
compatible with that of the machine running TotalView. See “Platform Issues when 
Remote Debugging” on page 443 for more information.



Setting Up Remote Debugging Sessions / About Remote Debugging  443

This chapter explains how to set up TotalView remote debugging sessions, detailed in the following sections:

• “Automatically Launching a Process on a Remote Server” on page 445. 

In most cases, you can easily perform this from the New Program dialog which launches the TotalView Server 
tvdsvr program automatically. If so, you will likely not need to read any of the following sections.

• “Troubleshooting Server Autolaunch” on page 446

Some systems have requirements that may prohibit Totalview’s default autolaunching capabilities. This sec-
tion discusses various ways to customize autolaunch options and commands.

• “Starting the TotalView Server Manually” on page 449

You can also just manually launch the tvdsvr program, discussed in this section.

• “TotalView Server Launch Options and Commands” on page 452

The File > Preferences dialog box features several ways to cusotmize both options and commands for single 
and bulk server launch. This section discusses these options as well as specific commands relevant to par-
ticular platforms.

• “Debugging Over a Serial Line” on page 460

TotalView supports debugging programs over a serial line as well as TCP/IP sockets, discussed in this section. 

Platform Issues when Remote Debugging
In general, when debugging programs remotely, the architecture of the remote machine must be compatible with 
that of the machine running TotalView. For example, you cannot perform remote debugging on a 64-bit Linux sys-
tem if you launch TotalView from a 32-bit Linux system. In addition, the operating systems must also be 
compatible. 

However, TotalView supports several forms of heterogeneous debugging in which the operating system and/or 
architecture differ. For example, from a Linux x86-64 session, you can debug remote processes on Linux Power. 



Setting Up Remote Debugging Sessions / About Remote Debugging  444

This table shows supported combinations:

You must install TotalView for each host and target platform combination being debugged.

NOTE >> The path to TotalView must be identical on the local and all remote systems so that TotalView 
can find the tvdsvr program.

TotalView assumes that you launch tvdsvr using ssh -x. If ssh is unavailable, set the TVDSVRLAUNCHCMD envi-
ronment variable to the command that you use to remotely access the remote system. 

NOTE >> If the default single-process server launch procedure meets your needs and you’re not experi-
encing any problems accessing remote processes from TotalView, you probably do not need 
the information in this chapter. If you do experience a problem launching the server, check 
that the tvdsvr process is in your path.

Host System Target System

Linux x86-64 Linux x86

Linux x86-64

Linux Power 32

Linux Power 64

Cray XT

Linux x86 Linux x86

Linux Power 32

Linux Power 64

Linux Power 64 Linux Power 32

Linux Power 64

Blue Gene



Setting Up Remote Debugging Sessions / Automatically Launching a Process on a Remote Server  445

Automatically Launching a Process on a 
Remote Server 
In most cases, loading a process to debug on a remote server is no different than debugging a process on a local 
host. You can add or select a remote host from these debugging sessions:

• File > Debug New Program 

• File > Attach to a Running Program 

• File > Debug Core File or Replay Recording File

After you have set up a debug session, TotalView can automatically launch the process tvdsvr on the remote 
computer.  For more information, see “Adding a Remote Host” on page 111. If this simple procedure does not 
work for you, your system may not support TotalView’s default autolaunching. You can disable autolaunch or 
reconfigure some of your settings. See “Troubleshooting Server Autolaunch” on page 446.



Setting Up Remote Debugging Sessions / Troubleshooting Server Autolaunch  446

Troubleshooting Server Autolaunch
Some systems do not support TotalView’s default autolaunch behavior, requiring you to create your own auto-
launch command or requiring special permissions or some other custom configuration. 

If autolaunching of the TotalView Server is not working, you can 

• Disable autolaunch and start the TotalView server manually (“Starting the TotalView Server 
Manually” on page 449)

• Customize either server options or commands, discussed here.

This section discusses how to edit the remote shell command as well as the arguments provided to TotalView at 
remote launch. For more information on the commands and options in general, see “TotalView Server Launch 
Options and Commands” on page 452 and tvdsvr in the TotalView for HPC Reference Guide. 

Changing the Remote Shell Command
Some environments require you to create your own autolaunching command, for example, if your remote shell 
command doesn’t provide the security that your site requires.

If you create your own autolaunching command, use the tvdsvr -callback and -set_pw command-line options.

If you’re not sure whether ssh (or rsh on Sun SPARC computers) works at your site, try typing “ssh -x hostname” (or 
“rsh hostname”) from an xterm window, where hostname is the name of the host on which you want to invoke the 
remote process. If the process doesn’t just run and instead this command prompts you for a password, add the 
host name of the host computer to your .rhosts file on the target computer.

For example, you can use the following combination of the echo and telnet commands:
echo %D %L %P %V; telnet %R

After telnet establishes a connection to the remote host, you can use the cd and tvdsvr commands directly, 
using the values of %D, %L, %P, and %V that were displayed by the echo command; for example:
cd directory 
tvdsvr -callback hostname:portnumber -set_pw password

If your computer doesn’t have a command for invoking a remote process, TotalView can’t autolaunch the tvdsvr 
and you must disable both single server and bulk server launches. 

For information on the ssh and rsh commands, see the manual page supplied with your operating system.

For more information on editing server launch commands, see “Customizing Server Launch Commands” on 
page 455. 



Setting Up Remote Debugging Sessions / Troubleshooting Server Autolaunch  447

Changing Arguments
You can also change the command-line arguments passed to ssh (TotalView passes -x by default), or whatever 
command you use to invoke the remote process.

For example, if the host computer doesn’t mount the same file systems as your target computer, tvdsvr might 
need to use a different path to access the executable being debugged. If this is the case, you can change %D to 
the directory used on the target computer.

If the remote executable reads from standard input, you cannot use the -n option with your remote shell com-
mand because the remote executable receives an EOF immediately on standard input. If you omit the -n 
command-line option, the remote executable reads standard input from the xterm in which you started 
TotalView. This means that you should invoke tvdsvr from another xterm window if your remote program reads 
from standard input. The following is an example:
%C %R "xterm -display hostname:0 -e tvdsvr \
    -callback %L -working_directory %D -set_pw %P \
    -verbosity %V"

Each time TotalView launches tvdsvr, a new xterm opens to handle standard input and output for the remote 
program.

Autolaunching Sequence
This section describes the actions involved in autolaunching. This information is provided to help you trouble-
shoot autolaunching issues.

1. With the File > Debug New Program or dload commands, specify the host name of the computer on 
which you want to debug a remote process, as described in “Starting the TotalView Server Manually” on 
page 449.

2. TotalView begins listening for incoming connections.

3. TotalView launches the tvdsvr process with the server launch command. (See “Setting the Single-Process 
Server Launch Command” on page 455.)

4. The tvdsvr process starts on the remote computer.

5. The tvdsvr process establishes a connection with TotalView.



Setting Up Remote Debugging Sessions / Troubleshooting Server Autolaunch  448

Figure 229 illustrates a single server launch. The numbers in the diagram refer to the numbers in the preceding 
procedure.

If you have more than one server process, Figure 230 shows what your environment might look like:

Figure 229 – Launching tvdsvr

Figure 230 – Multiple tvdsvr Processes

TotalView

Remote 
Executable

5

2

3

4

Network

2. Listens
3. Invokes commands
4. tvdsvr starts
5.    Makes connection

Process 1

Process 2

Process 3

Process 4

Main Process

TotalView



Setting Up Remote Debugging Sessions / Starting the TotalView Server Manually  449

Starting the TotalView Server Manually
In some cases, TotalView is unable to automatically launch the TotalView Server on the remote host, and you will 
need to manually start the server.

NOTE >> You cannot debug remote processes using TotalView Individual.

If TotalView can’t automatically launch tvdsvr, start it manually:

• Disable both bulk launch and single server launch, set in the File > Preferences dialog box 

• Enter a host name and port number into the relevant Sessions Manager window (see 
“Automatically Launching a Process on a Remote Server” on page 445 for where this is located 
on the various dialogs). This disables autolaunching for the current connection.

If you disable autolaunching, you must start tvdsvr before you load a remote executable or attach to a remote 
process. 

For information on all the ways to start TotalView, see “Starting TotalView” on page 87.

NOTE >> Some parallel programs — MPI programs, for example — make use of a starter program such 
as poe or mpirun to create all the parallel jobs on your nodes. TotalView lets you start these 
programs in two ways. One requires that the starter program be under TotalView control, and 
the other does not. In the first case, enter the name of the starter program on the command 
line. In the other, enter program information into the File > Debug New Parallel Program or 
Process > Startup Parameter dialog boxes. Programs started using these dialog boxes do not 
use the information you set for single-process and bulk server launching. 

Here are the steps in detail to manually start tvdsvr:

1. Disable both bulk launch and single server launch, set in the File > Preferences dialog box from either the 
Root Window or the Process Window.

NOTE >> Bulk and single server launch options are discussed in detail in “Server Launch 
Options” on page 452. 

— To disable bulk launch, select the Bulk Launch Tab and clear the Enable debug server bulk 
launch check box.



Setting Up Remote Debugging Sessions / Starting the TotalView Server Manually  450

— To disable single server bulk launch, select the Launch Strings Tab and clear the Enable sin-
gle debug server launch check box.

2. Log in to the remote computer and start tvdsvr:

tvdsvr -server

If you don’t (or can’t) use the default port number (4142), use the -port or -search_port options. For details, 
see “TotalView Debugger Server (tvdsvr) Command Syntax” in the TotalView for HPC Reference Guide.

After printing the port number and the assigned password, the server begins listening for connections. Be 
sure to note the password, which must be entered in Step 3.

NOTE >> Using the -server option is not secure, as other users could connect to your tvdsvr 
process and use your UNIX UID. Consequently, this command-line option must 
be explicitly enabled. (Your system administrator usually does this.) For details, 
see -server in the “TotalView Command Syntax” chapter of the TotalView for HPC Ref-
erence Guide.

3. From the Root Window, select the File > Debug New Program command (or any other type of debugging 
session). Enter the program’s name in the File Name field and the hostname:portnumber in the Debug On 
Host > Add Host dialog, and then select OK.

TotalView tries to connect to tvdsvr.

4. Enter the password at the prompt.

CLI: dset TV::bulk_launch_enabled

CLI: dset TV::server_launch_enabled

CLI: dload executable -r hostname



Setting Up Remote Debugging Sessions / Starting the TotalView Server Manually  451

Figure 231 summarizes the steps for starting tvdsvr manually.

Figure 231 – Manual Launching of Debugger Server

TotalView

Remote 
Executable

1

2

Network

1.    Makes connection
2. Listens



Setting Up Remote Debugging Sessions / TotalView Server Launch Options and Commands  452

TotalView Server Launch Options and 
Commands

Server Launch Options

Setting Single-Process Server Launch Options

Use the Enable single debug server launch check box in the Launch Strings Page of the File > Preferences dia-
log box to disable autolaunching, change the command that TotalView uses to launch remote servers, and alter 
the amount of time TotalView waits when establishing connections to a tvdsvr process. (The Enable Visualizer 
launch and Source Code Editor areas are not used when setting launch options.) 

Enable single debug server launch
Independently launches the tvdsvr on each remote system.

Figure 232 – File > Preferences: Launch Strings Page

CLI: dset TV::server_launch_enabled



Setting Up Remote Debugging Sessions / TotalView Server Launch Options and Commands  453

NOTE >>   Even if you have enabled bulk server launch, you probably also want to 
enable this option. TotalView uses this launch string after you start TotalView and 
when you name a host in the File > Debug New Program dialog box or have used the -
remote command-line option. Disable single server launch only when it can’t work.

Command The command to use when independently launching tvdsvr. For information on this com-
mand and its options, see “TotalView Server Launch Options and Commands” on 
page 452.

Timeout The time TotalView waits for a connection after automatically launching the tvdsvr process. 
The default is 30 seconds. If the connection isn’t made in this time, TotalView times out. Change 
the length of time by entering a value from 1 to 3600 seconds (1 hour).

If you notice that TotalView fails to launch tvdsvr (as shown in the xterm window from which 
you started TotalView) before the timeout expires, click Yes in the Question dialog box that 
appears. 

Defaults Reverts to the default settings.

Clicking the Defaults button also discards all changes you made using a CLI variable. TotalView 
doesn’t immediately change settings after you click the Defaults button; instead, it waits until 
you click the OK button.

Setting Bulk Launch Window Options

Use the File > Preferences Bulk Launch Page to change the bulk launch command, disable bulk launch, and alter 
connection timeouts that TotalView uses when it launches tvdsvr programs.

CLI: dset TV::server_launch_string

CLI: dset TV::server_launch_timeout

CLI: dset TV::bulk_launch_enabled



Setting Up Remote Debugging Sessions / TotalView Server Launch Options and Commands  454

Enable debug server bulk launch
Uses the bulk launch procedure when launching the tvdsvr. By default, bulk launch is dis-
abled; that is, TotalView uses its single-server launch procedure. 

Command Command used to launch tvdsvr if bulk launch is enabled. For information on this command 
and its options, see “Setting the Bulk Server Launch Command” on page 456 and “IBM RS/
6000 AIX” on page 458.

Temp File 1 Prototype
Temp File 2 Prototype

Specifies the contents of temporary files that the bulk launch operation uses. For information 
on these fields, see “TotalView Debugger Server (tvdsvr) Command Syntax” in the TotalView for 
HPC Reference Guide.

Figure 233 – File > Preferences: Bulk Launch Page

CLI: dset TV::bulk_launch_string

CLI: dset TV::bulk_launch_tmpfile1_header_line
dset TV::bulk_launch_tmpfile1_host_lines
dset TV::bulk_launch_tmpfile1_trailer_line
dset TV::bulk_launch_tmpfile2_header_line
dset TV::bulk_launch_tmpfile2_host_lines
dset TV::bulk_launch_tmpfile2_trailer_line



Setting Up Remote Debugging Sessions / TotalView Server Launch Options and Commands  455

Connection Timeout (in seconds)
Sets the connection timeout TotalView uses after launching tvdsvr processes. The default is 
20 seconds for responses from the process (the Base time) plus 10 seconds for each server 
process being launched. 

A Base timeout value can range from 1 to 3600 seconds (1 hour). The incremental Plus value 
is from 1 to 360 seconds (6 minutes). See the online Help for information on setting these 
values.

If you notice that TotalView fails to launch tvdsvr (as shown in the xterm window from which 
you started TotalView) before the timeout expires, select Yes in the Question dialog box that 
appears.

Defaults Returns to the default settings.

Clicking Defaults also discards any changes made using a CLI variable. TotalView doesn’t im-
mediately change settings after you click the Defaults button; instead, it waits until you click 
the OK button.

Customizing Server Launch Commands
If autolaunch is not working on your system, you may wish to check the default commands set for launching the 
TotalView Server on your system. You can edit customize these for both single and bulk server launch. 

Setting the Single-Process Server Launch Command

You can customize the default command string that TotalView uses when it automatically launches TotalView 
server for a single process. This string is accessible via the File >Preferences > Launch Strings dialog in its Com-
mand text box:

This is the default command string:

%C %R -n "%B/tvdsvr -working_directory %D -callback %L \
-set_pw %P -verbosity %V %F" 

CLI: dset TV::bulk_launch_base_timeout
dset TV::bulk_launch_incr_timeout



Setting Up Remote Debugging Sessions / TotalView Server Launch Options and Commands  456

where:

%C Expands to the name of the server launch command to use, which is the value of 
TV::launch_command. On most platforms, this is ssh -x. On Sun SPARC computers, it is rsh. 
If the TVDSVRLAUNCHCMD environment variable exists, TV::launch_command is initial-
ized to its value. 

%R Expands to the host name of the remote computer specified in the File > Debug New Pro-
gram (and other Session Manager dialog boxes) or dload commands.

%B Expands to the bin directory in which tvdsvr is installed.

-n Tells the remote shell to read standard input from 
/dev/null; that is, the process immediately receives an EOF (End-Of-File) signal.

-working_directory %D
Makes %D the directory to which TotalView connects. %D expands to the absolute path name 
of the directory.

When you use this option, the host computer and the target computer must mount identical 
file systems. That is, the path name of the directory to which TotalView connects must be iden-
tical on host and target computers.

After changing to this directory, the shell invokes the tvdsvr command.

You must make sure that the tvdsvr directory is in your path on the remote computer.

-callback %L Establishes a connection from tvdsvr to TotalView. %L expands to the host name and TCP/IP 
port number (hostname:portnumber) on which TotalView is listening for connections from 
tvdsvr.

-set_pw %P Sets a 64-bit password. TotalView must supply this password when tvdsvr establishes a con-
nection with it. TotalView expands %P to the password that it automatically generates. For 
more information on this password, see “TotalView Debugger Server (tvdsvr) Command Syn-
tax” in the TotalView for HPC Reference Guide.

-verbosity %V Sets the verbosity level of the tvdsvr. %V expands to the current verbosity setting. For infor-
mation on verbosity, see the “Variables” chapter within the TotalView for HPC Reference Guide.

%F Contains the tracer configuration flags that need to be sent to tvdsvr processes. These are 
system-specific startup options that the tvdsvr process needs.

You can also use the %H option with this command. See “Setting the Bulk Server Launch Command” on 
page 456 for more information.

For information on the complete syntax of the tvdsvr command, see “TotalView Debugger Server (tvdsvr) Com-
mand Syntax” in the TotalView for HPC Reference Guide.

Setting the Bulk Server Launch Command

The commands for bulk server launch settings vary according to platform.



Setting Up Remote Debugging Sessions / TotalView Server Launch Options and Commands  457

SGI XE and SGI ICE

The bulk server launch string is as follows:

array tvdsvr -working_directory %D -callback_host %H \
-callback_ports %L -set_pws %P -verbosity %V %F

where:

-working_directory %D
Specifies the directory to which TotalView connects. TotalView expands %D to this directory’s 
absolute path name.

When you use this option, the host computer and the target computer must mount identical 
file systems. That is, the path name of the directory to which TotalView connects must be iden-
tical on the host and target computers.

After performing this operation, tvdsvr starts executing.

-callback_host %H
Names the host upon which TotalView makes this callback. TotalView expands %H to the host 
name of the computer on which TotalView is running. 

-callback_ports %L
Names the ports on the host computers that TotalView uses for callbacks. TotalView expands 
%L to a comma-separated list of host names and TCP/IP port numbers (hostname:portnum-
ber,hostname:portnumber,...) on which TotalView is listening for connections.

-set_pws %P Sets 64-bit passwords. TotalView must supply these passwords when tvdsvr establishes the 
connection with it. %P expands to a comma-separated list of 64-bit passwords that TotalView 
automatically generates. For more information, see “TotalView Debugger Server (tvdsvr) Com-
mand Syntax” in the TotalView for HPC Reference Guide.

-verbosity %V Sets the tvdsvr verbosity level. TotalView expands %V to the current verbosity setting.For in-
formation on verbosity, see the “Variables” chapter within the TotalView for HPC Reference 
Guide.

You must enable the use of the array command by tvdsvr by adding the following information to the /usr/lib/
array/arrayd.conf file:
#
# Command that allows invocation of the TotalView
# Debugger server when performing a Bulk Server Launch.
#
command tvdsvr
    invoke /opt/totalview/bin/tvdsvr %ALLARGS
    user %USER
    group %GROUP
    project %PROJECT



Setting Up Remote Debugging Sessions / TotalView Server Launch Options and Commands  458

If your code is not in /opt/totalview/bin, you will need to change this information. For information on the syntax 
of the tvdsvr command, see “TotalView Debugger Server (tvdsvr) Command Syntax” in the TotalView for HPC Refer-
ence Guide.

Cray XT Series

The following is the bulk server launch string for Cray XT series computers:

svrlaunch %B/tvdsvrmain%K -verbosity %V %F %H \
%t1 %I %K

where the options unique to this command are:

%B The bin directory where tvdsvr resides.

%K The number of servers that TotalView launches.

-verbosity %V Sets the verbosity level of the tvdsvr. %V expands to the current verbosity setting. For infor-
mation on verbosity, see the “Variables” chapter within the TotalView for HPC Reference Guide.

%F Contains the “tracer configuration flags” that need to be sent to tvdsvr processes. These are 
system-specific startup options that the tvdsvr process needs.

%H Expands to the host name of the machine upon which TotalView is running.

%t1 A temporary file created by TotalView that contains a list of the hosts on which tvdsvr runs. 
This is the information you enter in the Temp File 1 Prototype field on the Bulk Launch Page.

%I Expands to the pid of the MPI starter process. For example, it can contain mpirun, aprun, etc. 
It can also be the process to which you manually attach. If no pid is available, %I expands to 0.

IBM RS/6000 AIX

The following is the bulk server launch string on an IBM RS/6000 AIX computer:

%C %H -n “poe -pgmmodel mpmd -resd no -tasks_per_node 1\
-procs %N -hostfile %t1 -cmdfile %t2 %F” 

where the options unique to this command are:

%N The number of servers that TotalView launches.

%t1 A temporary file created by TotalView that contains a list of the hosts on which tvdsvr runs. 
This is the information you enter in the Temp File 1 Prototype field on the Bulk Launch Page.

TotalView generates this information by expanding the %R symbol. This is the information you 
enter in the Temp File 2 Prototype field on the Bulk Launch Page. 

%t2 A file that contains the commands to start the tvdsvr processes on each computer. TotalView 
creates these lines by expanding the following template:

tvdsvr -working_directory %D \
    -callback %L -set_pw %P \



Setting Up Remote Debugging Sessions / TotalView Server Launch Options and Commands  459

    -verbosity %V 

Information on the options and expansion symbols is in the “TotalView Debugger Server (tvdsvr) Syntax” chapter 
of the TotalView for HPC Reference Guide.



Setting Up Remote Debugging Sessions / Debugging Over a Serial Line  460

Debugging Over a Serial Line
TotalView supports debugging programs over a serial line as well as TCP/IP sockets. However, if a network connec-
tion exists, use it instead to improve performance.

You need two connections to the target computer: one for the console and the other for TotalView. TotalView can-
not share a serial line with the console. 

Figure 234 illustrates a TotalView session using a serial line. In this example, TotalView is communicating over a 
dedicated serial line with a tvdsvr running on the target host. A VT100 terminal is connected to the target host’s 
console line, allowing you to type commands on the target host.

Starting the TotalView Debugger Server
To start a debugging session over a serial line, first start the tvdsvr from the command line.

Using the console connected to the target computer, start tvdsvr and enter the name of the serial port device on 
the target computer. Use the following syntax:

tvdsvr -serial device[:baud=num]

where: 

device The name of the serial line device.

num The serial line’s baud rate. If you omit the baud rate, TotalView uses a default value of 38400.

For example:
tvdsvr -serial /dev/com1:baud=38400

After it starts, tvdsvr waits for TotalView to establish a connection. 

Figure 234 – Debugging Session Over a Serial Line

TotalView

Remote 
Executable

Network

Serial Line

VT100

Console 
Line



Setting Up MPI Debugging Sessions     461      

Chapter 19  

Setting Up MPI 
Debugging Sessions

This chapter discusses how to set up TotalView MPI debugging sessions for various environments and special 
use cases, as well as some application-specific debugging tasks. In most cases, you can just use the basic pro-
cedure, discussed in “Starting MPI Programs Using File > Debug New Parallel Program” on page 463.

For information on setting up non-MPI parallel programs, see “Setting Up Parallel Debugging Sessions” on 
page 492.

NOTE >> For TotalView Individual, all your MPI processes must execute on the computer on which 
you installed TotalView. Further, you are limited to no more than 16 processes and 
threads.

This chapter describes the basics on setting up to debug an MPI system (“Debugging MPI Programs” on 
page 463), as well as the following MPI systems:

• “MPICH Applications” on page 468

• “MPICH2 Applications” on page 472

• “Cray MPI Applications” on page 475

• “IBM MPI Parallel Environment (PE) Applications” on page 476

• “IBM Blue Gene Applications” on page 480

• “Open MPI Applications” on page 482

• “QSW RMS Applications” on page 483

In addition, it includes these topics specific to MPI applications:



Setting Up MPI Debugging Sessions /   462

• “Starting MPI Issues” on page 489

• “Using ReplayEngine with Infiniband MPIs” on page 490

RELATED TOPICS
Tips for debugging parallel applications “Debugging Strategies for 

Parallel Applications” on page 398

Tools for displaying an MPI Message Queue “MPI Display Tools” on page 405

Creating startup profiles for environments not defined by 
TotalView.  These definitions will appear in the Additional 
Starter Arguments field of the Debug New Parallel Program 
dialog box. 

"MPI Startup" in the TotalView for HPC Refer-
ence Guide



Setting Up MPI Debugging Sessions / Debugging MPI Programs  463

Debugging MPI Programs

Starting MPI Programs
MPI programs use a starter program such as mpirun to start your program. You can start these MPI programs in 
two ways: with the starter program under TotalView control, or using the GUI, in which case the starter program is 
not under TotalView control.  In the first case, you will enter the name of the starter program on the command 
line. In the latter, you will enter program information into the File > Debug New Parallel Program or Process > 
Startup Parameters dialog boxes. 

NOTE >> Programs started using GUI dialog boxes have some limitations: program launch does not use 
the information you set for single-process and bulk server launching, and you cannot use the 
Attach Subset command.

Starting MPI programs using the dialog boxes is the recommended method. This method is described in the next 
section. Starting using a starter program is described in various discussions throughout this chapter.

Starting MPI Programs Using File > Debug New Parallel Program 
In many cases, the way in which you invoke an MPI program within TotalView control differs little from discipline to 
discipline. If you invoke TotalView from the command line without an argument, TotalView displays its Start a 
Debugging Session  dialog box. This is the same as choosing File > New Debugging Session from either the Root 
or Process windows.



Setting Up MPI Debugging Sessions / Debugging MPI Programs  464

From here, select A new parallel program. Alternatively, if TotalView is already running, choose File > Debug 
New Parallel Program from the Root or Process window. Both launch the Parallel Program Session dialog.

Figure 235 – Start a Debugging Session dialog



Setting Up MPI Debugging Sessions / Debugging MPI Programs  465

The Parallel Program Session Dialog

1. Enter a session name in the Session Name field.

NOTE >> Any previously entered sessions of the same type are available from the Session 
Name dropdown box. Once selected, you can change any session properties and 
start your debug session. See “Editing or Starting New Sessions in a Sessions 
Window” on page 121.

2. Select the Parallel system, the number of Tasks, and Nodes. 

3. (Optional) Enter any additional arguments required by the starter process into the Arguments area. Note 
that these arguments are those sent to a starter process such as mpirun or poe. They are not arguments 
sent to your program.

4. Select the Program Details tab to enter the file name of the program being debugged and any arguments 
to be sent to your program.

Figure 236 – Parallel Program Session dialog



Setting Up MPI Debugging Sessions / Debugging MPI Programs  466

5. Select any optional settings:

— Select Debug Options to enable reverse, memory or CUDA debugging. See “Options: 
Reverse Debugging, Memory Debugging, and CUDA” on page 113.

— Select the Environment tab to add or initialize environment variables or customize standard 
I/O. See “Setting Environment Variables and Altering Standard I/O” on page 115.

— Select the Preview Launch tab to view the launch string TotalView will use to open your 
debugging session.



Setting Up MPI Debugging Sessions / Debugging MPI Programs  467

6. Select the Start Session button to launch the TotalView.

Once created, a session named my_foo can be quickly launched later using the 
-load command line option, like so:
totalview -load_session my_foo



Setting Up MPI Debugging Sessions / MPICH Applications  468

MPICH Applications

NOTE >> In many cases, you can bypass the procedure described in this section. For more information, 
see “Debugging MPI Programs” on page 463.

To debug Message Passing Interface/Chameleon Standard (MPICH) applications, you must use MPICH version 
1.2.3 or later on a homogeneous collection of computers. If you need a copy of MPICH, you can obtain it at no 
cost from Argonne National Laboratory at http://www.mpich.org/downloads/. (We strongly urge that you use a 
later version of MPICH. The TotalView Platforms and Systems Requirements document has information on versions 
that work with TotalView.)

The MPICH library should use the ch_p4, ch_p4mpd, ch_shmem, ch_lfshmem, or ch_mpl devices. 

• For networks of workstations, the default MPICH library is ch_p4. 

• For shared-memory SMP computers, use ch_shmem. 

• On an IBM SP computer, use the ch_mpl device. 

The MPICH source distribution includes all these devices. Choose the one that best fits your environment when 
you configure and build MPICH. 

NOTE >> When configuring MPICH, you must ensure that the MPICH library maintains all of the infor-
mation that TotalView requires. This means that you must use the  -enable-debug option with 
the MPICH configure command. (Versions earlier than 1.2 used the --debug option.) In addi-
tion, the TotalView Release Notes contains information on patching your MPICH version 1.2.3 
distribution.

For more information on MPICH applications, see “MPICH Debugging Tips” on page 411.

Starting TotalView on an MPICH Job
Before you can bring an MPICH job under TotalView’s control, both TotalView and the tvdsvr must be in your 
path, most easily set in a login or shell startup script.

For version 1.1.2, the following command-line syntax starts a job under TotalView control: 

mpirun [ MPICH-arguments ] -tv program [ program-arguments ]

For example:
mpirun -np 4 -tv sendrecv 

http://www.mpich.org/downloads/


Setting Up MPI Debugging Sessions / MPICH Applications  469

The MPICH mpirun command obtains information from the TOTALVIEW environment variable and then uses this 
information when it starts the first process in the parallel job. 

For Version 1.2.4, the syntax changes to the following:

mpirun -dbg=totalview [ other_mpich-args ] program [ program-args ]

For example:
mpirun -dbg=totalview -np 4 sendrecv 

In this case, mpirun obtains the information it needs from the -dbg command-line option.

In other contexts, setting this environment variable means that you can use different versions of TotalView or 
pass command-line options to TotalView. 

For example, the following is the C shell command that sets the TOTALVIEW environment variable so that mpi-
run passes the -no_stop_all option to TotalView: 
setenv TOTALVIEW "totalview -no_stop_all" 

TotalView begins by starting the first process of your job, the master process, under its control. You can then set 
breakpoints and begin debugging your code. 

On the IBM SP computer with the ch_mpl device, the mpirun command uses the poe command to start an MPI 
job. While you still must use the MPICH mpirun (and its -tv option) command to start an MPICH job, the way you 
start MPICH differs. For details on using TotalView with poe, see “Starting TotalView on a PE Program” on 
page 477. 

Starting TotalView using the ch_p4mpd device is similar to starting TotalView using poe on an IBM computer or 
other methods you might use on Sun and HP platforms. In general, you start TotalView using the totalview com-
mand, with the following syntax;

totalview mpirun [ totalview_args ] -a [ mpich-args ] program [ program-args ]

As your program executes, TotalView automatically acquires the processes that are part of your parallel job as 
your program creates them. Before TotalView begins to acquire them, it asks if you want to stop the spawned pro-
cesses. If you click Yes, you can stop processes as they are initialized. This lets you check their states or set 
breakpoints that are unique to the process. TotalView automatically copies breakpoints from the master process 
to the slave processes as it acquires them. Consequently, you don’t have to stop them just to set these 
breakpoints.

If you’re using the GUI, TotalView updates the Root Window to show these newly acquired processes. For more 
information, see “Attaching to Processes Tips” on page 401.

CLI: totalviewcli mpirun [ totalview_args ] \
-a [ mpich-args ] program [ program-args ]



Setting Up MPI Debugging Sessions / MPICH Applications  470

Attaching to an MPICH Job 
You can attach to an MPICH application even if it was not started under TotalView control. To attach to an MPICH 
application: 

1. Start TotalView. 

 Select A running program (attach) on the Start a Debugging Session dialog. A list of processes running on 
the selected host displays in the Attach to running program(s) dialog.

2. Attach to the first MPICH process in your workstation cluster by diving into it. 

3. On an IBM SP with the ch_mpi device, attach to the poe process that started your job. For details, see 
“Starting TotalView on a PE Program” on page 477. 

Normally, the first MPICH process is the highest process with the correct program name in the process list. 
Other instances of the same executable can be:

— The p4 listener processes if MPICH was configured with ch_p4.

— Additional slave processes if MPICH was configured with ch_shmem or ch_lfshmem.

— Additional slave processes if MPICH was configured with ch_p4 and has a file that places mul-
tiple processes on the same computer.

4. After attaching to your program’s processes, a dialog launches where you can choose to also attach to slave 
MPICH processes. If you do, press Return or choose Yes. If you do not, choose No.

CLI: dattach executable pid



Setting Up MPI Debugging Sessions / MPICH Applications  471

If you choose Yes, TotalView starts the server processes and acquires all MPICH processes. 

As an alternative, you can use the Group > Attach Subset command to predefine what TotalView should 
do. For more information, see “Attaching to Processes Tips” on page 401.

NOTE >> If you are using TotalView Individual, all your MPI processes must execute on the computer on 
which you installed TotalView. 

In some situations, the processes you expect to see might not exist (for example, they may crash or exit). 
TotalView acquires all the processes it can and then warns you if it cannot attach to some of them. If you attempt 
to dive into a process that no longer exists (for example, using a message queue display), you are alerted that the 
process no longer exists. 

Using MPICH P4 procgroup Files
If you’re using MPICH with a P4 procgroup file (by using the -p4pg option), you must use the same absolute path 
name in your procgroup file and on the mpirun command line. For example, if your procgroup file contains a 
different path name than that used in the mpirun command, even though this name resolves to the same exe-
cutable, TotalView assumes that it is a different executable, which causes debugging problems.

The following example uses the same absolute path name on the TotalView command line and in the procgroup 
file:
% cat p4group 
local 1 /users/smith/mympichexe
bigiron 2 /users/smith/mympichexe
% mpirun -p4pg p4group -tv /users/smith/mympichexe 

In this example, TotalView does the following:

1. Reads the symbols from mympichexe only once.

2. Places MPICH processes in the same TotalView share group.

3. Names the processes mypichexe.0, mympichexe.1, mympichexe.2, and mympichexe.3.

If TotalView assigns names such as mympichexe<mympichexe>.0, a problem occurred and you need to com-
pare the contents of your procgroup file and mpirun command line.



Setting Up MPI Debugging Sessions / MPICH2 Applications  472

MPICH2 Applications

NOTE >> You should be using MPICH2 version 1.0.5p4 or higher. Earlier versions had problems that 
prevented TotalView from attaching to all the processes or viewing message queue data. 

Downloading and Configuring MPICH2
You can download the current MPICH2 version from: 

http://www.mpich.org/downloads/versions/ 

If you wish to use all of the TotalView MPI features, you must configure MPICH2. Do this by adding one of the fol-
lowing to the configure script that is within the downloaded information:

- -enable-debuginfo

or

- - -enable-totalview 

The configure script looks for the following file:

python2.x/config/Makefile 

It fails if the file is not there. 

The next steps are:

1. Run make 

2. Run make install 

This places the binaries and libraries in the directory specified by the optional - -prefix option. 

3. Set the PATH and LD_LIBRARY_PATH to point to the MPICH2 bin and lib directories. 

Starting TotalView Debugging on an MPICH2 Hydra Job
As of MPICH2 1.4.1, the default job type for MPICH2 is Hydra. If you are instead using MPD, see “Starting 
TotalView Debugging on an MPICH2 MPD Job” on page 473.

NOTE >> In many cases, you can bypass the procedure described in this section. For more information, 
see “Debugging MPI Programs” on page 463.

http://www.mpich.org/downloads/versions/


Setting Up MPI Debugging Sessions / MPICH2 Applications  473

Start a Hydra job as follows:

totalview -args mpiexec mpiexec-args program program-args 
You may not see sources to your program at first. If you do see the program, you can set break-
points. In either case, press the Go button to start your process. TotalView displays a dialog 
box when your program goes parallel that allows you to stop execution. (This is the default be-
havior. You can change it using the options within File >Preferences >Parallel page.)

Starting TotalView Debugging on an MPICH2 MPD Job
You must start the mpd daemon before starting an  MPICH2 MPI job.

NOTE >> As of MPICH2 1.4.1, the default job type is Hydra, rather than MPD, so if you are using the 
default, there is no need to start the daemon. See “Starting TotalView Debugging on an 
MPICH2 Hydra Job” on page 472.

Starting the MPI MPD Job with MPD Process Manager

To start the mpd daemon, use the mpdboot command.  For example:
mpdboot -n 4 -f hostfile 

where:

-n 4 The number of hosts on which you wish to run the daemon. In this example, the daemon runs 
on four hosts

-f hostfile Lists the hosts on which the application will run. In this example, a file named hostfile contains 
this list.

You are now ready to start debugging your application.

Starting an MPICH2 MPD Job

NOTE >> In many cases, you can bypass the procedure described in this section. For more information, 
see “Debugging MPI Programs” on page 463.

Start an MPICH2 MPD job in one of the following ways:

mpiexec mpi-args -tv program -a program-args
This command tells MPI to start TotalView. You must have set the TOTALVIEW environment vari-
able with the path to TotalView’s executable when you start a program using mpiexec. For ex-
ample:

    setenv TOTALVIEW \



Setting Up MPI Debugging Sessions / MPICH2 Applications  474

          /opt/totalview/bin/totalview
This method of starting TotalView does not let you restart your program without exiting To-
talView and you will not be able to attach to a running MPI job. 

totalview python -a `which mpiexec` \
-tvsu mpiexec-args program program-args 

This command lets you restart your MPICH2 job. It also lets you attach to a running MPICH2 job 
by using the Attach to a Running Program dialog box. You need to be careful that you at-
tach to the right instance of python as it is likely that a few instances are running. The one to 
which you want to attach has no attached children—child processes are indented with a line 
showing the connection to the parent. 

You may not see sources to your program at first. If you do see the program, you can set break-
points. In either case, press the Go button to start your process. TotalView displays a dialog 
box when your program goes parallel that allows you to stop execution. (This is the default be-
havior. You can change it using the options within File >Preferences >Parallel page.)

You will also need to set the TOTALVIEW environment variable as indicated in the previous 
method.



Setting Up MPI Debugging Sessions / Cray MPI Applications  475

Cray MPI Applications
In many cases, you can bypass the procedure described in this section. For more information, see “Debugging 
MPI Programs” on page 463

Specific information on debugging Cray MPI applications is located in our discussion of running TotalView on Cray 
platforms. See “Debugging Cray XT Applications” on page 499 for information.



Setting Up MPI Debugging Sessions / IBM MPI Parallel Environment (PE) Applications  476

IBM MPI Parallel Environment (PE) Applications

NOTE >> In many cases, you can bypass the procedure described in this section. For more information, 
see “Debugging MPI Programs” on page 463.

You can debug IBM MPI Parallel Environment (PE) applications on the IBM RS/6000 and SP platforms. 

To take advantage of TotalView’s ability to automatically acquire processes, you must be using release 3,1 or later 
of the Parallel Environment for AIX.

Topics in this section are:

• “Preparing to Debug a PE Application” on page 476

• “Starting TotalView on a PE Program” on page 477

• “Setting Breakpoints” on page 477

• “Starting Parallel Tasks” on page 478

• “Attaching to a PE Job” on page 478

Preparing to Debug a PE Application
The following sections describe what you must do before TotalView can debug a PE application. 

Using Switch-Based Communications

If you’re using switch-based communications (either IP over the switch or user space) on an SP computer, configure 
your PE debugging session so that TotalView can use IP over the switch for communicating with the TotalView 
Server (tvdsvr). Do this by setting the -adapter_use option to shared and the -cpu_use option to multiple, as 
follows:

• If you’re using a PE host file, add shared multiple after all host names or pool IDs in the host file.

• Always use the following arguments on the poe command line: 
-adapter_use shared -cpu_use multiple

If you don’t want to set these arguments on the poe command line, set the following environment variables 
before starting poe: 
setenv MP_ADAPTER_USE shared
setenv MP_CPU_USE multiple



Setting Up MPI Debugging Sessions / IBM MPI Parallel Environment (PE) Applications  477

When using IP over the switch, the default is usually shared adapter use and multiple cpu use; we recommend 
that you set them explicitly using one of these techniques. You must run TotalView on an SP or SP2 node. Since 
TotalView will be using IP over the switch in this case, you cannot run TotalView on an RS/6000 workstation.

Performing a Remote Login

You must be able to perform a remote login using the ssh command. You also need to enable remote logins by 
adding the host name of the remote node to the /etc/hosts.equiv file or to your .rhosts file.

When the program is using switch-based communications, TotalView tries to start the TotalView Server by using 
the ssh command with the switch host name of the node. 

Setting Timeouts

If you receive communications timeouts, you can set the value of the MP_TIMEOUT environment variable; for 
example:
setenv MP_TIMEOUT 1200 

If this variable isn’t set, TotalView uses a timeout value of 600 seconds. 

Starting TotalView on a PE Program
The following is the syntax for running Parallel Environment (PE) programs from the command line:

program [ arguments ] [ pe_arguments ]

You can also use the poe command to run programs as follows: 

poe program [ arguments ] [ pe_arguments ]

If, however, you start TotalView on a PE application, you must start poe as TotalView’s target using the following 
syntax:

{ totalview | totalviewcli } poe -a program [ arguments ] [ PE_arguments ]

For example: 
totalview poe -a sendrecv 500 -rmpool 1

Setting Breakpoints
After TotalView is running, start the poe process using the Process > Go command. 

A dialog box launches in the GUI —in the CLI, it prints a question—to determine if you want to stop the parallel 
tasks. 

CLI: dfocus p dgo



Setting Up MPI Debugging Sessions / IBM MPI Parallel Environment (PE) Applications  478

If you want to set breakpoints in your code before they begin executing, answer Yes. TotalView initially stops the 
parallel tasks, which also allows you to set breakpoints. You can now set breakpoints and control parallel tasks in 
the same way as any process controlled by TotalView. 

If you have already set and saved breakpoints with the Action Point > Save All command, and you want to reload 
the file, answer No. After TotalView loads these saved breakpoints, the parallel tasks begin executing. 

Starting Parallel Tasks 
After you set breakpoints, you can start all of the parallel tasks with the Process Window Group > Go command. 

NOTE >> No parallel tasks reach the first line of code in your main routine until all parallel tasks start.

Be very cautious in placing breakpoints at or before a line that calls MPI_Init() or MPL_Init() because timeouts 
can occur while your program is being initialized. After you allow the parallel processes to proceed into the 
MPI_Init() or MPL_Init() call, allow all of the parallel processes to proceed through it within a short time. For 
more information on this, see ““IBM PE Debugging Tips” on page 413” on page 398. 

Attaching to a PE Job
To take full advantage of TotalView’s poe-specific automation, you need to attach to poe itself, and let TotalView 
automatically acquire the poe processes on all of its nodes. In this way, TotalView acquires the processes you 
want to debug. 

Attaching from a Node Running poe 

To attach TotalView to poe from the node running poe: 

1. Start TotalView in the directory of the debug target.

If you can’t start TotalView in the debug target directory, you can start TotalView by editing the tvdsvr com-
mand line before attaching to poe. See “Setting the Single-Process Server Launch Command” on page 455.

CLI: dactions -save filename
dactions -load filename

CLI: dfocus G dgo 
Abbreviation: G



Setting Up MPI Debugging Sessions / IBM MPI Parallel Environment (PE) Applications  479

2. In the File > Attach to a Running Program, then find the poe process list, and attach to it by diving into it. 
When necessary, TotalView launches tvdsvrs. TotalView also updates the Root Window and opens a Pro-
cess Window for the poe process.

3. Locate the process you want to debug and dive on it, which launches a Process Window for it. If your 
source code files are not displayed in the Source Pane, invoke the File > Search Path command to add 
directories to your search path. 

Attaching from a Node Not Running poe 

The procedure for attaching TotalView to poe from a node that is not running poe is essentially the same as the 
procedure for attaching from a node that is running poe. Since you did not run TotalView from the node running 
poe (the startup node), you won’t be able to see poe on the process list in the Root Window and you won’t be 
able to start it by diving into it. 

To place poe in this list:

1. Connect TotalView to the startup node. For details, see “Starting the TotalView Server Manually” on 
page 449. 

2. Select the File > Attach to a Running Program. 

3. Look for the process named poe and continue as if attaching from a node that is running poe. 

CLI: dattach poe pid

CLI: dattach -r hostname poe poe-pid



Setting Up MPI Debugging Sessions / IBM Blue Gene Applications  480

IBM Blue Gene Applications
While the way in which you debug IBM Blue Gene MPI programs is very similar to debugging these programs on 
other platforms, starting TotalView on your program differs slightly. Unfortunately, each machine is configured dif-
ferently so you’ll need to find information in IBM’s documentation or in documentation created at your site. 

