
IBM LoadLeveler
Version 5 Release 1

Using and Administering

SC23-6792-04

���

IBM LoadLeveler
Version 5 Release 1

Using and Administering

SC23-6792-04

���

Note
Before using this information and the product it supports, read the information in “Notices” on page 423.

This edition applies to version 5, release 1, modification 0 of IBM LoadLeveler (product numbers 5725-G01,
5641-LL1, 5641-LL3, 5765-L50, and 5765-LLP) and to all subsequent releases and modifications until otherwise
indicated in new editions.

This edition replaces SC23-6792-03.

© Copyright 1986, 1987, 1988, 1989, 1990, 1991 by the Condor Design Team.

© Copyright IBM Corporation 1986, 2012.
US Government Users Restricted Rights – Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

Figures vii

Tables ix

About this information xi
Who should use this information xi
Conventions and terminology used in this
information xi
Prerequisite and related information xii
How to send your comments xiii

Summary of changes xv

Part 1. Overview of LoadLeveler
concepts and operation 1

Chapter 1. What is LoadLeveler? 3
LoadLeveler basics 4
LoadLeveler: A network job management and
scheduling system 4

Job definition 5
Machine definition 5

How LoadLeveler schedules jobs 7
How LoadLeveler daemons process jobs 8

The master daemon 9
The Schedd daemon 10
The startd daemon 12
The region manager daemon 14
The resource manager daemon 15
The kbdd daemon 15
The negotiator daemon 15

The LoadLeveler job cycle 16
LoadLeveler job states 19

Consumable resources 22
Consumable resources and Workload Manager 23

Overview of reservations 24
Fair share scheduling overview 27

Chapter 2. Getting a quick start using
the default configuration 29
What you need to know before you begin 29
Using the default configuration files 29
LoadLeveler for Linux quick start 30

Quick installation 30
Quick configuration 31
Quick verification 31

Post-installation considerations 32
Starting LoadLeveler 32
Directory considerations 33

Chapter 3. What operating systems are
supported by LoadLeveler?. 35

LoadLeveler for AIX and LoadLeveler for Linux
compatibility 35

Restrictions for LoadLeveler for Linux 36
Features not supported in LoadLeveler for Linux 36
Restrictions for LoadLeveler for AIX and
LoadLeveler for Linux mixed clusters 36

Part 2. Configuring and managing
the LoadLeveler environment . . . 37

Chapter 4. Configuring the LoadLeveler
environment 39
The master configuration file 40

Setting the LoadLeveler user 40
Setting the configuration source 41
Overriding the shared memory key 41

File-based configuration 42
Database configuration option 43

Understanding remotely configured nodes . . . 43
Using the configuration editor 44
Modifying configuration data 45

Defining LoadLeveler administrators 45
Defining a LoadLeveler cluster 45
Defining LoadLeveler machine characteristics . . 59
Defining security mechanisms 60
Defining usage policies for consumable resources 65
Gathering job accounting data 65
Managing job status through control expressions 72
Tracking job processes 73
Querying multiple LoadLeveler clusters 74
Handling switch-table errors. 75
Providing additional job-processing controls
through installation exits 75

Chapter 5. Defining LoadLeveler
resources to administer 89
Defining machines 89

Planning considerations for defining machines . 90
Machine_group stanza format and keyword
summary 90
Machine substanza format and keyword
summary 91
Machine stanza format and keyword summary 91
Default values for machine_group and machine
stanzas 92
Examples of machine_group and machine stanzas 92

Dynamic adapter discovery 93
LoadLeveler adapter and node status monitoring. . 94
Defining classes 94

Using limit keywords 94
Allowing users to use a class 97
Class stanza format and keyword summary . . 97
Examples: Class stanzas 98

Defining user substanzas in class stanzas 99

© Copyright IBM Corp. 1986, 2012 iii

Examples: Substanzas 99
Defining users 102

User stanza format and keyword summary . . 102
Examples: User stanzas 102

Defining groups 103
Group stanza format and keyword summary 104
Examples: Group stanzas 104

Defining clusters 104
Cluster stanza format and keyword summary 104
Examples: Cluster stanzas 105

Defining regions 106
Region stanza format and keyword summary 106
Examples: Region stanzas 106

Chapter 6. Performing additional
administrator tasks 109
Setting up the environment for parallel jobs . . . 110

Scheduling considerations for parallel jobs. . . 110
Steps for reducing job launch overhead for
parallel jobs 111
Steps for allowing users to submit interactive
POE jobs 112
Setting up a class for parallel jobs 112
Striping when some networks fail 113
Setting up a parallel master node 113

Using the BACKFILL scheduler 114
Tips for using the BACKFILL scheduler . . . 116
Example: BACKFILL scheduling 117

Data staging 117
Configuring LoadLeveler to support data
staging 118

Using an external scheduler 119
Replacing the default LoadLeveler scheduling
algorithm with an external scheduler 120
Customizing the configuration file to define an
external scheduler 121
Example: Retrieving specific information . . . 122

Example: Changing scheduler types 122
Preempting and resuming jobs 122

Overview of preemption 123
Planning to preempt jobs 124
Steps for configuring a scheduler to preempt
jobs 126

Configuring LoadLeveler to support reservations 127
Steps for configuring reservations in a
LoadLeveler cluster 128

Steps for integrating LoadLeveler with the
Workload Manager 133
LoadLeveler support for checkpointing jobs . . . 135

Checkpoint keyword summary 136
Planning considerations for checkpointing jobs 136
Additional planning considerations for
checkpointing MetaCluster HPC jobs on AIX . . 138
Checkpoint and restart limitations 138

Submitting a MetaCluster HPC checkpoint job to
LoadLeveler 138

job_1.cmd - A checkpointable job command file 138
Using the llckpt command to checkpoint a job
step 139
Restarting a job step from a checkpoint. . . . 140
Making periodic checkpoints 142

Using the ckpt_dir and ckpt_subdir keywords 143
Removing old checkpoint files. 144
Using the ckpt_execute_dir keyword 144
Initiating a checkpoint using the ll_ckpt() API 146

LoadLeveler scheduling affinity support 147
Configuring LoadLeveler to use scheduling
affinity 148

LoadLeveler multicluster support. 149
Configuring a LoadLeveler multicluster . . . 150

LoadLeveler Blue Gene support 153
Configuring LoadLeveler Blue Gene support 155
Blue Gene reservation support. 157
Blue Gene fair share scheduling support . . . 157
Blue Gene heterogeneous memory support . . 157
Blue Gene preemption support 157

Using fair share scheduling. 158
Fair share scheduling keywords 158
Reconfiguring fair share scheduling keywords 161
Example: three groups share a LoadLeveler
cluster 161
Example: two thousand students share a
LoadLeveler cluster 162
Querying information about fair share
scheduling 163
Resetting fair share scheduling 163
Saving historic data 163
Restoring saved historic data 164

Procedure for recovering a job spool. 164
Configuring and using island scheduling 165
Energy aware job support 166
S3 state support 166

Part 3. Submitting and managing
LoadLeveler jobs 169

Chapter 7. Building and submitting
jobs 171
Building a job command file 171

Using multiple steps in a job command file . . 172
Examples: Job command files 173

Editing job command files 176
Defining resources for a job step 177
Submitting jobs requesting data staging 177
Working with coscheduled job steps 178

Submitting coscheduled job steps. 178
Determining priority for coscheduled job steps 178
Supporting preemption of coscheduled job steps 179
Coscheduled job steps and commands and APIs 179
Termination of coscheduled steps. 179

Using bulk data transfer. 180
Preparing a job for checkpoint/restart 180
Preparing a job for preemption 183
Submitting a job command file 183

Job state monitoring 184
Submitting a job using a submit-only machine 184

Working with parallel jobs 184
Step for controlling whether LoadLeveler copies
environment variables to all executing nodes . . 185

iv LoadLeveler: Using and Administering

Ensuring that parallel jobs in a cluster run on
the correct levels of PE and LoadLeveler
software 185
Task-assignment considerations 186
Submitting jobs that use striping 188
Running interactive POE jobs 193
Debugging interfaces between POE and
LoadLeveler 194
Running MPICH2 194
Running Open MPI 195
Running Intel MPI jobs 196
Running embarassingly parallel jobs. 196
Examples: Building parallel job command files 197
Obtaining status of parallel jobs 201
Obtaining allocated host names 201

Building and submitting MPICH2 and serial
interactive jobs 202
Working with reservations 203

Types of reservations 203
Understanding the flexible job step 203
Understanding the reservation life cycle . . . 205
Creating new reservations 207
Submitting jobs to run under a reservation . . 210
Removing bound jobs from the reservation . . 212
Querying existing reservations 213
Modifying existing reservations 213
Canceling existing reservations 215
Reservations with floating resources 215

Submitting jobs requesting scheduling affinity . . 217
Submitting and monitoring jobs in a LoadLeveler
multicluster 218

Steps for submitting jobs in a LoadLeveler
multicluster environment 219

Working with energy aware jobs 220
Submitting and monitoring Blue Gene jobs . . . 221

Chapter 8. Managing submitted jobs 223
Querying the status of a job 223
Working with machines 223
Displaying currently available resources 224
Setting and changing the priority of a job 224

Example: How does a job's priority affect
dispatching order?. 225

Placing and releasing a hold on a job 225
Canceling a job 226
Checkpointing a job 226

Chapter 9. Example: Using commands
to build, submit, and manage jobs . . 227

Part 4. LoadLeveler interfaces
reference 229

Chapter 10. Configuration keyword
reference 231
Configuration keyword syntax 231

Numerical and alphabetical constants 232
Mathematical operators 232

64-bit support for configuration file keywords
and expressions 232

Configuration keyword descriptions 233
User-defined keywords 284
LoadLeveler variables 286

Variables to use for setting dates 291
Variables to use for setting times 291

Chapter 11. Administration keyword
reference 293
Administration file structure and syntax 293

Stanza characteristics 295
Syntax for limit keywords 295
64-bit support for administration file keywords 297

Administration keyword descriptions 298

Chapter 12. Job command file
reference 333
Job command file syntax 333

Serial job command file 333
Parallel job command file 334
Syntax for limit keywords 334
64-bit support for job command file keywords 334

Job command file keyword descriptions 335
Job command file variables 383
Run-time environment variables 384
Job command file examples 386

Part 5. Appendixes 389

Appendix A. Troubleshooting
LoadLeveler 391
Frequently asked questions 391

Why won't LoadLeveler start? 392
Why won't my job run? 392
Why won't my parallel job run? 395
Why won't my checkpointed job restart? . . . 396
Why won't my submit-only job run? 397
Why does a job stay in the Pending (or Starting)
state? 397
What happens to running jobs when a machine
goes down? 397
Why does llstatus indicate that a machine is
down when llq indicates a job is running on the
machine? 398
Why won't my job run on a cluster with both
AIX and Linux machines? 399
Why won't my jobs run that were directed to an
idle pool? 399
What happens if the central manager isn't
operating? 399
How do I recover resources allocated by a
Schedd machine? 401
Why can't I find a core file on Linux? 401
Why am I seeing inconsistencies in my llfs
output? 402
Why don't I see my job when I issue the llq
command? 402

Contents v

What happens if errors are found in my
configuration or administration file? 402
Why is my flexible reservation not activated? 403
Why was my energy aware job rejected? . . . 403
Other questions 403

Troubleshooting in a multicluster environment . . 405
How do I determine if I am in a multicluster
environment? 405
How do I determine how my multicluster
environment is defined and what are the
inbound and outbound hosts defined for each
cluster? 405
Why is my multicluster environment not
enabled? 406
How do I find log messages from my
multicluster-defined installation exits? 406
Why won't my remote job be submitted or
moved? 407
Why did the CLUSTER_REMOTE_JOB_FILTER
not update the job with all of the statements I
defined? 408
How do I find my remote job? 408
Why won't my remote job run? 408
Why does llq -X all show no jobs running when
there are jobs running? 409
Troubleshooting adapter availability 409

Troubleshooting in a Blue Gene environment . . . 409
Why do all of my Blue Gene jobs fail even
though llstatus shows that Blue Gene is present? 409
Why does llstatus show that Blue Gene is
absent? 409

Why did my Blue Gene job fail when the job
was submitted to a remote cluster? 410
Why does llmkres or llchres return "Insufficient
resources to meet the request" for a Blue Gene
reservation when resources appear to be
available?. 410

Helpful hints 411
Scaling considerations 411
Hints for running jobs 412
Hints for using machines 414
History files and Schedd 415

Getting help from IBM 416

Appendix B. LoadLeveler port usage 417

Accessibility features for LoadLeveler 421
Accessibility features 421
Keyboard navigation 421
IBM and accessibility 421

Notices 423
Trademarks 425

Glossary 427

Index 431

vi LoadLeveler: Using and Administering

Figures

1. Example of a LoadLeveler cluster 3
2. LoadLeveler job steps 5
3. Multiple roles of machines 7
4. High-level job flow 16
5. Job is submitted to LoadLeveler. 17
6. LoadLeveler authorizes the job 17
7. LoadLeveler prepares to run the job 18
8. LoadLeveler starts the job 18
9. LoadLeveler completes the job 19

10. How control expressions affect jobs 73
11. Multicluster Example 105
12. Job command file with multiple steps 172

13. Job command file with multiple steps and
one executable 173

14. Job command file with varying input
statements 173

15. Using LoadLeveler variables in a job
command file 175

16. Job command file used as the executable 176
17. Striping over multiple networks 190
18. Striping over a single network 192
19. When the primary central manager is

unavailable 400
20. Multiple central managers 400

© Copyright IBM Corp. 1986, 2012 vii

viii LoadLeveler: Using and Administering

Tables

1. Conventions xii
2. Major topics in LoadLeveler: Using and

Administering 1
3. Topics in the LoadLeveler overview 3
4. LoadLeveler daemons 8
5. startd determines whether its own state

permits a new job to run 13
6. Job state descriptions and abbreviations 20
7. Roadmap of tasks for LoadLeveler

administrators 39
8. Roadmap of administrator tasks related to

using or modifying the LoadLeveler
configuration 39

9. Roadmap for defining LoadLeveler cluster
characteristics 46

10. Default locations for all of the files and
directories 50

11. Log control statements 52
12. Roadmap of configuration tasks for securing

LoadLeveler operations 61
13. Roadmap of tasks for gathering job accounting

data 66
14. Collecting account data - modifying

configuration keywords 71
15. Roadmap of administrator tasks accomplished

through installation exits 75
16. Roadmap of tasks for modifying the

LoadLeveler administration file 89
17. Types of limit keywords 95
18. Enforcing job step limits 96
19. Setting limits 96
20. Roadmap of additional administrator tasks 109
21. Roadmap of BACKFILL scheduler tasks 115
22. Roadmap of tasks for using an external

scheduler 120
23. Effect of LoadLeveler keywords under an

external scheduler 120
24. Roadmap of tasks for using preemption 123
25. Preemption methods for which LoadLeveler

automatically resumes preempted jobs . . . 125
26. Preemption methods for which administrator

or user intervention is required 126
27. Roadmap of reservation tasks for

administrators 128
28. Roadmap of tasks for checkpointing jobs 135
29. Deciding where to define the directory for

staging executables 137
30. Multicluster support subtasks and associated

instructions 150

31. Multicluster support related topics 150
32. Subtasks for configuring a LoadLeveler

multicluster 150
33. Blue Gene subtasks and associated

instructions 155
34. Blue Gene related topics and associated

information 155
35. Blue Gene configuring subtasks and

associated instructions 155
36. Learning about building and submitting jobs 171
37. Roadmap of user tasks for building and

submitting jobs 171
38. Standard files for the five job steps 174
39. Checkpoint configurations 181
40. Valid combinations of task assignment

keywords are listed in each column 186
41. node and total_tasks 186
42. Blocking 187
43. Unlimited blocking 188
44. Roadmap of tasks for reservation owners and

users 203
45. Reservation states, abbreviations, and usage

notes 205
46. Instructions for submitting a job to run under

a reservation 211
47. Submitting and monitoring jobs in a

LoadLeveler multicluster. 218
48. Roadmap of user tasks for managing

submitted jobs 223
49. How LoadLeveler handles job priorities 225
50. Configuration subtasks 231
51. Administration file subtasks 293
52. Notes on 64-bit support for administration

file keywords 297
53. Summary of possible values set for the

env_copy keyword in the administration file . 308
54. Sample user and group settings for the

max_reservations keyword 319
55. Job command file subtasks 333
56. Notes on 64-bit support for job command file

keywords 334
57. mcm_affinity_options default values 362
58. Why your job might not be running 392
59. Why your job might not be running 395
60. Troubleshooting running jobs when a

machine goes down 397
61. LoadLeveler default port usage 418

© Copyright IBM Corp. 1986, 2012 ix

x LoadLeveler: Using and Administering

About this information
Attention:

For LoadLeveler® Version 5 Release 1, changes apply to Linux.

Disclaimer:

The functions or features found herein may not be available on all operating systems or
platforms and do not indicate the availability of these functions or features within the
IBM® product or future versions of the IBM product. The development, release, and timing
of any future features or functionality is at IBM's sole discretion. IBM's plans, directions,
and intent are subject to change or withdrawal without notice at IBM's sole discretion. The
information mentioned is not a commitment, promise, or legal obligation to deliver any
material, code or functionality. The information may not be incorporated into any contract
and it should not be relied on in making a purchasing decision.

Release notes:

For the latest release notes, go to the Fix Central website (http://www-933.ibm.com/
support/fixcentral/?productGroup0=ibm/fcpower&productGroup1=ibm/ClusterSoftware
&productGroup2=ibm/power/IBM). For more information about Fix Central, see “Locating
LoadLeveler software fixes and updates in Fix Central” on page xiii.

IBM LoadLeveler provides various ways of scheduling and managing applications
for best performance and most efficient use of resources. LoadLeveler manages
both serial and parallel jobs over a cluster of machines or servers, which may be
desktop workstations, dedicated servers, or parallel machines. This information
describes how to configure and administer this cluster environment, and to submit
and manage jobs that run on machines in the cluster.

Who should use this information
This book is intended for two separate audiences:
v Personnel who are responsible for installing, configuring and managing the

LoadLeveler cluster environment. These people are called LoadLeveler
administrators. LoadLeveler administrative tasks include:
– Setting up configuration and administration files
– Maintaining the LoadLeveler product
– Setting up the distributed environment for allocating batch jobs

v Users who submit and manage serial and parallel jobs to run in the LoadLeveler
cluster.

Both LoadLeveler administrators and general users should be experienced with the
UNIX commands. Administrators also should be familiar with:
v Cluster system management techniques such as SMIT, as it is used in the AIX®

environment
v Networking and NFS or AFS® protocols

Conventions and terminology used in this information
Throughout the IBM LoadLeveler product information:
v LoadLeveler for Linux on x86 Architecture includes:

– IBM System x® Intelligent Cluster™

© Copyright IBM Corp. 1986, 2012 xi

http://www-933.ibm.com/support/fixcentral/?productGroup0=ibm/fcpower&productGroup1=ibm/ClusterSoftware&productGroup2=ibm/power/IBM
http://www-933.ibm.com/support/fixcentral/?productGroup0=ibm/fcpower&productGroup1=ibm/ClusterSoftware&productGroup2=ibm/power/IBM

– IBM System servers with Advanced Micro Devices (AMD) Opteron or Intel®

Extended Memory 64 Technology (EM64T) processors
v References to Schedd are also referred to as job manager.

Table 1. Conventions

Convention Usage

bold Bold words or characters represent system elements that you must
use literally, such as commands, flags, path names, directories, file
names, values, and selected menu options.

bold underlined Bold underlined keywords are defaults. These take effect if you do
not specify a different keyword.

constant width Examples and information that the system displays appear in
constant-width typeface.

italic Italic words or characters represent variable values that you must
supply.

Italics are also used for information unit titles, for the first use of a
glossary term, and for general emphasis in text.

<key> Angle brackets (less-than and greater-than) enclose the name of a
key on the keyboard. For example, <Enter> refers to the key on
your terminal or workstation that is labeled with the word Enter.

\ In command examples, a backslash indicates that the command or
coding example continues on the next line. For example:

mkcondition -r IBM.FileSystem -e "PercentTotUsed > 90" \
-E "PercentTotUsed < 85" -m d "FileSystem space used"

{item} Braces enclose a list from which you must choose an item in format
and syntax descriptions.

[item] Brackets enclose optional items in format and syntax descriptions.

<Ctrl-x> The notation <Ctrl-x> indicates a control character sequence. For
example, <Ctrl-c> means that you hold down the control key while
pressing <c>.

item... Ellipses indicate that you can repeat the preceding item one or more
times.

| v In syntax statements, vertical lines separate a list of choices. In
other words, a vertical line means Or.

v In the left margin of the document, vertical lines indicate
technical changes to the information.

Prerequisite and related information
The LoadLeveler publications are:
v AIX Installation Guide, SC23-6791
v Linux Installation Guide, SC23-6789
v Using and Administering, SC23-6792
v Diagnosis and Messages Guide, SC23-6793
v Command and API Reference, SC23-6794
v Resource Manager, SC23-6790

To access all LoadLeveler documentation, refer to the IBM Cluster Information
Center (http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp), which
contains the most recent LoadLeveler documentation in PDF and HTML formats.

xii LoadLeveler: Using and Administering

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp

A LoadLeveler Documentation Updates file also is maintained on this Web site.
The LoadLeveler Documentation Updates file contains updates to the LoadLeveler
documentation. These updates include documentation corrections and clarifications
that were discovered after the LoadLeveler information units were published.

Both the current LoadLeveler books and earlier versions of the library are also
available in PDF format from the IBM Publications Center (http://www.ibm.com/
e-business/linkweb/publications/servlet/pbi.wss).

To easily locate a book in the IBM Publications Center, supply the book's
publication number. The publication number for each of the LoadLeveler books is
listed after the book title in the preceding list.

Locating LoadLeveler software fixes and updates in Fix Central

To locate LoadLeveler software fixes and updates, do the following:
1. Go to the Fix Central website (http://www-933.ibm.com/support/fixcentral/

?productGroup0=ibm/fcpower&productGroup1=ibm/ClusterSoftware
&productGroup2=ibm/power/IBM).

2. In the Product Group pull-down menu, under Software, select Cluster
software.

3. In the Select from Cluster software pull-down menu, choose LoadLeveler.
4. In the Installed Version pull-down menu, select the version you have installed,

for example, 5.1.0.
5. In the Platform pull-down menu, select the platform, for example, All.
6. Click Continue and select an option on the Identify fixes panel. For example,

select Browse for fixes and click Continue again.
7. On the Select fixes panel, select fixes to download or, to view the Restrictions

list, click on Readme, next to the appropriate fix and open the Known
Limitations section.

How to send your comments
Your feedback is important in helping us to produce accurate, high-quality
information. If you have any comments about this book or any other LoadLeveler
documentation, send your comments by e-mail to:

mhvrcfs@us.ibm.com

Include the book title and order number, and, if applicable, the specific location of
the information you have comments on (for example, a page number or a table
number).

For technical information and to exchange ideas related to high performance
computing, go to:
v HPC Central (http://www.ibm.com/developerworks/wikis/display/

hpccentral/HPC+Central)
v HPC Central Technical Forum (http://www.ibm.com/developerworks/forums/

forum.jspa?forumID=1056)

About this information xiii

http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss
http://www-933.ibm.com/support/fixcentral/?productGroup0=ibm/fcpower&productGroup1=ibm/ClusterSoftware&productGroup2=ibm/power/IBM
http://www.ibm.com/developerworks/wikis/display/hpccentral/HPC+Central
http://www.ibm.com/developerworks/forums/forum.jspa?forumID=1056

xiv LoadLeveler: Using and Administering

Summary of changes

Version 5 Release 1

The following sections summarize changes to the IBM LoadLeveler product and
library.

Within each information unit in the library, a vertical line to the left of text and
illustrations indicates technical changes or additions made to the previous edition
of the information.

Attention:

For LoadLeveler Version 5 Release 1, changes apply to Linux.

Disclaimer:

The functions or features found herein may not be available on all operating systems or
platforms and do not indicate the availability of these functions or features within the IBM
product or future versions of the IBM product. The development, release, and timing of
any future features or functionality is at IBM's sole discretion. IBM's plans, directions, and
intent are subject to change or withdrawal without notice at IBM's sole discretion. The
information mentioned is not a commitment, promise, or legal obligation to deliver any
material, code or functionality. The information may not be incorporated into any contract
and it should not be relied on in making a purchasing decision.

Release notes:

For the latest release notes, go to the Fix Central website (http://www-933.ibm.com/
support/fixcentral/?productGroup0=ibm/fcpower&productGroup1=ibm/ClusterSoftware
&productGroup2=ibm/power/IBM). For more information about Fix Central, see “Locating
LoadLeveler software fixes and updates in Fix Central” on page xiii.

Changes to LoadLeveler for Linux Version 5 Release 1 product and library include:
v New information:

– A new job command file keyword, first_node_tasks, has been added to allow
users to request a different task count for the first node. The value specified
for tasks_per_node would apply to all nodes except the first node.

– Support for LoadLeveler as the scheduler for Blue Gene®/Q has been added.
- A new Blue Gene® command called llbgctl has been added. You can use

the llbgctl command to control Blue Gene system resources.
- A new command called llbgstatus has been added that returns Blue Gene

system status information.
For more information, see LoadLeveler: Command and API Reference.

– LoadLeveler now permits its execute directory to be located in volatile
storage, such as RAM disk, where the contents may not exist following the
reboot of an execute node. To avoid the potential performance impact of
using a shared file system, configure the execute directory in either local disk,
or in RAM disk.

– Support for Workload Manager (WLM) on LoadLeveler for Linux on
POWER® (RHEL 6.2) and on x86_64 (SLES 11) has been added.

– A new affinity interface is introduced into LoadLeveler. The new interface is
used by IBM Parallel Environment (PE) Runtime Edition on the x86 platform.

© Copyright IBM Corp. 1986, 2012 xv

http://www-933.ibm.com/support/fixcentral/?productGroup0=ibm/fcpower&productGroup1=ibm/ClusterSoftware&productGroup2=ibm/power/IBM
http://www-933.ibm.com/support/fixcentral/?productGroup0=ibm/fcpower&productGroup1=ibm/ClusterSoftware&productGroup2=ibm/power/IBM

– Island scheduling is introduced in LoadLeveler. New configuration
parameters permit administrators to define islands within a LoadLeveler
cluster. You can now request that your jobs run within one island or across
multiple islands.

– Support for running Intel Message Passing Interface (MPI) and Open MPI
jobs as batch LoadLeveler jobs has been added.

– The llrun command has been added to allow you to run an interactive
command that uses resources allocated by LoadLeveler.

– LoadLeveler provides support for running embarrassingly parallel jobs
without using an MPI runtime process manager. For more information, see
the following:
- LoadLeveler: Command and API Reference

- LoadLeveler: Using and Administering

– Support for the energy function on the x86_64 iDataPlex® Sandy Bridge
processor for SUSE Linux Enterprise Server (SLES) 11 includes the following:
- The ability to run jobs in a lower CPU frequency. To minimize energy

consumption with minimal performance degradation, LoadLeveler provides
the job energy policy tag to allow you to set the acceptable performance
degradation for the job.

- Job energy reports can be generated from the accounting data by using the
llsummary command. The job energy consumption is calculated after the
job finishes.

- An administrator can switch idle nodes to standby state to save energy.
This can be done either manually or LoadLeveler can do it automatically.
You can wake up the idle nodes that are in standby mode to run the
workload as needed.

To support the energy function, the following have been added:
- Four new commands: llrchgmstat, llreinit, llrqetag, llrrmetag. See

LoadLeveler: Resource Manager for more information about these commands.
- Two new subroutines: llr_change_node_powerstate and

llr_remove_energy_tags. See LoadLeveler: Resource Manager for more
information about these subroutines.

For additional information, see the following:
- LoadLeveler: Command and API Reference

- LoadLeveler: Using and Administering

- LoadLeveler for Linux: Installation Guide

– Support for checkpoint/restart on Red Hat Enterprise Linux (RHEL) 6.2,
which includes the following:
- The system administrator or user can now set the checkpoint interval on a

per job basis.
- Task migration, which provides a method to move portions of a running

parallel job from the current allocated set of nodes to a new set of nodes.
To support task migration, the following have been added:
v The llmigrate command
v The ll_migrate_job_step subroutine

For more information, see the following:
- LoadLeveler: Command and API Reference

- LoadLeveler: Resource Manager

- LoadLeveler: Using and Administering

xvi LoadLeveler: Using and Administering

– Support for multiple endpoints has been added. The new endpoints keyword
is supported on a class basis for all jobs submitted in that class, as well as an
option on the network keyword. For more information, see the following:
- LoadLeveler: Using and Administering

- LoadLeveler: Resource Manager

– Support for running LoadLeveler on Blue Gene/Q has been added on
LoadLeveler for Linux on POWER (RHEL 6.2). For more information, see the
following:
- LoadLeveler: Command and API Reference

- LoadLeveler: Using and Administering

- LoadLeveler: Resource Manager

v Changed information:

– The llrctl command is changed to be consistent with the LoadLeveler
scheduler command, llctl. The same keywords supported in the llctl
command are now supported in the llrctl command. The drain jobmgr and
resume jobmgr keywords are no longer supported in the llrctl command.

– The following table summarizes the Blue Gene/Q terminology changes:

BG/L and BG/P (previous terms) BG/Q terms

Partitions Blocks

Base partitions Midplanes

Wires Cables

Node cards Node boards

mpirun, submit, mpiexec runjob

v Deleted information:

– Support for using virtual IP (VIP) addresses with checkpoint or restart has
been removed, so all references to VIPs or the VIP server have been removed
from LoadLeveler publications.

– The ALLOC_EXCLUSIVE_CPU_PER_JOB configuration file keyword has
been deprecated and has been removed.

– The following Blue Gene job command file keywords have been deprecated
and removed:
- bg_connection (replaced with bg_connectivity)
- bg_partition (replaced with bg_block)

Summary of changes xvii

xviii LoadLeveler: Using and Administering

Part 1. Overview of LoadLeveler concepts and operation

Setting up IBM LoadLeveler involves defining machines, users, jobs, and how they
interact, in such a way that LoadLeveler is able to run jobs quickly and efficiently.

Once you have a basic understanding of the LoadLeveler product and its
interfaces, you can find more details in the topics listed in Table 2.

Table 2. Major topics in LoadLeveler: Using and Administering

To learn about: Read the following:

Performing administrator tasks Part 2, “Configuring and managing the
LoadLeveler environment,” on page 37

Performing general user tasks Part 3, “Submitting and managing LoadLeveler
jobs,” on page 169

Using LoadLeveler interfaces Part 4, “LoadLeveler interfaces reference,” on page
229

© Copyright IBM Corp. 1986, 2012 1

2 LoadLeveler: Using and Administering

Chapter 1. What is LoadLeveler?

LoadLeveler is a job management system that allows users to run more jobs in less
time by matching the jobs' processing needs with the available resources.
LoadLeveler schedules jobs, and provides functions for building, submitting, and
processing jobs quickly and efficiently in a dynamic environment.

Figure 1 shows the different environments to which LoadLeveler can schedule jobs.
Together, these environments comprise the LoadLeveler cluster.

As Figure 1 also illustrates, a LoadLeveler cluster can include submit-only machines,
which allow users to have access to a limited number of LoadLeveler features.

Throughout all the topics, the terms workstation, machine, node, and operating system
instance (OSI) refer to the machines in your cluster. In LoadLeveler, an OSI is
treated as a single instance of an operating system image.

If you are unfamiliar with the LoadLeveler product, consider reading one or more
of the introductory topics listed in Table 3:

Table 3. Topics in the LoadLeveler overview

To learn about: Read the following:

Using the default configuration for
getting a quick start

Chapter 2, “Getting a quick start using the default
configuration,” on page 29

Specific products and features that are
required for or available through the
LoadLeveler environment

Chapter 3, “What operating systems are supported
by LoadLeveler?,” on page 35

IBM x86 Server
running Linux

Submit-only
workstations

LoadLeveler
cluster

IBM Power Systems
running AIX

IBM Intelligent Cluster
running AIX and Linux

Figure 1. Example of a LoadLeveler cluster

© Copyright IBM Corp. 1986, 2012 3

LoadLeveler basics
LoadLeveler has various types of interfaces that enable users to create and submit
jobs and allow system administrators to configure the system and control running
jobs.

These interfaces include:
v Control files that define the elements, characteristics, and policies of LoadLeveler

and the jobs it manages. These files are the configuration file, the administration
file, and job command file. Optionally, a configuration database can replace the
configuration and administration files.

v The command line interface, which gives you access to basic job and
administrative functions.

v An application programming interface (API), which allows application programs
written by users and administrators to interact with the LoadLeveler
environment.

The commands and APIs permit different levels of access to administrators and
users. User access is typically restricted to submitting and managing individual
jobs, while administrative access allows setting up system configurations, job
scheduling, and accounting.

Users create job command files that instruct the system on how to process
information. Each job command file consists of keywords followed by the user
defined association for that keyword. For example, the keyword executable tells
LoadLeveler that you are about to define the name of a program you want to run.
Therefore, executable = longjob tells LoadLeveler to run the program called
longjob.

After creating the job command file, you invoke LoadLeveler commands to
monitor and control the job as it moves through the system. LoadLeveler monitors
each job as it moves through the system using process control daemons. However,
the administrator maintains ultimate control over all LoadLeveler jobs by defining
job classes that control how and when LoadLeveler will run a job.

In addition to setting up job classes, the administrator can also control how jobs
move through the system by specifying the type of scheduler. LoadLeveler has
several different scheduler options that start jobs using specific algorithms to
balance job priority with available machine resources.

When LoadLeveler administrators are configuring clusters and when users are
planning jobs, they need to be aware of the machine resources available in the
cluster. These resources include items like the number of CPUs and the amount of
memory available for each job. Because resource availability will vary over time,
LoadLeveler defines them as consumable resources.

LoadLeveler: A network job management and scheduling system
A network job management and job scheduling system, such as LoadLeveler, is a
software program that schedules and manages jobs that you submit to one or more
machines under its control.

LoadLeveler accepts jobs that users submit and reviews the job requirements.
LoadLeveler then examines the machines under its control to determine which
machines are best suited to run each job.

4 LoadLeveler: Using and Administering

Job definition
LoadLeveler schedules your jobs on one or more machines for processing. The
definition of a job, in this context, is a set of job steps. For each job step, you can
specify a different executable (the executable is the part of the job that gets
processed). You can use LoadLeveler to submit jobs which are made up of one or
more job steps, where each job step depends upon the completion status of a
previous job step. For example, Figure 2 illustrates a stream of job steps:

Each of these job steps is defined in a single job command file. A job command
file specifies the name of the job, as well as the job steps that you want to submit,
and can contain other LoadLeveler statements.

LoadLeveler tries to execute each of your job steps on a machine that has enough
resources to support executing and checkpointing each step. If your job command
file has multiple job steps, the job steps will not necessarily run on the same
machine, unless you explicitly request that they do.

You can submit batch jobs to LoadLeveler for scheduling. Batch jobs run in the
background and generally do not require any input from the user. Batch jobs can
either be serial or parallel. A serial job runs on a single machine. A parallel job is a
program designed to execute as a number of individual, but related, processes on
one or more of your system's nodes. When executed, these related processes can
communicate with each other (through message passing or shared memory) to
exchange data or synchronize their execution.

For parallel jobs, LoadLeveler interacts with Parallel Operating Environment (POE)
to allocate nodes, assign tasks to nodes, and launch tasks.

Machine definition
For LoadLeveler to schedule a job on a machine, the machine must be a valid
member of the LoadLeveler cluster. A cluster is the combination of all of the
different types of machines that use LoadLeveler.

Q

Q

Q

Job
job command file

Job step 1

Job step 2

Job step 3

End program

exit status = y

exit status = x

exit status = y

exit status = x

1. Copy data from tape
2. Check exit status

Format and print results

1. Process data
2. Check exit status

Figure 2. LoadLeveler job steps

Chapter 1. What is LoadLeveler? 5

To make a machine a member of the LoadLeveler cluster, the administrator has to
install the LoadLeveler software onto the machine and identify the central manager
(described in “Roles of machines”). Once a machine becomes a valid member of
the cluster, LoadLeveler can schedule jobs to it.

Roles of machines
Each machine in the LoadLeveler cluster performs one or more roles in scheduling
jobs. Roles performed in scheduling jobs by each machine in the LoadLeveler
cluster are as follows:
v Job Manager Machine: When a job is submitted, it gets placed in a queue

managed by a job manager machine. This machine contacts another machine
that serves as the central manager for the entire LoadLeveler cluster. This job
manager machine asks the central manager to find a machine that can run the
job, and also keeps persistent information about the job. Some job manager
machines are known as public job manager machines, meaning that any
LoadLeveler user can access them. These machines schedule jobs submitted from
submit-only machines.

v Central Manager Machine: The role of the central manager is to examine the
job's requirements and find one or more machines in the LoadLeveler cluster
that will run the job. Once it finds the machine(s), it notifies the scheduling
machine.

v Executing Machine: The machine that runs the job is known as the executing
machine.

v Resource Manager Machine: The role of the resource manager is to collect
status from all executing and job manager machines in the cluster.

v Region Manager Machine: The role of the region manager is to monitor node
and adapter status by receiving heartbeats from the executing machines it
manages.

v Submitting Machine: This type of machine is known as a submit-only machine.
It participates in the LoadLeveler cluster on a limited basis. Although the name
implies that users of these machines can only submit jobs, they can also query
and cancel jobs. The submit-only machine feature allows workstations that are
not part of the LoadLeveler cluster to submit jobs to the cluster.

Keep in mind that one machine can assume multiple roles, as shown in Figure 3 on
page 7.

6 LoadLeveler: Using and Administering

Machine availability
There may be times when some of the machines in the LoadLeveler cluster are not
available to process jobs. For instance, when the owners of the machines have
decided to make them unavailable. This ability of LoadLeveler to allow users to
restrict the use of their machines provides flexibility and control over the resources.

Machine owners can make their personal workstations available to other
LoadLeveler users in several ways. For example, you can specify that:
v The machine will always be available
v The machine will be available only between certain hours
v The machine will be available when the keyboard and mouse are not being used

interactively.

Owners can also specify that their personal workstations never be made available
to other LoadLeveler users.

How LoadLeveler schedules jobs
LoadLeveler consists of the following two components: the resource manager,
which is responsible for managing all machine and job resources, and the
scheduler, which is responsible for scheduling jobs on the resources provided by
the resource manager.

When a user submits a job, LoadLeveler examines the job command file to
determine what resources the job will need. LoadLeveler determines which
machine, or group of machines, is best suited to provide these resources, then
LoadLeveler dispatches the job to the appropriate machines. To aid this process,
LoadLeveler uses queues.

A job queue is a list of jobs that are waiting to be processed. When a user submits
a job to LoadLeveler, the job is entered into an internal database, which resides on
one of the machines in the LoadLeveler cluster, until it is ready to be dispatched to
run on another machine.

Central
manager

Executing
machine

Executing
machine

Job
manager

Job
manager

LoadLeveler
cluster

Submit-only
machines

Resource
manager

Region
manager

Figure 3. Multiple roles of machines

Chapter 1. What is LoadLeveler? 7

Once LoadLeveler examines a job to determine its required resources, the job is
dispatched to a machine to be processed. A job can be dispatched to either one
machine, or in the case of parallel jobs, to multiple machines. Once the job reaches
the executing machine, the job runs.

Jobs do not necessarily get dispatched to machines in the cluster on a first-come,
first-serve basis. Instead, LoadLeveler examines the requirements and
characteristics of the job and the availability of machines, and then determines the
best time for the job to be dispatched.

LoadLeveler also uses job classes to schedule jobs to run on machines. A job class
is a classification to which a job can belong. For example, short running jobs may
belong to a job class called short_jobs. Similarly, jobs that are only allowed to run
on the weekends may belong to a class called weekend. The system administrator
can define these job classes and select the users that are authorized to submit jobs
of these classes.

You can specify which types of jobs will run on a machine by specifying the types
of job classes the machine will support. LoadLeveler also examines a job's priority
to determine when to schedule the job on a machine. A priority of a job is used to
determine its position among a list of all jobs waiting to be dispatched.

“The LoadLeveler job cycle” on page 16 describes job flow in the LoadLeveler
environment in more detail.

How LoadLeveler daemons process jobs
LoadLeveler has its own set of daemons that control the processes moving jobs
through the LoadLeveler cluster.

The LoadLeveler daemons are programs that run continuously and control the
processes that move jobs through the LoadLeveler cluster. A master daemon
(LoadL_master) runs on all machines in the LoadLeveler cluster and manages
other daemons.

Machine and adapter configuration and status changes are now detected by the
region manager and the startd daemons.

Table 4 summarizes these daemons, which are described in further detail in topics
immediately following the table.

Table 4. LoadLeveler daemons

Daemon Description Part of Resource
Manager
component

Part of
Scheduler
component

LoadL_master Referred to as the master
daemon. Runs on all machines
in the LoadLeveler cluster and
manages other daemons.

Yes Yes

LoadL_schedd Referred to as the Schedd
daemon or the job manager.
Receives jobs from the llsubmit
command and manages them
on machines selected by the
negotiator daemon (as defined
by the administrator).

Yes No

8 LoadLeveler: Using and Administering

Table 4. LoadLeveler daemons (continued)

Daemon Description Part of Resource
Manager
component

Part of
Scheduler
component

LoadL_startd Referred to as the startd
daemon. The startd daemon
performs the following
functions:
v Monitors job and machine

resources on local machines
v Generates local adapter

configuration
v Forwards information to the

negotiator, resource manager,
and region manager daemons

v Sends heartbeats to the
region manager daemon

The startd daemon spawns the
starter process (LoadL_starter)
which manages running jobs on
the executing machine.

Yes No

LoadL_region_mgr Referred to as the region
manager daemon. Detects and
monitors machine and adapter
status from the startd machines
it manages and sends this
information to the
LoadL_negotiator and
LoadL_resource_mgr daemons.

Yes No

LoadL_resource_mgr Referred to as the resource
manager daemon. Collects all
machine updates from the
executing machine. Generates
events to the scheduler for
changes in the machine status.
Maintains a list of all jobs
managed by the resource
manager. Responds to query
requests for machine, job, and
cluster information.

Yes No

LoadL_kbdd Referred to as the keyboard
daemon. Monitors keyboard
and mouse activity.

Yes No

LoadL_negotiator Referred to as the negotiator
daemon or central manager.
Monitors the status of each job
and machine in the cluster.
Responds to queries from
llstatus and llq commands.
Runs on the central manager
machine.

No Yes

The master daemon
The master daemon runs on every machine in the LoadLeveler cluster, except the
submit-only machines. The real and effective user ID of this daemon must be root.

Chapter 1. What is LoadLeveler? 9

The LoadL_master binary is installed as a setuid program with the owner set to
root. The master daemon and all daemons started by the master must be able to
run with root privileges in order to switch the identity to the owner of any job
being processed.

The master daemon determines whether to start any other daemons by checking
the START_DAEMONS keyword in the global or local configuration file. If the
keyword is set to true, the daemons are started. If the keyword is set to false, the
master daemon terminates and generates a message.

The master daemon will not start on a Linux machine if SEC_ENABLEMENT is
set to CTSEC. If the master daemon does not start, no other daemons will start.

On machines designated as primary or alternate for running the central manager,
region manager, and resource manager, the master controls the failover function for
these daemons. If a central manager, region manager, or resource manager machine
failure is detected on a primary machine, the master will start the appropriate
daemons on an alternate machine.

The master daemon starts and if necessary, restarts all of the LoadLeveler daemons
that the machine it resides on is configured to run. This daemon also runs the
kbdd daemon, which monitors keyboard and mouse activity.

When the master daemon detects a failure on one of the daemons that it is
monitoring, it attempts to restart it. Because this daemon recognizes that certain
situations may prevent a daemon from running, it limits its restart attempts to the
number defined for the RESTARTS_PER_HOUR keyword in the configuration file.
If this limit is exceeded, the master daemon forces all daemons including itself to
exit.

When a daemon must be restarted, the master sends mail to the administrators
identified by the LOADL_ADMIN keyword in the configuration file. The mail
contains the name of the failing daemon, its termination status, and a section of the
daemon's most recent log file. If the master aborts after exceeding
RESTARTS_PER_HOUR, it will also send that mail before exiting.

The master daemon may perform the following actions in response to an llctl
command:
v Kill all daemons and exit (stop keyword)
v Kill all daemons and execute a new master (recycle keyword)
v Reread the configuration files, stop or start daemons as appropriate for the new

configuration files (reconfig keyword)
v Send drain request to startd and (drain keyword)
v Send flush request to startd and send result to caller (flush keyword)
v Send suspend request to startd and send result to caller (suspend keyword)
v Send resume request to startd and Schedd, and send result to caller (resume

keyword)

The Schedd daemon
The Schedd or job manager daemon receives jobs sent by the llsubmit command
and manages those jobs to machines selected by the negotiator daemon.

The Schedd daemon can be in any one of the following activity states:

Available
This machine is available to schedule jobs.

10 LoadLeveler: Using and Administering

Drained
The Schedd machine accepts no more jobs. There are no jobs in starting or
running state. Jobs in the Idle state are drained, meaning they will not get
dispatched.

Draining
The Schedd daemon is being drained by the administrator but some jobs
are still running. The state of the machine remains Draining until all
running jobs complete. At that time, the machine status changes to
Drained.

Down The daemon is not running on this machine. The Schedd daemon enters
this state when it has not reported its status to the negotiator. This can
occur when the machine is actually down, or because there is a network
failure.