Nevertheless, the remainder of this section presents some hints based on information we have gathered at vari-
ous sites.

TotalView supports debugging applications on three generations of Blue Gene systems: Blue Gene/L, Blue Gene/
P, and Blue Gene/Q. While the different Blue Gene generations are similar, there are differences that affect how 
you start the debugger.

In general, either launch the MPI starter program under the control of the debugger, or start TotalView and attach 
to an already running MPI starter program. On Blue Gene/L and Blue Gene/P, the starter program is named mpi-
run. On Blue Gene/Q, the starter program is named runjob in most cases, or srun when the system is configured 
to use SLURM.

For example, on Blue Gene/L or Blue Gene/P:

{ totalview | totalviewcli } mpirun -a mpirun-command-line

On most Blue Gene/Q systems:

{ totalview | totalviewcli } runjob -a runjob-command-line

On Blue Gene/Q systems configured to use SLURM:

{ totalview | totalviewcli } srun -a srun-command-line

All Blue Gene systems support a scalable tool daemon launching mechanism call “co-spawning”, where the tool 
daemons, such as TotalView’s tvdsvr, are launched along with the parallel job. As part of the startup or attach 
sequence, TotalView tells the MPI starter process to launch (or co-spawn) the TotalView Debug Servers on each 
Blue Gene I/O node.

To support co-spawning, TotalView must pass the address of the network interface connected to the I/O node 
network on the front-end node to the servers on the I/O nodes. This is usually not the same network interface 
that is used to connect to the front-end node from the outside world. TotalView assumes that the address can be 
resolved by using a name that is:

front-end-hostname-io. 

For example, if the hostname of the front-end is bgqfen1, TotalView will attempt to resolve the name bgqfen1-io 
to an IP address that the server is able to connect to.



Setting Up MPI Debugging Sessions / IBM Blue Gene Applications  481

NOTE >> Some systems follow this convention and some do not. If you are executing programs on a 
system that follows this convention, you will not need to set the TotalView variables described 
in the rest of this section. You can use the command ping -c 1 `hostname -s`-io on the 
front-end node to check whether the system is using this convention.

If the front-end cannot resolve this name, you must supply the name of the interface using the -bluegene_io_in-
terface command-line option, or by setting the bluegene_io_interface TotalView variable. (This variable is 
described in the "TotalView Variables section of the TotalView for HPC Reference Guide.) 

Because the same version of TotalView must be able to debug both Power-Linux programs (for example, mpi-
run) and Blue Gene programs, TotalView uses a Blue Gene-specific server launch string. You can define this 
launch string by setting the bluegene_server_launch_string TotalView variable or command-line option.

NOTE >> You must set this variable in a tvdrc file. This differs from other TotalView launch strings, which 
you can set using the File > Preferences Dialog Box.

The default value for the bluegene_server_launch_string variable is:

-callback %L -set_pw %P -verbosity %V %F 

In this string, %L is the address of the front-end node interface used by the servers. The other substitution argu-
ments have the same meaning as in a normal server launch string. These substitution arguments are discussed 
in Chapter 7 of the TotalView for HPC Reference Guide.



Setting Up MPI Debugging Sessions / Open MPI Applications  482

Open MPI Applications

NOTE >> In many cases, you can bypass the procedure described in this section. For more information, 
see “Debugging MPI Programs” on page 463.

Open MPI is an open source implementation of both the MPI-1 and MPI-2 documents that combines some 
aspects of four different (and now no longer under active development) MPI implementations: FT-MPI from the 
University of Tennessee, LA-MPI from Los Alamos National Laboratory, LAM/MPI from Indiana University, and 
PACX-MPI from the University of Stuttgart. 

For more information on Open MPI, see http://www.open-mpi.org/.

Debug an Open MPI program similarly to most MPI programs, using the following syntax if TotalView is in your 
path:

mpirun -tv args prog prog_args 

As an alternative, you can invoke TotalView on mpirun. 

totalview -args mpirun args ./prog

For example, to start TotalView on a four-process MPI program:
totalview -args mpirun -np 4 ./mpi_program

Alternatively, you can use the Session Manager or Startup Parameter window (accessed via Process > Startup 
Parameters) and choose the Parallel option to enter the parallel session details in the GUI.

http://www.open-mpi.org/


Setting Up MPI Debugging Sessions / QSW RMS Applications  483

QSW RMS Applications

NOTE >> In many cases, you can bypass the procedure described in this section. For more information, 
see “Debugging MPI Programs” on page 463.

TotalView supports automatic process acquisition on AlphaServer SC systems and 32-bit Red Hat Linux systems 
that use Quadrics RMS resource management system with the QSW switch technology.

NOTE >> Message queue display is supported only if you are running version 1, patch 2 or later, of 
AlphaServer SC.

Starting TotalView on an RMS Job
To start a parallel job under TotalView control, use TotalView as if you were debugging prun:

{ totalview | totalviewcli } prun -a prun-command-line

TotalView starts and shows you the machine code for RMS prun. Since you’re not usually interested in debugging 
this code, use the Process > Go command to let the program run.

The RMS prun command executes and starts all MPI processes. After TotalView acquires them, it asks if you want 
to stop them at startup. If you answer yes, TotalView halts them before they enter the main program. You can 
then create breakpoints.

Attaching to an RMS Job
To attach to a running RMS job, attach to the RMS prun process that started the job.

You attach to the prun process the same way you attach to other processes. 

After you attach to the RMS prun process, you have the option to attach to slave MPICH processes. If you do, 
press Return or choose Yes. If you do not, choose No.

If you choose Yes, TotalView starts the server processes and acquires all MPI processes. 

As an alternative, you can use the Group > Attach Subset command to predefine what TotalView should do.

CLI: dfocus p dgo



Setting Up MPI Debugging Sessions / QSW RMS Applications  484

RELATED TOPICS
Attaching to processes using prun “Attaching to a Running Program” on page 101

Using the Group > Attach Subset command to specify 
TotalView behavior when attaching  to an RMS prun process

 “Attaching to Processes Tips” on page 401



Setting Up MPI Debugging Sessions / SGI MPI Applications  485

SGI MPI Applications

NOTE >> In many cases, you can bypass the procedure described in this section. For more information, 
see “Debugging MPI Programs” on page 463.

TotalView can acquire processes started by SGI MPI applications. This MPI is part of the Message Passing Toolkit 
(MPT) 1.3 and 1.4 packages. TotalView can display the Message Queue Graph Window for these releases. See 
“Displaying the Message Queue Graph Window” on page 406 for message queue display.

Starting TotalView on an SGI MPI Job
You normally start SGI MPI programs by using the mpirun command. You use a similar command to start an MPI 
program under debugger control, as follows:

{ totalview | totalviewcli } mpirun -a mpirun-command-line

This invokes TotalView and tells it to show you the machine code for mpirun. Since you’re not usually interested 
in debugging this code, use the Process > Go command to let the program run.

The SGI MPI mpirun command runs and starts all MPI processes. After TotalView acquires them, it asks if you 
want to stop them at startup. If you answer Yes, TotalView halts them before they enter the main program. You 
can then create breakpoints.

If you set a verbosity level that allows informational messages, TotalView also prints a message that shows the 
name of the array and the value of the array services handle (ash) to which it is attaching.

Attaching to an SGI MPI Job
To attach to a running SGI MPI program, attach to the SGI MPI mpirun process that started the program. The pro-
cedure for attaching to an mpirun process is the same as that for attaching to any other process. 

After you attach to the mpirun process, TotalView asks if you also want to attach to slave MPICH processes. If you 
do, press Return or choose Yes. If you do not, choose No.

If you choose Yes, TotalView starts the server processes and acquires all MPICH processes. 

As an alternative, you can use the Group > Attach Subset command to predefine what to do. 

CLI: dfocus p dgo



Setting Up MPI Debugging Sessions / SGI MPI Applications  486

Using ReplayEngine with SGI MPI
SGI MPI uses the xpmem module to map memory from one MPI process to another during job startup. Memory 
mapping is enabled by default. The size of this mapped memory can be quite large, and can have a negative 
effect on TotalView’s ReplayEngine performance. Therefore, mapped memory is limited by default for the xpmem 
module if Replay is enabled. The environment variable, MPI_MEMMAP_OFF, is set to 1 in the TotalView file paral-
lel_support.tvd by adding the variable to the replay_env: specification as follows: replay_env: 
MPI_MEMMAP_OFF=1.

If full memory mapping is required, set the startup environment variable in the Arguments field of the Program 
Session dialog. Add the following to the environment variables: MPI_MEMMAP_OFF=0.

Be aware that the default mapped memory size may prove to be too large for ReplayEngine to deal with, and it 
could be quite slow. You can limit the size of the mapped heap area by using the MPI_MAPPED_HEAP_SIZE envi-
ronment variable documented in the SGI documentation. After turning off MEMMAP_OFF as described above, 
you can set the size (in bytes) in the TotalView startup parameters.

For example:
MPI_MAPPED_HEAP_SIZE=1048576 

NOTE >> SGI has a patch for an MPT/XPMEM issue. Without this patch, XPMEM can crash the system if 
ReplayEngine is turned on. To get the XPMEM fix for the munmap problem, either upgrade to 
ProPack 6 SP 4 or install SGI patch 10570 on top of ProPack 6 SP 3.

RELATED TOPICS
Attaching to an mpirun process “Debugging an MPI Program” on page 91

Using the Group > Attach Subset com-
mand to specify TotalView behavior when 
attaching  to a process

 “Attaching to Processes Tips” on page 401



Setting Up MPI Debugging Sessions / Sun MPI Applications  487

Sun MPI Applications

NOTE >> In many cases, you can bypass the procedure described in this section. For more information, 
see “Debugging MPI Programs” on page 463.

TotalView can debug a Sun MPI program and can display Sun MPI message queues. This section describes how to 
perform job startup and job attach operations.

To start a Sun MPI application:

1. Enter the following command:

totalview mprun [ totalview_args ] -a [ mpi_args ]

For example:
totalview mprun -g blue -a -np 4 /usr/bin/mpi/conn.x 

When the TotalView Process Window appears, select the Go button.

TotalView may display a dialog box with the following text:
Process mprun is a parallel job. Do you want to stop
the job now? 

2. If you compiled using the -g option, click Yes to open a Process Window that shows your source. All pro-
cesses are halted.

Attaching to a Sun MPI Job
To attach to an already running mprun job:

1. Find the host name and process identifier (PID) of the mprun job by typing mpps -b. For more information, 
see the mpps(1M) manual page.

The following is sample output from this command:
JOBNAME     MPRUN_PID   MPRUN_HOST
cre.99      12345       hpc-u2-9
cre.100     12601       hpc-u2-8 

CLI: totalviewcli mprun [ totalview_args ] -a [ mpi_args ]

CLI: dfocus p dgo



Setting Up MPI Debugging Sessions / Sun MPI Applications  488

2. After selecting File > Attach to a Running Program, type mprun in the File Name field and type the PID in 
the Process ID field.

3. If TotalView is running on a different node than the mprun job, select the host or add a new host in the 
Host field.

CLI: dattach mprun mprun-pid 
For example:

dattach mprun 12601

CLI: dattach -r host-name mprun mprun-pid



Setting Up MPI Debugging Sessions / Starting MPI Issues  489

Starting MPI Issues

NOTE >> In many cases, you can bypass the procedure described in this section. For more information, 
see “Debugging MPI Programs” on page 463.

If you can’t successfully start TotalView on MPI programs, check the following:

• Can you successfully start MPICH programs without TotalView? 

The MPICH code contains some useful scripts that verify if you can start remote processes on all of the com-
puters in your computers file. (See tstmachines in mpich/util.)

• You won’t get a message queue display if you get the following warning: 
The symbols and types in the MPICH library used by TotalView to extract the 
message queues are not as expected in the image <your image name>. This is 
probably an MPICH version or configuration problem. 

You need to check that you are using MPICH Version 1.1.0 or later and that you have configured it with the 
-debug option. (You can check this by looking in the config.status file at the root of the MPICH directory 
tree.)

• Does the TotalView Server (tvdsvr) fail to start? 

tvdsvr must be in your PATH when you log in. Remember that TotalView uses ssh to start the server, and 
that this command doesn’t pass your current environment to remotely started processes.

• Make sure you have the correct MPI version and have applied all required patches. See the 
TotalView Release Notes for up-to-date information.

• Under some circumstances, MPICH kills TotalView with the SIGINT signal. You can see this behavior 
when you use the Group > Kill command as the first step in restarting an MPICH job.

If TotalView exits and terminates abnormally with a Killed message, try setting the TV::ignore_control_c 
variable to true.

CLI: dfocus g ddelete

RELATED TOPICS
Tips for debugging MPI applications “MPI Debugging Tips and Tools” on page 405

The TotalView server, tvdsvr  " The tvdsvr Command and Its Options" in the 
TotalView for HPC Reference Guide

MPI version information The TotalView Release Notes on the TotalView docu-
mentation page

http://www.roguewave.com/help-support/documentation/totalview
http://www.roguewave.com/help-support/documentation/totalview
http://www.roguewave.com/help-support/documentation/totalview


Setting Up MPI Debugging Sessions / Using ReplayEngine with Infiniband MPIs  490

Using ReplayEngine with Infiniband MPIs
In general, using ReplayEngine with MPI versions that communicate over Infiniband is no different than using it 
with other MPIs, but its use requires certain environment settings, as described here. If you are launching the MPI 
job from within TotalView, these are set for you; if instead, you start the MPI program from outside TotalView, you 
must explicitly set your environment.

Required Environment Settings

When you start the MPI program from within TotalView with ReplayEngine enabled, TotalView inserts environment 
variable settings into the MPI processes to disable certain RDMA optimizations.  (These are optimizations that hin-
der ReplayEngine’s ability to identify the memory regions being actively used for RDMA, and their use can 
therefore result in unreasonably slow execution in record mode.)  These variables are set for you, requiring no 
extra tasks compared to using a non-Infiniband MPI.

The inserted settings are:

• VIADEV_USE_DREG_CACHE=0 (addresses MVAPICH1 versions)

• MV2_DREG_CACHE_LIMIT=1 (addresses MVAPICH2 versions)

• MV2_RNDV_PROTOCOL=R3 (addresses Intel MPI versions, also affects MVAPICH2)

• OMPI_MCA_mpool_rdma_rcache_size_limit=1 (addresses Open MPI versions)

When the MPI program is started outside TotalView (for example, when using a command like mpirun -tv, or 
when you attach TotalView to an MPI program that is already running), you must set the relevant environment 
variable for your MPI version, as described above.  Also, two additional environment variables are required to 
make the MPI program's use of RDMA memory visible to ReplayEngine, as follows:

• IBV_FORK_SAFE: Set to any value, for example IBV_FORK_SAFE=1

• LD_PRELOAD: Set to include a preload library, which can be found under the TotalView installation 
directory at toolworks/totalview.<version>/linux-x86/lib/undodb_infiniband_preload_x32.so 
or toolworks/totalview.<version>/linux-x86-64/lib/undodb_infiniband_preload_x64.so.

For example, here’s how to set the environment for the MVAPICH1 implementation of MPI:

mpirun_rsh -np 8 -hostfile myhosts \
VIADEV_USE_DREG_CACHE=0 IBV_FORK_SAFE=1 \ 
LD_PRELOAD=/<path>/undodb_infiniband_preload_x64.so myprogram

For more information, consult your MPI version documentation for specifics on setting environment variables.



Setting Up MPI Debugging Sessions / Using ReplayEngine with Infiniband MPIs  491

Cray System MPIs

On Cray XC, XK, and XC systems, although Infiniband is not used, the MPIs do use RDMA techniques. As a result, 
using Replay on these systems requires some particular environmental settings. Briefly, the required settings are 
MPICH_SMP_SINGLE_COPY_OFF = 1, and LD_PRELOAD set to the location of the Infiniband preload library 
described above. Refer to the “Cray Linux Environment (CLE)” section for details.

Possible Errors

ReplayEngine checks environment settings before it attaches to the MPI program, but in some cases, may not 
detect incompatible settings, reporting the following errors:

• If ReplayEngine finds that either the IBV_FORK_SAFE setting is absent, or that the preload library 
has not been loaded, it declines to attach and issues an error message citing unmet prerequisites. 
You can still attach TotalView to the program without ReplayEngine - for example, in the GUI by 
using the New Program dialog.

• If ReplayEngine cannot determine that the environment variable setting to disable an MPI 
optimization has been set, it continues to attach, but issues a warning message that it could not 
verify prerequisites. Depending on your program's use of memory for RDMA, you may find that it 
runs unreasonably slowly in record mode, or encounters errors that would not occur if 
ReplayEngine were not attached.

RELATED TOPICS
Using ReplayEngine in general Getting Started with Replay Engine 

MPI programs “Debugging MPI Programs” on page 463



Setting Up Parallel Debugging Sessions     492      

Chapter 20  

Setting Up Parallel Debugging 
Sessions

This chapter explains how to set up TotalView parallel debugging sessions for applications that use the paral-
lel execution models that TotalView supports and which do not use MPI.

NOTE >> If you are using TotalView Individual, all your program’s processes must execute on the 
computer on which you installed TotalView. In addition, TotalView Individual limits you to 
no more than 16 processes and threads.

This chapter discusses the following topics:

• “Debugging OpenMP Applications” on page 493

• “Using SLURM” on page 498

• “Debugging Cray XT Applications” on page 499

• “Debugging Global Arrays Applications” on page 504

• “Debugging Shared Memory (SHMEM) Code” on page 506

• “Debugging UPC Programs” on page 507

• “Debugging CoArray Fortran (CAF) Programs” on page 511

This chapter also describes TotalView features that you can use with most parallel models:

• Define the process you want TotalView to attach to. See “Attaching to Processes Tips” on 
page 401.

• See “Debugging Strategies for Parallel Applications” on page 398 for general hints on how to 
approach debugging parallel programs.



Setting Up Parallel Debugging Sessions / Debugging OpenMP Applications  493

Debugging OpenMP Applications
TotalView supports many OpenMP compilers for the C, C++, and Fortran languages. Supported compilers and 
architectures are listed in the TotalView Platforms and Systems Requirements document.

The following are some features that TotalView supports:

• Source-level debugging of the original OpenMP code.

• The ability to plant breakpoints throughout the OpenMP code, including lines that are executed in 
parallel.

• Visibility of OpenMP worker threads.

• Access to SHARED and PRIVATE variables in OpenMP PARALLEL code.

• A stack-back link token in worker threads’ stacks so that you can find their master stack.

• Access to OMP THREADPRIVATE data in code compiled by supported compilers.

Topics in this section are:

• “Debugging OpenMP Programs” on page 493

• “Viewing OpenMP Private and Shared Variables” on page 494

• “Viewing OpenMP THREADPRIVATE Common Blocks” on page 496

• “Viewing the OpenMP Stack Parent Token Line” on page 497

Debugging OpenMP Programs
Debugging OpenMP code is similar to debugging multi-threaded code. The major differences are in the way the 
OpenMP compiler alters your code. These alterations include:

• Outlining. The compiler pulls the body of a parallel region out of the original routine and places it in 
an outlined routine. In some cases, the compiler generates multiple outlined routines from a single 
parallel region. This allows multiple threads to execute the parallel region. 

The outlined routine’s name is based on the original routine’s name. In most cases, the compiler adds a 
numeric suffix.

• The compiler inserts calls to the OpenMP runtime library.

• The compiler splits variables between the original routine and the outlined routine. Normally, 
shared variables reside in the master thread’s original routine, and private variables reside in the 
outlined routine.



Setting Up Parallel Debugging Sessions / Debugging OpenMP Applications  494

• The master thread creates threads to share the workload. As the master thread begins to execute 
a parallel region in the OpenMP code, it creates the worker threads, dispatches them to the 
outlined routine, and then calls the outlined routine itself.

About TotalView OpenMP Features

TotalView interprets the changes that the OpenMP compiler makes to your code so that it can display your pro-
gram in a coherent way. Here are some things you should know:

• The compiler can generate multiple outlined routines from a single parallel region. This means that 
a single line of source code can generate multiple blocks of machine code inside different 
functions. 

• You can’t single step into or out of a parallel region. Instead, set a breakpoint inside the parallel 
region and let the process run to it. After execution reaches the parallel region, you can single step 
in it. 

• OpenMP programs are multi-threaded programs, so the rules for debugging multi-threaded 
programs apply. 

About OpenMP Platform Differences

In general, TotalView smooths out the differences that occur when you execute OpenMP platforms on different 
platforms. The following list discusses these differences:

• The OpenMP master thread has logical thread ID number 1. The OpenMP worker threads have a 
logical thread ID number greater than 1.

• Select or dive on the stack parent token line to view the original routine’s stack frame in the 
OpenMP master thread.

• When you stop the OpenMP worker threads in a PARALLEL DO outlined routine, the stack 
backtrace shows the following call sequence: 

— Outlined routine called from the special stack parent token line. 

— The OpenMP runtime library called from. 

— The original routine (containing the parallel region).

Viewing OpenMP Private and Shared Variables
You can view both OpenMP private and shared variables.

The compiler maintains OpenMP private variables in the outlined routine, and treats them like local variables. See 
“Displaying Local Variables and Registers” on page 232. In contrast, the compiler maintains OpenMP shared 
variables in the master thread’s original routine stack frame. 



Setting Up Parallel Debugging Sessions / Debugging OpenMP Applications  495

You can display shared variables through a Process Window focused on the OpenMP master thread, or through 
one of the OpenMP worker threads.

To see these variables: 

1. Select the outlined routine in the Stack Trace Pane, or select the original routine stack frame in the 
OpenMP master thread.

2. Dive on the variable name, or select the View > Lookup Variable command. When prompted, enter the 
variable name.

A Variable Window is launched that displays the value of the OpenMP shared variable, as shown in Figure 
237.

Shared variables reside in the OpenMP master thread’s stack. When displaying shared variables in OpenMP 
worker threads, TotalView uses the stack context of the OpenMP master thread to find the shared variable. 
TotalView uses the OpenMP master thread’s context when displaying the shared variable in a Variable Window. 

You can also view OpenMP shared variables in the Stack Frame Pane by selecting either of the following:

• Original routine stack frame in the OpenMP master thread.

• Stack parent token line in the Stack Trace Pane of OpenMP worker threads. 

CLI: dprint 
You need to first set your focus to the OpenMP master thread.

Figure 237 – OpenMP Shared Variable



Setting Up Parallel Debugging Sessions / Debugging OpenMP Applications  496

Viewing OpenMP THREADPRIVATE Common Blocks
Some compilers implement OpenMP THREADPRIVATE common blocks by using the thread local storage system 
facility. This facility stores a variable declared in OpenMP THREADPRIVATE common blocks at different memory 
locations in each thread in an OpenMP process. This allows the variable to have different values in each thread. In 
contrast, IBM and other compilers use the pthread key facility.

To view a variable in an OpenMP THREADPRIVATE common block or the OpenMP THREADPRIVATE common 
block:

1. In the Threads Tab of the Process Window, select the thread that contains the private copy of the variable 
or common block you want to view.

2. In the Stack Trace Pane of the Process Window, select the stack frame that lets you access the OpenMP 
THREADPRIVATE common block variable. You can select either the outlined routine or the original routine 
for an OpenMP master thread. You must, however, select the outlined routine for an OpenMP worker 
thread.

3. From the Process Window, dive on the variable name or common block name, or select the View > Lookup 
Variable command. When prompted, enter the name of the variable or common block. You may need to 
append an underscore character (_) after the common block name. 

A Variable Window opens that displays the value of the variable or common block for the selected thread. 

See “Displaying Variables” on page 220 for more information on displaying variables.

4. To view OpenMP THREADPRIVATE common blocks or variables across all threads, use the Variable Win-
dow’s Show across > Threads command. See “Displaying a Variable in all Processes or Threads” on 
page 300.

CLI: dprint



Setting Up Parallel Debugging Sessions / Debugging OpenMP Applications  497

Figure 238 shows Variable Windows displaying OpenMP THREADPRIVATE common blocks. Because the Variable 
Window has the same thread context as the Process Window from which it was created, the title bar patterns for 
the same thread match. TotalView displays the values of the common block across all threads when you use the 
View > Show Across > Threads command.

Viewing the OpenMP Stack Parent Token Line
TotalView inserts a special stack parent token line in the Stack Trace Pane of OpenMP worker threads when they 
are stopped in an outlined routine. 

When you select or dive on the stack parent token line, the Process Window switches to the OpenMP master 
thread, allowing you to see the stack context of the OpenMP worker thread’s routine.

This stack context includes the OpenMP shared variables.

Figure 238 – OpenMP THREADPRIVATE Common Block Variables

 

Figure 239 – OpenMP Stack Parent Token Line



Setting Up Parallel Debugging Sessions / Using SLURM  498

Using SLURM
TotalView supports the SLURM resource manager. Here is some information copied from the SLURM website 
(http://www.llnl.gov/linux/slurm).

SLURM is an open-source resource manager designed for Linux clusters of all sizes. It provides three key func-
tions. First it allocates exclusive and/or non-exclusive access to resources (computer nodes) to users for some 
duration of time so they can perform work. Second, it provides a framework for starting, executing, and moni-
toring work (typically a parallel job) on a set of allocated nodes. Finally, it arbitrates conflicting requests for 
resources by managing a queue of pending work.

SLURM is not a sophisticated batch system, but it does provide an Applications Programming Interface (API) for 
integration with external schedulers such as the Maui Scheduler. While other resource managers do exist, 
SLURM is unique in several respects:

• Its source code is freely available under the GNU General Public License.

• It is designed to operate in a heterogeneous cluster with up to thousands of nodes.

• It is portable; written in C with a GNU autoconf configuration engine. While initially written for 
Linux, other UNIX-like operating systems should be easy porting targets. A plugin mechanism exists 
to support various interconnects, authentication mechanisms, schedulers, etc.

• SLURM is highly tolerant of system failures, including failure of the node executing its control 
functions.

• It is simple enough for the motivated end user to understand its source and add functionality.

https://computing.llnl.gov/linux/slurm/


Setting Up Parallel Debugging Sessions / Debugging Cray XT Applications  499

Debugging Cray XT Applications
The Cray XT Series is supported by the TotalView x86_64 distribution. The discussion here is based on running 
applications on Cray XT Catamount, some of which is also applicable to using Cray Linux Environment (CLE). The 
primary difference between the two, and it is a big difference, is that CLE uses aprun to launch programs rather 
than yod (See “Cray Linux Environment (CLE)” on page 502 for details).

Cray XT Catamount
On the Cray XT Catamount, all jobs running on compute nodes are started with the yod starter program. These 
jobs do not have to be MPI jobs. Debugging a program started with yod is similar to debugging any program 
using a starter program. In general, you would type:

totalview totalview_args yod -a yod_args

For example:
totalview yod -a -np 4 ./my_prog 

Here are some things you should know:

• tvdsvr_rs processes are started for your compute nodes. (This is a process started by TotalView on 
a remote node that communicates back with TotalView. For more information on this server, see 
Chapter 18, “Setting Up Remote Debugging Sessions,” on page 442.) yod then passes 
information to TotalView, which then starts the servers. If this does not occur, consult your yod 
documentation.

• There may be more than one tvdsvr_rs process. TotalView creates one tvdsvr_rs process for each 
RS_DBG_CLIENTS_PER_SERVER or 64 compute nodes.

• To attach to a running program, attach to the instance of yod that is controlling it, using normal 
TotalView mechanisms. TotalView automatically attaches to all compute node tasks that are part of 
the job.

• TotalView cannot know how many compute nodes are available, so each server assumes that it will 
be serving 64 compute nodes, and asks for a 64-node license. 

If you wish to use a small license (less than 64 processors), override this default using the -nodes_allowed 
tvdsvr command-line option. The argument to this option specifies how many nodes the server supports 
and how many licenses it needs. Because this is a tvdsvr_rs command-line option, you must add it into the 
server launch string.

RELATED TOPICS
Setting up an MPI debugging session “Setting Up MPI Debugging Sessions” on page 461

Tips for parallel debugging “General Parallel Debugging Tips” on page 399



Setting Up Parallel Debugging Sessions / Debugging Cray XT Applications  500

You can also use the -nodes_allowed server launch string option along with the RS_DBG_CLIENTS_PER_-
SERVER environment variable to increase the number of compute nodes each server will serve (and the 
number of Cray licences it asks for). However, we do not recommend that you set this server launch string 
option to a value greater than 256. (Note that you need only set this variable if RS_DBG_CLIENTS_PER_-
SERVER is greater than 64.) 

For information on setting server launch strings, see “Customizing Server Launch Commands” on 
page 455.

NOTE >> While debugging, you must also have the FlexLM license server running. TotalView uses this 
server to verify that you are using licensed software. However, this server is not related to the 
servers that TotalView launches when you are debugging your program.

Configuring Cray XT for TotalView

When configuring your Cray XT system for use with the TotalView, you must:

• Mount user home directories on all service nodes that you will use while debugging.

• (Optional) Enable passwordless ssh on all service nodes that you will use while debugging. In most 
cases, your system administrator will have enabled your system so that it uses ssh instead or rsh. If 
passwordless ssh is not enabled, you will be asked to enter a password each time a process is 
launched on a node.

• (Optional) Automatically set RS_DBG_CLIENTS_PER_SERVER and 
-nodes_allowed.

On Cray XT systems, setting a -nodes_allowed command-line option to 64 will not work. Instead, configure 
TotalView to use RS_DBG_CLIENTS_PER_SERVER and -nodes_allowed to make best use of the cluster and 
TotalView licenses.

TotalView administrators can set installation preferences by editing (or creating) the $TVROOT/linux-x86-64/lib/
.tvdrc file. Here are two simple scenarios:

• If you have only one TotalView license, and that license is for less than 64 processors, then a server 
launch string like this would be best:
dset -set_as_default TV::server_launch_string \
      {%C %R -n "%B/tvdsvr%K -working_directory %D \
      -callback %L \
      -nodes_allowed maximum_processor_license \
      -set_pw %P -verbosity %V %F"}

where maximum_processor_license is the processor count for your TotalView license.

• If you are running TotalView on a cluster where the ratio of service nodes to compute nodes is less 
than 1:64, use a server launch string. For example:



Setting Up Parallel Debugging Sessions / Debugging Cray XT Applications  501

dset -set_as_default TV::server_launch_string \
      {%C %R -n "%B/tvdsvr%K -working_directory %D \
      -callback %L \
      -nodes_allowed ${RS_DBG_CLIENTS_PER_SERVER-64} \
      -set_pw %P -verbosity %V %F"} 

You need to set the RS_DBG_CLIENTS_PER_SERVER environment variable before submitting all jobs where 
a service node-to-compute node ration of 1:64 is not possible. You should also set RS_DBG_CLIENTS_PER_-
SERVER to the number of compute nodes served by each service node. For example, if you have a service-
to-node ratio of 1:128, set this variable to 128.

NOTE >> The TV::server_launch_string variable is used for both Cray XT3 and Linux x86-64. This means 
that if you will also be using this TotalView installation on other linux-x86-64 machines, do not 
set the TV::server_launch_string variable in your global .tvdrc.

Using TotalView with your Cray XT System 

As part of launching an application on a compute node, TotalView launches a server program on your login node 
using ssh. As with any ssh session, authentication is required. We recommend that you enable ssh without a 
pass phrase.

TotalView typically runs interactively. If your site has not designated any compute nodes for interactive process-
ing, use the PBS Pro qsub -I interactive mode. This mode is described in the Cray XT3 Programming Environment 
User’s Guide. 

If TotalView is installed on your system, use the following command to load it into your user environment:
module load xt-totalview 

You can now use the following command to start the CLI:
totalviewcli yod [-a argument_list] application_name 

Here’s the command that starts the GUI:
totalviewcli yod [-a argument_list] application_name 

The following example shows how you can debug a program named a.out:
% qsub -I -l size=4 
qsub: waiting for job 14448.nid00003 to start
qsub: job 14448.nid00003 ready

DISPLAY is user1:0.0
Linux perch 2.4.21-0-sles9-ss-lustre #2 Fri Apr 29
17:14:15 PDT 2005 x86_64 x86_64 x86_64 GNU/Linux
/ufs/home/users/user1

% module load xt-totalview 
% cd working_directory 



Setting Up Parallel Debugging Sessions / Debugging Cray XT Applications  502

% totalview yod -a -sz 4 a.out 

Cray Linux Environment (CLE)
CLE applications are similar to those on Cray XT Catamount. The primary difference is that CLE applications are 
launched using aprun rather than yod.

Most — perhaps all — programs are launched using a batch queueing system such as PBS, Moab, and so on. 
While this is independent from TotalView, you will need to do queue up for an interactive session. For example:
qsub -I -sz=size

Here is an example of how you would start a CLE debugging session:
totalview aprun -a -n4 a.out

TotalView is not able to stop your program before it calls MPI_Init(). While this is typically at the beginning of 
main(), the actual location depends on how you’ve written the program. This means that if you set a breakpoint 
before the MPI_Init() call, TotalView ignores it because the statement upon which you set the breakpoint will have 
already executed.

Support for Cray Abnormal Termination Processing (ATP)

Cray's ATP module stops a running job at the moment it crashes. This allows you to attach TotalView to the held 
job and begin debugging it. To hold a job as it is crashing you must set the ATP_HOLD_TIME environment variable 
before launching your job with aprun.  

When your job crashes, aprun outputs a message stating that your job has crashed and that ATP is holding it. 
You can now attach TotalView to aprun using the normal attach procedure (see “Attaching to a Running Pro-
gram” on page 101.

For more information on ATP, see the Cray intro_atp man page.

Special Requirements for Using ReplayEngine

On Cray XC, XK, and XC systems, the MPIs use RDMA techniques, similar to Infiniband MPIs. When using Replay-
Engine on MPI programs, certain environment variable settings must be in effect for the MPI rank processes. 
These settings ensure that memory mapping operations are visible to ReplayEngine. The required settings are:

• MPICH_SMP_SINGLE_COPY_OFF = 1

• LD_PRELOAD: Set to include a preload library, which can be found under the TotalView installation 
directory at toolworks/totalview.<version>/linux-x86/lib/

undodb_infiniband_preload_x32.so or toolworks/totalview.<version>/linux-x86-

64/lib/undodb_infiniband_preload_x64.so.



Setting Up Parallel Debugging Sessions / Debugging Cray XT Applications  503

These settings may be applied with the aprun -e option. For example, to have TotalView launch an MPI program 
with ReplayEngine enabled, use a command similar to this:

totalview -replay -args aprun -n 8 \
-e MPICH_SMP_SINGLE_COPY_OFF=1 \
-e LD_PRELOAD=/<path>/undodb_infiniband_preload_x64.so \
myprogram



Setting Up Parallel Debugging Sessions / Debugging Global Arrays Applications  504

Debugging Global Arrays Applications
The following paragraphs, which are copied from the Global Arrays home site (http://hpc.pnl.gov/globalarrays), 
describe the global arrays environment:

The Global Arrays (GA) toolkit provides a shared memory style programming environment in the context of dis-
tributed array data structures (called “global arrays”). From the user perspective, a global array can be used as 
if it was stored in shared memory. All details of the data distribution, addressing, and data access are encapsu-
lated in the global array objects. Information about the actual data distribution and locality can be easily 
obtained and taken advantage of whenever data locality is important. The primary target architectures for which 
GA was developed are massively-parallel distributed-memory and scalable shared-memory systems.

GA divides logically shared data structures into “local” and “remote” portions. It recognizes variable data transfer 
costs required to access the data depending on the proximity attributes. A local portion of the shared memory 
is assumed to be faster to access and the remainder (remote portion) is considered slower to access. These 
differences do not hinder the ease-of-use since the library provides uniform access mechanisms for all the 
shared data regardless where the referenced data is located. In addition, any processes can access a local por-
tion of the shared data directly/in-place like any other data in process local memory. Access to other portions 
of the shared data must be done through the GA library calls.

GA was designed to complement rather than substitute for the message-passing model, and it allows the user 
to combine shared-memory and message-passing styles of programming in the same program. GA inherits an 
execution environment from a message-passing library (w.r.t. processes, file descriptors etc.) that started the 
parallel program. 

TotalView supports Global Arrays on the Intel IA-64 platform. Debug a Global Arrays program in basically the 
same way that you debug any other multi-process program. The one difference is that you use the Tools > Global 
Arrays command to display information about your global data. 

The global arrays environment has a few unique attributes. Using TotalView, you can:

• Display a list of a program's global arrays.

• Dive from this list of global variables to see the contents of a global array in C or Fortran format.

• Cast the data so that TotalView interprets data as a global array handle. This means that TotalView 
displays the information as a global array. Specifically, casting to $GA forces the Fortran 
interpretation; casting to $ga forces the C interpretation; and casting to $Ga uses the language in 
the current context.

Within a Variable Window, the commands that operate on a local array, such as slicing, filtering, obtaining statis-
tics, and visualization, also operate on global arrays.

The command used to start TotalView depends on your operating system. For example, the following command 
starts TotalView on a program invoked using prun using three processes:
totalview prun -a -N 3 boltz.x 

http://hpc.pnl.gov/globalarrays
http://hpc.pnl.gov/globalarrays


Setting Up Parallel Debugging Sessions / Debugging Global Arrays Applications  505

Before your program starts parallel execution, a Question dialog launches so you can stop the job to set break-
points or inspect the program before it begins execution

After your program hits a breakpoint, use the Tools > Global Arrays command to begin inspecting your pro-
gram’s global arrays. TotalView displays the following window.

The arrays named in this window are displayed using their C and Fortran type names. Diving on the line that con-
tains the type definition displays Variable Windows that contain information about that array. 

After TotalView displays this information, you can use other standard commands and operations on the array. For 
example, you can use the slice and filter operations and the commands that visualize, obtain statistics, and show 
the nodes from which the data was obtained.

If you inadvertently dive on a global array variable from the Process Window, TotalView does not know that it is a 
component of a global array. If, however, you do dive on the variable, you can cast the variable into a global array 
using either $ga for a C Language cast or $GA for a Fortran cast. 

Figure 240 – Question Window for Global Arrays Program

Figure 241 – Tools > Global Arrays Window

CLI: dga



Setting Up Parallel Debugging Sessions / Debugging Shared Memory (SHMEM) Code  506

Debugging Shared Memory (SHMEM) Code
TotalView supports programs using the distributed memory access Shared Memory (SHMEM) library on Quadrics 
RMS systems and SGI Altix systems. The SHMEM library allows processes to read and write data stored in the 
memory of other processes. This library also provides collective operations.

Debugging a SHMEM RMS or SGI Altix program is no different than debugging any other program that uses a 
starter program. For example:
totalview srun -a my_program



Setting Up Parallel Debugging Sessions / Debugging UPC Programs  507

Debugging UPC Programs
TotalView supports debugging UPC programs on Linux x86 platforms. This section discusses only the UPC-spe-
cific features of TotalView. It is not an introduction to the UPC Language. For an introduction to the UPC language, 
see http://www.gwu.edu/~upc/.

NOTE >> When debugging UPC code, TotalView requires help from a UPC assistant library that your 
compiler vendor provides. You need to include the location of this library in your LD_LI-
BRARY_PATH environment variable. TotalView also provides assistants that you can use. 

Topics in this section are:

• “Invoking TotalView” on page 507

• “Viewing Shared Objects” on page 507

• “Displaying Pointer to Shared Variables” on page 509

Invoking TotalView
The way in which you invoke TotalView on a UPC program is straight-forward. However, this procedure depends 
on the parallel technology you are using. Here are a couple of examples: 

• For Quadrics RMS:
totalview prun -a prog_upc_args

• For MPICH and LAM
totalview mpirun -a -np 2 prog_upc_args

Viewing Shared Objects
TotalView displays UPC shared objects, and fetches data from the UPC thread with which it has an affinity. For 
example, TotalView always fetches shared scalar variables from thread 0.

The upper-left screen in Figure 242 displays elements of a large shared array. You can manipulate and examine 
shared arrays the same as any other array. For example, you can slice, filter, obtain statistical information, and so 
on. (For more information on displaying array data, see Chapter 10, “Examining Arrays,” on page 283.) The 
lower-right screen shows a slice of this array.

http://www.gwu.edu/~upc/
http://www.gwu.edu/~upc


Setting Up Parallel Debugging Sessions / Debugging UPC Programs  508

In this figure, TotalView displays the value of a pointer-to-shared variable whose target is the array in the Shared 
Address area. As usual, the address in the process appears in the top left of the display.

Since the array is shared, it has an additional property: the element’s affinity. You can display this information if 
you right-click your mouse on the header and tell TotalView to display Nodes.

Figure 242 – A Sliced UPC Array

Figure 243 – UPC Variable Window Showing Nodes



Setting Up Parallel Debugging Sessions / Debugging UPC Programs  509

You can also use the Tools > Visualize Distribution command to visualize this array. For more information on 
visualization, see “Array Visualizer” on page 309.

Displaying Pointer to Shared Variables
TotalView understands pointer-to-shared data and displays the components of the data, as well as the target of 
the pointer to shared variables. For example,Figure 244 shows this data being displayed:

In this figure, notice the following:

• Because the Type field displays the full type name, this is a pointer to a shared int with a block size 
of 10.

• TotalView also displays the upc_threadof ("T0"), the upc_phaseof ("P0"), and the upc_addrfield 
(0x0x10010ec4) components of this variable. 

In the same way that TotalView normally shows the target of a pointer variable, it also shows the target of a UPC 
pointer variable. When dereferencing a UPC pointer, TotalView fetches the target of the pointer from the UPC 
thread with which the pointer has affinity. 

You can update the pointer by selecting the pointer value and editing the thread, phase, or address values. If the 
phase is corrupt, you’ll see something like the following in the Value area:
T0;P6;0x3ffc0003b00 <Bad phase [max 4]> -> 
                         0xc0003c80 (-1073726336)

In this example, the pointer is invalid because the phase is outside the legal range. TotalView displays a similar 
message if the thread is invalid.

Figure 244 – A Pointer to a Shared Variable



Setting Up Parallel Debugging Sessions / Debugging UPC Programs  510

Since the pointer itself is not shared, you can use the TView > Show Across commands to display the value from 
each of the UPC threads.

Figure 245 – Pointer to a Shared Variable



Setting Up Parallel Debugging Sessions / Debugging CoArray Fortran (CAF) Programs  511

Debugging CoArray Fortran (CAF) Programs
TotalView has partial support for debugging CoArray Fortran (CAF) programs on Cray platforms. This section dis-
cusses the parts of TotalView that support CAF-specific features. CoArray Fortran allows a programmer to 
distribute parts of an array over a set of processes using an augmented Fortran array syntax. The processes in a 
CAF job share the same executable. The processes are assigned "image ids" starting at image one.

NOTE >> When debugging CAF code, TotalView requires help from a CAF assistant library that your 
compiler vendor provides. You need to include the location of this library in your LD_LI-
BRARY_PATH environment variable. TotalView also provides assistants that you can use.

Because currently TotalView support is partial, expressions that attempt to re-cast CAF types or change the visible 
slices of CAF types are likely to fail.

Invoking TotalView
CAF programs commonly rely on an underlying parallel protocol such as MPI. They are started the same way as 
other programs using the same parallel technology.

On Cray machines that use aprun, invoking a four-image job on TotalView may look like this:
totalview aprun -a -n 4 caf_program caf_program_args

Viewing CAF Programs
For a CAF program, the process id in the TotalView process window shows the CAF image id. TotalView shows the 
correct dimensions and co-dimensions of arrays and the co-dimensions of scalars.

When diving on a CAF array or scalar, TotalView shows the data local to the current image. Diving across pro-
cesses shows the entire distributed array.



Setting Up Parallel Debugging Sessions / Debugging CoArray Fortran (CAF) Programs  512

If you use the array viewer, statistics, and visualizer commands from the Tools menu when viewing a CAF array 
across processes, the commands treat the co-array dimensions much like standard array dimensions.

Using CLI with CAF
The dprint command in the CLI displays the data in CAF arrays in a similar way to the above. When the focus is a 
process, dprint lists the local values. When the focus is the shared group containing the CAF images, dprint lists 
the entire co-array.

Figure 246 – Diving on CAF array y

Figure 247 – Diving on CAF array y across processes



Group, Process, and Thread Control     513      

Chapter 21  

Group, Process, and 
Thread Control

The specifics of how multi-process, multi-threaded programs execute differ greatly from platform to platform 
and environment to environment, but all share some general characteristics. This chapter discusses the 
TotalView process/thread model. It also describes how you tell the GUI and the CLI what processes and 
threads to direct a command to.

This chapter contains the following sections:

• “Defining the GOI, POI, and TOI” on page 514

• “Recap on Setting a Breakpoint” on page 515

• “Stepping (Part I)” on page 516

• “Setting Process and Thread Focus” on page 520

• “Setting Group Focus” on page 526

• “Stepping (Part II): Examples” on page 538

• “Using P/T Set Operators” on page 540

• “Creating Custom Groups” on page 542



Group, Process, and Thread Control / Defining the GOI, POI, and TOI  514

Defining the GOI, POI, and TOI
This chapter consistently uses the following three related acronyms:

• GOI—Group of Interest

• POI—Process of Interest

• TOI—Thread of Interest

These terms are important in the TotalView process/thread model because TotalView must determine the scope 
of what it does when it executes a command. For example, Chapter 13, “About Groups, Processes, and Threads” 
introduced the types of groups TotalView defines. That chapter ignored what happens when you execute a 
TotalView command on a group. For example, what does “stepping a group” actually mean? What happens to pro-
cesses and threads that aren’t in this group? 

Associated with these three terms is a fourth term: arena. The arena is the collection of processes, threads, and 
groups that are affected by a debugging command. This collection is called an arena list.

In the GUI, the arena is most often set using the pulldown list in the toolbar. You can also set the arena using 
commands in the menubar. For example, there are eight next commands. The difference between them is the 
arena; that is, the difference between the next commands is the processes and threads that are the target of what 
the next command runs.

When TotalView executes any action command, the arena decides the scope of what can run. It doesn’t, however, 
determine what does run. Depending on the command, TotalView determines the TOI, POI, or GOI, and then exe-
cutes the command’s action on that thread, process, or group. For example, suppose TotalView steps the current 
control group: 

• TotalView needs to know what the TOI is so that it can determine what threads are in the lockstep 
group—TotalView only lets you step a lockstep group.

• The lockstep group is part of a share group.

• This share group in turn is part of a control group. 

By knowing what the TOI is, the GUI also knows what the GOI is. This is important because, while TotalView knows 
what it will step (the threads in the lockstep group), it also knows what it will allow to run freely while it is stepping 
these threads. In the CLI, the P/T set determines the TOI.

RELATED TOPICS
Concept information on threads and processes and 
how TotalView organizes them into groups

“About Groups, Processes, and Threads” on page 349

Selecting a focus “Using the Toolbar to Select a Target” on page 377



Group, Process, and Thread Control / Recap on Setting a Breakpoint  515

Recap on Setting a Breakpoint
You can set breakpoints in your program by selecting the boxed line numbers in the Source Code pane of a Pro-

cess window. A boxed line number indicates that the line generates executable code. A  icon masking a line 

number indicates that a breakpoint is set on the line. Selecting the  icon clears the breakpoint.

When a program reaches a breakpoint, it stops. You can let the program resume execution in any of the following 
ways:

• Use the single-step commands described in “Using Stepping Commands” on page 166.

• Use the set program counter command to resume program execution at a specific source line, 
machine instruction, or absolute hexadecimal value. See “Setting the Program Counter” on 
page 173.

• Set breakpoints at lines you choose, and let your program execute to that breakpoint. See “Setting 
Breakpoints and Barriers” on page 179.

• Set conditional breakpoints that cause a program to stop after it evaluates a condition that you 
define, for example, “stop when a value is less than eight." See “Setting Eval Points” on page 198.

TotalView provides additional features for working with breakpoints, process barrier breakpoints, and eval points. 
For more information, see Chapter 8, “Setting Action Points,” on page 174.



Group, Process, and Thread Control / Stepping (Part I)  516

Stepping (Part I)
You can use TotalView stepping commands to:

• Execute one source line or machine instruction at a time; for example, Process > Step in the GUI 
and dstep in the CLI.  

• Run to a selected line, which acts like a temporary breakpoint; for example, Process > Run To.  

• Run until a function call returns; for example, Process > Out.

In all cases, stepping commands operate on the Thread of Interest (TOI). In the GUI, the TOI is the selected thread 
in the current Process Window. In the CLI, the TOI is the thread that TotalView uses to determine the scope of the 
stepping operation. 

On all platforms except SPARC Solaris, TotalView uses smart single-stepping to speed up stepping of one-line 
statements that contain loops and conditions, such as Fortran 90 array assignment statements. Smart stepping 
occurs when TotalView realizes that it doesn’t need to step through an instruction. For example, assume that you 
have the following statements:
integer iarray (1000,1000,1000)
iarray = 0

These two statements define one billion scalar assignments. If your computer steps every instruction, you will 
probably never get past this statement. Smart stepping means that TotalView single-steps through the assignment 
statement at a speed that is very close to your computer’s native speed.

Other topics in this section are:

• “Understanding Group Widths” on page 517

• “Understanding Process Width” on page 517

• “Understanding Thread Width” on page 517

• “Using Run To and duntil Commands” on page 518

CLI: dstep

CLI: duntil

CLI: dout

RELATED TOPICS
Stepping through your program “Using Stepping Commands” on page 166

Stepping examples “Stepping (Part II): Examples” on page 538



Group, Process, and Thread Control / Stepping (Part I)  517

Understanding Group Widths
TotalView behavior when stepping at group width depends on whether the Group of Interest (GOI) is a process 
group or a thread group. In the following lists, goal means the place at which things should stop executing. For 
example, if you selected a step command, the goal is the next line. If you selected a run to command, the goal is 
the selected line. 

The actions that TotalView performs on the GOI are dependent on the type of process group that is the focus, as 
follows:

• Process group—TotalView examines the group, and identifies which of its processes has a thread 
stopped at the same location as the TOI (a matching process). TotalView runs these matching 
processes until one of its threads arrives at the goal. When this happens, TotalView stops the 
thread’s process. The command finishes when it has stopped all of these matching processes.

• Thread group—TotalView runs all processes in the control group. However, as each thread arrives 
at the goal, TotalView only stops that thread; the rest of the threads in the same process continue 
executing. The command finishes when all threads in the GOI arrive at the goal. When the 
command finishes, TotalView stops all processes in the control group.

TotalView doesn’t wait for threads that are not in the same share group as the TOI, since they are executing 
different code and can never arrive at the goal. 

Understanding Process Width
TotalView behavior when stepping at process width (which is the default) depends on whether the Group of Inter-
est (GOI) is a process group or a thread group. 

The actions that TotalView performs on the GOI are dependent on the type of process group that is the focus, as 
follows:

• Process group—TotalView runs all threads in the process, and execution continues until the TOI 
arrives at its goal, which can be the next statement, the next instruction, and so on. Only when the 
TOI reaches the goal does TotalView stop the other threads in the process.

• Thread group—TotalView lets all threads in the GOI and all manager threads run. As each member 
of the GOI arrives at the goal, TotalView stops it; the rest of the threads continue executing. The 
command finishes when all members of the GOI arrive at the goal. At that point, TotalView stops 
the whole process.

Understanding Thread Width
When TotalView performs a stepping command, it decides what it steps based on the width. Using the toolbar, 
you specify width using the left-most pulldown. This pulldown has three items: Group, Process, and Thread.



Group, Process, and Thread Control / Stepping (Part I)  518

Stepping at thread width tells TotalView to only run that thread. It does not step other threads. In contrast, pro-
cess width tells TotalView to run all threads in the process that are allowed to run while the TOI is stepped. While 
TotalView is stepping the thread, manager threads run freely.

Stepping a thread isn’t the same as stepping a thread’s process, because a process can have more than one 
thread. 

NOTE >> Thread-stepping is not implemented on Sun platforms. On SGI platforms, thread-stepping is 
not available with pthread programs. If, however, your program’s parallelism is based on SGI’s 
sprocs, thread-stepping is available.

Thread-level single-step operations can fail to complete if the TOI needs to synchronize with a thread that isn’t 
running. For example, if the TOI requires a lock that another held thread owns, and steps over a call that tries to 
acquire the lock, the primary thread can’t continue successfully. You must allow the other thread to run in order 
to release the lock. In this case, you should use process-width stepping instead.

Using Run To and duntil Commands
The duntil and Run To commands differ from other step commands when you apply them to a process group. 
(These commands tell TotalView to execute program statements until it reaches the selected statement.) When 
used with a process group, TotalView identifies all processes in the group that already have a thread stopped at 
the goal. These are the matching processes. TotalView then runs only nonmatching processes. Whenever a thread 
arrives at the goal, TotalView stops its process. The command finishes when it has stopped all members of the 
group. This lets you synchronize all the processes in a group in preparation for group-stepping them.

You need to know the following if you’re running at process width:

Process group If the Thread of Interest (TOI) is already at the goal location, TotalView steps the TOI past the 
line before the process runs. This lets you use the Run To command repeatedly in loops.

Thread group If any thread in the process is already at the goal, TotalView temporarily holds it while other 
threads in the process run. After all threads in the thread group reach the goal, TotalView stops 
the process. This lets you synchronize the threads in the POI at a source line.

If you’re running at group width:

Process group TotalView examines each process in the process and share group to determine whether at 
least one thread is already at the goal. If a thread is at the goal, TotalView holds its process. 
Other processes are allowed to run. When at least one thread from each of these processes is 
held, the command completes. This lets you synchronize at least one thread in each of these 
processes at a source line. If you’re running a control group, this synchronizes all processes in 
the share group.



Group, Process, and Thread Control / Stepping (Part I)  519

Thread group TotalView examines all the threads in the thread group that are in the same share group as the 
TOI to determine whether a thread is already at the goal. If it is, TotalView holds it. Other 
threads are allowed to run. When all of the threads in the TOI’s share group reach the goal, To-
talView stops the TOI’s control group and the command completes. This lets you synchronize 
thread group members. If you’re running a workers group, this synchronizes all worker 
threads in the share group.

The process stops when the TOI and at least one thread from each process in the group or process being run 
reach the command stopping point. This lets you synchronize a group of processes and bring them to one 
location.

You can also run to a selected line in a nested stack frame, as follows:

1. Select a nested frame in the Stack Trace Pane.

2. Select a source line or instruction in the function.

3. Enter a Run To command.

TotalView executes the primary thread until it reaches the selected line in the selected stack frame.

RELATED TOPICS
Stepping commands “Using Stepping Commands” on page 166

Running to a specific line “Executing to a Selected Line” on page 169

The duntil command duntil in "CLI Commands" in the TotalView for HPC Reference 
Guide

The Group > Run To command Group > Run To in the in-product Help

TheProcess > Run To command Process > Run To in the in-product Help

The Thread > Run To command Thread > Run To in the in-product Help 



Group, Process, and Thread Control / Setting Process and Thread Focus  520

Setting Process and Thread Focus

NOTE >> The previous sections emphasize the GUI; this section and the ones that follow emphasize the 
CLI. Here you will find information on how to have full asynchronous debugging control over 
your program. Fortunately, having this level of control is seldom necessary. In other words, 
don’t read the rest of this chapter unless you have to.

When TotalView executes a command, it must decide which processes and threads to act on. Most commands 
have a default set of threads and processes and, in most cases, you won’t want to change the default. In the GUI, 
the default is the process and thread in the current Process Window. In the CLI, this default is indicated by the 
focus, which is shown in the CLI prompt.

There are times, however, when you need to change this default. This section begins a rather intensive look at 
how you tell TotalView what processes and threads to use as the target of a command. 

Topics in this section are:

• “Understanding Process/Thread Sets” on page 520

• “Specifying Arenas” on page 521

• “Specifying Processes and Threads” on page 522

Understanding Process/Thread Sets
All TotalView commands operate on a set of processes and threads. This set is called a Process/Thread (P/T) set. 
The right-hand text box in windows that contain P/T set controls lets you construct these sets. In the CLI, you 
specify a P/T set as an argument to a command such as dfocus. If you’re using the GUI, TotalView creates this list 
for you based on which Process Window has focus. 

Unlike a serial debugger in which each command clearly applies to the only executing thread, TotalView can con-
trol and monitor many threads with their PCs at many different locations. The P/T set indicates the groups, 
processes, and threads that are the target of the CLI command. No limitation exists on the number of groups, 
processes, and threads in a set. 

A P/T set is a list that contains one or more P/T identifiers. (The next section, “Specifying Arenas” on page 521, 
explains what a P/T identifier is.) Tcl lets you create lists in the following ways:

• You can enter these identifiers within braces ({ }).

• You can use Tcl commands that create and manipulate lists.

These lists are then used as arguments to a command. If you’re entering one element, you usually do not have to 
use the Tcl list syntax.



Group, Process, and Thread Control / Setting Process and Thread Focus  521

For example, the following list contains specifiers for process 2, thread 1, and process 3, thread 2:
{p2.1 p3.2}

If you do not explicitly specify a P/T set in the CLI, TotalView defines a target set for you. (In the GUI, the default set 
is determined by the current Process Window.) This set is displayed as the default CLI prompt. (For information 
on this prompt, see “About the CLI Prompt” on page 426.)

You can change the focus on which a command acts by using the dfocus command. If the CLI executes the dfo-
cus command as a unique command, it changes the default P/T set. For example, if the default focus is process 1, 
the following command changes the default focus to process 2:
dfocus p2 

After TotalView executes this command, all commands that follow focus on process 2. 

NOTE >> In the GUI, you set the focus by displaying a Process Window that contains this process. Do 
this by either using the P+, Px and P- buttons in the tab bar at the bottom, by making a selec-
tion in the Processes/Ranks Tab, or by clicking on a process in the Root Window. Note that the 
Px button launches a dialog box that enables you to enter a specific Process or Thread to 
focus on.

If you begin a command with dfocus, TotalView changes the target only for the command that follows. After the 
command executes, TotalView restores the former default. The following example shows both of these ways to 
use the dfocus command. Assume that the current focus is process 1, thread 1. The following commands change 
the default focus to group 2 and then step the threads in this group twice:
dfocus g2
dstep
dstep

In contrast, if the current focus is process 1, thread 1, the following commands step group 2 and then step pro-
cess 1, thread 1:
dfocus g2 dstep
dstep

Some commands only operate at the process level; that is, you cannot apply them to a single thread (or group of 
threads) in the process, but must apply them to all or to none. 

Specifying Arenas
A P/T identifier often indicates a number of groups, processes, and threads. For example, assume that two 
threads executing in process 2 are stopped at the same statement. This means that TotalView places the two 
stopped threads into lockstep groups. If the default focus is process 2, stepping this process actually steps both 
of these threads. 



Group, Process, and Thread Control / Setting Process and Thread Focus  522

TotalView uses the term arena to define the processes and threads that are the target of an action. In this case, 
the arena has two threads. Many CLI commands can act on one or more arenas. For example, the following com-
mand has two arenas:
dfocus {p1 p2} 

The two arenas are process 1 and process 2.

When there is an arena list, each arena in the list has its own GOI, POI, and TOI.

Specifying Processes and Threads
The previous sections described P/T sets as being lists; however, these discussions ignored what the individual 
elements of the list are. A better definition is that a P/T set is a list of arenas, where an arena consists of the pro-
cesses, threads, and groups that are affected by a debugging command. Each arena specifier describes a single 
arena in which a command acts; the list is just a collection of arenas. Most commands iterate over the list, acting 
individually on an arena. Some CLI output commands, however, combine arenas and act on them as a single 
target.

An arena specifier includes a width and a TOI. (Widths are discussed later in this section.) In the P/T set, the TOI 
specifies a target thread, while the width specifies how many threads surrounding the thread of interest are 
affected. 

Defining the Thread of Interest (TOI)

The TOI is specified as p.t, where p is the TotalView process ID (PID) and t is the TotalView thread ID (TID). The p.t 
combination identifies the POI (Process of Interest) and TOI. The TOI is the primary thread affected by a com-
mand. This means that it is the primary focus for a TotalView command. For example, while the dstep command 
always steps the TOI, it may also run the rest of the threads in the POI and step other processes in the group.

In addition to using numerical values, you can also use two special symbols:

• The less-than character (<) indicates the lowest numbered worker thread in a process, and is used 
instead of the TID value. If, however, the arena explicitly names a thread group, the < symbol 
means the lowest numbered member of the thread group. This symbol lets TotalView select the 
first user thread, which is not necessarily thread 1.

• A dot (.) indicates the current set. Although you seldom use this symbol interactively, it can be 
useful in scripts.

About Process and Thread Widths

You can enter a P/T set in two ways. If you’re not manipulating groups, the format is as follows:

[width_letter][pid][.tid] 



Group, Process, and Thread Control / Setting Process and Thread Focus  523

NOTE >> “Specifying Groups in P/T Sets” on page 527 extends this format to include groups. When 
using P/T sets, you can create sets with just width indicators or just group indicators, or both.

For example, p2.3 indicates process 2, thread 3. 

Although the syntax seems to indicate that you do not need to enter any element, TotalView requires that you 
enter at least one. Because TotalView tries to determine what it can do based on what you type, it tries to fill in 
what you omit. The only requirement is that when you use more than one element, you use them in the order 
shown here.

You can leave out parts of the P/T set if what you do enter is unambiguous. A missing width or PID is filled in from 
the current focus. A missing TID is always assumed to be <. For more information, see “Naming Incomplete Are-
nas” on page 536.

The width_letter indicates which processes and threads are part of the arena. You can use the following letters:

t Thread width 

A command’s target is the indicated thread.

p Process width 

A command’s target is the process that contains the TOI.

g Group width 

A command’s target is the group that contains the POI. This indicates control and share groups.

a All processes 

A command’s target is all threads in the GOI that are in the POI.

d Default width 

A command’s target depends on the default for each command. This is also the width to which 
the default focus is set. For example, the dstep command defaults to process width (run the 
process while stepping one thread), and the dwhere command defaults to thread width. 

You must use lowercase letters to enter these widths.



Group, Process, and Thread Control / Setting Process and Thread Focus  524

Figure 248The following figure illustrates how these specifiers relate to one another. 

The g specifier indicates control and share groups. This inverted triangle indicates that the arena focuses on a 
greater number of entities as you move from Thread level at the bottom to All level at the top.

As mentioned previously, the TOI specifies a target thread, while the width specifies how many threads surround-
ing the TOI are also affected. For example, the dstep command always requires a TOI, but entering this command 
can do the following:

• Step just the TOI during the step operation (thread-level single-step).

• Step the TOI and step all threads in the process that contain the TOI (process-level single-step).

• Step all processes in the group that have threads at the same PC as the TOI (group-level single-
step).

This list doesn’t indicate what happens to other threads in your program when TotalView steps your thread. For 
more information, see “Stepping (Part II): Examples” on page 538.

To save a P/T set definition for later use, assign the specifiers to a Tcl variable; for example:
set myset {g2.3 t3.1}
dfocus $myset dgo

As the dfocus command returns its focus set, you can save this value for later use; for example:
set save_set [dfocus] 

Specifier Examples
The following are some sample specifiers:

g2.3 Select process 2, thread 3, and set the width to group.

Figure 248 – Width Specifiers

All

Control Group

Share Group

Process

Thread

a

g

p

g

t



Group, Process, and Thread Control / Setting Process and Thread Focus  525

t1.7 Commands act only on thread 7 or process 1.

d1.< Use the default set for each command, focusing on the first user thread in process 1. The less-
than symbol (<) sets the TID to the first user thread.



Group, Process, and Thread Control / Setting Group Focus  526

Setting Group Focus
TotalView has two types of groups: process groups and thread groups. Process groups only contain processes, 
and thread groups only contain threads. The threads in a thread group can be drawn from more than one 
process.

Topics in this section are:

• “Specifying Groups in P/T Sets” on page 527

• “About Arena Specifier Combinations” on page 528

• “‘All’ Does Not Always Mean ‘All’” on page 531

• “Setting Groups” on page 532

• “Using the g Specifier: An Extended Example” on page 533

• “Merging Focuses” on page 535

• “Naming Incomplete Arenas” on page 536

• “Naming Lists with Inconsistent Widths” on page 537

For a general discussion on how TotalView organizes threads and processes into groups, see “About Groups, 
Processes, and Threads” on page 349.

TotalView has four predefined groups. Two of these only contain processes, while the other two only contain 
threads. TotalView also lets you create your own groups, and these groups can have elements that are processes 
and threads. The following are the predefined process groups:

• Control Group 

Contains the parent process and all related processes. A control group includes children that were forked 
(processes that share the same source code as the parent) and children that were forked but subsequently 
called the execve() function. 

Assigning a new value to the CGROUP (dpid) variable for a process changes that process’s control group. In 
addition, the dgroups -add command lets you add members to a group in the CLI. In the GUI, you use the 
Group > Custom Groups command.

• Share Group 

Contains all members of a control group that share the same executable. TotalView automatically places 
processes in share groups based on their control group and their executable. 

NOTE >> You can’t change a share group’s members. However, the dynamically loaded 
libraries used by group members can be different.



Group, Process, and Thread Control / Setting Group Focus  527

In general, if you’re debugging a multi-process program, the control group and share group differ only when the 
program has children that it forked by calling the execve() function. 

The following are the predefined thread groups:

• Workers Group 

Contains all worker threads from all processes in the control group. The only threads not contained in a 
workers group are your operating system’s manager threads.

• Lockstep Group 

Contains every stopped thread in a share group that has the same PC. TotalView creates one lockstep group 
for every thread. For example, suppose two threads are stopped at the same PC. TotalView creates two lock-
step groups. While each lockstep group has the same two members, they differ in that each has a different 
TOI. While there are some circumstances where this is important, you can usually ignore this distinction. That 
is, while two lockstep groups exist if two threads are stopped at the same PC, ignoring the second lockstep 
group is almost never harmful.

The group ID value for a lockstep group differs from the ID of other groups. Instead of having an automatic 
and transient integer ID, the lockstep group ID is pid.tid, where pid.tid identifies the thread with which it is 
associated. For example, the lockstep group for thread 2 in process 1 is 1.2.

Specifying Groups in P/T Sets
This section extends the arena specifier syntax to include groups. 

If you do not include a group specifier, the default is the control group. The CLI only displays a target group in the 
focus string if you set it to something other than the default value. 

NOTE >> You most often use target group specifiers with the stepping commands, as they give these 
commands more control over what’s being stepped.

Use the following format to add groups to an arena specifier:

[width_letter][group_indicator][pid][.tid]

This format adds the group_indicator to what was discussed in “Specifying Processes and Threads” on page 522. 

In the description of this syntax, everything appears to be optional. But, while no single element is required, you 
must enter at least one element. TotalView determines other values based on the current focus. 

TotalView lets you identify a group by using a letter, number, or name.



Group, Process, and Thread Control / Setting Group Focus  528

A Group Letter 

You can name one of TotalView’s predefined sets. Each set is identified by a letter. For example, the following 
command sets the focus to the workers group:
dfocus W 

The following are the group letters. These letters are in uppercase:

C Control group 

All processes in the control group.

D Default control group 

All processes in the control group. The only difference between this specifier and the C speci-
fier is that this letter tells the CLI not to display a group letter in the CLI prompt. 

S Share group 

The set of processes in the control group that have the same executable as the arena’s TOI.

W Workers group 

The set of all worker threads in the control group.

L Lockstep group 

A set that contains all threads in the share group that have the same PC as the arena’s TOI. If 
you step these threads as a group, they proceed in lockstep.

A Group Number 

You can identify a group by the number TotalView assigns to it. The following example sets the focus to group 3:
dfocus 3/ 

The trailing slash tells TotalView that you are specifying a group number instead of a PID. The slash character is 
optional if you’re using a group_letter. However, you must use it as a separator when entering a numeric group ID 
and a pid.tid pair. For example, the following example identifies process 2 in group 3:
p3/2 

A Group Name 

You can name a set that you define. You enter this name with slashes. The following example sets the focus to the 
set of threads contained in process 3 that are also contained in a group called my_group:
dfocus p/my_group/3 

About Arena Specifier Combinations
The following table lists what’s selected when you use arena and group specifiers to step your program:



Group, Process, and Thread Control / Setting Group Focus  529

NOTE >> Stepping commands behave differently if the group being stepped is a process group rather 
than a thread group. For example, aC and aS perform the same action, but aL is different. 

If you don’t add a PID or TID to your arena specifier, TotalView does it for you, taking the PID and TID from the cur-
rent or default focus. 

The following are some additional examples. These examples add PIDs and TIDs numbers to the raw specifier 
combinations listed in the previous table:

pW3 All worker threads in process 3.

pW3.< All worker threads in process 3. The focus of this specifier is the same as the focus in the previ-
ous example.

Specifier Specifies

aC All threads.

aS All threads.

aW All threads in all workers groups.

aL All threads.

Every thread is a member of a control group and a member of a 
share group and a member of a lockstep group. Consequently, 
three of these definitions mean “all threads.”

gC All threads in the Thread of Interest (TOI) control group. 

gS All threads in the TOI share group.

gW All worker threads in the control group that contains the TOI.

gL All threads in the same share group within the process that con-
tains the TOI that have the same PC as the TOI.

pC All threads in the control group of the Process of Interest (POI). This 
is the same as gC.

pS All threads in the process that participate in the same share group 
as the TOI.

pW All worker threads in the POI.

pL All threads in the POI whose PC is the same as the TOI.

tC Just the TOI. The t specifier overrides the group specifier, so all of 
these specifiers resolve to the current thread.tS

tW

tL 



Group, Process, and Thread Control / Setting Group Focus  530

gW3 All worker threads in the control group that contains process 3. The difference between this 
and pW3 is that pW3 restricts the focus to just one of the processes in the control group.

gL3.2 All threads in the same share group as process 3 that are executing at the same PC as thread 2 
in process 3. The reason this is a share group and not a control group is that different share 
groups can reside only in one control group.

/3 Specifies processes and threads in process 3. The arena width, POI, and TOI are inherited from 
the existing P/T set, so the exact meaning of this specifier depends on the previous context.

While the slash is unnecessary because no group is indicated, it is syntactically correct. 

g3.2/3 The 3.2 group ID is the name of the lockstep group for thread 3.2. This group includes all 
threads in the process 3 share group that are executing at the same PC as thread 2.

p3/3 Sets the process to process 3. The Group of Interest (GOI) is set to group 3. If group 3 is a pro-
cess group, most commands ignore the group setting. If group 3 is a thread group, most com-
mands act on all threads in process 3 that are also in group 3.

When you set the process using an explicit group, you might not be including all the threads 
you expect to be included. This is because commands must look at the TOI, POI, and GOI.

NOTE >> It is redundant to specify a thread width with an explicit group ID as this width means that the 
focus is on one thread.

In the following examples, the first argument to the dfocus command defines a temporary P/T set that the CLI 
command (the last term) operates on. The dstatus command lists information about processes and threads. 
These examples assume that the global focus was d1.< initially.

dfocus g dstatus
Displays the status of all threads in the control group.

dfocus gW dstatus
Displays the status of all worker threads in the control group. 

dfocus p dstatus
Displays the status of all worker threads in the current focus process. The width here, as in the 
previous example, is process, and the (default) group is the control group. The intersection of 
this width and the default group creates a focus that is the same as in the previous example.

dfocus pW dstatus
Displays the status of all worker threads in the current focus process. The width is process 
level, and the target is the workers group. 

The following example shows how the prompt changes as you change the focus. In particular, notice how the 
prompt changes when you use the C and the D group specifiers.
d1.<> f C 
dC1.< 
dC1.<> f D 



Group, Process, and Thread Control / Setting Group Focus  531

d1.< 
d1.<> 

Two of these lines end with the less-than symbol (<). These lines are not prompts. Instead, they are the value 
returned by TotalView when it executes the dfocus command.

‘All’ Does Not Always Mean ‘All’
When you use stepping commands, TotalView determines the scope of what runs and what stops by looking at 
the TOI. This section looks at the differences in behavior when you use the a (all) arena specifier. The following 
table describes what runs when you use this arena:

The following are some combinations:

f aC dgo Runs everything. If you’re using the dgo command, everything after the a is ignored: a/aPizza/
17.2, ac, aS, and aL do the same thing. TotalView runs everything.

f aC duntil While everything runs, TotalView must wait until something reaches a goal. It really isn’t obvious 
what this focus is. Since C is a process group, you might guess that all processes run until at 
least one thread in every participating process arrives at a goal. The reality is that since this goal 
must reside in the current share group, this command completes as soon as all processes in 
the TOI share group have at least one thread at the goal. Processes in other control groups run 
freely until this happens.

The TOI determines the goal. If there are other control groups, they do not participate in the 
goal. 

f aS duntil This command does the same thing as the f aC duntil command because the goals for f aC 
duntil and f aS duntil are the same, and the processes that are in this scope are identical.

Although more than one share group can exist in a control group, these other share groups do 
not participate in the goal.

f aL duntil Although everything will run, it is not clear what should occur. L is a thread group, so you might 
expect that the duntil command will wait until all threads in all lockstep groups arrive at the 
goal. Instead, TotalView defines the set of threads that it allows to run to a goal as just those 

Specifier Specifies

aC All threads.

aS All threads.

aW All threads in all workers groups.

aL All threads.

Every thread is a member of a control group and a member of a 
share group and a member of a lockstep group. Consequently, 
three of these definitions mean “all threads.”



Group, Process, and Thread Control / Setting Group Focus  532

threads in the TOI’s lockstep group. Although there are other lockstep groups, these lockstep 
groups do not participate in the goal. So, while the TOI’s lockstep threads are progressing to-
wards their goal, all threads that were previously stopped run freely.

f aW duntil Everything runs. TotalView waits until all members of the TOI workers group arrive at the goal.

Two broad distinctions between process and thread group behavior exist:

• When the focus is on a process group, TotalView waits until just one thread from each participating 
process arrives at the goal. The other threads just run.

When focus is on a thread group, every participating thread must arrive at the goal.

• When the focus is on a process group, TotalView steps a thread over the goal breakpoint and 
continues the process if it isn’t the right thread. 

When the focus is on a thread group, TotalView holds a thread even if it isn’t the right thread. It also continues 
the rest of the process. 

If your system does not support asynchronous thread control, TotalView treats thread specifiers as if they 
were process specifiers.

With this in mind, f aL dstep does not step all threads. Instead, it steps only the threads in the TOI’s lockstep 
group. All other threads run freely until the stepping process for these lockstep threads completes.

Setting Groups
This section presents a series of examples that set and create groups. 

You can use the following methods to indicate that thread 3 in process 2 is a worker thread:

dset WGROUP(2.3) $WGROUP(2)
Assigns the group ID of the thread group of worker threads associated with process 2 to the 
WGROUP variable. (Assigning a nonzero value to WGROUP indicates that this is a worker 
group.)

dset WGROUP(2.3) 1
This is a simpler way of doing the same thing as the previous example.

dfocus 2.3 dworker 1
Adds the groups in the indicated focus to a workers group. 

dset CGROUP(2) $CGROUP(1) 
dgroups -add -g $CGROUP(1) 2 
dfocus 1 dgroups -add 2

These three commands insert process 2 into the same control group as process 1.

dgroups -add -g $WGROUP(2) 2.3
Adds process 2, thread 3 to the workers group associated with process 2. 



Group, Process, and Thread Control / Setting Group Focus  533

dfocus tW2.3 dgroups -add
This is a simpler way of doing the same thing as the previous example.

Following are some additional examples:

dfocus g1 dgroups -add -new thread 
Creates a new thread group that contains all the threads in all the processes in the control 
group associated with process 1.

set mygroup [dgroups -add -new thread $GROUP($SGROUP(2))] 
dgroups -remove -g $mygroup 2.3
dfocus g$mygroup/2 dgo

The first command creates a new group that contains all the threads from the process 2 share 
group; the second removes thread 2.3; and the third runs the remaining threads.

Using the g Specifier: An Extended Example 
The meaning of the g width specifier is sometimes not clear when it is coupled with a group scope specifier. Why 
have a g specifier when you have four other group specifiers? Stated in another way, isn’t something like gL 
redundant? 

The simplest answer, and the reason you most often use the g specifier, is that it forces the group when the 
default focus indicates something different from what you want it to be. 

The following example shows this. The first step sets a breakpoint in a multi-threaded OMP program and exe-
cutes the program until it hits the breakpoint.
d1.<> dbreak 35
Loaded OpenMP support library libguidedb_3_8.so : 
                   KAP/Pro Toolset 3.8
1
d1.<> dcont
Thread 1.1 has appeared
Created process 1/37258, named "omp_prog"
Thread 1.1 has exited
Thread 1.1 has appeared
Thread 1.2 has appeared
Thread 1.3 has appeared
Thread 1.1 hit breakpoint 1 at line 35 in ".breakpoint_here"

RELATED TOPICS
The dfocus command dfocus in "CLI Commands" in the TotalView for HPC Reference Guide

The dgroup command dgroup in "CLI Commands" in the TotalView for HPC Reference Guide 

The dset command dset in "CLI Commands" in the TotalView for HPC Reference Guide



Group, Process, and Thread Control / Setting Group Focus  534

The default focus is  d1.<, which means that the CLI is at its default width, the POI is 1, and the TOI is the lowest 
numbered nonmanager thread. Because the default width for the dstatus command is process, the CLI displays 
the status of all processes. Typing dfocus p dstatus produces the same output.
d1.<> dstatus
1:       37258   Breakpoint  [omp_prog]
    1.1: 37258.1 Breakpoint  PC=0x1000acd0,
                     [./omp_prog.f#35]
    1.2: 37258.2 Stopped     PC=0xffffffffffffffff
    1.3: 37258.3 Stopped     PC=0xd042c944
d1.<> dfocus p dstatus 
1:       37258   Breakpoint  [omp_prog]
    1.1: 37258.1 Breakpoint  PC=0x1000acd0,
                     [./omp_prog.f#35]
    1.2: 37258.2 Stopped     PC=0xffffffffffffffff
    1.3: 37258.3 Stopped     PC=0xd042c944

The CLI displays the following when you ask for the status of the lockstep group. (The rest of this example uses 
the f abbreviation for dfocus, and st for dstatus.)
d1.<> f L st
1:       37258   Breakpoint  [omp_prog]
    1.1: 37258.1 Breakpoint  PC=0x1000acd0,
                     [./omp_prog.f#35]

This command tells the CLI to display the status of the threads in thread, which is the 1.1 lockstep group since 
this thread is the TOI. The f L focus command narrows the set so that the display only includes the threads in the 
process that are at the same PC as the TOI.

NOTE >> By default, the dstatus command displays information at process width. This means that you 
don’t need to type f pL dstatus.

The duntil command runs thread 1.3 to the same line as thread 1.1. The dstatus command then displays the 
status of all the threads in the process:
d1.<> f t1.3 duntil 35 
    35@>             write(*,*)"i= ",i, 
                       "thread= ",omp_get_thread_num()
d1.<> f p dstatus 
1:       37258   Breakpoint  [omp_prog]
    1.1: 37258.1 Breakpoint  PC=0x1000acd0,
                     [./omp_prog.f#35]
    1.2: 37258.2 Stopped     PC=0xffffffffffffffff
    1.3: 37258.3 Breakpoint  PC=0x1000acd0,
                     [./omp_prog.f#35]

As expected, the CLI adds a thread to the lockstep group: 
d1.<> f L dstatus 
1:       37258   Breakpoint  [omp_prog]



Group, Process, and Thread Control / Setting Group Focus  535

    1.1: 37258.1 Breakpoint  PC=0x1000acd0,
                     [./omp_prog.f#35]
    1.3: 37258.3  Breakpoint  PC=0x1000acd0, 
                     [./omp_prog.f#35]

The next set of commands begins by narrowing the width of the default focus to thread width—notice that the 
prompt changes—and then displays the contents of the lockstep group:
d1.<> f t
t1.<> f L dstatus
1:       37258   Breakpoint  [omp_prog]
    1.1: 37258.1 Breakpoint  PC=0x1000acd0, 
                     [./omp_prog.f#35]

Although the lockstep group of the TOI has two threads, the current focus has only one thread, and that thread is, 
of course, part of the lockstep group. Consequently, the lockstep group in the current focus is just the one thread, 
even though this thread’s lockstep group has two threads. 

If you ask for a wider width (p or g) with L, the CLI displays more threads from the lockstep group of thread 1.1. as 
follows:
t1.<> f pL dstatus
1:       37258   Breakpoint  [omp_prog]
    1.1: 37258.1 Breakpoint  PC=0x1000acd0, 
                     [./omp_prog.f#35]
    1.3: 37258.3 Breakpoint  PC=0x1000acd0, 
                     [./omp_prog.f#35]
t1.<> f gL dstatus
1:       37258   Breakpoint  [omp_prog]
    1.1: 37258.1 Breakpoint  PC=0x1000acd0, 
                     [./omp_prog.f#35]
    1.3: 37258.3 Breakpoint  PC=0x1000acd0, 
                     [./omp_prog.f#35]

NOTE >> If the TOI is 1.1, L refers to group number 1.1, which is the lockstep group of thread 1.1.

Because this example only contains one process, the pL and gL specifiers produce the same result when used 
with the dstatus command. If, however, there were additional processes in the group, you only see them when 
you use the gL specifier.

Merging Focuses 
When you specify more than one focus for a command, the CLI merges them. In the following example, the focus 
indicated by the prompt—this focus is called the outer focus—controls the display. This example shows what 
happens when dfocus commands are strung together:
t1.<> f d
d1.<



Group, Process, and Thread Control / Setting Group Focus  536

d1.<> f tL dstatus
1:       37258   Breakpoint  [omp_prog]
    1.1: 37258.1 Breakpoint  PC=0x1000acd0, 
                     [./omp_prog.f#35]
d1.<> f tL f p dstatus
1:       37258   Breakpoint  [omp_prog]
    1.1: 37258.1 Breakpoint  PC=0x1000acd0, 
                     [./omp_prog.f#35]
    1.3: 37258.3 Breakpoint  PC=0x1000acd0, 
                     [./omp_prog.f#35]
d1.<> f tL f p f D dstatus
1:       37258   Breakpoint  [omp_prog]
    1.1: 37258.1 Breakpoint  PC=0x1000acd0, 
                     [./omp_prog.f#35]
    1.2: 37258.2 Stopped     PC=0xffffffffffffffff
    1.3: 37258.3 Breakpoint  PC=0x1000acd0, 
                     [./omp_prog.f#35]
d1.<> f tL f p f D f L dstatus
1:       37258   Breakpoint  [omp_prog]
    1.1: 37258.1 Breakpoint  PC=0x1000acd0, 
                     [./omp_prog.f#35]
    1.3: 37258.3 Breakpoint  PC=0x1000acd0, 
                     [./omp_prog.f#35]

Stringing multiple focuses together might not produce the most readable result. In this case, it shows how one 
dfocus command can modify what another sees and acts on. The ultimate result is an arena that a command 
acts on. In these examples, the dfocus command tells the dstatus command what to display.

Naming Incomplete Arenas
In general, you do not need to completely specify an arena. TotalView provides values for any missing elements. 
TotalView either uses built-in default values or obtains them from the current focus. The following explains how 
TotalView fills in missing pieces:

• If you don’t use a width, TotalView uses the width from the current focus.

• If you don’t use a PID, TotalView uses the PID from the current focus.

• If you set the focus to a list, there is no longer a default arena. This means that you must explicitly 
name a width and a PID. You can, however, omit the TID. (If you omit the TID, TotalView defaults to 
the less-than symbol <.)

You can type a PID without typing a TID. If you omit the TID, TotalView uses the default <, where < indicates 
the lowest numbered worker thread in the process. If, however, the arena explicitly names a thread group, 
< means the lowest numbered member of the thread group. 

TotalView does not use the TID from the current focus, since the TID is a process-relative value. 



Group, Process, and Thread Control / Setting Group Focus  537

• A dot before or after the number specifies a process or a thread. For example, 1. is clearly a PID, 
while .7 is clearly a TID.

If you type a number without typing a dot, the CLI most often interprets the number as being a PID.

• If the width is t, you can omit the dot. For instance, t7 refers to thread 7. 

• If you enter a width and don’t specify a PID or TID, TotalView uses the PID and TID from the current 
focus.

If you use a letter as a group specifier, TotalView obtains the rest of the arena specifier from the default 
focus.

• You can use a group ID or tag followed by a /. TotalView obtains the rest of the arena from the 
default focus.

Focus merging can also influence how TotalView fills in missing specifiers. For more information, see “Merging 
Focuses” on page 535.

Naming Lists with Inconsistent Widths
TotalView lets you create lists that contain more than one width specifier. This can be very useful, but it can be 
confusing. Consider the following:
{p2 t7 g3.4}

This list is quite explicit: all of process 2, thread 7, and all processes in the same group as process 3, thread 4. 
However, how should TotalView use this set of processes, groups, and threads? 

In most cases, TotalView does what you would expect it to do: it iterates over the list and acts on each arena. If 
TotalView cannot interpret an inconsistent focus, it prints an error message.

Some commands work differently. Some use each arena’s width to determine the number of threads on which it 
acts. This is exactly what the dgo command does. In contrast, the dwhere command creates a call graph for pro-
cess-level arenas, and the dstep command runs all threads in the arena while stepping the TOI. TotalView may 
wait for threads in multiple processes for group-level arenas. The command description in the TotalView for HPC 
Reference Guide points out anything that you need to watch out for.



Group, Process, and Thread Control / Stepping (Part II): Examples  538

Stepping (Part II): Examples
The following are examples that use the CLI stepping commands:

• Step a single thread 

While the thread runs, no other threads run (except kernel manager threads). 

Example: dfocus t dstep 

• Step a single thread while the process runs 

A single thread runs into or through a critical region.

Example: dfocus p dstep 

• Step one thread in each process in the group 

While one thread in each process in the share group runs to a goal, the rest of the threads run freely. 

Example: dfocus g dstep 

• Step all worker threads in the process while nonworker threads run 

Worker threads run through a parallel region in lockstep.

Example: dfocus pW dstep 

• Step all workers in the share group 

All processes in the share group participate. The nonworker threads run. 

Example: dfocus gW dstep 

• Step all threads that are at the same PC as the TOI 

TotalView selects threads from one process or the entire share group. This differs from the previous two 
items in that TotalView uses the set of threads that are in lockstep with the TOI rather than using the workers 
group.

Example: dfocus L dstep 

In the following examples, the default focus is set to d1.<.

dstep Steps the TOI while running all other threads in the process.

dfocus W dnext Runs the TOI and all other worker threads in the process to the next statement. Other threads 
in the process run freely.

dfocus W duntil 37
Runs all worker threads in the process to line 37.

dfocus L dnext Runs the TOI and all other stopped threads at the same PC to the next statement. Other 
threads in the process run freely. Threads that encounter a temporary breakpoint in the 
course of running to the next statement usually join the lockstep group. 



Group, Process, and Thread Control / Stepping (Part II): Examples  539

dfocus gW duntil 37
Runs all worker threads in the share group to line 37. Other threads in the control group run 
freely.

UNW 37 Performs the same action as the previous command: runs all worker threads in the share 
group to line 37. This example uses the predefined UNW alias instead of the individual com-
mands. That is, UNW is an alias for dfocus gW duntil.

SL Finds all threads in the share group that are at the same PC as the TOI and steps them all in one 
statement. This command is the built-in alias for dfocus gL dstep.

sl Finds all threads in the current process that are at the same PC as the TOI, and steps them all in 
one statement. This command is the built-in alias for dfocus L dstep.

RELATED TOPICS
Stepping through your program “Using Stepping Commands” on page 166

Stepping (Part 1) “Stepping (Part I)” on page 516



Group, Process, and Thread Control / Using P/T Set Operators  540

Using P/T Set Operators
At times, you do not want all of one type of group or process to be in the focus set. TotalView lets you use the fol-
lowing three operators to manage your P/T sets:

| Creates a union; that is, all members of two sets.

- Creates a difference; that is, all members of the first set that are not also members of the sec-
ond set.

& Creates an intersection; that is, all members of the first set that are also members of the sec-
ond set.