The Schedd daemon performs the following functions:
v Assigns new job identifiers when requested by the job submission process (for

example, by the llsubmit command).
v Receives new jobs from the llsubmit command. A new job is received as a job

object for each job step. A job object is the data structure in memory containing
all the information about a job step. The Schedd forwards the job object to the
negotiator daemon as soon as it is received from the submit command.

v Maintains on disk copies of jobs submitted locally (on this machine) that are
either waiting or running on a remote (different) machine. The central manager
can use this information to reconstruct the job information in the event of a
failure. This information is also used for accounting purposes.

v Responds to directives sent by the administrator through the negotiator daemon.
The directives include:
– Run a job.
– Change the priority of a job.
– Remove a job.
– Hold or release a job.
– Send information about all jobs.

v Sends job events to the negotiator daemon when:
– Schedd is restarting.
– A new series of job objects are arriving.
– A job is started.
– A job was rejected, completed, removed, or vacated. Schedd determines the

status by examining the exit status returned by the startd.
v Communicates with the Parallel Operating Environment (POE) when you run an

interactive POE job.
v Requests that a remote startd daemon end a job.
v Receives accounting information from startd.
v Receives requests for reservations.
v Collects resource usage data when jobs terminate and stores it as historic fair

share data in the $(SPOOL) directory.
v Sends historic fair share data to the central manager when it is updated or when

the Schedd daemon is restarted.
v Maintains and stores records of historic CPU and IBM System Blue Gene

Solution utilization for users and groups known to the Schedd.
v Passes the historic CPU and Blue Gene utilization data to the central manager.

Chapter 1. What is LoadLeveler? 11

The startd daemon
The startd daemon monitors the status of each job, reservation, and machine in the
cluster, and forwards this information to the negotiator daemon. The startd
daemon also receives and executes job requests originating from remote machines.
The startd daemon generates its adapter information and sends it to the negotiator,
resource, and region manager daemons. It also sends UDP heartbeat packets to the
region manager daemon. The master daemon starts, restarts, signals, and stops the
startd daemon.

The startd daemon can be in any one of the following states:

Busy The maximum number of jobs are running on this machine as specified by
the MAX_STARTERS configuration keyword.

Down The daemon is not running on this machine. The startd daemon enters this
state when it has not reported its status to the negotiator. This can occur
when the machine is actually down, or because there is a network failure.

Drained
The startd machine will not accept any new jobs. No jobs are running
when startd is in the drained state.

Draining
The startd daemon is being drained by the administrator, but some jobs are
still running. The machine remains in the draining state until all of the
running jobs have completed, at which time the machine status changes to
drained. The startd daemon will not accept any new jobs while in the
draining state.

Flush Any running jobs have been vacated (terminated and returned to the
queue to be redispatched). The startd daemon will not accept any new
jobs.

Idle The machine is not running any jobs.

None LoadLeveler is running on this machine, but no jobs can run here.

Running
The machine is running one or more jobs and is capable of running more.

Suspend
All LoadLeveler jobs running on this machine are stopped (cease
processing), but remain in virtual memory. The startd daemon will not
accept any new jobs.

The startd daemon performs these functions:
v Runs a time-out procedure that includes building a snapshot of the state of the

machine that includes static and dynamic data. This time-out procedure is run at
the following times:
– After a job completes.
– According to the definition of the POLLING_FREQUENCY keyword in the

configuration file.
v Records the following information in LoadLeveler variables and sends the

information to the negotiator.
– State (of the startd daemon)
– EnteredCurrentState
– Memory
– Disk
– KeyboardIdle

12 LoadLeveler: Using and Administering

– Cpus
– LoadAvg
– Machine
– Adapter
– AvailableClasses

v Calculates the SUSPEND, RESUME, CONTINUE, and VACATE expressions
through which you can manage job status.

v Receives job requests from the Schedd daemon to:
– Start a job
– Preempt or resume a job
– Vacate a job
– Cancel
When the Schedd daemon tells the startd daemon to start a job, the startd
determines whether its own state permits a new job to run as described in
Table 5:

Table 5. startd determines whether its own state permits a new job to run

If: Then this happens:

Yes, it can start a new
job

The startd forks a starter process.

No, it cannot start a
new job

The startd rejects the request for one of the following reasons:

v Jobs have been suspended, flushed, or drained

v The job limit set for the MAX_STARTERS keyword has been
reached

v There are not enough classes available for the designated job class

v Receives requests from the master (through the llctl command) to do one of the
following:
– Drain (drain keyword)
– Flush (flush keyword)
– Suspend (suspend keyword)
– Resume (resume keyword)

v For each request, startd marks its own new state, forwards its new state to the
negotiator daemon, and then performs the appropriate action for any jobs that
are active.

v Receives notification of keyboard and mouse activity from the kbdd daemon
v Periodically examines the process table for LoadLeveler jobs and accumulates

resources consumed by those jobs. This resource data is used to determine if a
job has exceeded its job limit and for recording in the history file.

v Sends accounting information to Schedd.

The starter process
The startd daemon spawns a starter process after the Schedd daemon tells the
startd daemon to start a job.

The starter process manages all the processes associated with a job step. The starter
process is responsible for running the job and reporting status back to the startd
daemon.

The starter process performs these functions:
v Processes the prolog and epilog programs as defined by the JOB_PROLOG and

JOB_EPILOG keywords in the configuration. The job will not run if the prolog
program exits with a return code other than zero.

Chapter 1. What is LoadLeveler? 13

v Handles authentication. This includes:
– Authenticates AFS, if necessary
– Verifies that the submitting user is not root
– Verifies that the submitting user has access to the appropriate directories in

the local file system.
v Runs the job by forking a child process that runs with the user ID and all

groups of the submitting user. That child process creates a new process group of
which it is the process group leader, and executes the user's program or a shell.
The starter process is responsible for detecting the termination of any process
that it forks. To ensure that all processes associated with a job are terminated
after the process forked by the starter terminates, process tracking must be
enabled. To configure LoadLeveler for process tracking, see “Tracking job
processes” on page 73.

v Responds to vacate and suspend orders from the startd.

The region manager daemon
The region manager daemon detects and monitors node and adapter status from
all of the startd machines it manages and sends the status information to the
central and resource manager daemons.

The region manager daemon will only start up if a region is defined in the
configuration. If the region manager daemon is not configured, the adapter and
node status will only come from the configuration information available to the
startd daemon and will not reflect the actual connectivity of the adapter or node.

The region manager daemon requires specific information, such as:
v The name of the primary machine on which it will run.
v The name of the backup or alternate machine.
v The region or list of machines reporting to it.

A LoadLeveler cluster can consist of more than one region and can have more than
one region manager. A region, or managed region, consists of a list of machines
that will send heartbeats and report information to the region manager.

The region manager node must have similar connectivity to the network as the
startd nodes it manages, so that all of its configured network interfaces are able to
connect to all of the startd node's network interfaces.

The region manager daemon performs the following functions:
v Maintains an in-memory database containing all machines in its managed region

and their adapter ports
v Requests and receives adapter configuration information from the startds every

time it starts up
v Updates its in-memory database whenever it receives adapter configuration

information from a startd (for example, when a startd is reconfigured)
v Creates heartbeat IP pairs between the startd (source) and the region manager

(destination) ports and sends them back to the corresponding startd
v Receives heartbeats from the startds
v Determines heartbeat status based on the UDP heartbeat packets from the startd

daemon
v Sends heartbeat status to the central manager and resource manager

14 LoadLeveler: Using and Administering

The resource manager daemon
The resource manager daemon collects all machine updates from the executing
machine, generates events to the scheduler for changes in machine status,
maintains a list of all jobs managed by the resource manager, and responds to
query requests for machine, job, and cluster information.

The kbdd daemon
The kbdd daemon monitors keyboard and mouse activity. The kbdd daemon is
spawned by the master daemon if the X_RUNS_HERE keyword in the
configuration file is set to true.

The kbdd daemon notifies the startd daemon when it detects keyboard or mouse
activity; however, kbdd is not interrupt driven. It sleeps for the number of seconds
defined by the POLLING_FREQUENCY keyword in the LoadLeveler
configuration file, and then determines if X events, in the form of mouse or
keyboard activity, have occurred. For more information on the configuration file,
see Chapter 5, “Defining LoadLeveler resources to administer,” on page 89.

The negotiator daemon
The negotiator daemon maintains the status of each job and machine in the cluster
and responds to queries from the llstatus and llq commands. The negotiator
daemon runs on a single machine in the cluster (the central manager machine).
This daemon is started, restarted, signalled, and stopped by the master daemon.

In a mixed cluster, the negotiator daemon must run on an AIX node.

The negotiator daemon receives status messages from each Schedd and startd
daemons running in the cluster. The negotiator daemon tracks:
v Which Schedd daemons are running
v Which startd daemons are running, and the status of each startd machine.

If the negotiator does not receive an update from any machine within the time
period defined by the MACHINE_UPDATE_INTERVAL keyword, then the
negotiator assumes that the machine is down, and therefore the Schedd and startd
daemons are also down.

The negotiator also maintains in its memory several queues and tables which
determine where the job should run.

The negotiator performs the following functions:
v Receives and records job status changes from the Schedd daemon.
v Schedules jobs based on a variety of scheduling criteria and policy options. Once

a job is selected, the negotiator contacts the Schedd that originally created the
job.

v Handles requests to:
– Set priorities
– Query about jobs, machines, classes, and reservations
– Change reservation attributes
– Bind jobs to reservations
– Remove a reservation
– Remove a job
– Hold or release a job
– Favor or unfavor a user or a job.

v Receives notification of Schedd resets indicating that a Schedd has restarted.

Chapter 1. What is LoadLeveler? 15

The LoadLeveler job cycle
To illustrate the flow of job information through the LoadLeveler cluster, a
description and sequence of diagrams have been provided.

The managing machine in a LoadLeveler cluster is known as the central manager.
There are also machines that act as schedulers, and machines that serve as the
executing machines. The arrows in Figure 4 illustrate the following:
v Arrow 1 indicates that a job has been submitted to LoadLeveler.
v Arrow 2 indicates that the scheduling machine contacts the central manager to

inform it that a job has been submitted, and to find out if a machine exists that
matches the job requirements.

v Arrow 3 indicates that the central manager checks to determine if a machine
exists that is capable of running the job. Once a machine is found, the central
manager informs the scheduling machine which machine is available.

v Arrow 4 indicates that the scheduling machine contacts the executing machine
and provides it with information regarding the job. In this case, the scheduling
and executing machines are different machines in the cluster, but they do not
have to be different; the scheduling and executing machines may be the same
physical machine.

Figure 4 is broken down into the following more detailed diagrams illustrating
how LoadLeveler processes a job. The diagrams indicate specific job states for this
example, but do not list all of the possible states for LoadLeveler jobs. A complete
list of job states appears in “LoadLeveler job states” on page 19.
1. Submit a LoadLeveler job:

Central
manager

Executing
machine

Executing
machine

Executing
machine

Scheduling
machine

1

2 3

4Scheduling
machine

Scheduling
machine

Job

Figure 4. High-level job flow

16 LoadLeveler: Using and Administering

Figure 5 illustrates that the Schedd daemon runs on the scheduling machine.
This machine can also have the startd daemon running on it. The negotiator
daemon resides on the central manager machine. The arrows in Figure 5
illustrate the following:
v Arrow 1 indicates that a job has been submitted to the scheduling machine.
v Arrow 2 indicates that the Schedd daemon, on the scheduling machine,

stores all of the relevant job information on local disk.
v Arrow 3 indicates that the Schedd daemon sends job description information

to the negotiator daemon. At this point, the submitted job is in the Idle state.
2. Permit to run:

Q
Q
QQ

Q

Central manager

3

negotiator daemon
LoadLeveler
cluster

2

Scheduling
machine

schedd daemon

Idle

1

Figure 5. Job is submitted to LoadLeveler

Q
Q
QQ

Central manager

4

negotiator daemon

Scheduling
machine

schedd daemon

Pending or Starting

Figure 6. LoadLeveler authorizes the job

Chapter 1. What is LoadLeveler? 17

In Figure 6 on page 17, arrow 4 indicates that the negotiator daemon authorizes
the Schedd daemon to begin taking steps to run the job. This authorization is
called a permit to run. Once this is done, the job is considered Pending or
Starting.

3. Prepare to run:

In Figure 7, arrow 5 illustrates that the Schedd daemon contacts the startd
daemon on the executing machine and requests that it start the job. The
executing machine can either be a local machine (the machine to which the job
was submitted) or another machine in the cluster. In this example, the local
machine is not the executing machine.

4. Initiate job:

Q
Q
QQ

Central manager

Executing machine

5

negotiator daemon

startd daemon

Scheduling
machine

schedd daemon
remote

local

startd daemon

Pending or Starting

Figure 7. LoadLeveler prepares to run the job

QQ
Q
QQ

1010

101010

1010
1010Q

Central manager

Executing machine

6
7

8

negotiator daemon

startd daemon

starter

Scheduling
machine

schedd daemon

Running

Figure 8. LoadLeveler starts the job

18 LoadLeveler: Using and Administering

The arrows in Figure 8 on page 18 illustrate the following:
v Arrow 6 indicates that the startd daemon on the executing machine spawns a

starter process for the job.
v Arrow 7 indicates that the Schedd daemon sends the starter process the job

information and the executable.
v Arrow 8 indicates that the Schedd daemon notifies the negotiator daemon

that the job has been started and the negotiator daemon marks the job as
Running.

The starter forks and executes the user's job, and the starter parent waits for the
child to complete.

5. Complete job:

The arrows in Figure 9 illustrate the following:
v Arrow 9 indicates that when the job completes, the starter process notifies

the startd daemon.
v Arrow 10 indicates that the startd daemon notifies the Schedd daemon.
v Arrow 11 indicates that the Schedd daemon examines the information it has

received, and forwards it to the negotiator daemon. At this point, the job is
in Completed or Complete Pending state.

LoadLeveler job states
As LoadLeveler processes a job, the job moves through various states. These states
are listed in Table 6 on page 20. Job states that include “Pending,” such as
Complete Pending and Vacate Pending, are intermediate, temporary states.

Some options on LoadLeveler interfaces are valid only for jobs in certain states. For
example, the llmodify command has options that apply only to jobs that are in the
Idle state, or in states that are similar to it. To determine which job states are
similar to the Idle state, use the “Similar to...” column in Table 6 on page 20, which
indicates whether a particular job state is similar to the Idle, Running, or
Terminating state. A dash (—) indicates that the state is not similar to an Idle,
Running, or Terminating state.

Q
Q
QQ

Q

Central manager

Executing machine

9

10

11

negotiator daemon

startd daemon

starter

Scheduling
machine

schedd daemon

Complete pending or
Completed

Q

Figure 9. LoadLeveler completes the job

Chapter 1. What is LoadLeveler? 19

Table 6. Job state descriptions and abbreviations

Job state Similar to
Idle or
Running
state?

Abbreviation
in displays /
output

Description

Canceled Terminating CA The job was canceled either by a user or
by an administrator.

Checkpointing Running CK Indicates that a checkpoint has been
initiated.

Completed Terminating C The job has completed.

Complete
Pending

Terminating CP The job is in the process of being
completed.

Deferred Idle D The job will not be assigned to a machine
until a specified date. This date may have
been specified by the user in the job
command file, or may have been
generated by the negotiator because a
parallel job did not accumulate enough
machines to run the job. Only the central
manager places a job in the Deferred state.

Idle Idle I The job is being considered to run on a
machine, though no machine has been
selected.

Not Queued Idle NQ The job is not being considered to run on
a machine. A job can enter this state
because the associated Schedd is down,
the user or group associated with the job
is at its maximum maxqueued or maxidle
value, or because the job has a
dependency which cannot be determined.
For more information on these keywords,
see “Controlling the mix of idle and
running jobs” on page 413. (Only the
central manager places a job in the
NotQueued state.)

Not Run — NR The job will never be run because a
dependency associated with the job was
found to be false.

Pending Running P The job is in the process of starting on one
or more machines. (The negotiator
indicates this state until the Schedd
acknowledges that it has received the
request to start the job. Then the
negotiator changes the state of the job to
Starting. The Schedd indicates the
Pending state until all startd machines
have acknowledged receipt of the start
request. The Schedd then changes the
state of the job to Starting.)

Preempted Running E The job is preempted. This state applies
only when LoadLeveler uses the suspend
method to preempt the job.

20 LoadLeveler: Using and Administering

Table 6. Job state descriptions and abbreviations (continued)

Job state Similar to
Idle or
Running
state?

Abbreviation
in displays /
output

Description

Preempt
Pending

Running EP The job is in the process of being
preempted. This state applies only when
LoadLeveler uses the suspend method to
preempt the job.

Rejected Idle X The job is rejected.

Reject Pending Idle XP The job did not start. Possible reasons
why a job is rejected are: job requirements
were not met on the target machine, or
the user ID of the person running the job
is not valid on the target machine. After a
job leaves the Reject Pending state, it is
moved into one of the following states:
Idle, User Hold, or Removed.

Removed Terminating RM The job was stopped by LoadLeveler.

Remove
Pending

Terminating RP The job is in the process of being
removed, but not all associated machines
have acknowledged the removal of the
job.

Resume Pending Running MP The job is in the process of being
resumed.

Running Running R The job is running: the job was dispatched
and has started on the designated
machine.

Starting Running ST The job is starting: the job was dispatched,
was received by the target machine, and
LoadLeveler is setting up the environment
in which to run the job. For a parallel job,
LoadLeveler sets up the environment on
all required nodes. See the description of
the “Pending” state for more information
on when the negotiator or the Schedd
daemon moves a job into the Starting
state.

System Hold Idle S The job has been put in system hold.

Chapter 1. What is LoadLeveler? 21

Table 6. Job state descriptions and abbreviations (continued)

Job state Similar to
Idle or
Running
state?

Abbreviation
in displays /
output

Description

Terminated Terminating TX If the negotiator and Schedd daemons
experience communication problems, they
may be temporarily unable to exchange
information concerning the status of jobs
in the system. During this period of time,
some of the jobs may actually complete
and therefore be removed from the
Schedd's list of active jobs. When
communication resumes between the two
daemons, the negotiator will move such
jobs to the Terminated state, where they
will remain for a set period of time
(specified by the
NEGOTIATOR_REMOVE_COMPLETED
keyword in the configuration file). When
this time has passed, the negotiator will
remove the jobs from its active list.

User & System
Hold

Idle HS The job has been put in both system hold
and user hold.

User Hold Idle H The job has been put in user hold.

Vacated Idle V The job started but did not complete. The
negotiator will reschedule the job
(provided the job is allowed to be
rescheduled). Possible reasons why a job
moves to the Vacated state are: the
machine where the job was running was
flushed, the VACATE expression in the
configuration file evaluated to True, or
LoadLeveler detected a condition
indicating the job needed to be vacated.
For more information on the VACATE
expression, see “Managing job status
through control expressions” on page 72.

Vacate Pending Idle VP The job is in the process of being vacated.

Consumable resources
Consumable resources are assets available on machines in your LoadLeveler
cluster.

These assets are called "resources" because they model the commodities or services
available on machines (including CPUs, real memory, virtual memory, large page
memory, software licenses, disk space). They are considered "consumable" because
job steps use specified amounts of these commodities when the step is running.
Once the step finishes, the resource becomes available for another job step.

Consumable resources which model the characteristics of a specific machine (such
as the number of CPUs or the number of specific software licenses available only
on that machine) are called machine resources. Consumable resources which model
resources that are available across the LoadLeveler cluster (such as floating
software licenses) are called floating resources. For example, consider a

22 LoadLeveler: Using and Administering

configuration with 10 licenses for a given program (which can be used on any
machine in the cluster). If these licenses are defined as floating resources, all 10 can
be used on one machine, or they can be spread across as many as 10 different
machines.

The LoadLeveler administrator can specify:
v Consumable resources to be considered by LoadLeveler's scheduling algorithms
v Quantity of resources available on specific machines
v Quantity of floating resources available on machines in the cluster
v Consumable resources to be considered in determining the priority of executing

machines
v Default amount of resources consumed by a job step of a specified job class
v Whether CPU, real memory, virtual memory, or large page resources should be

enforced using Workload Manager (WLM)
v Whether all jobs submitted need to specify resources

Users submitting jobs can specify the resources consumed by each task of a job
step, or the resources consumed by the job on each machine where it runs,
regardless of the number of tasks assigned to that machine.

If affinity scheduling support is enabled, the CPUs requested in the consumable
resources requirement of a job will be used by the scheduler to determine the
number of CPUs to be allocated and attached to that job's tasks running on
machines enabled for affinity scheduling. However, if the affinity scheduling
request contains the processor-core affinity option, the number of CPUs will be
determined from the value specified by the task_affinity keyword instead of the
CPU's value in the consumable resources requirement. For more information on
scheduling affinity, see “LoadLeveler scheduling affinity support” on page 147.

Notes:

1. When software licenses are used as a consumable resource, LoadLeveler does
not attempt to obtain software licenses or to verify that software licenses have
been obtained. However, by providing a user exit that can be invoked as a
submit filter, the LoadLeveler administrator can provide code to first obtain the
required license and then allow the job step to run. For more information on
filtering job scripts, see “Filtering a job script” on page 79.

2. LoadLeveler scheduling algorithms use the availability of requested
consumable resources to determine the machine or machines on which a job
will run. Consumable resources (except for CPU, real memory, virtual memory
and large page) are only used for scheduling purposes and are not enforced.
Instead, LoadLeveler's negotiator daemon keeps track of the consumable
resources available by reducing them by the amount requested when a job step
is scheduled, and increasing them when a consuming job step completes.

3. If a job is preempted, the job continues to use all consumable resources except
for ConsumableCpus and ConsumableMemory (real memory) which are made
available to other jobs.

Consumable resources and Workload Manager
If the administrator has indicated that resources should be enforced, LoadLeveler
uses Workload Manager (WLM) to give greater control over CPU, real memory,
virtual memory and large page resource allocation.

WLM monitors system resources and regulates their allocation to processes. These
actions prevent jobs from interfering with each other when they have conflicting

Chapter 1. What is LoadLeveler? 23

resource requirements. WLM achieves this control by creating different classes of
service and allowing attributes to be specified for those classes.

LoadLeveler dynamically generates WLM classes with specific resource
entitlements. A single WLM class is created for each job step and the process id of
that job step is assigned to that class. This is done for each node that a job step is
assigned to run on. LoadLeveler then defines resource shares or limits for that class
depending on the LoadLeveler enforcement policy defined. These resource shares
or limits represent the job's requested resource usage in relation to the amount of
resources available on the machine.

When LoadLeveler defines multiple memory resources under one WLM class,
WLM uses the following order to determine if resource limits have been exceeded:
1. Real Memory Absolute Limit
2. Virtual Memory Absolute Limit
3. Large Page Limit
4. Real Memory shares or percent limit

Note: When real memory or CPU with either shares or percent limits are
exceeded, the job processes in that class receive a lower scheduling priority until
their utilization drops below the hard max limit. When virtual memory or absolute
real memory limits are exceeded, the job processes are killed. When the large page
limit is exceeded, any new large page requests are denied.

When the enforcement policy is shares, LoadLeveler assigns a share value to the
class based on the resources requested for the job step (one unit of resource equals
one share). When the job step process is running, WLM dynamically calculates an
appropriate resource entitlement based on the WLM class share value of the job
step and the total number of shares requested by all active WLM classes. It is
important to note that WLM will only enforce these target percentages when the
resource is under contention.

When the enforcement policy is limits (soft or hard), LoadLeveler assigns a
percentage value to the class based on the resources requested for the job step and
the total machine resources. This resource percentage is enforced regardless of any
other active WLM classes. A soft limit indicates the maximum amount of the
resource that can be made available when there is contention for the resources.
This maximum can be exceeded if no one else requires the resource. A hard limit
indicates the maximum amount of the resource that can be made available even if
there is no contention for the resources.

Note: A WLM class is active for the duration of a job step and is deleted when
the job step completes. On AIX, there is a limit of 8192 active WLM classes per
machine. Therefore, when resources are being enforced on AIX, only 8192 job steps
can be running on one machine.

For additional information about integrating LoadLeveler with Workload Manager,
see “Steps for integrating LoadLeveler with the Workload Manager” on page 133.

Overview of reservations
Under the BACKFILL scheduler only, LoadLeveler allows authorized users to make
reservations, which specify a time period during which specific node resources are
reserved for exclusive use by particular users or groups. This capability is known
in the computing industry as advance reservation.

24 LoadLeveler: Using and Administering

Normally, jobs wait to be dispatched until the resources they require become
available. Through the use of reservations, wait time can be reduced because the
jobs have exclusive use of the node resources (CPUs, memory, disk drives,
communication adapters, and so on) as soon as the reservation period begins.

Note: Advance reservation supports Blue Gene resources including the Blue Gene
compute nodes. For more information, see “Blue Gene reservation support” on
page 157.

In addition to reducing wait time, reservations also are useful for:
v Running a workload that needs to start or finish at a particular time. The job

steps must be associated with, or bound to, the reservation before LoadLeveler
can run them during the reservation period.

v Running a workload that needs to start as soon as possible on a set of machines.
v Reserving resources for a workload that repeats at regular intervals. You can

make a single request to create a recurring reservation, which reserves a specific
set of resources for a specific time slot that repeats on a regular basis for a
defined interval.

v Setting aside a set of nodes for maintenance purposes.

Only bound job steps may run on the reserved nodes, which means that a bound
job step competes for reserved resources only with other job steps that are bound
to the same reservation.

There are different types of reservations:

One-time reservation
A reservation with a specified start time and duration.

Recurring reservation
A reservation with a specified start time and duration that reoccurs for a
specified period of time.

Flexible reservation
A reservation with a specified duration that will start as soon as the
resources it requests become available. A flexible reservation cannot be
made to recur.

The following sequence of events describes, in general terms, how you can set up
and use reservations in the LoadLeveler environment. It also describes how
LoadLeveler manages activities related to the use of reservations.
1. Configuring LoadLeveler to support reservations

An administrator uses specific keywords in the configuration and
administration files to define general reservation policies. These keywords
include:
v max_reservations, when used in the global configuration file defines the

maximum number of reservations for the entire cluster.
v max_reservations, when used in a user or group stanza of the administration

file can also be used to define both:
– The users or groups that will be allowed to create reservations. To be

authorized to create reservations, LoadLeveler administrators also must
have the max_reservations keyword set in their own user or group
stanzas.

– How many reservations users may own.

Chapter 1. What is LoadLeveler? 25

Note: With recurring advance reservations, to avoid confusion about what
counts as one reservation, LoadLeveler is using the approach that one
reservation counts as one instance regardless of the number of times the
reservation recurs before it expires. This applies to the system wide
max_reservations configuration setting as well as the same type of
configuration settings at the user and group levels.

v max_reservation_duration, which defines the maximum duration for
reservations.

v reservation_permitted, which defines the nodes that may be used for
reservations.

v max_reservation_expiration which defines how long recurring reservations
are permitted to last (expressed as the number of days).

v reservation_type, which specifies what types of reservations can be used by
a user or a group. The types are ALL, FLEXIBLE, and NONE.

Administrators also may configure LoadLeveler to collect accounting data
about reservations when the reservations complete or are canceled.

2. Creating reservations

After LoadLeveler is configured for reservations, an administrator or
authorized user may create specific reservations, defining reservation attributes
that include:
v The start time and the duration of the reservation. The start and end times

for a reservation are based on the time-of-day (TOD) clock on the central
manager machine.

v Whether the reservation is a flexible reservation. Flexible reservations do not
specify a start time.

v Whether or not the reservation recurs and if it recurs, the interval in which it
does so.

v The nodes to be reserved. Until the reservation period actually begins, the
selected nodes are available to run any jobs; when the reservation starts, only
jobs bound to the reservation may run on the reserved nodes.

v The users or groups that may use the reservation.
v A user-supplied program to be invoked whenever the reservation state

changes.
v Floating resources for the reservation.
v For a flexible reservation, whether it can contain nodes that are down.

LoadLeveler assigns a unique ID to the reservation, and returns that ID to the
owner.
After the reservation is successfully created:
v Reservation owners may:

– Modify, query, and cancel their reservations.
– Allow other LoadLeveler users or groups to submit jobs to run during a

reservation period.
– Submit jobs to run during a reservation period.

v Users or groups that are allowed to use the reservation also may query
reservations, and submit jobs to run during a reservation period. To run jobs
during a reservation period, users must bind job steps to the reservation. You
may bind both batch and interactive POE job steps to a reservation.

3. Preparing for the start of a reservation

During the preparation time for a reservation, LoadLeveler:
v Preempts any jobs that are still running on the reserved nodes.

26 LoadLeveler: Using and Administering

v Checks the condition of reserved nodes, and notifies the reservation owner
and LoadLeveler administrators by e-mail of any situations that might
require the reservation owner or an administrator to take corrective action.
Such conditions include:
– Reserved nodes that are down, suspended, no longer in the LoadLeveler

cluster, or otherwise unavailable for use.
– Non-preemptable job steps that cannot finish running before the

reservation start time.
During this time, reservation owners may modify, cancel, and add users or
groups to their reservations. Owners and users or groups that are allowed to
use the reservation may query the reservation or bind job steps to it.

4. Starting the reservation

When the reservation period begins, LoadLeveler dispatches job steps that are
bound to the reservation.
After the reservation period begins, reservation owners may modify, cancel,
and add users or groups to their reservations. Owners and users or groups that
are allowed to use the reservation may query the reservation or bind job steps
to it.
During the reservation period, LoadLeveler ignores system preemption rules
for bound job steps; however, LoadLeveler administrators may use the
llpreempt command to manually preempt bound job steps.

When the reservation ends or is canceled:
v LoadLeveler unbinds all job steps from the reservation if there are no further

occurrences remaining. At this point the unbound job steps compete with all
other LoadLeveler jobs for available resources. If there are occurrences remaining
in the reservation, job steps are automatically bound to the next occurrence.

v For flexible reservations, all running and idle jobs will be canceled when the
reservation ends.

v If accounting data is being collected for the reservation, LoadLeveler also
updates the reservation history file.

For more detailed information and instructions for setting up and using
reservations, see:
v “Configuring LoadLeveler to support reservations” on page 127.
v “Working with reservations” on page 203.

Fair share scheduling overview
Fair share scheduling in LoadLeveler provides a way to divide resources in a
LoadLeveler cluster among users or groups of users.

Historic resource usage data that is collected at the time the job ends can be used
to influence job priorities to achieve the resource usage proportions allocated to
users or groups of users in the LoadLeveler configuration files. The resource usage
data will decay over time so that the relatively recent historic resource usage will
have the most influence on job priorities. The CPU resources in the cluster and the
Blue Gene resources are currently supported by fair share scheduling.

For information about configuring fair share scheduling in LoadLeveler, see “Using
fair share scheduling” on page 158.

Chapter 1. What is LoadLeveler? 27

28 LoadLeveler: Using and Administering

Chapter 2. Getting a quick start using the default
configuration

If you are very familiar with UNIX and Linux system administration, and job
scheduling, follow the steps in this section to get LoadLeveler up and running on
your network quickly in a default configuration.

This default configuration will merely enable you to submit serial jobs; for a more
complex setup, see Chapter 4, “Configuring the LoadLeveler environment,” on
page 39.

What you need to know before you begin
LoadLeveler sets up default values for configuration information.
v loadl is the recommended LoadLeveler user ID and the LoadLeveler group ID.

LoadLeveler daemons run under this user ID to perform file I/O, and many
LoadLeveler files are owned by this user ID.

v The home directory of loadl is the configuration directory.
v LoadL_config is the name of the configuration file.

For information about configuration file keyword syntax and other details, see
Chapter 10, “Configuration keyword reference,” on page 231.

Using the default configuration files
Follow these steps to use the default configuration files.

Note: You can find samples of the LoadL_admin and LoadL_config files in the
release directory (in the samples subdirectory).
1. Ensure that the installation procedure has completed successfully and that the

configuration file, LoadL_config, exists in LoadLeveler's home directory or in
the directory specified by the LoadLConfig keyword.

2. Identify yourself as the LoadLeveler administrator in the LoadL_config file
using the LOADL_ADMIN keyword. The syntax of this keyword is:

LOADL_ADMIN = list_of_user_names (required)
Where list_of_user_names is a blank-delimited list of those individuals who
will have administrative authority.

Refer to “Defining LoadLeveler administrators” on page 45 for more
information.

3. Define a machine to act as the LoadLeveler central manager in one of the
following ways:
v Code a machine stanza as follows in the administration file, which is called

LoadL_admin. (Replace machine_name with the actual name of the machine.)
machine_name: type = machine

central_manager = true

Note: Do not specify more than one machine as the central manager. Also, if
during installation, you ran llinit with the -cm flag, the central manager is
already defined in the LoadL_admin file because the llinit command takes

© Copyright IBM Corp. 1986, 2012 29

parameters that you entered and updates the administration and
configuration files. See “Defining machines” on page 89 for more
information.

v Alternatively, define one machine to act as the primary central manager and
one or more machines to act as the alternate LoadLeveler central managers by
specifying the following in the LoadL_config configuration file:
CENTRAL_MANAGER_LIST = primary_central_manager_machine \

[alternate_central_manager_machine_list]

Note: Because you cannot specify more than one machine as the primary
central manager, the first machine name specified after the
CENTRAL_MANAGER_LIST keyword in the configuration file automatically
overrides the central_manager statement in the machine stanza in the
administration file.

4. Define one machine to act as the primary resource manager and one or more
machines to act as the alternate LoadLeveler resource managers by specifying
the following in the LoadL_config configuration file:
RESOURCE_MGR_LIST = primary_resource_manager_machine \

[alternate_resource_manager_machine_list]

LoadLeveler for Linux quick start
If you would like to quickly install and configure LoadLeveler for Linux and
submit a serial job on a single node, use these procedures.

Note: This setup is for a single node only and the node used for this example is:
c197blade1b05.ppd.pok.ibm.com.

Quick installation
Details of this installation apply to RHEL 6 System x servers.

Note: This installation method is, however, applicable to all other systems. You
must install the corresponding license RPM for the system you are installing on.
This installation assumes that the LoadLeveler RPMs are located at: /mnt/cdrom/.
1. Log on to node c197blade1b05.ppd.pok.ibm.com as root, which is the node you

are installing on.
2. Add a UNIX group for LoadLeveler users (make sure the group ID is correct)

by entering the following command:
groupadd -g 1000 loadl

3. Add a UNIX user for LoadLeveler (make sure the user ID is correct) by
entering the following command:
useradd -c "LoadLeveler User" -d /home/loadl -s /bin/bash -u 1001 -g 1000 -m loadl

4. Install the license RPM by entering the following command:
rpm -ivh /mnt/cdrom/LoadL-full-license-<OS-ARCH>-<install_version>.<arch>.rpm

5. Change to the LoadLeveler installation path by entering the following the
command:
cd /opt/ibmll/LoadL/sbin

6. Run the LoadLeveler installation script by entering:
./install_ll -y -d /mnt/cdrom

7. Install the required LoadLeveler services updates for this RPM.

30 LoadLeveler: Using and Administering

Updates and installation instructions are available at Fix Central
(http://www-933.ibm.com/support/fixcentral/?productGroup0=ibm/fcpower
&productGroup1=ibm/ClusterSoftware&productGroup2=ibm/power/IBM).

Quick configuration
Use this method to perform a quick configuration.
1. Change the log in to the newly created LoadLeveler user by entering the

following command:
su - loadl

2. Run the LoadLeveler initialization script:
/opt/ibmll/LoadL/full/bin/llinit -local /tmp/loadl -release /opt/ibmll/LoadL/full -cm
c197blade1b05.ppd.pok.ibm.com

Quick verification
Use this method to perform a quick verification.
1. Start LoadLeveler by entering the following command:

llctl start

You should receive a response similar to the following:
llctl: Attempting to start LoadLeveler on host c197blade1b05.ppd.pok.ibm.com
LoadL_master 5.1.0.0 rsnepXXXXa 2011/XX/XX RHEL 6.0 220
CentralManager = c197blade1b05.ppd.pok.ibm.com
[loadl@c197blade1b05 bin]$

2. Check LoadLeveler status by entering the following command:
llstatus

You should receive a response similar to the following:
Active 2/4
Schedd 2/4 0 job steps
Startd 2/4 0 running tasks

The Central Manager is defined on c197blade4b10.ppd.pok.ibm.com

Absent: 2
Startd: Down Drained Draining Flush Suspend

0 0 0 0 0
Schedd: Down Drained Draining

0 0 0

View LoadLeveler status by machine level, by entering the following command:
llstatus -L machine

Or alternatively, set the environment variable
LOADL_STATUS_LEVEL=machine and issue:
llstatus

You should receive a response similar to the following:
Name Schedd InQ Act Startd Run LdAvg Idle Arch OpSys
c197blade4b10.ppd.pok.ibm Avail 0 0 Idle 0 0.00 9999 ppc64 Linux2
c197blade4b11.ppd.pok.ibm Avail 0 0 Idle 0 0.00 9999 ppc64 Linux2

ppc64/Linux2 2 machines 0 jobs 0 running tasks
Total Machines 2 machines 0 jobs 0 running tasks

The Central Manager is defined on c197blade4b10.ppd.pok.ibm.com

The BACKFILL scheduler is in use

The following 2 machines are marked absent
c197blade4b09.ppd.pok.ibm.com
c197blade4b12.ppd.pok.ibm.com

Chapter 2. Getting a quick start using the default configuration 31

http://www-933.ibm.com/support/fixcentral/?productGroup0=ibm/fcpower&productGroup1=ibm/ClusterSoftware&productGroup2=ibm/power/IBM

3. Submit a sample job, by entering the following command:
llsubmit /opt/ibmll/LoadL/full/samples/job1.cmd

You should receive a response similar to the following:
llsubmit: The job "c197blade4b10.ppd.pok.ibm.com.1" with 2 job steps has been submitted.

4. Display the LoadLeveler job queue, by entering the following command:
llq

You should receive a response similar to the following:
Id Owner Submitted ST PRI Class Running On
------------------------ ---------- ----------- -- --- ------------ -----------
c197blade4b10.1.0 loadl 5/15 17:25 R 50 No_Class c197blade4b10
c197blade4b10.1.1 loadl 5/15 17:25 R 50 No_Class c197blade4b10
2 job step(s) in queue, 0 waiting, 0 pending, 2 running, 0 held, 0 preempted

5. Check output files into the home directory (/home/loadl) by entering the
following command:
ls -ltr job*

You should receive a response similar to the following:
-rw-r--r-- 1 loadl loadl 1487 May 15 17:26 job1.c197blade4b10.1.0.out
-rw-r--r-- 1 loadl loadl 1487 May 15 17:27 job1.c197blade4b10.1.1.out

Post-installation considerations
This information explains how to start (or restart) and stop LoadLeveler. It also
tells you where files are located after you install LoadLeveler, and it points you to
troubleshooting information.

Starting LoadLeveler
You can start LoadLeveler using any LoadLeveler administrator user ID as defined
in the configuration file.

To start all of the machines that are defined in machine stanzas in the
administration file, enter:
llctl -g start

The central manager machine is the first started, followed by other machines in the
order listed in the administration file. See the llctl command in LoadLeveler:
Command and API Reference for more information.

By default, llctl uses rsh to start LoadLeveler on the target machine. Other
mechanisms, such as ssh can be used by setting the LL_RSH_COMMAND
configuration keyword in LoadL_config. However you choose to start LoadLeveler
on remote hosts, you must have the authority to run commands remotely on that
host.

You can verify that the machine has been properly configured by running the
sample jobs in the appropriate samples directory (job1.cmd, job2.cmd, and
job3.cmd). You must read the job2.cmd and job3.cmd files before submitting them
because job2 must be edited and a C program must be compiled to use job3. It is a
good idea to copy the sample jobs to another directory before modifying them; you
must have read/write permission to the directory in which they are located. You
can use the llsubmit command to submit the sample jobs from several different
machines and verify that they complete (see the llsubmit command in LoadLeveler:
Command and API Reference).

32 LoadLeveler: Using and Administering

If you are running AFS and some jobs do not complete, you might need to use the
AFS fs command (fs listacl) to ensure that the you have write permission to the
spool, execute, and log directories.

If you are running with cluster security services enabled and some jobs do not
complete, ensure that you have write permission to the spool, execute, and log
directories. Also ensure that the user ID is authorized to run jobs on the submitting
machine (the identity of the user must exist in the .rhosts file of the user on the
machine on which the job is being run).

Note: LoadLeveler for Linux does not support cluster security services.

If you are running submit-only LoadLeveler, once the LoadLeveler cluster is up
and running, you can use the llsubmit, llq, and llcancel commands from the
submit-only machines. For more information about these commands, see
LoadLeveler: Command and API Reference.

Directory considerations
After installation, the product directories reside on disk. The installation process
creates only those directories required to service the LoadLeveler options specified
during the installation. See the LoadLeveler: Installation Guide for more information
on the location of directories.

If you have a mixed LoadLeveler cluster of AIX and Linux machines, you might
want to make the following symbolic links:
v On AIX, as root, enter:

mkdir -p /opt/ibmll
ln -s /usr/lpp/LoadL /opt/ibmll/LoadL

v On Linux, as root, enter:
mkdir -p /usr/lpp
ln -s /opt/ibmll/LoadL /usr/lpp/LoadL

With the addition of these symbolic links, a user application can use either
/usr/lpp/LoadL or /opt/ibmll/LoadL to refer to the location of LoadLeveler files
regardless of whether the application is running on AIX or Linux.

If LoadLeveler will not start following installation, see “Why won't LoadLeveler
start?” on page 392 for troubleshooting information.

Chapter 2. Getting a quick start using the default configuration 33

34 LoadLeveler: Using and Administering

Chapter 3. What operating systems are supported by
LoadLeveler?

LoadLeveler supports three operating systems.
v AIX 7.1

IBM's AIX 7.1 is an open UNIX operating environments that conform to The
Open Group UNIX 98 Base Brand industry standard. AIX 7.1 provides high
levels of integration, flexibility, and reliability and it operates on IBM Power®

Systems and IBM Cluster 1600 servers and workstations.
AIX 7.1 supports the concurrent operation of 32- and 64-bit applications, with
key internet technologies such as Java and XML parser for Java included as part
of the base operating system.
A strong affinity between AIX and Linux permits popular applications
developed on Linux to run on AIX 7.1 with a simple recompilation.

v Linux

LoadLeveler supports the following distribution of Linux:
– Red Hat Enterprise Linux (RHEL) 6.2 on LoadLeveler for Linux on POWER
– SUSE Linux Enterprise Server (SLES) 11 on LoadLeveler for Linux on x86

Architecture
– RHEL 6.2 on LoadLeveler for Linux on x86 Architecture

v IBM System Blue Gene Solution

While no LoadLeveler processes actually run on the Blue Gene machine,
LoadLeveler can interact with the Blue Gene machine and supports the
scheduling of jobs to the machine.

LoadLeveler for AIX and LoadLeveler for Linux compatibility
LoadLeveler for Linux is compatible with LoadLeveler for AIX. Its command line
interfaces and application programming interfaces (APIs) are the same as they
have been for AIX. The formats of the job command file, configuration file, and
administration file also remain the same.

System administrators can set up and maintain a LoadLeveler cluster consisting of
some machines running LoadLeveler for AIX and some machines running
LoadLeveler for Linux. This is called a mixed cluster. In this mixed cluster jobs can
be submitted from either AIX or Linux machines. Jobs submitted to a Linux job
queue can be dispatched to an AIX machine for execution, and jobs submitted to
an AIX job queue can be dispatched to a Linux machine for execution.

Although the LoadLeveler products for AIX and Linux are compatible, they do
have some differences in the level of support for specific features. For further
details, see the following topics:
v “Restrictions for LoadLeveler for Linux” on page 36.
v “Features not supported in LoadLeveler for Linux” on page 36.
v “Restrictions for LoadLeveler for AIX and LoadLeveler for Linux mixed clusters”

on page 36.

© Copyright IBM Corp. 1986, 2012 35

Restrictions for LoadLeveler for Linux
LoadLeveler for Linux supports a subset of the features that are available in the
LoadLeveler for AIX product.

The following features are available, but are subject to restrictions:
v LoadLeveler resource manager for Linux supports the 64-bit LoadLeveler API

library (libllrapi.so) on RHEL 6.2 and SLES 11 on IBM xSeries® servers with
AMD Opteron or Intel EM64T processors

v Support for AFS file systems
LoadLeveler for Linux support for authenticated access to AFS file systems is
limited to RHEL 6.2 on IBM xSeries® servers with AMD Opteron or Intel EM64T
processors.

v Support for Workload Management (WLM):
– Hard policy for ConsumableCpus is not available for WLM for Linux.
– Large page memory supports only a 16 MB page size.

Features not supported in LoadLeveler for Linux
LoadLeveler for Linux supports a subset of the features that are available in the
LoadLeveler for AIX product.

The following features are not supported:
v CtSec security

LoadLeveler for AIX can exploit CtSec (Cluster Security Services) security
functions. These functions authenticate the identity of users and programs
interacting with LoadLeveler. These features are not available in this release of
LoadLeveler for Linux.

v System error log
Each LoadLeveler daemon has its own log file where information relevant to its
operation is recorded. In addition to this feature which exists on all platforms,
LoadLeveler for AIX also uses the errlog function to record critical LoadLeveler
events into the AIX system log. Support for an equivalent Linux function is not
available in this release.

Restrictions for LoadLeveler for AIX and LoadLeveler for
Linux mixed clusters

Several restrictions apply when operating a LoadLeveler cluster that contains AIX
and Linux machines.

When operating a LoadLeveler cluster that contains AIX and Linux machines, the
following restrictions apply:
v The central manager node must run a version of LoadLeveler equal to or higher

than any LoadLeveler version being run on a node in the cluster.
v CtSec security features cannot be used.
v Jobs that use checkpointing must be sent to nodes with the same operating

system for execution. This can be done by either defining and specifying job
checkpointing for job classes that exist only on AIX or Linux nodes or by coding
appropriate requirements expressions.

36 LoadLeveler: Using and Administering

Part 2. Configuring and managing the LoadLeveler
environment

After installing IBM LoadLeveler, you may customize it by modifying both the
configuration file and the administration file.

The configuration file contains many parameters that you can set or modify that
will control how LoadLeveler operates. The administration file optionally lists and
defines the machines in the LoadLeveler cluster and the characteristics of classes,
users, and groups.

To easily manage LoadLeveler, you should have one global configuration file and
only one administration file, both centrally located on a machine in the
LoadLeveler cluster. Every other machine in the cluster must be able to read the
configuration and administration file that are located on the central machine.

You may have multiple local configuration files that specify information specific to
individual machines.

LoadLeveler does not prevent you from having multiple copies of administration
files, but you need to be sure to update all the copies whenever you make a
change to one. Having only one administration file prevents any confusion.

LoadLeveler also supports having the configuration in a database.

© Copyright IBM Corp. 1986, 2012 37

38 LoadLeveler: Using and Administering

Chapter 4. Configuring the LoadLeveler environment

One of your main tasks as system administrator is to configure LoadLeveler.