For example, the following creates a union of two P/T sets:
p3 | L2 

You can, apply these operations repeatedly; for example:
p2 | p3 & L2 

This statement creates an intersection between p3 and L2, and then creates a union between p2 and the results 
of the intersection operation. You can directly specify the order by using parentheses; for example:
p2 | (p3 & pL2) 

Typically, these three operators are used with the following P/T set functions:

breakpoint(ptset) Returns a list of all threads that are stopped at a breakpoint.

comm(process, “comm_name”)
Returns a list containing the first thread in each process associated within a communicator 
within the named process. While process is a P/T set it is not expanded into a list of threads.

error(ptset) Returns a list of all threads stopped due to an error.

existent(ptset) Returns a list of all threads.

held(ptset) Returns a list of all threads that are held.

nonexistent(ptset)
Returns a list of all processes that have exited or which, while loaded, have not yet been cre-
ated.

running(ptset) Returns a list of all running threads.

stopped(ptset) Returns a list of all stopped threads.

unheld(ptset) Returns a list of all threads that are not held.

watchpoint(ptset) Returns a list of all threads that are stopped at a watchpoint.



Group, Process, and Thread Control / Using P/T Set Operators  541

The way in which you specify the P/T set argument is the same as the way that you specify a P/T set for the dfocus 
command. For example, watchpoint(L) returns all threads in the current lockstep group. The only operator that 
differs is comm, whose argument is a process.

The dot operator (.), which indicates the current set, can be helpful when you are editing an existing set. 

The following examples clarify how you use these operators and functions. The P/T set a (all) is the argument to 
these operators.

f {breakpoint(a) | watchpoint(a)} dstatus
Shows information about all threads that are stopped at breakpoints and watchpoints. The a 
argument is the standard P/T set indicator for all.

f {stopped(a) - breakpoint(a)} dstatus
Shows information about all stopped threads that are not stopped at breakpoints.

f {. | breakpoint(a)} dstatus
Shows information about all threads in the current set, as well as all threads stopped at a 
breakpoint.

f {g.3 - p6} duntil 577
Runs thread 3 along with all other processes in the group to line 577. However, it does not run 
anything in process 6.

f {($PTSET) & p123}
Uses just process 123 in the current P/T set.



Group, Process, and Thread Control / Creating Custom Groups  542

Creating Custom Groups
Debugging a multi-process or multi-threaded program most often focuses on running the program in one of two 
ways: either you run everything or run one or two things. Figuring out what you should be running, however, is a 
substantial part of the art of debugging. You can make things easier on yourself if you divide your program into 
groups, and then control these groups separately. When you need to do this, use the Groups > Custom Groups 
Dialog Box. (See Figure 249.) This dialog box also lets you alter a group’s contents as well as delete the group.

NOTE >> You can manage only process groups with this dialog box. Thread groups can only be man-
aged using the CLI. In addition, the groups you create must reside within one control group.

When you first display this dialog box, TotalView also displays a second, used to enter the group’s name.

The dialog’s right side contains a set of boxes. Each represents one of your processes. The initial color represents 
the process’s state. (This just helps you coordinate within the display in the Process Window’s Processes/Ranks 
Tab.) You can now create a group using your mouse by clicking on blocks as follows:

• Left-click on a box: Selects a box. No other box is selected. If other boxes are selected, they are 
deselected.

• Shift-left-click and drag: select a group of contiguous boxes.

• Control-left-click on a box: Adds a box to the current selection.

Edit an existing group in the same way. After making the group active by clicking on its name on the left, click 
within the right to make changes. (In most cases, you’ll be using a control-left-click.) 

If you’ve changed a group and then select Add or Close, TotalView asks if you want to save the changed group.

If you click Add when a group is selected, TotalView creates a group with the same members as that group.

Figure 249 – Group > Custom Groups Dialog Box



Group, Process, and Thread Control / Creating Custom Groups  543

Finally, you can delete a group by selecting its name and clicking Remove.



Scalability in HPC Computing Environments     544      

Chapter 22  

Scalability in HPC Computing 
Environments

Overview
TotalView provides features and performance enhancements for scalable debugging in today’s HPC comput-
ing environments, and no special configuration or action is necessary on your part to take advantage of 
TotalView’s scalability abilities. 

This chapter details TotalView’s features and configurations related to scalability, as follows:

• Root Window. The Root Window aggregates program state so that it can display quickly and is 
easy to understand. 

• Scalability Configuration Settings. Depending on your needs, you might want to set specific 
configuration variables that enable scalable debugging operations. 

• MRNet Configuration Settings. TotalView uses MRNet, a tree-based overlay network, for 
scalable communication. TotalView is preconfigured for scalability, but in some situations you 
may want to change MRNet's configuration. 

• dstatus and dwhere command options. These options provide aggregated views of various 
process and thread properties. (See the -group_by option in the Reference Guide entries for 
these commands.)

• Compressed process/thread list. The ptlist compactly displays the set of processes and 
threads that have been aggregated together.



Scalability in HPC Computing Environments / Overview  545

RELATED TOPICS
Compressed List Syntax (ptlist) “Compressed List Syntax (ptlist)” in the dstatus 

entry of the Reference Guide

the Px “Jump to Process/Thread” button Using the Processes/Ranks and Threads Tabs on 
page 379

dstatus -group_by and dwhere-group_by 
options

dstatus and dwhere in the Reference Guide



Scalability in HPC Computing Environments / Configuring TotalView for Scalability  546

Configuring TotalView for Scalability
To take advantage of TotalView’s features that support better scalability, disable user-thread debugging. User 
thread debugging is an area of the debugger that has not yet been parallelized, and can therefore slow down job 
launch and attach time. However, disabling user thread debugging also disables support for displaying thread 
local storage (e.g., via the __thread compiler keyword. This limitation will be fixed in a future release.

To configure TotalView with these settings, create a TotalView startup file in <totalviewInstallDir>/<PLATFORM>/lib/
.tvdrc and add the following lines:

# If TLS is not required, disable user threads for faster launch 
# and attach times
dset -set_as_default TV::user_threads false

Process Window’s Process Tab
By default, TotalView 8.15.0 and later suppress the display of the process grid in the Processes tab, because it can 
have a negative impact when scaling to a large number of processes. If debugger scalability is not a concern and 
you prefer to display the Processes tab in the Process Window, specify the -process_grid option or set the 
TV::GUI:process_grid_wanted state variable to true in the startup file.

To display the Process Window’s Processes tab when you start TotalView, pass TotalView the -process_grid com-
mand option:

totalview -process_grid

To always display the Processes tab in the Process Window by default, set the state variable 
TV::GUI:process_grid_wanted to true for use when initializing TotalView:

dset TV::GUI:process_grid_wanted true



Scalability in HPC Computing Environments / dlopen Options  547

dlopen Options
When a target process calls dlopen(), a dlopen event is generated in TotalView. Handling dlopen events heavily 
impacts startup time for dynamically linked executables, specifically after launch and attach, but before the user 
hits the first breakpoint. TotalView provides two ways to configure dlopen for better performance:

• Filtering dlopen events to avoid stopping a process for each event.

• Handling dlopen events in parallel, reducing client/server communication overhead to fetch library 
information. Note: Both this option and MRNet must be enabled for TotalView to fetch libraries in 
parallel.

dlopen Event Filtering
You can filter dlopen events to plant breakpoints in the dlopened libraries only when the process stops for some 
other reason. 

When so configured, the process never stops for a dlopen event, not even "null" dlopen events. Using this option 
can result in significant performance gains — but note that an application may execute past the point at which 
you want to start debugging inside the dlopened library, so this setting may be impractical for some applications. 

dlopen event filtering is controlled by the settings on two state variables, TV::dlopen_always_recalculate and 
TV::dlopen_recalculate_on_match. Three possible dlopen filtering modes are made possible by these variables:

• Slow Mode: Reloads libraries on every dlopen event. This is the default.

• Medium Mode: Reports only libraries that match defined patterns on a dlopen event.

RELATED TOPICS
A more detailed comparison of dlopen event filter-
ing modes

“Filtering dlopen Events” in the TotalView for HPC Refer-
ence Guide

More on setting dlopen for parallel library handling “Handling dlopen Events in Parallel” in the TotalView for 
HPC Reference Guide

The TV::dlopen_always_recalculate state variable 
and command line options

TV::dlopen_always_recalculate and -dlopen_al-
ways_recalculate in the TotalView for HPC Reference 
Guide

The TV::dlopen_recalculate_on_match state vari-
able and command line options

TV::dlopen_recalculate_on_match and dlopen_re-
calculate_on_match in the TotalView for HPC Reference 
Guide

The TV::dlopen_read_libraries_in_parallel state 
variable and command line options

TV::dlopen_read_libraries_in_parallel and 
dlopen_read_libraries_in_parallel in the TotalView for 
HPC Reference Guide



Scalability in HPC Computing Environments / dlopen Options  548

• Fast Mode: Does not stop for dlopen events. This mode provides the best performance and is 
recommended when scalability is important.

You can set dlopen to use the Fast mode for all invocations of TotalView by putting the following in your tvdrc 
file:
dset dlopen_always_recalculate==false
dset dlopen_recalculate_on_match==""

Or, you can just launch an individual instance of TotalView with these settings by entering:
totalview -no_dlopen_always_recalculate -dlopen_recalculate_on_match ""

Handling dlopen Events in Parallel
TotalView’s default behavior is to handle dlopened libraries serially, creating multiple, single-cast client-server 
communications. This can degrade performance, depending on the number of libraries a process dlopens, and 
the number of processes in the job. 

To handle dlopened libraries in parallel using MRNet, enter the following in your tvdrc file so that all future invoca-
tions of TotalView will have this set:

dset TV::dlopen_read_libraries_in_parallel true

Or for a single invocation of TotalView, simply launch TotalView using the command parameter:
totalview -dlopen_read_libraries_in_parallel

NOTE >> Enabling this option does not guarantee that dlopen performance will improve on all systems 
in all scenarios. Be sure to test the impact of this setting on your system and debugging envi-
ronments.

Remember that MRNet must also be enabled for this to work.



Scalability in HPC Computing Environments / MRNet  549

MRNet
MRNet stands for “Multicast/Reduction Network.” MRNet uses a tree-based front-end to back-end communica-
tion model to significantly improve the efficiency of data multicast and aggregation for front-end tools running on 
massively parallel systems.

The following description is from the MRNet web site (http://www.paradyn.org/mrnet/):

MRNet is a software overlay network that provides efficient multicast and reduction communications for parallel 
and distributed tools and systems. MRNet uses a tree of processes between the tool's front-end and back-ends 
to improve group communication performance. These internal processes are also used to distribute many 
important tool activities, reducing data analysis time and keeping tool front-end loads manageable. 

MRNet-based tool components communicate across logical channels called streams. At MRNet internal pro-
cesses, filters are bound to these streams to synchronize and aggregate dataflows. Using filters, MRNet can effi-
ciently compute averages, sums, and other more complex aggregations and analyses on tool data. MRNet also 
supports facilities that allow tool developers to dynamically load new tool-specific filters into the system.

Rogue Wave’s use of MRNet is part of a larger strategy to improve the scalability of TotalView as high-end com-
puters grow into very high process and thread counts.

TotalView supports MRNet on Linux x86_64 and Linux Power clusters, IBM Blue Gene, and Cray XT, XE, and XK.

TotalView Infrastructure Models

Starting with TotalView 8.11.0, the TotalView debugger supported two infrastructure models that control the way 
the debugger organizes its TotalView debugger server processes when debugging a parallel job involving multiple 
compute nodes. Starting with TotalView 8.15, TotalView uses the tree-based infrastructure described below by 
default.

The first model uses a “flat vector” of TotalView debugger server processes. The TotalView debugger has always 
supported this model, and still does. Under the flat vector model, the debugger server processes have a direct 
(usually socket) connection to the TotalView front-end client. This model works well at low process scales, but 
begins to degrade as the target application scales beyond a few thousand nodes or processes. This is the default 
infrastructure model.

Figure 250 shows the TotalView client connected to four TotalView debugger servers (tvdsvr). In this example, 
four separate socket channels directly connect the client to the debugger servers.



Scalability in HPC Computing Environments / MRNet  550

The second model uses MRNet to form a tree of debugger server and MRNet communication processes con-
nected to the TotalView front-end client, which forms the root of the tree. MRNet supports building many 
different shapes of trees, but note that the shape of the tree (for example, depth and fan-out) can greatly affect 
the performance of the debugger. The following sections describe how to control the shape of the MRNet tree in 
TotalView.

Figure 251 shows an MRNet tree in which the TotalView client is connected to four TotalView debugger servers 
through two MRNet commnode processes using a tree fan-out value of 2.

Figure 250 – Flat Vector of Servers Infrastructure Model

Figure 251 – MRNet Infrastructure Model



Scalability in HPC Computing Environments / MRNet  551

Using MRNet with TotalView
TotalView is already preconfigured for maximum scalability, so no further customization is necessary. This section 
is for advanced users and describes TotalView options and state variables related to the use of MRNet with 
TotalView, as follows:

• General Use

• Using MRNet on Blue Gene

• Using MRNet on Cray Computers

Please refer to the TotalView documentation for a general description of how options and state variables can be 
used with TotalView.

General Use

This section discusses basic configuration options of MRNet with TotalView. If you are working on a Blue Gene or 
Cray computer, you will need to look at the sections specific to those systems as well.

Disabling MRNet Before Startup

By default, TotalView uses the MRNet infrastructure on the platforms where it is supported (Linux-x86_64, Linux-
Power, Blue Gene/Q, and Cray). On platforms where MRNet is not supported, TotalView uses its standard vector-
of-servers infrastructure. 

If for some reason you do not want to use the MRNet infrastructure to debug an MPI job, you must first disable 
MRNet in TotalView before launching the MPI job. MRNet can be disabled by:

• Starting TotalView with the -nomrnet option:
prompt> totalview -nomrnet

• With TotalView running, use the command line interface (CLI) to set the TV::mrnet_enabled state 
variable:
prompt> dset TV::mrnet_enabled false

MRNet Server Launch String

Option: -mrnet_server_launch_string string

State variable: TV::mrnet_server_launch_string string

Default string: %B/tvdsvr%K -working_directory %D -set_pw %P -verbosity %V %F

The server launch string defines configuration options when launching a debugging server. TotalView has a 
default string it uses when launching a server using the vector-of-servers architecture, and an option and state 
variable that allow you to modify the default string. The MRNet usage of TotalView also has a default launch string 
and corresponding option and state variables.



Scalability in HPC Computing Environments / MRNet  552

The MRNet launch string differs from the standard launch string in two ways: it does not contain a remote shell 
command expansion (e.g., rsh or ssh), and it has no -callback option.

TotalView always appends the following string to the expanded MRNet launch string:

-mrnet_launch node_id

where node_id is an integer that specifies the server's TotalView node ID within the job. If node_id is 0, the server 
assigns itself a node ID equal to its MRNet rank plus 1.

Controlling the Shape of an MRNet Tree

The shape of the MRNet tree calculated by TotalView can be controlled through a collection of options and state 
variables. Given the list of hosts, which is typically extracted from the MPIR proctable, TotalView calculates an 
MRNet topology string to create various shapes of trees.

There are three basic controls:

• Tree fan-out: specifies the maximum number of children a node can have. If the number of leaves 
in the tree is not a power of the fan-out, some of the tree nodes will have fewer children.

• Tree depth: specifies the maximum depth of the tree (that is, the number of levels below the root). 
If the number of leaves is not greater than the square of the tree depth value, a shallower tree is 
built.

• Whether to allocate an extra communications node below the root.

MRNet Tree Fan-Out

Option: –mrnet_fanout integer

State variable: TV::mrnet_fanout integer

Default value: 32

If you change the default value, the new value must be greater than or equal to 2 and less than or equal to 
32768.

MRNet Tree Depth

Option: –mrnet_levels integer

State variable: TV::mrnet_levels integer

Default value: 2

The MRNet tree depth can be specified in terms of the number of levels below the root. If you change the 
default value, the new value must be greater than or equal to -2 and less than or equal to 32.

• If the tree depth is 0, the MRNet tree fan-out value is used, and TotalView attempts to honor the 
fan-out value near the bottom of the tree (the leaves).



Scalability in HPC Computing Environments / MRNet  553

• If the tree depth is set to a value that is greater than 0 (which includes the default value of 2), the 
fan-out value is ignored and a balanced tree is built with at most the specified number of levels.

• If the tree depth is -1, the fan-out value is used, and TotalView attempts to honor the fan-out value 
near the top (the root) of the tree, rather than near the bottom of the tree (the leaves).

• If the tree depth is -2, TotalView builds a tree similar to the one created when the tree depth is -1, 
except that the tree is unbalanced from side-to-side.

As an example, consider a tree with a root node and eight leaf nodes. If the fan-out value is 4 and the tree 
depth value is 0, a tree that is “bushy” near the leaves is built because TotalView honors fan-out at the leaf end 
of the tree.
root:1 => n1:2 n5:2 ;

n1:2 => n1:1 n2:1 n3:1 n4:1 ;
n5:2 => n5:1 n6:1 n7:1 n8:1 ;

However, for the same tree when the tree depth setting is -1, a tree that is “bushy” near the root is built 
because TotalView honors fan-out at the root end of the tree.
root:1 => n1:2 n3:2 n5:2 n7:2 ;

n1:2 => n1:1 n2:1 ;
n3:2 => n3:1 n4:1 ;
n5:2 => n5:1 n6:1 ;
n7:2 => n7:1 n8:1 ;

Allocate an Extra Root Node

Option: –mrnet_extra_root boolean

State variable: TV::mrnet_extra_root boolean

Default value: false

For example, for a tree with a root and eight leaf nodes, using a fan-out value of 4, a tree depth value of 0, and 
requesting an extra root node, the following topology string will be calculated:
root:3 => root:1 ;

root:1 => n1:2 n5:2 ;
n1:2 => n1:1 n2:1 n3:1 n4:1 ;
n5:2 => n5:1 n6:1 n7:1 n8:1 ;

Path to MRNet Components

Option: -mrnet_commnode_path path-to-mrnet_commnode

State variable: TV::mrnet_commnode_path path-to-mrnet_commnode

Default value: tv-installation-root/platform/bin/mrnet_commnode

In a TotalView distribution, this is a path to a shell script that sets environment variables and execs the proper 
executable for the platform.



Scalability in HPC Computing Environments / MRNet  554

Path to the MRNet shared library directory

Option: -mrnet_filterlib_dir path-to-mrnet-shlib-directory

State variable: TV::mrnet_filterlib_dir path-to-mrnet-shlib-directory

Default value: tv-installation-root/platform/shlib/mrnet/obj

The TotalView server tree filters library libservertree_filters.so.1 and the MRNet libxplat.so and 
libmrnet.so libraries are stored in this directory.

Performance Notes

Rogue Wave has conducted performance tests on some specific systems, and based on this testing we here pro-
vide a couple of tips. These tips should be considered as guidelines. The only way to know how performance is 
affected by different tree configurations on your system is by trying out alternatives with your own jobs.

• In general, higher fan-outs seem to perform better than deeper trees. Specifically, trees deeper 
than two levels consistently performed worse than a two-level tree.

• In our testing, a one-level tree failed due to resource shortages at around 512 nodes, so this is not 
a viable option at higher scales. 

MRNet and ssh/rsh

Controlling MRNet’s Use of rsh vs ssh

When MRNet is used as the infrastructure in a Linux cluster or on Blue Gene front-end nodes, MRNet's built-in 
support is used to instantiate the tree of debugger servers and communications processes. Tree instantiation is 
based on a remote shell startup mechanism. By default, MRNet uses ssh as the remote shell program, but some 
environments require that rsh be used instead. TotalView controls the remote shell used by MRNet using the 
TV::xplat_rsh state variable or the -xplat_rsh TotalView command option to set this state variable. If this 
variable isn't explicitly set and the XPLAT_RSH environment variable is not set or is empty, TotalView uses the 
value of TV::launch_command when instantiating an MRNet tree.

On Cray XT, XE, and XK systems, MRNet uses the ALPS Tool Helper library to instantiate the tree, which does not require 
the use of a separate remote shell program.

Tips on Using ssh/rsh with MRNet

The use of rsh / ssh differs in every system environment, therefore you should consult your system's documen-
tation to know whether rsh or ssh should be used for your system. The rsh and ssh man pages are also a 
useful resource. Regardless, we offer the following tips as a guideline for how to configure rsh and ssh:

• Configure rsh or ssh to allow accessing the remote nodes without a password. rsh typically uses 
a file named $HOME/.rhosts (see man 5 rhost on a Linux system). ssh typically uses a pair of 
private/public keys stored in files under your $HOME/.ssh directory (see man 1 ssh on a Linux 
system).



Scalability in HPC Computing Environments / MRNet  555

• Disable X11 forwarding in ssh in your $HOME/.ssh/config file (see man 5 ssh_config on a 
Linux system).

• Set StrictHostKeyChecking to no in ssh in your $HOME/.ssh/config file (see man 5 
ssh_config on a Linux system). If the ssh host keys change for a remote host, you may need to 
delete the lines for the host from the $HOME/.ssh/known_hosts file, or remove the file.

Using MRNet on Blue Gene

The following sections describe the options and state variables that were added to TotalView to control the con-
figuration and use of MRNet on Blue Gene. Please refer to the TotalView documentation for a general description 
of how options and state variables can be used with TotalView. 

Blue Gene Server Command String

State variable: TV::bluegene_server_command_string string

Default string: %B/tvdsvr%K

This is a read-only state variable. It is expanded to the path of the TotalView Blue Gene debugger server com-
mand. TotalView expands the launch string using the normal launch string expansion rules. 

Blue Gene/MRNet Server Launch String

Option: –bluegene_mrnet_server_launch_string string

State variable: TV::bluegene_mrnet_server_launch_string string

Default value: –set_pw %P -verbosity %V %F

Analogous to the standard Blue Gene server launch string, the Blue Gene MRNet server launch string is used 
when MRNet is used to launch the TotalView debugger servers on Blue Gene. TotalView expands the launch 
string using the normal launch string expansion rules. 

The expanded string is written into the MPIR Process Acquisition Interface MPIR_server_arguments variable in 
the MPI starter process, such as mpirun, -runjob, or srun. The arguments are passed to the server command 
that is executed on the Blue Gene IO nodes. The MRNet launch string differs from the standard launch string in 
that the MRNet launch string does not contain the –callback option.

TotalView always appends the following string to the expanded Blue Gene MRNet launch string:

–mrnet_commnode temp-db-file

where temp-db-file is the path to the IO-to-FE node assignments database temporary file.



Scalability in HPC Computing Environments / MRNet  556

Blue Gene/MRNet Front-End Topology String

Option: –bluegene_mrnet_fe_topology string

State variable: TV::bluegene_mrnet_fe_topology string

Default value: "" (the empty string)

If set to a non-empty string, this string is used as the MRNet topology string for instantiating the Blue Gene com-
munications tree on the front-end nodes. This string must be a well-formed MRNet topology string usable directly 
by MRNet.

For example, if TotalView is running on the front-end host dawndev4, this option can be used to instantiate two 
additional mrnet_commnode processes on that front-end host:

totalview -bluegene_mrnet_fe_topology \

"dawndev4:0 => dawndev4-io:1 dawndev4-io:2 ;" \

  -mrnet -stdin /dev/null -args mpirun ./ALLc

The servers on the IO node will connect back to the two mrnet_commnode processes on the front-end using the 
dawndev4-io network interface, and the two mrnet_commnode processes on the front-end will connect to the 
TotalView process (the root of the MRNet tree) using the dawndev4 network interface.

Blue Gene/MRNet Front-End Host List

Option: –bluegene_mrnet_fe_host_list string

State variable: TV::bluegene_mrnet_fe_host_list string

Default value: "" (the empty string)

This list specifies Blue Gene front-end nodes on which to run MRNet mrnet_commnode processes. If set to a 
non-empty string, this variable is used as the list of front-end nodes for instantiating the Blue Gene communica-
tions tree. The list must contain a unique set of host names or IP addresses. 

This string is used only if TV::bluegene_mrnet_fe_topology is set to a non-empty string.

For example, if TotalView is running on the front-end host dawndev4, this option can be used to instantiate two 
additional mrnet_commnode processes on two other front-end nodes, dawndev1 and dawndev2:
totalview \

-xplat_rsh ssh \
  -bluegene_mrnet_fe_host_list "dawndev1-io dawndev2-io" \
  -mrnet -stdin /dev/null -args mpirun ./ALLc

The servers on the IO node will connect back to the two mrnet_commnode processes on the front-end nodes 
using the dawndev1-io and dawndev2-io network interfaces, and the two mrnet_commnode processes on the 
front-end will connect to the TotalView process (the root of the MRNet tree) using the dawndev4-io network 
interface.



Scalability in HPC Computing Environments / MRNet  557

Blue Gene/MRNet Back-End Servers per IO Node

Blue Gene/P

Option: –bluegene_p_mrnet_back_end_servers_per_io_node integer

State variable: TV::bluegene_p_mrnet_back_end_servers_per_io_node integer

Default value: 1

Blue Gene/Q

Option: –bluegene_q_mrnet_back_end_servers_per_io_node integer

State variable: TV::bluegene_q_mrnet_back_end_servers_per_io_node integer

Default value: 16

These state variables control the number of back-end server processes created on the IO nodes.

• On Blue Gene/P, the value must be set to 1 due to constraints in the IBM debugging interface. 

• On Blue Gene/Q the value must be greater than or equal to 1 and less than or equal to 64.

If the value is 1, no mrnet_commnode processes are created on the IO nodes. If the value is greater than 1, a sin-
gle mrnet_commnode process is created on the IO nodes and the back-end server processes connect to that 
communications process. On Blue Gene/Q, the default is to create 16 back-end server processes per IO node, 
which evenly share the workload of debugging the target processes running on the compute node.

MRNet IO to FE Database Temporary File Directory

Option: –mrnet_io_to_fe_db_temp_dir string

State variable: TV::mrnet_io_to_fe_db_temp_dir string

Default value: . (dot)

This state variable specifies the directory in which to create the MRNet IO-to-FE node association database tem-
porary file. The directory must be on a file system that is shared between the front-end and IO nodes. By default, 
the TotalView client process’s current working directory is used. TotalView creates a temporary file using the mks-
temp() Posix.1-2001 function with the pattern tvdsvr_cp_db.XXXXXX, where XXXXXX is replaced with a string 
that makes the filename unique. After the MRNet tree is fully instantiated, TotalView deletes this temporary file.

Blue Gene Front-End Tree Considerations

As described above, TotalView has several options and state variables that allow for alternate front-end trees. 
TotalView decides which front-end tree to create as follows:

• If TV::bluegene_mrnet_fe_topology is a non-empty string, it is used as-is and fed directly into 
MRNet to instantiate the front-end tree; otherwise,



Scalability in HPC Computing Environments / MRNet  558

• If TV::bluegene_mrnet_fe_host_list is a non-empty string, it must be a unique list of front-end 
host names or IP addresses that is used to calculate the MRNet front-end tree; otherwise,

• A single root node on the front-end host is used.

A Single Root Node on the Front-End

By default, TotalView creates a single root node on the front-end host, and the server or mrnet_commnode pro-
cesses running on the IO nodes connect back to the root using the IO network interface on the front-end host.

Consider an example where the IO network interface on a front-end node has the string -io appended to the 
primary host name. For example, dawndev4-io is the name for the IO network interface on dawndev4. 

dawndev4> hostname
dawndev4
dawndev4> grep dawndev4 /etc/hosts
192.168.10.14   edawndev4 dawndev4-eth2 e4
134.9.39.52     dawndev4.llnl.gov dawndev4 dawndev4-eth3
134.9.8.5       dawndev4-nfs.llnl.gov dawndev4-nfs dawndev4-eth0
172.16.126.164  dawndev4-io dawndev4-eth1
dawndev4> /sbin/ifconfig | grep addr
eth0      Link encap:Ethernet  HWaddr 00:1A:64:DD:B8:A6 
          inet addr:134.9.8.5  Bcast:134.9.8.255  Mask:255.255.255.0
eth1      Link encap:Ethernet  HWaddr 00:1A:64:DD:B8:A7  
          inet addr:172.16.126.164  Bcast:172.16.126.255  Mask:255.255.255.0
eth2      Link encap:Ethernet  HWaddr 00:1A:64:47:E3:5A  
          inet addr:192.168.10.14  Bcast:192.168.10.255  Mask:255.255.255.0
eth3      Link encap:Ethernet  HWaddr 00:1A:64:47:E3:5B  
          inet addr:134.9.39.52  Bcast:134.9.39.255  Mask:255.255.255.0

Above, we can see that dawndev4 has four network interfaces (not including the 127.0.0.1 loopback address), 
and eth1 is the network interface connected to the IO node network.

On systems that do not use this naming convention, the TotalView state variable TV::bluegene_io_interface 
must be set to the interface name, host name or IP address of an IO network connected interface on the front-
end node. For more information, see “IBM Blue Gene Applications” on page 480.

Explicit Front-End Topology String

If an explicit front-end topology string is specified with TV::bluegene_mrnet_fe_topology, it is used as-is and fed 
directly into MRNet to instantiate the front-end tree. The topology string must be a valid MRNet topology string. 
MRNet attempts to instantiate the front-end tree using its built-in launch support. If this fails, no tree is built and 
TotalView does not gain control of the job.

When specifying a front-end topology string, the following must be considered:



Scalability in HPC Computing Environments / MRNet  559

• The root of the tree must be a network interface on the same node where TotalView is running. For 
example, on dawndev4, the root must be dawndev4 or dawndev4-io, or even localhost if there are 
additional sub-nodes.

• The network interface specified at a leaf must be accessible via the IO network. For example, on 
dawndev4, specifying dawndev4-io as a leaf will work, specifying localhost as a leaf will not work, 
and specifying dawndev4 may or may not work depending on the connectivity between an IO node 
and the network interface associated with dawndev4.

• If a single front-end host is specified to run multiple processes (e.g., fe4:0=>fe4:1 fe4:2;), 
MRNet uses fork() and exec() to spawn the mrnet_commnode processes.

• If multiple front-end hosts are specified to run multiple processes (e.g., fe4:0=>fe1:0 fe2:0;), 
rsh/ssh is used to spawn the mrnet_commnode processes. In this case, the user must be able to 
rsh or ssh to the front-end nodes, and may need to set XPLAT_RSH using the TV::xplat_rsh 
state variable or -xplat_rsh command option described above.

Explicit List of Front-End Nodes

If an explicit list of front-end nodes is specified with TV::bluegene_mrnet_fe_host_list, it is used to calculate a 
topology string, which is then fed into MRNet to instantiate the front-end tree. The MRNet tree calculation con-
trols for tree fan-out, tree depth, and an extra root node are used in the calculation. MRNet attempts to 
instantiate the front-end tree using its built-in launch support. 

When specifying a list of front-end nodes, the following must be considered:

• The root of the tree used by TotalView is the same as the host name or IP address that is used in 
the single root node case (see above). For example, on dawndev4, dawndev4-io is used.

• The list of hosts specifies the leaves of the front-end tree. Therefore, the list of hosts must specify a 
network interface accessible via the IO network. For example, on dawndev4, specifying 
“dawndev1-io dawndev2-io” as the list will work, but specifying “dawndev1 dawndev2” may or 
may not work depending on the connectivity between an IO node and the network interface 
associated with dawndev1 and dawndev2.

• Depending on the setting of the MRNet tree calculation controls for tree fan-out, tree depth, and 
an extra root node, additional interior mrnet_commnode processes may be run on the front-end 
nodes specified by the list.

• The hosts on the list must be able to connect back to the root of the tree, and depending on the 
calculated topology may need to be able connect back to each other.

• The list of hosts can include the root host, but a host name must not appear more than once on 
the list.

• If a single front-end host is used to run multiple processes, MRNet uses fork() and exec() to 
spawn the mrnet_commnode processes.



Scalability in HPC Computing Environments / MRNet  560

• If multiple front-end hosts are specified to run multiple processes, rsh/ssh is used to spawn the 
mrnet_commnode processes. In this case, the user must be able to rsh or ssh to the front-end 
nodes, and may need to set XPLAT_RSH.

Using MRNet on Cray Computers

The following sections describe the options and state variables that were added to TotalView to control the con-
figuration and use of MRNet on Cray. Please refer to the TotalView documentation for a general description of 
how options and state variables can be used with TotalView.

Is Cray XT Flag

State variable: TV::is_cray_xt boolean

Default value: Set to true if TotalView is running on Linux-x86_64 and /proc/cray_xt/nid exists; otherwise 
set to false.

Note that some Cray front-end (login) nodes do not have a /proc/cray_xt/nid file, in which case a job must 
be submitted to start TotalView on a Cray XT, XE, or XK node.

Cray XT MRNet Server Launch String

Option: –cray_xt_mrnet_server_launch_string string

State variable: TV::cray_xt_mrnet_server_launch_string string

Default value: /var/spool/alps/%A/toolhelper%A/tvdsvr%K \

-working_directory %D -set_pw %P -verbosity %V %F

Analogous to the standard MRNet server launch string, the Cray XT MRNet server launch string is used when 
MRNet launches the TotalView debugger servers on Cray XT, XE, or XK. TotalView expands the launch string using 
the normal launch string expansion rules.

Cray XT MRNet Transfer File List

Option: –cray_xt_mrnet_xfer_file_list stringlist

State variable: TV::cray_xt_mrnet_xfer_file_list stringlist

Default value: 

The default value is calculated. at TotalView startup time, as follows. The following is used as a "base" list of files 
needed by TotalView on the Cray compute nodes when MRNet is in use.

TVROOT/bin/mrnet_commnode_main_cray_xt
TVROOT/bin/tvdsvr_mrnet
TVROOT/bin/tvdsvrmain_mrnet
TVROOT/shlib/mpa/obj_cray_xt/libmpattr.so.1
TVROOT/shlib/unwind/obj/libunwind-x86_64.so.8



Scalability in HPC Computing Environments / MRNet  561

TVROOT/shlib/unwind/obj/libunwind.so.8
TVROOT/shlib/mrnet/obj_cray_xt/libmrnet.so
TVROOT/shlib/mrnet/obj_cray_xt/libxplat.so
TVROOT/shlib/mrnet/obj_cray_xt/libservertree_filters.so.1
TVROOT/shlib/mrnet/obj_cray_xt/libtvwrapalps.so.1
/lib64/libthread_db.so.1
/usr/bin/ld
/usr/bin/objcopy
TVROOT/lib/libundodb_debugger_x64.so
TVROOT/lib/undodb_a_x64.o
TVROOT/lib/undodb_a_x32.o
TVROOT/lib/undodb_x64.so
TVROOT/lib/undodb_x32.so
TVROOT/lib/undodb_infiniband_preload_x64.so
TVROOT/lib/undodb_infiniband_preload_x32.so
TVROOT/lib/libtvheap_mic.so
TVROOT/lib/mic/libtvheap_64.so

The above list is then passed to the shell script named "cray_sysdso_deps.sh" to calculate the system shared 
libraries needed by the executables and shared libraries on the base list. The actual list of system libraries can 
vary from system to system, but typically consists of the following files:

/lib64/libdl.so.2
/lib64/libgcc_s.so.1
/lib64/libm.so.6
/lib64/libpthread.so.0
/usr/lib64/libbfd-<version>.so
/usr/lib64/libstdc++.so.5

The version of libbfd, which is needed by ld and objcopy, varies from system to system. 

The default value is a space-separated string-list of file names that are transferred (staged) to the compute 
nodes. These files are the shell script, executable and shared library files required to run the MRNet commnode 
and TotalView debugger server processes on the compute nodes. When instantiating the MRNet tree on Cray XT, 
XE, or XK, the ALPS Tool Helper library is used to broadcast these files into the compute nodes' ramdisk under the 
/var/spool/alps/apid directory. TVROOT is the path to the platform-specific files in the TotalView installation.



Checkpointing     562      

Chapter 23  

Checkpointing

You can save the state of selected process es and then use this saved information to restart the processes 
from the position where they were saved. For more information, see the Process Window Tools > Create 
Checkpoint and Tools > Restart Checkpoint commands in the online Help, Figure 252.

This feature is currently available only on IBM RS/6000 platforms.

CLI: dcheckpoint
drestart



Checkpointing /   563

Figure 252 – Create Checkpoint and Restart Checkpoint Dialog Boxes



Fine-Tuning Shared Library Use     564      

Chapter 24  

Fine-Tuning Shared Library 
Use 

When TotalView encounters a reference to a shared library, it normally reads all of that library’s symbols. In 
some cases, you might need to explicitly read in this library’s information before TotalView automatically reads 
it.

On the other hand, you may not want TotalView to read and process a library’s loader and debugging sym-
bols. In most cases, reading these symbols occurs quickly. However, if your program uses large libraries, you 
can increase performance by telling TotalView not to read these symbols.



Fine-Tuning Shared Library Use / Preloading Shared Libraries  565

Preloading Shared Libraries
As your program executes, it can call the dlopen() function to access code contained in shared libraries. In some 
cases, you might need to do something from within TotalView that requires you to preload library information. For 
example, you might need to refer to one of a library’s functions in an eval point or in a Tools > Evaluate com-
mand. If you use the function’s name before TotalView reads the dynamic library, TotalView displays an error 
message.

Use the Tools > Debugger Loaded Libraries command to tell the debugger to open a library.

After selecting this command, TotalView displays the following dialog box:

Selecting the Load button tells TotalView to display a file explorer dialog box that lets you navigate through your 
computer’s file system to locate the library. After selecting a library, TotalView reads it and displays a question box 
that lets you stop execution to set a breakpoint:

CLI: ddlopen
This CLI command gives you additional ways to control how a library’s sym-
bols are used.

Figure 253 – Tools > Debugger Loaded Libraries Dialog Box

Figure 254 – Stopping to Set a Breakpoint Question Box



Fine-Tuning Shared Library Use / Preloading Shared Libraries  566

NOTE >> TotalView might not read in symbol and debugging information when you use this command. 
See “Controlling Which Symbols TotalView Reads” on page 567 for more information.

RELATED TOPICS
TV:dll TV::dll in the TotalView for HPC Reference Guide

The ddlopen command ddlopen in the TotalView for HPC Reference Guide



Fine-Tuning Shared Library Use / Controlling Which Symbols TotalView Reads  567

Controlling Which Symbols TotalView Reads
When debugging large programs with large libraries, reading and parsing symbols can impact performance. This 
section describes how you can minimize the impact that reading this information has on your debugging session.

NOTE >> Using the preference settings and variables described in this section, you can control the time 
it takes to read in the symbol table. For most programs, even large ones, changing the settings 
is often inconsequential, but if you are debugging a very large program with large libraries, 
you can achieve significant performance improvements.

A shared library contains, among other things, loader and debugging symbols. Typically, loader symbols are read 
quite quickly. Debugging symbols can require considerable processing. The default behavior is to read all sym-
bols. You can change this behavior by telling TotalView to only read in loader symbols or even that it should not 
read in any symbols. 

NOTE >> Saying “TotalView reads all symbols” isn’t quite true as TotalView often just reads in loader 
symbols for some libraries. For example, it only reads in loader symbols if the library resides in 
the /usr/lib directory. (These libraries are typically those provided with the operating system.) 
You can override this behavior by adding a library name to the All Symbols list that is 
described in the next section.



Fine-Tuning Shared Library Use / Controlling Which Symbols TotalView Reads  568

Specifying Which Libraries are Read
After invoking the File > Preferences command, select the Dynamic Libraries Page. 

The lower portion of this page lets you enter the names of libraries for which you need to manage the informa-
tion that TotalView reads.

When you enter a library name, you can use the * (asterisk) and ? (question mark) wildcard characters. These 
characters have their standard meaning. Placing entries into these areas does the following:

all symbols This is the default operation. You only need to enter a library name here if it would be excluded 
by a wildcard in the loader symbols and no symbols areas. 

loader symbols TotalView reads loader symbols from these libraries. If your program uses a number of large 
shared libraries that you will not be debugging, you might set this to asterisk (*). You then enter 
the names of DLLs that you need to debug in the all symbols area.

no symbols Normally, you wouldn’t put anything on this list since TotalView might not be able to create a 
backtrace through a library if it doesn’t have these symbols. However, you can increase perfor-
mance if you place the names of your largest libraries here.

When reading a library, TotalView looks at these lists in the following order:

1. all symbols

2. loader symbols 

3. no symbols 

Figure 255 – File > Preferences: Dynamic Libraries Page



Fine-Tuning Shared Library Use / Controlling Which Symbols TotalView Reads  569

If a library is found in more than one area, TotalView does the first thing it is told to do and ignores any other 
requests. For example, after TotalView reads a library’s symbols, it cannot honor a request to not load in symbols, 
so it ignores a request to not read them.

See the online Help for additional information.

If your program stops in a library that has not already had its symbols read, TotalView reads the library’s symbols. 
For example, if your program SEGVs in a library, TotalView reads the symbols from that library before it reports 
the error. In all cases, however, TotalView always reads the loader symbols for shared system libraries.

Reading Excluded Information
While you are debugging your program, you might find that you do need the symbol information that you told 
TotalView it shouldn’t read. Tell TotalView to read them by right-clicking your mouse in the Stack Trace Pane and 
then selecting the Load All Symbols in Stack command from the context menu.

After selecting this command, TotalView examines all active stack frames and, if it finds unread libraries in any 
frame, reads them.

CLI: dset TV::dll_read_all_symbols
dset TV::dll_read_loader_symbols_only
dset TV::dll_read_no_symbols

Figure 256 – Load All Symbols in Stack Context menu

CLI: TV::read_symbols
This CLI command also gives you finer control over how TotalView reads in 
library information.



     570      

PART V  

Using the CUDA Debugger

This part introduces the TotalView CUDA debugger and includes the following chapters:
Chapter 25, “About the TotalView CUDA Debugger”

Introduces the CUDA debugger, including features, requirements, installation and drivers.

Chapter 26, “CUDA Debugging Tutorial”
Discusses how to build and debug a simple CUDA program, including compiling, controlling execution, and an-
alyzing data.

Chapter 27, “CUDA Problems and Limitations”
Issues related to limitations in the NVIDIA environment.

Chapter 28, “Sample CUDA Program”
Compilable sample CUDA program.



About the TotalView CUDA Debugger     571      

Chapter 25  

About the TotalView CUDA 
Debugger

The TotalView CUDA debugger is an integrated debugging tool capable of simultaneously debugging CUDA 
code that is running on the host Linux-x86_64 and the NVIDIA® GPU. CUDA support is an extension to the 
standard version of Linux-x86_64 TotalView, and is capable of debugging 64-bit CUDA programs on Linux-
x86_64. Debugging 32-bit CUDA programs is currently not supported.

Supported major features:

• Debug CUDA application running directly on GPU hardware

• Set breakpoints, pause execution, and single step in GPU code

• View GPU variables in PTX registers, local, parameter, global, or shared memory

• Access runtime variables, such as threadIdx, blockIdx, blockDim, etc.

• Debug multiple GPU devices per process

• Support for the CUDA MemoryChecker

• Debug remote, distributed and clustered systems

• Support for directive-based programming languages

• Support for Linux-x86_64 host debugging features

Requirements:

• CUDA SDK 7.0, 7.5, or 8.0

— With SDK 6.0 or 6.5, TotalView 8.15

— With SDK 7.0, TotalView 8.15.4



About the TotalView CUDA Debugger /   572

— With SDK 7.5, TotalView 8.15.10

• Tesla, Fermi or Kepler hardware supported by NVIDIA

• A linux-x86_64 distribution supported by NVIDIA



About the TotalView CUDA Debugger / TotalView CUDA Debugging Model  573

TotalView CUDA Debugging Model
Figure 257 shows the TotalView CUDA debugging model for a Linux process consisting of two Linux pthreads 
and two CUDA threads. A CUDA thread is a CUDA kernel invocation that is running on a device.

A Linux-x86_64 CUDA process consists of:

• A Linux process address space, containing a Linux executable and a list of Linux shared libraries.

• A collection of Linux threads, where a Linux thread:

— Is assigned a positive debugger thread ID.

— Shares the Linux process address space with other Linux threads.

• A collection of CUDA threads, where a CUDA thread:

— Is assigned a negative debugger thread ID.

— Has its own address space, separate from the Linux process address space, and separate 
from the address spaces of other CUDA threads.

— Has a "GPU focus thread", which is focused on a specific hardware thread (also known as a 
core or "lane" in CUDA lingo).

The above TotalView CUDA debugging model is reflected in the TotalView user interface and command line inter-
face. In addition, CUDA-specific CLI commands allow you to inspect CUDA threads, change the focus, and display 
their status. See the dcuda entry in the TotalView for HPC Reference Guide for more information.

Figure 257 – TotalView CUDA debugging model



About the TotalView CUDA Debugger / Installing the CUDA SDK Tool Chain  574

Installing the CUDA SDK Tool Chain
Before you can debug a CUDA program, you must download and install the CUDA SDK software from NVIDIA 
using the following steps:

• Visit the NVIDIA CUDA Zone download page:

https://developer.nvidia.com/cuda-downloads

• Select Linux as your operating system

• Download and install the CUDA SDK Toolkit for your Linux distribution (64-bit)

By default, the CUDA SDK Toolkit is installed under /usr/local/cuda/. The nvcc compiler driver is installed in /
usr/local/cuda/bin, and the CUDA 64-bit runtime libraries are installed in /usr/local/cuda/lib64.

You may wish to:

• Add /usr/local/cuda/bin to your PATH environment variable.

• Add /usr/local/cuda/lib64 to your LD_LIBRARY_PATH environment variable.

https://developer.nvidia.com/cuda-downloads


About the TotalView CUDA Debugger / Backward Compatibility with CUDA Device Drivers  575

Backward Compatibility with CUDA Device 
Drivers
The table below shows, for each version of TotalView, the SDK tool chain versions that are supported, and the 
minimum version of the NVIDIA driver needed for each SDK tool chain.

It is important to understand that it is the installed driver that ultimately determines the level of support. That is:

• NVidia provides backwards compatibility in its driver versions. For a given SDK, you can use a driver 
version that is newer than the minimum shown in the table below. In other words, newer NVidia 
drivers support older SDK versions. For example, using TotalView 8.15.10, you can debug programs 
built with the CUDA SDK 6.5 tool chain on systems that are running driver version 352.29 from the 
CUDA 7.5 SDK, or any driver version that is 340.21 or newer.

• NVidia does not provide upwards compatibility in its driver versions. For a given SDK, you cannot 
use a driver version that is older than the minimum shown in the table below. In other words, older 
NVidia drivers do not support newer SDK versions. For example, using TotalView 8.15.10, you 
cannot debug programs built with the CUDA SDK 7.5 tool chain on systems that are running driver 
version 340.21 from the CUDA SDK 6.5 or any driver version that is older than 352.29.

Y — TotalView supports programs for this driver/SDK version
D — TotalView support for this driver/SDK version is deprecated
– — Driver/SDK version unsupported

SDK Tool 
Chain 
Version

Minimum 
Driver Version

TotalView Version

8.15.0 8.15.4 8.15.7 8.15.10

6.0 331.62 Y Y Y D

6.5 340.21 Y Y Y Y

7.0 346.29 – Y Y Y

7.5 352.29 – – – Y



About the TotalView CUDA Debugger / Directive-Based Accelerator Programming Languages  576

Directive-Based Accelerator Programming 
Languages
Converting C or Fortran code into CUDA code can take some time and effort. To simplify this process, a number 
of directive-based accelerator programming languages have emerged. These languages work by placing compiler 
directives in the user’s code. Instead of writing CUDA code, the user can write standard C or Fortran code, and 
the compiler converts it to CUDA at compile time.

TotalView currently supports Cray’s OpenMP Accelerator Directives and Cray’s OpenACC Directives. TotalView 
uses the normal CUDA Debugging Model when debugging programs that have been compiled using these 
directives.



CUDA Debugging Tutorial     577      

Chapter 26  

CUDA Debugging Tutorial

This chapter discusses how to build and debug a simple CUDA program using TotalView.

Compiling for Debugging
When compiling an NVIDIA CUDA program for debugging, it is necessary to pass the -g -G options to the nvcc 
compiler driver. These options disable most compiler optimization and include symbolic debugging informa-
tion in the driver executable file, making it possible to debug the application. For example, to compile the 
sample CUDA program named tx_cuda_matmul.cu for debugging, use the following commands to compile 
and execute the application:
% /usr/local/bin/nvcc -g -G -c tx_cuda_matmul.cu -o tx_cuda_matmul.o
% /usr/local/bin/nvcc -g -G -Xlinker=-R/usr/local/cuda/lib64 \
  tx_cuda_matmul.o -o tx_cuda_matmul
% ./tx_cuda_matmul
A:
[    0][    0] 0.000000
...output deleted for brevity...
[    1][    1] 131.000000
%

Access the source code for this CUDA program tx_cuda_matmul.cu program at “Sample CUDA Program” on 
page 599.

Compiling for Fermi
To compile for Fermi, use the following compiler option:



CUDA Debugging Tutorial / Compiling for Debugging  578

-gencode arch=compute_20,code=sm_20

Compiling for Fermi and Tesla
To compile for both Fermi and Tesla GPUs, use the following compiler options:
-gencode arch=compute_20,code=sm_20 -gencode arch=compute_10,code=sm_10

See the NVIDIA documentation for complete instructions on compiling your CUDA code.

Compiling for Kepler
To compile for Kepler GPUs, use the following compiler options:
-gencode arch=compute_35,code=sm_35

See the NVIDIA documentation for complete instructions on compiling your CUDA code.



CUDA Debugging Tutorial / Starting a TotalView CUDA Session  579

Starting a TotalView CUDA Session
A standard Linux-x86_64 TotalView installation supports debugging CUDA applications running on both the host 
and GPU processors. TotalView dynamically detects a CUDA install on your system. To start the TotalView GUI or 
CLI, provide the name of your CUDA host executable to the totalview or totalviewcli command. For example, to 
start the TotalView GUI on the sample program, use the following command:
% totalview tx_cuda_matmul
CUDA library loaded: Current API is 3.0 rev 17
... 

If TotalView successfully loads the CUDA debugging library, it prints the current API version and revision as shown 
above.

After reading the symbol table information for the CUDA host executable, TotalView opens the initial process win-
dow focused on main in the host code, as shown in Figure 258.

You can debug the CUDA host code using the normal TotalView commands and procedures.

Figure 258 – Initial process window opened on CUDA host code



CUDA Debugging Tutorial / Loading the CUDA Kernel  580

Loading the CUDA Kernel
The executable that runs on the GPU is not available to the debugger until the CUDA kernel is launched. There-
fore, you have to allow the host code to launch the CUDA kernel before you can plant breakpoints in CUDA GPU 
code.

To debug the CUDA GPU code, continue running the CUDA host code so that it executes the CUDA kernel invoca-
tion. For example, select "Go" on the process window to start running the CUDA host process. When the process 
executes the CUDA kernel invocation and loads the GPU executable onto the device, TotalView posts a dialog box 
as shown in Figure 259.

Select "Yes" to plant breakpoints in the CUDA GPU code. The TotalView process window automatically refocuses 
on the CUDA thread showing the CUDA kernel ready to be executed, Figure 260.

Figure 259 – CUDA GPU image load dialog box



CUDA Debugging Tutorial / Loading the CUDA Kernel  581

TotalView gives host threads a positive debugger thread ID and CUDA threads a negative thread ID. In the above 
example, the initial host thread in process "1" is labeled "1.1" and the CUDA thread is labeled "1.-1". In TotalView, 
a "CUDA thread" is a CUDA kernel invocation consisting of registers and memory, as well as a "GPU focus thread". 
Use the "GPU focus selector" to change the physical coordinates of the GPU focus thread.

There are two coordinate spaces. One is the logical coordinate space that is in CUDA terms grid and block indices: 
<<<(Bx,By,Bz),(Tx,Ty,Tz)>>>. The other is the physical coordinate space that is in hardware terms the device num-
ber, streaming multiprocessor (SM) number on the device, warp (WP) number on the SM, and lane (LN) number 
on the warp. 

Figure 260 – TotalView process window focused on a newly loaded CUDA thread



CUDA Debugging Tutorial / Loading the CUDA Kernel  582

Any given thread has both a thread index in this 4D physical coordinate space, and a different thread index in the 
6D logical coordinate space. These indices are shown in a series of spin boxes in the process window. If the but-
ton says “Physical” (Figure 260), the physical thread number is displayed; if “Logical” (Figure 262), the logical 
number. Pressing this button switches between the two numbering systems, but does not change the actual 
thread.

To view a CUDA host thread, select a thread with a positive thread ID in the Threads tab of the process window. To 
view a CUDA GPU thread, select a thread with a negative thread ID, then use the GPU thread selector to focus on 
a specific GPU thread. There is one GPU focus thread per CUDA thread, and changing the GPU focus thread 
affects all windows displaying information for a CUDA thread and all command line interface commands targeting 
a CUDA thread. In other words, changing the GPU focus thread can change data displayed for a CUDA thread and 
affect other commands, such as single-stepping.

Note that in all cases, when you select a thread, TotalView automatically switches the stack trace, stack frame and 
source panes, and Action Points tab to match the selected thread.

Figure 261 – Logical / physical toggle in the process window



CUDA Debugging Tutorial / Controlling Execution  583

Controlling Execution

Running to a Breakpoint in the GPU code
Select a line number inside a box to plant a breakpoint in the GPU code, and select "Go" to continue the process, 
which will start the execution of the CUDA kernel. Once the CUDA kernel starts executing, it will hit the breakpoint 
planted in the GPU code, as shown in Figure 262.

The logical coordinates of the GPU focus threads are shown in the thread status title bar and the Threads pane. 
You can use the GPU focus thread selector to change the GPU focus thread. When you change the GPU focus 
thread, the logical coordinates displayed also change, and the stack trace, stack frame, and source panes are 
updated to reflect the state of the new GPU focus thread.

The yellow PC arrow in the source pane shows the execution location of the GPU focus thread. The GPU hard-
ware threads, also known as "lanes", execute in parallel so multiple lanes may have the same PC value. The lanes 
may be part of the same warp, or in different warps.

Figure 262 – CUDA thread stopped at a breakpoint, focused on GPU thread <<<(0,0,0),(0,0,0)>>>



CUDA Debugging Tutorial / Controlling Execution  584

The stack trace pane shows the stack backtrace and inlined functions. Each stack frame in the stack backtrace 
represents either the PC location of GPU kernel code, or the expansion of an inlined function. Inlined functions 
can be nested. The "return PC" of an inlined function is the address of the first instruction following the inline 
expansion, which is normally within the function containing the inlined-function expansion.

The stack frame pane shows the parameter, register and local variables for the function in the selected stack 
frame. The variables for the selected GPU kernel code or inlined function expansion are shown.

Viewing the Kernel’s Grid Identifier

TotalView 8.13 adds support for showing the grid identification in the stack frame information when a CUDA 
thread stops, Figure 263.

The grid is a unique identifier for a kernel running on a device. With CUDA SDK 5.5, kernels can launch parallel 
kernels on the same device. The parent grid is the identifier of the grid that launched the kernel currently in focus.

Single-Stepping GPU Code
TotalView allows you to single-step GPU code just like normal host code, but note that a single-step operation 
steps the entire warp associated with the GPU focus thread. So, when focused on a CUDA thread, a single-step 
operation advances all of the GPU hardware threads in the same warp as the GPU focus thread.

To advance the execution of more than one warp, you may either:

• set a breakpoint and continue the process

• select a line number in the source pane and select "Run To".

Execution of more than one warp also happens when single-stepping a __syncthreads() thread barrier call. Any 
source-level single-stepping operation runs all of the GPU hardware threads to the location following the thread 
barrier call.

Figure 263 – Viewing the Grid and Parent Grid Identifiers



CUDA Debugging Tutorial / Controlling Execution  585

Single-stepping an inlined function (nested or not) in GPU code behaves the same as single-stepping a non-
inlined function. You can:

• step into an inlined function,

• step over an inlined function,

• run to a location inside an inlined function,

• single-step within an inlined function, and

• return out of an inlined function.

Halting a Running Application
You can temporarily halt a running application at any time by selecting "Halt", which halts the host and CUDA 
threads. This can be useful if you suspect the kernel might be hung or stuck in an infinite loop. You can resume 
execution at any time by selecting "Go" or by selecting one of the single-stepping buttons.



CUDA Debugging Tutorial / Displaying CUDA Program Elements  586

Displaying CUDA Program Elements

GPU Assembler Display
Due to limitations imposed by NVIDIA, assembler display is not supported. All GPU instructions are currently dis-
played as 32-bit hexadecimal words. 

GPU Variable and Data Display
TotalView can display variables and data from a CUDA thread. The stack frame pane of the process window con-
tains parameter, register, local, and shared variables, as shown in Figure 264. The variables are contained within 
the lexical blocks in which they are defined. The type of the variable determines its storage kind (register, or local, 
shared, constant or global memory). The address is a PTX register name or an offset within the storage kind.

Dive on a variable in the stack frame pane or source pane in the process window to open a variable window. Fig-
ure 264 shows a parameter named A with type @parameter const Matrix.

The identifier @parameter is a TotalView built-in type storage qualifier that tells the debugger the storage kind of 
"A" is parameter storage. The debugger uses the storage qualifier to determine how to locate A in device memory. 
The supported type storage qualifiers are shown in Table 2.

Figure 264 – A variable window displaying a parameter

Table 2:  Supported Type Storage Qualifiers

Storage Qualifier Meaning

@parameter Address is an offset within parameter storage.

@local Address is an offset within local storage.



CUDA Debugging Tutorial / Displaying CUDA Program Elements  587

The type storage qualifier is a necessary part of the type for correct addressing in the debugger. When you edit a 
type or a type cast, make sure that you specify the correct type storage qualifier for the address offset.

CUDA Built-In Runtime Variables
TotalView allows access to the CUDA built-in runtime variables, which are handled by TotalView like any other vari-
ables, except that you cannot change their values.

The supported CUDA built-in runtime variables are as follows:

• struct dim3_16 threadIdx;

• struct dim3_16 blockIdx;

• struct dim3_16 blockDim;

• struct dim3_16 gridDim;

• int warpSize;

The types of the built-in variables are defined as follows:

• struct dim3_16 { unsigned short x, y, z; };

• struct dim2_16 { unsigned short x, y; };

You can dive on the name of a runtime variable in the source pane of the process window, or input its name into 
the View > Lookup Variable… (v) menu command dialog box. Built-in variables can also be used in the TotalView 
expression system.

Type Casting
The variable window allows you to edit the types of variables. This is useful for viewing an address as a different 
type. For example, Figure 265 shows the result of casting a float in global storage to a 2x2 array of floats in global 
storage.

@shared Address is an offset within shared storage.

@constant Address is an offset within constant storage.

@global Address is an offset within global storage.

@register Address is a PTX register name (see below).

Table 2:  Supported Type Storage Qualifiers

Storage Qualifier Meaning



CUDA Debugging Tutorial / Displaying CUDA Program Elements  588

You can determine the storage kind of a variable by diving on the variable to open a variable window in the graph-
ical user interface (GUI), or by using the dwhat command in the command line interface (CLI). 

Here are some examples of using the CLI to determine variable types and to perform type casts. Use Tools > 
Command Line from the process window menu to open a CLI window from the GUI.

The following examples use the CLI for ease of illustration, but you can instead use the GUI by entering the cast 
expression (dprint argument) in the Expression field of the variable window.

When you are using the CLI and want to operate on a CUDA thread, you must first focus on the CUDA thread. The 
GPU focus thread in the CLI is the same as in the GUI:
d1.<> dfocus .-1
d1.-1
d1.-1> 

The dwhat command prints the type and address offset or PTX register name of a variable. The dwhat command 
prints additional lines that have been omitted here for clarity:
d1.-1> dwhat A
In thread 1.-1:
Name: A; Type: @parameter const Matrix; Size: 24 bytes; Addr: 0x00000010
...
d1.-1> dwhat blockRow
In thread 1.-1:
Name: blockRow; Type: @register int; Size: 4 bytes; Addr: %r2
...
d1.-1> dwhat Csub

Figure 265 – Casting to a 2x2 array of float in global storage



CUDA Debugging Tutorial / Displaying CUDA Program Elements  589

In thread 1.-1:
Name: Csub; Type: @local Matrix; Size: 24 bytes; Addr: 0x00000060
...
d1.-1> 

You can use dprint in the CLI to cast and print an address offset as a particular type. Note that the CLI is a Tcl 
interpreter, so we wrap the expression argument to dprint in curly braces {} for Tcl to treat it as a literal string to 
pass into the debugger. For example, below we take the address of "A", which is at 0x10 in parameter storage. 
Then, we can cast 0x10 to a "pointer to a Matrix in parameter storage", as follows:
d1.-1> dprint {&A}
 &A = 0x00000010 -> (Matrix const @parameter)
d1.-1> dprint {*(@parameter Matrix*)0x10}
 *(@parameter Matrix*)0x10 = {
   width = 0x00000002 (2)
   height = 0x00000002 (2)
   stride = 0x00000002 (2)
   elements = 0x00110000 -> 0
 }
d1.-1> 

The above "@parameter" type qualifier is an important part of the cast, because without it the debugger cannot 
determine the storage kind of the address offset. Casting without the proper type storage qualifier usually results 
in "Bad address" being displayed, as follows:
d1.-1> dprint {*(Matrix*)0x10}
 *(Matrix*)0x10 = <Bad address: 0x00000010> (struct Matrix)
d1.-1> 

You can perform similar casts for global storage addresses. We know that "A.elements" is a pointer to a 2x2 array 
in global storage. The value of the pointer is 0x110000 in global storage. You can use C/C++ cast syntax:
d1.-1> dprint {A.elements}
 A.elements = 0x00110000 -> 0
d1.-1> dprint {*(@global float(*)[2][2])0x00110000}
 *(@global float(*)[2][2])0x00110000 = {
   [0][0] = 0
   [0][1] = 1
   [1][0] = 10
   [1][1] = 11
 }
d1.-1> 

Or you can use TotalView cast syntax, which is an extension to C/C++ cast syntax that allows you to simply read 
the type from right to left to understand what it is:
d1.-1> dprint {*(@global float[2][2]*)0x00110000}
 *(@global float[2][2]*)0x00110000 = {
   [0][0] = 0
   [0][1] = 1
   [1][0] = 10



CUDA Debugging Tutorial / Displaying CUDA Program Elements  590

   [1][1] = 11
 }
d1.-1> 

If you know the address of a pointer and you want to print out the target of the pointer, you must specify a stor-
age qualifier on both the pointer itself and the target type of the pointer. For example, if we take the address of 
"A.elements", we see that it is at address offset 0x20 in parameter storage, and we know that the pointer points 
into global storage. Consider this example:
d1.-1> dprint {*(@global float[2][2]*@parameter*)0x20}
 *(@global float[2][2]*@parameter*)0x20 = 0x00110000 -> (@global float[2][2])
d1.-1> dprint {**(@global float[2][2]*@parameter*)0x20}
 **(@global float[2][2]*@parameter*)0x20 = {
   [0][0] = 0
   [0][1] = 1
   [1][0] = 10
   [1][1] = 11
 }
d1.-1> 

Above, using the TotalView cast syntax and reading right to left, we cast 0x20 to a pointer in parameter storage to 
a pointer to a 2x2 array of floats in global storage. Dereferencing it once gives the value of the pointer to global 
storage. Dereferencing it twice gives the array in global storage. The following is the same as above, but this time 
in C/C++ cast syntax:
d1.-1> dprint {*(@global float(*@parameter*)[2][2])0x20}
 *(@global float(*@parameter*)[2][2])0x20 = 0x00110000 -> (@global float[2][2])
d1.-1> dprint {**(@global float(*@parameter*)[2][2])0x20}
 **(@global float(*@parameter*)[2][2])0x20 = {
   [0][0] = 0
   [0][1] = 1
   [1][0] = 10
   [1][1] = 11
 }
d1.-1> 

PTX Registers
In CUDA, PTX registers are more like symbolic virtual locations than hardware registers in the classic sense. At any 
given point during the execution of CUDA device code, a variable that has been assigned to a PTX register may 
live in one of three places:

• A hardware (SAS) register

• Local storage

• Nowhere (its value is dead)



CUDA Debugging Tutorial / Displaying CUDA Program Elements  591

Variables that are assigned to PTX registers are qualified with the "@register" type storage qualifier, and their 
locations are PTX register names. The name of a PTX register can be anything, but the compiler usually assigns a 
name in one of the following formats: %rN, %rdN, or %fN, where N is a decimal number.

Using compiler-generated location information, TotalView maps a PTX register name to the SASS hardware regis-
ter or local memory address where the PTX register is currently allocated. If the PTX register value is "live", then 
TotalView shows you the SASS hardware register name or local memory address. If the PTX register value is 
"dead", then TotalView displays Bad address and the PTX register name as show in Figure 266.

Figure 266 – PTX register variables: one live, one dead



CUDA Debugging Tutorial / Enabling CUDA MemoryChecker Feature  592

Enabling CUDA MemoryChecker Feature
You can detect global memory addressing violations and misaligned global memory accesses by enabling the 
CUDA MemoryChecker feature.

To enable the feature, use one of the following:

• Select "Enable CUDA memory checking" from the Startup Parameters dialog box in TotalView, as 
shown in Figure 267.

• Pass the -cuda_memcheck option to the totalview command.

• Set the TV::cuda_memcheck CLI state variable to true. For example:
dset TV::cuda_memcheck true

Note that global memory violations and misaligned global memory accesses will be detected only while the CUDA 
thread is running. Detection will not happen when single-stepping the CUDA thread.

Figure 267 – Enabling CUDA memory checking from TotalView Startup Parameters



CUDA Debugging Tutorial / GPU Core Dump Support  593

GPU Core Dump Support
CUDA GPU core dumps can be debugged just as you debug any other core dump. To obtain a GPU core dump, 
you must first set the CUDA_ENABLE_COREDUMP_ON_EXCEPTION environment variable to 1 to enable genera-
tion of a GPU core dump when a GPU exception is encountered. This option is disabled by default.

To change the default core dump file name, set the CUDA_COREDUMP_FILE environment variable to a specific file 
name. The default core dump file name is in the following format: core.cuda.<hostname>.<pid> where 
<hostname> is the host name of machine running the CUDA application and <pid> is the process identifier of 
the CUDA application.

To debug a GPU core dump, TotalView must be running on a machine with the CUDA SDK installed.

As with any core dump, you must also supply the name of the executable that produced the core dump:
totalview <executable> <core-dump-file>



CUDA Debugging Tutorial / GPU Error Reporting  594

GPU Error Reporting
By default, TotalView reports GPU exception errors as "signals". Continuing the application after these errors can 
lead to application termination or unpredictable results.

Table 3 lists reported errors, according to these platforms and settings:

• Exception codes Lane Illegal Address and Lane Misaligned Address are detected using 
all supported SDK versions when CUDA memcheck is enabled, on supported Tesla and Fermi 
hardware.

• All other CUDA errors are detected only for GPUs with sm_20 or higher (for example Fermi) running 
SDK 3.1 or higher. It is not necessary to enable CUDA memcheck to detect these errors.

Table 3:  CUDA Exception Codes

Exception code Error Precision Error Scope Description

CUDA_EXCEPTION_0:

“Device Unknown 
Exception”

Not precise Global error on 
the GPU

An application-caused global GPU error that does 
not match any of the listed error codes below.

CUDA_EXCEPTION_1:

“Lane Illegal 
Address”

Precise (Requires 
memcheck on)

Per lane/thread 
error

A thread has accessed an illegal (out of bounds) 
global address.

CUDA_EXCEPTION_2:

“Lane User Stack 
Overflow”

Precise Per lane/thread 
error

A thread has exceeded its stack memory limit.

CUDA_EXCEPTION_3:

“Device Hardware 
Stack Overflow”

Not precise Global error on 
the GPU

The application has triggered a global hardware 
stack overflow, usually caused by large amounts 
of divergence in the presence of function calls.

CUDA_EXCEPTION_4:

“Warp Illegal 
Instruction”

Not precise Warp error A thread within a warp has executed an illegal 
instruction.

CUDA_EXCEPTION_5:

“Warp Out-of-
range Address”

Not precise Warp error A thread within a warp has accessed an address 
that is outside the valid range of local or shared 
memory regions.

CUDA_EXCEPTION_6:

“Warp Misaligned 
Address”

Not precise Warp error A thread within a warp has accessed an incorrectly 
aligned address in the local or shared memory 
segments.

CUDA_EXCEPTION_7:

“Warp Invalid 
Address Space”

Not precise Warp error A thread within a warp has executed an instruc-
tion that attempts to access a memory space not 
permitted for that instruction.



CUDA Debugging Tutorial / GPU Error Reporting  595

CUDA_EXCEPTION_8:

“Warp Invalid PC”

Not precise Warp error A thread within a warp has advanced its PC 
beyond the 40-bit address space.

CUDA_EXCEPTION_9:

“Warp Hardware 
Stack Overflow”

Not precise Warp error A thread within a warp has triggered a hardware 
stack overflow.

CUDA_EXCEPTION_10:

“Device Illegal 
Address”

Not precise Global error A thread has accessed an illegal (out of bounds) 
global address. For increased precision, enable 
memcheck.

CUDA_EXCEPTION_11:

“Lane Misaligned 
Address”

Precise (Requires 
memcheck on)

Per lane/thread 
error

A thread has accessed an incorrectly aligned 
global address.

Table 3:  CUDA Exception Codes

Exception code Error Precision Error Scope Description



CUDA Debugging Tutorial / Displaying Device Information  596

Displaying Device Information
TotalView can display each device installed on the system, along with the properties of each SM, warp, and lane 
on that device. Together, these four attributes form the physical coordinates of a CUDA thread. To view the win-
dow, select Tools > CUDA Devices.

Figure 268 – CUDA Devices when no CUDA threads are present

Figure 269 – CUDA Devices when CUDA threads are present



CUDA Problems and Limitations     597      

Chapter 27  

CUDA Problems and 
Limitations

CUDA TotalView sits directly on top of the CUDA debugging environment provided by NVIDIA, which is still 
evolving and maturing. This environment contains certain problems and limitations, discussed in this chapter.

Hangs or Initialization Failures
When starting a CUDA debugging session, you may encounter hangs in the debugger or target application, 
initialization failures, or failure to launch a kernel. Use the following checklist to diagnose the problem:

Serialized Access There may be at most one CUDA debugging session active per node at a time. A node can-
not be shared for debugging CUDA code simultaneously by multiple user sessions, or mul-
tiple sessions by the same user. Use ps or other system utilities to determine if your 
session is conflicting with another debugging session.

Leaky Pipes The CUDA debugging environment uses FIFOs (named pipes) located in "/tmp" and named 
matching the pattern "cudagdb_pipe.N.N", where N is a decimal number. Occasionally, a 
debugging session might accidentally leave a set of pipes lying around. You may need to 
manually delete these pipes in order to start your CUDA debugging session:

rm /tmp/cudagdb_pipe.*
If the pipes were leaked by another user, that user will own the pipes and you may not be 
able to delete them. In this case, ask the user or system administrator to remove them for 
you.

Orphaned Processes
Occasionally, a debugging session might accidentally orphan a process. Orphaned pro-
cesses might go compute bound or prevent you or other users from starting a debugging 



CUDA Problems and Limitations / CUDA and ReplayEngine  598

session. You may need to manually kill orphaned CUDA processes in order to start your CUDA 
debugging session or stop a compute-bound process. Use system tools such as ps or top to 
find the processes and kill them using the shell kill command. If the process were orphaned by 
another user, that user will own the processes and you may not be able to kill them. In this 
case, ask the user or system administrator to kill them for you.

Multi-threaded Programs on Fermi
We have seen problems debugging some multi-threaded CUDA programs on Fermi, where the 
CUDA debugging environment kills the debugger with an internal error (SIGSEGV). We are 
working with NVIDIA to resolve this problem.

CUDA and ReplayEngine
You can enable ReplayEngine while debugging CUDA code; that is, ReplayEngine record mode will work. However, 
ReplayEngine does not support replay operations when focused on a CUDA thread. If you attempt this, you will 
receive a Not Supported error.



Sample CUDA Program     599      

Chapter 28  

Sample CUDA Program

/*
 * NVIDIA CUDA matrix multiply example straight out of the CUDA
 * programming manual, more or less.
 */

#include <cuda.h>
#include <stdio.h>

// Matrices are stored in row-major order:
// M(row, col) = *(M.elements + row * M.stride + col)
typedef struct {
  int width;/* number of columns */
  int height;/* number of rows */
  int stride;
  float* elements;
} Matrix;

// Get a matrix element
__device__ float GetElement(const Matrix A, int row, int col)
{
  return A.elements[row * A.stride + col];
}

// Set a matrix element
__device__ void SetElement(Matrix A, int row, int col, float value)
{
  A.elements[row * A.stride + col] = value;



Sample CUDA Program /   600

}

// Thread block size
#define BLOCK_SIZE 2

// Get the BLOCK_SIZExBLOCK_SIZE sub-matrix Asub of A that is
// located col sub-matrices to the right and row sub-matrices down
// from the upper-left corner of A
__device__ Matrix GetSubMatrix(Matrix A, int row, int col)
{
  Matrix Asub;
  Asub.width = BLOCK_SIZE;
  Asub.height = BLOCK_SIZE;
  Asub.stride = A.stride;
  Asub.elements = &A.elements[A.stride * BLOCK_SIZE * row
      + BLOCK_SIZE * col];

  return Asub;
}

// Forward declaration of the matrix multiplication kernel
__global__ void MatMulKernel(const Matrix, const Matrix, Matrix);

// Matrix multiplication - Host code
// Matrix dimensions are assumed to be multiples of BLOCK_SIZE
void MatMul(const Matrix A, const Matrix B, Matrix C)
{
  // Load A and B to device memory
  Matrix d_A;
  d_A.width = d_A.stride = A.width; d_A.height = A.height;
  size_t size = A.width * A.height * sizeof(float);
  cudaMalloc((void**)&d_A.elements, size);
  cudaMemcpy(d_A.elements, A.elements, size,
       cudaMemcpyHostToDevice);
  Matrix d_B;
  d_B.width = d_B.stride = B.width; d_B.height = B.height;
  size = B.width * B.height * sizeof(float);
  cudaMalloc((void**)&d_B.elements, size);
  cudaMemcpy(d_B.elements, B.elements, size,
       cudaMemcpyHostToDevice);
  // Allocate C in device memory
  Matrix d_C;
  d_C.width = d_C.stride = C.width; d_C.height = C.height;
  size = C.width * C.height * sizeof(float);
  cudaMalloc((void**)&d_C.elements, size);
  // Invoke kernel
  dim3 dimBlock(BLOCK_SIZE, BLOCK_SIZE);
  dim3 dimGrid(B.width / dimBlock.x, A.height / dimBlock.y);
  MatMulKernel<<<dimGrid, dimBlock>>>(d_A, d_B, d_C);



Sample CUDA Program /   601

  // Read C from device memory
  cudaMemcpy(C.elements, d_C.elements, size,
       cudaMemcpyDeviceToHost);
  // Free device memory
  cudaFree(d_A.elements);
  cudaFree(d_B.elements);
  cudaFree(d_C.elements);
}

// Matrix multiplication kernel called by MatrixMul()
__global__ void MatMulKernel(Matrix A, Matrix B, Matrix C)
{
  // Block row and column
  int blockRow = blockIdx.y;
  int blockCol = blockIdx.x;
  // Each thread block computes one sub-matrix Csub of C
  Matrix Csub = GetSubMatrix(C, blockRow, blockCol);
  // Each thread computes one element of Csub
  // by accumulating results into Cvalue
  float Cvalue = 0;
  // Thread row and column within Csub
  int row = threadIdx.y;
  int col = threadIdx.x;
  // Loop over all the sub-matrices of A and B that are
  // required to compute Csub
  // Multiply each pair of sub-matrices together
  // and accumulate the results
  for (int m = 0; m < (A.width / BLOCK_SIZE); ++m) {
    // Get sub-matrix Asub of A
    Matrix Asub = GetSubMatrix(A, blockRow, m);
    // Get sub-matrix Bsub of B
    Matrix Bsub = GetSubMatrix(B, m, blockCol);
    // Shared memory used to store Asub and Bsub respectively
    __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];
    __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];
    // Load Asub and Bsub from device memory to shared memory
    // Each thread loads one element of each sub-matrix
    As[row][col] = GetElement(Asub, row, col);
    Bs[row][col] = GetElement(Bsub, row, col);
    // Synchronize to make sure the sub-matrices are loaded
    // before starting the computation
    __syncthreads();
    // Multiply Asub and Bsub together
    for (int e = 0; e < BLOCK_SIZE; ++e)
      Cvalue += As[row][e] * Bs[e][col];
    // Synchronize to make sure that the preceding
    // computation is done before loading two new
    // sub-matrices of A and B in the next iteration



Sample CUDA Program /   602

    __syncthreads();
  }
  // Write Csub to device memory
  // Each thread writes one element
  SetElement(Csub, row, col, Cvalue);
  // Just a place to set a breakpoint in the debugger
  __syncthreads();
  __syncthreads();/* STOP: Csub should be fully updated */
}

static Matrix
cons_Matrix (int height_, int width_)
{
  Matrix A;
  A.height = height_;
  A.width = width_;
  A.stride = width_;
  A.elements = (float*) malloc(sizeof(*A.elements) * width_ * height_);
  for (int row = 0; row < height_; row++)
    for (int col = 0; col < width_; col++)
      A.elements[row * width_ + col] = row * 10.0 + col;
  return A;
}

static void
print_Matrix (Matrix A, char *name)
{
  printf("%s:\n", name);
  for (int row = 0; row < A.height; row++)
    for (int col = 0; col < A.width; col++)
      printf ("[%5d][%5d] %f\n", row, col, A.elements[row * A.stride + col]);
}

// Multiply an m*n matrix with an n*p matrix results in an m*p matrix.
// Usage: tx_cuda_matmul [ m [ n [ p ] ] ]
// m, n, and p default to 1, and are multiplied by BLOCK_SIZE.
int main(int argc, char **argv)
{
//  cudaSetDevice(0);
  const int m = BLOCK_SIZE * (argc > 1 ? atoi(argv[1]) : 1);
  const int n = BLOCK_SIZE * (argc > 2 ? atoi(argv[2]) : 1);
  const int p = BLOCK_SIZE * (argc > 3 ? atoi(argv[3]) : 1);
  Matrix A = cons_Matrix(m, n);
  Matrix B = cons_Matrix(n, p);
  Matrix C = cons_Matrix(m, p);
  MatMul(A, B, C);



Sample CUDA Program /   603

  print_Matrix(A, "A");
  print_Matrix(B, "B");
  print_Matrix(C, "C");
  return 0;
}



     604      

PART VI  

Appendices

This part contains appendices that are essentially reference material:
Appendix A, “Glossary,” on page 605

Definitions for technical terms used in this documentation.

Appendix B, “Licenses,” on page 623
Licenses for 3rd-party software.

Appendix C, “Resources,” on page 627
General information on resources available to you.



Glossary     605      

Appendix A  

Glossary

ACTION POINT: A debugger feature that lets a user request that program execution stop under certain 
conditions. Action points include breakpoints, watchpoints, eval points, and barriers.

ACTION POINT IDENTIFIER: 
A unique integer ID associated with an action point.

ACTIVATION RECORD: 
See stack frame on page 618.

ADDRESS SPACE: 
A region of memory that contains code and data from a program. One or more threads can run in an 
address space. A process normally contains an address space.

ADDRESSING EXPRESSION: 
A set of instructions that tell TotalView where to find information. These expressions are only used 
within the type transformation facility.

AFFECTED P/T SET: 
The set of process and threads that are affected by the command. For most commands, this is identical 
to the target P/T set, but in some cases it might include additional threads. (See “p/t (process/thread) 
set” on page 616 for more information.)

AGGREGATE DATA: 
A collection of data elements. For example, a structure or an array is an aggregate.

AGGREGATED OUTPUT: 
The CLI compresses output from multiple threads when they would be identical except for the P/T iden-
tifier.

API: 



Glossary /   606

Application Program Interface. The formal interface by which programs communicate with libraries.

ARENA: 
A specifier that indicates the processes, threads, and groups upon which a command executes. Arena 
specifiers are p (process), t (thread), g (group), d (default), and a (all).

ARRAY SECTION: 
In Fortran, a portion of an array that is also an array. The elements of this array is a new unnamed array 
object with its own indices. Compare this with a TotalView array slice on page 606.

ARRAY SLICE: 
A subsection of an array, which is expressed in terms of a lower bound on page 613, upper bound on 
page 621, and stride on page 619. Displaying a slice of an array can be useful when you are working with 
very large arrays. Compare this with a TotalView array section on page 606.

ASYNCHRONOUS: 
When processes communicate with one another, they send messages. If a process decides that it doesn’t 
want to wait for an answer, it is said to run “asynchronously.” For example, in most client/server programs, 
one program sends an RPC request to a second program and then waits to receive a response from the 
second program. This is the normal synchronous mode of operation. If, however, the first program sends a 
message and then continues executing, not waiting for a reply, the first mode of operation is said to be 
asynchronous.

ATTACH: 
The ability for TotalView to gain control of an already running process on the same machine or a remote 
machine.

AUTOLAUNCHING: 
When a process begins executing on a remote computer, TotalView can also launch a tvdsvr (TotalView 
Debugger Server) process on the computer that will send debugging information back to the TotalView pro-
cess that you are interacting with.

AUTOMATIC PROCESS ACQUISITION: 
TotalView automatically detects the many processes that parallel and distributed programs run in, and 
attaches to them automatically so you don’t have to attach to them manually. If the process is on a remote 
computer, automatic process acquisition automatically starts the TotalView Debugger Server (tvdsvr).

BARRIER POINT: 
An action point specifying that processes reaching a particular location in the source code should stop and 
wait for other processes to catch up.

BASE WINDOW: 
The original Process Window or Variable Window before you dive into routines or variables. After diving, 
you can use a Reset or Undive command to restore this original window.

BLOCKED: 



Glossary /   607

A thread state in which the thread is no longer executing because it is waiting for an event to occur. In most 
cases, the thread is blocked because it is waiting for a mutex or condition state.

BREAKPOINT: 
A point in a program where execution can be suspended to permit examination and manipulation of data.

BUG: 
A programming error. Finding them is why you’re using TotalView.

BULK LAUNCH: 
A TotalView procedure that launches multiple tvdsvr processes simultaneously.

CAF: 
See CoArray Fortran.

CALL FRAME: 
The memory area that contains the variables belonging to a function, subroutine, or other scope division, 
such as a block.

CALL STACK: 
A higher-level view of stack memory, interpreted in terms of source program variables and locations. This is 
where your program places stack frames.

CALLBACK: 
A function reference stored as a pointer. By using the function reference, this function can be invoked. For 
example, a program can hand off the function reference to an event processor. When the event occurs, the 
function can be called.

CHILD PROCESS: 
A process created by another process (see “parent process” on page 615) when that other process calls the 
fork() function.

CLOSED LOOP: 
See closed loop on page 607.

CLUSTER DEBUGGING: 
The action of debugging a program that is running on a cluster of hosts in a network. Typically, the hosts 
are of the same type and have the same operating system version.

COARRAY FORTRAN (CAF): 
A variation of Fortran with array syntax augmented to depict arrays distributed across processes.

COMMAND HISTORY LIST: 
A debugger-maintained list that stores copies of the most recent commands issued by the user.

CONDITION SYNCHRONIZATION: 
A process that delays thread execution until a condition is satisfied.



Glossary /   608

CONDITIONAL BREAKPOINT: 
A breakpoint containing an expression. If the expression evaluates to true, program stops. TotalView does 
not have conditional breakpoints. Instead, you must explicitly tell TotalView to end execution by using the 
$stop directive. 

CONTEXT SWITCHING: 
In a multitasking operating system, the ability of the CPU to move from one task to another. As a switch is 
made, the operating system must save and restore task states.

CONTEXTUALLY QUALIFIED (SYMBOL): 
A symbol that is described in terms of its dynamic context, rather than its static scope. This includes pro-
cess identifier, thread identifier, frame number, and variable or subprocedure name.

CONTROL GROUP: 
All the processes that a program creates. These processes can be local or remote. If your program uses 
processes that it did not create, TotalView places them in separate control groups. For example, a client/
server program has two distinct executables that run independently of one another. Each would be in a 
separate control group. In contrast, processes created by the fork() function are in the same control group.

CORE FILE: 
A file that contains the contents of memory and a list of thread registers. The operating system dumps (cre-
ates) a core file whenever a program exits because of a severe error (such as an attempt to store into an 
invalid address).

CORE-FILE DEBUGGING: 
A debugging session that examines a core file image. Commands that modify program state are not permit-
ted in this mode.

CPU: 
Central Processing Unit. The component within the computer that most people think of as “the computer”. 
This is where computation and activities related to computing occur.

CROSS-DEBUGGING: 
A special case of remote debugging where the host platform and the target platform are different types of 
machines.

CURRENT FRAME: 
The current portion of stack memory, in the sense that it contains information about the subprocedure 
invocation that is currently executing.

CURRENT LANGUAGE: 
The source code language used by the file that contains the current source location.

CURRENT LIST LOCATION: 
The location governing what source code appears in response to a list command.

DATASET: 



Glossary /   609

A set of array elements generated by TotalView and sent to the Visualizer. (See visualizer process on 
page 621.)

DBELOG LIBRARY: 
A library of routines for creating event points and generating event logs from TotalView. To use event points, 
you must link your program with both the dbelog and elog libraries.

DBFORK LIBRARY: 
A library of special versions of the fork() and execve() calls used by TotalView to debug multi-process pro-
grams. If you link your program with the TotalView dbfork library, TotalView can automatically attach to 
newly spawned processes.

DEADLOCK: 
A condition where two or more processes are simultaneously waiting for a resource such that none of the 
waiting processes can execute.

DEBUGGING INFORMATION: 
Information relating an executable to the source code from which it was generated.

DEBUGGER PROMPT: 
A string printed by the CLI that indicates that it is ready to receive another user command.

DEBUGGER SERVER: 
See tvdsvr process on page 621.

DEBUGGER STATE: 
Information that TotalView or the CLI maintains to interpret and respond to user commands. This includes 
debugger modes, user-defined commands, and debugger variables.

DEPRECATED: 
A feature that is still available but might be eliminated in a future release. 

DISASSEMBLED CODE: 
A symbolic translation of binary code into assembler language. 

DISTRIBUTED DEBUGGING: 
The action of debugging a program that is running on more than one host in a network. The hosts can be 
homogeneous or heterogeneous. For example, programs written with message-passing libraries such as 
Parallel Macros (PARMACS), run on more than one host.

DIVING: 
The action of displaying more information about an item. For example, if you dive into a variable in 
TotalView, a window appears with more information about the variable.

DLL: 
Dynamic Link Library. A shared library whose functions can be dynamically added to a process when a func-
tion with the library is needed. In contrast, a statically linked library is brought into the program when it is 
created.



Glossary /   610

DOPE VECTOR: 
This is a run time descriptor that contains all information about an object that requires more information 
than is available as a single pointer or value. For example, you might declare a Fortran 90 pointer variable 
that is a pointer to some other object, but which has its own upper bound, as follows: 
integer, pointer, dimension (:) :: iptr 

Suppose that you initialize it as follows:
iptr => iarray (20:1:-2) 
iptr is a synonym for every other element in the first twenty elements of iarray, and this pointer array is in 
reverse order. For example, iptr(1) maps to iarray(20), iptr(2) maps to iarray(18), and so on.

A compiler represents an iptr object using a run time descriptor that contains (at least) elements such as a 
pointer to the first element of the actual data, a stride value, and a count of the number of elements (or 
equivalently, an upper bound).

DPID: 
Debugger ID. This is the ID TotalView uses for processes.

DYNAMIC LIBRARY: 
A library that uses dynamic loading to load information in an external file at runtime. Dynamic loading 
implies dynamic linking, which is a process that does not copy a program and its data into the executable at 
compile time.

EDITING CURSOR: 
A black line that appears when you select a TotalView GUI field for editing. You use field editor commands 
to move the editing cursor.

EVAL POINT: 
A point in the program where TotalView evaluates a code fragment without stopping the execution of the 
program.

EVENT LOG: 
A file that contains a record of events for each process in a program.

EVENT POINT: 
A point in the program where TotalView writes an event to the event log for later analysis with TimeScan.

EXCEPTION: 
A condition generated at runtime that indicates that a non-standard event has occurred. The program usu-
ally creates a method to handle the event. If the event is not handled, either the program's result will be 
inaccurate or the program will stop executing.

EXECUTABLE: 
A compiled and linked version of source files

EXPRESSION SYSTEM: 



Glossary /   611

A part of TotalView that evaluates C, C++, and Fortran expressions. An expression consists of symbols (pos-
sibly qualified), constants, and operators, arranged in the syntax of a source language. Not all Fortran 90, C, 
and C++ operators are supported.