To configure LoadLeveler, you need to know the following configuration
information:
v The LoadLeveler user ID and group ID
v The source of the configuration
v The location of the configuration

Configuring LoadLeveler involves modifying the configuration data that specify
the terms under which LoadLeveler can use machines.

Table 7 identifies where you can find more information about using either the
configuration and administration files or using a database as the source for
LoadLeveler configuration, and keywords to modify the LoadLeveler environment.

Table 7. Roadmap of tasks for LoadLeveler administrators

To learn about: Read the following:

Controlling how LoadLeveler operates
by customizing the global and local
configuration files or a database

Chapter 4, “Configuring the LoadLeveler
environment”

Customizing LoadLeveler resources Chapter 5, “Defining LoadLeveler resources to
administer,” on page 89

Additional ways to customize
LoadLeveler configuration

Chapter 6, “Performing additional administrator
tasks,” on page 109

To control or monitor LoadLeveler operations by using the LoadLeveler commands
and APIs, see LoadLeveler: Command and API Reference.

You can run your installation with default values set by LoadLeveler, or you can
change any or all of them. Table 8 lists topics that discuss how you may configure
the LoadLeveler environment by modifying the configuration file.

Table 8. Roadmap of administrator tasks related to using or modifying the LoadLeveler
configuration

To learn about: Read the following:

Using the default
configuration files shipped
with LoadLeveler

Chapter 2, “Getting a quick start using the default
configuration,” on page 29

Modifying LoadLeveler user
and the source of the
configuration

“The master configuration file” on page 40

© Copyright IBM Corp. 1986, 2012 39

Table 8. Roadmap of administrator tasks related to using or modifying the LoadLeveler
configuration (continued)

To learn about: Read the following:

Defining major elements of
the LoadLeveler configuration

v “Defining LoadLeveler administrators” on page 45

v “Defining a LoadLeveler cluster” on page 45

v “Defining LoadLeveler machine characteristics” on page
59

v “Defining security mechanisms” on page 60

v “Defining usage policies for consumable resources” on
page 65

v “Steps for configuring a LoadLeveler multicluster” on
page 151

Enabling optional
LoadLeveler functions

v “Gathering job accounting data” on page 65

v “Managing job status through control expressions” on
page 72

v “Tracking job processes” on page 73

v “Querying multiple LoadLeveler clusters” on page 74

Modifying LoadLeveler
operations through
installation exits

“Providing additional job-processing controls through
installation exits” on page 75

The master configuration file
By default, LoadLeveler uses the loadl user name and loadl group name to set the
effective user ID and group ID to run LoadLeveler daemons. Also by default,
LoadLeveler will use a set of configuration files as the source for configuration
data. It expects that the global configuration file will be named LoadL_configand
will be found in the loadl user's home directory.

To override these defaults, you must provide a master configuration file. The
default master configuration file name is /etc/LoadL.cfg.

You can also override the location of the master configuration file by specifying the
LOADL_CONFIG environment variable. For an example of when you might want
to do this, see “Querying multiple LoadLeveler clusters” on page 74. This cannot
be used to switch between two database-based LoadLeveler configurations,
because /etc/xcat/cfgloc is also used to determine the dataspace name.

Setting the LoadLeveler user

You can override the default LoadLeveler user name and group name by
specifying the following keywords in the master configuration file:

LoadLUserid
Specifies the LoadLeveler user ID.

LoadLGroupid
Specifies the LoadLeveler group ID.

Notes:

1. If you change the LoadLeveler user ID to something other than loadl, and you
are using configuration files as the source for configuration data, you will have
to make sure your configuration files are owned by this ID.

40 LoadLeveler: Using and Administering

2. If Cluster Security (CtSec) services is enabled, make sure you update the
unix.map file if the LoadLUserid is specified as something other than loadl.
Refer to “Steps for enabling CtSec services” on page 62 for more details.

Setting the configuration source

LoadLeveler configuration data is obtained in one of three ways, depending on the
content of the /etc/LoadL.cfg file:
1. By reading the LoadLeveler configuration database tables
2. By reading LoadLeveler configuration files
3. By fetching the configuration data from a LoadLeveler daemon on a different

machine

One of the following keywords, LoadLConfig, LoadLConfigHosts, and LoadLDB
can be specified in the master configuration file to designate which method will be
used on a machine to obtain LoadLeveler configuration data:

LoadLConfig
Specifies the full path name of the global configuration file which identifies the
set of configuration files. The set consists of the global configuration file, the
administration file, and the local configuration file. The global configuration
file must contain the location of the administration file, and may optionally
contain the location of a local configuration file.

Syntax:
LoadLConfig = global configuration file path

LoadLConfigHosts
This keyword is used to designate one or more hosts that will serve
LoadLeveler configuration data. LoadLeveler processes will attempt to retrieve
configuration data from the hosts in the order they are listed. The hosts
specified in this list must be configured to use a database for LoadLeveler
configuration data.

Syntax:
LoadLConfigHosts = host1 host2 .. hostn

LoadLDB
This keyword designates an odbc.ini stanza name identifying the database, or
data source name (DSN), to be used for LoadLeveler configuration data. The
stanza used must be defined in the /etc/odbc.ini file. When setting up the
MySQL xCAT database, set up a stanza in /etc/odbc.ini and specify the stanza
name in the LoadLDB statement.

Syntax:
LoadLDB = xcatdb

If none of the keywords, LoadLConfig, LoadLConfigHosts, or LoadLDB, are
specified, then by default, LoadLeveler will expect to find a global configuration
file in the home directory of the LoadLeveler user ID, and will obtain configuration
data from configuration files.

Overriding the shared memory key

LoadLeveler uses a shared memory segment to cache parsed configuration data
read from the LoadLeveler configuration database tables or from LoadLeveler
configuration and administration files. LoadLeveler uses a key to uniquely identify

Chapter 4. Configuring the LoadLeveler environment 41

its shared memory segment. Normally a default shared memory segment key
generated by LoadLeveler is sufficient for this purpose. However, there is a small
possibility that another application, running on the same nodes as LoadLeveler,
will use the same shared memory segment key. In this case, LoadLeveler will
generate a non-default key, and store it in the master configuration file, using the
LoadLConfigShmKey keyword.

This keyword can also be used by the LoadLeveler administrator to override the
default for the shared memory segment key.

LoadLConfigShmKey
Records the value used for the shared memory segment key when it is not
possible to use the generated default key because of a conflict with another
shared memory application.

Syntax:
LoadLConfigShmKey = number

All LoadLeveler processes that need to access configuration data will first read
the master configuration file. If this keyword is specified, the process will use
the specified key to access the LoadLeveler shared memory segment. If this
keyword is not specified, a default key will be generated.

Note: The shared memory segment key does not have to be the same on all
nodes of the LoadLeveler cluster.

Default value: No default value is set.

File-based configuration

LoadLeveler uses file-based configuration by default. For file-based configuration,
the master configuration file is optional. Three types of files are used to define the
configuration:
v Global configuration file: This file, by default, is called the LoadL_config file and it

contains configuration information common to all nodes in the LoadLeveler
cluster. Use the LoadLConfig keyword in the master configuration file to specify
the location and name of the file if you do not want to use the default.

v Local Configuration File: This file is generally called LoadL_config.local (although
it is possible for you to rename it). This file contains specific configuration
information for an individual node. The LoadL_config.local file is in the same
format as LoadL_config and the information in this file overrides any
information specified in LoadL_config. It is an optional file that you use to
modify information on a local machine. Its full path name is specified in the
LoadL_config file by using the LOCAL_CONFIG keyword.

v Administration file: The administration file optionally lists and defines the
machines in the LoadLeveler cluster and the characteristics of classes, users, and
groups. Its full path name is specified in the LoadL_config file by using the
ADMIN_FILE keyword.

To easily manage LoadLeveler, you should have one global configuration file and
only one administration file, both centrally located on a machine in the
LoadLeveler cluster. Every other machine in the cluster must be able to read the
configuration and administration file that are located on the central machine.

You may have multiple local configuration files that specify information specific to
individual machines.

42 LoadLeveler: Using and Administering

LoadLeveler does not prevent you from having multiple copies of administration
files, but you need to be sure to update all the copies whenever you make a
change to one. Having only one administration file prevents any confusion.

Database configuration option

When LoadLeveler is part of the software stack in a cluster managed by xCAT,
LoadLeveler's configuration can share xCAT's MySQL or DB2® database space. In
this case, the master configuration file is required and the LoadLDB indicates the
data source name.

For more information, see:
v LoadLeveler for AIX: Installation Guide

v LoadLeveler for Linux: Installation Guide

Or, go to Setting Up MySQL as the xCAT DB or Setting Up DB2 as the xCAT DB at
XCAT Documentation (http://sourceforge.net/apps/mediawiki/xcat/
index.php?title=XCAT_Documentation).

To initialize the configuration, run the llconfig or llrconfig command with the -i
option. You must specify configuration files as input to this command.
Administration files cannot be specified in the list. Administration files are
specified by the ADMIN_FILE keyword in the configuration file. All of the data
from the configuration files that are used for initialization are stored in the
database for the default machine. To specify configuration settings for individual
machines, you must update the configuration after initialization.

You can manage the database-based configuration by using the llconfig or
llrconfig options or LoadLeveler's configuration editor to display and change the
values of keywords and stanzas in the database.

Understanding remotely configured nodes
When LoadLeveler is configured to use a database to contain LoadLeveler
configuration data, it is possible to configure "remotely configured nodes" that do
not have access to the database. This kind of configuration permits an installation
to define a LoadLeveler cluster without having to provide database clients on all
nodes.

The remotely configured nodes are configured by specifying the
LoadLConfigHosts keyword in the master configuration file. This keyword is used
to specify the host, or hosts, that can serve configuration data to the remotely
configured node. For more information about the LoadLConfigHosts keyword, see
“Setting the configuration source” on page 41.

There are limitations to LoadLeveler nodes that are configured in this way because
they do not have direct access to the configuration data in the database and are
dependent on another node for configuration data.

Not all LoadLeveler daemons can run on remotely configured nodes. It is expected
that remotely configured nodes would be configured to run the startd daemon
(and starter process) and optionally the keyboard daemon. The central manager
and resource manager depend on having database access and may not be
configured on a remotely configured node. Although the regional manager and

Chapter 4. Configuring the LoadLeveler environment 43

http://sourceforge.net/apps/mediawiki/xcat/index.php?title=XCAT_Documentation

schedd daemon may be configured on a remotely configured node, it is not
recommended, because the use of a database for these daemons could change in
the future.

There is a situation where LoadLeveler processes (daemons, commands or APIs)
invoked on a remotely configured node may not always work if a configuration
server is not available. A shared memory segment is used to cache configuration
data. Normally, LoadLeveler processes will be able to read LoadLeveler
configuration data from the shared memory segment. If the shared memory
segment does not already exist, the configuration server specified by the
LoadLConfigHosts statement must be contacted to obtain the configuration data to
store in the shared memory segment. In this situation, if the configuration servers
cannot be contacted, the LoadLeveler process will fail.

The shared memory segment is usually created when the first LoadLeveler process
runs, and is subsequently available for use by other LoadLeveler processes. So
normally you can expect to run LoadLeveler processes on remotely configured
nodes. The shared memory segment can be removed by issuing the llctl rmshm
command. The LoadLeveler shared memory segment is also removed when
uninstalling LoadLeveler and when installing updates to the LoadLeveler software.

There are two command options that always rely on the availability of a
configuration server. The llctl start and reconfig command options depend on the
configuration server regardless of whether a shared memory segment exists or not.
The start or reconfig option must access the most current database configuration
data in order to refresh the configuration data in the shared memory segment. If a
configuration server cannot be contacted in this situation, the command cannot
perform its function. To ensure configuration server machines are started or
reconfigured before the machines that depend on these servers, use xdsh to run the
commands.

Using the configuration editor

To make it easier to view, update, and maintain the LoadLeveler configuration
using the database option, a form-based configuration editor is provided for
administrators. This tool allows the administrator to modify configuration
attributes, make updates into the configuration database, and invoke
reconfiguration for just the nodes that need to pick up the changed configuration.

In the database, the configuration is kept in several tables and the configuration
editor groups input for the tables to make it easier for the administrator to set up
and update the configuration. The editor consists of several tabbed panels
containing forms that present one or more configuration database tables and a
search panel to help the administrator find the panel in which a keyword can be
updated.

For information about setting up the configuration editor, see the “Software
requirements” topic in the LoadLeveler for AIX: Installation Guide or the LoadLeveler
for Linux: Installation Guide.

To invoke the editor, point your browser to the following URL:

http://your_server_machine/ll/llconfig_editor.pl

where your_server_machine is the node where you are running the HTTP Server.

44 LoadLeveler: Using and Administering

You will need to login to the configuration editor using a database ID and
password with access to make changes in the database.

To use the editor, update the fields in the forms and click the Add, Update, or
Delete buttons to update the configuration change in the database. After you have
completed all the changes you will make for the session, make sure that you click
the Reconfigure button to reconfigure LoadLeveler so the changes are effective.

If you cannot find a keyword you want to update, use the Search panel to find the
panel containing a keyword. You may enter all or part of the keyword you are
looking for.

Modifying configuration data

By taking a look at the configuration files that come with LoadLeveler, you will
find that there are many parameters that you can set. In most cases, you will only
have to modify a few of these parameters.

In some cases, though, depending upon the LoadLeveler nodes, network
connection, and hardware availability, you may need to modify additional
parameters.

All LoadLeveler commands, daemons, and processes read the configuration data at
start up time. To ensure that the configuration for all LoadLeveler commands,
daemons, and processes are in sync, run the reconfiguration command on all
machines in the cluster each time the configuration changes.

Defining LoadLeveler administrators
Specify the LOADL_ADMIN keyword with a list of user names of those
individuals who will have administrative authority.

These users are able to invoke the administrator-only commands such as llctl,
llfavorjob, and llfavoruser.

LoadLeveler administrators on this list also receive mail describing problems that
are encountered by the master daemon. When CtSec is enabled, the
LOADL_ADMIN list is used only as a mailing list. For more information, see
“Defining security mechanisms” on page 60.

For file-based configuration, an administrator on a machine is granted
administrative privileges on that machine. An administrator is not granted
administrative privileges on other machines. To be an administrator on all
machines in the LoadLeveler cluster, either specify your user ID in the global
configuration file with no entries in the local configuration file, or specify your
user ID in every local configuration file that exists in the LoadLeveler cluster.

When using the database configuration option, the list of administrators applies to
all machines in a cluster.

For information about configuration keyword syntax and other details, see
Chapter 10, “Configuration keyword reference,” on page 231.

Defining a LoadLeveler cluster
It will be necessary to define the characteristics of the LoadLeveler cluster.

Chapter 4. Configuring the LoadLeveler environment 45

Table 9 lists the topics that discuss how you can define the characteristics of the
LoadLeveler cluster.

Table 9. Roadmap for defining LoadLeveler cluster characteristics

To learn about: Read the following:

Defining characteristics of
specific LoadLeveler daemons

v “Choosing a scheduler”

v “Setting negotiator characteristics and policies” on page
47

v “Specifying alternate central managers” on page 48

Defining other cluster
characteristics

v “Defining network characteristics” on page 49

v “Specifying file and directory locations” on page 49

v “Configuring recording activity and log files” on page
52

v “Setting up file system monitoring” on page 58

Correctly specifying
configuration keywords

Chapter 10, “Configuration keyword reference,” on page
231

For information on working on with daemons and machines in a LoadLeveler
cluster, see the llctl and llinit commands in LoadLeveler: Command and API
Reference.

Choosing a scheduler
This topic discusses the types of schedulers available, which you may specify using
the configuration keyword SCHEDULER_TYPE.

For information about the configuration keyword syntax and other details, see
Chapter 10, “Configuration keyword reference,” on page 231.

LL_DEFAULT
This scheduler runs serial jobs. It efficiently uses CPU time by scheduling
jobs on what otherwise would be idle nodes (and workstations). It does
not require that users set a wall clock limit. Also, this scheduler starts,
suspends, and resumes jobs based on workload.

BACKFILL
This scheduler runs both serial and parallel jobs. The objective of
BACKFILL scheduling is to maximize the use of resources to achieve the
highest system efficiency, while preventing potentially excessive delays in
starting jobs with large resource requirements. These large jobs can run
because the BACKFILL scheduler does not allow jobs with smaller resource
requirements to continuously use up resource before the larger jobs can
accumulate enough resource to run.

The BACKFILL scheduler supports:
v The scheduling of multiple tasks per node
v The scheduling of multiple user space tasks per adapter
v The preemption of jobs
v The use of reservations
v The scheduling of inbound and outbound data staging tasks

These functions are not supported by the default LoadLeveler scheduler.

For more information about the BACKFILL scheduler, see “Using the
BACKFILL scheduler” on page 114.

API This keyword option allows you to enable an external scheduler. The API

46 LoadLeveler: Using and Administering

option is intended for installations that want to create a scheduling
algorithm for parallel jobs based on site-specific requirements.

For more information about external schedulers, see “Using an external
scheduler” on page 119.

Setting negotiator characteristics and policies
You may set the following negotiator characteristics and policies.

For information about configuration keyword syntax and other details, see
Chapter 10, “Configuration keyword reference,” on page 231.
v Prioritize the queue maintained by the negotiator

Each job step submitted to LoadLeveler is assigned a system priority number,
based on the evaluation of the SYSPRIO keyword expression. For file-based
configuration this is found in the configuration file of the central manager. For
database-based configuration, it is set for a cluster. The LoadLeveler system
priority number is assigned to a new job step by the central manager when the
job step is submitted to the central manager. Once assigned, the system priority
number for a job step is not changed, except under the following circumstances:
– An administrator or user issues the llprio command to change the system

priority of the job step.
– The value set for the NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL

keyword is not zero.
– An administrator uses the llmodify command with the -s option to alter the

system priority of a job step.
– A program with administrator credentials uses the ll_modify subroutine to

alter the system priority of a job step.
Job steps assigned higher SYSPRIO numbers are considered for dispatch before
job steps with lower numbers.
For related information, see the following topics:
– “Controlling the central manager scheduling cycle” on page 76
– “Setting and changing the priority of a job” on page 224
– llmodify command in LoadLeveler: Command and API Reference
– ll_modify subroutine in LoadLeveler: Command and API Reference

v Prioritize the order of executing machines maintained by the negotiator
Each executing machine is assigned a machine priority number, based on the
evaluation of the MACHPRIO keyword expression in the configuration file of
the central manager for file-based configuration or the MACHPRIO keyword
expression for the cluster for database-based configuration. The LoadLeveler
machine priority number is updated every time the central manager updates its
machine data. Machines assigned higher MACHPRIO numbers are considered
to run jobs before machines with lower numbers. For example, a machine with a
MACHPRIO of 10 is considered to run a job before a machine with a
MACHPRIO of 5. Similarly, a machine with a MACHPRIO of -2 would be
considered to run a job before a machine with a MACHPRIO of -3.
For the file-based configuration, note that the MACHPRIO keyword is valid
only on the machine where the central manager is running. Using this keyword
in a local configuration file has no effect.
When you use a MACHPRIO expression that is based on load average, the
machine may be temporarily ordered later in the list immediately after a job is
scheduled to that machine. This temporary drop in priority happens because the
negotiator adds a compensating factor to the startd machine's load average
every time the negotiator assigns a job. For more information, see the
NEGOTIATOR_LOADAVG_INCREMENT keyword in “Configuration keyword
descriptions” on page 233.

Chapter 4. Configuring the LoadLeveler environment 47

v Specify additional negotiator policies
This topic lists keywords that were not mentioned in the previous configuration
steps. Unless your installation has special requirements for any of these
keywords, you can use them with their default settings.
– NEGOTIATOR_INTERVAL
– NEGOTIATOR_CYCLE_DELAY
– NEGOTIATOR_CYCLE_TIME_LIMIT
– NEGOTIATOR_LOADAVG_INCREMENT
– NEGOTIATOR_PARALLEL_DEFER
– NEGOTIATOR_PARALLEL_HOLD
– NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL
– NEGOTIATOR_REJECT_DEFER
– NEGOTIATOR_REMOVE_COMPLETED
– NEGOTIATOR_RESCAN_QUEUE

Specifying alternate central managers
In a keyword statement in the configuration, you specified which machine would
serve as the central manager. You can also assign one or more alternate central
managers in case network communication, software, or hardware failures make the
primary central manager unusable; to do so, specify one or more alternate central
managers by adding the following keyword statement to the configuration file or
update the keyword in the configuration database:
CENTRAL_MANAGER_LIST = primary_central_manager_machine \

[alternate_central_manager_machine_list]

If the primary central manager fails, the alternate central manager then becomes
the central manager. The alternate central manager is chosen based upon the order
in which its name appears, either in the machine stanza in the administration file
or in the alternate central manager machine list specified in the configuration file
or database.

Note: For file-based configuration, the primary and alternate central manager
machines specified in the configuration file override those specified in the
administration file.

When an alternate becomes the central manager, jobs will not be lost, but it may
take a few minutes for all of the machines in the cluster to check in with the new
central manager. As a result, job status queries may be incorrect for a short time.

An alternate central manager will not receive information on jobs that were
running on a machine or are managed by a job manager on a machine that is
either down or cannot communicate with the alternate central manager. For
example, if a job manager is running on the same machine as the primary central
manager and the machine goes down, when the alternate central manager takes
over, it will have no information about the jobs managed by the job manager on
the primary central manager machine. In this case, job status queries will not
include information on those jobs.

When you define alternate managers, you should set the following keywords in
the configuration:
v FAILOVER_HEARTBEAT_INTERVAL
v FAILOVER_HEARTBEAT_RETRIES

In the following example, the alternate central manager will wait for 30 intervals,
where each interval is 45 seconds:

48 LoadLeveler: Using and Administering

Set a 45 second interval
FAILOVER_HEARTBEAT_INTERVAL = 45
Set the number of intervals to wait
FAILOVER_HEARTBEAT_RETRIES = 30

For more information on central manager backup, refer to “What happens if the
central manager isn't operating?” on page 399. For information about configuration
keyword syntax and other details, see Chapter 10, “Configuration keyword
reference,” on page 231.

Specifying alternate resource managers
In a keyword statement in the configuration file or database, you specified which
machine would serve as the resource manager. You can also assign one or more
alternate resource managers in case network communication, software, or hardware
failures make the primary resource manager unusable; to do so, ensure that your
keyword statement in the configuration file or configuration database includes a
list of alternate resource managers:
RESOURCE_MGR_LIST = primary_resource_manager_machine \

[alternate_resource_manager_machine_list]

If the primary resource manager fails, the alternate resource manager then becomes
the resource manager. The alternate resource manager is chosen based upon the
order in which its name appears in the alternate resource manager machine list
specified in the configuration file or database.

For information about configuration keyword syntax and other details, see
Chapter 10, “Configuration keyword reference,” on page 231.

Specifying alternate region managers
In a keyword statement in the region stanza, you specified which machine would
serve as the region manager. You can also assign one or more alternate region
managers in case network communication, software, or hardware failures make the
primary region manager unusable; to do so, ensure that your keyword statement
in the region stanza includes a list of alternate region managers:
region_mgr_list = primary_resource_manager_machine \

[alternate_resource_manager_machine_list]

If the primary region manager fails, the alternate region manager then becomes the
region manager. The alternate region manager is chosen based upon the order in
which its name appears in the alternate region manager machine list specified in
the region stanza.

For information, see “Defining regions” on page 106.

Defining network characteristics
A port number is an integer that specifies the port to use to connect to the
specified daemon. You can define these port numbers in the configuration keyword
or the /etc/services file or you can accept the defaults. LoadLeveler first looks in
the configuration for these port numbers. If LoadLeveler does not find the value in
the configuration, it looks in the /etc/services file. If the value is not found in this
file, the default is used.

See Appendix B, “LoadLeveler port usage,” on page 417 for more information.

Specifying file and directory locations
The sample configuration file provided with LoadLeveler specifies default locations
for all of the files and directories. You can modify their locations using the

Chapter 4. Configuring the LoadLeveler environment 49

keywords shown in Table 10. Keep in mind that the LoadLeveler installation
process installs files in these directories and these files may be periodically cleaned
up. Therefore, you should not keep any files that do not belong to LoadLeveler in
these directories.

Managing distributed software systems is a primary concern for all system
administrators. Allowing users to share file systems to obtain a single,
network-wide image, is one way to make managing LoadLeveler easier.

Table 10. Default locations for all of the files and directories

To specify the
location of the: Specify this keyword:

Administration
file

ADMIN_FILE

Local
configuration
file

LOCAL_CONFIG

Local directory The following subdirectories reside in the local directory. It is possible that
the local directory and LoadLeveler's home directory are the same.
v COMM
v EXECUTE
v LOG
v SPOOL and HISTORY

Tip: To maximize performance, you should keep the log, spool, and
execute directories in a local file system. Also, to measure the performance
of your network, consider using one of the available products, such as
Toolbox/6000. On clusters with diskless nodes, the execute directory
should be located in RAM disk.

When using a local file system for the spool and history directories,
commands such as llmovespool and llacctmrg will not have access to the
data in those directories if a machine is down or not accessible on the
network.

Release
directory

When a LoadLeveler daemon or process needs to start another command
or process, it will use the following keywords to locate the appropriate
binary. If you change the location of the LoadLeveler release directory you
must change these keywords to point to the new location.

RELEASEDIR
Is the directory created during installation to contains the bin, lib,
and include directories for the LoadLeveler code.

BIN
Is a subdirectory in the release directory that is created during
installation for the binaries for the LoadLeveler daemons and
commands.

50 LoadLeveler: Using and Administering

Table 10. Default locations for all of the files and directories (continued)

To specify the
location of the: Specify this keyword:

Core dump
directory

You may specify alternate directories to hold core dumps for the daemons
and starter process:
v MASTER_COREDUMP_DIR
v NEGOTIATOR_COREDUMP_DIR
v RESOURCE_MGR_COREDUMP_DIR
v REGION_MGR_COREDUMP_DIR
v SCHEDD_COREDUMP_DIR
v STARTD_COREDUMP_DIR
v STARTER_COREDUMP_DIR
v KBDD_COREDUMP_DIR

When specifying core dump directories, be sure that the access
permissions are set so the LoadLeveler daemon or process can write to
the core dump directory. The permissions set for path names specified in
the keywords just mentioned must allow writing by both root and the
LoadLeveler ID. The permissions set for the path name specified for the
STARTER_COREDUMP_DIR keyword must allow writing by root, the
LoadLeveler ID, and any user who can submit LoadLeveler jobs.

The simplest way to be sure the access permissions are set correctly is to
set them the same as are set for the /tmp directory.

If a problem with access permissions prevents a LoadLeveler daemon or
process from writing to a core dump directory, then a message will be
written to the log, and the daemon or process will continue using the
default /tmp directory for core files.

For information about configuration keyword syntax and other details, see
Chapter 10, “Configuration keyword reference,” on page 231.

Locating LoadLeveler binaries when the scheduler component is
not installed

If your cluster will only run the resource manager or it will include nodes where
only the resource manager component is installed, you will need to make changes
to your configuration for locating the LoadLeveler binaries. The RELEASEDIR and
BIN keywords are used for defining locations.

If the cluster will only run the LoadLeveler resource manager and if you use the
sample file LoadL_config, then do one of the following:

Change:
RELEASEDIR = /usr/lpp/LoadL/full

to
RELEASEDIR = /usr/lpp/LoadL/resmgr/full

or:

Create the following link on each node:
ln -s /usr/lpp/LoadL/resmgr/full /usr/lpp/LoadL/full

or:

Chapter 4. Configuring the LoadLeveler environment 51

Run the llrinit command on each of the nodes to create the link.

If the cluster consists of both resource manager and scheduler nodes, but some
nodes have just the resource manager component installed, use the LoadL_config.l
sample file to create your configuration. This sample uses RELEASEDIR=
/usr/lpp/LoadL/resmgr/full and specifies the scheduler full path for those binaries
that need it.

Configuring recording activity and log files
The LoadLeveler daemons and processes keep log files according to the
specifications in the configuration file or database. Administrators can also
configure the LoadLeveler daemons to store additional debugging messages in a
circular buffer in memory. A number of keywords are used to describe where
LoadLeveler maintains the logs and how much information is recorded in each log
and buffer. These keywords, shown in Table 11, are repeated in similar form to
specify the path name of the log file, its maximum length, the size of the circular
buffer, and the debug flags to be used for the log and the buffer.

“Controlling the logging buffer” on page 53 describes how administrators can
configure LoadLeveler to buffer debugging messages.

“Controlling debugging output” on page 55 describes the events that can be
reported through logging controls.

“Saving log files” on page 58 describes the configuration keyword to use to save
logs for problem diagnosis.

For information about configuration keyword syntax and other details, see
Chapter 10, “Configuration keyword reference,” on page 231.

Table 11. Log control statements

Daemon/
Process

Log File (required)

(See note 1 on page 53)

Max Length (required)

(See note 3 on page 53)

Debug Control (required)

(See note 5 on page 53)

Master MASTER_LOG = path MAX_MASTER_LOG = bytes [buffer
bytes]

MASTER_DEBUG = flags [buffer
flags]

Schedd SCHEDD_LOG = path MAX_SCHEDD_LOG = bytes [buffer
bytes]

SCHEDD_DEBUG = flags [buffer
flags]

Startd STARTD_LOG = path MAX_STARTD_LOG = bytes [buffer
bytes]

STARTD_DEBUG = flags [buffer
flags]

Starter STARTER_LOG = path MAX_STARTER_LOG = bytes [buffer
bytes]

STARTER_DEBUG = flags [buffer
flags]

Negotiator NEGOTIATOR_LOG =
path

MAX_NEGOTIATOR_LOG = bytes
[buffer bytes]

NEGOTIATOR_DEBUG = flags
[buffer flags]

Kbdd KBDD_LOG = path MAX_KBDD_LOG = bytes [buffer
bytes]

KBDD_DEBUG = flags [buffer
flags]

Region_mgr REGION_MGR_LOG =
path

MAX_REGION_MGR_LOG = bytes
[buffer bytes]

REGION_MGR_DEBUG = flags
[buffer flags]

Resource_mgr RESOURCE_MGR_LOG
= path

MAX_RESOURCE_MGR_LOG =
bytes [buffer bytes]

RESOURCE_MGR_DEBUG =
flags [buffer flags]

where:

52 LoadLeveler: Using and Administering

buffer bytes
Is the size of the circular buffer. The default value is 0, which indicates that
the buffer is disabled. To prevent the daemon from running out of
memory, this value should not be too large. Brackets must be used to
specify buffer bytes.

buffer flags
Indicates that messages with buffer flags in addition to messages with flags
will be stored in the circular buffer in memory. The default value is blank,
which indicates that the logging buffer is disabled because no additional
debug flags were specified for buffering. Brackets must be used to specify
buffer flags.

Notes:

1. When coding the path for the log files, it is not necessary that all LoadLeveler
daemons keep their log files in the same directory, however, you will probably
find it a convenient arrangement.

2. When the database configuration option is used, the flags and buffer flags
strings are limited to 255 characters. Flags or buffer flags strings longer than
255 characters will be truncated.

3. There is a maximum length, in bytes, beyond which the various log files cannot
grow. Each file is allowed to grow to the specified length and is then saved to
an .old file. The .old files are overwritten each time the log is saved, thus the
maximum space devoted to logging for any one program will be twice the
maximum length of its log file. The default length is 64 KB. To obtain records
over a longer period of time, that do not get overwritten, you can use the
SAVELOGS keyword. See “Saving log files” on page 58 for more information
on extended capturing of LoadLeveler logs.
You can also specify that the log file be started anew with every invocation of
the daemon by setting the TRUNC statement to true as follows:
v TRUNC_MASTER_LOG_ON_OPEN = true|false
v TRUNC_STARTD_LOG_ON_OPEN = true|false
v TRUNC_SCHEDD_LOG_ON_OPEN = true|false
v TRUNC_KBDD_LOG_ON_OPEN = true|false
v TRUNC_STARTER_LOG_ON_OPEN = true|false
v TRUNC_NEGOTIATOR_LOG_ON_OPEN = true|false
v TRUNC_REGION_MGR_LOG_ON_OPEN = true|false
v TRUNC_RESOURCE_MGR_LOG_ON_OPEN = true|false

4. LoadLeveler creates temporary log files used by the starter daemon. These files
are used for synchronization purposes. When a job starts, a StarterLog.pid file
is created. When the job ends, this file is appended to the StarterLog file.

5. Normally, only those who are installing or debugging LoadLeveler will need to
use the debug flags, described in “Controlling debugging output” on page 55
The default error logging, obtained by leaving the right side of the debug
control statement null, will be sufficient for most installations.

Controlling the logging buffer:
LoadLeveler allows a LoadLeveler daemon to store log messages in a buffer in
memory instead of writing the messages to a log file. The administrator can force
the messages in this buffer to be written to the log file, when necessary, to
diagnose a problem. The buffer is circular and once it is full, older messages are
discarded as new messages are logged. The llctl dumplogs command is used to
write the contents of the logging buffer or locking records to the appropriate log
file for the Master, Negotiator, Schedd, Startd, Resource Manager, and Region
Manager daemons.

Chapter 4. Configuring the LoadLeveler environment 53

Buffering will be disabled if either the buffer length is 0 or no additional debug
flags are specified for buffering.

See “Configuring recording activity and log files” on page 52 for log control
statement specifications. See LoadLeveler: Diagnosis and Messages Guide for additional
information on LoadLeveler log files.

Logging buffer example:

With the following configuration, the Schedd daemon will write only D_ALWAYS
and D_SCHEDD messages to the ${LOG}/SchedLog log file. The following
messages will be stored in the buffer:
v D_ALWAYS
v D_SCHEDD
v D_FULLDEBUG

The maximum size of the Schedd log is 64 MB and the size of the logging buffer is
32 MB.
SCHEDD_LOG = ${LOG}/SchedLog
MAX_SCHEDD_LOG = 64000000 [32000000]
SCHEDD_DEBUG = D_SCHEDD [D_FULLDEBUG]

To write the contents of the logging buffer to the SchedLog file on the machine,
issue:
llctl dumplogs buffer

To write the contents of the logging buffer to the SchedLog file on node1 in the
LoadLeveler cluster, issue:
llctl -h node1 dumplogs buffer

To write the contents of the logging buffers to the SchedLog files on all machines,
issue:
llctl -g dumplogs buffer

Note that the messages written from the logging buffer include a bracket message
and a prefix to identify them easily.
=======================BUFFER BEGIN========================

BUFFER: message
BUFFER: message

=======================BUFFER END==========================

Controlling locking records:

To turn on the locking function of a daemon, specify the D_LOCK_TRACE
debugging flag.

Note: D_LOCK_TRACE messages are not handled in the same way as other
debug flags are handled. Rather than being printed to the logs as they occur, these
messages are kept in memory and updated when there are locking events like
getting a new lock request or releasing a lock. Use llctl dumplogs locks to print
messages to the logs about locks currently pending or held.

Locking records examples:

54 LoadLeveler: Using and Administering

To save the locking records in the LoadLeveler daemons to the corresponding
existing log files in the LOG directory of node c197blade7b02, issue:
llctl -h c197blade7b02 dumplogs locks

With the following configuration, the locking records of the Schedd daemon will
be stored.
SCHEDD_DEBUG = D_LOCK_TRACE

To write the locking records to the SchedLog file on the machine, issue:
llrctl dumplogs locks

To write the locking records to the SchedLog file on node1 in the LoadLeveler
cluster, issue:
llctl –h node1 dumplogs lock

Note that the locking records are grouped within BEGIN and END lines to make
them easy to identify in the log file.
============ LOCKING RECORDS BEGIN ============

LOCKID TID STAT TYPE SC TIMESTAMP LINE FUNCTION | DESCRIPTION
...
...

============ LOCKING RECORDS END ============

Controlling debugging output:
You can control the level of debugging output logged by LoadLeveler programs.

The following flags are presented here for your information, though they are used
primarily by IBM personnel for debugging purposes:
D_ACCOUNT

Logs accounting information about processes. If used, it may slow down
the network.

D_ACCOUNT_DETAIL
Logs detailed accounting information about processes. If used, it may slow
down the network and increase the size of log files.

D_ADAPTER
Logs messages related to adapters.

D_AFS
Logs information related to AFS credentials.

D_CKPT
Logs information related to checkpoint and restart.

D_CONFIG
Displays messages detailing configuration processing during the start up
or reconfiguration of a LoadLeveler process.

D_DAEMON
Logs information regarding basic daemon set up and operation, including
information on the communication between daemons.

D_DATABASE
Logs information pertaining to database interactions.

D_DISPATCHING_CYCLE
Traces the dispatching cycle from the cluster's startup. This flag is set using
the TRACE configuration keyword and cannot be set as a *_DEBUG flag.
See the TRACE keyword on page 280 for more information.

D_EXPR
Logs steps in parsing and evaluating control expressions.

D_FAIRSHARE
Displays messages related to fair share scheduling in the daemon logs. In

Chapter 4. Configuring the LoadLeveler environment 55

the global configuration file, D_FAIRSHARE can be added to
SCHEDD_DEBUG and NEGOTIATOR_DEBUG.

D_FULLDEBUG
Logs details about most actions performed by each daemon but doesn't log
as much activity as setting all the flags.

D_HIERARCHICAL
Used to enable messages relating to problems related to the transmission of
hierarchical messages. A hierarchical message is sent from an originating
node to lower ranked receiving nodes.

D_JOB
Logs job requirements and preferences when making decisions regarding
whether a particular job should run on a particular machine.

D_JOB_LIFECYCLE
Enables the administrator to control whether requests for job lifecycle
traces will be granted. This flag is set using the TRACE configuration
keyword and cannot be set as a *_DEBUG flag. See the TRACE keyword
on page 280 for more information.

D_KERNEL
Activates diagnostics for errors involving the process tracking kernel
extension.

D_LOAD
Displays the load average on the startd machine.

D_LOCKING
Logs requests to acquire and release locks. This keyword is deprecated in
favor of the D_LOCK_TRACE keyword.

D_LOCK_TRACE
Activates the lock tracing function. This flag tracks locking events
internally in memory and keeps only events for locks not yet released.

The llctl dumplogs locks command is used to move the locking records
from memory into the logs (see LoadLeveler: Command and API Reference for
more information about the llctl command).

D_LXCPUAFNT
Logs messages related to Linux CPU affinity. This flag is only valid for the
startd daemon.

D_MACHINE
Logs machine control functions and variables when making decisions
regarding starting, suspending, resuming, and aborting remote jobs.

D_MUSTER
Logs information related to multicluster processing.

D_NEGOTIATE
Displays the process of looking for a job to run in the negotiator. It only
pertains to this daemon.

D_ODBC_DETAIL
Logs information pertaining to the ODBC interface.

D_PCRED
Directs that extra debug should be written to a file if the setpcred()
function call fails.

D_PERF
Logs performance-related information in LoadLeveler daemon logs,
especially the negotiator and Schedd daemon logs. Turning on D_PERF
will produce microsecond time stamps for each entry in the daemon log.

D_PERF_DETAIL
Logs detailed performance-related information in LoadLeveler daemon

56 LoadLeveler: Using and Administering

logs, especially the negotiator and Schedd daemon logs. Turning on
D_PERF_DETAIL will produce microsecond time stamps for each entry in
the daemon log.

D_PROC
Logs information about jobs being started remotely such as the number of
bytes fetched and stored for each job.

D_QUEUE
Logs changes to the job queue.

D_REFCOUNT
Logs activity associated with reference counting of internal LoadLeveler
objects.

D_REGIONMGR
Displays how the region manager works internally.

D_RESERVATION
Logs reservation information in the negotiator and Schedd daemon logs.
D_RESERVATION can be added to SCHEDD_DEBUG and
NEGOTIATOR_DEBUG.

D_RESOURCE
Logs messages about the management and consumption of resources.
These messages are recorded in the negotiator log.

D_SCHEDD
Displays how the Schedd works internally.

D_SDO
Displays messages detailing LoadLeveler objects being transmitted between
daemons and commands.

D_SECURITY
Logs information related to Cluster Security (CtSec) services identities.

D_SPOOL
Logs information related to the usage of databases in the LoadLeveler
spool directory.

D_STANZAS
Displays internal information about the parsing of the administration file.

D_STARTD
Displays how the startd works internally.

D_STARTER
Displays how the starter works internally.

D_STREAM
Displays messages detailing socket I/O.

D_SWITCH
Logs entries related to switch activity and LoadLeveler Switch Table Object
data.

D_THREAD
Displays the ID of the thread producing the log message. The thread ID is
displayed immediately following the date and time. This flag is useful for
debugging threaded daemons.

D_XDR
Logs information regarding External Data Representation (XDR)
communication protocols.

For example:
SCHEDD_DEBUG = D_SCHEDD D_XDR

Causes the job manager to log information about its internal workings and
exchange xdr messages with other LoadLeveler daemons. These flags will
primarily be of interest to LoadLeveler implementers and debuggers.

Chapter 4. Configuring the LoadLeveler environment 57

The LL_COMMAND_DEBUG environment variable can be set to a string of
debug flags the same way as the *_DEBUG configuration keywords are set.
Normally, LoadLeveler commands and APIs do not print debug messages, but
with this environment variable set, the requested classes of debugging messages
will be logged to stderr. For example:
LL_COMMAND_DEBUG="D_ALWAYS D_STREAM" llstatus

will cause the llstatus command to print out debug messages related to I/O to
stderr.

Saving log files: By default, LoadLeveler stores only the two most recent
iterations of a daemon's log file (<daemon name>Log, and <daemon name>Log.old).

Occasionally, for problem diagnosing, users will need to capture LoadLeveler logs
over an extended period. Users can specify that all log files be saved to a
particular directory by using the SAVELOGS keyword. Be aware that LoadLeveler
does not provide any way to manage and clean out all of those log files, so users
must be sure to specify a directory in a file system with enough space to
accommodate them. This file system should be separate from the one used for the
LoadLeveler log, spool, and execute directories.

Each log file is represented by the name of the daemon that generated it, the exact
time the file was generated, and the name of the machine on which the daemon is
running. When you list the contents of the SAVELOGS directory, the list of log file
names looks like this:
NegotiatorLogNov02.16:10:39.123456.c163n10.ppd.pok.ibm.com
NegotiatorLogNov02.16:10:42.987654.c163n10.ppd.pok.ibm.com
NegotiatorLogNov02.16:10:46.564123.c163n10.ppd.pok.ibm.com
NegotiatorLogNov02.16:10:48.234345.c163n10.ppd.pok.ibm.com
NegotiatorLogNov02.16:10:51.123456.c163n10.ppd.pok.ibm.com
NegotiatorLogNov02.16:10:53.566987.c163n10.ppd.pok.ibm.com
StarterLogNov02.16:09:19.622387.c163n10.ppd.pok.ibm.com
StarterLogNov02.16:09:51.499823.c163n10.ppd.pok.ibm.com
StarterLogNov02.16:10:30.876546.c163n10.ppd.pok.ibm.com
SchedLogNov02.16:09:05.543677.c163n10.ppd.pok.ibm.com
SchedLogNov02.16:09:26.688901.c163n10.ppd.pok.ibm.com
SchedLogNov02.16:09:47.443556.c163n10.ppd.pok.ibm.com
SchedLogNov02.16:10:12.712680.c163n10.ppd.pok.ibm.com
SchedLogNov02.16:10:37.342156.c163n10.ppd.pok.ibm.com
StartLogNov02.16:09:05.697753.c163n10.ppd.pok.ibm.com
StartLogNov02.16:09:26.881234.c163n10.ppd.pok.ibm.com
StartLogNov02.16:09:47.231234.c163n10.ppd.pok.ibm.com
StartLogNov02.16:10:12.125556.c163n10.ppd.pok.ibm.com
StartLogNov02.16:10:37.961486.c163n10.ppd.pok.ibm.com

For information about configuration keyword syntax and other details, see
Chapter 10, “Configuration keyword reference,” on page 231.

Setting up file system monitoring
You can use the file system keywords to monitor the file system space or inodes
used by LoadLeveler for:
v Logs
v Saving executables
v Spool information
v History files

You can also use the file system keywords to take preventive action and avoid
problems caused by running out of file system space or inodes. This is done by
setting the frequency that LoadLeveler checks the file system free space or inodes

58 LoadLeveler: Using and Administering

and by setting the upper and lower thresholds that initialize system responses to
the free space available. By setting a realistic span between the lower and upper
thresholds, you will avoid excessive system actions.

The file system monitoring keywords are:
v FS_INTERVAL
v FS_NOTIFY
v FS_SUSPEND
v FS_TERMINATE
v INODE_NOTIFY
v INODE_SUSPEND
v INODE_TERMINATE

For information about configuration keyword syntax and other details, see
Chapter 10, “Configuration keyword reference,” on page 231.

Defining LoadLeveler machine characteristics

You can use these keywords to define the characteristics of machines in the
LoadLeveler cluster:
v ARCH
v CLASS
v CUSTOM_METRIC
v CUSTOM_METRIC_COMMAND
v FEATURE
v MAX_STARTERS
v SCHEDD_RUNS_HERE
v SCHEDD_SUBMIT_AFFINITY
v STARTD_RUNS_HERE
v START_DAEMONS
v VM_IMAGE_ALGORITHM
v X_RUNS_HERE

For information about configuration keyword syntax and other details, see
Chapter 10, “Configuration keyword reference,” on page 231.

Defining job classes that a LoadLeveler machine will accept
The following examples illustrate possible ways of defining job classes.
v Example 1

This example specifies multiple classes:
Class = No_Class(2)

The machine will only run jobs that have either defaulted to or explicitly
requested class No_Class. A maximum of two LoadLeveler jobs are permitted to
run simultaneously on the machine if the MAX_STARTERS keyword is not
specified. See “Specifying how many jobs a machine can run” on page 60 for
more information on MAX_STARTERS.

v Example 2

This example specifies multiple classes:
Class = No_Class(1) Small(1) Medium(1) Large(1)

Chapter 4. Configuring the LoadLeveler environment 59

The machine will only run a maximum of four LoadLeveler jobs that have either
defaulted to, or explicitly requested No_Class, Small, Medium, or Large class. A
LoadLeveler job with class IO_bound, for example, would not be eligible to run
here.

v Example 3

This example specifies multiple classes:
Class = B(2) D(1)

The machine will run only LoadLeveler jobs that have explicitly requested class
B or D. Up to three LoadLeveler jobs may run simultaneously: two of class B
and one of class D. A LoadLeveler job with class No_Class, for example, would
not be eligible to run here.