EXTENT: 
The number of elements in the dimension of an array. For example, a Fortran array of integer(7,8) has an 
extent of 7 in one dimension (7 rows) and an extent of 8 in the other dimension (8 columns).

FIELD EDITOR: 
A basic text editor that is part of TotalView. The field editor supports a subset of GNU Emacs commands.

FOCUS: 
The set of groups, processes, and threads upon which a CLI command acts. The current focus is indicated 
in the CLI prompt (if you’re using the default prompt).

FRAME: 
An area in stack memory that contains the information corresponding to a single invocation of a subproce-
dure. See stack frame on page 618.

FRAME POINTER: 
See stack pointer on page 618.

FULLY QUALIFIED (SYMBOL): 
A symbol is fully qualified when each level of source code organization is included. For variables, those lev-
els are executable or library, file, procedure or line number, and variable name.

GARBAGE COLLECTION: 
Examining memory to determine if it is still be referenced. If it is not, it sent back to the program's memory 
manager so that it can be reused.

GID: 
The TotalView group ID.

GLOBAL ARRAYS: 
(from a definition on the Global Arrays web site) The Global Arrays (GA) toolkit provides an efficient and por-
table “shared-memory” programming interface for distributed-memory computers. Each process in a 
MIMD parallel program can asynchronously access logical blocks of physically distributed dense multi-
dimensional arrays, without need for explicit cooperation by other processes. For more information, see 
http://hpc.pnl.gov/globalarrays/.

GRID: 
A collection of distributed computing resources available over a local or wide area network that appears as 
if it were one large virtual computing system.

GOI: 
The group of interest. This is the group that TotalView uses when it is trying to determine what to step, stop, 
and so on.

http://hpc.pnl.gov/globalarrays/


Glossary /   612

GROUP: 
When TotalView starts processes, it places related processes in families. These families are called “groups.”

GROUP OF INTEREST: 
The primary group that is affected by a command. This is the group that TotalView uses when it is trying to 
determine what to step, stop, and so on.

HEAP: 
An area of memory that your program uses when it dynamically allocates blocks of memory. It is also how 
people describe my car.

HOST COMPUTER: 
The computer on which TotalView is running.

IMAGE: 
All of the programs, libraries, and other components that make up your executable.

INFINITE LOOP: 
See loop, infinite on page 613.

INSTRUCTION POINTER: 
See program counter.

INITIAL PROCESS: 
The process created as part of a load operation, or that already existed in the runtime environment and 
was attached by TotalView or the CLI.

INITIALIZATION FILE: 
An optional file that establishes initial settings for debugger state variables, user-defined commands, and 
any commands that should be executed whenever TotalView or the CLI is invoked. Must be called .tvdrc.

INTERPRETER: 
A program that reads programming language statements and translates the statements into machine code, 
then executes this code. 

LAMINATE: 
A process that combines variables contained in separate processes or threads into a unified array for dis-
play purposes.

LHS EXPRESSION: 
This is a synonym for lvalue.

LINKER: 
A program that takes all the object files creates by the compiler and combines them and libraries required 
by the program into the executable program.

LOCKSTEP GROUP: 



Glossary /   613

All threads that are at the same PC (program counter). This group is a subset of a workers group. A lockstep 
group only exists for stopped threads. All threads in the lockstep group are also in a workers group. By defi-
nition, all members of a lockstep group are in the same workers group. That is, a lockstep group cannot 
have members in more than one workers group or more than one control group.

LOOP, INFINITE: 
See infinite loop on page 612.

LOWER BOUND: 
The first element in the dimension of an array or the slice of an array. By default, the lower bound of an 
array is 0 in C and 1 in Fortran, but the lower bound can be any number, including negative numbers.

LVALUE: 
A symbol name or expression suitable for use on the left-hand side of an assignment statement in the cor-
responding source language. That is, the expression must be appropriate as the target of an assignment.

MACHINE STATE: 
Convention for describing the changes in memory, registers, and other machine elements as execution 
proceeds.

MANAGER THREAD: 
A thread created by the operating system. In most cases, you do not want to manage or examine manager 
threads.

MESSAGE QUEUE: 
A list of messages sent and received by message-passing programs.

MIMD: 
An acronym for Multiple Instruction, Multiple Data, which describes a type of parallel computing. 

MISD: 
An acronym for Multiple Instruction, Single Data, which describes a type of parallel computing.

MPI: 
An acronym for “Message Passing Interface.”

MPICH: 
MPI/Chameleon (Message Passing Interface/Chameleon) is a freely available and portable MPI implementa-
tion. MPICH was written as a collaboration between Argonne National Lab and Mississippi State University. 
For more information, see http://www.mcs.anl.gov/research/projects/mpi/.

MPMD PROGRAMS: 
An acronym for Multiple Program, Multiple Data, which describes programs that involve multiple execut-
ables, executed by multiple threads and processes.

MULTITASK: 
In the context of high performance computing, this is the ability to divide a program into smaller pieces or 
tasks that execute separately. 

http://www.mcs.anl.gov/research/projects/mpi/


Glossary /   614

MULTI-PROCESS: 
The ability of a program to spawn off separate programs, each having its own context and memory. multi-
process programs can (and most often do) run processes on more than one computer. They can also run 
multiple processes an one computer. In this case, memory can be shared

MULTI-THREADED: 
The ability of a program to spawn off separate tasks that use the same memory. Switching from task to task 
is controlled by the operating system.

MUTEX (MUTUAL EXCLUSION): 
Techniques for sharing resources so that different users do not conflict and cause unwanted interactions. 

NATIVE DEBUGGING: 
The action of debugging a program that is running on the same machine as TotalView.

NESTED DIVE: 
TotalView lets you dive into pointers, structures, or arrays in a variable. When you dive into one of these ele-
ments, TotalView updates the display so that the new element appears. A nested dive is a dive within a dive. 
You can return to the previous display by selecting the left arrow in the top-right corner of the window.

NODE: 
A machine on a network. Each machine has a unique network name and address.

OFF-BY-ONE: 
An error usually caused by forgetting that arrays begin with element 0 in C and C++.

OPENMP: 
(from a definition on the OpenMP web site) OpenMP is a specification for a set of compiler directives, 
library routines, and environment variables that can be used to specify shared memory parallelism in For-
tran and C/C++ programs. The MP in OpenMP stands for Multi Processing. We provide Open specifications 
for Multi Processing via collaborative work with interested parties from the hardware and software industry, 
government and academia. For more information, see http://openmp.org/wp/.

OUT-OF-SCOPE: 
When symbol lookup is performed for a particular symbol name and it isn’t found in the current scope or 
any that contains scopes, the symbol is said to be out-of-scope.

PAGE PROTECTION: 
The ability to segregate memory pages so that one process cannot access pages owned by another pro-
cess. It can also be used to generate an exception when a process tries to access the page.

PARALLEL PROGRAM: 
A program whose execution involves multiple threads and processes.

PARALLEL TASKS: 
Tasks whose computations are independent of each other, so that all such tasks can be performed simul-
taneously with correct results. 

http://openmp.org/wp/


Glossary /   615

PARALLELIZABLE PROBLEM: 
A problem that can be divided into parallel tasks. This type of program might require changes in the code 
and/or the underlying algorithm. 

PARCEL: The number of bytes required to hold the shortest instruction for the target architecture.

PARENT PROCESS: 
A process that calls the fork() function to spawn other processes (usually called child processes). 

PARMACS LIBRARY: 
A message-passing library for creating distributed programs that was developed by the German National 
Research Centre for Computer Science.

PARTIALLY QUALIFIED (SYMBOL): 
A symbol name that includes only some of the levels of source code organization (for example, file name 
and procedure, but not executable). This is permitted as long as the resulting name can be associated 
unambiguously with a single entity.

PATCHING: 
Inserting code in a breakpoint that is executed immediately preceding the breakpoint's line. The patch can 
contain a GOTO command to branch around incorrect code.

PC: 
An abbreviation for Program Counter.

PID: 
Depending on the context, this is either the process ID or the program ID. In most cases, this is the process 
ID.

POI: 
The process of interest. This is the process that TotalView uses when it is trying to determine what to step, 
stop, and so on. 

/PROC: 
An interface that allows debuggers and other programs to control or obtain information from running pro-
cesses. ptrace also does this, but /proc is more general.

PROCESS: 
An executable that is loaded into memory and is running (or capable of running).

PROCESS GROUP: 
A group of processes associated with a multi-process program. A process group includes program control 
groups and share groups.

PROCESS/THREAD IDENTIFIER: 
A unique integer ID associated with a particular process and thread.

PROCESS OF INTEREST: 



Glossary /   616

The primary process that TotalView uses when it is trying to determine what to step, stop, and so on.

PROGRAM CONTROL GROUP: 
A group of processes that includes the parent process and all related processes. A program control group 
includes children that were forked (processes that share the same source code as the parent), and children 
that were forked with a subsequent call to the execve() function (processes that don’t share the same 
source code as the parent). Contrast this with share group on page 617.

PROGRAM EVENT: 
A program occurrence that is being monitored by TotalView or the CLI, such as a breakpoint.

PROGRAM STATE: 
A higher-level view of the machine state, where addresses, instructions, registers, and such are interpreted 
in terms of source program variables and statements.

P/T (PROCESS/THREAD) SET: 
The set of threads drawn from all threads in all processes of the target program.

PTHREAD ID: 
This is the ID assigned by the Posix pthreads package. If this differs from the system TID, it is a pointer value 
that points to the pthread ID.

QUEUE: 
A data structure whose data is accessed in the order in which it was entered. This is like a line at a tollbooth 
where the first in is the first out.

RACE CONDITION: 
A problem that occurs when threads try to simultaneously access a resource. The result can be a deadlock, 
data corruption, or a program fault. 

REMOTE DEBUGGING: 
The action of debugging a program that is running on a different machine than TotalView. The machine on 
which the program is running can be located many miles away from the machine on which TotalView is run-
ning.

RESUME COMMANDS: 
Commands that cause execution to restart from a stopped state: dstep, dgo, dcont, dwait.

RHS EXPRESSION: 
This is a synonym for rvalue.

RVALUE: 
An expression suitable for inclusion on the right-hand side of an assignment statement in the correspond-
ing source language. In other words, an expression that evaluates to a value or collection of values.

SATISFACTION SET: 
The set of processes and threads that must be held before a barrier can be satisfied. 



Glossary /   617

SATISFIED: 
A condition that indicates that all processes or threads in a group have reached a barrier. Prior to this 
event, all executing processes and threads are either running because they have not yet hit the barrier, or 
are being held at the barrier because not all of the processes or threads have reached it. After the barrier is 
satisfied, the held processes or threads are released, which means they can be run. Prior to this event, they 
could not run.

SCOPE: 
The region in your program in which a variable or a function exists or is defined. This region begins with its 
declaration and extends to the end of the current block.

SEARCH PATH: 
A list that contains places that software looks to locate files contained within the file system. In TotalView, 
the search path contains locations containing your program’s source code.

SERIAL EXECUTION: 
Execution of a program sequentially, one statement at a time.

SERIAL LINE DEBUGGING: 
A form of remote debugging where TotalView and the tvdsvr communicate over a serial line.

SERVICE THREAD: 
A thread whose purpose is to service or manage other threads. For example, queue managers and print 
spoolers are service threads. There are two kinds of service threads: those created by the operating system 
or runtime system and those created by your program.

SHARE GROUP: 
All the processes in a control group that share the same code. In most cases, your program has more than 
one share group. Share groups, like control groups, can be local or remote.

SHARED LIBRARY: 
A compiled and linked set of source files that are dynamically loaded by other executables.

SIGNALS: 
Messages informing processes of asynchronous events, such as serious errors. The action that the process 
takes in response to the signal depends on the type of signal and whether the program includes a signal 
handler routine, a routine that traps certain signals and determines appropriate actions to be taken by the 
program.

SIMD: 
An acronym for Single Instruction, Multiple Data, which describes a type of parallel computing. 

SINGLE PROCESS SERVER LAUNCH: 
A TotalView procedure that individually launches tvdsvr processes. 

SINGLE STEP: 
The action of executing a single statement and stopping (as if at a breakpoint).



Glossary /   618

SISD: 
An acronym for Single Instruction, Single Data, which describes a type of parallel computing.

SLICE: 
A subsection of an array, which is expressed in terms of a lower bound on page 613, upper bound on 
page 621, and stride on page 619. Displaying a slice of an array can be useful when you are working with 
very large arrays. Compare this with a TotalView array section on page 606.

SOID: 
An acronym for symbol object ID. A SOID uniquely identifies all TotalView information. It also represents a 
handle by which you can access this information.

SOURCE FILE: 
Program file that contains source language statements. TotalView lets you debug FORTRAN 77, Fortran 90, 
Fortran 95, C, C++, and assembler files.

SOURCE LOCATION: For each thread, the source code line it executes next. This is a static location, indicating 
the file and line number; it does not, however, indicate which invocation of the subprocedure is involved.

SPAWNED PROCESS: 
The process created by a user process executing under debugger control.

SPMD PROGRAMS: 
An acronym for Single Program, Multiple Data, which describe a type of parallel computing that involves 
just one executable, executed by multiple threads and processes.

STACK: 
A portion of computer memory and registers used to hold information temporarily. The stack consists of a 
linked list of stack frames that holds return locations for called routines, routine arguments, local variables, 
and saved registers.

STACK FRAME: 
Whenever your program calls a function, it creates a set of information that includes the local variables, 
arguments, contents of the registers used by an individual routine, a frame pointer pointing to the previous 
stack frame, and the value of the program counter (PC) at the time the routine was called. The information 
for one function is called a “stack frame” as it is placed on your program’s stack.

When your program begins executing, it has only one frame: the one allocated for function main(). As your 
program calls functions, new frames are allocated. When a function returns to the function from which it is 
called, the frame is deallocated.

STACK POINTER: 
A pointer to the area of memory where subprocedure arguments, return addresses, and similar informa-
tion is stored. This is also called a frame pointer.

STACK TRACE: 
A sequential list of each currently active routine called by a program, and the frame pointer that points to 
its stack frame.



Glossary /   619

STATIC (SYMBOL) SCOPE: 
A region of a program’s source code that has a set of symbols associated with it. A scope can be nested 
inside another scope.

STEPPING: 
Advancing program execution by fixed increments, such as by source code statements.

STL: 
An acronym for Standard Template Library.

STOP SET: 
A set of threads that TotalView stops after an action point triggers.

STOPPED/HELD STATE: 
The state of a process whose execution has paused in such a way that another program event (for exam-
ple, arrival of other threads at the same barrier) is required before it is capable of continuing execution.

STOPPED/RUNNABLE STATE: 
The state of a process whose execution has been paused (for example, when a breakpoint triggered or due 
to some user command) but can continue executing as soon as a resume command is issued.

STOPPED STATE: 
The state of a process that is no longer executing, but will eventually execute again. This is subdivided into 
stopped/runnable and stopped/held.

STRIDE: 
The interval between array elements in a slice and the order in which TotalView displays these elements. If 
the stride is 1, TotalView displays every element between the lower bound and upper bound of the slice. If 
the stride is 2, TotalView displays every other element. If the stride is -1, TotalView displays every element 
between the upper bound and lower bound (reverse order).

SYMBOL: 
Entities within program state, machine state, or debugger state.

SYMBOL LOOKUP: 
Process whereby TotalView consults its debugging information to discover what entity a symbol name 
refers to. Search starts with a particular static scope and occurs recursively so that contains scopes are 
searched in an outward progression.

SYMBOL NAME: 
The name associated with a symbol known to TotalView (for example, function, variable, data type, and so 
on). 

SYMBOL TABLE: 
A table of symbolic names used in a program (such as variables or functions) and their memory locations. 
The symbol table is part of the executable object generated by the compiler (with the -g option) and is used 
by debuggers to analyze the program.



Glossary /   620

SYNCHRONIZATION: 
A mechanism that prevents problems caused by concurrent threads manipulating shared resources. The 
two most common mechanisms for synchronizing threads are mutual exclusion and condition synchroniza-
tion.

TARGET COMPUTER: 
The computer on which the process to be debugged is running.

TARGET PROCESS SET: 
The target set for those occasions when operations can only be applied to entire processes, not to individ-
ual threads in a process.

TARGET PROGRAM: 
The executing program that is the target of debugger operations.

TARGET P/T SET: 
The set of processes and threads that a CLI command acts on.

TASK: 
A logically discrete section of computational work. (This is an informal definition.)

THREAD: 
An execution context that normally contains a set of private registers and a region of memory reserved for 
an execution stack. A thread runs in an address space.

THREAD EXECUTION STATE: 
The convention of describing the operations available for a thread, and the effects of the operation, in 
terms of a set of predefined states.

THREAD OF INTEREST: 
The primary thread affected by a command. This is abbreviated as TOI.

TID: 
The thread ID. On some systems (such as AIX where the threads have no obvious meaning), TotalView uses 
its own IDs.

TLA: 
An acronym for Three-Letter Acronym. So many things from computer hardware and software vendors are 
referred to by a three-letter acronym that yet another acronym was created to describe these terms.

TOI: 
The thread of interest. This is the primary thread affected by a command.

TRIGGER SET: 
The set of threads that can trigger an action point (that is, the threads upon which the action point was 
defined).

TRIGGERS: 



Glossary /   621

The effect during execution when program operations cause an event to occur (such as arriving at a break-
point).

TTF: 
See type transformation facility on page 621.

TRAP: 
An instruction that stops program execution and which allows a debugger to gain control over your pro-
gram.

TVDSVR PROCESS: 
The TotalView Debugger Server process, which facilitates remote debugging by running on the same 
machine as the executable and communicating with TotalView over a TCP/IP port or serial line.

TYPE TRANSFORMATION FACILITY: 
This is abbreviated as TTF. A TotalView subsystem that allows you to change the way information appears. 
For example, an STL vector can appear as an array.

UNDISCOVERED SYMBOL: 
A symbol that is referred to by another symbol. For example, a typedef is a reference to the aliased type.

UNDIVING: 
The action of displaying the previous contents of a window, instead of the contents displayed for the cur-
rent dive. To undive, you click the undive icon in the upper-right corner of the window.

UPC: 
(from a definition on the UPC web site) The Unified Parallel C language, which is an extension to the C pro-
gramming language that is designed for high performance computing on large-scale parallel machines. The 
language provides a uniform programming model for both shared and distributed memory hardware. The 
programmer is presented with a single shared, partitioned address space, where variables may be directly 
read and written by any processor, but each variable is physically associated with a single processor. See 
http://upc.lbl.gov/ for more information.

UPPER BOUND: 
The last element in the dimension of an array or the slice of an array.

USER THREAD: 
A thread created by your program.

USER INTERRUPT KEY: 
A keystroke used to interrupt commands, most commonly defined as Ctrl+C.

VARIABLE WINDOW: 
A TotalView window that displays the name, address, data type, and value of a particular variable.

VISUALIZATION: 
In TotalView, visualization means graphically displaying an array’s values. 

VISUALIZER PROCESS: 

http://upc.lbl.gov/
http://upc.nersc.gov/


Glossary /   622

A process that works with TotalView in a separate window, allowing you to see a graphic representation of 
program array data.

WATCHPOINT: 
An action point that tells TotalView to stop execution when the value of a memory location changes.

WORKER THREAD: 
A thread in a workers group. These are threads created by your program that performs the task for which 
you’ve written the program.

WORKERS GROUP: 
All the worker threads in a control group. Worker threads can reside in more than one share group. 



Licenses     623      

Appendix B  

Licenses

3rd-Party Licenses
TotalView uses the following 3rd-party software:

CUDA License Information
To support CUDA debugging, TotalView ships with certain NVIDIA header files. These header files contain 
license information, and not always the same information. Below we detail the different versions of the license 
information correlated with the files they occur in.

License information in the files common.h, elfutil.h, libcudacore.h, and tls.h:
/*
 * Copyright (c) 2014-2016 NVIDIA CORPORATION. All rights reserved.
 *
 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 *  * Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 *  * Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the

3rd-party software Use

CUDA header files CUDA debugging support



Licenses / CUDA License Information  624

 *    documentation and/or other materials provided with the distribution.
 *  * Neither the name of NVIDIA CORPORATION nor the names of its
 *    contributors may be used to endorse or promote products derived
 *    from this software without specific prior written permission.
 *
 * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS ``AS IS'' AND ANY
 * EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR
 * PURPOSE ARE DISCLAIMED.  IN NO EVENT SHALL THE COPYRIGHT OWNER OR
 * CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
 * EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
 * PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
 * PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY
 * OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT
 * (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
 * OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 */

License information in the files cuda_stdint.h, cudacoredumpl.h, and cudadebugger.h:
/*
 * Copyright 2009-2015 NVIDIA Corporation.  All rights reserved.
 *
 * NOTICE TO LICENSEE:
 *
 * This source code and/or documentation ("Licensed Deliverables") are
 * subject to NVIDIA intellectual property rights under U.S. and
 * international Copyright laws.
 *
 * These Licensed Deliverables contained herein is PROPRIETARY and
 * CONFIDENTIAL to NVIDIA and is being provided under the terms and
 * conditions of a form of NVIDIA software license agreement by and
 * between NVIDIA and Licensee ("License Agreement") or electronically
 * accepted by Licensee.  Notwithstanding any terms or conditions to
 * the contrary in the License Agreement, reproduction or disclosure
 * of the Licensed Deliverables to any third party without the express
 * written consent of NVIDIA is prohibited.
 *
 * NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
 * LICENSE AGREEMENT, NVIDIA MAKES NO REPRESENTATION ABOUT THE
 * SUITABILITY OF THESE LICENSED DELIVERABLES FOR ANY PURPOSE.  IT IS
 * PROVIDED "AS IS" WITHOUT EXPRESS OR IMPLIED WARRANTY OF ANY KIND.
 * NVIDIA DISCLAIMS ALL WARRANTIES WITH REGARD TO THESE LICENSED
 * DELIVERABLES, INCLUDING ALL IMPLIED WARRANTIES OF MERCHANTABILITY,
 * NONINFRINGEMENT, AND FITNESS FOR A PARTICULAR PURPOSE.
 * NOTWITHSTANDING ANY TERMS OR CONDITIONS TO THE CONTRARY IN THE
 * LICENSE AGREEMENT, IN NO EVENT SHALL NVIDIA BE LIABLE FOR ANY
 * SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, OR ANY
 * DAMAGES WHATSOEVER RESULTING FROM LOSS OF USE, DATA OR PROFITS,



Licenses / CUDA License Information  625

 * WHETHER IN AN ACTION OF CONTRACT, NEGLIGENCE OR OTHER TORTIOUS
 * ACTION, ARISING OUT OF OR IN CONNECTION WITH THE USE OR PERFORMANCE
 * OF THESE LICENSED DELIVERABLES.
 *
 * U.S. Government End Users.  These Licensed Deliverables are a
 * "commercial item" as that term is defined at 48 C.F.R. 2.101 (OCT
 * 1995), consisting of "commercial computer software" and "commercial
 * computer software documentation" as such terms are used in 48
 * C.F.R. 12.212 (SEPT 1995) and is provided to the U.S. Government
 * only as a commercial end item.  Consistent with 48 C.F.R.12.212 and
 * 48 C.F.R. 227.7202-1 through 227.7202-4 (JUNE 1995), all
 * U.S. Government End Users acquire the Licensed Deliverables with
 * only those rights set forth herein.
 *
 * Any use of the Licensed Deliverables in individual and commercial
 * software must include, in the user documentation and internal
 * comments to the code, the above Disclaimer and U.S. Government End
 * Users Notice.
 */

License information in the files utarray.h and uthash.h:
/*
Copyright (c) 2008-2014, Troy D. Hanson   http://troydhanson.github.com/uthash/
All rights reserved.

Redistribution and use in source and binary forms, with or without
modification, are permitted provided that the following conditions are met:

    * Redistributions of source code must retain the above copyright
      notice, this list of conditions and the following disclaimer.

THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS
IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED
TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A
PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT OWNER
OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL,
EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING, BUT NOT LIMITED TO,
PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES; LOSS OF USE, DATA, OR
PROFITS; OR BUSINESS INTERRUPTION) HOWEVER CAUSED AND ON ANY THEORY OF
LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, OR TORT (INCLUDING
NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE OF THIS
SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
*/

License information in the file elfdefinitions.h:
/*-
 * Copyright (c) 2010 Joseph Koshy
 * All rights reserved.
 *



Licenses / CUDA License Information  626

 * Redistribution and use in source and binary forms, with or without
 * modification, are permitted provided that the following conditions
 * are met:
 * 1. Redistributions of source code must retain the above copyright
 *    notice, this list of conditions and the following disclaimer.
 * 2. Redistributions in binary form must reproduce the above copyright
 *    notice, this list of conditions and the following disclaimer in the
 *    documentation and/or other materials provided with the distribution.
 *
 * THIS SOFTWARE IS PROVIDED BY THE AUTHOR AND CONTRIBUTORS ``AS IS'' AND
 * ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
 * IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE
 * ARE DISCLAIMED.  IN NO EVENT SHALL THE AUTHOR OR CONTRIBUTORS BE LIABLE
 * FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
 * DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS
 * OR SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION)
 * HOWEVER CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
 * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY
 * OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF
 * SUCH DAMAGE.
 *
 * $Id: elfdefinitions.h 3078 2014-07-26 08:22:03Z jkoshy $
 */

/*
 * These definitions are based on:
 * - The public specification of the ELF format as defined in the
 *   October 2009 draft of System V ABI.
 *   See: http://www.sco.com/developers/gabi/latest/ch4.intro.html
 * - The May 1998 (version 1.5) draft of "The ELF-64 object format".
 * - Processor-specific ELF ABI definitions for sparc, i386, amd64, mips,
 *   ia64, and powerpc processors.
 * - The "Linkers and Libraries Guide", from Sun Microsystems.
 */



Resources     627      

Appendix C  

Resources

TotalView Family Differences
This manual describes the TotalView Enterprise, TotalView Team, and TotalView Individual debuggers. Each of 
these supports the use of the CLI debugger as well. In all cases, TotalView Enterprise and TotalView Team have 
the same features, differing only in the way they are licensed. TotalView Individual differs in its feature set.

NOTE >> The most fundamental differences between TotalView Team and TotalView Enterprise are 
the way resources are shared and used. When you purchase TotalView Team, you are pur-
chasing “tokens.” These tokens represent debugging capabilities. For example, if you have 
64 tokens available, 64 programmers could be active, each debugging a one-process job; 
or two programmers, each debugging a 32-process job. In contrast, a TotalView Enterprise 
license is based on the number of users and the number of licensed processors. You’ll find 
more precise information on our web site.

The basic differences are:

TotalView
Team & Enterprise

TotalView 
Individual Comment

Execute on any licensed com-
puter of the same architecture

Node locked. You can execute TotalView Individual 
only on the computer you install it on.

Number of users is determined 
by license

Only one user The TotalView Enterprise license limits 
the number of users. TotalView Team 
does not.



Resources / TotalView Documentation  628

TotalView Documentation
The following table describes all available TotalView documentation:

Number of processes limited by 
license. No limit on threads

No more than 32 processes and 
threads.

Your license determines the 
number of processors upon 
which your program can run.

A program can execute on no 
more than 16 cores.

TotalView Enterprise licenses the full 
capabilities of all machines upon which 
it runs. TotalView Team can acquire part 
of your machine.

Processes can execute on any 
computers in the same network.

Remote processes are not 
allowed.

Processes must execute on the 
installed computer.

Remote X Server connections 
allowed.

No remote X Server connections 
are allowed.

Programmers cannot remotely log into 
a computer and then execute TotalView 
Individual.

Memory debugging is bundled. No memory debugging

Product Title Description HTML PDF Print

General TotalView Documentation

Getting Started with TotalView 
Products 

Introduces the basic features of 
TotalView, MemoryScape, and Replay-
Engine, with links for more detailed 
information

 

TotalView Platforms Guide Specifies supported platforms for 
TotalView, MemoryScape, and 
ReplayEngine

 

TotalView Evaluation Guide Brochure that introduces basic TotalView 
features

 

User Guides 

TotalView User Guide Primary resource for information on 
using the TotalView GUI and the CLI

 

TotalView
Team & Enterprise

TotalView 
Individual Comment



Resources / TotalView Documentation  629

Debugging Memory Problems 
with MemoryScape 

How to debug memory issues, relevant to 
both TotalView and the MemoryScape 
standalone product

 

Reverse Debugging with Replay 
Engine 

How to perform reverse debugging using 
the embedded add-on 
ReplayEngine

 

Reference Guides 

TotalView Reference Guide A reference of CLI commands, how to run 
TotalView, and platform-specific detail

 

New Features New features in the current release

What’s new in this release On the landing page of the HTML docu-
mentation, lists new features for the 
documented release



TotalView Change Log Details the changes to the product from 
release to release

 

Installation Guides 

TotalView Install Guide Installing TotalView and the FLEXlm 
license manager

 

MemoryScape Install Guide Installing MemoryScape as a standalone 
product

 

In-Product Help Help screens launched from within the 
product’s GUI

TotalView Help Context-sensitive help launched from 
TotalView



MemoryScape Help Context-sensitive help launched from 
MemoryScape



Product Title Description HTML PDF Print



Resources / Conventions  630

Conventions
The following table describes the conventions used in this book:

Contacting Us
Please contact us if you have problems installing TotalView, questions that are not answered in the product docu-
mentation or on our Web site, or suggestions for new features or improvements.

By Email

• For technical support: support@roguewave.com 

• For documentation issues: rwonlinedocs@roguewave.com 

By Phone

800-856-3766 in the United States

(+1) 508-652-7700 worldwide

If you are reporting a problem, please include the following information:

• The version of TotalView and the platform on which you are running TotalView.

• An example that illustrates the problem.

• A record of the sequence of events that led to the problem.

Convention Meaning

[ ] Brackets are used when describing optional parts of a command. 

arguments In a command description, text in italics represents information you enter. Else-
where, italics is used for emphasis.

Bold text In a command description, bold text represents keywords or options that must be 
entered exactly as displayed. Elsewhere, it represents words that are used in a pro-
grammatic way rather than their normal way.

Example text In program listings, this represents a program or something you’d enter in response 
to a shell or CLI prompt. Bold text here indicates exactly what you should type. If 
you’re viewing this information online, example text is in color.



 Index     631

Symbols
: (colon), in array type strings 259
: as array separator 284
. (dot) current set indicator 522, 

541
. (period), in suffix of process 

names 389
.dmg installer 89
.rhosts file 446, 477
.totalview subdirectory 93
.tvdrc initialization files 93
.Xdefaults file 94, 134

autoLoadBreakpoints 134
deprecated resources 134

‘ module separator 274
@ action point marker, in CLI 179
/ slash in group specifier 528
/usr/lib/array/arrayd.conf file 457
& intersection operator 540
# scope separator character 281
#string data type 257
%B bulk server launch 

command 458
%C server launch replacement 

characters 455, 456
%D bulk server launch 

command 457
%D single process server launch 

command 456
%F bulk server launch 

command 458
%H bulk server launch 

command 457
%H hostname replacement 

character 458
%I bulk server launch 

command 458
%K bulk server launch 

command 458
%L bulk server launch 

command 457
%L single process server launch 

command 456
%N bulk server launch 

command 458
%P bulk server launch 

command 457
%P single process server launch 

command 456
%R single process server launch 

command 456
%t1 bulk server launch 

command 458
%t2 bulk server launch 

command 458
%V bulk server launch 

command 457
< first thread indicator (CLI) 522
> (right angle bracket), indicating 

nested dives 241
- difference operator 540
| union operator 540
$address data type 261
$char data type 261
$character data type 261
$clid built-in variable 344
$code data type 238, 261, 265
$complex data type 261
$complex_16 data type 261
$complex_8 data type 261
$count built-in function 178, 199, 

203, 345
$countall built-in function 345
$countthread built-in function 346
$debug assembler pseudo op 341
$denorm filter 293
$double data type 261
$double_precision data type 261
$duid built-in variable 344
$extended data type 261

$float data type 261
$hold assembler pseudo op 341
$hold built-in function 346
$holdprocess assembler pseudo 

op 341
$holdprocess built-in function 346
$holdprocessall built-in 

function 346
$holdprocessstopall assembler 

pseudo op 341
$holdstopall assembler pseudo 

op 341
$holdstopall built-in function 346
$holdthread assembler pseudo 

op 341
$holdthread built-in function 346
$holdthreadstop assembler pseu-

do op 341
$holdthreadstop built-in 

function 346
$holdthreadstopall assembler 

pseudo op 341
$holdthreadstopall built-in 

function 346
$holdthreadstopprocess assem-

bler pseudo op 341
$holdthreadstopprocess built-in 

function 346
$inf filter 293
$int data type 261
$integer data type 261
$integer_1 data type 261
$integer_2 data type 262
$integer_4 data type 262
$integer_8 data type 262
$is_denorm intrinsic function 294
$is_finite intrinsic function 294
$is_inf intrinsic function 294
$is_nan intrinsic function 294
$is_ndenorm intrinsic function 294

Index



 Index     632

$is_ninf intrinsic function 294
$is_nnorm intrinsic function 294
$is_norm intrinsic function 294
$is_pdenorm intrinsic 

function 294
$is_pinf intrinsic function 294
$is_pnorm intrinsic function 294
$is_pzero intrinsic function 294
$is_qnan intrinsic function 294
$is_snan intrinsic function 294
$is_zero intrinsic function 294
$logical data type 262
$logical_1 data type 262
$logical_2 data type 262
$logical_4 data type 262
$logical_8 data type 262
$long data type 262
$long_branch assembler pseu-

do op 341
$long_long data type 262
$nan filter 292
$nanq filter 292
$nans filter 293
$ndenorm filter 293
$newval built-in function 211
$newval built-in variable 344
$nid built-in variable 344
$ninf filter 293
$oldval built-in function 211
$oldval built-in variable 344
$oldval watchpoint variable 211
$pdenorm filter 293
$pid built-in variable 344
$pinf filter 293
$processduid built-in 

variable 344
$ptree assembler pseudo 

op 342
$real data type 262
$real_16 data type 262
$real_4 data type 262
$real_8 data type 262
$short data type 262
$stop assembler pseudo op 342
$stop built-in function 178, 203, 

212, 346

$stopall assembler pseudo 
op 342

$stopall built-in function 346
$stopprocess assembler pseu-

do op 342
$stopprocess built-in 

function 346
$stopthread assembler pseudo 

op 342
$stopthread built-in 

function 347
$string data type 256, 262, 263
$systid built-in variable 344
$tid built-in variable 344
$visualize built-in function 322, 

347
in animations 322
using casts 322

$void data type 262, 265
$wchar data type 262, 264
$wchar_s16 data type 262
$wchar_s32 data type 262
$wchar_u16 data type 262
$wchar_u32 data type 262
$wstring data type 262, 264
$wstring_s16 data type 262
$wstring_s32 data type 263
$wstring_u16 data type 262
$wstring_u32 data type 263

A
-a command-line option 90, 424

passing arguments to 
program 90

a width specifier 529
general discussion 531

absolute addresses, display as-
sembler as 161

acquiring processes 478
action

points tab 185, 186
Action Point > At Location 

command 182, 186
Action Point > At Location Dialog 

Box figure 182, 186
Action Point > Delete All 

command 185

Action Point > Properties 
command 175, 177, 184, 
185, 189, 191, 194, 196, 198, 
395, 413
deleting barrier points 196

Action Point > Properties dialog 
box 184, 189, 190, 194

Action Point > Save All 
command 213, 478

Action Point > Save As 
command 213

Action Point > Set Barrier 
command 194

Action Point > Suppress All 
command 185, 186

action point identifiers
never reused in a 

session 431
action points 190

common properties 175
definition 42, 175
deleting 185
disabling 185
enabling 185
evaluation points 177
files 94
identifiers 431
ignoring 185
list of 149
multiple addresses 179
saving 213
suppressing 185
symbols 176
unsuppressing 186
watchpoint 16

Action Points Page 149, 399
actor mode, Visualizer 310
adapter_use option 476
Add host option 111
Add to Expression List 

command 247, 250
Add to Expression List context 

menu command 247
Add username dialog 103
adding a user to an Attach to a 

Program debug session 103
adding command-line 

arguments 116
adding environment 



 Index     633

variables 116
adding members to a group 526
adding program arguments 90
$address 261
address range conflicts 204
addresses

changing 267
editing 267
specifying in variable 

window 236
tracking in variable 

window 222
advancing

and holding processes 430
program execution 430

aggregates, in Expression List 
window 249

aliases
built-in 427
group 427
group, limitations 427

align assembler pseudo op 342
all width specifier 523
allocated arrays, displaying 266
altering standard I/O 116
Ambiguous Function dialog 157, 

183, 186
ambiguous function names 157
Ambiguous Line dialog 181
ambiguous names 158
ambiguous source lines 395
angle brackets, in windows 241
animation using $visualize 322
areas of memory, data type 265
arena specifiers 522

defined 522
incomplete 536
inconsistent widths 537

arenas
and scope 514
defined 514, 521
iterating over 522

ARGS variable 424
modifying 424

ARGS_DEFAULT variable 90, 424
clearing 424

arguments

in server launch 
command 447, 455

passing to program 90
replacing 424

Arguments area of new program 
session 465

argv, displaying 266
array data

filtering by comparison 290
filtering by range of 

values 294
filtering for IEEE values 292
updating the view in the Ar-

ray Viewer 289
array of structures

about 240
displaying 242
in Expression List 

window 249
array pointers 234
array rank 324
array services handle (ash) 485
array slice

defined 287
Array Statistics Window 

figure 297
array structure

viewing limitations 225
Array Viewer

dialog for viewing array 
data 288

arrays
array data filtering 290
bounds 258
casting 259
character 263
checksum statistic 297
colon separators 284
count statistic 298
deferred shape 276, 284
denormalized count 

statistic 298
display subsection 259
displaying 284, 322
displaying allocated 266
displaying argv 266
displaying contents 153
displaying declared 266
displaying multiple 322

displaying slices 284
diving into 240
editing dimension of 259
extent 259
filter conversion rules 291
filtering 259, 290, 291, 292
filtering expressions 295
filtering options 290
in C 259
in Fortran 259
infinity count statistic 298
limiting display 286
lower adjacent statistic 298
lower bound of slices 285
lower bounds 258, 259
maximum statistic 298
mean statistic 298
median statistic 298
minimum statistic 298
multi-dimensional array da-

ta, viewing 288
NaN statistic 298
non-default lower 

bounds 259
overlapping nonexistent 

memory 284
pointers to 258
quartiles statistic 298
skipping elements 286
slice example 285
slice, initializing 434
slice, printing 435
slice, refining 322
slices with the variable 

command 287
slices, defined 287
sorting 296
standard deviation 

statistic 298
statistics 297
stride 285
stride elements 285
subsections 284
sum statistic 299
type strings for 258
upper adjacent statistic 299
upper bound 258
upper bound of slices 285
viewing across 

elements 301
visualizing 311, 322



 Index     634

writing to file 437
zero count statistic 299

arrow over line number 149
ascii assembler pseudo op 342
asciz assembler pseudo op 342
ash (array services handle 485
ash (array services handle) 485
ASM icon 103, 112, 120, 176, 188
assembler

absolute addresses 161
and -g compiler option 153
constructs 339
displaying 161
expressions 340
in code fragment 197
symbolic addresses 161

Assembler > By Address 
command 161

Assembler > Symbolically 
command 161

Assembler command 161
assigning output to variable 422
assigning p/t set to variable 524
asynchronous processing 351
At Location command 182, 186
attach options

in Attach to a Program 
dialog 104

Attach Page 479
Attach Subset command 401, 

402
Attach to a Running Program 

command 101
Attach to a Running Program 

dialog 101
Attach to a running program 

dialog 375
possible errors 104

attaching
commands 110
configuring a debug 

session 101
restricting 401
restricting by 

communicator 402
selective 401
to all 403
to job 478
to MPI tasks 404

to MPICH application 470
to MPICH job 470
to none 403
to PE 478
to poe 479
to processes 101, 401, 479
to RMS processes 483
to SGI MPI job 485, 486

attaching to a program
adding a new user 103

attaching to processes 
preference 404

Auto Visualize command 312
Auto Visualize, in Dataset 

Window 314
auto_array_cast_bounds 

variable 234
auto_deref_in_all_c variable 234
auto_deref_in_all_fortran 

variable 234
auto_deref_initial_c variable 234
auto_deref_initial_fortran 

variable 234
auto_deref_nested_c 

variable 234
auto_deref_nested_fortran 

variable 234
auto_save_breakpoints 

variable 213
autolaunch 442, 452

defined 91
disabling 91, 452, 453
launch problems 449

autolaunching 447
autoLoadBreakpoints 

.Xdefault 134
automatic dereferencing 234
automatic process 

acquisition 469, 476
averaging data points 319
averaging surface display 319
axis, transposing 316

B
backtick separator 274
backward icon 154
barrier points 193, 194, 370, 383

clearing 185

defined 431
defined (again) 193
deleting 196
satisfying 195
states 193
stopped process 196

baud rate, for serial line 460
bit fields 254
block scoping 280
Block Status command 236
blocking send operations 411
blocks

displaying 225
naming 281

Blue Gene
starting a debugging 

session 480
bluegene_io_interface 

variable 481
bluegene_server_launch 

variable 481
bold data 10
Both command 161, 173
bounds for arrays 258
boxed line number 149, 179, 515
branching around code 200
Breakpoint at Assembler In-

struction figure 188
breakpoint files 94
breakpoint operator 540
breakpoints

and MPI_Init() 478
apply to all threads 175
automatically copied from 

master process 469
behavior when reached 188
changing for 

parallelization 399
clearing 139, 185, 515
conditional 197, 199, 345
copy, master to slave 469
countdown 199, 345, 346
default stopping action 399
defined 175, 431
deleting 185
disabling 185
enabling 185
entering 485
example setting in multipro-



 Index     635

cess program 192
fork() 191
hitting within eval point 338
ignoring 185
in child process 189
in parent process 189
listing 149
machine-level 188
multiple processes 189
not shared in separated 

children 191
placing 149
reloading 478
removed when 

detaching 105
removing 139, 177
saving 213
set while a process is 

running 179
set while running parallel 

tasks 478
setting 139, 176, 179, 189, 

438, 477, 515
shared by default in 

processes 191
sharing 190, 191
stop all related 

processes 190
suppressing 185
thread-specific 344
toggling 182
while stepping over 167

bss assembler pseudo op 342
built-in aliases 427
built-in functions

$count 178, 199, 203, 345
$countall 345
$countthread 346
$hold 346
$holdprocess 346
$holdprocessall 346
$holdstopall 346
$holdthread 346
$holdthreadstop 346
$holdthreadstopall 346
$holdthreadstopprocess 34

6
$stop 178, 203, 212, 346
$stopall 346
$stopprocess 346

$stopthread 347
$visualize 322, 347
forcing interpretation 202

built-in variables 344
$clid 344
$duid 344
$newval 344
$nid 344
$oldval 344
$pid 344
$processduid 344
$string 261
$systid 344
$tid 344
forcing interpretation 345

Bulk Launch page 449
bulk server launch 442, 453

command 454
connection timeout 455
on IBM RS/6000 458
on Cray 458

bulk server launch command
%B 458
%D 457
%F 458
%H 457
%I 458
%K 458
%L 457
%N 458
%P 457
%t1 458
%t2 458
%V 457
-callback_host 457
-callback_ports 457
-set_pws 457
-verbosity 457
-working_directory 457

bulk_incr_timeout variable 455
bulk_launch_base_timeout 

variable 455
bulk_launch_enabled 

variable 450, 453, 454
bulk_launch_incr_timeout 

variable 455
bulk_launch_string variable 454
bulk_launch_tmpfile1_header_ 

line variable 454

bulk_launch_tmpfile1_head-
er_line variable 454

bulk_launch_tmpfile1_host_line 
variable 454

bulk_launch_tmp-
file1_host_lines variable 454

bulk_launch_tmpfile1_trailer_ 
line variable 454

bulk_launch_tmpfile1_trail-
er_line variable 454

bulk_launch_tmpfile2_header_ 
line variable 454

bulk_launch_tmpfile2_head-
er_line variable 454

bulk_launch_tmpfile2_host_ 
lines variable 454

bulk_launch_tmpfile2_host_line 
variable 454

bulk_launch_tmpfile2_trailer_ 
line variable 454

bulk_launch_tmpfile2_trail-
er_line variable 454

By Address command 161
byte assembler pseudo op 342

C
C casting for Global Arrays 504, 

505
C control group specifier 528, 

529
C/C++

array bounds 259
arrays 259
filter expression 295
how data types are 

displayed 256
in code fragment 197
type strings supported 256

C/C++ statements
expression system 333

C++
changing class types 269
display classes 268

C++/C++
in expression system 331

CAF (CoArray Fortran) 511
Call Graph command 304



 Index     636

call graph, updating display 304
call stack 149
call_graph group 306
-callback command-line 

option 446
-callback_host bulk server 

launch command 457
-callback_option single process 

server launch 
command 456

-callback_ports bulk server 
launch command 457

camera mode, Visualizer 309
capture command 422
casting 244, 256, 257, 258

examples 266
to type $code 238
types of variable 256

casting arrays 259
casting Global Arrays 504, 505
CGROUP variable 526, 532
ch_lfshmem device 468
ch_mpl device 468
ch_p4 device 412, 468, 470
ch_shmem device 468, 470
Change Value command 254
changing autolaunch 

options 452
changing command-line 

arguments 116
changing expressions 244
changing precision 218
changing process thread 

set 521
changing processes 380
changing program state 417
changing remote shell 446
changing size 218
changing threads 381
changing threads in Variable 

Window 238
changing variables 254
$char data type 261
$character data type 261
character arrays 263
chasing pointers 234, 240
checksum array statistic 297

child process names 389
classes, displaying 268
Clear All STOP and EVAL 

command 185
clearing

breakpoints 139, 185, 189, 
515

continuation signal 171
evaluation points 139

CLI
components 415
in startup file 419
initialization 419
introduced 8
invoking program from shell 

example 419
launching from GUI 588
not a library 416
output 422
prompt 420
relationship to 

TotalView 416
starting 87, 89, 418
starting a new session 89
starting from command 

prompt 418
starting from TotalView 

GUI 418
CLI commands

assigning output to 
variable 422

capture 422
dactions 176
dactions -load 213, 478
dactions -save 213, 478
dassign 254
dattach 90, 102, 110, 430, 

470, 479, 488
dattach mprun 488
dbarrier 193, 195
dbarrier -e 199
dbarrier -stop_when_hit 413
dbreak 179, 182, 190, 439
dbreak -e 199
dcheckpoint 562
ddelete 182, 185, 196, 489
ddetach 105
ddisable 184, 185, 196
ddlopen 565
ddown 169
default focus 521

denable 185, 186
dfocus 166, 520, 521
dga 505
dgo 392, 399, 477, 478, 485, 

537
dgroups -add 526, 532
dhalt 166, 378, 399
dhold 193, 383
dhold -thread 384
dkill 172, 401, 421, 430
dload 109, 420, 430, 450
dnext 168, 394, 400
dnexti 168, 394
dout 170, 516
dprint 157, 221, 222, 232, 

233, 236, 237, 260, 266, 
271, 273, 275, 284, 285, 
287, 435, 495, 496

dptsets 374, 379
drerun 172, 420
drestart 562
drun 420, 424
dsession 109
dsession -load 89
dset 424, 426
dstatus 195, 374
dstep 167, 394, 400, 516, 522, 

524, 537
dstepi 167, 393, 394
dunhold 193, 383
dunhold -thread 384
dunset 424
duntil 169, 516, 518
dup 169, 222
dwhere 222, 523, 537
exit 95
read_symbols 569
run when starting 

TotalView 93
CLI variables

ARGS 424
ARGS_DEFAULT 90, 424

clearing 424
ARGS, modifying 424
auto_array_cast_bounds 23

4
auto_deref_in_all_c 234
auto_deref_in_all_fortran 23

4
auto_deref_initial_c 234
auto_deref_initial_fortran 2

34



 Index     637

auto_deref_nested_c 234
auto_deref_nested_fortran

234
auto_save_breakpoints 213
bulk_incr_timeout 455
bulk_launch_base_timeout

455
bulk_launch_enabled 449, 

450, 453, 454
bulk_launch_incr_timeout 4

55
bulk_launch_string 454
bulk_launch_tmpefile1_trail-

er_ line 454
bulk_launch_tmpefile2_trail-

er_ line 454
bulk_launch_tmpfile1_head-

er_ line 454
bulk_launch_tmpfile1_head

er_line 454
bulk_launch_tmpfile1_host_ 

lines 454
bulk_launch_tmpfile1_host_l

ine 454
bulk_launch_tmpfile1_trailer

_line 454
bulk_launch_tmpfile2_head-

er_ line 454
bulk_launch_tmpfile2_head

er_line 454
bulk_launch_tmpfile2_host_l

ine 454
bulk_launch_tmpfile2_host_l

ines 454
bulk_launch_tmpfile2_trailer

_line 454
data format 219
dll_read_all_symbols 569
dll_read_loader_symbols_on

ly 569
dll_read_no_symbols 569
EXECUTABLE_PATH 100, 

125, 127, 433
LINES_PER_SCREEN 423
parallel_attach 404
parallel_stop 404
pop_at_breakpoint 124
pop_on_error 123
process_load_callbacks 94
PROMPT 426
server_launch_enabled 450, 

452
server_launch_string 453
server_launch_timeout 453
SHARE_ACTION_POINT 184, 

190, 191
signal_handling_mode 123
STOP_ALL 184, 190
suffixes 86
ttf 218
ttf_max_length 218
VERBOSE 417
warn_step_throw 123

$clid built-in variable 344
Close command 154, 239
Close command (Visualizer) 314
Close Relatives command 154
Close Similar command 154, 239
Close, in dataset window 314
closing similar windows 154
closing variable windows 239
closing windows 154
cluster ID 344
CoArray Fortran (CAF) 511
$code data type 261
code constructs supported

assembler 339
C/C++ 333
Fortran 334

$code data type 265
code fragments 197, 338, 344

modifying instruction 
path 198

when executed 198
which programming 

languages 197
code, branching around 200
collapsing structures 225
colons as array separators 284
colors used 379
columns, displaying 251
comm assembler pseudo 

op 342
command arguments 424

clearing example 424
passing defaults 424
setting 424

Command Line command 87, 

418
Command Line Interpreter 8
command prompts 426

default 426
format 426
setting 426
starting the CLI from 418

command scope 280
command-line options 420

-a 424
–a 90
launch Visualizer 323
-no_startup_scripts 93
-nodes_allowed 499
passing to TotalView 90
-remote 453
–remote 90
-s startup 418

commands 87
Action Point > At 

Location 182
Action Point > Delete All 185
Action Point > 

Properties 185, 189, 
191, 194, 196, 413

Action Point > Save All 213, 
478

Action Point > Save As 213
Action Point > Set 

Barrier 194
Action Point > Suppress 

All 185
Add to Expression List 250
Auto Visualize 

(Visualizer) 314
change Visualizer 

launch 325
Clear All STOP and EVAL 185
Custom Groups 542
Edit > Delete All 

Expressions 253
Edit > Delete 

Expression 253
Edit > Duplicate 

Expression 253
Edit > Find 156
Edit > Find Again 156
Edit > Reset Defaults 252, 

253
File > Attach to a Running 



 Index     638

Program 101
File > Close 154, 239
File > Close (Visualizer) 314
File > Close Similar 154, 239
File > Debug Core File 106
File > Debug New Parallel 

Program 463
File > Debug New 

Program 99, 127, 450, 
453

File > Delete 
(Visualizer) 313, 314

File > Edit Source 164
File > Exit (Visualizer) 313
File -> Manage Sessions 119
File > New Debugging 

Session 98, 463
File > Options 

(Visualizer) 314, 316
File > Preferences 128

Formatting page 218
Launch Strings

page 324
Options page 218
Pointer Dive page 234

File > Save Pane 155
File > Search Path 100, 125, 

126, 479
File > Signals 123
Group > Attach 483, 484, 

485, 486
Group > Attach Subset 401
Group > Control > Go 383
Group > Detach 105
Group > Edit 526
Group > Go 191, 392, 399, 

478
Group > Halt 166, 378, 399
Group > Hold 383
Group > Kill 172, 489
Group > Next 400
Group > Release 383
Group > Restart 172
Group > Run To 399
Group > Step 400
group or process 399
interrupting 417
Load All Symbols in 

Stack 569
mpirun 480, 485
Options > Auto 

Visualize 312

poe 469, 476
Process > Create 393
Process > Detach 105
Process > Go 172, 392, 399, 

477, 483, 485
Process > Halt 166, 378, 399
Process > Hold 383
Process > Next 394
Process > Next 

Instruction 394
Process > Out 516
Process > Run To 516
Process > Startup 90
Process > Step 394
Process > Step 

Instruction 394
Process Startup 

Parameters 127
prun 483
remsh 446
rsh 477
server launch, 

arguments 455
single-stepping 166
ssh 446
Startup 90
Thread > Continuation 

Signal 105, 171
Thread > Go 392
Thread > Hold 383
Thread > Set PC 173
Tools > Attach Subset 402
Tools > Call Graph 304
Tools > Command Line 418
Tools > Create 

Checkpoint 562
Tools > Evaluate 245, 322, 

323, 337, 565
Tools > Global Arrays 504, 

505
Tools > Manage Shared 

Libraries 565
Tools > Message 

Queue 407, 408, 409
Tools > Message Queue 

Graph 406
Tools > Program 

Browser 221
Tools > Restart 562
Tools > Statistics 297
Tools > Thread Objects 278
Tools > Variable 

Browser 230
Tools > View Across 510
Tools > Visualize 17, 312
Tools > Visualize 

Distribution 509
Tools > Watchpoint 211
totalview

core files 87
totalview command 87, 480, 

485
totalviewcli command 87, 

89, 480, 485
tvdsvr 442

launching 455
View > Add to Expression 

List 247
View > Assembler > By 

Address 161
View > Assembler > 

Symbolically 161
View > Block Status 236
View > Collapse All 225
View > Compilation 

Scope 226
View > Dive 253
View > Dive In All 242
View > Dive in New 

Window 12
View > Dive Thread 279
View > Dive Thread New 279
View > Examine Format > 

Raw 235
View > Examine Format > 

Structured 235
View > Expand All 225
View > Graph 

(Visualizer) 313
View > Lookup 

Function 157, 159, 160
View > Lookup Variable 221, 

232, 236, 275, 287
View > Reset 158, 160
View > Reset (Visualizer) 320
View > Source As > 

Assembler 161
View > Source As > 

Both 161, 173
View > Source As > 

Source 161
View > Surface 

(Visualizer) 313
View > Variable 495



 Index     639

View > View Across > 
None 300

View > View Across > 
Process 300

View > View Across > 
Thread 300

Visualize 17
visualize 323, 325
Window > Duplicate 153, 

154, 241
Window > Duplicate Base 

Window (Visualizer) 314
Window > Memorize 151
Window > Memorize All 151
Window > Update 382

common block
displaying 271
diving on 272
members have function 

scope 271
comparing variable values 228
comparisons in filters 295
Compilation Scope > Floating 

command 247
Compilation Scope 

command 226
compiled expressions 202

allocating patch space 
for 203

performance 202
compiled in scope list 280
compiling

CUDA programs. See CUDA, 
compiling.

–g compiler option 85
multiprocess programs 85
–O option 85
optimization 85
programs 32, 85, 372

completion rules for arena 
specifiers 536

$complex data type 261
$complex_8 data type 261
$complex_16 data type 261
compound objects 258
conditional breakpoints 197, 

199, 345
conf file 457

configure command 468
configuring the Visualizer 323
connection for serial line 460
connection timeout 453, 455

altering 452
connection timeout, bulk server 

launch 455
contained functions 275

displaying 275
context menus 139
continuation signal 171

clearing 171
Continuation Signal 

command 105, 171
continuing with a signal 171
continuous execution 417
Control Group and Share 

Groups Examples 
figure 390

control groups 361, 389
adding an Attach to Pro-

gram debug 
session 104

defined 360
discussion 389
overview 526
specifier for 528

control in parallel 
environments 430

control in serial 
environments 430

control registers
interpreting 233

controlling program 
execution 430

conversion rules for filters 291
core dump, naming the signal 

that caused 107
core files

debug session in the Debug 
Core File dialog 106

debugging 90
examining 109
in totalview command 87
multi-threaded 107
opening 110

correcting programs 201

count array statistic 298
$count built-in function 345
$countall built-in function 345
countdown breakpoints 199, 

345
counter, loop 199
$countthread built-in 

function 346
CPU registers 233
cpu_use option 476
Cray

configuring TotalView 
for 500

loading TotalView 501
qsub 501
starting the CLI 501
starting TotalView 501

Cray Linux Environment (CLE)
using TotalView 502

Cray XT, XE, and XK 
debugging 499

Cray XT3 debugging
tvdsvr 499

Create Checkpoint 
command 562

creating custom groups 542
creating groups 364, 392
creating new processes 420
creating processes 392

and starting them 392
using Step 394
without starting it 393
without starting them 393

creating threads 353
creating type 

transformations 217
Ctrl+C 417
CUDA

@parameter qualifier 589
@register storage 

qualifier 591
assigned thread IDs 581
breakpoints, running 583
CLI and operating on CUDA 

threads 588
compiling a program for 

debugging 577



 Index     640

compiling options 577
compilingTesla GPU 578
coordinate spaces, 4D and 

5D 581
CUDA thread defined 581
data from CUDA thread, 

displaying 586
debugging model, 

defined 573
devices, displaying 596
execution, viewing 583
features 28, 571
-g -G compiling option 577
GPU and breakpoints 583
GPU focus thread 581
GPU thread selector 581
host thread, viewing 582
installing 574
kernel, launching 580
Linux-x86_64, supported 

platform 571
logical coordinate 

space 581
MemoryChecker 592
nvcc compiler 577
physical coordinate 

space 581
process, defined 573
PTX register, locations 590
ReplayEngine 

limitations 598
requirements 571
running a GPU code 

breakpoint 583
runtime variables, 

supported 587
sample program 599
single-stepping GPU 

code 584
starting TotalView for CUDA 

applications 579
storage qualifier, supported 

types 586
thread’s four attributes 596
troubleshooting 597
type casting 587
variables from CUDA thread, 

displaying 586
variables, editing 587

CUDA Debugging option in Pro-
gram Session dialog 114

current location of program 

counter 149
current set indicator 522
current stack frame 160
current working directory 125, 

126
Custom Groups command 542
Cycle Detection tab 407

D
D control group specifier 528
dactions command 176

-load 213, 478
-save 213, 478

daemons 350, 353
dassign command 254
data

editing 10
viewing, from Visualizer 311

data assembler pseudo op 342
data dumping 235
data in arrays

viewing using Array 
Viewer 288

data precision, changing 
display 132

data types 261
C++ 268
changing 256
changing class types in 

C++ 269
for visualization 311
int 257
int[] 257
int* 257
opaque data 266
pointers to arrays 258
predefined 261
to visualize 311

data_format variables 219
dataset

defined for
Visualizer 311

visualizing 322
window (Visualizer) 314
window (Visualizer), dis-

play
commands 315

window, menu

commands 313
deleting 313
dimensions 325
header fields 325
ID 326
vh_axis_order field 325

dattach command 90, 102, 110, 
430, 470, 479, 488
mprun command 488

dbarrier command 193, 195
-e 199
-stop_when_hit 413

dbfork library 85, 191
linking with 85

dbreak command 179, 182, 190, 
439
-e 199

dcheckpoint command 562
ddelete command 182, 185, 196, 

489
ddetach command 105
ddisable command 184, 185, 

196
ddlopen command 565
ddown command 169
deadlocks 518

message passing 408
$debug assembler pseudo 

op 341
Debug New Parallel Program 

command 463
Debug New Program 

command 127, 450
Debug Options

in Debug New Program 
dialog 101

-debug, using with MPICH 489
debugger initialization 419
debugger PID 429
debugger server

starting manually 449
Debugger Unique ID (DUID) 344
debugging

core file 90
executable file 87
multiprocess programs 85
not compiled with –g 85
OpenMP applications 493
over a serial line 460



 Index     641

PE applications 476
programs that call 

execve 85
programs that call fork 85
QSW RMS 483
SHMEM library code 506
UPC programs 507

debugging Blue Gene 
applications 480

debugging core files
in the Debug Core File 

dialog 106
debugging Fortran modules 274
debugging MPI programs 91
debugging session 430
debugging symbols, reading 567
debugging techniques 370, 398, 

489
declared arrays, displaying 266
def assembler pseudo op 342
default address range 

conflicts 204
default control group 

specifier 528
default focus 534
default process/thread set 521
default programming 

language 86
default text editor 164
default width specifier 523
deferred shape array

definition 284
types 276

deferred symbols
force loading 569
reading 567

deferring order for shared 
libraries 568

Delete All command 185
Delete command 

(Visualizer) 313, 314
Delete, in dataset window 314
deleting

action points 185
datasets 313
programs 172

denable command 185, 186

denorm filter 293
denormalized count array 

statistic 298
DENORMs 290
deprecated X defaults 134
deprecated, defined 134
dereferencing 12

automatic 234
pointers 234

Detach command 105
Detach from processes 

command 106
detaching from processes 105
detaching removes all 

breakpoints 105
detecting cycles 407
determining scope 227, 514
dfocus command 166, 520, 521

example 521
dga command 505
dgo command 392, 399, 477, 

478, 485, 537
dgroups command

-add 526, 532, 533
-remove 370

dhalt command 166, 378, 399
dhold command 193, 383

-process 384
-thread 384

difference operator 540
directories, setting order of 

search 125
disabling

action points 185
autolaunch 452
autolaunch feature 453

disassembled machine 
code 158
in variable window 238

discard dive stack 158
discard mode for signals 124
discarding signal problem 124
disconnected processing 351
displaying 153

areas of memory 236
argv array 266

array data 153
arrays 284
blocks 225
columns 251
common blocks 271
declared and allocated 

arrays 266
Fortran data types 271
Fortran module data 273
global variables 221, 230
long variable names 222
machine instructions 237
memory 236
pointer 153
pointer data 153
registers 232
remote hostnames 146
stack trace pane 153
STL variables 215
structs 259
subroutines 153
thread objects 278
typedefs 259
unions 260
variable 152
Variable Windows 220

dive icon 154, 240
Dive In All command 242, 244
Dive In New Window 

command 12
Dive Thread command 279
Dive Thread New command 279
dividing work up 351
diving 139, 152, 407, 479

creating call_graph 
group 306

defined 10
in a "view acrosss" pane 301
in a variable window 240
in source code 158
into a pointer 153, 240
into a process 152
into a stack frame 153
into a structure 240
into a thread 152
into a variable 152
into an array 240
into formal parameters 232
into Fortran common 

blocks 272



 Index     642

into function name 158
into global variables 221, 

230
into local variables 232
into MPI buffer 410
into MPI processes 410
into parameters 232
into pointer 153
into processes 152
into registers 232
into routines 153
into the PC 237
into threads 149, 152
into variables 152, 153
nested 153
nested dive defined 240
program browser 230
registers 220
scoping issue 227
variables 220

dkill command 172, 401, 421, 430
dll_read_all_symbols 

variable 569
dll_read_loader_symbols 

variable 569
dll_read_loader_symbols_only 

variable 569
dll_read_no_symbols 

variable 569
dload command 109, 420, 430, 

450
returning process ID 422

dlopen(), using 565
dmg installer 89
dnext command 168, 394, 400
dnexti command 168, 394
double assembler pseudo 

op 342
$double_precision data 

type 261
dout command 170, 516
dpid 429
dprint command 157, 221, 222, 

232, 233, 236, 237, 260, 266, 
271, 273, 275, 284, 285, 287, 
435, 495, 496
using with CAF 512

dptsets command 374, 379
drerun command 172, 420

drestart command 562
drun command 420, 424
dsession command 109
dset command 424, 426
dstatus command 195, 374
dstep command 167, 394, 516, 

522, 524, 537
dstep commands 400
dstepi command 167, 393, 394
DUID 344

of process 344
$duid built-in variable 344
dunhold command 193, 383

-thread 384
dunset command 424
duntil command 169, 516, 518
dup command 169
dup commands 222
Duplicate Base Window

in Visualizer dataset 
window 314

Duplicate command 153, 154, 
241

dwhere command 222, 523, 537
dynamic call graph 304
Dynamic Libraries page 568
dynamic patch space 

allocation 203, 204

E
Edit > Delete All Expressions 

command 253
Edit > Delete Expression 

command 253
Edit > Duplicate Expression 

command 253
Edit > Find Again command 156
Edit > Find command 156
Edit > Reset Defaults 

command 252, 253
edit mode 139
Edit Source command 164
editing

addresses 267
compound objects or 

arrays 258
source text 164

type strings 256
view across data 301

editing groups 542
EDITOR environment 

variable 164
editor launch string 164
effects of parallelism on debug-

ger behavior 428
Enable action point 185
Enable memory debugging 

checkbox 114
Enable Visualizer Launch check 

box 324
enabling

action points 185
Environment tab of Program 

Sessions dialog 115
environment variables

adding 116
before starting poe 476
EDITOR 164
how to enter 116
LC_LIBRARY_PATH 94
LM_LICENSE_FILE 94
MP_ADAPTER_USE 476
MP_CPU_USE 476
MP_EUIDEVELOP 411
PATH 125, 126
setting in of Program Ses-

sions dialog 115
SHLIB_PATH 94
TOTALVIEW 91, 411, 469
TVDSVRLAUNCHCMD 456

envrionment variables
in Debug New Program 

dialog 101
equiv assembler pseudo op 342
errors

returned in Attach to a Run-
ning Program 
dialog 104

using ReplayEngine with In-
finiband MPIs 491

errors, in multiprocess 
program 123

EVAL icon 139, 177
for evaluation points 139

eval points
and expression system 329



 Index     643

Evaluate command 322, 323, 
337, 344

Evaluate Window
expression system 330

Evaluate window 329
evaluating an expression in a 

watchpoint 206
evaluating expressions 337
evaluating state 431
evaluation points 177, 197

assembler constructs 339
C constructs 333
clearing 139
defined 175, 431
defining 197
examples 199
Fortran constructs 334
hitting breakpoint while 

evaluating 338
listing 149
lists of 149
machine level 197
patching programs 200
printing from 177
saving 198
setting 139, 198, 438
using $stop 178
where generated 197

evaluation system 
limitations 330

event points listing 149
Examine Format > Raw Format 

command 235
Examine Format > Structured 

command 235
examining

core files 109
memory 235
processes 389
stack trace and stack 

frame 232
exception enable modes 233
excluded information, 

reading 569
exclusion list, shared library 568
EXECUTABLE_PATH tab 126
EXECUTABLE_PATH 

variable 100, 125, 127, 433

setting 433
executables

debugging 87
specifying name in 

scope 281
execution

controlling 430
halting 378
out of function 170
resuming 383
startup file 93
to completion of 

function 170
execve() 85, 191, 389

debugging programs that 
call 85

setting breakpoints 
with 191

existent operator 540
exit CLI command 95
Exit command 95
Exit command (Visualizer) 313
expanding structures 225
expression evaluation window

compiled and interpreted 
expressions 202

discussion 337
Expression List window 16, 221, 

238, 246
Add to Expression List 

command 247
aggregates 249
and expression system 329
array of structures 249
diving 249
editing contents 252
editing the value 253
editing type field 253
entering variables 246
expressions 249
highlighting changes 248
multiple windows 250
multiprocess/multithread-

ed behavior 250
rebinding 251
reevaluating 251
reopening 251
reordering rows 252
restarting your 

program 251
selecting before 

sending 247
sorting columns 252

Expression List window, 329
expression system

accessing array 
elements 328

C/C++ declarations 333
C/C++ statements 333
defined 328
eval points 329
Expression List Window 329
Fortran 334
Fortran intrinsics 335
functions and their 

issues 329
methods 329
structures 328
templates and 

limitations 333
Tools > Evaluate 

Window 330
using C++ 331
Variable Window 329

expressions 190, 540
can contain loops 337
changing in Variable 

Window 244
compiled 202
evaluating 337
in Expression List 

window 249
performance of 202
side effects 245

expressions and variables 244
$extended data type 261
extent of arrays 259

F
features of CUDA debugger. See 

CUDA, features.
Fermi GPU, compiling for. See 

CUDA, compiling for Fermi
figures

Action Point > At Location 
Dialog Box 182, 186

Action Point > Properties Di-
alog Box 184, 189, 194



 Index     644

Action Point Symbol 176
Ambiguous Function Dialog 

Box 157, 183
Ambiguous Line Dialog 

Box 181
Array Data Filter by Range of 

Values 295
Array Data Filtering by 

Comparison 292
Array Data Filtering for IEEE 

Values 293
Array Statistics Window 297
Breakpoint at Assembler In-

struction Dialog 
Box 188

Control and Share Groups 
Example 390

File > Preferences: Action 
Points Page 190

Five Processes and Their 
Groups on Two 
Computers 363

Fortran Array with Inverse 
Order and Limited 
Extent 286

PC Arrow Over a Stop 
Icon 189

Sorted Variable 
Window 296

Stopped Execution of Com-
piled Expressions 203

Stride Displaying the Four 
Corners of an Array 286

Tools > Evaluate Dialog 
Box 339

Tools > Watchpoint Dialog 
Box 209

Undive/Redive Buttons 240
Using Assembler 340
Viewing Across an Array of 

Structures 301
Viewing Across Threads 300
Waiting to Complete Mes-

sage Box 338
File > Attach to a Running 

Program 101
File > Close command 154, 239
File > Close command 

(Visualizer) 314
File > Close Relatives 

command 154

File > Close Similar 
command 154, 239

File > Debug New Parallel Pro-
gram command 463

File > Debug New Program 
command 127, 450

File > Debug New Program 
dialog 99

File > Delete command 
(Visualizer) 313, 314

File > Edit Source command 164
File > Exit command 95
File > Exit command 

(Visualizer) 313
File -> Manage Sessions 

command 119
File > New Debugging Session 

dialog 98
File > Options command 

(Visualizer) 314, 316
File > Preferences

Bulk Launch page 449
Options page 151

File > Preferences > Launch 
Strings
saving remote server launch 

string 113
File > Preferences command

Action Points page 124, 399
Bulk Launch page 449, 453
different values between 

platforms 128
Dynamic Libraries page 568
Formatting page 218
Launch Strings page 324, 

452
Options page 123, 218
overview 128
Parallel page 403
Pointer Dive page 234

File > Preferences: Action Points 
Page figure 190

File > Save Pane command 155
File > Search Path 

command 100, 125, 126, 479
search order 125, 126

File > Signals command 123
-file command-line option to 

Visualizer 323, 325

file extensions 86
file, start up 93
files

.rhosts 477
hosts.equiv 477
visualize.h 325

fill assembler pseudo op 342
filter expression, matching 290
filtering

array data 290, 291
array expressions 295
by comparison 291
comparison operators 291
conversion rules 291
example 292
IEEE values 292
options 290
ranges of values 294
unsigned comparisons 292

filters 295
$denorm 293
$inf 293
$nan 292
$nanq 292
$nans 293
$ninf 293
$pdenorm 293
$pinf 293
comparisons 295

Find Again command 156
Find command 156
finding

functions 157
source code 157, 159
source code for 

functions 157
first thread indicator of < 522
Five Processes and Their Groups 

on Two Computers 
figure 363

$float data type 261
float assembler pseudo op 342
floating scope 247
focus

as list 536
changing 521
jump to thread or 

process 380
pushing 521
restoring 521



 Index     645

setting 520
for loop 337
Force window positions (dis-

ables window manager 
placement modes) check 
box 151

fork_loop.tvd example 
program 419

fork() 85, 191, 389
debugging programs that 

call 85
setting breakpoints 

with 191
Formatting page 218
Fortran

array bounds 259
arrays 259
CoArray support 511
common blocks 271
contained functions 275
data types, displaying 271
debugging modules 274
deferred shape array 

types 276
expression system 334
filter expression 295
in code fragment 197
in evaluation points 334
intrinsics in expression 

system 335
module data, displaying 273
modules 273, 274
pointer types 276
type strings supported by 

TotalView 256
user defined types 275

Fortran Array with Inverse Order 
and Limited Extent 
figure 286

Fortran casting for Global 
Arrays 504, 505

Fortran modules 277
command 273

Fortran parameters 277
forward icon 154
four linked processors 355
4142 default port 450
frame pointer 169

freezing window display 227
function calls, in eval points 201
function visualization 304
functions

finding 157
IEEE 294
in expression system 329
locating 157
returning from 170

G
-g compiler option 153
–g compiler option 85
-g -G option, for compiling CUDA 

program. See CUDA, -g -G 
option.

g width specifier 529, 533
$GA cast 504, 505, 504
$ga cast 504, 505
generating a symbol table 85
Global Arrays 504

casting 504, 505
debugging 504
diving on type 

information 505
Intel IA-64 504

global assembler pseudo 
op 342

global variables
changing 393
displaying 393
diving into 221, 230

gnu_debuglink file 91
Go command 392, 399, 477, 478, 

483, 485
GOI defined 514
going parallel 404
goto statements 198
GPU. See CUDA.
Graph command 

(Visualizer) 313
Graph Data Window 315
graph points 316
Graph visualization menu 313
graph window, creating 313
Graph, in Dataset Window 313

graphs, two dimensional 315
group

process 518
thread 519

Group > Attach Subset 
command 401, 483, 484, 
485, 486

Group > Control > Go 
command 383

Group > Custom Group 
command 370

Group > Detach command 105
Group > Edit command 526
Group > Go command 191, 386, 

392, 399, 478
Group > Halt command 166, 

378, 399
Group > Hold command 383
Group > Kill command 172, 401, 

489
Group > Next command 400
Group > Release command 383
Group > Restart command 172
Group > Run To command 399
Group > Step command 400
group aliases 427

limitations 427
group commands 399
group indicator

defined 527
group name 528
group number 528
group stepping 517
group syntax 527

group number 528
naming names 528
predefined groups 528

GROUP variable 533
group width specifier 523
groups

adding an Attach to Pro-
gram debug 
session 104

behavior 517
creating 364, 392, 542
defined 360
editing 542



 Index     646

examining 389
holding processes 383
overview 360
process 518
relationships 524
releasing processes 383
running 403
selecting processes for 542
starting 392
stopping 403
thread 518

Groups > Custom Groups 
command 306, 542

GUI namespace 425

H
h held indicator 383
half assembler pseudo op 342
Halt command 166, 378, 399
halt commands 378
halting 378

groups 378
processes 378
threads 378

handler routine 122
handling signals 122, 123
header fields for datasets 325
held indicator 383
held operator 540
held processes, defined 193
hexadecimal address, specifying 

in variable window 236
hi16 assembler operator 341
hi32 assembler operator 341
highlighted variables 223, 225
highlighting changes in Expres-

sion List window 248
hold and release 383
$hold assembler pseudo op 341
$hold built-in function 346
Hold command 383
hold state 383

toggling 194
Hold Threads command 384
holding and advancing 

processes 430
holding problems 387
holding threads 519

$holdprocess assembler pseu-
do op 341

$holdprocess built-in 
function 346

$holdprocessall built-in 
function 346

$holdprocessstopall assembler 
pseudo op 341

$holdstopall assembler pseudo 
op 341

$holdstopall built-in 
function 346

$holdthread assembler pseudo 
op 341

$holdthread built-in 
function 346

$holdthreadstop assembler 
pseudo op 341

$holdthreadstop built-in 
function 346

$holdthreadstopall assembler 
pseudo op 341

$holdthreadstopall built-in 
function 346

$holdthreadstopprocess as-
sembler pseudo op 341

$holdthreadstopprocess built-in 
function 346

hostname
expansion 458
for tvdsvr 90
in square brackets 146

hosts.equiv file 477
how TotalView determines 

share group 391
hung processes 101

I
I state 376
IBM Blue Gene

bluegene_io_interface 481
bluegene_server_launch 48

1
starting TotalView 480

IBM MPI 476
IBM SP machine 468, 469
idle state 376
IEEE functions 294

Ignore mode warning 124
ignoring action points 185
implicitly defined process/

thread set 521
incomplete arena specifier 536
inconsistent widths 537
inf filter 293
Infiniband MPIs

possible errors 491
settings 490
with ReplayEngine 490

infinity count array statistic 298
INFs 290
inheritance hierarchy 332
initial process 428
initialization search paths 93
initialization subdirectory 93
initializing an array slice 434
initializing debugging state 93
initializing the CLI 419
initializing TotalView 93
instructions

data type for 265
displaying 237

$int data type 261
int data type 257
int[] data type 257
int* data type 257
$integer_2 data type 262
$integer_4 data type 262
$integer_8 data type 262
interactive CLI 415
internal counter 199
interpreted expressions 202

performance 202
interrupting commands 417
intersection operator 540
intrinsic functions

$is_Inf 294
$is_inf 294
$is_nan 294
$is_ndenorm 294
$is_ninf 294
$is_nnorm 294
$is_norm 294
$is_pdenorm 294
$is_pinf 294



 Index     647

$is_pnom 294
$is_pzero 294
$is_qnan 294
$is_snan 294
$is_zero 294

inverting array order 286
inverting axis 316
invoking CLI program from shell 

example 419
invoking TotalView on UPC 507
IP over the switch 476
iterating

over a list 537
over arenas 522

J
joystick mode, Visualizer 310
jump to dialog 380

K
-KeepSendQueue command-

line option 411
kernel, CUDA. See CUDA, kernel.
Kill command 172, 401
killing programs 172
-ksq command-line option 411

L
L lockstep group specifier 528, 

529
labels, for machine 

instructions 238
Last Value column 224, 248
launch

configuring Visualizer 323
options for Visualizer 324
TotalView Visualizer from 

command line 323
launch strings

saving as a preference 113
Launch Strings page 324, 452
lcomm assembler pseudo 

op 342
LD_LIBRARY_PATH environment 

variable 94, 507
left margin area 149
left mouse button 139

libraries
dbfork 85
debugging SHMEM library 

code 506
naming 568
see alsoshared libraries

limitations
CUDA and 

ReplayEngine 598
limitations in evaluation 

system 330
limiting array display 286
line number area 139, 176
line numbers 149

for specifying blocks 281
LINES_PER_SCREEN 

variable 423
linked lists, following 

pointers 240
Linux-PowerLE 208
Linux-x86_64, supported CUDA 

platform. See CUDA, Linux-
x86_64.

list transformation, STL 217
lists of variables, seeing 16
lists with inconsistent 

widths 537
lists, iterating over 537
LM_LICENSE_FILE environment 

variable 94
lo16 assembler operator 341
lo32 assembler operator 341
Load All Symbols in Stack 

command 569
-load_session flag 89
loader symbols, reading 567
loading

file into TotalView 89
new executables 98
remote executables 91
shared library symbols 568

loading loader symbols 568
loading no symbols 568
local hosts 90
locations, toggling breakpoints 

at 182
lockstep group 362, 514, 521

defined 360
L specifier 528
number of 527
overview 527

$logical data type 262
$logical_1 data type 262
$logical_2 data type 262
$logical_4 data type 262
$logical_8 data type 262
$long data type 262
long variable names, 

displaying 222
$long_branch assembler pseu-

do op 341
$long_long data type 262
Lookup Function 

command 157, 159, 160
Lookup Variable command 157, 

221, 232, 236, 275, 496
specifying slices 287

loop counter 199
lower adjacent array 

statistic 298
lower bounds 258

non default 259
of array slices 285

lysm TotalView pseudo op 342

M
Mac OS X

procmod permission 89
starting execution 89
starting from an xterm 89

machine instructions
data type 265
data type for 265
displaying 237

make_actions.tcl sample 
macro 419, 438

Manage Debugging Sessions 
window
accessing 119

manager threads 358, 362
managing sessions

accessing dialog 119
editing, deleting, 

duplicating 120



 Index     648

launching your last 
session 109

manual hold and release 383
map templates 215
map transformation, STL 215
master process, recreating slave 

processes 401
master thread 494

OpenMP 494, 497
stack 495

matching processes 518
matching stack frames 300
maximum array statistic 298
mean array statistic 298
median array statistic 298
Memorize All command 151
Memorize command 151
memory contents, raw 236
Memory Debugging option in 

Program Session dialog 114
memory information 236
memory locations, changing val-

ues of 254
memory, displaying areas of 236
memory, examining 235
menus, context 139
message passing deadlocks 408
Message Queue command 407, 

408, 409
message queue display 485, 489
Message Queue Graph 407

diving 407
rearranging shape 408
updating 407

Message Queue Graph 
command 406

message-passing programs 399
messages

envelope information 411
unexpected 411

messages from TotalView, 
saving 422

methods, in expression 
system 329

middle mouse button 139
minimum array statistic 298
missing TID 523

mixing arena specifiers 537
modifying code behavior 198
module data definition 273
modules 273, 274

debugging
Fortran 274

displaying Fortran data 273
modules in Fortran 277
more processing 423
more prompt 423
mouse button

diving 139
left 139
middle 139
right 139
selecting 139

mouse buttons, using 139
MP_ADAPTER_USE environment 

variable 476
MP_CPU_USE environment 

variable 476
MP_EUIDEVELOP environment 

variable 411
MP_TIMEOUT 477
MPI

attaching to 485, 486
buffer diving 410
communicators 409
debugging 91
Infiniband, using with 

ReplayEngine 490
library state 409
on IBM 476
on SGI 485
on Sun 487
Open 482
process diving 410
rank display 405
starting 463
starting on Cray 475
starting on SGI 485
starting processes 483
starting processes, SGI 485
troubleshooting 489

mpi tasks, attaching to 404
MPI_Init() 409, 478

breakpoints and 
timeouts 413

MPI_Iprobe() 411

MPI_Recv() 411
MPICH 468, 469

and SIGINT 489
and the TOTALVIEW envi-

ronment variable 469
attach from TotalView 470
attaching to 470
ch_lfshmem device 468, 470
ch_mpl device 468
ch_p4 device 468, 470
ch_shmem device 470
ch_smem device 468
configuring 468
debugging tips 411
diving into process 470
MPICH/ch_p4 412
mpirun command 468, 469
naming processes 471
obtaining 468
P4 471
-p4pg files 471
starting TotalView using 468
-tv command-line 

option 468
using -debug 489

mpirun command 411, 468, 469, 
480, 485
options to TotalView 

through 411
passing options to 411

mpirun process 485, 486
MPL_Init() 478

and breakpoints 478
mprun command 487
multiple classes, resolving 158
Multiple indicator 301
multi-process programming 

library 85
multi-process programs

and signals 123
compiling 85
process groups 389
setting and clearing 

breakpoints 189
multiprocessing 355
multi-threaded core files 107
multi-threaded signals 171

N
-n option, of rsh command 447



 Index     649

-n single process server launch 
command 456

names of processes in process 
groups 389

namespaces 425
TV:: 425
TV::GUI:: 425

naming libraries 568
naming MPICH processes 471
naming rules

for control groups 389
for share groups 389

nan filter 292
nanq filter 292
NaNs 290, 292

array statistic 298
nans filter 293
navigating, source code 160
ndenorm filter 293
nested dive 153

defined 240
window 241

nested stack frame, running 
to 519

Next command 166, 394, 400
“next” commands 168
Next Instruction command 394
$nid built-in variable 344
ninf filter 293
-no_startup_scripts command 

line option 93
-no_stop_all command-line 

option 411
node ID 344
-nodes_allowed command-line 

option 499
Cray 500

-nodes_allowed tvdsvr com-
mand-line option 499

nodes_allowed,tvdsvr com-
mand-line option 499

nodes, attaching from to 
poe 478

None (lView Across) 
command 300

nonexistent operators 540

non-sequential program 
execution 417

nvcc compiler, and CUDA. See 
CUDA, nvcc compiler.

NVIDIA. See CUDA.

O
–O option 85
offsets, for machine 

instructions 238
$oldval built-in variable 344
omitting array stride 285
omitting period in specifier 537
omitting width specifier 536, 537
opaque data 265
opaque type definitions 266
Open MPI

starting 482
Open process window at break-

point check box 124
Open process window on signal 

check box 123
opening a core file 110
opening shared libraries 565
OpenMP 493, 494

debugging 493
debugging applications 493
master thread 494, 495, 497
master thread stack 

context 495
private variables 494
runtime library 493
shared variables 494, 497
stack parent token 497
THREADPRIVATE 

variables 497
TotalView-supported 

features 493
viewing shared 

variables 495
worker threads 494

operators
- difference 540
& intersection 540
| union 540
breakpoint 540
existent 540
held 540

nonexistent 540
running 540
stopped 540
unheld 540
watchpoint 540

optimizations, compiling for 85
options

for visualize 323
in dataset window 314
-patch_area 204
-patch_area_length 204
-sb 213
setting 134

Options > Auto Visualize com-
mand (Visualizer) 312, 314

Options command 
(Visualizer) 314, 316

Options page 151, 218
options, for compiling CUDA. 