Specifying how many jobs a machine can run
To specify how many jobs a machine can run, you need to take into consideration
both the MAX_STARTERS keyword and the Class statement. This is described in
more detail in “Defining LoadLeveler machine characteristics” on page 59.

For example, if the configuration contains these statements:
Class = A(1) B(2) C(1)
MAX_STARTERS = 2

then the machine can run a maximum of two LoadLeveler jobs simultaneously. The
possible combinations of LoadLeveler jobs are:
v A and B
v A and C
v B and B
v B and C
v Only A, or only B, or only C

If this keyword is specified together with a Class statement, the maximum number
of jobs that can be run is equal to the lower of the two numbers. For example, if:
MAX_STARTERS = 2
Class = class_a(1)

then the maximum number of job steps that can be run is one (the Class statement
defines one class).

If you specify MAX_STARTERS keyword without specifying a Class statement, by
default one class still exists (called No_Class). Therefore, the maximum number of
jobs that can be run when you do not specify a Class statement is one.

Note: If the MAX_STARTERS keyword is not defined in the configuration, the
maximum number of jobs that the machine can run is equal to the number of
classes in the Class statement.

Defining security mechanisms
LoadLeveler can be configured to control authentication and authorization of
LoadLeveler functions by using Cluster Security (CtSec) services, a subcomponent
of Reliable Scalable Cluster Technology (RSCT), which uses the host-based
authentication (HBA) as an underlying security mechanism.

LoadLeveler permits only one security service to be configured at a time. You can
skip this topic if you do not plan to use this security feature or if you plan to use

60 LoadLeveler: Using and Administering

the credential forwarding provided by the llgetdce and llsetdce program pair.
Refer to “Using the alternative program pair: llgetdce and llsetdce” on page 77 for
more information.

LoadLeveler for Linux does not support CtSec security.

LoadLeveler can be enabled to interact with OpenSSL for secure multicluster
communications

Table 12 lists the topics that explain LoadLeveler daemons and how you may
define their characteristics and modify their behavior.

Table 12. Roadmap of configuration tasks for securing LoadLeveler operations

To learn about: Read the following:

Securing LoadLeveler
operations using cluster
security services

v “Configuring LoadLeveler to use cluster security
services”

v “Steps for enabling CtSec services” on page 62

v “Limiting which security mechanisms LoadLeveler can
use” on page 64

Enabling LoadLeveler to secure
multicluster communication
with OpenSSL

“Steps for securing communications within a LoadLeveler
multicluster” on page 153

Correctly specifying
configuration keywords

Chapter 10, “Configuration keyword reference,” on page
231

Configuring LoadLeveler to use cluster security services
Cluster security (CtSec) services allows a software component to authenticate and
authorize the identity of one of its peers or clients. When configured to use CtSec
services, LoadLeveler will:
v Authenticate the identity of users and programs interacting with LoadLeveler.
v Authorize users and programs to use LoadLeveler services. It prevents

unauthorized users and programs from misusing resources or disrupting
services.

To use CtSec services, all nodes running LoadLeveler must first be configured as
part of a cluster running Reliable Scalable Cluster Technology (RSCT). For details
on CtSec services administration, see IBM Reliable Scalable Cluster Technology:
Administration Guide, SA22-7889.

CtSec services are designed to use multiple security mechanisms and each security
mechanism must be configured for LoadLeveler. At the present time, directions are
provided only for configuring the host-based authentication (HBA) security
mechanism for LoadLeveler's use. If CtSec is configured to use additional security
mechanisms that are not configured for LoadLeveler's use, then the LoadLeveler
configuration keyword SEC_IMPOSED_MECHS must be specified. This keyword
is used to limit the security mechanisms that will be used by CtSec services to only
those that are configured for use by LoadLeveler.

Authorization is based on user identity. When CtSec services are enabled for
LoadLeveler, user identity will differ depending on the authentication mechanism
in use. A user's identity in UNIX host-based authentication is the user's network
identity which is comprised of the user name and host name, such as
user_name@host.

Chapter 4. Configuring the LoadLeveler environment 61

LoadLeveler uses CtSec services to authorize owners of jobs, administrators and
LoadLeveler daemons to perform certain actions. CtSec services uses its own
identity mapping file to map the clients' network identity to a local identity when
performing authorizations. A typical local identity is the user name without a
hostname. The local identities of the LoadLeveler administrators must be added as
members of the group specified by the keyword SEC_ADMIN_GROUP. The local
identity of the LoadLeveler user name must be added as the sole member of the
group specified by the keyword SEC_SERVICES_GROUP. The LoadLeveler
Services and Administrative groups, those identified by the keywords
SEC_SERVICES_GROUP and SEC_ADMIN_GROUP, must be the same across all
nodes in the LoadLeveler cluster. To ensure consistency in performing tasks which
require owner, administrative or daemon privileges across all nodes in the
LoadLeveler cluster, user network identities must be mapped identically across all
nodes in the LoadLeveler cluster. If this is not the case, LoadLeveler authorizations
may fail.

Steps for enabling CtSec services:
It is necessary to enable LoadLeveler to use CtSec services. To enable LoadLeveler
to use CtSec services, perform the following steps:
1. Include, in the Trusted Host List, the host names of all hosts with which

communications may take place. If LoadLeveler tries to communicate with a
host not on the Trusted Host List the message: The host identified in the
credentials is not a trusted host on this system will occur. Additionally, the
system administrator should ensure that public keys are manually exchanged
between all hosts in the LoadLeveler cluster. Refer to IBM Reliable Scalable
Cluster Technology: Administration Guide, SA22-7889 for information on setting
up Trusted Host Lists and manually transferring public keys.

2. Create user IDs. Each LoadLeveler administrator and the LoadLeveler user ID
need to be created, if they don't already exist. You can do this through SMIT or
the mkuser command.

3. Ensure that the unix.map file contains the correct value for the service name
ctloadl which specifies the LoadLeveler user name. If you have configured
LoadLeveler to use loadl as the LoadLeveler user name, either by default or by
specifying loadl in the LoadLUserid keyword of the /etc/LoadL.cfg file, nothing
needs to be done. The default map file will contain the ctloadl service name
already assigned to loadl. If you have configured a different user name in the
LoadLUserid keyword of the /etc/LoadL.cfg file, you will need to make sure
that the /var/ct/cfg/unix.map file exists and that it assigns the same user name
to the ctloadl service name. If the /var/ct/cfg/unix.map file does not exist, create
one by copying the default map file /usr/sbin/rsct/cfg/unix.map. Do not modify
the default map file.
If the value of the LoadLUserid and the value associated with ctloadl are not
the same a security services error which indicates a UNIX identity mismatch
will occur.

4. Add entries to the global mapping file of each machine in the LoadLeveler
cluster to map network identities to local identities. This file is located at:
/var/ct/cfg/ctsec_map.global. If this file doesn't yet exist, you should copy the
default global mapping file to this location—don't modify the default mapping
file. The default global mapping file, which is shared among all CtSec services
exploiters, is located at /usr/sbin/rsct/cfg/ctsec_map.global. See IBM Reliable
Scalable Cluster Technology for AIX: Technical Reference, SA22-78900 for more
information on the mapping file.
When adding names to the global mapping file, enter more specific entries
ahead of the other, less specific entries. Remember that you must update the
global mapping file on each machine in the LoadLeveler cluster, and each

62 LoadLeveler: Using and Administering

mapping file has to be updated with the security services identity of each
member of the administrator group, the services group, and the users.
Therefore, you would have entries like this:
unix:brad@mach1.pok.ibm.com=bradleyf
unix:brad@mach2.pok.ibm.com=bradleyf
unix:brad@mach3.pok.ibm.com=bradleyf
unix:marsha@mach2.pok.ibm.com=marshab
unix:marsha@mach3.pok.ibm.com=marshab
unix:loadl@mach1.pok.ibm.com=loadl
unix:loadl@mach2.pok.ibm.com=loadl
unix:loadl@mach3.pok.ibm.com=loadl

However, if you're sure your LoadLeveler cluster is secure, you could specify
mapping for all machines this way:
unix:brad@*=bradleyf
unix:marsha@*=marshab
unix:loadl@*=loadl

This indicates that the UNIX network identity of the users brad, marsha and
loadl will map to their respective security services identities on every machine
in the cluster. Refer to IBM Reliable Scalable Cluster Technology for AIX: Technical
Reference, SA22-7800 for a description of the syntax used in the
ctsec_map.global file.

5. Create UNIX groups. The LoadLeveler administrator group and services group
need to be created for every machine in the cluster and should contain the local
identities of members. This can be done either by using SMIT or the mkgroup
command.
For example, to create the group lladmin which lists the LoadLeveler
administrators:
mkgroup "users=sam,betty,loadl" lladmin

These groups must be created on each machine in the LoadLeveler cluster and
must contain the same entries.
To create the group llsvcs which lists the identity under which LoadLeveler
daemons run using the default id of loadl:
mkgroup users=loadl llsvcs

These groups must be created on each machine in the LoadLeveler cluster and
must contain the same entries.

6. Add or update these keywords in the LoadLeveler configuration:
SEC_ENABLEMENT=CTSEC
SEC_ADMIN_GROUP=name of lladmin group
SEC_SERVICES_GROUP=group name that contains identities of LoadLeveler daemons

The SEC_ENABLEMENT=CTSEC keyword indicates that CtSec services
mechanism should be used. SEC_ADMIN_GROUP points to the name of the
UNIX group which contains the local identities of the LoadLeveler
administrators. The SEC_SERVICES_GROUP keyword points to the name of
the UNIX group which contains the local identity of the LoadLeveler daemons.
All LoadLeveler daemons run as the LoadLeveler user ID. Refer to step 5 for
discussion of the administrators and services groups.

7. Update the .rhosts file in each user's home directory. This file is used to
identify which UNIX identities can run LoadLeveler jobs on the local host
machine. If the file does not exist in a user's home directory, you must create it.
The .rhosts file must contain entries which specify all host and user

Chapter 4. Configuring the LoadLeveler environment 63

combinations allowed to submit jobs which will run as the local user, either
explicitly or through the use of wildcards.
Entries in the .rhosts file are specified this way:
HostNameField [UserNameField]

Refer to IBM AIX Files Reference, SC23-4168 for further details about the .rhosts
file format.

Tips for configuring LoadLeveler to use CtSec services: When using CtSec services for
LoadLeveler, each machine in the LoadLeveler cluster must be set up properly.

CtSec authenticates network identities based on trust established between
individual machines in a cluster, based on local host configurations. Because of this
it is possible for most of the cluster to run correctly but to have transactions from
certain machines experience authentication or authorization problems.

If unexpected authentication or authorization problems occur in a LoadLeveler
cluster with CtSec enabled, check that the steps in “Steps for enabling CtSec
services” on page 62 were correctly followed for each machine in the LoadLeveler
cluster.

If any machine in a LoadLeveler cluster is improperly configured to run CtSec you
may see that:
v Users cannot perform user tasks (such as cancel) for jobs they submitted.

Either the machine the job was submitted from or the machine the user
operation was submitted from (or both) do not contain mapping files for the
user that specify the same security services identity. The user should attempt the
operation from the same machine the job was submitted from and record the
results. If the user still cannot perform a user task on a job they submitted, then
they should contact the LoadLeveler administrator who should review the steps
in “Steps for enabling CtSec services” on page 62.

v LoadLeveler daemons fail to communicate.
When LoadLeveler daemons communicate they must first authenticate each
other. If the daemons cannot authenticate a message will be put in the daemon
log indicating an authentication failure. Ensure the Trusted Hosts List on all
LoadLeveler nodes contains the correct entries for all of the nodes in the
LoadLeveler cluster. Also, make sure that the LoadLeveler Services group on all
nodes of the LoadLeveler cluster contains the local identity for the LoadLeveler
user name. The ctsec_map.global must contain mapping rules to map the
LoadLeveler user name from every machine in the LoadLeveler cluster to the
local identity for the LoadLeveler user name. An example of what may happen
when daemons fail to communicate is that an alternate central manager may
take over while the primary central manager is still active. This can occur when
the alternate central manager does not trust the primary central manager.

Limiting which security mechanisms LoadLeveler can use: As more security
mechanisms become available, they must be configured for LoadLeveler's use. If
there are security mechanisms configured for CtSec that are not configured for
LoadLeveler's use, then the LoadLeveler configuration keyword
SEC_IMPOSED_MECHS must specify the mechanisms configured for
LoadLeveler.

64 LoadLeveler: Using and Administering

Defining usage policies for consumable resources
The LoadLeveler scheduler can schedule jobs based on the availability of
consumable resources.

You can use the following keywords to configure consumable resources:
v ENFORCE_RESOURCE_MEMORY

v ENFORCE_RESOURCE_POLICY

v ENFORCE_RESOURCE_SUBMISSION

v ENFORCE_RESOURCE_USAGE

v FLOATING_RESOURCES

v RESOURCES

v SCHEDULE_BY_RESOURCES

For information about configuration keyword syntax and other details, see
Chapter 10, “Configuration keyword reference,” on page 231.

Gathering job accounting data
Your organization may have a policy of charging users or groups of users for the
amount of resources that their jobs consume.

You can do this using LoadLeveler's accounting feature. Using this feature, you can
produce accounting reports that contain job resource information for completed
serial and parallel job steps. You can also view job resource information on jobs
that are continuing to run.

The accounting record for a job step will contain separate sets of resource usage
data for each time a job step is dispatched to run. For example, the accounting
record for a job step that is vacated and then started again will contain two sets of
resource usage data. The first set of resource usage data is for the time period
when the job step was initially dispatched until the job step was vacated. The
second set of resource usage data is for the time period for when the job step is
dispatched after the vacate until the job step completes.

The job step's accounting data that is provided in the llsummary short listing and
in the user mail will contain only one set of resource usage data. That data will be
from the last time the job step was dispatched to run. For example, the mail
message for job step completion for a job step that is checkpointed with the hold
(-h) option and then restarted, will contain the set of resource usage data only for
the dispatch that restarted the job from the checkpoint. To obtain the resource
usage data for the entire job step, use the detailed llsummary command or
accounting API.

The following keywords allow you to control accounting functions:
v ACCT

v ACCT_VALIDATION

v GLOBAL_HISTORY

v HISTORY_PERMISSION

v JOB_ACCT_Q_POLICY

v JOB_LIMIT_POLICY

Chapter 4. Configuring the LoadLeveler environment 65

For example, the following section of the configuration file specifies that the
accounting function is turned on. It also identifies the default module used to
perform account validation and the directory containing the global history files:
ACCT = A_ON A_VALIDATE
ACCT_VALIDATION = $(BIN)/llacctval
GLOBAL_HISTORY = $(SPOOL)

Table 13 lists the topics related to configuring, gathering and using job accounting
data.

Table 13. Roadmap of tasks for gathering job accounting data

To learn about: Read the following:

Configuring LoadLeveler to
gather job accounting data

v “Collecting job resource data on serial and parallel jobs”

v “Collecting job resource data based on machines” on page
68

v “Collecting job resource data based on events” on page 68

v “Collecting job resource information based on user
accounts” on page 69

v “Collecting accounting data for reservations” on page 67

v “Collecting the accounting information and storing it into
files” on page 69

v “64-bit support for accounting functions” on page 71

v “Example: Setting up job accounting files” on page 71

Managing accounting data v “Producing accounting reports” on page 70

v “Correlating AIX and LoadLeveler accounting records” on
page 70

v llacctmrg in LoadLeveler: Command and API Reference

v llsummary in LoadLeveler: Command and API Reference

Correctly specifying
configuration keywords

Chapter 10, “Configuration keyword reference,” on page 231

Collecting job resource data on serial and parallel jobs
Information on completed serial and parallel job steps is gathered using the UNIX
wait3 system call. Information on non-completed serial and parallel jobs is gathered
in a platform-dependent manner by examining data from the UNIX process.

Accounting information on a completed serial job step is determined by
accumulating resources consumed by that job on the machines that ran the job.
Similarly, accounting information on completed parallel job steps is gathered by
accumulating resources used on all of the nodes that ran the job step.

You can also view resource consumption information on serial and parallel jobs
that are still running by specifying the -x option of the llq command. To enable llq
-x, specify the following keywords in the configuration file:
v ACCT = A_ON A_DETAIL
v JOB_ACCT_Q_POLICY = number

Collecting accounting information for recurring jobs
For recurring jobs, accounting records are written as each occurrence of each step
of the job completes. The reservation ID field in the accounting record can be used
to distinguish one occurrence from another.

66 LoadLeveler: Using and Administering

Collecting accounting data for reservations
LoadLeveler can collect accounting data for reservations, which are set periods of
time during which node resources are reserved for the use of particular users or
groups.

To enable recording of reservation information, specify the following keywords in
the configuration:
v To turn on accounting for reservations, add the A_RES flag to the ACCT

keyword.
v To specify a file other than the default history file to contain the data, use the

RESERVATION_HISTORY keyword.

See Chapter 10, “Configuration keyword reference,” on page 231 for details about
the ACCT and RESERVATION_HISTORY keywords.

When these keyword values are set and a reservation ends or is canceled,
LoadLeveler records the following information:
v The reservation ID
v The time at which the reservation was created
v The user ID of the reservation owner
v The name of the owning group
v Requested and actual start times
v Requested and actual duration
v Actual time at which the reservation ended or was canceled
v The name of the flexible job ID for a flexible reservation
v Whether the reservation was created with the SHARED or REMOVE_ON_IDLE options
v A list of users and a list of groups that were authorized to use the reservation
v The number of reserved nodes
v The names of reserved nodes
v The name of the notification program
v The list of notification program arguments
v The list of floating resources
v The number of reserved Blue Gene compute nodes
v The connectivity of the Blue Gene block
v The shape of the Blue Gene block
v The number of midplanes used by the Blue Gene block
v The midplanes used by the Blue Gene block
v The name of the Blue Gene block

This reservation information is appended in a single line to the reservation history
file for the reservation. The format of reservation history data is:
Reservation ID!Reservation Type!Reservation Creation Time!Owner!Owning Group!Start Time! \
Actual Start Time!Duration!Actual Duration!Actual End Time!Flexible Job ID! SHARED(yes|no)! \
Number of Nodes!Nodes!Floating Resources!Number of BG Compute Nodes!BG Connectivity!BG Shape! \
Number of BG Midplanes!BG Midplanes!BG Block Name

In reservation history data:
v The unit of measure for start times and end times is the number of seconds since

January 1, 1970.
v The unit of time for durations is seconds.

Note: As each occurrence of a recurring reservation completes, an accounting
record is appended to the reservation history file. The format of the record is
identical to that of a one time reservation. In the record, the Reservation ID
includes the occurrence ID of the completed reservation.

Chapter 4. Configuring the LoadLeveler environment 67

When you cancel the entire recurring reservation (as opposed to only one
occurrence being canceled), one additional accounting record is written. This record
is based on the state of the reservation:
v If an occurrence is ACTIVE, then the end time and duration of that occurrence is

set and an accounting record written.
v If there are not any ACTIVE occurrences, then an accounting record will be

written for the next scheduled occurrence. This is similar to the accounting
record that is written when you cancel a one time reservation in the WAITING
state.

The following is an example of a reservation history file entry:
cnbladel1n04v7.clusters.com.23.r!ONE_TIME!1303805213!ytxiang!No_Group!1303805400! \
1303805400!120!120!1303805520!!no!no!!!/u/ytxiang/rpm/1.cmd!!1!cnbladel1n04v8!abc(2)!
cnbladel1n04v7.clusters.com.24.r.0!RECURRING!1303805239!ytxiang!No_Group!1303805400! \
1303805400!180!180!1303805580!!no!no!!!/u/ytxiang/rpm/2.cmd!!1!cnbladel1n04v7!abc(3)! \
cnbladel1n04v7.clusters.com.25.r!FLEXIBLE!1303805262!ytxiang!No_Group!1303805580! \
1303805580!240!240!1303805820!cnbladel1n04v7.clusters.com.36.0!no!no!!!/u/ytxiang/rpm/ \
1.cmd!!2!cnbladel1n04v8,cnbladel1n04v7!abc(5)!

To collect the reservation information stored in the history file, use the llacctmrg
command with the -R option. For llacctmrg command syntax, see LoadLeveler:
Command and API Reference.

To format reservation history data contained in a file, use the sample script
llreshist.pl in directory ${RELEASEDIR}/samples/llres/.

Collecting job resource data based on machines
LoadLeveler can collect job resource usage information for every machine on
which a job may run. A job may run on more than one machine because it is a
parallel job or because the job is vacated from one machine and rescheduled to
another machine.

To enable recording of resources by machine, you need to specify ACCT = A_ON
A_DETAIL in the configuration.

The machine's speed is part of the data collected. With this information, an
installation can develop a charge back program which can charge more or less for
resources consumed by a job on different machines. For more information on a
machine's speed, refer to the machine stanza information. See “Defining machines”
on page 89.

Collecting job resource data based on events
In addition to collecting job resource information based upon machines used, you
can gather this information based upon an event or time that you specify. For
example, you may want to collect accounting information at the end of every work
shift or at the end of every week or month. To collect accounting information on
all machines in this manner, use the llctl command with the capture parameter:
llctl -g capture eventname

eventname is any string of continuous characters (no white space is allowed) that
defines the event about which you are collecting accounting data. For example, if
you were collecting accounting data on the graveyard work shift, your command
could be:
llctl -g capture graveyard

This command allows you to obtain a snapshot of the resources consumed by
active jobs up to and including the moment when you issued the command. If you

68 LoadLeveler: Using and Administering

want to capture this type of information on a regular basis, you can set up a
crontab entry to invoke this command regularly. For example:
sample crontab for accounting
shift crontab 94/8/5
#
Set up three shifts, first, second, and graveyard shift.
Crontab entries indicate the end of shift.
#
#M H d m day command
#
00 08 * * * /u/loadl/bin/llctl -g capture graveyard
00 16 * * * /u/loadl/bin/llctl -g capture first
00 00 * * * /u/loadl/bin/llctl -g capture second

For more information on the llctl command, refer to LoadLeveler: Command and API
Reference. For more information on the collection of accounting records, see the llq
command in LoadLeveler: Command and API Reference.

Collecting job resource information based on user accounts
If your installation is interested in keeping track of resources used on an account
basis, you can require all users to specify an account number in their job command
files. They can specify this account number with the account_no keyword which is
explained in detail in “Job command file keyword descriptions” on page 335.
Interactive POE jobs can specify an account number using the
LOADL_ACCOUNT_NO environment variable.

LoadLeveler validates this account number by comparing it against a list of
account numbers specified for the user in the user stanza in the administration file
or the user table in the configuration database.

Account validation is under the control of the ACCT keyword in the configuration
file or database. The routine that performs the validation is called llacctval. You
can supply your own validation routine by specifying the ACCT_VALIDATION
keyword in the configuration file or database. The following are passed as
character string arguments to the validation routine:
v User name
v User's login group name
v Account number specified on the Job
v Blank-separated list of account numbers obtained from the user's stanza in the

administration file or database.

The account validation routine must exit with a return code of zero if the
validation succeeds. If it fails, the return code is a nonzero number.

Collecting the accounting information and storing it into files
LoadLeveler stores the accounting information that it collects in a file called history
in the spool directory of the machine that initially scheduled this job, the Schedd
machine. Data on parallel jobs are also stored in the history files.

Resource information collected on the LoadLeveler job is constrained by the
capabilities of the wait3 system call. Information for processes which fork child
processes will include data for those child processes as long as the parent process
waits for the child process to terminate. Complete data may not be collected for
jobs which are not composed of simple parent/child processes. For example, if you
have a LoadLeveler job which invokes an rsh command to execute a function on
another machine, the resources consumed on the other machine will not be
collected as part of the LoadLeveler accounting data.

Chapter 4. Configuring the LoadLeveler environment 69

LoadLeveler accounting uses the following types of files:
v The local history file which is local to each Schedd machine is where job

resource information is first recorded. These files are usually named history and
are located in the spool directory of each Schedd machine, but you may specify
an alternate name with the HISTORY keyword in either the global or local
configuration file or the configuration database.

v The global history file is a combination of the history files from some or all of
the machines in the LoadLeveler cluster merged together. The command
llacctmrg is used to collect files together into a global file. As the files are
collected from each machine, the local history file for that machine is reset to
contain no data. The file is named globalhist.YYYYMMDDHHmm. You may
specify the directory in which to place the file when you invoke the llacctmrg
command or you can specify the directory with the GLOBAL_HISTORY
keyword in the configuration file or database. The default value set up in the
sample configuration file is the local spool directory.

Producing accounting reports
You can produce three types of accounting reports called the short, long, and
extended versions. As their names imply, the short version of the report is a brief
listing of the resources used by LoadLeveler jobs. The long version provides more
comprehensive detail with summarized resource usage, and the extended version
of the report provides the comprehensive detail with detailed resource usage.

If you do not specify a report type, you will receive the default short version. The
short report displays the number of jobs along with the total CPU usage according
to user, class, group, and account number. The extended version of the report
displays all of the data collected for every job.
v For examples of the short and extended versions of the report, see the

llsummary command in LoadLeveler: Command and API Reference.
v For information on the accounting APIs, see the "Application programming

interfaces (APIs)" topic in LoadLeveler: Command and API Reference.

Correlating AIX and LoadLeveler accounting records
For jobs running on AIX systems, you can use a job accounting key to correlate
AIX accounting records with LoadLeveler accounting records. The job accounting
key uniquely identifies each job step. LoadLeveler derives this key from the job
key and the date and time at which the job entered the queue (see the QDate
variable description in “LoadLeveler variables” on page 286). The key is associated
with the starter process for the job step and any of its child processes.

For checkpointed jobs, LoadLeveler does not change the job accounting key,
regardless of how it restarts the job step. Jobs restarted from a checkpoint file or
through a new job step retain the job accounting key for the original job step.

To access the job accounting key for a job step, you can use the following
interfaces:
v The llsummary command, requesting the long version of the report. For details

about using this command, see LoadLeveler: Command and API Reference.
v The GetHistory subroutine. For details about using this subroutine, see

LoadLeveler: Command and API Reference.
v The ll_get_data subroutine, through the LL_StepAcctKey specification. For

details about using this subroutine, see LoadLeveler: Command and API Reference.

For information about AIX accounting records, see the system accounting topic in
AIX System Management Guide: Operating System and Devices.

70 LoadLeveler: Using and Administering

64-bit support for accounting functions
LoadLeveler 64-bit support for accounting functions includes:
v Statistics of jobs such as usage, limits, consumable resources, and other 64-bit

integer data are preserved in the history file as rusage64, rlimit64 structures and
as data items of type int64_t.

v The LL_job_step structure defined in llapi.h allows access to the 64-bit data
items either as data of type int64_t or as data of type int32_t. In the latter case,
the returned values may be truncated.

v The llsummary command displays 64-bit information where appropriate.
v The data access API supports both 64-bit and 32-bit access to accounting and

usage information in a history file. See the examples of using the data access
API in LoadLeveler: Command and API Reference for an example of how to use the
ll_get_data subroutine to access information stored in a LoadLeveler history file.

Example: Setting up job accounting files
You can perform all of the steps included in this sample procedure or just the ones
that apply to your situation. The sample procedure shown in Table 14 walks you
through the process of collecting account data.
1. Edit the configuration keywords according to the following table:

Table 14. Collecting account data - modifying configuration keywords

Edit this keyword: To:

ACCT Turn accounting and account validation on and off and specify
detailed accounting.

ACCT_VALIDATION Specify the account validation routine.

GLOBAL_HISTORY Specify a directory in which to place the global history files.

2. Specify account numbers and set up account validation by performing the
following steps:
a. Specify a list of account numbers a user may use when submitting jobs, by

using the account keyword in the user stanza in the administration file.
b. Instruct users to associate an account number with their job, by using the

account_no keyword in the job command file.
c. Specify the ACCT_VALIDATION configuration keyword that identifies the

module that will be called to perform account validation. The default
module is called llacctval. You can replace this module with your
installation's own accounting routine by specifying a new module with this
keyword.

3. Specify machines and their weights by using the speed keyword in a machine's
machine stanza in the administration file.
Also, if you have in your cluster machines of differing speeds and you want
LoadLeveler accounting information to be normalized for these differences,
specify cpu_speed_scale=true in each machine's respective machine stanza.
For example, suppose you have a cluster of two machines, called A and B,
where Machine B is three times as fast as Machine A. Machine A has
speed=1.0, and Machine B has speed=3.0. Suppose a job runs for 12 CPU
seconds on Machine A. The same job runs for 4 CPU seconds on Machine B.
When you specify cpu_speed_scale=true, the accounting information collected
on Machine B for that job shows the normalized value of 12 CPU seconds
rather than the actual 4 CPU seconds.

4. Merge multiple files collected from each machine into one file, using the
llacctmrg command.

Chapter 4. Configuring the LoadLeveler environment 71

5. Report job information on all the jobs in the history file, using the llsummary
command.

Managing job status through control expressions
You can control running jobs by using five control functions as Boolean expressions
in the configuration.

These functions are useful primarily for serial jobs. You define the expressions,
using normal C conventions, with the following functions:
v START
v SUSPEND
v CONTINUE
v VACATE
v KILL

The expressions are evaluated for each job running on a machine using both the
job and machine attributes. Some jobs running on a machine may be suspended
while others are allowed to continue.

The START expression is evaluated twice; once to see if the machine can accept
jobs to run and second to see if the specific job can be run on the machine. The
other expressions are evaluated after the jobs have been dispatched and in some
cases, already running.

When evaluating the START expression to determine if the machine can accept
jobs, Class != "Z" evaluates to true only if Z is not in the class definition. This
means that if two different classes are defined on a machine, Class != "Z" (where Z
is one of the defined classes) always evaluates to false when specified in the
START expression and, therefore, the machine will not be considered to start jobs.

Typically, machine load average, keyboard activity, time intervals, and job class are
used within these various expressions to dynamically control job execution.

For additional information about:
v Time-related variables that you may use for this keyword, see “Variables to use

for setting times” on page 291.
v Coding these control expressions in the configuration keywords, see Chapter 10,

“Configuration keyword reference,” on page 231.

How control expressions affect jobs
After LoadLeveler selects a job for execution, the job can be in any of several
states. Figure 10 on page 73 shows how the control expressions can affect the state
a job is in. The rectangles represent job or daemon states (Idle, Completed,
Running, Suspended, and Vacating) and the diamonds represent the control
expressions (Start, Suspend, Continue, Vacate, and Kill).

72 LoadLeveler: Using and Administering

Criteria used to determine when a LoadLeveler job will enter Start, Suspend,
Continue, Vacate, and Kill states are defined in the LoadLeveler configuration and
they can be different for each machine in the cluster. They can be modified to meet
local requirements.

Tracking job processes
When a job terminates, its orphaned processes may continue to consume or hold
resources, thereby degrading system performance, or causing jobs to hang or fail.

Process tracking allows LoadLeveler to cancel any processes (throughout the entire
cluster), left behind when a job terminates. Process tracking is required to do
preemption by the suspend method when running either the BACKFILL or API
schedulers. Process tracking is optional in all other cases.

Idle

False

False

False

False

False

True

True

True

True

True

Suspended

Completed

Vacating

Start

Suspend

Continue

Vacate

Kill

Running

Figure 10. How control expressions affect jobs

Chapter 4. Configuring the LoadLeveler environment 73

When process tracking is enabled, all child processes are terminated when the
main process terminates. This will include any background or orphaned processes
started in the prolog, epilog, user prolog, and user epilog.

Process tracking on LoadLeveler for Linux is supported only on RHEL 6.

There are two keywords used in specifying process tracking:

PROCESS_TRACKING
To activate process tracking, set PROCESS_TRACKING=TRUE in the
LoadLeveler global configuration file or database. By default,
PROCESS_TRACKING is set to FALSE.

PROCESS_TRACKING_EXTENSION
This keyword is for AIX only. This keyword specifies the path to the loadable
kernel module LoadL_pt_ke in the local or global configuration file or
database. If the PROCESS_TRACKING_EXTENSION keyword is not
supplied, then LoadLeveler will search the $HOME/bin default directory.

The process tracking kernel extension is not unloaded when the startd daemon
terminates on systems running AIX. Therefore, if a mismatch in the version of
the loaded kernel extension and the installed kernel extension is found when
the startd starts up the daemon will exit. In this case, a reboot of the node is
needed to unload the currently loaded kernel extension. If you install a new
version of the LoadLeveler resource manager, which contains a new version of
the kernel extension, you may need to reboot the node.

For information about configuration keyword syntax and other details, see
Chapter 10, “Configuration keyword reference,” on page 231.

Querying multiple LoadLeveler clusters
This topic applies only to those installations having more than one LoadLeveler
cluster, where the separate clusters have not been organized into a multicluster
environment.

To organize separate LoadLeveler clusters into a multicluster environment, see
“LoadLeveler multicluster support” on page 149.

You can query, submit, or cancel jobs in multiple LoadLeveler clusters by setting
up a master configuration file for each cluster and using the LOADL_CONFIG
environment variable to specify the name of the master configuration file that the
LoadLeveler commands must use. The master configuration file must be located in
the /etc directory and the file name must have a format of base_name.cfg where
base_name is a user defined identifier for the cluster.

The default name for the master configuration file is /etc/LoadL.cfg. The format for
the LOADL_CONFIG environment variable is LOADL_CONFIG=/etc/
base_name.cfg or LOADL_CONFIG=base_name. When you use the form
LOADL_CONFIG=base_name, the prefix /etc and suffix .cfg are appended to the
base_name.

The following example explains how you can set up a machine to query multiple
clusters:

You can configure /etc/LoadL.cfg to point to the configuration files for the "default"
cluster, and you can configure /etc/othercluster.cfg to point to the configuration
files of another cluster which the user can select.

74 LoadLeveler: Using and Administering

For example, you can enter the following query command:
$ llq

The llq command uses the configuration from /etc/LoadL.cfg and queries job
information from the "default" cluster.

To send a query to the cluster defined in the configuration file of
/etc/othercluster.cfg, enter:
$ env LOADL_CONFIG=othercluster llq

Note that the machine from which you issue the llq command is considered as a
submit-only machine by the other cluster.

Handling switch-table errors
Configuration keywords can be used to control how LoadLeveler responds to
switch-table errors.

You may use the following configuration keywords to control how LoadLeveler
responds to switch-table errors:
v ACTION_ON_SWITCH_TABLE_ERROR
v DRAIN_ON_SWITCH_TABLE_ERROR
v RESUME_ON_SWITCH_TABLE_ERROR_CLEAR

For information about configuration keyword syntax and other details, see
Chapter 10, “Configuration keyword reference,” on page 231.

Providing additional job-processing controls through
installation exits

LoadLeveler allows administrators to further configure the environment through
installation exits.

Table 15 lists these additional job-processing controls.

Table 15. Roadmap of administrator tasks accomplished through installation exits

To learn about: Read the following:

Writing a program to control when jobs
are scheduled to run

“Controlling the central manager scheduling
cycle” on page 76

Writing a pair of programs to override
the default LoadLeveler DCE
authentication method

“Handling DCE security credentials” on page 77

Writing a program to refresh an AFS
token when a job starts

“Handling an AFS token” on page 78

Writing a program to check or modify
job requests when they are submitted

“Filtering a job script” on page 79

Writing programs to run before and
after job requests

“Writing prolog and epilog programs” on page 80

Overriding the LoadLeveler default
mail notification method

“Using your own mail program” on page 85

Defining a cluster metric to determine
where a remote job is distributed

See the CLUSTER_METRIC configuration
keyword description in Chapter 10, “Configuration
keyword reference,” on page 231.

Chapter 4. Configuring the LoadLeveler environment 75

Table 15. Roadmap of administrator tasks accomplished through installation exits (continued)

To learn about: Read the following:

Defining cluster user mapper for
multicluster environment

See the CLUSTER_USER_MAPPER configuration
keyword description in Chapter 10, “Configuration
keyword reference,” on page 231.

Correctly specifying configuration
keywords

Chapter 10, “Configuration keyword reference,” on
page 231

Writing an installation exit that can
determine the frequency to use to run a
job

“Determining the frequency to use to run a job”
on page 85

Controlling the central manager scheduling cycle
To determine when to run the LoadLeveler scheduling algorithm, the central
manager uses the values set in the configuration for the
NEGOTIATOR_INTERVAL and the NEGOTIATOR_CYCLE_DELAY keywords.
The central manager will run the scheduling algorithm every
NEGOTIATOR_INTERVAL seconds, unless some event takes place such as the
completion of a job or the addition of a machine to the cluster. In such cases, the
scheduling algorithm is run immediately. When NEGOTIATOR_CYCLE_DELAY is
set, a minimum of NEGOTIATOR_CYCLE_DELAY seconds will pass between the
central manager's scheduling attempts, regardless of what other events might take
place. When the NEGOTIATOR_INTERVAL is set to zero, the central manager
will not run the scheduling algorithm until instructed to do so by an authorized
process. This setting enables your program to control the central manager's
scheduling activity through one of the following:
v The llrunscheduler command.
v The ll_run_scheduler subroutine.

Both the command and the subroutine instruct the central manager to run the
scheduling algorithm.

You might choose to use this setting if, for example, you want to write a program
that directly controls the assignment of the system priority for all LoadLeveler jobs.
In this particular case, you would complete the following steps to control system
priority assignment and the scheduling cycle:
1. Decide the following:

v Which system priority value to assign to jobs from specific sources or with
specific resource requirements.

v How often the central manager should run the scheduling algorithm. Your
program has to be designed to issue the ll_run_scheduler subroutine at
regular intervals; otherwise, LoadLeveler will not attempt to schedule any
job steps.

You also need to understand how changing the system priority affects the job
queue. After you successfully use the ll_modify subroutine or the llmodify
command to change system priority values, LoadLeveler will not readjust the
values for those job steps when the negotiator recalculates priorities at regular
intervals set through the
NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL keyword. Also, you
can change the system priority for jobs only when those jobs are in the Idle
state or a state similar to it. To determine which job states are similar to the
Idle state or to the Running state, see the table in “LoadLeveler job states” on
page 19.

2. Code a program to use LoadLeveler APIs to perform the following functions:
a. Use the Data Access APIs to obtain data about all jobs.

76 LoadLeveler: Using and Administering

b. Determine whether jobs have been added or removed.
c. Use the ll_modify subroutine to set the system priority for the LoadLeveler

jobs. The values you set through this subroutine will not be readjusted
when the negotiator recalculates job step priorities.

d. Use the ll_run_scheduler subroutine to instruct the central manager to run
the scheduling algorithm.

e. Set a timer for the scheduling interval, to repeat the scheduling instruction
at regular intervals. This step is required to replace the effect of setting the
configuration keyword NEGOTIATOR_CYCLE_DELAY, which LoadLeveler
ignores when NEGOTIATOR_INTERVAL is set to zero.

3. In the configuration file or database, set values for the following keywords:
v Set the NEGOTIATOR_INTERVAL keyword to zero to stop the central

manager from automatically recalculating system priorities for jobs.
v (Optional) Set the SYSPRIO_THRESHOLD_TO_IGNORE_STEP keyword to

specify a threshold value. If the system priority assigned to a job step is less
than this threshold value, the job will remain idle.

4. Issue the llctl command with either the reconfig or recycle keyword.
Otherwise, LoadLeveler will not process the modifications you made to the
configuration file or database.

5. (Optional) To make sure that the central manager's automatic scheduling
activity has been disabled (by setting the NEGOTIATOR_INTERVAL keyword
to zero), use the llstatus command.

6. Run your program under a user ID with administrator authority.

Once this procedure is complete, you might want to use one or more of the
following commands to make sure that jobs are scheduled according to the correct
system priority. The value of q_sysprio in command output indicates the system
priority for the job step.
v Use the command llq -s to detect whether a job step is idle because its system

priority is below the value set for the
SYSPRIO_THRESHOLD_TO_IGNORE_STEP keyword.

v Use the command llq -l to display the previous system priority for a job step.
v When unusual circumstances require you to change system priorities manually:

1. Use the command llmodify -s to set the system priority for LoadLeveler jobs.
The values you set through this command will not be readjusted when the
negotiator recalculates job step priorities.

2. Use the llrunscheduler command to instruct the central manager to run the
scheduling algorithm.

Handling DCE security credentials
You can write a pair of programs to override the default LoadLeveler DCE
authentication method. To enable the programs, use the
DCE_AUTHENTICATION_PAIR keyword in your configuration file or database:
v As an alternative, you can also specify the program pair:

DCE_AUTHENTICATION_PAIR = $(BIN)/llgetdce, $(BIN)/llsetdce

Specifying the DCE_AUTHENTICATION_PAIR keyword enables LoadLeveler
support for forwarding DCE credentials to LoadLeveler jobs. You may override the
default function provided by LoadLeveler to establish DCE credentials by
substituting your own programs.

Using the alternative program pair: llgetdce and llsetdce: The program pair,
llgetdce and llsetdce, forwards DCE credentials by copying credential cache files

Chapter 4. Configuring the LoadLeveler environment 77

from the submitting machine to the executing machines. While this technique may
require less overhead, it has been known to produce credentials on the executing
machines which are not fully capable of being forwarded by rsh commands. This is
the only pair of programs offered in earlier releases of LoadLeveler.

Forwarding DCE credentials: An example of a credentials object is a character
string containing the DCE principle name and a password.

program1 writes the following to standard output:
v The length of the handle to follow
v The handle

If program1 encounters errors, it writes error messages to standard error.

program2 receives the following as standard input:
v The length of the handle to follow
v The same handle written by program1

program2 writes the following to standard output:
v The length of the login context to follow
v An exportable DCE login context, which is the idl_byte array produced from the

sec_login_export_context DCE API call. For more information, see the DCE
Security Services API chapter in the Distributed Computing Environment for AIX:
Application Development Reference.

v A character string suitable for assigning to the KRB5CCNAME environment
variable This string represents the location of the credentials cache established in
order for program2 to export the DCE login context.

If program2 encounters errors, it writes error messages to standard error. The parent
process, the LoadLeveler starter process, writes those messages to the starter log.

For examples of programs that enable DCE security credentials, see the
samples/lldce subdirectory in the release directory.

Handling an AFS token
You can write a program, run by the scheduler, to refresh an AFS token when a job
is started. To invoke the program, use the AFS_GETNEWTOKEN keyword in
your configuration file.

Before running the program, LoadLeveler sets up standard input and standard
output as pipes between the program and LoadLeveler. LoadLeveler also sets up
the following environment variables:
LOADL_STEP_OWNER

The owner (UNIX user name) of the job
LOADL_STEP_COMMAND

The name of the command the user's job step invokes.
LOADL_STEP_CLASS

The class this job step will run.
LOADL_STEP_ID

The step identifier, generated by LoadLeveler.
LOADL_JOB_CPU_LIMIT

The number of CPU seconds the job is limited to.
LOADL_WALL_LIMIT

The number of wall clock seconds the job is limited to.

78 LoadLeveler: Using and Administering

LoadLeveler writes the following current AFS credentials, in order, over the
standard input pipe:
v The ktc_principal structure indicating the service.
v The ktc_principal structure indicating the client.
v The ktc_token structure containing the credentials.

The ktc_principal structure is defined in the AFS header file afs_rxkad.h. The
ktc_token structure is defined in the AFS header file afs_auth.h.

LoadLeveler expects to read these same structures in the same order from the
standard output pipe, except these should be refreshed credentials produced by the
installation exit.

The installation exit can modify the passed credentials (to extend their lifetime)
and pass them back, or it can obtain new credentials. LoadLeveler takes whatever
is returned and uses it to authenticate the user prior to starting the user's job.

Filtering a job script
You can write a program to filter a job script when the job is submitted to the local
cluster and when the job is submitted from a remote cluster. This program can, for
example, modify defaults or perform site specific verification of parameters. To
invoke the local job filter, specify the SUBMIT_FILTER keyword in your
configuration file or database. To invoke the remote job filter, specify the
CLUSTER_REMOTE_JOB_FILTER keyword in your configuration file or database.
For more information on these keywords, see the SUBMIT_FILTER or
CLUSTER_REMOTE_JOB_FILTER keyword in Chapter 10, “Configuration
keyword reference,” on page 231.

LoadLeveler sets the following environment variables when the program is
invoked:
LOADL_ACTIVE

LoadLeveler version
LOADL_STEP_COMMAND

Job command file name
LOADL_STEP_ID

The job identifier, generated by LoadLeveler
LOADL_STEP_OWNER

The owner (UNIX user name) of the job

For details about specific keyword syntax and use in the configuration, see
Chapter 10, “Configuration keyword reference,” on page 231.

A sample filter script, to add island scheduling requirements to all jobs, can be
found in the samples directory of the LoadLeveler installation.

On AIX:
/usr/lpp/LoadL/scheduler/full/samples/submit_filter.pl
/usr/lpp/LoadL/resmgr/full/samples/submit_filter.pl

On Linux:
/opt/ibmll/LoadL/scheduler/full/samples/submit_filter.pl
/opt/ibmll/LoadL/resmgr/full/samples/submit_filter.pl

The submit_filter.pl filter will have the following characteristics:
v All job steps will end up with node_usage=not_shared.
v All job steps will end up with node_topology=island.

Chapter 4. Configuring the LoadLeveler environment 79

v The script will differentiate between batch and interactive job steps based on
class name. For interactive job steps it will add a preference for island ==
“island01”.

Writing prolog and epilog programs
An administrator can write prolog and epilog installation exits that can run before
and after a LoadLeveler job runs, respectively.

Prolog and epilog programs fall into two types:
v Those that run as the LoadLeveler user ID.
v Those that run in a user's environment.

Depending on the type of processing you want to perform before or after a job
runs, specify one or more of the following configuration keywords, in any
combination:
v To run a prolog or epilog program under the LoadLeveler user ID, specify

JOB_PROLOG or JOB_EPILOG, respectively.
v To run a prolog or epilog program under the user's environment, specify

JOB_USER_PROLOG or JOB_USER_EPILOG, respectively.

You do not have to provide a prolog/epilog pair of programs. You may, for
example, use only a prolog program that runs under the LoadLeveler user ID.

For details about specific keyword syntax and use in the configuration, see
Chapter 10, “Configuration keyword reference,” on page 231.

Note: If process tracking is enabled and your prolog or epilog program invokes
the mailx command, set the sendwait variable to prevent the background mail
process from being killed by process tracking.

A user environment prolog or epilog runs with AFS authentication if installed and
enabled. For security reasons, you must code these programs on the machines
where the job runs and on the machine that schedules the job. If you do not define
a value for these keywords, the user environment prolog and epilog settings on the
executing machine are ignored.

The user environment prolog can set environment variables for the job by sending
information to standard output in the following format:
env id = value

Where:
id Is the name of the environment variable
value Is the value (setting) of the environment variable

Note: Each line of output can contain a maximum of 65,534 characters. All lines
containing more than 65,534 characters will be ignored.

For example, the user environment prolog sets the environment variable
STAGE_HOST for the job:
#!/bin/sh
echo env STAGE_HOST=shd22

Coding conventions for prolog programs:
The prolog program is invoked by the starter process. Once the starter process
invokes the prolog program, the program obtains information about the job from
environment variables.

80 LoadLeveler: Using and Administering

Syntax:
prolog_program

Where prolog_program is the name of the prolog program as defined in the
JOB_PROLOG keyword.

No arguments are passed to the program, but several environment variables are
set. For more information on these environment variables, see “Run-time
environment variables” on page 384.

The real and effective user ID of the prolog process is the LoadLeveler user ID. If
the prolog program requires root authority, the administrator must write a secure
C or Perl program to perform the desired actions. You should not use shell scripts
with set uid permissions, since these scripts may make your system susceptible to
security problems.

Return code values:
0 The job will begin.

If the prolog program is ended with a signal, the job does not begin and a message
is written to the starter log.

Sample prolog programs:

v Sample of a prolog program for korn shell:
#!/bin/ksh
#
Set up environment
set -a
. /etc/environment
. /.profile
export PATH="$PATH:/loctools/lladmin/bin"
export LOG="/tmp/$LOADL_STEP_OWNER.$LOADL_STEP_ID.prolog"
#
Do set up based upon job step class
#
case $LOADL_STEP_CLASS in

A OSL job is about to run, make sure the osl filesystem is
mounted. If status is negative then filesystem cannot be
mounted and the job step should not run.
"OSL")

mount_osl_files >> $LOG
if [status = 0]

then EXIT_CODE=1
else

EXIT_CODE=0
fi
;;

A simulation job is about to run, simulation data has to
be made available to the job. The status from copy script must
be zero or job step cannot run.
"sim")

copy_sim_data >> $LOG
if [status = 0]

then EXIT_CODE=0
else

EXIT_CODE=1
fi
;;

All other job will require free space in /tmp, make sure
enough space is available.
*)

Chapter 4. Configuring the LoadLeveler environment 81

check_tmp >> $LOG
EXIT_CODE=$?
;;

esac
The job step will run only if EXIT_CODE == 0
exit $EXIT_CODE

v Sample of a prolog program for C shell:
#!/bin/csh
#
Set up environment
source /u/loadl/.login
#
setenv PATH "${PATH}:/loctools/lladmin/bin"
setenv LOG "/tmp/${LOADL_STEP_OWNER}.${LOADL_STEP_ID}.prolog"
#
Do set up based upon job step class
#
switch ($LOADL_STEP_CLASS)

A OSL job is about to run, make sure the osl filesystem is
mounted. If status is negative then filesystem cannot be
mounted and the job step should not run.
case "OSL":

mount_osl_files >> $LOG
if ($status < 0) then

set EXIT_CODE = 1
else

set EXIT_CODE = 0
endif
breaksw

A simulation job is about to run, simulation data has to
be made available to the job. The status from copy script must
be zero or job step cannot run.
case "sim":

copy_sim_data >> $LOG
if ($status == 0) then

set EXIT_CODE = 0
else

set EXIT_CODE = 1
endif
breaksw

All other job will require free space in /tmp, make sure
enough space is available.
default:

check_tmp >> $LOG
set EXIT_CODE = $status
breaksw

endsw

The job step will run only if EXIT_CODE == 0
exit $EXIT_CODE

Coding conventions for epilog programs:
The installation-defined epilog program is invoked after a job step has completed.
The purpose of the epilog program is to perform any required clean up such as
unmounting file systems, removing files, and copying results. The exit status of
both the prolog program and the job step is set in environment variables.

Syntax:
epilog_program

Where epilog_program is the name of the epilog program as defined in the
JOB_EPILOG keyword.

82 LoadLeveler: Using and Administering

No arguments are passed to the program but several environment variables are set.
These environment variables are described in “Run-time environment variables” on
page 384. In addition, the following environment variables are set for the epilog
programs:

LOADL_PROLOG_EXIT_CODE
The exit code from the prolog program. This environment variable is set
only if a prolog program is configured to run.

LOADL_USER_PROLOG_EXIT_CODE
The exit code from the user prolog program. This environment variable is
set only if a user prolog program is configured to run.

LOADL_JOB_STEP_EXIT_CODE
The exit code from the job step.

Note: To interpret the exit status of the prolog program and the job step, convert
the string to an integer and use the macros found in the sys/wait.h file. These
macros include:
v WEXITSTATUS: gives you the exit code
v WTERMSIG: gives you the signal that terminated the program
v WIFEXITED: tells you if the program exited
v WIFSIGNALED: tells you if the program was terminated by a signal

The exit codes returned by the WEXITSTATUS macro are the valid codes.
However, if you look at the raw numbers in sys/wait.h, the exit code may appear
to be 256 times the expected return code. The numbers in sys/wait.h are the wait3
system calls.

Sample epilog programs:

v Sample of an epilog program for korn shell:
#!/bin/ksh
#
Set up environment
set -a
. /etc/environment
. /.profile
export PATH="$PATH:/loctools/lladmin/bin"
export LOG="/tmp/$LOADL_STEP_OWNER.$LOADL_STEP_ID.epilog"
#
if [[-z $LOADL_PROLOG_EXIT_CODE]]
then
echo "Prolog did not run" >> $LOG
else
echo "Prolog exit code = $LOADL_PROLOG_EXIT_CODE" >> $LOG
fi
#
if [[-z $LOADL_USER_PROLOG_EXIT_CODE]]
then
echo "User environment prolog did not run" >> $LOG

else
echo "User environment exit code = $LOADL_USER_PROLOG_EXIT_CODE" >> $LOG

fi
#
if [[-z $LOADL_JOB_STEP_EXIT_CODE]]
then
echo "Job step did not run" >> $LOG

else
echo "Job step exit code = $LOADL_JOB_STEP_EXIT_CODE" >> $LOG

fi
#
#
Do clean up based upon job step class
#
case $LOADL_STEP_CLASS in

Chapter 4. Configuring the LoadLeveler environment 83

A OSL job just ran, unmount the filesystem.
"OSL")
umount_osl_files >> $LOG
;;

A simulation job just ran, remove input files.
Copy results if simulation was successful (second argument
contains exit status from job step).
"sim")
rm_sim_data >> $LOG
if [$2 = 0]
then copy_sim_results >> $LOG

fi
;;

Clean up /tmp
*)
clean_tmp >> $LOG
;;

esac

v Sample of an epilog program for C shell:
#!/bin/csh
#
Set up environment
source /u/loadl/.login
#
setenv PATH "${PATH}:/loctools/lladmin/bin"
setenv LOG "/tmp/${LOADL_STEP_OWNER}.${LOADL_STEP_ID}.prolog"
#
if (${?LOADL_PROLOG_EXIT_CODE}) then
echo "Prolog exit code = $LOADL_PROLOG_EXIT_CODE" >> $LOG
else
echo "Prolog did not run" >> $LOG
endif
#
if (${?LOADL_USER_PROLOG_EXIT_CODE}) then

echo "User environment exit code = $LOADL_USER_PROLOG_EXIT_CODE" >> $LOG
else
echo "User environment prolog did not run" >> $LOG

endif
#
if (${?LOADL_JOB_STEP_EXIT_CODE}) then

echo "Job step exit code = $LOADL_JOB_STEP_EXIT_CODE" >> $LOG
else
echo "Job step did not run" >> $LOG

endif
#
Do clean up based upon job step class
#
switch ($LOADL_STEP_CLASS)
A OSL job just ran, unmount the filesystem.
case "OSL":
umount_osl_files >> $LOG
breaksw

A simulation job just ran, remove input files.
Copy results if simulation was successful (second argument
contains exit status from job step).
case "sim":
rm_sim_data >> $LOG
if ($argv{2} == 0) then
copy_sim_results >> $LOG

endif
breaksw

Clean up /tmp
default:
clean_tmp >> $LOG
breaksw

endsw

84 LoadLeveler: Using and Administering

Using your own mail program
You can write a program to override the LoadLeveler default mail notification
method. You can use this program, for example, to display your own messages to
users when a job completes, or to automate tasks such as sending error messages
to a network manager.

The syntax for the program is the same as it is for standard UNIX mail programs;
the command is called with the following arguments:
v -s to indicate a subject.
v A pointer to a string containing the subject.
v A pointer to a string containing a list of mail recipients.

The mail message is taken from standard input.

To enable this program to replace the default mail notification method, use the
MAIL keyword in the configuration file. For details about specific keyword syntax
and use in the configuration, see Chapter 10, “Configuration keyword reference,”
on page 231.

Determining the frequency to use to run a job

You can write an installation exit that can determine the frequency to use to run a
job. The first time a job is submitted, it runs in the nominal frequency. LoadLeveler
gathers the hardware counters for the job and generates the energy tag. When the
job runs again, LoadLeveler runs the specified installation exit program to
determine the frequency to use to run the job. The energy tag name that was
generated during the first run is passed to the user program by the
LL_ENERGY_TAG_NAME environment variable. The user program can query the
energy tag information by using the LoadLeveler API if needed.

The external frequency program is invoked by the Startd process before the job
runs.

Syntax:

external_program

where:

external_program
Is the name of the program as defined in the
EXT_ENERGY_POLICY_PROGRAM keyword. No arguments are passed to
the program.

The LL_ENERGY_TAG_NAME environment variable is exported to the program
and can be used to query the energy data generated for this tag by LoadLeveler.
For more information about the environment variable, see “Run-time environment
variables” on page 384.

Return code values:

>0 The calculated frequency for running the job.

LoadLeveler uses the returned value as the frequency to use for running the job. If
the program returns 0 or a negative value, the job will run at the nominal
frequency.

Sample external frequency program:

Chapter 4. Configuring the LoadLeveler environment 85

The following is a sample C program, which returns the frequency to use to run a
job:
/*
* --
* Determine the frequency of the job by the user program
* ---
*/

#include <stdio.h>
#include <stdlib.h>
#include <sys/types.h>
#include <string.h>
#include <assert.h>
#include <errno.h>
#include <stdint.h> // for uint64_t
#include "llrapi.h"

int
main(int argc, char *argv[]) {

int frequency = -1;

// query the energy tag info if needed.
llr_resmgr_handle_t *rm_handle;
llr_query_handle_t *q_handle = NULL;
llr_element_t *err_object;
llr_element_t **object_list;
llr_element_t *etag = NULL;
llr_data_list_t policy_list;
llr_etag_policy policy;
void* p = (void *)&policy;
int rc;
int i;
llr_query_filter_t etag_q_filter[1];
int etag_filter_cnt = 1;
char **etag_name = (char**)malloc(2*sizeof(char*));
bzero(etag_name, 2* sizeof(char *));
assert(argc > 1);
*etag_name = strdup(argv[1]);
etag_q_filter[0].filter_type = LLR_QUERY_ETAGNAME; /* take tag name as the query filter */
etag_q_filter[0].filter_data = etag_name;

err_object = NULL;
rc = llr_init_resmgr(LLR_API_VERSION, &rm_handle, &err_object);
if (rc != LLR_API_OK) {

fprintf(stderr, "Resource manager API can not be intialized.\n");
if (err_object) {

llr_error(&err_object, LLR_ERROR_PRINT_STDERR);
}
exit(-1);

}

rc = llr_query_set(rm_handle, &q_handle, LLR_ENERGYTAG_QUERY, etag_filter_cnt, \
etag_q_filter, &err_object);
if (rc != LLR_API_OK) {

fprintf(stderr, "Failed to set up job query.\n");
if (err_object) {

llr_error(&err_object, LLR_ERROR_PRINT_STDERR);
}
exit(-1);

}

rc = llr_query_get_data(rm_handle, q_handle, LLR_QUERY_RESOURCE_MANAGER, NULL, \
&object_list, &err_object);
if (rc != LLR_API_OK) {

if (err_object) {
llr_error(&err_object, LLR_ERROR_PRINT_STDERR);

}
fprintf(stderr, "llr_query_get_data failed.\n");
exit(-1);

}

if (object_list==NULL || object_list[0]==NULL) {
fprintf(stdout, "No policy record found.\n");
exit(0);

}

memset(&policy, 0, sizeof(policy));
for (i=0; object_list&&(etag = object_list[i])!=NULL; i++) {

rc += llr_get_data(rm_handle, etag, LLR_ETagGetPolicyList, &policy_list, \

86 LoadLeveler: Using and Administering

&err_object); p = &policy;
rc += llr_get_data(rm_handle, &policy_list, LLR_ETagGetFirstPolicy, (void*)&p, \
&err_object); while (p != NULL) {

fprintf(stdout, "user=%s, etag_name=%s, freq=%d KHZ, est. energy=%f KWH, \
est. time=%d s, perfd=%f%%, energy saving=%f%%\n", policy.username, \
policy.energy_tag_name, policy.frequency, policy.predict_power, \
policy.predict_elapse_time, policy.perf_degrad_pct*100, \
policy.energy_saving_pct*100); memset(&policy, 0, sizeof(policy))\
;p = &policy; rc += llr_get_data(rm_handle, &policy_list, \
LLR_ETagGetNextPolicy,(void*)&p, &err_object);

}

err_object = NULL;
if (rc != LLR_API_OK) {

if (err_object) {
llr_error(&err_object, LLR_ERROR_PRINT_STDERR);

}
fprintf(stderr, "llr_get_data failed.\n");
exit(-1);

}
}
rc = llr_query_free_data(rm_handle, &q_handle, &err_object);
llr_free_resmgr(&rm_handle, &err_object);

// calculate the frequency by user logic
frequency = valid_frequency;

return frequency;
}

To compile the source code, use this command:
gcc -o myengprog -lllrapi -I /opt/ibmll/LoadL/resmgr/full/include myengprog.c

Chapter 4. Configuring the LoadLeveler environment 87

88 LoadLeveler: Using and Administering

Chapter 5. Defining LoadLeveler resources to administer

After installing LoadLeveler, you can customize it by modifying the administration
file, or if the database configuration option is used, by using the llconfig or
llrconfig command with the -s option, or by using the configuration editor to
modify the tables for the machines, machine_groups, classes, users, and groups.

For file-based configuration, the administration file optionally lists and defines the
machines in the LoadLeveler cluster and the characteristics of classes, users, and
groups.

LoadLeveler does not prevent you from having multiple copies of administration
files, but you need to be sure to update all the copies whenever you make a
change to one. Having only one administration file prevents any confusion.

Table 16 lists the LoadLeveler resources you may define by modifying the
administration file.

Table 16. Roadmap of tasks for modifying the LoadLeveler administration file

To learn about: Read the following:

Defining LoadLeveler
resources to administer

v “Defining machines”

v “Dynamic adapter discovery” on page 93

v “LoadLeveler adapter and node status monitoring” on
page 94

v “Defining classes” on page 94

v “Defining users” on page 102

v “Defining groups” on page 103

v “Defining clusters” on page 104

Correctly specifying
administration file keywords

Chapter 11, “Administration keyword reference,” on page
293

Defining machines
Characteristics of a machine may be defined in a machine stanza, a machine group
stanza, or a machine sub-stanza of a machine group.

A machine_group stanza groups together machines with similar characteristics.
Using machine_groups reduces the need to specify each machine in the cluster in
the administration file because each machine_group stanza can specify a
machine_list that supports machine range expressions similar to the syntax
supported by xCAT.

If you do not specify a machine or machine_group stanza for a machine in the
cluster, the machines can still communicate with one another and jobs are
scheduled on the machine but the machine is assigned the default values specified
in the default machine_group stanza. If there is no default stanza, the machine is
assigned default values set by LoadLeveler.

If you set the MACHINE_AUTHENTICATE keyword to true in the configuration
file, then for each machine that LoadLeveler includes in the cluster you must either

© Copyright IBM Corp. 1986, 2012 89

create a machine stanza or include the machine in a machine_group using either a
machine substanza or the machine_list keyword.

In the LoadLeveler configuration, machine names are stored in lower case, so all
references to the machine names must be in lower case.

Planning considerations for defining machines
There are several matters to consider before customizing the administration file.
Before customizing the administration file, consider the following:
v Node availability

Some workstation owners might agree to accept LoadLeveler jobs only when
they are not using the workstation themselves. Using LoadLeveler keywords,
these workstations can be configured to be available at designated times only.

v Common name space

To run jobs on any machine in the LoadLeveler cluster, a user needs the same
uid (the user ID number for a user) and gid (the group ID number for a group)
on every machine in the cluster.
For example, if there are two machines in your LoadLeveler cluster, machine_1
and machine_2, user john must have the same user ID and login group ID in the
/etc/passwd file on both machines. If user john has user ID 1234 and login group
ID 100 on machine_1, then user john must have the same user ID and login
group ID in /etc/passwd on machine_2. (LoadLeveler requires a job to run with
the same group ID and user ID of the person who submitted the job.)
If you do not have a user ID on one machine, your jobs will not run on that
machine. Also, many commands, such as llq, will not work correctly if a user
does not have a user ID on the central manager machine.
However, there are cases where you may choose to not give a user a login ID on
a particular machine. For example, a user does not need an ID on every
submit-only machine; the user only needs to be able to submit jobs from at least
one such machine. Also, you may choose to restrict a user's access to a Schedd
machine that is not a public scheduler; again, the user only needs access to at
least one Schedd machine.

v Resource handling

Some nodes in the LoadLeveler cluster might have special software installed that
users might need to run their jobs successfully. You should configure
LoadLeveler to distinguish those nodes from other nodes using, for example,
machine features.

Machine_group stanza format and keyword summary

Machine_group stanzas take the following format. The default values for keywords
appear in bold:
label: {

type = machine_group
adapter_list = adapter_name...
class = class_name(count) class_name(count) ... class_name(count)
cpu_speed_scale = true | false
feature = feature_name...
island = name
machine_list = range_expression
machine_mode = batch | interactive | general
master_node_exclusive = true | false
max_jobs_scheduled = number
max_starters = number
dstg_max_starters = number

90 LoadLeveler: Using and Administering

name_server = list
pool_list = pool_numbers
power_management_policy =start_time;duration | off
prestarted_starters = number
region = region_name
reservation_permitted = true | false
resources = name(count) name(count) ... name(count)
schedd_fenced = true | false
schedd_host = true | false
schedd_runs_here = true | false
speed = number
startd_runs_here = true | false
submit_only = true | false

}

Notes:

1. The central manager keyword is not supported in the machine_group stanza.
Instead, the central_manager_list keyword should be specified in the
configuration file or database.

2. Each of these machine stanza keywords apply to all machines within the group.
For example, specifying reservation_permitted = false in a machine_group
stanza means that every machine in that machine group has
reservation_permitted set to false.

3. The machine_list keyword is optional when there are machine substanzas,
otherwise machine_list must be present.

4. A machine can belong to only one machine_group. Machines can also be
defined in separate machine stanzas outside of any machine_group.

Machine substanza format and keyword summary

The following example shows a substanza of type machine. The default values for
keywords appear in bold:
label: {

type = machine_group
...
label: {
type = machine
feature = feature_name...
master_node_exclusive = true | false
max_jobs_scheduled = number
schedd_fenced = true | false
schedd_host = true | false
schedd_runs_here = true | false
startd_runs_here = true | false
}
}

Notes:

1. Not all keywords that are permitted in machine and machine_group stanzas
may be specified in a machine substanza. If it is necessary to override a
machine_group setting for a machine, then that machine should be defined in
its own machine stanza outside of any machine_group.

2. A machine may appear as a machine substanza and in the machine_list within
the same machine_group stanza.

Machine stanza format and keyword summary
Machine stanzas take the following format. The default values for keywords
appear in bold:

Chapter 5. Defining LoadLeveler resources to administer 91

label: type = machine
adapter_list = adapter_name...
class = class_name(count) class_name(count) ... class_name(count)
cpu_speed_scale = true | false
feature = feature_name...
island = name
machine_mode = batch | interactive | general
master_node_exclusive = true | false
max_jobs_scheduled = number
max_starters = number
dstg_max_starters = number
name_server = list
pool_list = pool_numbers
power_management_policy =start_time;duration | off
prestarted_starters = number
region = region_name
reservation_permitted = true | false
resources = name(count) name(count) ... name(count)
schedd_fenced = true | false
schedd_host = true | false
schedd_runs_here = true | false
speed = number
startd_runs_here = true | false
submit_only = true | false

Default values for machine_group and machine stanzas

A special machine_group stanza with the name of default can be specified to
define the values for keywords for all other machine_group and machine stanzas.
Any keyword not explicitly defined in the default machine_group stanza is
assigned a default value by LoadLeveler. The rules governing these default values
include:
v A machine inherits the attributes from its machine_group. If a machine does not

belong to a machine_group, it inherits the attributes from the default
machine_group.

v A default machine_group stanza must come before any other machine_group
stanzas.

v The machine_list keyword and machine substanzas are not allowed in a default
machine_group stanza.

v If there are any machine_group stanzas present in the administration file at all,
then a default machine stanza cannot be specified (it will be considered an
error). Both machine and machine_group stanzas inherit the values specified in
the default machine_group stanza.

v A nondefault machine_group stanza serves as the default stanza of all the
machines its machine_list covers.

v The explicitly defined machine substanza will also use the machine_group
stanza's keywords as default, even if it is not included in the range the
machine_list represents.

Examples of machine_group and machine stanzas
These machine stanza examples may apply to your situation.
v Example 1

This example sets up a submit-only node. Note that the submit-only keyword in
the example is set to true, while the schedd_host keyword is set to false. You
must also ensure that you set the schedd_host to true on at least one other node
in the cluster.

92 LoadLeveler: Using and Administering

#
machine_b: type = machine
schedd_host = false # not a scheduling machine
submit_only = true # submit only machine

v Example 2
default: {
type = machine_group
machine_mode = general
pool_list = 1 7
startd_runs_here = true
schedd_runs_here = false
}

MG1: {
type = machine_group
schedd_host = true
resources = ConsumableCpus(all)
machine_list = x330n01-x330n99,-x330n10,-x330n20
x330n50: {

type = machine
schedd_runs_here = true
startd_runs_here = false
}

}

MG2: {
Type = machine_group
Pool_list = 1
resources = ConsumableCpus(4)
Machine_list = x330n10,x330n20
}

In this example, x330n50 is the only machine in the cluster where a Schedd
daemon will be started, and no Startd daemon will run there. X330n10 and
x330n20 are defined as belonging only to pool 1 and having only 4
ConsumableCpus available, while all other machines in the cluster belong to
both pool 1 and pool 7 and all machines in MG1 have all of their CPUs available
as ConsumableCpus.

Dynamic adapter discovery
Adapters are dynamically discovered by the LoadLeveler startd daemon by
querying the system configuration and the Protocol Network Services Daemon
(PNSD). Startd sends the adapter configuration to the negotiator, resource manager,
and region manager daemons on start up and reconfiguration. User space jobs will
be supported using InfiniBand or the Host Fabric Interface (HFI) adapters, if PNSD
is installed on the nodes. If PNSD is not installed, all adapters will be treated as
Ethernet adapters.

The Startd daemon polls the system configuration and PNSD every
(POLLS_PER_UPDATE * POLLING_FREQUENCY) seconds to pick up any new
information. Any changes discovered are sent to the negotiator, resource manager,
and region manager.

If only certain adapter interfaces are to be used for a machine, then the
adapter_list keyword under the machine or machine_group stanza can be used to
list the adapter interface names in the order that will be used for scheduling jobs.
If this keyword is not specified in the machine or machine group configuration,
then all discovered adapters will be used.

Notes for InfiniBand adapters:

Chapter 5. Defining LoadLeveler resources to administer 93

1. LoadLeveler distributes the switch adapter windows of the InfiniBand adapter
equally among its ports and the allocation is not adjusted should all of the
resources on one port be consumed.

2. If one InfiniBand port is in use exclusively, no other ports on the InfiniBand
adapter can be used for any other job.

3. Because InfiniBand adapters do not support rCxt blocks, jobs that request
InfiniBand adapters and rCxt blocks with the rcxtblocks keyword on the
network statement will remain in the idle state. You can use the llstatus -a
command to see rCxt blocks on adapters (see the llstatus command in
LoadLeveler: Command and API Reference for more information).

LoadLeveler adapter and node status monitoring
Machine and adapter configuration and status changes will be detected by the
region manager and the startd daemons. If the region manager daemon is not
configured, the adapter and node status will only come from the configuration
information available to the startd daemon and will not reflect the actual
connectivity of the adapter or node.

Note: The region manager node must have similar connectivity to the network as
the executing machine it manages, so that all of its configured network interfaces
are able to connect to all of the executing machine's network interfaces.

The startd daemon generates its adapter configuration and local status and sends
the information to the region manager, central manager, and resource manager.
Adapter evaluations are done by the startd during the polls_per_update *
polling_frequency intervals. The polling keywords will trigger how often the
adapter information is updated. Node and adapter information and status will be
sent to the daemons if changes were detected by the startd. The startd also sends
heartbeats to the region manager over each of its configured network interfaces if a
region is configured.

The region manager maintains the machine and adapter status for all the nodes in
its managed region. The region manager will mark the adapter down after a
period of adapter_heartbeat_interval * adapter_heartbeat_retries if no heartbeat is
received. When an adapter comes up, the region manager will receive the heartbeat
from the startd and will immediately mark it as up. The region manager will send
heartbeat status changes to the central manager and the resource manager.

Defining classes
The information in a class stanza defines characteristics for that class.

These characteristics can include the quantities of consumable resources that may
be used by a class per machine or cluster.

Within a class stanza, you can have optional user substanzas that define policies
that apply to a user's job steps that need to use this class. For more information
about user substanzas, see “Defining user substanzas in class stanzas” on page 99.
For information about user stanzas, see “Defining users” on page 102.

Using limit keywords
A limit is the amount of a resource that a job step or a process is allowed to use.
(A process is a dispatchable unit of work.) A job step may be made up of several
processes.

94 LoadLeveler: Using and Administering

Limits include both a hard limit and a soft limit. When a hard limit is exceeded,
the job is usually terminated. When a soft limit is exceeded, the job is usually
given a chance to perform some recovery actions. Limits are enforced either per
process or per job step, depending on the type of limit. For parallel jobs steps,
which consist of multiple tasks running on multiple machines, limits are enforced
on a per task basis.

The class stanza includes the limit keywords shown in Table 17, which allow you
to control the amount of resources used by a job step or a job process.

Table 17. Types of limit keywords

Limit How the limit is enforced

as_limit Per process

ckpt_time_limit Per job step

core_limit Per process

cpu_limit Per process

data_limit Per process

default_wall_clock_limit Per job step

file_limit Per process

job_cpu_limit Per job step

locks_limit Per process

memlock_limit Per process

nofile_limit Per process

nproc_limit Per user

rss_limit Per process

stack_limit Per process

wall_clock_limit Per job step

For example, a common limit is the cpu_limit, which limits the amount of CPU
time a single process can use. If you set cpu_limit to five hours and you have a job
step that forks five processes, each process can use up to five hours of CPU time,
for a total of 25 CPU hours. Another limit that controls the amount of CPU used is
job_cpu_limit. For a serial job step, if you impose a job_cpu_limit of five hours,
the entire job step (made up of all five processes) cannot consume more than five
CPU hours. For information on using this keyword with parallel jobs, see “Job
command file keyword descriptions” on page 335.

You can specify limits in either the class stanza of the administration file or in the
job command file. The lower of these two limits will be used to run the job even if
the system limit for the user is lower. For more information, see:
v “Enforcing limits”
v “Administration keyword descriptions” on page 298 or “Job command file

keyword descriptions” on page 335

Enforcing limits
LoadLeveler depends on the underlying operating system to enforce process limits.
Users should verify that a process limit such as rss_limit is enforced by the
operating system, otherwise setting it in LoadLeveler will have no effect.

Chapter 5. Defining LoadLeveler resources to administer 95

Exceeding job step limits: When a hard limit is exceeded LoadLeveler sends a
non-trappable signal (except in the case of a parallel job) to the process group that
LoadLeveler created for the job step. When a soft limit is exceeded, LoadLeveler
sends a trappable signal to the process group. Any job application that intends to
trap a signal sent by LoadLeveler must ensure that all processes in the process
group set up the appropriate signal handler.

All processes in the job step normally receive the signal. The exception to this rule
is when a child process creates its own process group. That action isolates the
child's process, and its children, from any signals that LoadLeveler sends. Any
child process creating its own process group is still known to process tracking. So,
if process tracking is enabled, all the child processes are terminated when the main
process terminates.

Table 18 summarizes the actions that the LoadL_starter daemon takes when a job
step limit is exceeded.

Table 18. Enforcing job step limits

Type of Job When a Soft Limit is Exceeded When a Hard Limit is Exceeded

Serial SIGXCPU or SIGKILL issued SIGKILL issued

Parallel SIGXCPU issued to both the user
program and to the parallel
daemon

SIGTERM issued

On systems that do not support SIGXCPU, LoadLeveler does not distinguish
between hard and soft limits. When a soft limit is reached on these platforms,
LoadLeveler issues a SIGKILL.

Enforcing per process limits: For per process limits, what happens when your job
reaches and exceeds either the soft limit or the hard limit depends on the operating
system you are using. When a job forks a process that exceeds a per process limit,
such as the CPU limit, the operating system (not LoadLeveler) terminates the
process by issuing a SIGXCPU. As a result, you will not see an entry in the
LoadLeveler logs indicating that the process exceeded the limit. The job will
complete with a 0 return code. LoadLeveler can only report the status of any
processes it has started.

If you need more specific information, refer to your operating system
documentation.

How LoadLeveler uses hard limits: Consider these details on how LoadLeveler
uses hard limits. See Table 19 for more information on specifying limits.

Table 19. Setting limits

If the hard limit is: Then LoadLeveler does the following:

Set in both the class stanza and the
job command file

Smaller of the two limits is taken into consideration. If
the smaller limit is the job limit, the job limit is then
compared with the user limit set on the machine that
runs the job. The smaller of these two values is used.
If the limit used is the class limit, the class limit is
used without being compared to the machine limit.

Not set in either the class stanza or
the job command file

User per process limit set on the machine that runs
the job is used.

96 LoadLeveler: Using and Administering

Table 19. Setting limits (continued)

If the hard limit is: Then LoadLeveler does the following:

Set in the job command file and is
less than its respective job soft limit

The job is not submitted.

Set in the class stanza and is less
than its respective class stanza soft
limit

Soft limit is adjusted downward to equal the hard
limit.

Specified in the job command file Hard limit must be greater than or equal to the
specified soft limit and less than or equal to the limit
set by the administrator in the class stanza of the
administration file.

Note: If the per process limit is not defined in the
administration file and the hard limit defined by the
user in the job command file is greater than the limit
on the executing machine, then the hard limit is set to
the machine limit.

Allowing users to use a class
In a class stanza, you may define a list of users or a list of groups to identify those
who may use the class. To do so, use the include_users or include_groups
keyword, respectively, or you may use both keywords. If you specify both
keywords, a particular user must satisfy both the include_users and the
include_groups restrictions for the class. This requirement means that a particular
user must be defined not only in a User stanza in the administration file, but also
in one of the following ways:
v The user's name must appear in the include_users keyword in a Group stanza

whose name corresponds to a name in the include_groups keyword of the Class
stanza.

v The user's name must appear in the include_groups keyword of the Class
stanza. For information about specifying a user name in a group list, see the
include_groups keyword description in “Administration keyword descriptions”
on page 298.

Class stanza format and keyword summary
Class stanzas are optional. Class stanzas take the following format. Default values
for keywords appear in bold.
label: type = class
admin= list
as_limit= hardlimit,softlimit
ckpt_time_limit = hardlimit,softlimit
class_comment = "string"
collective_groups = number
core_limit = hardlimit,softlimit
cpu_limit = hardlimit,softlimit
data_limit = hardlimit,softlimit
default_network.protocol = type[, usage[, mode[,comm_level[, instances=<number \
|max> [, rcxtblocks=number]]]]]

default_resources = name(count) name(count)...name(count)
default_node_resources = name(count) name(count)...name(count)
default_wall_clock_limit = hardlimit,softlimit
endpoints = number
env_copy = all | master
exclude_bg = list
exclude_groups = list
exclude_users = list

Chapter 5. Defining LoadLeveler resources to administer 97

file_limit = hardlimit,softlimit
imm_send_buffers = number
include_bg = list
include_groups = list
include_users = list
job_cpu_limit = hardlimit,softlimit
locks_limit = hardlimit,softlimit
master_node_requirement = true | false
max_node = number
max_protocol_instances = number
max_resources = name(count) name(count)...name(count)
max_node_resources = name(count) name(count)...name(count)
max_top_dogs = number
max_total_tasks = number
maxjobs = number
memlock_limit = hardlimit,softlimit
nice = value
nofile_limit = hardlimit,softlimit
nproc_limit = hardlimit,softlimit
priority = number
rss_limit = hardlimit,softlimit
restart = yes | no
smt = | as_is
stack_limit = hardlimit,softlimit
striping_with_minimum_networks = true | false
total_tasks = number
wall_clock_limit = hardlimit,softlimit

Examples: Class stanzas
Any of these class stanza examples may apply to your situation.
v Example 1: Creating a class that excludes certain users

class_a: type=class # class that excludes users
priority=10 # ClassSysprio
exclude_users=green judy # Excluded users

v Example 2: Creating a class for small-size jobs
small: type=class # class for small jobs
priority=80 # ClassSysprio (max=100)
cpu_limit=00:02:00 # 2 minute limit
data_limit=30mb # max 30 MB data segment
default_resources=ConsumbableVirtualMemory(10mb) # resources consumed by each
ConsumableCpus(1) resA(3) floatinglicenseX(1) # task of a small job step if

resources are not explicitly
specified in the job command file

ckpt_time_limit=3:00,2:00 # 3 minute hardlimit,
2 minute softlimit

core_limit=10mb # max 10 MB core file
file_limit=50mb # max file size 50 MB
stack_limit=10mb # max stack size 10 MB
rss_limit=35mb # max resident set size 35 MB
include_users = bob sally # authorized users

v Example 3: Creating a class for medium-size jobs
medium: type=class # class for medium jobs
priority=70 # ClassSysprio
cpu_limit=00:10:00 # 10 minute run time limit
data_limit=80mb,60mb # max 80 MB data segment

soft limit 60 MB data segment
ckpt_time_limit=5:00,4:30 # 5 minute hardlimit,

4 minute 30 second softlimit to checkpoint
core_limit=30mb # max 30 MB core file
file_limit=80mb # max file size 80 MB
stack_limit=30mb # max stack size 30 MB
rss_limit=100mb # max resident set size 100 MB
job_cpu_limit=1800,1200 # hard limit is 30 minutes,

soft limit is 20 minutes

98 LoadLeveler: Using and Administering

v Example 4: Creating a class for large-size jobs
large: type=class # class for large jobs
priority=60 # ClassSysprio
cpu_limit=00:10:00 # 10 minute run time limit
data_limit=120mb # max 120 MB data segment
default_resources=ConsumableVirtualMemory(40mb) # resources consumed
ConsumableCpus(2) resA(8) floatinglicenseX(1) resB(1) # by each task of

a large job step if resources are not
explicitly specified in the job command file

ckpt_time_limit=7:00,5:00 # 7 minute hardlimit,
5 minute softlimit to checkpoint

core_limit=30mb # max 30 MB core file
file_limit=120mb # max file size 120 MB
stack_limit=unlimited # unlimited stack size
rss_limit=150mb # max resident set size 150 MB
job_cpu_limit = 3600,2700 # hard limit 60 minutes

soft limit 45 minutes
wall_clock_limit=12:00:00,11:59:55 # hard limit is 12 hours

v Example 5: Creating a class for master node machines
sp-6hr-sp: type=class # class for master node machines
priority=50 # ClassSysprio (max=100)
ckpt_time_limit=25:00,20:00 # 25 minute hardlimit,

20 minute softlimit to checkpoint
cpu_limit = 06:00:00 # 6 hour limit
job_cpu_limit = 06:00:00 # hard limit is 6 hours
core_limit = lmb # max 1MB core file
master_node_requirement = true # master node definition

Defining user substanzas in class stanzas
In a class stanza, you might define user substanzas using the same syntax as you
would for any stanza in the LoadLeveler administration file.

A user substanza within a class stanza defines policies that apply to job steps
submitted by that user and belonging to that class. User substanzas are optional
and are independent of user stanzas (for information about user stanzas, see
“Defining users” on page 102).

Class stanzas that contain user substanzas have the following format:
label: {

type = class
label: {

type = user
maxidle = number
maxjobs = number
maxqueued = number
max_total_tasks = number

}
}

When defining substanzas within other stanzas, you must use opening and closing
braces ({ and }) to mark the beginning and the end of the stanza and substanza.
The only keywords that are supported in a user substanza are type (required),
maxidle, maxjobs, maxqueued, and max_total_tasks. For detailed descriptions of
these keywords, see “Administration keyword descriptions” on page 298.

Examples: Substanzas
Any of these substanza examples may apply to your situation.

Chapter 5. Defining LoadLeveler resources to administer 99

In the following example, the default machine and class stanzas do not require
braces, but the parallel class stanza does require them. Without braces to open and
close the parallel stanza, it would not be clear that the default user and dept_head
user stanza belong to the parallel class:
default:

type = machine
schedd_host = true

default:
type = class
wall_clock_limit = 60:00,30:00

parallel: {
type = class

Allow at most 50 running jobs for class parallel
maxjobs = 50

Allow at most 10 running jobs for any single
user of class parallel
default: {

type = user
maxjobs = 10

}

Allow user dept_head to run as many as 20 jobs
of class parallel
dept_head: {type = user

maxjobs = 20

}
}

dept_head: type = user
maxjobs = 30

When user substanzas are used in class stanzas, a default user substanza can be
defined. Each class stanza can have its own default user substanza, and even the
default class stanza can have a default user substanza. In this example, the default
user substanza in the default class indicates that for any combination of class and
user, the limits maxidle=20 and maxqueued=30 apply, and that maxjobs and
max_total_tasks are unlimited. Some of these values are overridden in the physics
class stanza. Here is an example of how class stanzas can be configured:
default: {

type = class
default: {

type = user
maxidle = 20
maxqueued = 30
maxjobs = -1
max_total_tasks = -1

}
}
physics: {

type = class
default: {

type = user
maxjobs = 10
max_total_tasks = 128

}
john: {

type = user
maxidle = 10

100 LoadLeveler: Using and Administering

maxjobs = 14
}
jane: {

type = user
max_total_tasks = 192

}
}

In the following example, the physics stanza shows which values are inherited
from which stanzas:
physics: {

type = class
default: {

type = user
inherited from default class, default user
maxidle = 20

inherited from default class, default user
maxqueued = 30

overrides value of -1 in default class, default user
maxjobs = 10

overrides value of -1 in default class, default user
max_total_tasks = 128

}
john: {

type = user
overrides value of 10 in default user
maxidle = 10

inherited from default user, which was inherited
from default class, default user
maxqueued = 30

overrides value of 10 in default user
maxjobs = 14

inherited from default user
max_total_tasks = 128

}

jane: {
type = user
inherited from default user, which was inherited
from default class, default user
maxidle = 20

inherited from default user, which was inherited
from default class, default user
maxqueued = 30

inherited from default user
maxjobs = 10

overrides value of 128 in default user
max_total_tasks = 192

}
}

Any user other than john and jane who submits jobs of class physics is subject to
the constraints in the default user substanza in the physics class stanza. Should
john or jane submit jobs of any class other than physics, they are subject to the
constraints in the default user substanza in the default class stanza.

Chapter 5. Defining LoadLeveler resources to administer 101

In addition to specifying a default user substanza within the default class stanza,
an administrator can specify other user substanzas in the default class stanza. It is
important to note that all class stanzas will inherit all user substanzas from the
default class stanza.

Note: An important rule to understand is that a user substanza within a class
stanza will inherit its values from the user substanza in the default class stanza
first, if a substanza for that user is present. The next location a user substanza
inherits values from is the default user substanza within the same class stanza.

When no default stanzas or substanzas are provided, the LoadLeveler default for
all four keywords is -1 or unlimited.

If a user substanza is provided for a user on the class exclude_users list,
exclude_users takes precedence and the user substanza will be effectively ignored
because that user cannot use the class at all. On the other hand, when
include_users is used in a class, the presence of a user substanza implies that the
user is permitted to use the class (it is as if the user were present on the
include_users list).

Defining users
The information specified in a user stanza defines the characteristics of that user.
You can have one user stanza for each user but this is not necessary. If an
individual user does not have their own user stanza, that user uses the defaults
defined in the default user stanza.

User stanza format and keyword summary
User stanzas take the following format:
label: type = user
account = list
default_class = list
default_group = group name
default_interactive_class = class name
env_copy = all | master
fair_shares = number
max_node = number
max_reservation_duration = number
max_reservation_expiration = number
max_reservations = number
max_total_tasks = number
maxidle = number
maxjobs = number
maxqueued = number
priority = number
reservation_type = all | flex | none
total_tasks = number

For more information about the keywords listed in the user stanza format, see
Chapter 11, “Administration keyword reference,” on page 293.

Examples: User stanzas
Any of the following user stanzas may apply to your situation.
v Example 1

In this example, user fred is being provided with a user stanza. User fred's jobs
will have a user priority of 100. If user fred does not specify a job class in the

102 LoadLeveler: Using and Administering

job command file, the default job class class_a will be used. In addition, he can
have a maximum of 15 jobs running at the same time.
Define user stanzas
fred: type = user
priority = 100
default_class = class_a
maxjobs = 15

v Example 2

This example explains how a default interactive class for a parallel job is set by
presenting a series of user stanzas and class stanzas. This example assumes that
users do not specify the LOADL_INTERACTIVE_CLASS environment variable.
default: type =user

default_interactive_class = red
default_class = blue

carol: type = user
default_class = single double
default_interactive_class = ijobs

steve: type = user
default_class = single double

ijobs: type = class
wall_clock_limit = 08:00:00

red: type = class
wall_clock_limit = 30:00

If the user Carol submits an interactive job, the job is assigned to the default
interactive class called ijobs. The job is assigned a wall clock limit of 8 hours. If
the user Steve submits an interactive job, the job is assigned to the red class
from the default user stanza. The job is assigned a wall clock limit of 30
minutes.

v Example 3

In this example, Jane's jobs have a user priority of 50, and if she does not specify
a job class in her job command file the default job class small_jobs is used. This
user stanza does not specify the maximum number of jobs that Jane can run at
the same time so this value defaults to the value defined in the default stanza.
Also, suppose Jane is a member of the primary UNIX group “staff.” Jobs
submitted by Jane will use the default LoadLeveler group “staff.” Lastly, Jane
can use three different account numbers.
Define user stanzas
jane: type = user
priority = 50
default_class = small_jobs
default_group = Unix_Group
account = dept10 user3 user4

Defining groups
LoadLeveler groups are another way of granting control to the system
administrator.

Although a LoadLeveler group is independent from a UNIX group, you can
configure a LoadLeveler group to have the same users as a UNIX group by using
the include_users keyword. If you do not specify a value for the group keyword
in the job command file, the default group for the user is used. If a default group
is not defined for the user, LoadLeveler uses the group, No_Group.

Chapter 5. Defining LoadLeveler resources to administer 103

Group stanza format and keyword summary
The information specified in a group stanza defines the characteristics of that
group. Group stanzas are optional and take the following format:
label: type = group
admin = list
env_copy = all | master
fair_shares = number
exclude_users = list
include_users = list
max_node = number
max_reservation_duration = number
max_reservation_expiration = number
max_reservations = number
max_total_tasks = number
maxidle = number
maxjobs = number
maxqueued = number
priority = number
reservation_type = all | flex | none
total_tasks = number

For more information about the keywords listed in the group stanza format, see
Chapter 11, “Administration keyword reference,” on page 293.

Examples: Group stanzas
Any of the following group stanzas may apply to your situation.
v Example 1

In this example, the group name is department_a. The jobs issued by users
belonging to this group will have a priority of 80. There are three members in
this group.
Define group stanzas
department_a: type = group
priority = 80
include_users = susann holly fran

v Example 2

In this example, the group called great_lakes has five members and these user's
jobs have a priority of 100:
Define group stanzas
great_lakes: type = group
priority = 100
include_users = huron ontario michigan erie superior

Defining clusters
The cluster stanza defines the LoadLeveler multicluster environment.

Any cluster that wants to participate in the multicluster must have cluster stanzas
defined for all clusters with which the local cluster interacts. If you have a cluster
stanza defined, LoadLeveler is configured to be in the multicluster environment.

Cluster stanza format and keyword summary
Cluster stanzas are optional. Cluster stanzas take the following format. Default
values for keywords appear in bold.

The cluster stanza label must define a unique cluster name within the multicluster
environment.

104 LoadLeveler: Using and Administering

label: type = cluster
exclude_classes = class_name[(cluster_name)] ...
exclude_groups = group_name[(cluster_name)] ...
exclude_users = user_name[(cluster_name)] ...
inbound_hosts = hostname[(cluster_name)] ...
inbound_schedd_port = port_number
include_classes = class_name[(cluster_name)] ...
include_groups = group_name[(cluster_name)] ...
include_users = user_name[(clustername)] ...
local = true | false
multicluster_security = SSL
outbound_hosts = hostname[(cluster_name)] ...
secure_schedd_port = port_number
ssl_cipher_list = cipher_list

Examples: Cluster stanzas
Any of the following cluster stanzas may apply to your situation.

Figure 11 shows a simple multicluster with three clusters defined as members.
Cluster1 has defined an alternate port number for the Schedds running in its
cluster by setting the SCHEDD_STREAM_PORT = 1966. All of the other clusters need to
define what port to use when connecting to the inbound Schedds of cluster1 by
specifying the inbound_schedd_port = 1966 keyword in the cluster1 stanza.
Cluster2 has a single machine connected to cluster1 and 2 machines connected to
cluster3. Cluster3 has a single machine connected to both cluster2 and cluster1.
Each cluster would set the local keyword to true for their cluster stanza in the
cluster's administration file.