See CUDA, compiling op-
tions

org assembler pseudo op 343
Out command 166
“out” commands 170
out command, goal 170
outliers 298, 299
outlined routine 493, 496, 497
outlining, defined 493
output

assigning output to 
variable 422

from CLI 422
only last command execut-

ed returned 422
printing 422
returning 422
when not displayed 422

P
p width specifier 529
p.t notation 522
p/t sets

arguments to Tcl 520
expressions 540
set of arenas 522
syntax 522

p/t syntax, group syntax 527
P+/P- buttons 380



 Index     650

p4 listener process 470
-p4pg files 471
-p4pg option 471
panes, saving 155
parallel debugging tips 401
PARALLEL DO outlined 

routine 494
parallel environments, execu-

tion control of 430
Parallel page 403
parallel program, defined 428
parallel program, restarting 401
parallel region 494
parallel tasks, starting 478
parallel_attach variable 404
parallel_stop variables 404
parameters, displaying in 

Fortran 277
parsing comments example 438
passing arguments 90
passing default arguments 424
pasting

with middle mouse 139
patch space size, different than 

1MB 204
patch space, allocating 203
-patch_area_base option 204
-patch_area_length option 204
patching

function calls 201
programs 200

PATH environment variable 100, 
125, 126

pathnames, setting in proc-
group file 471

PC Arrow Over a Stop Icon 
figure 189

PC icon 173
pdenorm filter 293
PE 478

adapter_use option 476
and slow processes 413
applications 476
cpu_use option 476
debugging tips 413
from command line 477
from poe 477

options to use 476
switch-based 

communication 476
PE applications 476
pending messages 408
pending receive operations 409, 

410
pending send operations 409, 

411
configuring for 411

pending unexpected 
messages 409

performance
and shared library use 564

performance of interpreted, and 
compiled expressions 202

performance of remote 
debugging 442

Performance, improving in the 
Program Browser 231

-persist command-line option to 
Visualizer 323, 325

phase, UPC 509
pick, Visualizer 309
picking a dataset point 

value 317
$pid built-in variable 344
pid specifier, omitting 536
pid.tid to identify thread 149
pinf filter 293
piping information 155
plant in share group 190
Plant in share group check 

box 191, 199
poe

and mpirun 469
and TotalView 477
arguments 476
attaching to 478, 479
interacting with 413
on IBM SP 470
placing on process list 479
required options to 476
running PE 477
TotalView acquires poe 

processes 478
poe, and bulk server launch 458
POI defined 514

point of execution for multipro-
cess or multithreaded 
program 149

pointer data 153
Pointer Dive page 234
pointers 153

as arrays 234
chasing 234, 240
dereferencing 234
diving on 153
in Fortran 276
to arrays 258

pointer-to-shared UPC data 509
points, in graphs 316
pop_at_breakpoint variable 124
pop_on_error variable 123
popping a window 153
port 4142 450
-port command-line option 450
port number for tvdsvr 90
precision 218

changing 218
changing display 132

predefined data types 261
preference file 93
preferences

Bulk Launch page 449, 453
Launch Strings page 452
Options page 123
saving remote server launch 

string 113
setting 134

preloading shared libraries 565
primary thread, stepping 

failure 518
print statements, using 177
printing an array slice 435
printing in an eval point 177
private variables 493

in OpenMP 494
procedures

debugging over a serial 
line 460

displaying 266
displaying declared and allo-

cated arrays 266
process

detaching 105



 Index     651

holding 518
ID 344
numbers are unique 428
selecting in processes/rank 

tab 379
state 374
states 149
stepping 517
synchronization 399, 518
width specifier 523
width specifier, omitting 537

Process > Create command 393
Process > Detach command 105
Process > Enable Memory De-

bugging command 114
Process > Go command 172, 

386, 392, 399, 477, 483, 485
Process > Halt command 166, 

378, 399
Process > Hold command 383
Process > Hold Threads 

command 384
Process > Next command 394
Process > Next Instruction 

command 394
Process > Out command 516
Process > Release Threads 

command 384
Process > Run To command 516
Process > Startup Parameters 

command 90, 127
entering standard I/O 

information 117
Process > Step command 394
Process > Step Instruction 

command 394
process as dimension in 

Visualizer 312
process barrier breakpoint

changes when clearing 196
changes when setting 196
defined 175
deleting 196
setting 194

process DUID 344
process focus 520
process groups 360, 518, 526

behavior 532
behavior at goal 518
stepping 517
synchronizing 518

Process Window 148
host name in title 146
raising 123

process_id.thread_id 522
process_load_callbacks 

variable 94
process/set threads

saving 524
process/thread identifier 428
process/thread notation 428
process/thread sets 428

as arguments 520
changing focus 521
default 521
implicitly defined 521
inconsistent widths 537
structure of 522
target 520
widths inconsistent 537

$processduid built-in 
variable 344

processes
acquiring 469, 471
acquisition in poe 478
apparently hung 400
attaching to 101, 479
barrier point behavior 196
behavior 517
breakpoints shared 190
call graph 304
changing 380
copy breakpoints from mas-

ter process 469
creating 392, 394
creating by single-

stepping 394
creating new 420
creating using Go 392
creating without 

starting 393
deleting 172
deleting related 172
detaching from 105
displaying data 152
diving into 479

diving on 152
groups 389
held defined 193
holding 193, 346, 383
hung 101
initial 428
loading programs using the 

Sessions Manager 98
master restart 401
MPI 410
names 389
refreshing process info 382
released 193
releasing 193, 196, 383
restarting 172
single-stepping 516
slave, breakpoints in 469
spawned 428
starting 392
state 374
status of 374
stepping 400, 517
stop all related 190
stopped 193
stopped at barrier point 196
stopping 197, 378
stopping all related 123
stopping intrinsic 346
stopping spawned 469
synchronizing 431, 518
tab 379
terminating 421
types of process groups 389
when stopped 517

Processes button 190
process-level stepping 400
processors and threads 356
procgroup file 471

using same absolute path 
names 471

procmod permission, Mac OS 
X 89

Program arguments
in Debug New Program 

dialog 100
Program Browser 230

explaining symbols 230
improving performance 231

program control groups



 Index     652

defined 526
naming 389

program counter (PC) 149
arrow icon for PC 149
indicator 149
setting 173
setting program 

counter 173
setting to a stopped 

thread 173
program execution

advancing 430
controlling 430

Program Session dialog 99
program state, changing 417
program visualization 304
programming languages, deter-

mining which used 86
programming TotalView 8
programs

compiling 32, 85, 372
compiling using –g 85
correcting 201
deleting 172
killing 172
not compiled with –g 85
patching 200
restarting 172

prompt and width specifier 530
PROMPT variable 426
Properties command 175, 184, 

189, 191, 194, 198, 413
Properties window 186
properties, of action points 177
prototypes for temp files 454
prun command 483
pthread ID 429
$ptree assembler pseudo 

op 342
pushing focus 521

Q
QSW RMS applications 483

attaching to 483
debugging 483
starting 483

quad assembler pseudo op 343
Quadrics RMS 483
quartiles array statistic 298

R
R state 376
raising process window 123
rank display 405
rank for Visualizer 324
ranks 406
ranks tab 379, 405
Raw Format command 235
raw memory contents 235
raw memory data 236
RDMA optimizations

disabled with Infiniband 490
read_symbols command 569
reading loader and debugger 

symbols 567
$real data type 262
$real_16 data type 262
$real_4 data type 262
$real_8 data type 262
rebinding the Variable 

Window 238
recursive functions 170

single-stepping 169
redive 241
redive all 241
redive buttons 240
redive icon 154, 240
registers

editing 233
interpreting 233

Release command 383
release state 383
Release Threads command 384
reloading breakpoints 478
remembering window 

positions 151
-remote command-line 

option 90, 453
Remote Debug Server Launch 

preferences 452
remote debugging

in Debug New Program 
dialog 100

performance 442
remote executables, loading 91
remote hosts 90

adding 111

viewing remote server 
launch command 112

remote login 477
–remote option 90
Remote Server Launch Com-

mand field
Advanced button in Add 

Host dialog 112
remote server launch string

saving as a preference 113
remote shell command, 

changing 446
removing breakpoints 139, 177
remsh command 446

used in server launches 456
replacing default 

arguments 424
ReplayEngine

and Infiniband MPIs 490
CUDA limitations 598

researching directories 127
Reset command 158, 160
Reset command (Visualizer) 320
resetting command-line 

arguments 116
resetting the program 

counter 173
resolving ambiguous 

names 158
resolving multiple classes 158
resolving multiple static 

functions 158
Restart Checkpoint 

command 562
Restart command 172
restarting

parallel programs 401
program execution 172, 420

restoring focus 521
restricting output data 155
results, assigning output to 

variables 422
resuming

executing thread 173
execution 383, 392
processes with a signal 171

returning to original source 
location 158



 Index     653

reusing windows 153
Reverse Debugging option in 

Program Session dialog 114
.rhosts file 446
right angle bracket (>) 153
right mouse button 139
RMS applications 483

attaching to 483
starting 483

Root Window 140
Attached Page 479
selecting a process 152
starting CLI from 418
state indicator 374

rounding modes 233
routine visualization 304
routines, diving on 153
routines, selecting 149
RS_DBG_CLIENTS_PER_SERVER 

environment variable 499, 
500

rsh command 446, 477
rules for scoping 281
Run To command 166, 399
“run to” commands 169, 518
running CLI commands 93
running groups 403
running operator 540

S
-s command-line option 93, 418
S share group specifier 528
S state 376
S width specifier 529
sample programs

make_actions.tcl 419
sane command argument 418
Satisfaction group items 

pulldown 195
satisfaction set 195
satisfied barrier 195
Save All (action points) 

command 213
Save All command 213
Save Pane command 155
saved action points 94

saving
action points 213
TotalView messages 422
window contents 155

saving data, restricting 
output 155

-sb option 213
scope

determining 227
scopes

compiled in 280
scoping 226, 280

as a tree 281
floating 247
issues 227
rules 281
Variable Window 222
variables 226

scrolling 139
output 423
undoing 160

search
for processes in Attach to a 

Program dialog 103
Search Path command 100, 125, 

126, 479
search order 125, 126

search paths
default lookup order 125
for initialization 93
not passed to other 

processes 127
order 125
setting 125

-search_port command-line 
option 450

searching 156
case-sensitive 156
for source code 159
functions 157
locating closest match 157
source code 157

searching, variable not 
found 157

seeing structures 225
seeing value changes 223

limitationss 225
select button 139

selected line, running to 519
selecting

different stack frame 149
routines 149
source code, by line 173
source line 395

selecting a target 377
selecting process for a 

group 542
selection and Expression List 

window 247
sending signals to program 124
-serial command-line 

option 460
serial line

baud rate 460
debugging over a 460

server launch 452
command 453
enabling 452
replacement character 

%C 455, 456
server launch command

viewing in Add Host 
dialog 112

server on each processor 351
-server option 450
server_launch_enabled 

variable 450, 452
server_launch_string 

variable 453
server_launch_timeout 

variable 453
service threads 358, 362
sessions

launching your last 
session 109

loading into TotalView using 
-load_session flag 89

Set Barrier command 194
set expressions 540
set indicator, uses dot 522, 541
Set PC command 173
-set_pw command-line 

option 446
-set_pw single process server 

launch command 456



 Index     654

-set_pws bulk server launch 
command 457

setting
barrier breakpoint 194
breakpoints 139, 179, 189, 

438, 477, 515
breakpoints while 

running 179
evaluation points 139, 198
options 134
preferences 134
search paths 125
thread specific 

breakpoints 344
timeouts 477

setting focus 520
setting up, debug session 96
setting up, parallel debug 

session 492
setting up, remote debug 

session 443
setting up,MPIl debug 

session 461
setting X resources 134
settings

for use of Infiniband MPIs 
and ReplayEngine 490

SGROUP variable 533
shape arrays, deferred 

types 276
Share > Halt command 378
share groups 361, 389, 526

defined 360
determining 391
determining members 

of 391
discussion 389
naming 389
overview 526
S specifier 528

SHARE_ACTION_POINT 
variable 184, 190, 191

shared libraries 564
controlling which symbols 

are read 567
loading all symbols 568
loading loader symbols 568
loading no symbols 568
preloading 565
reading excluded 

information 569
shared library, exclusion list 

order 568
shared library, specifying name 

in scope 281
shared variables 493

in OpenMP 495
OpenMP 494, 497
procedure for 

displaying 495
sharing action points 191
shell, example of invoking CLI 

program 419
SHLIB_PATH environment 

variable 94
SHMEM library code 

debugging 506
$short data type 262
Show full path names check 

box 159, 186
showing areas of memory 236
side 329
side-effects of functions in ex-

pression system 329
SIGALRM 413
SIGFPE errors (on SGI) 122
SIGINT signal 489
signal handling mode 123
signal_handling_mode 

variable 123
signal/resignal loop 124
signals

affected by hardware 
registers 122

clearing 171
continuing execution 

with 171
discarding 124
error option 124
handler routine 122
handling 122
handling in TotalView 122
handling mode 123
ignore option 124
resend option 124
sending continuation 

signal 171
SIGALRM 413
stop option 124

stops all related 
processes 123

that caused core dump 107
Signals command 123
SIGSTOP

used by TotalView 122
when detaching 105

SIGTRAP, used by TotalView 122
single process server 

launch 442, 452, 455
single process server launch 

command
%D 456
%L 456
%P 456
%R 456
%verbosity 456, 458
-callback_option 456
-n 456
-set_pw 456
-working_directory 456

single-stepping 166, 516
commands 166
in a nested stack frame 519
into function calls 167
not allowed for a parallel 

region 494
on primary thread only 516
operating system 

dependencies 169, 171
over function calls 168
recursive functions 169

skipping elements 286
slash in group specifier 528
sleeping state 376
slices

defining 284
descriptions 287
examples 285
lower bound 285
of arrays 284
operations using 276
stride elements 285
UPC 507
upper bound 285
with the variable 

command 287
SLURM 498
smart stepping, defined 516
SMP machines 468



 Index     655

sockets 460
Sorted Variable Window 

figure 296
sorting

array data 296
Source As > Assembler 161
Source As > Both 161, 173
Source As > Both command 173
Source As > Source 161
source code

finding 157, 159
navigating 160

Source command 161
source file, specifying name in 

scope 281
source lines

ambiguous 395
editing 164
searching 395
selecting 395

Source Pane 148, 149
source-level breakpoints 179
space allocation

dynamic 203, 204
static 203, 204

spawned processes 428
stopping 469

specifier combinations 528
specifiers

and dfocus 530
and prompt changes 530
example 533
examples 529, 530, 531

specifying groups 527
specifying search 

directories 127
splitting up work 352
stack

master thread 495
trace, examining 232
unwinding 173

stack context of the OpenMP 
master thread 495

stack frame 222
current 160
examining 232
matching 300

pane 149
selecting different 149

Stack Frame Pane 149, 237
stack parent token 497

diving 497
Stack Trace Pane 149, 569

displaying source 153
standard deviation array 

statistic 298
Standard I/O

in Program Sessions 
dialog 116

standard I/O, altering 116
standard input, and launching 

tvdsvr 447
Standard Template Library 215
Start a Debugging Session 

dialog 99
starting 504

CLI 87, 89, 418
groups 392
parallel tasks 478
TotalView 87, 88, 477
tvdsvr 90, 449

starting MPI programs 463
starting Open MPI 

programs 482
starting Totalview 84
Startup command 90
startup file 93
startup options

-no_startup_scripts 93
Startup Parameters 

command 127
state characters 375
states

and status 374
initializing 93
of processes and 

threads 374
unattached process 375

static constructor code 393
static functions, resolving 

multiple 158
static internal counter 199
static patch space 

allocation 203, 204

statistics for arrays 297
status

and state 374
of processes 374
of threads 374

status registers
interpreting 233

Step command 166, 394, 400
“step” commands 167
Step Instruction command 394
stepping

see also single-stepping
apparently hung 400
at process width 517
at thread width 518
goals 517
into 167
multiple statements on a 

line 167
over 168
primary thread can fail 518
process group 517
processes 400
Run (to selection) Group 

command 399
smart 516
target program 430
thread group 517
threads 538
using a numeric argument 

in CLI 167
workers 538

stepping a group 517
stepping a process 517
stepping commands 394
STL 215

list transformation 217
map transformation 215

STL preference 218
STLView 215
$stop assembler pseudo op 342
$stop built-in function 346
Stop control group on error 

check box 124
Stop control group on error sig-

nal option 123
STOP icon 9, 139, 176, 177, 179, 

188, 515



 Index     656

for breakpoints 139, 179
Stop on Memory Errors 

checkbox 114
STOP_ALL variable 184, 190
stop, defined in a multiprocess 

environment 430
$stopall built-in function 346
Stopped Execution of Compiled 

Expressions figure 203
stopped operator 540
stopped process 196
stopped state

unattached process 376
stopping

all related processes 123
groups 403
processes 378
spawned processes 469
threads 378

$stopprocess assembler pseu-
do op 342

$stopprocess built-in 
function 346

$stopthread built-in 
function 347

storage qualifier for CUDA. See 
CUDA, storage qualifier

stride 285
default value of 285
elements 285
in array slices 285
omitting 285

Stride Displaying the Four Cor-
ners of an Array figure 286

$string data type 262
string assembler pseudo op 343
$string data type 263
structs

defined using typedefs 260
how displayed 259

structure information 225
Structured command 235
structures 240, 259

collapsing 225
editing types 256
expanding 225
expression evaluation 328
viewing across 301

stty sane command 418
subroutines, displaying 153
subset attach command 402
substructure viewing, 

limitations 225
suffixes of processes in process 

groups 389
suffixes variables 86
sum array statistic 299
Sun MPI 487
Suppress All command 185, 186
suppressing action points 185
surface

in dataset window 313
Surface command 

(Visualizer) 313
surface view 317, 318

Visualizer 310
surface visualization 

window 313
surface window, creating 313
suspended windows 338
switch-based 

communication 476
for PE 476

symbol lookup 281
and context 281

symbol name 
representation 280

symbol reading, deferring 567
symbol scoping, defined 281
symbol table debugging 

information 85
symbolic addresses, displaying 

assembler as 161
Symbolically command 161
symbols

loading all 568
loading loader 568
not loading 568

synchronizing execution 383
synchronizing processes 431, 

518
syntax 527
system PID 429
system TID 429
systid 149, 429

$systid built-in variable 344

T
T state 376
t width specifier 529
T+/T- buttons 381
tag field 188

area 149
Talking to Rank control 402
target process/thread set 430, 

520
target program

stepping 430
target, changing 521
tasks

starting 478
Tcl

and the CLI 8
CLI and thread lists 416
version based upon 416

TCP/IP address, used when 
starting 90

TCP/IP sockets 460
temp file prototypes 454
templates

expression system 333
maps 215
STL 215

terminating processes 421
Tesla GPU, compiling for. See 

CUDA, Tesla GPU.
testing for IEEE values 294
testing when a value 

changes 206
text

locating closest match 157
saving window contents 155

text assembler pseudo op 343
text editor, default 164
third party debugger and To-

talView Visualizer 325
third party visualizer 310

and TotalView data set 
format 325

thread
width specifier, omitting 537

Thread > Continuation Signal 
command 105, 171



 Index     657

Thread > Go command 392
Thread > Hold command 383, 

384
Thread > Set PC command 173
thread as dimension in 

Visualizer 312
thread focus 520
thread group 519

stepping 517
thread groups 360, 518, 526

behavior 532
behavior at goal 518

thread ID
about 149, 429
assigned to CUDA threads. 

See CUDA, assigned 
thread IDs.

system 344
TotalView 344

thread local storage 496
variables stored in different 

locations 496
thread numbers are unique 428
Thread Objects command 278
thread objects, displaying 278
Thread of Interest 392
thread of interest 522, 524

defined 378, 522
thread stepping 538

platforms where 
allowed 518

Thread Tab 149
THREADPRIVATE common block, 

procedure for viewing vari-
ables in 496

THREADPRIVATE variables 497
threads

call graph 304
changing 381
changing in Expression List 

window 251
changing in Variable 

window 238
creating 353
displaying source 152
diving on 149, 152
finding window for 149
holding 194, 383, 519

ID format 149
listing 149
manager 358
opening window for 149
releasing 193, 194, 383
resuming executing 173
service 358
setting breakpoints in 344
single-stepping 516
stack trace 149
state 374
status of 374
stopping 378
systid 149
tid 149
user 357
width 517
width specifier 523
workers 357, 359

threads model 353
threads tab 380
thread-specific breakpoints 344
tid 149, 429
$tid built-in variable 344
TID missing in arena 523
timeouts

avoid unwanted 413
during initialization 478
for connection 453
TotalView setting 477

timeouts, setting 477
TOI defined 378

again 514
toolbar, using 377
Tools > Attach Subset 

command 402
Tools > Call Graph 

command 304
Tools > Command Line 

command 87, 418
Tools > Create Checkpoint 

command 562
Tools > Evaluate command 245, 

322, 323, 337, 344, 565
Tools > Evaluate Dialog Box 

figure 339
Tools > Evaluate Window

expression system 330

Tools > Expression List 
Window 247

Tools > Fortran Modules 
command 273

Tools > Global Arrays 
command 504, 505

Tools > Manage Shared Libraries 
command 565

Tools > Message Queue 
command 407, 408, 409

Tools > Message Queue Graph 
command 406

Tools > Program Browser 
command 221

Tools > Restart Checkpoint 
command 562

Tools > Statistics command 297
Tools > Thread Objects 

command 278
Tools > Variable Browser 

command 230
Tools > View Across 

command 510
Tools > Visualize command 17, 

302, 312
Tools > Visualize Distribution 

command 509
Tools > Watchpoint 

command 208, 211
Tools > Watchpoint Dialog Box 

figure 209
tooltips 220

evaluation within 220
TotalView

and MPICH 468
core files 87
initializing 93
invoking on CAF 511
invoking on UPC 507
programming 8
relationship to CLI 416
starting 87, 88, 477
starting on remote hosts 90
starting the CLI within 418
Visualizer configuration 323

TotalView assembler operators
hi16 341
hi32 341



 Index     658

lo16 341
lo32 341

TotalView assembler pseudo 
ops
$debug 341
$hold 341
$holdprocess 341
$holdprocessstopall 341
$holdstopall 341
$holdthread 341
$holdthreadstop 341
$holdthreadstopall 341
$holdthreadstopprocess 34

1
$long_branch 341
$ptree 342
$stop 342
$stopall 342
$stopprocess 342
$stopthread 342
align 342
ascii 342
asciz 342
bss 342
byte 342
comm 342
data 342
def 342
double 342
equiv 342
fill 342
float 342
global 342
half 342
lcomm 342
lysm 342
org 343
quad 343
string 343
text 343
word 343
zero 343

totalview command 87, 93, 480, 
485

TotalView data types
$address 261
$char 261
$character 261
$code 261, 265
$complex 261
$complex_16 261
$complex_8 261

$double 261
$double_precision 261
$extended 261
$float 261
$int 261
$integer 261
$integer_1 261
$integer_2 262
$integer_4 262
$integer_8 262
$logical 262
$logical_1 262
$logical_2 262
$logical_4 262
$logical_8 262
$long 262
$long_long 262
$real 262
$real_16 262
$real_4 262
$real_8 262
$short 262
$string 262, 263
$void 262, 265
$wchar 262
$wchar_s16 262
$wchar_s32 262
$wchar_u16 262
$wchar_u32 262
$wstring 262
$wstring_s16 262
$wstring_s32 263
$wstring_u16 262
$wstring_u32 263

TOTALVIEW environment 
variable 91, 411, 469

totalview subdirectory 94
TotalView windows

action point List tab 149
totalviewcli command 87, 89, 90, 

93, 418, 420, 480, 485
–remote 90

trackball mode, Visualizer 310
tracking changed values 223

limitations 225
transformations, creating 217
transposing axis 316
TRAP_FPE environment variable 

on SGI 122
troubleshooting 630

MPI 489

ttf variable 218
ttf_ max_length variable 218
TV

recurse_subroutines
setting 231

-tv command-line option 468
TV:: namespace 425
TV::GUI:: namespace 425
TVDB_patch_base_address 

object 204
tvdb_patch_space.s 205
tvdsvr 90, 91, 202, 445, 447, 452, 

453, 460
-callback command-line 

option 446
Cray XT3 499
editing command line for 

poe 478
fails in MPI environment 489
launch problems 453, 455
launching 455
launching, arguments 447
-port command-line 

option 450
-search_port command-line 

option 450
-server command-line 

option 450
-set_pw command-line 

option 446
starting 449
starting for serial line 460
starting manually 449

tvdsvr command 450
timeout while 

launching 453, 455
tvdsvr_rs 499
TVDSVRLAUNCHCMD environ-

ment variable 456
two-dimensional graphs 315
type casting 256

examples 266
type strings

built-in 261
editing 256
for opaque types 266
supported for Fortran 256

type transformation 
variable 218



 Index     659

type transformations, 
creating 217

typedefs
defining structs 260
how displayed 259

types supported for C 
language 256

types, user defined type 275

U
UDT 275
UID, UNIX 450
unattached process states 375
undive 241
undive all 241
undive buttons 240
undive icon 154, 158, 240
Undive/Redive Buttons 

figure 240
undiving, from windows 241
unexpected messages 408, 411
unheld operator 540
union operator 540
unions 259

how displayed 260
unique process numbers 428
unique thread numbers 428
unsuppressing action 

points 186
unwinding the stack 173
UPC

assistant library 507
phase 509
pointer-to-shared data 509
shared scalar variables 507
slicing 507
starting 507
viewing shared objects 507

UPC debugging 507
Update command 382
upper adjacent array 

statistic 299
upper bounds 258

of array slices 285
USEd information 274
user defined data type 275

user mode 357
user threads 357
users

adding to an Attach to a Pro-
gram debug 
session 103

Using Assembler figure 340

V
Valid in Scope list 280
value changes, seeing 223

limitations 225
value field 338
values

editing 10
Variable Browser command 230
variable scope 226
variable scoping 280
Variable Window 244

and expression system 329
changing threads 238
closing 239
displaying 220
duplicating 241
expression field 223
in recursion, manually 

refocus 222
rebinding 238
scope 226
scoping display 222
stale in pane header 222
tracking addresses 222
type field 223
updates to 222
view across 301

variables
assigning p/t set to 524
at different addresses 301
bluegene_io_interface 481
bluegene_server_launch 48

1
CGROUP 526, 532
changing the value 254
changing values of 254
comparing values 228
display width 218
displaying all globals 230
displaying contents 152
displaying long names 222

displaying STL 215
diving 152, 153
freezing 228
GROUP 533
in modules 273
locating 157
not updating display 228
precision 218
previewing size and 

precision 219
setting command output 

to 422
SGROUP 533
stored in different 

locations 496
ttf 218
View Across display 300
watching for value 

changes 16
WGROUP 532

variables and expressions 244
variables, viewing as list 246
VERBOSE variable 417
-verbosity bulk server launch 

command 457
verbosity level 485
-verbosity single process server 

launch command 456, 458
vh_axis_order header field 325
vh_dims dataset

field 325
vh_dims header field 325
vh_effective_rank dataset

field 326
vh_effective_rank header 

field 326
vh_id dataset field 326
vh_id header field 326
vh_item_count dataset

field 326
vh_item_count header field 326
vh_item_length dataset

field 326
vh_item_length header field 326
vh_magic dataset

field 326
vh_magic header field 326



 Index     660

vh_title dataset
field 326

vh_title header field 326
vh_type dataset

field 326
vh_type header field 326
vh_version dataset

field 326
vh_version header field 326
View > Add to Expression List 

command 247
View > Assembler > By Address 

command 161
View > Assembler > Symbolically 

command 161
View > Block Status 

command 236
View > Collapse All 

command 225
View > Compilation Scope > 

Fixed command 226
View > Compilation Scope > 

Floating command 222, 226
View > Compilation Scope 

commands 226
View > Dive command 253
View > Dive In All command 242
View > Dive in New Window 

command 12
View > Dive Thread 

command 279
View > Dive Thread New 

command 279
View > Examaine Format > 

Structured command 235
View > Examine Format > Raw 

command 235
View > Expand All command 225
View > Freeze command 227
View > Graph command 313
View > Graph command 

(Visualizer) 313
View > Lookup Function 

command 157, 159, 160
View > Lookup Variable 

command 157, 221, 232, 
236, 275, 495, 496
specifying slices 287

View > Reset command 158, 160
View > Reset command 

(Visualizer) 320
View > Show Across > 

Process 300
View > Show Across > 

Thread 300
View > Source As > Assembler 

command 161
View > Source As > Both 

command 161, 173
View > Source As > Source 

command 161
View > Surface command 

(Visualizer) 313
View > View Across > None 

command 300
View > View Across > Process 

command 300
View > View Across > Thread 

command 300
View > View Across > Threads 

command 496
View Across

arrays and structures 301
view across

editing data 301
View Across command. 496
View Across None 

command 300
View simplified STL containers 

preference 218
viewing across

variables 300
Viewing Across an Array of Struc-

tures figure 301
viewing across processes and 

threads 13
Viewing Across Threads 

figure 300
Viewing Across Variable 

Window 301
viewing across variables and 

processes 300
viewing acrosscross

diving in pane 301
viewing assembler 161
viewing opaque data 265

viewing shared UPC objects 507
viewing templates 215
viewing variables in lists 246
viewing wide characters 264
virtual functions 331
vis_ao_column_major 

constant 325
vis_ao_row_major constant 325
vis_float constant 326
VIS_MAGIC constant 326
VIS_MAXDIMS constant 325
VIS_MAXSTRING constant 326
vis_signed_int constant 326
vis_unsigned_int constant 326
VIS_VERSION constant 326
visualization

deleting a dataset 313
$visualize 347
visualize 322
$visualize built-in function 322
Visualize command 17, 302, 312, 

325
visualize command 323
visualize.h file 325
Visualizer 302, 312

actor mode 310, 321
auto reduce option 319
autolaunch options, 

changing 324
camera mode 309, 321
choosing method for dis-

playing data 311
configuring 323
configuring launch 323
creating graph window 313
creating surface 

window 313
data sets to visualize 311
data types 311
dataset defined 311
dataset window 312, 313, 

314
deleting datasets 313
dimensions 312
exiting from 313
-file command-line 

option 323, 325
graphs, display 315, 316
joy stick mode 310



 Index     661

joystick mode 321
launch command, changing 

shell 325
launch from command 

line 323
launch options 324
method 311
number of arrays 311
obtaining a dataset 

value 317
pan 321
-persist command-line 

option 323, 325
pick 309
picking 321
rank 324
relationship to 

TotalView 310
restricting data 312
rotate 321

rotate, Visualizer 309
scale 321
shell launch command 325
slices 311
surface view 310, 317, 318, 

321
third party 310

adapting to 325
considerations 325

trackball mode 310, 321
using casts 322
view across data 312
view window 312
windows, types of 312
wireframe mode 310
wireframe view 321
zoom 321

visualizer
closing connection to 324
customized command 

for 324
visualizing

data 309, 313
data sets from a file 323
from variable window 312
in expressions using 

$visualize 322
visualizing a dataset 322
$void data type 262, 265

W
W width specifier 529
W workers group specifiers 528
Waiting for Command to Com-

plete window 400
Waiting to Complete Message 

Box figure 338
warn_step_throw variable 123
watching memory 210
Watchpoint command 208, 211
watchpoint operator 540
watchpoints 16, 206

$newval watchpoint 
variable 211

$oldval 211
alignment 212
conditional 206, 211
copying data 211
creating 208
defined 175, 431
disabling 210
enabling 210
evaluated, not 

compiled 212
evaluating an 

expression 206
example of triggering when 

value goes negative 212
length compared to $oldval 

or $newval 212
lists of 149
lowest address 

triggered 211
modifying a memory 

location 206
monitoring adjacent 

locations 211
multiple 211
not saved 213
on stack varaibles 209
PC position 210
platform differences 207
problem with stack 

variables 210
supported platforms 206
testing a threshold 206
testing when a value 

changes 206
triggering 206, 210

watching memory 210
$whchar data type 264
wchar_t wide characters 264
WGROUP variable 532
When a job goes parallel or calls 

exec() radio buttons 404
When a job goes parallel radio 

buttons 404
When Done, Stop radio 

buttons 195
When Hit, Stop radio 

buttons 195
wide characters 264
width relationships 524
width specifier 522

omitting 536, 537
wildcards, when naming shared 

libraries 568
Window > Duplicate Base Win-

dow (Visualizer) 314
Window > Duplicate 

command 153, 154, 228, 241
Window > Memorize All 

command 151
Window > Memorize 

command 151
Window > Update 

command 382
window contents, saving 155
windows 239

closing 154, 239
dataset 314
dataset window 313
dataset window 

(Visualizer) 315
graph data 315
popping 153
resizing 151
surface view 317
suspended 338

wireframe view, Visualizer 310
word assembler pseudo op 343
worker threads 357, 494
workers group 362, 519

defined 360
overview 527

workers group specifier 528



 Index     662

working directory 126
working independently 351
-working_directory bulk server 

launch command 457
-working_directory single pro-

cess server launch 
command 456

writing array data to files 437
$wstring data type 264

X
X resources setting 134
xterm, launching tvdsvr 

from 447

Y
yellow highlighted variables 223, 

225

Z
Z state 376
zero assembler pseudo op 343
zero count array statistic 299
zombie state 376



 Index     663


	Contents
	About This Guide
	Content Organization
	Audience
	Using the CLI
	Resources

	PART I Introduction to Debugging with TotalView
	Chapter 1 About TotalView
	Sessions Manager
	GUI and Command Line Interfaces
	The GUI
	The CLI

	Stepping and Breakpoints
	Data Display and Visualization
	Data Display
	Data Visualization
	C++ View

	Tools for Multi-Threaded and Parallel Applications
	Program Using Almost Any Execution Model
	View Process and Thread State
	Control Program Execution

	Batch and Automated Debugging
	Remote Display
	Debugging on a Remote Host
	CUDA Debugger
	Memory Debugging
	Reverse Debugging
	What’s Next

	Chapter 2 Basic Debugging
	Program Load and Navigation
	Load the Program to Debug
	Program Navigation

	Stepping and Executing
	Simple Stepping
	Canceling

	Setting Breakpoints (Action Points)
	Basic Breakpoints
	Evaluation Points
	Saving and Reloading Action Points

	Examining Data
	Viewing Built-in Data
	Viewing Compound Variables Using the Variable Window

	Visualizing Arrays
	Launching the Visualizer from an Eval Point
	Viewing Options

	Moving On

	Chapter 3 Accessing TotalView Remotely
	About Remote Display
	Remote Display Supported Platforms
	Remote Display Components

	Installing the Client
	Installing on Linux
	Installing on Microsoft Windows
	Installing on Apple Mac OS X Intel

	Client Session Basics
	Working on the Remote Host

	Advanced Options
	Naming Intermediate Hosts
	Submitting a Job to a Batch Queuing System
	Setting Up Your Systems and Security
	Session Profile Management
	Batch Scripts
	tv_PBS.csh Script
	tv_LoadLeveler.csh Script



	PART II Debugging Tools and Tasks
	Chapter 4 Starting TotalView
	Compiling Programs
	Using File Extensions

	Starting TotalView
	Starting TotalView
	Creating or Loading a Session
	Debugging a Program
	Debugging a Core File
	Debugging with a Replay Recording File
	Passing Arguments to the Program Being Debugged
	Debugging a Program Running on Another Computer
	Debugging an MPI Program
	Using gnu_debuglink Files

	Initializing TotalView
	Exiting from TotalView

	Chapter 5 Loading and Managing Sessions
	Setting up Debugging Sessions
	Loading Programs from the Sessions Manager
	Loading Programs Using the CLI

	Debugging Options and Environment Setup
	Adding a Remote Host
	Options: Reverse Debugging, Memory Debugging, and CUDA
	Setting Environment Variables and Altering Standard I/O
	Adding Notes to a Session

	Managing Sessions
	Editing or Starting New Sessions in a Sessions Window

	Other Configuration Options
	Handling Signals
	Setting Search Paths
	Setting Startup Parameters
	Setting Preferences


	Chapter 6 Using and Customizing the GUI
	Overview
	Using Mouse Buttons
	Using the Root Window
	Controlling the Display of Processes and Threads
	Using the Old Root Window
	Suppressing the Root Window

	Using the Process Window
	Resizing and Positioning Windows
	About Diving into Objects
	Saving the Data in a Window
	Searching and Navigating Program Elements
	Searching for Text
	Looking for Functions and Variables
	Finding the Source Code for Functions
	Finding the Source Code for Files
	Resetting the Stack Frame

	Viewing the Assembler Version of Your Code
	Editing Source Text

	Chapter 7 Stepping through and Executing your Program
	Using Stepping Commands
	Stepping into Function Calls
	Stepping Over Function Calls

	Executing to a Selected Line
	Executing Out of a Function
	Continuing with a Specific Signal
	Killing (Deleting) Programs
	Restarting Programs
	Setting the Program Counter

	Chapter 8 Setting Action Points
	About Action Points
	Print Statements vs. Action Points

	Setting Breakpoints and Barriers
	Setting Source-Level Breakpoints
	Setting Breakpoints at Locations
	Displaying and Controlling Action Points
	Setting Breakpoints on Classes and Functions
	Setting Breakpoints for Multiple Processes
	Setting Breakpoints When Using the fork()/execve() Functions
	Setting Barrier Points

	Defining Eval Points and Conditional Breakpoints
	Setting Eval Points
	Creating Conditional Breakpoint Examples
	Patching Programs
	About Interpreted and Compiled Expressions
	Allocating Patch Space for Compiled Expressions

	Using Watchpoints
	Using Watchpoints on Different Architectures
	Creating Watchpoints
	Watching Memory
	Triggering Watchpoints
	Using Conditional Watchpoints

	Saving Action Points to a File

	Chapter 9 Examining and Editing Data and Program Elements
	Changing How Data is Displayed
	Displaying STL Variables
	Changing Size and Precision

	Displaying Variables
	Displaying Program Variables
	Seeing Value Changes
	Displaying Variables in the Current Block
	Viewing Variables in Different Scopes as Program Executes
	Freezing Variable Window Data
	Locking the Address
	Browsing for Variables
	Displaying Local Variables and Registers
	Dereferencing Variables Automatically
	Examining Memory
	Displaying Areas of Memory
	Displaying Machine Instructions
	Rebinding the Variable Window
	Closing Variable Windows

	Diving in Variable Windows
	Displaying an Array of Structure’s Elements
	Changing What the Variable Window Displays

	Viewing a List of Variables
	Entering Variables and Expressions
	Seeing Variable Value Changes in the Expression List Window
	Entering Expressions into the Expression Column
	Using the Expression List with Multi-process/Multi-threaded Programs
	Reevaluating, Reopening, Rebinding, and Restarting
	Seeing More Information
	Sorting, Reordering, and Editing

	Changing the Values of Variables
	Changing a Variable’s Data Type
	Displaying C and C++ Data Types
	Viewing Pointers to Arrays
	Viewing Arrays
	Viewing typedef Types
	Viewing Structures
	Viewing Unions
	Casting Using the Built-In Types
	Type-Casting Examples

	Changing the Address of Variables
	Displaying C++ Types
	Viewing Classes

	C++View
	Displaying Fortran Types
	Displaying Fortran Common Blocks
	Displaying Fortran Module Data
	Debugging Fortran 90 Modules
	Viewing Fortran 90 User-Defined Types
	Viewing Fortran 90 Deferred Shape Array Types
	Viewing Fortran 90 Pointer Types
	Displaying Fortran Parameters

	Displaying Thread Objects
	Scoping and Symbol Names
	Qualifying Symbol Names


	Chapter 10 Examining Arrays
	Examining and Analyzing Arrays
	Displaying Array Slices
	Array Slices and Array Sections
	Viewing Array Data
	Filtering Array Data Overview
	Sorting Array Data
	Obtaining Array Statistics

	Displaying a Variable in all Processes or Threads
	Diving on a “Show Across” Pointer
	Editing a “Show Across” Variable

	Visualizing Array Data
	Visualizing a “Show Across” Variable Window


	Chapter 11 Visualizing Programs and Data
	Displaying Call Trees and Call Graphs
	Parallel Backtrace View
	Array Visualizer
	Command Summary
	How the Visualizer Works
	Viewing Data Types in the Visualizer
	Visualizing Data Manually
	Using the Visualizer
	Using the Graph Window
	Using the Surface Window
	Visualizing Data Programmatically
	Launching the Visualizer from the Command Line
	Configuring TotalView to Launch the Visualizer
	Adapting a Third Party Visualizer


	Chapter 12 Evaluating Expressions
	Why is There an Expression System?
	Calling Functions: Problems and Issues
	Expressions in Eval Points and the Evaluate Window
	Using C++

	Using Programming Language Elements
	Using C and C++
	Using Fortran

	Using the Evaluate Window
	Writing Assembler Code

	Using Built-in Variables and Statements
	Using TotalView Variables
	Using Built-In Statements

	Expression Evaluation with ReplayEngine

	Chapter 13 About Groups, Processes, and Threads
	A Couple of Processes
	Threads
	Complicated Programming Models
	Types of Threads
	Organizing Chaos
	How TotalView Creates Groups
	Simplifying What You’re Debugging

	Chapter 14 Manipulating Processes and Threads
	Viewing Process and Thread States
	Seeing Attached Process States
	Seeing Unattached Process States

	Using the Toolbar to Select a Target
	Stopping Processes and Threads
	Using the Processes/Ranks and Threads Tabs
	The Processes Tab
	The Threads Tab

	Updating Process Information
	Holding and Releasing Processes and Threads
	Using Barrier Points
	Barrier Point Illustration

	Examining Groups
	Placing Processes in Groups
	Starting Processes and Threads
	Creating a Process Without Starting It
	Creating a Process by Single-Stepping
	Stepping and Setting Breakpoints

	Chapter 15 Debugging Strategies for Parallel Applications
	General Parallel Debugging Tips
	Breakpoints, Stepping, and Program Execution
	Viewing Processes, Threads, and Variables
	Restarting from within TotalView
	Attaching to Processes Tips

	MPI Debugging Tips and Tools
	MPI Display Tools
	MPICH Debugging Tips

	IBM PE Debugging Tips


	PART III Using the CLI
	Chapter 16 Using the Command Line Interface (CLI)
	About the Tcl and the CLI
	About The CLI and TotalView
	Using the CLI Interface

	Starting the CLI
	Startup Example
	Starting Your Program

	About CLI Output
	‘more’ Processing

	Using Command Arguments
	Using Namespaces
	About the CLI Prompt
	Using Built-in and Group Aliases
	How Parallelism Affects Behavior
	Types of IDs

	Controlling Program Execution
	Advancing Program Execution
	Using Action Points


	Chapter 17 Seeing the CLI at Work
	Setting the CLI EXECUTABLE_PATH Variable
	Initializing an Array Slice
	Printing an Array Slice
	Writing an Array Variable to a File
	Automatically Setting Breakpoints


	PART IV Advanced Tools and Customization
	Chapter 18 Setting Up Remote Debugging Sessions
	About Remote Debugging
	Platform Issues when Remote Debugging

	Automatically Launching a Process on a Remote Server
	Troubleshooting Server Autolaunch
	Changing the Remote Shell Command
	Changing Arguments
	Autolaunching Sequence

	Starting the TotalView Server Manually
	TotalView Server Launch Options and Commands
	Server Launch Options
	Customizing Server Launch Commands

	Debugging Over a Serial Line
	Starting the TotalView Debugger Server


	Chapter 19 Setting Up MPI Debugging Sessions
	Debugging MPI Programs
	Starting MPI Programs
	Starting MPI Programs Using File > Debug New Parallel Program

	MPICH Applications
	Starting TotalView on an MPICH Job
	Attaching to an MPICH Job
	Using MPICH P4 procgroup Files

	MPICH2 Applications
	Downloading and Configuring MPICH2
	Starting TotalView Debugging on an MPICH2 Hydra Job
	Starting TotalView Debugging on an MPICH2 MPD Job

	Cray MPI Applications
	IBM MPI Parallel Environment (PE) Applications
	Preparing to Debug a PE Application
	Starting TotalView on a PE Program
	Setting Breakpoints
	Starting Parallel Tasks
	Attaching to a PE Job

	IBM Blue Gene Applications
	Open MPI Applications
	QSW RMS Applications
	Starting TotalView on an RMS Job
	Attaching to an RMS Job

	SGI MPI Applications
	Starting TotalView on an SGI MPI Job
	Attaching to an SGI MPI Job
	Using ReplayEngine with SGI MPI

	Sun MPI Applications
	Attaching to a Sun MPI Job

	Starting MPI Issues
	Using ReplayEngine with Infiniband MPIs

	Chapter 20 Setting Up Parallel Debugging Sessions
	Debugging OpenMP Applications
	Debugging OpenMP Programs
	Viewing OpenMP Private and Shared Variables
	Viewing OpenMP THREADPRIVATE Common Blocks
	Viewing the OpenMP Stack Parent Token Line

	Using SLURM
	Debugging Cray XT Applications
	Cray XT Catamount
	Cray Linux Environment (CLE)

	Debugging Global Arrays Applications
	Debugging Shared Memory (SHMEM) Code
	Debugging UPC Programs
	Invoking TotalView
	Viewing Shared Objects
	Displaying Pointer to Shared Variables

	Debugging CoArray Fortran (CAF) Programs
	Invoking TotalView
	Viewing CAF Programs
	Using CLI with CAF


	Chapter 21 Group, Process, and Thread Control
	Defining the GOI, POI, and TOI
	Recap on Setting a Breakpoint
	Stepping (Part I)
	Understanding Group Widths
	Understanding Process Width
	Understanding Thread Width
	Using Run To and duntil Commands

	Setting Process and Thread Focus
	Understanding Process/Thread Sets
	Specifying Arenas
	Specifying Processes and Threads
	Specifier Examples

	Setting Group Focus
	Specifying Groups in P/T Sets
	About Arena Specifier Combinations
	‘All’ Does Not Always Mean ‘All’
	Setting Groups
	Using the g Specifier: An Extended Example
	Merging Focuses
	Naming Incomplete Arenas
	Naming Lists with Inconsistent Widths

	Stepping (Part II): Examples
	Using P/T Set Operators
	Creating Custom Groups

	Chapter 22 Scalability in HPC Computing Environments
	Overview
	Configuring TotalView for Scalability
	Process Window’s Process Tab

	dlopen Options
	dlopen Event Filtering
	Handling dlopen Events in Parallel

	MRNet
	Using MRNet with TotalView


	Chapter 23 Checkpointing
	Chapter 24 Fine-Tuning Shared Library Use
	Preloading Shared Libraries
	Controlling Which Symbols TotalView Reads
	Specifying Which Libraries are Read
	Reading Excluded Information



	PART V Using the CUDA Debugger
	Chapter 25 About the TotalView CUDA Debugger
	TotalView CUDA Debugging Model
	Installing the CUDA SDK Tool Chain
	Backward Compatibility with CUDA Device Drivers
	Directive-Based Accelerator Programming Languages

	Chapter 26 CUDA Debugging Tutorial
	Compiling for Debugging
	Compiling for Fermi
	Compiling for Fermi and Tesla
	Compiling for Kepler

	Starting a TotalView CUDA Session
	Loading the CUDA Kernel
	Controlling Execution
	Running to a Breakpoint in the GPU code
	Single-Stepping GPU Code
	Halting a Running Application

	Displaying CUDA Program Elements
	GPU Assembler Display
	GPU Variable and Data Display
	CUDA Built-In Runtime Variables
	Type Casting
	PTX Registers

	Enabling CUDA MemoryChecker Feature
	GPU Core Dump Support
	GPU Error Reporting
	Displaying Device Information

	Chapter 27 CUDA Problems and Limitations
	Hangs or Initialization Failures
	CUDA and ReplayEngine

	Chapter 28 Sample CUDA Program

	PART VI Appendices
	Appendix A Glossary
	Appendix B Licenses
	3rd-Party Licenses
	CUDA License Information

	Appendix C Resources
	TotalView Family Differences
	TotalView Documentation
	Conventions
	Contacting Us


	Index