Multicluster with 3 clusters defined as members
cluster1: type=cluster

outbound_hosts = M2(cluster2) M1(cluster3)
inbound_hosts = M2(cluster2) M1(cluster3)
inbound_schedd_port = 1966

cluster2: type=cluster
outbound_hosts = M3(cluster1) M4(cluster3)
inbound_hosts = M3(cluster1) M4(cluster3) M5(cluster3)

cluster1

M1

M2

cluster2

M4M3

M5

cluster3

M7M6

SCHEDD_STREAM_PORT = 1966

Figure 11. Multicluster Example

Chapter 5. Defining LoadLeveler resources to administer 105

cluster3: type=cluster
outbound_hosts = M6
inbound_hosts = M6

Defining regions
The region stanza defines the managed region on the cluster for the region
managers.

The region stanza is part of the LoadL_admin file and contains the
region_mgr_list keyword. The region_mgr_list contains a list of machine names.
The first entry is the primary region manager while the remainder are alternate
region managers. The primary and alternate region managers will use the same
failover scheme as the central manager.

Every machine listed in the region_mgr_list must be unique and must belong to
the region.

A machine can belong to only one region. Every machine in a machine group
belongs to the same region. A region cannot be specified in a machine substanza.

If required, a default region stanza must be specified explicitly. The default region
is assigned to machines and machine groups that do not specify a region.

If there are any regions defined, then every machine or machine group must be
assigned to a valid region either explicitly or by default.

The region manager daemon will only start if there is a region stanza defined.
LoadLeveler will not start if the regions for the cluster are not defined correctly.

Note: The region manager node must have similar connectivity to the network as
the executing machine it manages, so that all of its configured network interfaces
are able to connect to all of the executing machine's network interfaces.

Region stanza format and keyword summary
Region stanzas take the following format.
label: type = region
region_mgr_list = list

Examples: Region stanzas
Any of these region stanza examples may apply to your situation.
v Example 1

In this example, MachineGroupB is in the RegionB region. The primary machine
to run the region manager daemon is c197blade4b06. c197blade4b11 is the
backup or alternate node on which the region manager will come up if the
primary node goes down.
default: type = region

region_mgr_list = c197blade4b22 c197blade4b24

RegionA: type = region
region_mgr_list = c197blade4b02 c197blade4b04

RegionB: type = region
region_mgr_list = c197blade4b06 c197blade4b11

106 LoadLeveler: Using and Administering

MachineGroupA: type = machine_group
machine_list = c197blade4b[01-05]
region = RegionA
...

MachineGroupB: type = machine_group
machine_list = c197blade4b[06-18]
region = RegionB
...

MachineGroupC: type = machine_group
machine_list = c197blade4b[20-24]
region = default
...

v Example 2

For an individual machine, the region keyword will specify the region to which
the machine belongs. The region stanza will then show the primary region
manager and the list of alternate region managers for that region.
RegionA: type = region

region_mgr_list = c197blade4b02 c197blade4b04

c197blade4b02: type = machine
region = RegionA
...

c197blade4b03: type = machine
region = RegionA
...

c197blade4b04: type = machine
region = RegionA
...

v Example 3

This example shows that a default region stanza can be created so that the
machine group and machine stanza can default to this region stanza if a region
keyword is not specified in the machine group or machine stanza.
default: type = region

region_mgr_list = c197blade4b22 c197blade4b24

Machine group defaults to default region stanza
MachineGroupA: type = machine

machine_list = c197blade4b[10-26]
...

Machine defaults to default region stanza
c197blade4b05: type = machine

Chapter 5. Defining LoadLeveler resources to administer 107

108 LoadLeveler: Using and Administering

Chapter 6. Performing additional administrator tasks

There are additional ways to modify the LoadLeveler environment that either
require an administrator to customize the configuration database or both the
configuration and administration files, or require the use of the LoadLeveler
commands or APIs.

Table 20 lists additional ways to modify the LoadLeveler environment.

Table 20. Roadmap of additional administrator tasks

To learn about: Read the following:

Setting up the environment for
parallel jobs

“Setting up the environment for parallel jobs” on page
110

Configuring and using an
alternative scheduler

v “Using the BACKFILL scheduler” on page 114

v “Using an external scheduler” on page 119

v “Example: Changing scheduler types” on page 122

Using additional features available
with the BACKFILL scheduler

v “Preempting and resuming jobs” on page 122

v “Configuring LoadLeveler to support reservations”
on page 127

v “Working with reservations” on page 203

v “Data staging” on page 117

v “Configuring and using island scheduling” on page
165

Working with the workload
balancing component

“Steps for integrating LoadLeveler with the Workload
Manager” on page 133

Enabling LoadLeveler's
checkpoint/restart function

“LoadLeveler support for checkpointing jobs” on page
135

Enabling LoadLeveler's
checkpoint/restart function for jobs
using MetaCluster HPC

“Submitting a MetaCluster HPC checkpoint job to
LoadLeveler” on page 138

Enabling LoadLeveler's affinity
support

v LoadLeveler scheduling affinity (see “LoadLeveler
scheduling affinity support” on page 147)

Enabling LoadLeveler's
multicluster support

v “LoadLeveler multicluster support” on page 149

v “Configuring a LoadLeveler multicluster” on page
150

Enabling LoadLeveler's Blue Gene
support

v “LoadLeveler Blue Gene support” on page 153

v “Configuring LoadLeveler Blue Gene support” on
page 155

Enabling LoadLeveler's fair share
scheduling support

v “Fair share scheduling overview” on page 27

v “Using fair share scheduling” on page 158

Moving job records from a down
Schedd to another Schedd within
the local cluster

v “Procedure for recovering a job spool” on page 164

v llmovespool (see LoadLeveler: Command and API
Reference)

© Copyright IBM Corp. 1986, 2012 109

Table 20. Roadmap of additional administrator tasks (continued)

To learn about: Read the following:

Enabling energy aware job support v “Energy aware job support” on page 166

v “S3 state support” on page 166

v “Working with energy aware jobs” on page 220

Correctly specifying configuration
and administration file keywords

v Chapter 10, “Configuration keyword reference,” on
page 231

v Chapter 11, “Administration keyword reference,” on
page 293

Managing LoadLeveler operations

v Querying status v llclass

v llq

v llqres

v llstatus

See LoadLeveler: Command and API Reference for
command descriptions.

v Changing attributes of submitted
jobs

v llfavorjob

v llfavoruser

v llmodify

v llprio

See LoadLeveler: Command and API Reference for
command descriptions.

v Changing the state of submitted
jobs

v llcancel

v llhold

See LoadLeveler: Command and API Reference for
command descriptions.

Setting up the environment for parallel jobs
Additional administration tasks apply to parallel jobs.

This topic describes the following administration tasks that apply to parallel jobs:
v Scheduling support
v Reducing job launch overhead
v Submitting interactive POE jobs
v Setting up a class
v Setting up a parallel master node

For information on submitting parallel jobs, see “Working with parallel jobs” on
page 184.

Scheduling considerations for parallel jobs
For parallel jobs, LoadLeveler supports BACKFILL scheduling for efficient use of
system resources. This scheduler runs both serial and parallel jobs.

BACKFILL scheduling also supports:

110 LoadLeveler: Using and Administering

v Multiple tasks per node
v Multiple user space tasks per adapter
v Preemption

Specify the LoadLeveler scheduler using the SCHEDULER_TYPE keyword. For
more information on this keyword and supported scheduler types, see “Choosing a
scheduler” on page 46.

Steps for reducing job launch overhead for parallel jobs
Administrators may define a number of LoadLeveler starter processes to be ready
and waiting to handle job requests. Having this pool of ready processes reduces
the amount of time LoadLeveler needs to prepare jobs to run. You also may control
how environment variables are copied for a job. Reducing the number of
environment variables that LoadLeveler has to copy reduces the amount of time
LoadLeveler needs to prepare jobs to run.

Before you begin: You need to know:
v How many jobs might be starting at the same time. This estimate determines

how many starter processes to have LoadLeveler start in advance, to be ready
and waiting for job requests.

v The type of parallel jobs that typically are used. If IBM Parallel Environment
(PE) is used for parallel jobs, PE copies the user's environment to all executing
nodes. In this case, you may configure LoadLeveler to avoid redundantly
copying the same environment variables.

v How to correctly specify configuration keywords. For details about specific
keyword syntax and use:
– In the administration file, see Chapter 11, “Administration keyword

reference,” on page 293.
– In the configuration file, see Chapter 10, “Configuration keyword reference,”

on page 231.

Perform the following steps to configure LoadLeveler to reduce job launch
overhead for parallel jobs.
1. In the local or global configuration file, specify the number of starter processes

for LoadLeveler to automatically start before job requests are submitted. Use
the PRESTARTED_STARTERS keyword to set this value.
Tip: The default value of 1 should be sufficient for most installations.

2. If typical parallel jobs use a facility such as Parallel Environment, which copies
user environment variables to all executing nodes, set the env_copy keyword in
the class, user, or group stanzas to specify that LoadLeveler only copy user
environment variables to the master node by default.
Rules:

v Users also may set this keyword in the job command file. If the env_copy
keyword is set in the job command file, that setting overrides any setting in
the administration file. For more information, see “Step for controlling
whether LoadLeveler copies environment variables to all executing nodes”
on page 185.

v If the env_copy keyword is set in more than one stanza in the administration
file, LoadLeveler determines the setting to use by examining all values set in
the applicable stanzas. See the table in the env_copy keyword in
“Administration keyword descriptions” on page 298 to determine what value
LoadLeveler will use.

Chapter 6. Performing additional administrator tasks 111

3. Notify LoadLeveler daemons by issuing the llctl command with either the
reconfig or recycle keyword. Otherwise, LoadLeveler will not process the
modifications you made to the configuration and administration files.

When you are done with this procedure, you can use the POE stderr and
LoadLeveler logs to trace actions during job launch.

Steps for allowing users to submit interactive POE jobs
Perform the following steps to set up your system so that users can submit
interactive POE jobs to LoadLeveler.
1. Make sure that you have installed LoadLeveler and defined LoadLeveler

administrators. See “Defining LoadLeveler administrators” on page 45 for
information on defining LoadLeveler administrators.

2. If running user space jobs, the machine will need to be configured for
InfiniBand switch adapters.

3. In the configuration file, define your scheduler to be the LoadLeveler
BACKFILL scheduler by specifying SCHEDULER_TYPE = BACKFILL. See
“Choosing a scheduler” on page 46 for more information.

4. In the administration file, specify batch, interactive, or general use for nodes.
You can use the machine_mode keyword in the machine stanza to specify the
type of jobs that can run on a node; you must specify either interactive or
general if you are going to run interactive jobs.

5. In the administration file, configure optional functions, including:
v Setting up pools: you can organize nodes into pools by using the pool_list

keyword in the machine stanza. See “Defining machines” on page 89 for
more information.

6. Consider setting up a class stanza for your interactive POE jobs. See “Setting
up a class for parallel jobs” for more information. Define this class to be your
default class for interactive jobs by specifying this class name on the
default_interactive_class keyword. See “Defining users” on page 102 for more
information.

Setting up a class for parallel jobs
To define the characteristics of parallel jobs run by your installation you should set
up a class stanza in the administration file and define a class (in the Class
statement in the configuration file) for each task you want to run on a node.

Suppose your installation plans to submit long-running parallel jobs, and you want
to define the following characteristics:
v Only certain users can submit these jobs
v Jobs have a 30 hour run time limit
v A job can request a maximum of 60 nodes and 120 total tasks
v Jobs will have a relatively low run priority

The following is a sample class stanza for long-running parallel jobs which takes
into account these characteristics:
long_parallel: type=class
wall_clock_limit = 1800
include_users = jack queen king ace
priority = 50
total_tasks = 120
max_node = 60
maxjobs = 2

112 LoadLeveler: Using and Administering

Note the following about this class stanza:
v The wall_clock_limit keyword sets a wall clock limit of 1800 seconds (30 hours)

for jobs in this class
v The include_users keyword allows four users to submit jobs in this class
v The priority keyword sets a relative priority of 50 for jobs in this class
v The total_tasks keyword specifies that a user can request up to 120 total tasks

for a job in this class
v The max_node keyword specifies that a user can request up to 60 nodes for a

job in this class
v The maxjobs keyword specifies that a maximum of two jobs in this class can run

simultaneously

Suppose users need to submit job command files containing the following
statements:
node = 30
tasks_per_node = 4

In your LoadL_config file, you must code the Class statement such that at least 30
nodes have four or more long_parallel classes defined. That is, the configuration
file for each of these nodes must include the following statement:
Class = { "long_parallel" "long_parallel" "long_parallel" "long_parallel" }

or
Class = long_parallel(4)

For more information, see “Defining LoadLeveler machine characteristics” on page
59.

Striping when some networks fail
When multiple networks are configured in a cluster, a job can request striping over
the networks by setting sn_all in the network statement in the job command file.
The striping_with_minimum_networks administration file keyword in the class
stanza is used to tell LoadLeveler how to select nodes for sn_all jobs of a specific
class when one or more networks are unavailable. When
striping_with_minimum_networks is set to false for a class, LoadLeveler will only
select nodes for sn_all jobs of that class where all the networks are up and in the
READY state. When striping_with_minimum_networks is set to true, LoadLeveler
will select a set of nodes where at least more than half of the networks on the
nodes are up and in the READY state.

For example, if there are 8 networks connected to a node and
striping_with_minimum_networks is set to false, all 8 networks would have to be
up and in the READY state to consider that node for sn_all jobs. If
striping_with_minimum_networks is set to true, nodes with at least 5 networks
up and in the READY state would be considered for sn_all jobs

Setting up a parallel master node
LoadLeveler allows you to define a parallel master node that LoadLeveler will use
as the first node for a job submitted to a particular class. To set up a parallel
master node, code the following keywords in the node's class and machine stanzas
in the administration file:

Chapter 6. Performing additional administrator tasks 113

MACHINE STANZA: (optional)
mach1: type = machine
master_node_exclusive = true

CLASS STANZA: (optional)
pmv3: type = class
master_node_requirement = true

Specifying master_node_requirement = true forces all parallel jobs in this class to
use–as their first node–a machine with the master_node_exclusive = true setting.
For more information on these keywords, see “Defining machines” on page 89 and
“Defining classes” on page 94.

Using the BACKFILL scheduler
The BACKFILL scheduling algorithm in LoadLeveler is designed to maximize the
use of resources to achieve the highest system efficiency, while preventing
potentially excessive delays in starting jobs with large resource requirements.

These large jobs can run because the BACKFILL scheduler does not allow jobs
with smaller resource requirements to continuously use up resources before the
larger jobs can accumulate enough resources to run. While BACKFILL can be used
for both serial and parallel jobs, the potential advantage is greater with parallel
jobs.

Job steps are arranged in a queue based on their SYSPRIO order as they arrive
from the Schedd nodes in the cluster. The queue can be periodically reordered
depending on the value of the RECALCULATE_SYSPRIO_INTERVAL keyword.
In each dispatching cycle, as determined by the NEGOTIATOR_INTERVAL and
NEGOTIATOR_CYCLE_DELAY configuration keywords, the BACKFILL algorithm
examines these job steps sequentially in an attempt to find available resources to
run each job step, then dispatches those steps to run.

Once the BACKFILL algorithm encounters a job step for which it cannot
immediately find enough resources, that job step becomes known as a "top dog".
The BACKFILL algorithm can allocate multiple top dogs in the same dispatch
cycle. By using the MAX_TOP_DOGS configuration keyword (for more
information, see Chapter 10, “Configuration keyword reference,” on page 231), you
can define the maximum number of top dogs that the central manager will
allocate. For each top dog, the BACKFILL algorithm will attempt to calculate the
earliest time at which enough resources will become free to run the corresponding
top dog. This is based on the assumption that each currently running job step will
run until its hard wall clock limit is reached and that when a job step terminates,
the resources which that step has been using will become available.

The time at which enough currently running job steps will have terminated,
meaning enough resources have become available to run a top dog, is called top
dog's future start time. The future start time of each top dog is effectively
guaranteed for the remainder of the execution of the BACKFILL algorithm. All
resources that each top dog will use at its corresponding start time and for its
duration, as specified by its hard wall clock limit, are reserved (not to be confused
with the reservation feature available in LoadLeveler). When reserving resources
for a top dog, specific machines are reserved and if RSET_MCM_AFFINITY is
specified then specific CPUs are reserved.

114 LoadLeveler: Using and Administering

Note: A job that is bound to a reservation is not considered for top-dog
scheduling, so there is no top-dog scheduling performed inside reservations.

In some cases, it may not be possible to calculate the future start time of a job step.
Consider, for example, a case where there are 20 nodes in the cluster and a job step
requires 24 nodes to run. Even when all nodes in the cluster are idle, it will not be
possible for this job step to run. Only the addition of nodes to the cluster would
allow the job step to run, and there is no way the BACKFILL algorithm can make
any assumptions about when that could take place. In situations like this, the job
step is not considered a "top dog", no resources are "reserved", and the BACKFILL
algorithm goes on to the next job step in the queue.

The BACKFILL scheduling algorithm classifies job steps into distinct types:
REGULAR, TOP DOG, and BACKFILL:
v The REGULAR job step is a job step for which enough resources are currently

available and no top dogs have yet been allocated.
v The TOP DOG job step is a job step for which not enough resources are

currently available, but enough resources are available at a future time and one
of the following conditions is met:
– The TOP DOG job step is not expected to run at a time when any other top

dog is expected to run.
– If the TOP DOG is expected to run at a time when some other top dogs are

expected to run, then it cannot be using resources reserved by such top dogs.
v The BACKFILL job step is a job step for which enough resources are currently

available and one of the following conditions is met:
– The BACKFILL job step is expected to complete before the future start times

of all top dogs, based on the hard wall clock limit of the BACKFILL job step.
– If the BACKFILL job step is not expected to complete before the future start

time of at least one top dog, then it cannot be using resources reserved by the
top dogs that are expected to start before BACKFILL job step is expected to
complete.

Table 21 provides a roadmap of BACKFILL scheduler tasks.

Table 21. Roadmap of BACKFILL scheduler tasks

Subtask Associated instructions (see . . .)

Configuring the BACKFILL
scheduler

v “Choosing a scheduler” on page 46

v “Tips for using the BACKFILL scheduler” on page 116

v “Example: BACKFILL scheduling” on page 117

Using additional LoadLeveler
features available under the
BACKFILL scheduler

v “Preempting and resuming jobs” on page 122

v “Configuring LoadLeveler to support reservations” on
page 127

v “Working with reservations” on page 203

v “Data staging” on page 117

Chapter 6. Performing additional administrator tasks 115

Table 21. Roadmap of BACKFILL scheduler tasks (continued)

Subtask Associated instructions (see . . .)

Use the BACKFILL scheduler
to dispatch and manage jobs

v llclass

v llmodify

v llpreempt

v llq

v llsubmit

v Data access API

v Error handling API

v ll_modify

v ll_preempt

See LoadLeveler: Command and API Reference for command
and API descriptions.

Tips for using the BACKFILL scheduler
Note the following when using the BACKFILL scheduler:
v To use this scheduler, either users must set a wall-clock limit in their job

command file or the administrator must define a wall-clock limit value for the
class to which a job is assigned. Jobs with the wall_clock_limit of unlimited
cannot be used to backfill because they may not finish in time.

v Using wall clock limits that accurately reflect the actual running time of the job
steps will result in a more efficient utilization of resources. When a job step's
wall clock limit is substantially longer than the amount of time the job step
actually needs, it results in two inefficiencies in the BACKFILL algorithm:
– The future start time of a "top dog" will be calculated to be much later due to

the long wall clock limits of the running job steps, leaving a larger window
for BACKFILL job steps to run. This causes the "top dog" to start later than it
would have if more accurate wall clock limits had been given.

– A job step is less likely to be backfilled if its wall clock limit is longer because
it is more likely to run past the future start time of a "top dog".

v You should use only the default settings for the START expression and the other
job control functions described in “Managing job status through control
expressions” on page 72. If you do not use these default settings, jobs will still
run but the scheduler will not be as efficient. For example, the scheduler will not
be able to guarantee a time at which the highest priority job will run.

v You should configure any multiprocessor (SMP) nodes such that the number of
jobs that can run on a node (determined by the MAX_STARTERS keyword) is
always less than or equal to the number of processors on the node.

v Due to the characteristics of the BACKFILL algorithm, in some cases this
scheduler may not honor the MACHPRIO statement. For more information on
MACHPRIO, see “Setting negotiator characteristics and policies” on page 47.

v When using PREEMPT_CLASS rules it is helpful to create a SYSPRIO
expression which is consistent with the preemption rules. This can be done by
using the ClassSysprio built-in variable with a multiplier, such as SYSPRIO:
(ClassSysprio * 10000) - QDate. If classes which appear on the left-hand side
of PREEMPT_CLASS rules are given a higher priority than those which appear
on the right, preemption won't be required as often because the job steps which
can preempt will be higher in the queue than the job steps which can be
preempted.

116 LoadLeveler: Using and Administering

v Entering llq -s against a top-dog step will display that this step is a top-dog.

Example: BACKFILL scheduling
On a rack with 10 nodes, 8 of the nodes are being used by Job A. Job B has the
highest priority in the queue, and requires 10 nodes. Job C has the next highest
priority in the queue, and requires only two nodes. Job B has to wait for Job A to
finish so that it can use the freed nodes. Because Job A is only using 8 of the 10
nodes, the BACKFILL scheduler can schedule Job C (which only needs the two
available nodes) to run as long as it finishes before Job A finishes (and Job B
starts). To determine whether or not Job C has time to run, the BACKFILL
scheduler uses Job C's wall_clock_limit value to determine whether or not it will
finish before Job A ends. If Job C has a wall_clock_limit of unlimited, it may not
finish before Job B's start time, and it won't be dispatched.

Data staging
Data staging allows you to stage data needed by a job before the job begins
execution and to move data back to archives when a job has finished execution. A
job can use one inbound data staging step and one outbound data staging step.
The inbound step will be the first to be executed and the outbound step, the last.

LoadLeveler provides data staging for two scenarios:
1. A single replica of the data files needed by a job have to be created on a

common file system.
2. A replica of the data files has to be created on every machine on which the job

will run.

LoadLeveler allows you to request the time at which data staging operations
should be scheduled.
1. A single replica must be created as soon as a job is submitted, regardless of

when the job will be executed. This is the AT_SUBMIT configuration option.
2. A single replica of the data files must be created as close as possible to

execution time of the job. This is the JUST_IN_TIME configuration option.
3. A replica must be created on each machine that the job runs on, as close as

possible to execution time of the job. This is also the JUST_IN_TIME
configuration option.

The basic steps involved in data staging include:
1. A job is submitted that contains data staging keywords.
2. LoadLeveler generates inbound and outbound data staging steps in accordance

with these keywords. All other steps of the job have an implicit dependency on
the completion of the inbound data staging step.

3. Scheduling methods:
a. With the AT_SUBMIT configuration option, the data staging step is started

first and the application steps are scheduled when its data staging
dependency is satisfied (that is, when the inbound data staging step is
completed).

b. With the JUST_IN_TIME configuration option, the first application step of
the job is scheduled in the future based on the wall clock time specified for
the inbound data staging step. The inbound data staging step is started on
the machines that will be used by the first application step.

4. When the inbound data staging step completes, all of the application job steps
become eligible for scheduling. The exit code from the inbound data staging

Chapter 6. Performing additional administrator tasks 117

program is made available to all application job steps in the
LL_DSTG_IN_EXIT_CODE environment variable.

5. When all the application job steps are completed, the outbound data staging
step is started by LoadLeveler. Typically, the outbound data staging step would
be used to move data files back to their archives.

Note: You cannot preempt data staging steps using the llpreempt command or by
specifying the data_stage class in system preemption rules. Similarly, a step
belonging to the data_stage class cannot preempt any other job step.

Configuring LoadLeveler to support data staging

LoadLeveler allows you to specify the execution time for data staging job steps
using the DSTG_TIME keyword. It defaults to the AT_SUBMIT value. To
schedule data staging operation as close to the application as possible, the
JUST_IN_TIME value can be used. DSTG_MIN_SCHEDULING_INTERVAL is a
keyword used to optimize scheduler performance by allowing data staging jobs to
be scheduled only at specific intervals.

A special set of data staging step initiators, called DSTG_MAX_STARTERS, can be
set up for data staging job steps. These initiators will be a distinct set of resources
on the executing machine, not included in the MAX_STARTERS set up for
compute jobs. You cannot specify the built-in data_stage class in:
v The CLASS keyword of a job command file
v The default_class keyword in the administration file

For more information about the data staging keywords, see “Configuration
keyword descriptions” on page 233.

The LoadLeveler administration class stanza keywords can be used to specify
defaults, limits, and restrictions for the built-in data_stage class. The data_stage
class cannot be specified as the default class for a user. You cannot specify the
data_stage class in your job command file. Steps of this class will be automatically
generated by LoadLeveler based on the data staging keywords used in job
command files.

LoadLeveler provides a built-in class called data_stage that can be configured in
the administration file using a class stanza, just as you would do for any other
class. Some examples of how you might use a stanza for the data_stage class are:
v Include and exclude users and groups from this class to control which users are

permitted to use data staging.
v Specifying defaults for resource limits such as cpu_limit or nofile_limit for data

staging steps.
v Specifying defaults and maximum allowed values for the dstg_resources job

command file keyword using default_resources and max_resources.
v Limiting the total number of data staging jobs or tasks in the cluster at any one

time using maxjobs or max_total_tasks.

For more information about the data staging keywords, see “Administration
keyword descriptions” on page 298.

118 LoadLeveler: Using and Administering

If an inbound data staging job step is soft-bound to a reservation and keyword
dstg_node=any, it can be started ahead of the reservation start time, if data staging
resources are available. In all other cases, data staging steps will run within the
reservation itself.

Using an external scheduler
The LoadLeveler API provides interfaces that allow an external scheduler to
manage the assignment of resources to jobs and dispatching those jobs.

The primary interfaces for the tasks of an external scheduler are:
v ll_query to obtain information about the LoadLeveler cluster, the machines of

the cluster, jobs and Workload Manager.
v ll_get_data to obtain information about specific objects such as jobs, machines

and adapters.
v ll_start_job_ext to start a LoadLeveler job.

– The ll_start_job_ext subroutine supports both serial and parallel jobs. For
parallel jobs, ll_start_job_ext provides the ability to specify which adapters
are used by the communication protocols of each job task. This assures that
each task uses the same network for communication over a given protocol.

The steps for dispatching jobs with an external scheduler are:
1. Gather information about the LoadLeveler cluster (ll_query(CLUSTER)).

2. Gather information about the machines in the LoadLeveler cluster (
ll_query(MACHINES)).

3. Gather information about the jobs in the cluster (ll_query(JOBS)).

4. Determine the resources that are currently free. (See the note that follows.)
5. Determine which jobs to start. Assign resources to jobs to be started and

dispatch (ll_start_job_ext(LL_start_job_info_ext*)).
6. Repeat steps 1 through 5.

When an external scheduler is used, the LoadLeveler Negotiator does not keep
track of the resources used by jobs started by the external scheduler. There are two
ways that an external scheduler can keep track of the free resources available for
starting new jobs. The method that should be used depends on whether the
external scheduler runs continuously while all scheduling is occurring or is
executed to start a finite number of jobs and then terminates:
v If the external scheduler runs continuously, it should query the total resources

available in the LoadLeveler system with ll_query and ll_get_data. Then it can
keep track of the resource assigned to jobs it starts while they are running and
return the resources to the available pool when the jobs complete.

v If the external scheduler is executed to start a finite number of jobs and then
terminates, it must determine the pool of available resources when it first starts.
It can do this by first querying the total resources in the LoadLeveler system
using ll_query and ll_get_data. Then it would query the jobs in the system
(again using ll_query), looking for jobs that are running. For each running job, it
would remove the resources used by the job from the available pool. After all
the running jobs are processed, the available pool would indicate the amount of
free resource for starting new jobs.

To find out more about dispatching jobs with an external scheduler, use the
information in Table 22 on page 120.

Chapter 6. Performing additional administrator tasks 119

Table 22. Roadmap of tasks for using an external scheduler

Subtask Associated instructions (see . . .)

Learn about the LoadLeveler functions
that are limited or not available when
you use an external scheduler

“Replacing the default LoadLeveler scheduling
algorithm with an external scheduler”

Prepare the LoadLeveler environment
for using an external scheduler

“Customizing the configuration file to define an
external scheduler” on page 121

Replacing the default LoadLeveler scheduling algorithm with
an external scheduler

It is important to know how LoadLeveler keywords and commands behave when
you replace the default LoadLeveler scheduling algorithm with an external
scheduler. LoadLeveler scheduling keywords and commands fall into the following
categories:
v Keywords not involved in scheduling decisions are unchanged.
v Keywords kept in the job object or in the machine which are used by the

LoadLeveler default scheduler have their values maintained as before and
passed to the data access API.

v Keywords used only by the LoadLeveler default scheduler have no effect.

Table 23 discusses specific keywords and commands and how they behave when
you disable the default LoadLeveler scheduling algorithm.

Table 23. Effect of LoadLeveler keywords under an external scheduler

Keyword type / name Notes

Job command file keywords

class This value is provided by the data access API.
Machines chosen by ll_start_job_ext must have the
class of the job available or the request will be
rejected.

dependency Supported as before. Job objects for which
dependency cannot be evaluated (because a previous
step has not run) are maintained in the NotQueued
state, and attempts to start them using
ll_start_job_ext will result in an error. If the
dependency is met, ll_start_job_ext can start the
proc.

hold ll_start_job_ext cannot start a job that is in Hold
status.

preferences Passed to the data access API.

requirements ll_start_job_ext returns an error if the specified
machines do not match the requirements of the job.
This includes Disk and Virtual Memory
requirements.

startdate The job remains in the Deferred state until the
startdate specified in the job is reached.
ll_start_job_ext cannot start a job in the Deferred
state.

120 LoadLeveler: Using and Administering

Table 23. Effect of LoadLeveler keywords under an external scheduler (continued)

Keyword type / name Notes

user_priority Used in calculating the system priority (as described
in “Setting and changing the priority of a job” on
page 224). The system priority assigned to the job is
available through the data access API. No other
control of the order in which jobs are run is
enforced.

Administration file keywords

master_node_exclusive Ignored

master_node_requirement Ignored

max_jobs_scheduled Ignored

max_reservations Ignored

max_reservation_duration Ignored

max_total_tasks Ignored

maxidle Supported

maxjobs Ignored

maxqueued Supported

priority Used to calculate the system priority (where
appropriate).

speed Available through the data access API.

Configuration file keywords

MACHPRIO Calculated but is not used.

MAX_STARTERS Calculated, and if starting the job causes this value
to be exceeded, ll_start_job_ext returns an error.

SYSPRIO Calculated and available to the data access API.

NEGOTIATOR_PARALLEL_DEFER Ignored

NEGOTIATOR_PARALLEL_HOLD Ignored

NEGOTIATOR_RESCAN_QUEUE Ignored

NEGOTIATOR_RECALCULATE_
SYSPRIO_INTERVAL

Works as before. Set this value to 0 if you do not
want the system priorities of job objects recalculated.

Customizing the configuration file to define an external
scheduler

To use an external scheduler, one of the tasks you must perform is setting the
configuration file keyword SCHEDULER_TYPE to the value API. This keyword
option provides a time-based (rather than an event-based) interface. That is, your
application must use the data access API to poll LoadLeveler at specific times for
machine and job information.

When you enable a scheduler type of API, you must specify
AGGREGATE_ADAPTERS=NO to make the individual switch adapters available
to the external scheduler. This means the external scheduler receives each
individual adapter connected to the network, instead of collectively grouping them
together. You'll see each adapter listed individually in the llstatus -l command
output. When this keyword is set to YES, the llstatus -l command will show an

Chapter 6. Performing additional administrator tasks 121

aggregate adapter which contains information on all switch adapters on the same
network. For detailed information about individual switch adapters, issue the
llstatus -a command.

You also may use the PREEMPTION_SUPPORT keyword, which specifies the
level of preemption support for a cluster. Preemption allows for a running job step
to be suspended so that another job step can run.

Example: Retrieving specific information

For a sample that demonstrates retrieving information about the LoadLeveler
cluster, its machines, and jobs, assigning resources, and dispatching jobs see the
LoadLeveler samples directory:
v On AIX:

/usr/lpp/LoadL/scheduler/full/samples/llsch

v On Linux:
/opt/ibmll/LoadL/scheduler/full/samples/llsch

Example: Changing scheduler types
You can toggle between the default LoadLeveler scheduler and other types of
schedulers by using the SCHEDULER_TYPE keyword.

Changes to SCHEDULER_TYPE will not take effect at reconfiguration. The
administrator must stop and restart or recycle LoadLeveler when changing
SCHEDULER_TYPE. A combination of changes to SCHEDULER_TYPE and some
other keywords may terminate LoadLeveler.

The following example illustrates how you can toggle between the default
LoadLeveler scheduler and an external scheduler, such as the Extensible Argonne
Scheduling sYstem (EASY), developed by Argonne National Laboratory and
available as public domain code.

If you are running the default LoadLeveler scheduler, perform the following steps
to switch to an external scheduler:
1. In the configuration file, set SCHEDULER_TYPE = API

2. On the central manager machine:
v Issue llctl -g stop and llctl -g start, or
v Issue llctl -g recycle

If you are running an external scheduler, this is how you can re-enable the
LoadLeveler scheduling algorithm:
1. In the configuration file, set SCHEDULER_TYPE = LL_DEFAULT

2. On the central manager machine:
v Issue llctl -g stop and llctl -g start, or
v Issue llctl -g recycle

Preempting and resuming jobs
The BACKFILL scheduler allows LoadLeveler jobs to be preempted so that a
higher priority job step can run.

122 LoadLeveler: Using and Administering

Administrators may specify not only preemption rules for job classes, but also the
method that LoadLeveler uses to preempt jobs. The BACKFILL scheduler supports
various methods of preemption.

Use Table 24 to find more information about preemption.

Table 24. Roadmap of tasks for using preemption

Subtask Associated instructions (see . . .)

Learn about types of
preemption and what it
means for preempted jobs

“Overview of preemption”

Prepare the LoadLeveler
environment and jobs for
preemption

“Planning to preempt jobs” on page 124

Configure LoadLeveler to use
preemption

“Steps for configuring a scheduler to preempt jobs” on page
126

Overview of preemption
LoadLeveler supports two types of preemption:
v System-initiated preemption

– Automatically enforced by LoadLeveler, except for job steps running under a
reservation.

– Governed by the PREEMPT_CLASS rules defined in the global configuration
file.

– When resources required by an incoming job are in use by other job steps, all
or some of those job steps in certain classes may be preempted according to
the PREEMPT_CLASS rules.

– An automatically preempted job step will be resumed by LoadLeveler when
resources become available and conditions such as START_CLASS rules are
satisfied.

– An automatically preempted job step cannot be resumed using llpreempt
command or ll_preempt subroutine.

v User-initiated preemption
– Manually initiated by LoadLeveler administrators using llpreempt command

or ll_preempt subroutine.
– A manually preempted job step cannot be resumed automatically by

LoadLeveler.
– A manually preempted job step can be resumed using llpreempt command or

ll_preempt subroutine. Issuing this command or subroutine, however, does
not guarantee that the job step will successfully be resumed. A manually
preempted job step that was resumed through these interfaces competes for
resources with system-preempted job steps, and will be resumed only when
resources become available.

– All steps in a set of coscheduled job steps will be preempted if one or more
steps in the step is preempted.

– A coscheduled step will not be resumed until all steps in the set of
coscheduled job steps can be resumed.

For the BACKFILL scheduler only, administrators may select which method
LoadLeveler uses to preempt and resume jobs. The suspend method is the default
behavior, and is the preemption method LoadLeveler uses for any external
schedulers that support preemption. For more information about preemption
methods, see “Planning to preempt jobs” on page 124.

Chapter 6. Performing additional administrator tasks 123

Note: An MPICH2 job cannot be preempted with the suspend method (the job
state will change to E (preempted), but the children processes will still be running).

For a preempted job to be resumed after system- or user-initiated preemption
occurs through a method other than suspend, the restart keyword in the job
command file must be set to yes. Otherwise, LoadLeveler vacates the job step and
removes it from the cluster.

In order to determine the preempt type and preempt method to use when a
coscheduled step preempts another step, an order of precedence for preempt types
and preempt methods has been defined. All steps in the preempting coscheduled
step will be examined and the preempt type and preempt method having the
highest precedence will be used. The order of precedence for preempt type will be
ALL, ENOUGH. The precedence order for preempt method will be remove, vacate,
system hold, user hold, suspend.

When coscheduled steps are running, if one step is preempted as a result of a
system initiated preemption, then all coscheduled steps will be preempted. This
implies that more resource than necessary might be preempted when one of the
steps being preempted is a coscheduled step.

Planning to preempt jobs
Consider the following points when planning to use preemption:
v Avoiding circular preemption under the BACKFILL scheduler

BACKFILL scheduling enables job preemption using rules specified with the
PREEMPT_CLASS keyword. When you are setting up the preemption rules,
make sure that you do not create a circular preemption path. Circular
preemption causes a job class to preempt itself after applying the preemption
rules recursively. For example, the following keyword definitions set up circular
preemption rules on Class_A:
PREEMPT_CLASS[Class_A] = ALL { Class_B }
PREEMPT_CLASS[Class_B] = ALL { Class_C }
PREEMPT_CLASS[Class_C] = ENOUGH { Class_A }

Another example of circular preemption involves allclasses:
PREEMPT_CLASS[Class_A] = ENOUGH {allclasses}
PREEMPT_CLASS[Class_B] = ALL {Class_A}

In this instance, allclasses means all classes except Class_A, any additional
preemption rule preempting Class_A causes circular preemption.

v Understanding implied START_CLASS values

Using the "ALL" value in the PREEMPT_CLASS keyword places implied
restrictions on when a job can start. For example,
PREEMPT_CLASS[Class_A] = ALL {Class_B Class_C}

tells LoadLeveler two things:
1. If a new Class_A job is about to run on a node set, then preempt all Class_B

and Class_C jobs on those nodes
2. If a Class_A job is running on a node set, then do not start any Class_B or

Class_C jobs on those nodes
This PREEMPT_CLASS statement also implies the following START_CLASS
expressions:
1. START_CLASS[Class_B] = (Class_A < 1)
2. START_CLASS[Class_C] = (Class_A < 1)

124 LoadLeveler: Using and Administering

LoadLeveler adds all implied START_CLASS expressions to the START_CLASS
expressions specified in the configuration file. This overrides any existing values
for START_CLASS.
For example, if the configuration file contains the following statements:
PREEMPT_CLASS[Class_A] = ALL {Class_B Class_C}
START_CLASS[Class_B] = (Class_A < 5)
START_CLASS[Class_C] = (Class_C < 3)

When LoadLeveler runs through the configuration process, the
PREEMPT_CLASS statement on the first line generates the two implied
START_CLASS statements. When the implied START_CLASS statements get
added in, the user specified START_CLASS statements are overridden and the
resulting START_CLASS statements are effectively equivalent to:
START_CLASS[Class_B] = (Class_A < 1)
START_CLASS[Class_C] = (Class_C < 3) && (Class_A < 1)

Note: LoadLeveler's central manager (CM) uses these effective expressions
instead of the original statements specified in the configuration file. The output
from llclass -l displays the original customer specified START_CLASS
expressions.

v Selecting the preemption method under the BACKFILL scheduler

Use Table 25 and Table 26 on page 126 to determine which preemption you want
to use for jobs running under the BACKFILL scheduler. You may define one or
more of the following:
– A default preemption method to be used for all job classes, by setting the

DEFAULT_PREEMPT_METHOD keyword in the configuration file.
– A specific preemption method for one or more classes or job steps, by using

an option on:
- The PREEMPT_CLASS statement in the configuration file.
- The llpreempt command, ll_preempt subroutine or ll_preempt_jobs

subroutine.

Notes:

1. Process tracking must be enabled in order to use the suspend method to
preempt a job. To configure LoadLeveler for process tracking, see “Tracking
job processes” on page 73.

2. For a preempted job to be resumed after system- or user-initiated preemption
occurs through a method other than suspend and remove, the restart
keyword in the job command file must be set to yes. Otherwise, LoadLeveler
vacates the job step and removes it from the cluster.

Table 25. Preemption methods for which LoadLeveler automatically resumes preempted jobs

Preemption
method
(abbreviation)

LoadLeveler resumes preempted job:

At this time At this location At this processing point

Suspend (su) When preempting job
completes

On the same nodes At the point of suspension

Vacate (vc) When nodes are
available

Any nodes that meet
job requirements

At the beginning or at the
last successful checkpoint

Chapter 6. Performing additional administrator tasks 125

Table 26. Preemption methods for which administrator or user intervention is required

Preemption
method
(abbreviation) Required intervention

LoadLeveler resumes preempted job:

At this location At this processing point

Remove (rm) Administrator or user must
resubmit the preempted job

Any nodes that
meet job
requirements,
when they are
available

At the beginning or at
the last successful
checkpointSystem Hold

(sh)
Administrator must release
the preempted job

User Hold (uh) User must release the
preempted job

v Understanding how LoadLeveler treats resources held by jobs to be
preempted

When a job step is running, it may be holding the following resources:
– Processors
– Scheduling slots
– Real memory
– ConsumableCpus, ConsumableMemory, ConsumableVirtualMemory, and

ConsumableLargePageMemory
– Switch adapter windows
When LoadLeveler suspends preemptable jobs running under the BACKFILL
scheduler, certain resources held by those jobs do not become available for the
preempting jobs. These resources include ConsumableVirtualMemory,
ConsumableLargePageMemory, and floating resources. Under the BACKFILL
scheduler only, LoadLeveler releases these resources when you select a
preemption method other than suspend. For all preemption methods other than
suspend, LoadLeveler treats all job-step resources as available when it preempts
the job step.
There is a special way in which LoadLeveler treats adapter window resources
during preemption by suspend. If the PREEMPTION_SUPPORT is not set to
full in the LoadLeveler configuration, the adapter resources are not released. If it
is set to full, the adapter window resources of the preempted job are released,
but are only made available to the preempting job. These resources are treated as
in-use when scheduling jobs that did not preempt the preempted job.

v Understanding how LoadLeveler processes multiple entries for the same
keywords

If there are multiple entries for the same keyword in either a configuration file
or an administration file, the last entry wins. For example, the following
statements are all valid specifications for the same keyword START_CLASS:
START_CLASS [Class_B] = (Class_A < 1)
START_CLASS [Class_B] = (Class_B < 1)
START_CLASS [Class_B] = (Class_C < 1)

However, all three statements identify Class_B as the incoming class.
LoadLeveler resolves these statements according to the "last one wins" rule.
Because of that, the actual value used for the keyword is (Class_C < 1).

Steps for configuring a scheduler to preempt jobs
You need to know certain details about the job characteristics and workload at
your installation before you begin to define rules for starting and preempting jobs.

Before you begin:

126 LoadLeveler: Using and Administering

v To define rules for starting and preempting jobs, you need to know certain
details about the job characteristics and workload at your installation, including:
– Which jobs require the same resources, or must be run on the same machines,

and so on. This knowledge allows you to group specific jobs into a class.
– Which jobs or classes have higher priority than others. This knowledge allows

you to define which job classes can preempt other classes.
v To correctly configure LoadLeveler to preempt jobs, you might need to refer to

the following information:
– “Choosing a scheduler” on page 46.
– “Planning to preempt jobs” on page 124.
– Chapter 10, “Configuration keyword reference,” on page 231.
– Chapter 11, “Administration keyword reference,” on page 293.
– llctl command (see LoadLeveler: Command and API Reference)

Perform the following steps to configure a scheduler to preempt jobs:
1. In the configuration file, use the SCHEDULER_TYPE keyword to define the

type of LoadLeveler or external scheduler you want to use. Of the LoadLeveler
schedulers, only the BACKFILL scheduler supports preemption.
Rule: If you select the BACKFILL or API scheduler, you must set the
PREEMPTION_SUPPORT configuration keyword to either full or no_adapter.

2. (Optional) In the configuration file, use the DEFAULT_PREEMPT_METHOD
to define the default method that the BACKFILL scheduler should use for
preempting jobs.
Alternative: You also may set the preemption method through the
PREEMPT_CLASS keyword or on the LoadLeveler preemption command or
APIs, which override the setting for the DEFAULT_PREEMPT_METHOD
keyword.

3. For either the BACKFILL or API scheduler, to preempt by the suspend method
requires that you set the PROCESS_TRACKING configuration keyword to
true.

4. In the configuration file, use the PREEMPT_CLASS and START_CLASS to
define the preemption and start policies for job classes.

5. In the administration file, use the max_total_tasks keyword to define the
maximum number of tasks that may be run per user, group, or class.

6. On the central manager machine:
v Issue llctl -g stop and llctl -g start, or
v Issue llctl -g recycle

When you are done with this procedure, you can use the llq command to
determine whether jobs are being preempted and resumed correctly. If not, use the
LoadLeveler logs to trace the actions of each daemon involved in preemption to
determine the problem.

Configuring LoadLeveler to support reservations
Under the BACKFILL scheduler only, LoadLeveler allows authorized users to make
reservations or recurring reservations, which specify one or more time periods
during which specific node resources are reserved for use by particular users or
groups.

Chapter 6. Performing additional administrator tasks 127

Normally, jobs wait to be dispatched until the resources they require become
available. Through the use of reservations, wait time can be reduced because only
jobs that are bound to the reservation may use the node resources as soon as the
reservation period begins.

Reservation tasks for administrators

Use Table 27 to find additional information about reservations.

Table 27. Roadmap of reservation tasks for administrators

Subtask Associated instructions (see . . .)

Learn how reservations work in the
LoadLeveler environment

v “Overview of reservations” on page 24

v “Understanding the reservation life cycle”
on page 205

Configuring a LoadLeveler cluster to
support reservations

v “Steps for configuring reservations in a
LoadLeveler cluster”

v “Examples: Reservation keyword
combinations in the administration file” on
page 130

v “Collecting accounting data for reservations”
on page 67

Working with reservations:
v Creating reservations
v Submitting jobs under a reservation
v Managing reservations

“Working with reservations” on page 203

Correctly coding and using administration
and configuration keywords

v Chapter 11, “Administration keyword
reference,” on page 293

v Chapter 10, “Configuration keyword
reference,” on page 231

Failover and shutdown procedures See the TWS LoadLeveler for AIX: Installation
Guide or the LoadLeveler for Linux: Installation
Guide.

Steps for configuring reservations in a LoadLeveler cluster
Only the BACKFILL scheduler supports the use of reservations.

Before you begin:

v For information about configuring the BACKFILL scheduler, see “Choosing a
scheduler” on page 46.

v You need to decide:
– Which users will be allowed to create reservations.
– How many reservations users may own, and how long a duration for their

reservations will be allowed.
– Which nodes will be used for reservations.
– How much setup time is required before the reservation period starts.
– Whether accounting data for reservations is to be saved.
– The maximum lifetime for a recurring reservation before you require the user

to request a new reservation for that job.
– Additional system-wide limitations that you may want to implement such as

maintenance time blocks for specific node sets.
v For examples of possible reservation keyword combinations, see “Examples:

Reservation keyword combinations in the administration file” on page 130.

128 LoadLeveler: Using and Administering

v For details about specific keyword syntax and use:
– In the administration file, see Chapter 11, “Administration keyword

reference,” on page 293.
– In the configuration file, see Chapter 10, “Configuration keyword reference,”

on page 231.

Perform the following steps to configure reservations:
1. In the administration file, modify the user or group stanzas to authorize users

to create reservations. You may grant the ability to create reservations to an
individual user, a group of users, or a combination of users and groups. To do
so, define the following keywords in the appropriate user or group stanzas:
v max_reservations, to set the maximum number of reservations that a user or

group may have.
v (Optional) max_reservation_duration, to set the maximum amount of time

for the reservation period.
Tip: To quickly set up and use reservations, use one of the following examples:
v To allow every user to create a reservation, add max_reservations=1 to the

default user stanza. Then every administrator or user may create a
reservation, as long as the number of reservations has not reached the limit
for a LoadLeveler cluster.

v To allow a specific group of users to make 10 reservations, add
max_reservations=10 to the group stanza for that LoadLeveler group. Then
every user in that group may create a reservation, as long as the number of
reservations has not reached the limit for that group or for a LoadLeveler
cluster.

See the max_reservations description in Chapter 11, “Administration keyword
reference,” on page 293 for more information about setting this keyword in the
user or group stanza.

2. In the administration file, modify the machine stanza of each machine that may
be reserved. To do so, set the reservation_permitted keyword to true.
Tip: If you want to allow every machine to be reserved, you do not have to set
this keyword; by default, any LoadLeveler machine may be reserved. If you
want to prevent particular machines from being reserved, however, you must
define a machine stanza for that machine and set the reservation_permitted
keyword to false.

3. In the global configuration file, set reservation policy by specifying values for
the following keywords:
v MAX_RESERVATIONS to specify the maximum number of reservations per

cluster.

Note: A recurring reservation only counts as one reservation towards the
MAX_RESERVATIONS limit regardless of the number of times that the
reservation recurs.

v RESERVATION_CAN_BE_EXCEEDED to specify whether LoadLeveler will
be permitted to schedule job steps bound to a reservation when their
expected end times exceed the reservation end time.
The default for this keyword is TRUE, which means that LoadLeveler will
schedule these bound job steps even when they are expected to continue
running beyond the time at which the reservation ends. Whether these job
steps run and successfully complete depends on resource availability, which
is not guaranteed after the reservation ends. In addition, these job steps
become subject to preemption rules after the reservation ends.

Chapter 6. Performing additional administrator tasks 129

Tip: You might want to set this keyword value to FALSE to prevent users
from binding long-running jobs to run under reservations of short duration.

v RESERVATION_MIN_ADVANCE_TIME to define the minimum time
between the time at which a reservation is created and the time at which the
reservation is to start.
Tip: To reduce the impact to the currently running workload, consider
changing the default for this keyword, which allows reservations to begin as
soon as they are created. You may, for example, require reservations to be
made at least one day (1440 minutes) in advance, by specifying
RESERVATION_MIN_ADVANCE_TIME=1440 in the global configuration file.

v RESERVATION_PRIORITY to define whether LoadLeveler administrators
may reserve nodes on which running jobs are expected to end after the start
time for the reservation.
Tip: The default for this keyword is NONE, which means that LoadLeveler will
not reserve a node on which running jobs are expected to end after the start
time for the reservation. If you want to allow LoadLeveler administrators to
reserve specific nodes regardless of the expected end times of job steps
currently running on the node, set this keyword value to HIGH. Note,
however, that setting this keyword value to HIGH might increase the number
of job steps that must be preempted when LoadLeveler sets up the
reservation, and many jobs might remain in Preempted state. This also
applies to Blue Gene job steps.
This keyword value applies only for LoadLeveler administrators; other
reservation owners do not have this capability.

v RESERVATION_SETUP_TIME to define the amount of time LoadLeveler
uses to prepare for a reservation before it is to start.

4. (Optional) In the global configuration file, set controls for the collection of
accounting data for reservations:
v To turn on accounting for reservations, add the A_RES flag to the ACCT

keyword.
v To specify a file other than the default history file to contain the data, use the

RESERVATION_HISTORY keyword.
To learn how to collect accounting data for reservations, see “Collecting
accounting data for reservations” on page 67.

5. If LoadLeveler is already started, to process the changes you made in the
preceding steps, issue the command llctl -g reconfig.
Tip: If you have changed the value of only the RESERVATION_PRIORITY
keyword, issue the command llctl reconfig only on the central manager node.
Result: The new keyword values take effect immediately, but they do not
change the attributes of existing reservations.

When you are done with this procedure, you may perform additional tasks
described in “Working with reservations” on page 203.

Examples: Reservation keyword combinations in the
administration file
The following examples demonstrate LoadLeveler behavior when the
max_reservations and max_reservation_duration keywords are set. The examples
assume that only the user and group stanzas listed exist in the LoadLeveler
administration file.
v Example 1: Assume the administration file contains the following stanzas:

130 LoadLeveler: Using and Administering

default: type = user
maxjobs = 10

group2: type = group
include_users = rich dave steve

rich: type = user
default_group = group2

This example shows that, by default, no one is allowed to make any
reservations. No one, including LoadLeveler administrators, is permitted to
make any reservations unless the max_reservations keyword is used.

v Example 2: Assume the administration file contains the following stanzas:
default: type = user

maxjobs = 10

group2: type = group
include_users = rich dave steve

rich: type = user
default_group = group2
max_reservations = 5

This example shows how permission to make reservations can be granted to a
specific user through the user stanza only. Because the max_reservations
keyword is not used in any group stanza, by default, the group stanzas neither
grant permissions nor put any restrictions on reservation permissions. User Rich
can make reservations in any group (group2, No_Group, Group_A, and so on),
whether or not the group stanzas exist in the LoadLeveler administration file.
The total number of reservations user Rich can own at any given time is limited
to five.

v Example 3: Assume the administration file contains the following stanzas:
default: type = user

maxjobs = 10

group2: type = group
include_users = rich dave steve
max_reservations = 5

rich: type = user
default_group = group2

This example shows how permission to make reservations can be granted to a
group of users through the group stanza only. Because the max_reservations
keyword is not used in any user stanza, by default, the user stanzas neither
grant nor deny permission to make reservations. All users in group2 (Rich, Dave
and Steve) can make reservations, but they must make reservations in group2
because other groups do not grant the permission to make reservations. The
total number of reservations the users in group2 can own at any given time is
limited to five.

v Example 4: Assume the administration file contains the following stanzas:
default: type = user

maxjobs = 10

group2: type = group
include_users = rich dave steve
max_reservations = 5

rich: type = user
default_group = group2
max_reservations = 0

Chapter 6. Performing additional administrator tasks 131

This example shows how permission to make reservations can be granted to a
group of users except one specific user. Because the max_reservations keyword
is set to zero in the user stanza for Rich, he does not have permission to make
any reservation, even though all other users in group2 (Dave and Steve) can
make reservations.

v Example 5: Assume the administration file contains the following stanzas:
default: type = group

max_reservations = 0

default: type = user
max_reservations = 0

group2: type = group
include_users = rich dave steve
max_reservations = 5

rich: type = user
default_group = group2
max_reservations = 5

dave: type = user
max_reservations = 2

This example shows how permission to make reservations can be granted to
specific user and group pairs. Because the max_reservations keyword is set to
zero in both the default user and group stanza, no one has permission to make
any reservation unless they are specifically granted permission through both the
user and group stanza. In this example:
– User Rich can own at any time up to five reservations in group2 only.
– User Dave can own at any time up to two reservations in group2 only.

The total number of reservations they can own at any given time is limited to
five. No other combination of user or group pairs can make any reservations.

v Example 6: Assume the administration file contains the following stanzas:
default: type = user

max_reservations = 1

This example permits any user to make one reservation in any group, until the
number of reservations reaches the maximum number allowed in the
LoadLeveler cluster.

v Example 7: Assume the administration file contains the following stanzas:
default: type = group

max_reservations = 0

default: type = user
max_reservations = 0

group1: type = group
max_reservations = 6
max_reservation_duration = 1440

carol: type = user
default_group = group1
max_reservations = 4
max_reservation_duration = 720

dave: type = user
default_group = group1
max_reservations = 4
max_reservation_duration = 2880

In this example, two users, Carol and Dave, are members of group1. Neither
Carol nor Dave belong to any other group with a group stanza in the

132 LoadLeveler: Using and Administering

LoadLeveler administration file, although they may use any string as the name
of a LoadLeveler group and belong to it by default.
Because the max_reservations keyword is set to zero in the default group stanza,
reservations can be made only in group1, which has an allotment of six
reservations. Each reservation can have a maximum duration of 1440 minutes
(24 hours).
Considering only the user-stanza attributes for reservations:
– User Carol can make up to four reservations with each having a maximum

duration of 720 minutes (12 hours).
– User Dave can make up to four reservations with each having a maximum

duration of 2880 minutes (48 hours).
If there are no reservations in the system and user Carol wants to make four
reservations, she may do so. Each reservation can have a maximum duration of
no more than 720 minutes. If Carol attempts to make a reservation with a
duration greater than 720 minutes, LoadLeveler will not make the reservation
because it exceeds the duration allowed for Carol.
Assume that Carol has created four reservations, and user Dave now wants to
create four reservations:
– The number of reservations Dave may make is limited by the state of Carol's

reservations and the maximum limit on reservations for group1. If the four
reservations Carol made are still being set up, or are active, active shared or
waiting, LoadLeveler will restrict Dave to making only two reservations at
this time.

– Because the value of max_reservation_duration for the group is more
restrictive than max_reservation_duration for user Dave, LoadLeveler
enforces the group value, 1440 minutes.

If Dave belonged to another group that still had reservations available, then he
could make reservations under that group, assuming the maximum number of
reservations for the cluster had not been met. However, in this example, Dave
cannot make any further reservations because they are allowed in group1 only.

Steps for integrating LoadLeveler with the Workload Manager
Another administrative setup task you must consider is whether you want to
enforce resource usage of ConsumableCpus, ConsumableMemory,
ConsumableVirtualMemory, and ConsumableLargePageMemory.

If you want to control these resources, Workload Manager (WLM) can be
integrated with LoadLeveler to balance workloads at the machine level. When you
are using WLM, workload balancing is done by assigning relative priorities to job
processes. These job priorities prevent one job from monopolizing system resources
when that resource is under contention.

To integrate LoadLeveler and WLM, perform the following steps:
1. As required for your use, define the applicable options for ConsumableCpus,

ConsumableMemory, ConsumableVirtualMemory, or
ConsumableLargePageMemory as consumable resources in the
SCHEDULE_BY_RESOURCES global configuration keyword. This enables the
LoadLeveler scheduler to consider these consumable resources.

2. As required for your use, define the applicable options for ConsumableCpus,
ConsumableMemory, ConsumableVirtualMemory, or

Chapter 6. Performing additional administrator tasks 133

ConsumableLargePageMemory in the ENFORCE_RESOURCE_USAGE global
configuration keyword. This enables enforcement of these consumable resources
by WLM.

3. Define hard, soft or shares in the ENFORCE_RESOURCE_POLICY
configuration keyword. This defines what policy is used by LoadLeveler for
CPUs and real memory when setting WLM class resource entitlements.

4. (Optional) Set the ENFORCE_RESOURCE_MEMORY configuration keyword
to true. This setting allows WLM to limit the real memory usage of a WLM
class as precisely as possible. When a class exceeds its limit, all processes in the
class are killed.
Rule: ConsumableMemory must be defined in the
ENFORCE_RESOURCE_USAGE keyword in the global configuration file, or
LoadLeveler does not consider the ENFORCE_RESOURCE_MEMORY
keyword to be valid.
Tips:

v When set to true, the ENFORCE_RESOURCE_MEMORY keyword overrides
the policy set through the ENFORCE_RESOURCE_POLICY keyword for
ConsumableMemory only. The ENFORCE_RESOURCE_POLICY keyword
value still applies for ConsumableCpus.

v ENFORCE_RESOURCE_MEMORY may be set in either the global or the
local configuration file. In the global configuration file, this keyword sets the
default value for all the machines in the LoadLeveler cluster. If the keyword
also is defined in a local file, the local setting overrides the global setting.

5. Using the resources keyword in a machine stanza in the administration file,
define the CPU, real memory, virtual memory, and large page machine
resources available for user jobs.
v The ConsumableCpus reserved word accepts a count value of "all." This

indicates that the initial resource count will be obtained from the Startd
machine update value for CPUs.

v If no resources are defined for a machine, then no enforcement will be done
on that machine.

v If the count specified by the administrator is greater than what the Startd
update indicates, the initial count value will be reduced to match what the
Startd reports.

v For CPUs and real memory, if the count specified by the administrator is less
than what the Startd update indicates, the WLM resource shares assigned to
a job will be adjusted to represent that difference. In addition, a WLM
softlimit will be defined for each WLM class. For example, if the
administrator defines 8 CPUs on a 16 CPU machine, then a job requesting 4
CPUs will get a share of 4 and a softlimit of 50%.

v Use caution when determining the amount of real memory available for user
jobs. A certain percentage of a machine's real memory will be dedicated to
the Default and System WLM classes and will not be included in the
calculation of real memory available for users jobs.
– On AIX, start LoadLeveler with the ENFORCE_RESOURCE_USAGE

keyword enabled and issue wlmstat -v -m. Look at the npg column to
determine how much memory is being used by these classes.

– On Linux, start LoadLeveler with the ENFORCE_RESOURCE_USAGE
keyword enabled and issue cat /cgroup/memory/memory.usage_in_bytes
to determine how much memory is being used by these classes.

v ConsumableVirtualMemory and ConsumableLargePageMemory are hard
max limit values.
– WLM considers the ConsumableVirtualMemory value to be real memory

plus large page plus swap space.

134 LoadLeveler: Using and Administering

– The ConsumableLargePageMemory value should be a value equal to the
multiple of the pagesize. For example, 16MB (page size) * 4 pages = 64MB.

6. Decide if all jobs should have their CPU, real memory, virtual memory, or large
page resources enforced and then define the
ENFORCE_RESOURCE_SUBMISSION global configuration keyword.
v If the value specified is true, LoadLeveler will check all jobs at submission

time for the resources and node_resources keywords. To be submitted, either
the job's resources or node_resources keyword must have the same resources
specified as the ENFORCE_RESOURCE_USAGE keyword.

v If the value specified is false, no checking is performed and jobs submitted
without the resources or node_resources keyword will not have resources
enforced and it might interfere with other jobs whose resources are enforced.

v To support existing job command files without the resources or
node_resources keyword, the default_resources and default_node_resources
keywords in the class stanza can be defined.

For more information on the ENFORCE_RESOURCE_USAGE and the
ENFORCE_RESOURCE_SUBMISSION keywords, see “Defining usage policies
for consumable resources” on page 65.

LoadLeveler support for checkpointing jobs
Checkpointing is a method of periodically saving the state of a job step so that if
the step does not complete it can be restarted from the saved state.

When checkpointing is enabled, checkpoints can be initiated from within the
application at major milestones, or by the user, administrator or LoadLeveler
external to the application.

Once a job step has been successfully checkpointed, if that step terminates before
completion, the checkpoint file can be used to resume the job step from its saved
state rather than from the beginning. When a job step terminates and is removed
from the LoadLeveler job queue, it can be restarted from the checkpoint file by
submitting a new job and setting the restart_from_ckpt = yes job command file
keyword. When a job is terminated and remains on the LoadLeveler job queue,
such as when a job step is vacated, the job step will automatically be restarted
from the latest valid checkpoint file. A job can be vacated as a result of flushing a
node, issuing checkpoint and hold, stopping or recycling LoadLeveler or as the
result of a node crash.

To find out more about checkpointing jobs, use the information in Table 28.

Table 28. Roadmap of tasks for checkpointing jobs

Subtask Associated instructions (see . . .)

Preparing the LoadLeveler
environment for
checkpointing and restarting
jobs

v “Checkpoint keyword summary” on page 136

v “Planning considerations for checkpointing jobs” on page
136

Checkpointing and restarting
jobs

v “Checkpointing a job” on page 226

v “Removing old checkpoint files” on page 144

Correctly specifying
configuration and
administration file keywords

v Chapter 10, “Configuration keyword reference,” on page
231

v Chapter 11, “Administration keyword reference,” on page
293

Chapter 6. Performing additional administrator tasks 135

Checkpoint keyword summary
The following is a summary of keywords associated with the checkpoint and
restart function.
v Configuration file keywords

– CKPT_CLEANUP_INTERVAL
– CKPT_CLEANUP_PROGRAM
– CKPT_EXECUTE_DIR
– MAX_CKPT_INTERVAL
– MIN_CKPT_INTERVAL

For more information about these keywords, see Chapter 10, “Configuration
keyword reference,” on page 231.

v Administration file keywords
– ckpt_dir
– ckpt_time_limit

For more information about these keywords, see Chapter 11, “Administration
keyword reference,” on page 293.

v Job command file keywords
– checkpoint
– ckpt_dir
– ckpt_execute_dir
– ckpt_subdir
– ckpt_time_limit
– restart_from_ckpt

For more information about these keywords, see “Job command file keyword
descriptions” on page 335.

Planning considerations for checkpointing jobs
Review the following guidelines before you submit a checkpointing job:
v Plan for jobs that you will restart on different nodes

If you plan to migrate jobs (restart jobs on a different node or set of nodes), you
should understand the difference between writing checkpoint files to a local file
system versus a global file system (such as AFS or GPFS™). The ckpt_dir and
ckpt_subdir keywords in the job command file allow you to write to either type
of file system. If you are using a local file system, before restarting the job from
checkpoint, make certain that the checkpoint files are accessible from the
machine on which the job will be restarted.
POE provides the ability to checkpoint and later restart the entire set of
programs that make up a parallel application. POE and LoadLeveler use the
IBM MetaCluster Checkpoint Restart (MDCR) function, and its associated
components, to coordinate the checkpointing and restarting of jobs. On AIX,
MDCR invokes the appropriate Application Workload Partition (WPAR)
commands on each node of a parallel job and coordinates the checkpoint and
restart of those jobs. For more information about AIX WPAR, refer to the IBM
AIX Information Center (http://publib.boulder.ibm.com/infocenter/systems/
scope/aix/index.jsp).
On AIX, MDCR and its associated components are installed with PE as part of
the installp process. During the installp post-processing phase, PE adds entries
to the /etc/security/privcmds file for the POE and PMD executables. For more
information, see the topic about POE installation effects in IBM Parallel
Environment Runtime Edition: Installation.

136 LoadLeveler: Using and Administering

After POE installation, the system administrator needs to perform a number of
tasks to provide users with the ability to checkpoint and restart parallel jobs.
These tasks include the following:
– Authorizing users for checkpointing (AIX only)
– Defining the directories to be used for checkpointing

Notes:

1. Various limitations apply to checkpointing with PE. For example,
checkpointing is only supported on User Space jobs. For a complete list of
the restrictions, see IBM Parallel Environment Runtime Edition: MPI
Programming Guide.

2. For more information about POE installation, see IBM Parallel Environment
Runtime Edition: Installation.

v Reserve adequate disk space

Checkpoint files require a significant amount of disk space. The checkpoint will
fail if the directory where the checkpoint files are written does not have
adequate space. Since the old set of checkpoint files are not deleted until the
new set of files are successfully created, the checkpoint directory should be large
enough to contain two sets of checkpoint files. You can make an accurate size
estimate only after you have run your job and noticed the size of the checkpoint
file that is created.

v Plan for staging executables

If you want to stage the executable for a job step, use the ckpt_execute_dir
keyword to define the directory where LoadLeveler will save the executable.
This directory cannot be the same as the current location of the executable file,
or LoadLeveler will not stage the executable.
You may define the ckpt_execute_dir keyword in either the configuration file or
the job command file. To decide where to define the keyword, use the
information in Table 29.

Table 29. Deciding where to define the directory for staging executables

If the ckpt_execute_dir
keyword is defined in: Then the following information applies:

The configuration file only v LoadLeveler stages the executable file in a new subdirectory
of the specified directory. The name of the subdirectory is the
job step ID.

v The user is the owner of the subdirectory and has permission
700.

v If the user issues the llckpt command with the -k option,
LoadLeveler deletes the staged executable.

v LoadLeveler will delete the subdirectory and the staged
executable when the job step ends.

The job command file only v LoadLeveler stages the executable file in the directory
specified in the job command file.

v The user is the owner of the file and has execute permission
for it.

v The user is responsible for deleting the staged file after the
job step ends.

Both the configuration and
job command files

Neither file (the keyword
is not defined)

LoadLeveler does not stage the executable file for the job step.

v Set your checkpoint file size to the maximum

Chapter 6. Performing additional administrator tasks 137

To make sure that your job can write a large checkpoint file, assign your job to a
job class that has its file size limit set to the maximum (unlimited). In the
administration file, set up a class stanza for checkpointing jobs with the
following entry:

file_limit = unlimited,unlimited

This statement specifies that there is no limit on the maximum size of a file that
your program can create.

v Choose a unique checkpoint file name

To prevent another job step from writing over your checkpoint file with another
checkpoint file, make certain that your checkpoint file name is unique. The
ckpt_dir and ckpt_subdir keywords give you control over the location and
name of these files.

Additional planning considerations for checkpointing
MetaCluster HPC jobs on AIX

Before you can checkpoint MetaCluster HPC jobs, you must install LoadLeveler for
AIX and MetaCluster HPC.

For MetaCluster HPC installation information, see Parallel Environment Runtime
Edition for AIX: Installation in the IBM Cluster Information Center
(http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp).

Checkpoint and restart limitations
Use of the checkpoint and restart function has certain limitations. If you are
planning to use the checkpoint and restart function, you need to be aware of the
types of programs that cannot be checkpointed as well as the restrictions related to
the operating system, nodes, tasks, threads, and so on.

For more information about checkpoint and restart limitations, see the IBM Parallel
Environment Runtime Edition MPI Programming Guide in the IBM Cluster
Information Center (http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/
index.jsp) or the IBM Publications Center (http://www.ibm.com/e-business/
linkweb/publications/servlet/pbi.wss).

Submitting a MetaCluster HPC checkpoint job to LoadLeveler
Several LoadLeveler job command, configuration, and administration keywords are
available to support the LoadLeveler/MetaCluster HPC checkpoint and restart
operations.

They will be discussed in greater detail in other topics of this information. The
purpose of this topic is to simply highlight the fact that a regular LoadLeveler job
command file can be converted to a checkpointable job command file by adding the
checkpoint and ckpt_subdir specifications to the file as shown in “job_1.cmd - A
checkpointable job command file.”

job_1.cmd - A checkpointable job command file
This checkpointable job command file may apply to your situation.
#!/bin/ksh
A parallel job command file using Metacluster HPC checkpoint/restart
@ job_type=parallel
@ step_name = ckpt_1
@ class = small

138 LoadLeveler: Using and Administering

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp
http://www.ibm.com/e-business/linkweb/publications/servlet/pbi.wss

@ checkpoint = yes
@ ckpt_subdir = /gpfs/cpr/job1
@ initialdir = /home/llbld
@ restart = no
@ cpu_limit = 120
@ input = /dev/null
@ output = job1.$(Host).$(Cluster).$(Process).out
@ error = job1.$(Host).$(Cluster).$(Process).err
@ notification = error
@ queue

/usr/bin/poe /gpfs/user/ckpt/ mpi_lapi_3 -t 4 -s 100 -ilevel 2 -pmdlog no

In the job_1.cmd file, the following has been added to inform LoadLeveler that the
job is checkpointable:
@ checkpoint = yes

To specify the directory where the checkpoint files will be stored, the following
was also added:
@ ckpt_subdir = /gpfs/cpr/job1

This job command file will be run as a shell script under LoadLeveler. It is,
therefore, important that it has execute permission and that the first line of this file
contains the string #!/bin/ksh or something similar (for example, #!/bin/sh) to
indicate that it is to be run under the specified shell.

If the full path name of this file is /gpfs./user/job_1.cmd, you can use the following
command to submit the job to LoadLeveler:
llsubmit /gpfs./user/job_1.cmd

You should receive a response similar to the following:
llsubmit: The job "c197blade2b11.ppd.pok.ibm.com.4" has been submitted.

If the llq command was used to query the LoadLeveler central manager for job
status, the output of the llq command should be similar to the following:
Id Owner Submitted ST PRI Class Running On
-------------------- -------- ----------- -- --- --------- -----------
c197blade2b11.2.0 llbld 11/2 14:42 R 50 small c197blade2b11
c197blade2b11.3.0 llbld 11/2 14:42 R 50 small c197blade2b12
c197blade2b11.4.0 llbld 11/2 14:42 R 50 small c197blade2b12

3 job step(s) in queue, 0 waiting, 0 pending, 3 running, 0 held, 0 preempted

Note here an important difference in the way LoadLeveler handles checkpoint and
noncheckpoint jobs. Because job_1.cmd is associated with a checkpoint job,
LoadLeveler does not copy this script to the machine selected by LoadLeveler to
run the job. This is in contrast to the case of a noncheckpoint job where the script
is always copied to the LoadLeveler execute directory of the running machine. As a
result, the /gpfs./user/job_1.cmd file must be accessible to all machines in the
LoadLeveler cluster that can run this job. One way of accomplishing this objective
is to put it on a shared file system. If this is not possible, you should consider
using the ckpt_execute_dir keyword. For additional information on this keyword,
see “Using the ckpt_execute_dir keyword” on page 144.

Using the llckpt command to checkpoint a job step
While the c197blade2b11.4.0 job step is in the Running (R) state, you can issue a
command to checkpoint this job step.

Chapter 6. Performing additional administrator tasks 139

While the c197blade2b11.4.0 job step is in the Running (R) state, you can issue the
following command to checkpoint this job step:
llckpt c197blade2b11.4.0

You should receive output similar to the following:
llckpt: The llckpt command will wait for the results of the checkpoint operation \

on job step c197blade2b11.4.0 before returning.
llckpt: Checkpoint of job step c197blade2b11.4.0 completed successfully.

Since the llckpt c197blade2b11.4.0 command was run without any options,
LoadLeveler will checkpoint the c197blade2b11.4.0 job step, but this job step will
continue to run after the checkpoint. The llckpt command has two major options
that allow you to control what happens to a job step after a checkpoint:
v If the -k option is specified, the job step is terminated after a successful

checkpoint.
v If the -u option is specified, the job step is put in user hold after a successful

checkpoint.

Restarting a job step from a checkpoint
If a successful checkpoint of a job step has been made, you can request
LoadLeveler to restart the job step from this checkpoint.

Restarting a job step from user hold
In this scenario, the command llckpt -u c197blade2b11.4.0 has been executed to
checkpoint the c197blade2b11.4.0 job step and put it in user hold.

The output of the llq command should be similar to the following:
Id Owner Submitted ST PRI Class Running On
-------------------- -------- ----------- -- --- --------- -----------
c197blade2b11.4.0 llbld 11/2 14:42 H 50 small

1 job step(s) in queue, 0 waiting, 0 pending, 0 running, 1 held, 0 preempted

To release c197blade2b11.4.0 from user hold, issue the following command:
llhold -r c197blade2b11.4.0

LoadLeveler will dispatch the job step to a set of machines in the cluster that
meets the job step requirements. These machine may or may not be the same
machines that ran the job step before the checkpoint. On these machines, the job
step resumes execution from the last successful checkpoint.

Running a new job to restart a job step from a checkpoint
If the llckpt -k c197blade2b11.4.0 command has been used to checkpoint and
terminate the c197blade2b11.4.0 job step, you can resume execution of your
application from this checkpoint by submitting a new job to LoadLeveler.

In the job command file of this new job, you need to specify the directory where
the checkpoint files are located. To indicate that you want to run the new job from
a checkpoint, this job command file must also contain the following statement:
@ restart_from_ckpt = yes

“restart_job_1.cmd - A job command file to restart a job step from a checkpoint”
shows the content of such a file (restart_job_1.cmd).

restart_job_1.cmd - A job command file to restart a job step from a checkpoint:

140 LoadLeveler: Using and Administering

This job command file to restart a job step from a checkpoint may apply to your
situation.
#!/bin/ksh
A parallel job command file using Metacluster HPC checkpoint/restart
@ job_type=parallel
@ step_name = ckpt_1
@ class = small
@ checkpoint = yes
@ restart_from_ckpt = yes
@ ckpt_subdir = /gpfs/cpr/job1
@ initialdir = /home/llbld
@ restart = no
@ cpu_limit = 120
@ input = /dev/null
@ output = job1.$(Host).$(Cluster).$(Process).out
@ error = job1.$(Host).$(Cluster).$(Process).err
@ notification = error
@ queue

/usr/bin/poe /gpfs/user/ckpt/ mpi_lapi_3 -t 4 -s 100 -ilevel 2 -pmdlog no

Notes:

1. This file is identical to the job_1.cmd file except for the addition of the
statement # @ restart_from_ckpt = yes.

2. The ckpt_subdir keyword specifies the directory where the checkpoint files are
located.

3. The checkpoint keyword is set to yes. This means that this new job can be
checkpointed again if needed.

Making a duplicate of the original job command file and then adding the
statement # @ restart_from_ckpt = yes to the copy is a fast and a safe way to
prepare a new job for restart operations. However, it should be noted that since
almost all of the information needed to restart a job step is contained in the files in
the checkpoint directory, the restart_job_1.cmd file in this example can be
simplified. “restart_job_1B.cmd - A simplified job command file to restart a job step
from a checkpoint” shows the content of a simplified restart file.

restart_job_1B.cmd - A simplified job command file to restart a job step from a
checkpoint:

This simplified job command file to restart a job step from a checkpoint may apply
to your situation.
#!/bin/ksh
A parallel job command file using Metacluster HPC checkpoint/restart
@ job_type=parallel
@ step_name = ckpt_1
@ class = small
@ checkpoint = yes
@ restart_from_ckpt = yes
@ ckpt_subdir = /gpfs/cpr/job1
@ initialdir = /home/llbld
@ restart = no
@ cpu_limit = 120
@ input = /dev/null
@ output = job1.$(Host).$(Cluster).$(Process).out
@ error = job1.$(Host).$(Cluster).$(Process).err
@ notification = error
@ queue

Chapter 6. Performing additional administrator tasks 141

In this example, you can run either of the following commands to restart from the
checkpoint file:
llsubmit restart_job_1.cmd

or
llsubmit restart_job_1B.cmd

However, in both cases, it is important that the /gpfs./user/job_1.cmd file that was
run before the checkpoint is still in its original location and is unmodified at restart
time. This is because on restart, the script that is actually run is job_1.cmd not
restart_job_1.cmd or restart_job_1B.cmd.

Making periodic checkpoints
LoadLeveler supports periodic checkpointing of user applications if the
configuration file MIN_CKPT_INTERVAL and MAX_CKPT_INTERVAL keywords
are defined and the job command file checkpoint keyword is set to the value
interval.

Example - checkpoint every 30 seconds
Using this example, when the job is run under LoadLeveler, a checkpoint will be
made every 30 seconds.

If the LoadLeveler global configuration file contains the following statements:
MIN_CKPT_INTERVAL = 30
MAX_CKPT_INTERVAL = 30

and the job command file contains the statements:
@ checkpoint = interval
@ ckpt_subdir = /gpfs/cpr/job1

then when the job is run under LoadLeveler, a checkpoint will be made every 30
seconds. At each checkpoint, the checkpoint information of the job is saved at one
of the following directories:
/gpfs/cpr/job1/ckpt_0
/gpfs/cpr/job1/ckpt_1
/gpfs/cpr/job1/ckpt_current -> /gpfs/cpr/job1/ckpt_0

The two directories are reused in an endless loop. The ckpt_current file is a
symbolic link pointing to the directory containing the last successful checkpoint.

Example - checkpoint interval
This example of the checkpoint interval may apply to your situation.

If the LoadLeveler global configuration file contains the following statements:
MIN_CKPT_INTERVAL = 30
MAX_CKPT_INTERVAL = 300

and the job command file contains the statement:
@ checkpoint = interval
@ ckpt_subdir = /gpfs/cpr/job1

then when the job is run under LoadLeveler, a first checkpoint will be made after
30 seconds. The second checkpoint is made after a time interval = 2 x
MIN_CKPT_INTERVAL. The time interval between checkpoints will keep on
doubling in value until the MAX_CKPT_INTERVAL value of 300 seconds is

142 LoadLeveler: Using and Administering

reached. As in “Example - checkpoint every 30 seconds” on page 142, the
checkpoint information of the job is saved at either /gpfs/cpr/job1/ckpt_0 or ckpt_1
with the ckpt_current file pointing to the last successful checkpoint.

Using the ckpt_dir and ckpt_subdir keywords
The ckpt_dir keyword is both a LoadLeveler administration file keyword and a job
command file keyword. The ckpt_subdir keyword is a job command file keyword
only.

The full path name of the directory used to store the LoadLeveler/MetaCluster
checkpoint information is a concatenation of the values of ckpt_dir and
ckpt_subdir. In this topic, the use of these keywords is illustrated with a number
of examples.

Example - storing checkpoint information for the job step in the
/gpfs/user_1/ckpt_test1 directory
This example of storing checkpoint information for the job step in the
/gpfs/user_1/ckpt_test1 directory may apply to your situation.

In this example, the job command file contains the following specifications:
@ ckpt_dir = /gpfs/MetaC/CKPT
@ ckpt_subdir = /gpfs/user_1/ckpt_test1

Note that the value of ckpt_subdir is a string starting with “/”. Since ckpt_subdir
specifies a fully qualified path name, the ckpt_dir keyword is ignored.
LoadLeveler stores checkpoint information for the job step in the
/gpfs/user_1/ckpt_test1 directory.

Example - storing checkpoint information for the job step in the
/gpfs/MetaC/CKPT/ckpt_test1 directory
This example of storing checkpoint information for the job step in the
/gpfs/MetaC/CKPT/ckpt_test1 directory may apply to your situation.

In this example, the job command file contains the following specifications:
@ ckpt_dir = /gpfs/MetaC/CKPT
@ ckpt_subdir = ckpt_test1

LoadLeveler stores checkpoint information for the job step in the
/gpfs/MetaC/CKPT/ckpt_test1 directory, which is a concatenation of the values
associated with ckpt_dir and ckpt_subdir.

Example - storing checkpoint information for the job in the
/gpfs/MetaC/CKPT_small/ckpt_test1 directory
This example of storing checkpoint information for the job in the
/gpfs/MetaC/CKPT_small/ckpt_test1 directory may apply to your situation.

In this example, the class stanza of the class small in the LoadLeveler
administration file contains this specification:

ckpt_dir = /gpfs/MetaC/CKPT_small

The job command file contains the following specifications:
@ ckpt_subdir = ckpt_test1
@ class = small

Chapter 6. Performing additional administrator tasks 143

LoadLeveler stores checkpoint information for the job in the /gpfs/MetaC/
CKPT_small/ckpt_test1 directory, which is a concatenation of the value associated
with ckpt_dir for class small and the value of ckpt_subdir.

Example - storing checkpoint information for the job in the
/gpfs/MetaC/test99.hostname3.pok.ibm.com.905.1.ckpt directory
In this example, the ckpt_dir keyword is not specified in the LoadLeveler
administration file or the job command file.

The ckpt_subdir keyword is not specified in the job command file. The job
command file contains the following specifications:
@ job_name = test99
@ class = small_job
@ checkpoint = yes
@ initialdir = /gpfs/MetaC

Assuming that the job is run with the LoadLeveler assigned job step ID of
hostname3.pok.ibm.com.905.1, LoadLeveler stores checkpoint information for the
job in the /gpfs/MetaC/test99.hostname3.pok.ibm.com.905.1.ckpt directory. This is
because the default value of ckpt_dir is the initial working directory and the
default value of ckpt_subfile is [jobname].job_step_id.ckpt.

Note: You must specify a value for ckpt_subdir when restart_from_ckpt=yes.
LoadLeveler cannot generate a default value for ckpt_subdir on restart because
any default would be based on the job step ID of this new job and ckpt_subdir for
a restarted job must point to the location of the checkpoint files of some previously
run job.

Removing old checkpoint files
To keep your system free of checkpoint files that are no longer necessary,
LoadLeveler provides two keywords to help automate the process of removing
these files:
v CKPT_CLEANUP_PROGRAM

v CKPT_CLEANUP_INTERVAL

Both keywords must contain valid values to automate this process. For information
about configuration file keyword syntax and other details, see Chapter 10,
“Configuration keyword reference,” on page 231.

Using the ckpt_execute_dir keyword
The ckpt_execute_dir keyword is both a LoadLeveler configuration file keyword
and a job command file keyword.

When used as a job command file keyword, it specifies the directory where the job
step executable will be saved for a checkpointable job. In this topic, the use of this
keyword as a job command file keyword is illustrated with a number of examples.

Example - using the llsubmit job_2.cmd
In this file, both the executable keyword and the ckpt_execute_dir keywords are
specified.

“job_2.cmd - A parallel checkpoint job using the executable keyword and the
ckpt_execute_dir keyword” on page 145 shows the content of the job_2.cmd file.
When this job is submitted to LoadLeveler with the command:
llsubmit job_2.cmd

144 LoadLeveler: Using and Administering

the /home/llbld/my_bin/my_application file is copied at dispatch time to the
/gpfs/user/ckpt_bin directory and /gpfs/user/ckpt_bin/my_application is the full
path name of the application that will be run by LoadLeveler.

If a checkpoint and terminate operation is made with the llckpt -k job_step_id
command, the checkpoint information is saved in the /gpfs/cpr/job2 directory. The
/gpfs/user/ckpt_bin/my_application file is not deleted by LoadLeveler because it
may be needed for restart operations. It is your responsibility to manage the files
in the ckpt_execute_dir directory and to remove any files that are no longer
needed.

job_2.cmd - A parallel checkpoint job using the executable keyword and the
ckpt_execute_dir keyword:

This parallel checkpoint job using the executable keyword and the
ckpt_execute_dir keyword may apply to your situation.
#!/bin/ksh
@ job_type=parallel
@ step_name = ckpt_1
@ class = small
@ checkpoint = yes
@ ckpt_subdir = /gpfs/cpr/job2
@ executable = /home/llbld/my_bin/my_application
@ ckpt_execute_dir = /gpfs/user/ckpt_bin
@ initialdir = /home/llbld
@ restart = no
@ cpu_limit = 120
@ input = /dev/null
@ output = job1.$(Host).$(Cluster).$(Process).out
@ error = job1.$(Host).$(Cluster).$(Process).err
@ notification = error
@ queue

Example - using the llsubmit job_3.cmd
Since the executable keyword is not specified, the job_3.cmd script itself is the
executable.

“job_3.cmd - A parallel checkpoint job using the ckpt_execute_dir keyword, but not
the executable keyword” shows the content of the job_3.cmd file.

In this example, ckpt_execute_dir has the value /gpfs/user/ckpt_bin. When this job
is submitted to LoadLeveler with the command:
llsubmit job_3.cmd

the job_3.cmd file is copied to the /gpfs/user/ckpt_bin directory at dispatch time
and value /gpfs/user/ckpt_bin /job_3.cmd is the full path name of the application
that will be run by LoadLeveler.

As in “Example - using the llsubmit job_2.cmd” on page 144, when this job
terminates the /gpfs/user/ckpt_bin /job_3.cmd file is not deleted by LoadLeveler
because it may be needed for restart operations. It is your responsibility to manage
the files in the ckpt_execute_dir directory and to remove any files that are no
longer needed.

job_3.cmd - A parallel checkpoint job using the ckpt_execute_dir keyword, but
not the executable keyword:

Chapter 6. Performing additional administrator tasks 145

This parallel checkpoint job using the ckpt_execute_dir keyword, but not the
executable keyword may apply to your situation.
#!/bin/ksh
@ job_type=parallel
@ step_name = ckpt_1
@ class = small
@ checkpoint = yes
@ ckpt_subdir = /gpfs/cpr/job2
@ ckpt_execute_dir = /gpfs/user/ckpt_bin
@ initialdir = /home/llbld
@ restart = no
@ cpu_limit = 120
@ input = /dev/null
@ output = job1.$(Host).$(Cluster).$(Process).out
@ error = job1.$(Host).$(Cluster).$(Process).err
@ notification = error
@ queue

/usr/bin/poe /gpfs/user/ckpt/ mpi_lapi_3 -t 4 -s 100 -ilevel 2 -pmdlog no

Initiating a checkpoint using the ll_ckpt() API
You can initiate a checkpoint by running the command llckpt job_step_id.

As an alternative, you can use the LoadLeveler ll_ckpt() interface. This interface
allows you to perform almost all the functions of the llckpt command from within
your C or C++ application. The test_ll_ckpt.c program shows how the ll_ckpt()
interface can be used to initiate a checkpoint from an application written in C.

The test_ll_ckpt.c program
The test_ll_ckpt.c program may apply to your situation.
/* ll_test_ckpt.c: A C program showing how the LoadLeveler ll_ckpt() interface */
/* can be used to initiate the checkpoint of a LoadLeveler job step. */
/* Compile and Link: */
/* g++ -c -I/opt/ibmll/LoadL/full/include -DMETACLUSTER_CKPT test_ll_ckpt.c */
/* g++ -o test_ll_ckpt test_ll_ckpt.o -lllapi -lpthread -ldl */

#include <stdio.h>
#include <stdlib.h>
#include <string.h>
#include <signal.h>
#include "llapi.h"

main(int argc, char *argv[])
{

LL_ckpt_info *ckpt_info = NULL;
char *job_step_id;
int rc;

if (argc != 2) {
printf("Syntax: job_step_id>\n", argv[0]);
exit(-1);

}
job_step_id = strdup(argv[1]);

if((ckpt_info = (LL_ckpt_info*)malloc(sizeof(LL_ckpt_info))) == NULL) }
printf("Unable to allocate memory.\n");
exit(-1);

}
if((ckpt_info->cp_error_data =

(cr_error_t*)malloc(sizeof(cr_error_t))) == NULL) {
printf("Unable to allocate memory.\n");
exit(-1);

}

146 LoadLeveler: Using and Administering

/* Initialize the info_ckpt structure to some default values. */
ckpt_info->version = LL_API_VERSION;
ckpt_info->step_id = NULL;
ckpt_info->waitType = CKPT_WAIT;
ckpt_info->ckptType = CKPT_AND_CONTINUE;
ckpt_info->abort_sig = SIGINT;
ckpt_info->cp_error_data->Py_error = 0;
ckpt_info->cp_error_data->Sy_error = 0;
ckpt_info->cp_error_data->Xtnd_error = 0;
ckpt_info->cp_error_data->error_len = 0;
ckpt_info->cp_error_data->error_data = NULL;
ckpt_info->soft_limit = 0;
ckpt_info->hard_limit = 0;

/* We will checkpoint and terminate the job step specified. */
ckpt_info->step_id = job_step_id;
ckpt_info->ckptType = CKPT_AND_TERMINATE;
rc = ll_ckpt(ckpt_info);
if (rc == 0) {

printf("Checkpoint operation is successful.\n");
}
else {

printf("Checkpoint operation failed.\n");
if (ckpt_info->cp_error_data->error_data) {

printf("Error message: cp_error_data->error_data);
}

}
return (0);

}

LoadLeveler scheduling affinity support
LoadLeveler offers a number of scheduling affinity options.

The LoadLeveler scheduling affinity options are:
v Memory affinity
v Adapter affinity
v Processor affinity

Enabling scheduling affinity allows LoadLeveler jobs to utilize performance
improvement from memory, adapter, and processor affinities. On IBM POWER7®

and POWER6® processor-based systems, memory and adapter affinity are provided
using multiple chip modules (MCMs). On Linux x86 platforms, memory affinity is
provided using the Non-Uniform Memory Access (NUMA) architecture. If enabled,
LoadLeveler will schedule and attach the appropriate CPUs in the cluster to the
job tasks in order to maximize performance improvement based on the type of
affinity requested by the job.

Memory affinity

IBM POWER7 and POWER6 processor-based systems contain MCMs, each
containing multiple processors. System memory is attached to these MCMs. While
any processor can access all of the memory in the system, a processor has faster
access and higher bandwidth when addressing memory that is attached to its own
MCM rather than memory attached to the other MCMs in the system. For more
information about memory affinity, see the AIX Performance Management Guide.

On Linux x86 platforms, with the NUMA architecture, a processor can access its
own local memory faster than non-local memory (memory local to another
processor or memory shared between processors).

Chapter 6. Performing additional administrator tasks 147

Adapter affinity

On IBM POWER processor-based systems, the concept of affinity also applies to
the I/O subsystem. The processes running on CPUs from an MCM have faster
access to the adapters attached to the I/O slots of that MCM. I/O affinity will be
referred to as adapter affinity in this topic. For more information about adapter
affinity, see the AIX Performance Management Guide.

Processor affinity

LoadLeveler provides processor affinity options to improve job performance on the
following platforms:
v IBM POWER7 processor-based systems running in simultaneous multithreading

(SMT) mode with AIX or Linux
v IBM POWER7 processor-based systems running in Single Threaded (ST) mode

with AIX or Linux
v x86 and x86_64 processor-based systems with Linux

On AIX, affinity support is implemented by using a Resource Set (RSet), which
contains bit maps for CPU and memory pool resources. The RSet APIs available in
AIX can be used to attach RSets to processes. Attaching an RSet to a process limits
the process to only using the resources contained in the RSet. One of the main uses
of RSets is to limit the application processes to run only on the processors
contained in a single MCM and hence to benefit from memory affinity. For more
details on RSets, refer to AIX System Management Guide: Operating System and
Devices.

On Linux systems, affinity support is implemented by using "cpusets," which
provide a mechanism for assigning a set of CPUs and memory nodes (MCMs) to a
set of tasks. The cpusets constrain the CPU and memory placement of tasks to only
the resources within a task's current cpuset. The cpusets are managed by the
virtual file system type cpuset. Before configuring LoadLeveler to support affinity,
the cpuset virtual file system must be created on every machine in the cluster to
enable affinity support.

Configuring LoadLeveler to use scheduling affinity
On AIX and Linux systems, scheduling affinity can be enabled by using the
RSET_SUPPORT configuration file keyword. Machines that are configured with
this keyword indicate the ability to service jobs requesting or requiring scheduling
affinity.

Enable RSET_SUPPORT with one of these values:
v Choose RSET_MCM_AFFINITY to allow jobs specifying rset =

RSET_MCM_AFFINITY or the task_affinity keyword to run on a node. When
rset = RSET_MCM_AFFINITY, LoadLeveler will select and attach sets of CPUs
to task processes such that a set of CPUs will be from the same MCM. When the
task_affinity keyword is used, LoadLeveler will select CPUs regardless of their
location with respect to an MCM.

v Choose RSET_USER_DEFINED to allow jobs specifying a user-defined RSet
name for rset to run on a node. The RSET_USER_DEFINED option enables
scheduling affinity, allowing users more control over scheduling affinity
parameters by allowing the use of user-defined RSets. Through the use of
user-defined RSets, users can utilize new RSet features before a LoadLeveler

148 LoadLeveler: Using and Administering

implementation is released. This option also allows users to specify a different
number of CPUs in their RSets depending on the needs of each task. This value
is supported only on AIX machines.

Notes:

1. Because LoadLeveler creates a cpuset for each task requesting affinity under the
/dev/cpuset directory on Linux machines, the cpuset virtual file system must be
created and mounted on the /dev/cpuset directory by issuing the following
commands on each node:
mkdir /dev/cpuset
mount -t cpuset none /dev/cpuset

2. A virtual file system of type cpuset mounted at /dev/cpuset will be deleted
when the node is rebooted. To create the /dev/cpuset directory and have the
virtual cpuset file system mounted on it automatically when the node is
rebooted, add the following commands to your start-up script (for example,
/etc/init.d/boot.local), which is run when the node is rebooted or started:
if test -e /dev/cpuset || mkdir -p /dev/cpuset ; then
mount -t cpuset none /dev/cpuset
fi

See “Configuration keyword descriptions” on page 233 for more information on
the RSET_SUPPORT keyword.

On AIX and Linux systems, jobs requesting processor affinity with the
task_affinity keyword in the job command file will only run on machines where
the resource statement in the machine stanza in the LoadLeveler administration file
contains the ConsumableCpus keyword. For more information on specifying
ConsumableCpus, see the resource keyword description in “Administration
keyword descriptions” on page 298.

LoadLeveler multicluster support
To provide a more scalable runtime environment and more efficient workload
balancing, you may configure a LoadLeveler multicluster environment.

A LoadLeveler multicluster environment consists of two or more LoadLeveler
clusters, grouped together through network connections that allow the clusters to
share resources. These clusters may be AIX, Linux, or mixed clusters.

Within a LoadLeveler multicluster environment:
v The local cluster is the cluster from which the user submits jobs or issues

commands.
v A remote cluster is a cluster that accepts job submissions and commands from

the local cluster.
v A local gateway Schedd is a Schedd within the local cluster serving as an

inbound point from some remote cluster, an outbound point to some remote
cluster, or both.

v A remote gateway Schedd is a Schedd within a remote cluster serving as an
inbound point from the local cluster, an outbound point to the local cluster, or
both.

v A local central manager is the central manager in the same cluster as the local
gateway Schedd.

v A remote central manager is the central manager in the same cluster as a remote
gateway Schedd.

Chapter 6. Performing additional administrator tasks 149

A LoadLeveler multicluster environment addresses scalability and workload
balancing issues by providing the ability to:
v Distribute workload among LoadLeveler clusters when jobs are submitted.
v Easily access multiple LoadLeveler cluster resources.
v Display information about the multicluster.
v Monitor and control operations in a multicluster.
v Transfer idle jobs from one cluster to another.
v Transfer user input and output files between clusters.
v Enable LoadLeveler to operate in a secure environment where clusters are

separated by a firewall.

Table 30 shows the multicluster support subtasks with a pointer to the associated
instructions:

Table 30. Multicluster support subtasks and associated instructions

Subtask Associated instructions (see . . .)

Configure a LoadLeveler multicluster “Configuring a LoadLeveler multicluster”

Submit and monitor jobs in a LoadLeveler
multicluster

“Submitting and monitoring jobs in a
LoadLeveler multicluster” on page 218

Table 31 shows multicluster support related topics:

Table 31. Multicluster support related topics

Related topics Additional information (see . . .)

Administration file: Cluster stanzas “Defining clusters” on page 104

Administration file: Cluster keywords “Administration keyword descriptions” on
page 298

Configuration file: Cluster keywords “Configuration keyword descriptions” on
page 233

Job command file: Cluster keywords “Job command file keyword descriptions” on
page 335

Commands and APIs LoadLeveler: Command and API Reference

Diagnosis and messages LoadLeveler: Diagnosis and Messages Guide

Configuring a LoadLeveler multicluster
These are the subtasks for configuring a LoadLeveler multicluster.

Table 32 lists the subtasks for configuring a LoadLeveler multicluster.

Table 32. Subtasks for configuring a LoadLeveler multicluster

Subtask Associated instructions (see . . .)

Configure the
LoadLeveler
multicluster
environment

v “Steps for configuring a LoadLeveler multicluster” on page 151

v “Steps for securing communications within a LoadLeveler
multicluster” on page 153

150 LoadLeveler: Using and Administering

Table 32. Subtasks for configuring a LoadLeveler multicluster (continued)

Subtask Associated instructions (see . . .)

Display information
about the LoadLeveler
multicluster
environment

v Use the llstatus command:
– With the -X option to display information about machines in

the multicluster.
– With the -C option to display information defined in cluster

stanzas in the administration file.

v Use the llclass command with the -X option to display
information about classes on any cluster (local or remote).

v Use the llq command with the -X option to display information
about jobs on any cluster (local or remote).

Monitor and control
operations in the
LoadLeveler
multicluster
environment

Existing LoadLeveler user commands accept the -X option for a
multicluster environment.

Rules:

v Administrator only commands are not applicable in a multicluster
environment.

v The options -x, -W, -s, and -p cannot be specified together with
the -X option on the llmodify command.

v The options -x and -w cannot be specified together with the -X
option on the llq command.

v The -X option on the following commands is restricted to a single
cluster:
– llcancel
– llckpt
– llhold
– llmodify
– llprio

v The following commands are not applicable in a multicluster
environment:
– llacctmrg
– llchres
– llinit
– llmkres
– llqres
– llrmres
– llrunscheduler
– llsummary

Steps for configuring a LoadLeveler multicluster
The primary task for configuring a LoadLeveler multicluster environment is to
enable communication between gateway Schedd daemons on all of the clusters in
the multicluster. To do so requires defining each Schedd daemon as either local or
remote, and defining the inbound and outbound hosts with which the daemon will
communicate.

Before you begin: You need to know that:
v A single machine may be defined as an inbound or outbound host, or as both.
v A single cluster must belong to only one multicluster.
v A single multicluster must consist of 10 or fewer clusters.
v Clusters must have unique host names within the multicluster network domain

space.
v The inbound Schedd becomes the schedd_host of all remote jobs it receives.

Perform the following steps to configure a LoadLeveler multicluster:

Chapter 6. Performing additional administrator tasks 151

1. In the administration file, define one cluster stanza for each cluster in the
LoadLeveler multicluster environment.
Rules:
v You must define one cluster as the local cluster.
v You must code the following required cluster-stanza keywords and variable

values:
cluster_name: type=cluster
outbound_hosts = hostname[(cluster_name)]
inbound_hosts = hostname[(cluster_name)]

v If you want to allow users to submit remote jobs to the local cluster, the list
of inbound hosts must include the name of the inbound Schedd and the
cluster you are defining as remote or you must specify the name of an
inbound Schedd without any cluster specification so that it defaults to being
an inbound Schedd for all clusters.

v If the configuration file keyword SCHEDD_STREAM_PORT for any cluster
is set to use a port other than the default value of 9605, you must set the
inbound_schedd_port keyword in the cluster stanza for that cluster.

2. (Optional) If the local cluster wants to provide job distribution where users
allow LoadLeveler to select the appropriate cluster for job submission based on
administration defined objectives, then define an installation exit to be executed
at submit time using the CLUSTER_METRIC configuration keyword. You can
use the LoadLeveler data access APIs in this exit to query other clusters for
information about possible metrics, such as the number of jobs in a specified
job class, the number of jobs in the idle queue, or the number of free nodes in
the cluster. For more information, see “Configuration keyword descriptions” on
page 233.
Tip: LoadLeveler provides a set of sample exits for you to use as models. These
samples are in the ${RELEASEDIR}/samples/llcluster directory.

3. (Optional) If the local cluster wants to perform user mapping on jobs arriving
from remote clusters, define the CLUSTER_USER_MAPPER configuration
keyword. For more information, see “Configuration keyword descriptions” on
page 233.

4. (Optional) If the local cluster wants to perform job filtering on jobs received
from remote clusters, define the CLUSTER_REMOTE_JOB_FILTER
configuration keyword. For more information, see “Configuration keyword
descriptions” on page 233.

5. Notify LoadLeveler daemons by issuing the llctl command with either the
reconfig or recycle keyword. Otherwise, LoadLeveler will not process the
modifications you made to the administration file.

Additional considerations:

v Remote jobs are subjected to the same configuration checks as locally submitted
jobs. Examples include account validation, class limits, include lists, and exclude
lists.

v Remote jobs will be processed by the local submit_filter prior to submission to a
remote cluster.

v Any tracker program specified in the API parameters will be invoked upon the
scheduling cluster nodes.

v If a step is enabled for checkpoint and the ckpt_execute_dir is not specified,
LoadLeveler will not copy the executable to the remote cluster, the user must
ensure that executable exists on the remote cluster. If the executable is not in a
shared file system, the executable can be copied to the remote cluster using the
cluster_input_file job command file keyword.

152 LoadLeveler: Using and Administering

v If the job command file is also the executable and the job is submitted or moved
to a remote cluster, the $(executable) variable will contain the full path name of
the executable on the local cluster from which it came. This differs from the
behavior on the local cluster, where the $(executable) variable will be the
command line argument passed to the llsubmit command. If you only want the
file name, use the $(base_executable) variable.

Steps for securing communications within a LoadLeveler
multicluster
Configuring LoadLeveler to use the OpenSSL library enables it to operate in a
secure environment where clusters are separated by a firewall.

Perform the following steps to configure LoadLeveler to use OpenSSL in a
multicluster environment:
1. Install SSL using the standard platform installation process.
2. Ensure a link exists from the installed SSL library to:

a. /usr/lib/libssl.so for 32-bit Linux platforms.
b. /usr/lib64/libssl.so for 64-bit Linux platforms.
c. /usr/lib/libssl.a for AIX platforms.

3. Create the SSL authorization keys by invoking the llclusterauth command with
the -k option on all local gateway schedds.
Result: LoadLeveler creates a public key, a private key, and a security certificate
for each gateway node.

4. Distribute the public keys to remote gateway schedds on other secure clusters.
This is done by exchanging the public keys with the other clusters you wish to
communicate with.
v for AIX, public keys can be found in the /var/LoadL/ssl/id_rsa.pub file.
v for Linux, public keys can be found in the /var/opt/LoadL/ssl/id_rsa.pub

file.
5. Copy the public keys of the clusters you wish to communicate with into the

authorized_keys directory on your inbound Schedd nodes.
v for AIX, /var/LoadL/ssl/authorized_keys
v for Linux, /var/opt/LoadL/ssl/authorized_keys
v The authorization key files can be named anything within the

authorized_keys directory.
6. Define the cluster stanzas within the LoadLeveler administration file, using the

multicluster_security = SSL keyword. Define the keyword ssl_cipher_list if a
specific OpenSSL cipher encryption method is desired. Use secure_schedd_port
to define the port number to be used for secure inbound transactions to the
cluster.

7. Notify LoadLeveler daemons by issuing the llctl -g command with the recycle
keyword. Otherwise, LoadLeveler will not process the modifications you made
to the administration file.

8. Configure firewalls to accept connections to the secure_schedd_port numbers
you defined in the administration file.

LoadLeveler Blue Gene support
Blue Gene is a massively parallel system based on a scalable cellular architecture
which exploits a very large number of tightly interconnected compute nodes
(C-nodes).

Chapter 6. Performing additional administrator tasks 153

To take advantage of Blue Gene support, you must be using the LoadLeveler
BACKFILL scheduler. With the BACKFILL scheduler, LoadLeveler enables the Blue
Gene system to take advantage of reservations that allow you to schedule when,
and with which resources a job will run.

Terms you should know:

Front End Nodes (FEN)
Machines from which users and administrators interact with Blue Gene.
Applications are compiled on and submitted for execution in the Blue
Gene compute nodes from FENs. User interactions with applications,
including debugging, are also performed from the FENs.

Service nodes
Dedicated hardware that runs software to control and manage the Blue
Gene system.

I/O nodes
Special nodes that connect the compute nodes to the outside world. I/O
nodes allow processes that are executing in the compute nodes to perform
I/O operations, such as accessing files, and to communicate with the job
management system.

Control System
A component that serves as the interface to the Blue Gene system. It
contains persistent storage with configuration and status information on
the entire system. It also provides various services to perform actions on
the Blue Gene system, such as launching a job.

Compute nodes (also called C-nodes)
The primary computational resource for execution of user applications.
Compute nodes run a custom lightweight kernel called CNK.

Node boards
An intermediate packaging component of Blue Gene consisting of 32
compute nodes.

Midplanes
The basic scalable unit of a Blue Gene system consisting of 16 node boards
making up 512 compute nodes.

block A group of compute nodes allocated to execute a job. Blocks are physically
(electronically) isolated from each other (for example, messages cannot
flow outside an allocated block) and can have connectivity of Mesh or
Torus.

small block
A group of compute nodes requested that is smaller than one midplane.
Valid small block sizes are 32, 64, 128, and 256 compute nodes.

runjob
The interface to launch jobs on Blue Gene/Q, replacing mpirun.

For more information about the Blue Gene system and Blue Gene terminology,
refer to IBM System Blue Gene Solution documentation on IBM Redbooks®

(http://www.redbooks.ibm.com/).

Table 33 on page 155 lists the Blue Gene subtasks with a pointer to the associated
instructions:

154 LoadLeveler: Using and Administering

http://www.redbooks.ibm.com/

Table 33. Blue Gene subtasks and associated instructions

Subtask Associated instructions (see . . .)

Configure LoadLeveler Blue Gene support “Configuring LoadLeveler Blue Gene
support”

Submit and monitor Blue Gene jobs See LoadLeveler: Using and Administering

Table 34 lists the Blue Gene related topics and associated information:

Table 34. Blue Gene related topics and associated information

Related topic Associated information (see . . .)

Configuration file: Blue Gene keywords Chapter 10, “Configuration keyword
reference,” on page 231

Job command file: Blue Gene keywords See LoadLeveler: Using and Administering

Commands and APIs LoadLeveler: Command and API Reference

Diagnosis and messages LoadLeveler: Diagnosis and Messages Guide

Configuring LoadLeveler Blue Gene support
Table 35 lists the subtasks for configuring LoadLeveler Blue Gene support along
with a pointer to the associated instructions:

Table 35. Blue Gene configuring subtasks and associated instructions

Subtask Associated instructions (see . . .)

Configuring
LoadLeveler Blue
Gene support

“Steps for configuring LoadLeveler Blue Gene support”

Display information
about the Blue Gene
system

v Use the llbgstatus command for information about the Blue Gene
system. The -B or -M options can be used to display information
about Blue Gene blocks or midplanes. See LoadLeveler: Command
and API Reference for information about the llbgstatus command.

Display information
about Blue gene jobs

v Use the llsummary command with the -l option to display job
resource information.

v Use the llq command with the -b option to display information
about all Blue Gene jobs.

Steps for configuring LoadLeveler Blue Gene support
In order for LoadLeveler to operate correctly in the Blue Gene/Q environment, the
LoadLeveler plugin must be specified as the plugin for IBM runjob mux. This can
be done by adding the plugin under the runjob.mux section in the bg.properties
file:
[runjob.mux]
...
plugin = /usr/lib64/libllrunjob_mux.so

Fully qualified path to the plugin used for communicating with a job scheduler.
This value can be updated by the runjob_mux_refresh_config command on the
Login Node where a runjob_mux process runs.

...

When updates are applied for the LoadLeveler software, you should refresh the
runjob.mux by using the runjob_mux_refresh_config command.

Chapter 6. Performing additional administrator tasks 155

The primary task for configuring LoadLeveler Blue Gene support consists of
setting up the environment of the LoadL_negotiator daemon, the environment of
any process that will run Blue Gene jobs, and the LoadLeveler configuration file.

Perform the following steps to configure LoadLeveler Blue Gene support:
1. Configure the LoadL_negotiator daemon to run on a node which has access to

the Blue Gene Control System.
2. Enable Blue Gene support by setting the BG_ENABLED configuration file

keyword to true.

3. (Optional) Set any of the following additional Blue Gene related configuration
file keywords which your setup requires:
v BG_ALLOW_LL_JOBS_ONLY

v BG_CACHE_BLOCKS

v BG_ENABLE_PASSTHROUGH

v BG_MIN_BLOCK_SIZE

v CM_CHECK_USERID

See “Configuration keyword descriptions” on page 233 for more information on
these keywords.

4. Set any environment variables for the LoadL_negotiator daemon for Blue Gene.
You can manually set the environment variable before starting LoadLeveler or
set it into the global profile for LoadLeveler admin users.

Note: Using the llctl -h or llctl -g command to start the central manager
remotely will not carry the environment variables from the login session to the
LoadLeveler daemons on the remote nodes.
The following environment variables can be specified for Blue Gene:

LL_BG_DRAIN_FILE =full/path/to/file
Specify the full path name of the file containing midplanes that should not
be used by LoadLeveler when scheduling jobs or reservations. The file
must contain one entry per line and an entry can consist of an individual
midplane or any part of the midplane location name.

A file consisting of:
list the midplanes to be drained from the Blue Gene system
R00-M0
R1

will drain R00-M0 and any midplanes starting with “R1” from the
LoadLeveler cluster.

Usage:
export LL_BG_DRAIN_FILE=/bghome/loadl/drain_file

BG_PROPERTIES_FILE=/full/path/to/file
Specify the full path name of the bg.properties file which contains the data
required to access the Blue Gene Control system. The default path used is
/bgsys/local/etc/bg.properties.

For details on the contents of the database property file, see Blue Gene/Q:
System Administration on IBM Redbooks (http://www.redbooks.ibm.com/).

Usage:
export BG_PROPERTIES_FILE=/bgsys/local/etc/bg.properties

156 LoadLeveler: Using and Administering

http://www.redbooks.ibm.com/

Blue Gene reservation support
Reservation supports Blue Gene resources including the Blue Gene compute nodes.
It is important to note that when the reservation includes Blue Gene nodes, it
cannot include conventional nodes. A front end node (FEN), which is used to start
a Blue Gene job, is not part of the Blue Gene resources. A Blue Gene reservation
only reserves Blue Gene resources and a Blue Gene job step bound to a reservation
uses the reserved Blue Gene resources and shares a FEN outside the reservation.

Jobs using Blue Gene resources can be submitted to a Blue Gene reservation to run.
A Blue Gene job step can also be used to select what Blue Gene resources to
reserve to make sure the reservation will have enough Blue Gene resources to run
the Blue Gene job step.

For more information about reservations, see “Overview of reservations” on page
24.

Blue Gene fair share scheduling support
Fair share scheduling has been extended to Blue Gene resources as well. The
FAIR_SHARE_TOTAL_SHARES keyword in LoadL_config and the fair_shares
keyword for the user and group stanza in LoadL_admin apply to both the CPU
resources and the Blue Gene resources. When a Blue Gene job step ends, both the
CPU utilization and the Blue Gene resource utilization data will be collected. The
elapsed job running time multiplied by the number of C-nodes allocated to the job
step (the BG Size Allocated field in the llq -l output) will be counted as the
amount of Blue Gene resource used. The used shares of the Blue Gene resources
are independent of the used shares of the CPU resources and are made available
through the LoadLeveler variables UserUsedBgShares and GroupUsedBgShares.
LoadLeveler variable JobIsBlueGene will indicate whether a job step is a Blue
Gene job step or not. LoadLeveler administrators have flexibility in specifying the
behavior of fair share scheduling by using these variables in the SYSPRIO
expression. The llfs command and the related APIs can also handle requests
related to the Blue Gene resources.

For more information about fair share scheduling, see “Using fair share
scheduling” on page 158.

Blue Gene heterogeneous memory support
The LoadLeveler job command file has a bg_requirements keyword that can be
used to specify the requirements that the Blue Gene midplanes must meet to
execute the job step. The Blue Gene compute nodes (C-nodes) in the same
midplane have the same amount of physical memory. The C-nodes in different
midplanes might have different amounts of physical memory. The
bg_requirements job command file keyword allows users to specify the memory
requirement on the Blue Gene C-nodes.

The bg_requirements keyword works like the requirements keyword, but it can
only support memory requirements and applies only to Blue Gene midplanes. For
a Blue Gene job step, the requirements keyword value applies to the front end
node needed by the job step and the bg_requirements keyword value applies to
the Blue Gene midplanes needed by the job step.

Blue Gene preemption support
Preemption support for Blue Gene jobs has been enabled. Blue Gene jobs have the
same preemption support as non-Blue Gene jobs. In a typical Blue Gene system,

Chapter 6. Performing additional administrator tasks 157

many Blue Gene jobs share the same front end node while dedicated Blue Gene
resources are used for each job. To avoid preempting Blue Gene jobs that use
different Blue Gene resources as requested by a preempting job, ENOUGH instead
of ALL must be used in the PREEMPT_CLASS rules for Blue Gene job
preemption.

For more information about preemption, see “Preempting and resuming jobs” on
page 122

Using fair share scheduling
Fair share scheduling in LoadLeveler provides a way to divide resources in a
LoadLeveler cluster among users or groups of users.

To fairly share cluster resources, LoadLeveler can be configured to allocate a
proportion of the resources to each user or group and to let job priorities be
adjusted based on how much of the resources have been used and when they were
used. Generally speaking, LoadLeveler should be configured so that job priorities
decrease for a user or group that has recently used more resources than the
allocated proportion and job priorities should increase for a user or group that has
not run any jobs recently.

Administrators can configure the behavior of fair share scheduling through a set of
configuration keywords. They can also query fair share information, save a
snapshot of historic data, reset and restore fair share scheduling, and perform other
functions by using the LoadLeveler llfs command and the corresponding APIs.

Fair share scheduling also includes Blue Gene resources (see “Blue Gene fair share
scheduling support” on page 157 for more information).

Note: The time of day clocks on all of the nodes in the cluster must be
synchronized in order for fair share scheduling to work properly.

For more information, see the following:
v llfs command (see LoadLeveler: Command and API Reference)
v Corresponding APIs:

– ll_fair_share subroutine (see LoadLeveler: Command and API Reference)
– Data access API (see LoadLeveler: Command and API Reference)

v Keywords:
– fair_shares
– FAIR_SHARE_INTERVAL
– FAIR_SHARE_TOTAL_SHARES

v SYSPRIO expression

Fair share scheduling keywords
The FAIR_SHARE_TOTAL_SHARES global configuration file keyword is used to
specify the total number of shares that each type of resource is divided into. The
fair_shares keyword in a user or group stanza in the administration file specifies
how many shares the user or group is allocated. The ratio of the fair_shares
keyword value in a user or group stanza over the
FAIR_SHARE_TOTAL_SHARES keyword value defines the resource usage
proportion for the user or group. For example, if a user is allocated one third of

158 LoadLeveler: Using and Administering

the cluster resources, then the ratio of the user's fair_share value over the
FAIR_SHARE_TOTAL_SHARES keyword value should be one third.

The LoadLeveler SYSPRIO expression can be configured to let job priorities change
to achieve the specified resource usage proportions. Besides changing job priorities,
fair share scheduling does not change in any way how LoadLeveler schedules jobs.
If a job can be scheduled to run, it will be run regardless of whether the owner
and the LoadLeveler group of the job has any shares allocated or not. No matter
how many shares are allocated to a user, if the user does not submit any jobs to
run, then the resource usage proportion for that user cannot be achieved and other
users might be able to use more than their allocated proportions.

Note: The sum of all allocated shares for users or groups does not have to equal
the value of the FAIR_SHARE_TOTAL_SHARES keyword. The share allocation
can be used as a way to prevent a single user from consuming too much of the
cluster resources and as a way to share the resources as fairly as possible.

When the value of the FAIR_SHARE_TOTAL_SHARES keyword is greater than 0,
fair share scheduling is on, which means that resource usage data is collected
when every job ends, regardless of the fair_shares values for any user or group.
The collected usage data is converted to used shares for each user and group. The
llfs command can be used to display the allocated and used shares. Turning fair
share scheduling on does not mean that job priorities are affected by fair share
scheduling. You have to configure the SYSPRIO expression to let fair share
scheduling affect job priorities in a way that suits your needs. By default, the value
of the FAIR_SHARE_TOTAL_SHARES keyword is 0 and fair share scheduling is
disabled.

There is a built-in decay mechanism for the historic resource usage data that is
collected when jobs end, that is, the initial resource usage value becomes smaller
and smaller as times goes by. This decay mechanism allows the most recent
resource usage to have more impact on fair share scheduling. The
FAIR_SHARE_INTERVAL global configuration file keyword is used to specify
how fast the decay is. The shorter the interval, the faster the historic data decays.
A resource usage value decays to 5% of its initial value after an elapsed time
period of the same length as the FAIR_SHARE_INTERVAL value. Generally, the
interval should be at least several times larger than the typical job running time in
the cluster to get stable results. A value should be chosen corresponding to how
long the historic resource usage data should have an impact on the current job
priorities.

The LoadLeveler SYSPRIO expression is used to calculate job priorities. A set of
LoadLeveler variables including some related to fair share scheduling can be used
in the SYSPRIO expression in the global configuration file. You can define the
SYSPRIO expression to let fair share scheduling influence the job priorities in a
way that is suitable to your needs. For more information, see the SYSPRIO
expression in Chapter 10, “Configuration keyword reference,” on page 231.

When the GroupTotalShares, GroupUsedShares, UserTotalShares,
UserUsedShares, UserUsedBgShares, GroupUsedBgShares, and JobIsBlueGene
and their corresponding user-defined variables are used, you must use the
NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL global configuration
keyword to specify a time interval at which the job priorities will be recalculated
using the most recent share usage information.

Chapter 6. Performing additional administrator tasks 159

Note: These "UsedShares" variables are integer values (they are not floating point
numbers). If greater precision is desired, increase the values for
FAIR_SHARE_TOTAL_SHARES and fair_shares by some order of magnitude.

You can add the following user-defined variables to the LoadL_config global
configuration file to make it easier to specify fair share scheduling in the SYSPRIO
expressions:
v GroupRemainingShares = (GroupTotalShares - GroupUsedShares)
v GroupHasShares = ($(GroupRemainingShares) > 0)
v GroupSharesExceeded = ($(GroupRemainingShares) <= 0)
v UserRemainingShares = (UserTotalShares - UserUsedShares)
v UserHasShares = ($(UserRemainingShares) > 0)
v UserSharesExceeded = ($(UserRemainingShares) <= 0)
v UserRemainingBgShares = (UserTotalShares - UserUsedBgShares)
v UserHasBgShares = ($(UserRemainingBgShares) > 0)
v UserBgSharesExceeded = ($(UserRemainingBgShares) <= 0)
v GroupRemainingBgShares = (GroupTotalShares - GroupUsedBgShares)
v GroupHasBgShares = ($(GroupRemainingBgShares) > 0)
v GroupBgSharesExceeded = ($(GroupRemainingBgShares) <= 0)
v JobIsNotBlueGene = ! JobIsBlueGene

If fair share scheduling is not turned on, either because the
FAIR_SHARE_INTERVAL keyword value is not positive or because the scheduler
type is not BACKFILL, then the variables will have the following values:
GroupTotalShares: 0
GroupUsedShares: 0
$(GroupRemainingShares): 0
$(GroupHasShares): 0
$(GroupSharesExceeded): 1
UserUsedBgShares: 0
$(UserRemainingBgShares): 0
$(UserHasBgShares): 0
$(UserBgSharesExceeded): 1

If a user has the fair_shares keyword set to 10 in its user stanza and the user has
used up 8 CPU shares and 3 Blue Gene shares, then the variables will have the
following values:
UserTotalShares: 10
UserUsedShares: 8
$(UserRemainingShares): 2
$(UserHasShares): 1
$(UserSharesExceeded): 0
UserUsedBgShares: 3
$(UserRemainingBgShares): 7
$(UserHasBgShares): 1
$(UserBgSharesExceeded): 0

If a group has the fair_shares keyword set to 10 in its group stanza and the group
has used up 15 CPU shares and 0 Blue Gene shares, then the variables will have
the following values:
GroupTotalShares: 10
GroupUsedShares: 15
$(GroupRemainingShares): -5
$(GroupHasShares): 0
$(GroupSharesExceeded): 1
GroupUsedBgShares: 0
$(GroupRemainingBgShares): 10
$(GroupHasBgShares): 1
$(GroupBgSharesExceeded): 0

160 LoadLeveler: Using and Administering

The values of the following variables for a Blue Gene job step:
JobIsBlueGene: 1
$(JobIsNotBlueGene): 0

The values of the following variables for a non-Blue Gene job step:
JobIsBlueGene: 0
$(JobIsNotBlueGene): 1

Reconfiguring fair share scheduling keywords
LoadLeveler configuration and administration files can be modified to assign new
values to various keywords. After files have been modified, issue the llctl -g
reconfig command to read in the new keyword values. All new keywords
introduced for fair share scheduling become effective right after reconfiguration.

Reconfiguring when the Schedd daemons are up
To avoid any inconsistency, change the value of the FAIR_SHARE_INTERVAL
keyword while the central manager and all Schedd daemons are up, then do the
reconfiguration. After the reconfiguration, the following will happen:
v All historic fair share scheduling data will be decayed to the current time using

the old value.
v The old value is replaced with the new value
v The new value will be used from here on

Note:

1. You must have the same value for the FAIR_SHARE_INTERVAL keyword in
the central manager and the Schedd daemons because the
FAIR_SHARE_INTERVAL keyword determines the rate of decay for the
historic fair share data and the same value on the daemons maintains the data
consistency.

2. There are some LoadLeveler configuration parameters that require restarting
LoadLeveler with llctl recycle for changes to take effect. You can use llctl
recycle when changing fair share parameters also. The effect will be the same
as using llctl reconfig because when the Schedd machine shuts down normally,
the fair share scheduling data will be decayed to the time of the shutdown and
it will be saved.

Reconfiguring when the Schedd daemons are down
The value for the FAIR_SHARE_INTERVAL keyword may need to be changed
while a Schedd daemon is down.

If the value for the FAIR_SHARE_INTERVAL keyword has to be changed while a
Schedd daemon is down, the following will happen when the Schedd daemon is
restarted:
v All historic fair share scheduling data will be read in from the disk files in the

$(SPOOL) directory with no change.
v When a new job ends, the historic fair share scheduling data for the owner and

the LoadLeveler group of the job will be updated using the new value and then
sent to the central manager. The new value is used effectively from the time the
data was last updated before the Schedd went down, not from the time of the
reconfiguration as it would normally be.

Example: three groups share a LoadLeveler cluster
For purposes of this example, we will assume the following:

Chapter 6. Performing additional administrator tasks 161

v Three groups of users share a LoadLeveler cluster and each group is to have one
third of the resources

v Historic data will have significant impact for about 10 days
v Groups with unused shares will have much higher job priorities than the groups

which have used up their shares

To setup for fair share scheduling with these assumptions, an administrator could
update the LoadL_config global configuration file as follows:
FAIR_SHARE_TOTAL_SHARES = 99

FAIR_SHARE_INTERVAL = 240

NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL = 300

GroupRemainingShares = (GroupTotalShares - GroupUsedShares)

GroupHasShares = ($(GroupRemainingShares) > 0)

SYSPRIO : 10000000 * $(GroupHasShares) - QDate

In the admin file LoadL_admin, add:
chemistry: type = group

include_users = harold mark kim enci george charlie

fair_shares = 33

physics: type = group

include_users = cnyang gchen newton roy

fair_shares = 33

math: type = group

include_users = rich dave chris popco
fair_shares = 33

When user rich in the math group wants to submit a job, the following keyword
can be put into the job command file so that the job will have high priority
through the math group:
#@group=math

If user rich has a job that does not need to be run right away or as soon as
possible (can be run at any time), then he should run the job in a LoadLeveler
group with no shares allocated (for example, the No_Group group). Because the
group No_Group has no shares allocated to it in this example, $(GroupHasShares)
has a value of 0 and the job priority will be lower than those jobs whose group has
unused shares. The job will be run when all higher priority jobs are done or when
it is used to backfill a higher priority job (will be run whenever it can be
scheduled).

Example: two thousand students share a LoadLeveler cluster
For purposes of this example, we will assume the following:
v A university has 2000 students who share a LoadLeveler cluster and every

student is to have the same number of shares of the resources.
v Historic data will have significant impact for about 7 days (because

FAIR_SHARE_INTERVAL is not specified and the default value is 7 days).

162 LoadLeveler: Using and Administering

v A student with unused shares is to have somewhat higher job priorities and let
the priorities decrease as the number of used shares increase.

The LoadL_config global configuration file should contain the following:
FAIR_SHARE_TOTAL_SHARES = 10000

NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL = 600

UserRemainingShares = (UserTotalShares - UserUsedShares)

SYSPRIO : 100000 * $(UserRemainingShares) - QDate

In the LoadL_admin admin file, add
default: type = user

fair_shares = 5

Note: The value fair_shares = 5 is the result of dividing the total shares into the
number of students (10000 ÷ 2000). The number of students can be more or less
than 2000, but the same configuration parameters still prevent a single user from
using too much cluster resources in a short time period.

We can see from the SYSPRIO expression that the larger the number of unused
shares for a student and the earlier the job is submitted, the higher the priority is
for the student's job.

Querying information about fair share scheduling
The llfs command and the data access API can be used to query information about
fair share scheduling. The llfs command without any options displays the
allocated and used shares for all users and LoadLeveler groups having run one or
more jobs in the cluster to completion. The -u and -g options can show the
allocated and used shares for any user or LoadLeveler group regardless of whether
they have run any jobs in the cluster. In either case, the user or group need not
have any fair_shares allocated in the LoadL_admin administration file for the
usage to be reported by the llfs command.

Resetting fair share scheduling
The llfs -r command option, by default, will start fair share scheduling from the
beginning, which means that all the previous historic data will be lost. This
command will not be run unless all Schedd daemons are up and running.

In case a Schedd daemon is down when this command option is being run, the
request will not be processed. To manually reset fair share scheduling, bring down
the LoadLeveler cluster, remove all fair share data files (fair_share_queue.dir and
fair_share_queue.pag) in the $(SPOOL) directory and then restart the LoadLeveler
cluster.

Saving historic data
The LoadLeveler central manager holds the complete historic fair share data when
it is up. Every Schedd holds a portion of the historic fair share data and the data is
stored on disk in the $(SPOOL) directory. When the central manager is restarted, it
receives the historic fair share data from every Schedd. If a Schedd machine is
down temporarily and the central manager remains up, the data in the central
manager is not affected. In case a Schedd machine is permanently damaged and
the central manager restarts, the central manager will not be able to get all of the
historic fair share data because the data stored on the damaged Schedd is lost. If

Chapter 6. Performing additional administrator tasks 163

the value of FAIR_SHARE_INTERVAL is very large, many days of data on the
damaged Schedd could be lost. To reduce the loss of data, the historic fair share
data in the central manager can be saved to disk periodically. Recovery can be
done using the latest saved data when a Schedd machine is permanently out of
service. The llfs -s command or the ll_fair_share API can be used to save a
snapshot of the historic data in the central manager to a file.

Restoring saved historic data
You can use the llfs -r command option or the ll_fair_share API to restore fair
share scheduling to a previously saved state. For the file name, specify a file you
saved previously using llfs -s.

If the central manager goes down and restarts again, the historic data stored in an
out of service Schedd machine is not reported to the central manager. If the Schedd
machine will not be brought back to service at all, then the administrator can
consider restoring fair share scheduling to a state corresponding to the latest saved
file.

Procedure for recovering a job spool
The llmovespool command is intended for recovery purposes only.

Jobs being managed by a down Schedd are unable to clean up resources or move
to completion. These jobs need their job records transferred to another Schedd. The
llmovespool command moves the job records from the spool of one managing
Schedd to another managing Schedd in the local cluster. All moved jobs retain
their original job identifiers.

It is very important that the Schedd that created the job records to be moved is not
running during the move operation. Jobs within the job queue database will be
unrecoverable if the job queue is updated during the move by any process other
than the llmovespool command.

The llmovespool command operates on a set of job records, these records are
updated as the command executes. When a job is successfully moved, the records
for that job are deleted. Job records that are not moved because of a recoverable
failure, like the original Schedd not being fenced, may have the llmovespool
command executed against them again. It is very important that a Schedd never
reads the job records from the spool being moved. Jobs will be unrecoverable if
more than one Schedd is considered to be the managing Schedd.

The procedure for recovering a job spool is:
1. Move the files located in the spool directory to be transferred to another

directory before entering the llmovespool command in order to guarantee that
no other Schedd process is updating the job records.

2. Add the statement schedd_fenced=true to the machine stanza of the original
Schedd node in order to guarantee that the central manager ignores
connections from the original managing Schedd, and to prevent conflicts from
arising if the original Schedd is restarted after the llmovespool command has
been run. See the schedd_fenced=true keyword in Chapter 11, “Administration
keyword reference,” on page 293 for more information.

3. Reconfigure the central manager node so that it recognizes that the original
Schedd is "fenced".

164 LoadLeveler: Using and Administering

4. Issue the llmovespool command providing the spool directory where the job
records are stored. The command displays a message that the transfer has
started and reports status for each job as it is processed. For more information
about the llmovespool command and the ll_move_spool API, see LoadLeveler:
Command and API Reference.

Configuring and using island scheduling
The island keyword allows you to specify the name of the island a machine or
machine_group belongs to.

Many large clusters have a network topology where groups of nodes have greater
bandwidth for communicating among themselves than they do when
communicating with nodes outside the group. These groups are often referred to
as islands and so that is the term used by LoadLeveler. These islands could be
based on other characteristics like the drawer or frame that the node belongs to
and the concept is the same.

The island keyword allows you to specify the name of the island a machine or
machine_group belongs to. Each machine can belong to only one island.

To request island topology, use the node_topology job command file keyword.
When you specify node_topology = island, you can also specify a second job
command file keyword to control how many islands are selected. For example:
island_count=number1 [,number2]

If the island_count keyword is not specified, the default behavior is for all selected
machines for the job to be from a common island.

Optionally, you can also use the existing requirements or preferences job
command file keywords to request specific islands by name.

For more information about any of these job command keywords, see “Job
command file keyword descriptions” on page 335.

When scheduling a job step with an island topology requirement, the LoadLeveler
scheduler will select the island where the job step best “fits.” For example, if a job
step requires 32 nodes, and there is one island with 48 nodes available and another
island with 512 nodes available, the scheduler will allocate machines from the first
island. If the next job step also asks for 32 nodes, then the machines will be taken
from the second island, because only 16 nodes would remain in the first island,
which is insufficient for this job step.

The reasoning behind this mode of island selection is to leave an unused island
unused for as long as possible so that when a larger job is submitted to the cluster,
there remains an island with enough available machines to accommodate that
larger job.

With a requirement for only one island, it is simple: LoadLeveler will fit the job
step onto the island with the lowest number of available machines.

Note: The machines selected within each island are selected based on their
MACHPRIO order, just as machines would be selected for a job step that does not
have an island topology requirement.

Chapter 6. Performing additional administrator tasks 165

When the requirement is for more than one island, LoadLeveler will attempt to
distribute the job step evenly across all islands used. For example, if the job step
requires 1024 nodes and has island_count=8,2, then LoadLeveler will try to
allocate 128 nodes from each of 8 islands. It is possible that only 6 of the islands
have 128 or more nodes free, while 2 other islands have fewer than 128 nodes free.
LoadLeveler will still use machines from 8 islands because of the island_count
request. All remaining nodes from those last 2 islands will be used, and the
remaining tasks will be divided as evenly as possible among the other 6 islands.

Suppose instead that the same 1024-node job with island_count=8,2 is submitted at
a time when only 6 islands have any machines available at all. Because
LoadLeveler can use as few as 2 islands, it is permissible to use just 6 islands for
the job. If any of those 6 islands have fewer than 171 (1024/6=170 with a
remainder of 4) nodes available, then all of the available nodes in that island will
be used and the remaining tasks will be divided as evenly as possible among the
remaining available islands.

And in another scenario with the same 1024-node job, suppose there are 10 islands
each having 128 or more nodes free and another 2 islands with fewer than 128
nodes free. LoadLeveler will select 128 nodes from each of 8 of those 10 islands
and will not select any nodes from the 2 islands that do not have 128 nodes
available. It is more important to satisfy the user's request for the job of running
across 8 islands than to try to fill up the remaining nodes on islands which are
almost full.

Energy aware job support
Using the energy function, a job can run with a lower CPU frequency to save
energy.

You can set an acceptable performance degradation (max_perf_decrease_allowed)
or required energy saving (energy_saving_req) for the job in the job command file.
LoadLeveler will choose a suitable CPU frequency for the job or reject its
submission based on the specified value.

The energy function requires database support.

See the following:
v LoadLeveler for Linux: Installation Guide for information about setting up the

optional LoadLeveler energy function
v “Working with energy aware jobs” on page 220 for the steps on how to use the

energy keywords in the job command file

S3 state support

The S3 state refers to a standby state where RAM remains powered. S3 state
support allows the system administrator to switch an idle node to standby state to
save energy. LoadLeveler provides a time-based policy to the administrator to
decide the start time and duration for the idle node to enter S3 state. The policy is
configured for machines or machine_group stanzas using the keyword
power_management_policy. After the administrator sets up the policy for the
compute node, LoadLeveler checks the policy and switches the state of the node
automatically at the specified policy start time. The node will switch back to

166 LoadLeveler: Using and Administering

working state (S0) after that time frame has elapsed. An action to take if a machine
fails to change to the standby state can be set using the configuration keyword
SUSPEND_CONTROL.

The CPU does not execute instructions in standby (S3) state, so the node cannot
resume from S3 state. The idle node state change is initiated by the resource
manager daemon. LoadLeveler calls the xCAT rpower command to accomplish the
state change.

Chapter 6. Performing additional administrator tasks 167

168 LoadLeveler: Using and Administering

Part 3. Submitting and managing LoadLeveler jobs

After an administrator installs IBM LoadLeveler and customizes the environment,
general users can build and submit jobs to exploit the many features of the
LoadLeveler runtime environment.

© Copyright IBM Corp. 1986, 2012 169

170 LoadLeveler: Using and Administering

Chapter 7. Building and submitting jobs

Learn more about building and submitting jobs.

The topics listed Table 36 will help you learn about building and submitting jobs:

Table 36. Learning about building and submitting jobs

To learn about: Read the following:

Creating and submitting serial and
parallel jobs

Chapter 7, “Building and submitting jobs”

Controlling and monitoring
LoadLeveler jobs

Chapter 8, “Managing submitted jobs,” on page
223

Ways to control or monitor LoadLeveler
operations by using the LoadLeveler
commands and APIs

v LoadLeveler: Command and API Reference

v Chapter 9, “Example: Using commands to build,
submit, and manage jobs,” on page 227

Table 37 lists the tasks that general users perform to run LoadLeveler jobs.

Table 37. Roadmap of user tasks for building and submitting jobs

To learn about: Read the following:

Building jobs v “Building a job command file”

v “Editing job command files” on page 176

v “Defining resources for a job step” on page 177

v “Working with coscheduled job steps” on page 178

v “Using bulk data transfer” on page 180

v “Preparing a job for checkpoint/restart” on page 180

v “Preparing a job for preemption” on page 183

Submitting jobs v “Submitting a job command file” on page 183

v llsubmit command (see LoadLeveler: Command and API
Reference)

Working with parallel jobs “Working with parallel jobs” on page 184

Working with reserved node
resources and the jobs that use
them

“Working with reservations” on page 203

Correctly specifying job
command file keywords

Chapter 12, “Job command file reference,” on page 333

Building a job command file
Before you can submit a job or perform any other job related tasks, you need to
build a job command file.

A job command file describes the job you want to submit, and can include
LoadLeveler keyword statements. For example, to specify a binary to be executed,
you can use the executable keyword, which is described later in this topic. To
specify a shell script to be executed, the executable keyword can be used; if it is
not used, LoadLeveler assumes that the job command file itself is the executable.

© Copyright IBM Corporation © IBM 1986, 2012 171

The job command file can include the following:
v LoadLeveler keyword statements: A keyword is a word that can appear in job

command files. A keyword statement is a statement that begins with a
LoadLeveler keyword. These keywords are described in “Job command file
keyword descriptions” on page 335.

v Comment statements: You can use comments to document your job command
files. You can add comment lines to the file as you would in a shell script.

v Shell command statements: If you use a shell script as the executable, the job
command file can include shell commands.

v LoadLeveler variables: See “Job command file variables” on page 383 for more
information.

You can use any text editor to build a job command file.

Using multiple steps in a job command file
To specify a stream of job steps, you need to list each job step in the job command
file. You must specify one queue statement for each job step. Also, the executables
for all job steps in the job command file must exist when you submit the job. For
most keywords, if you specify the keyword in a job step of a multi-step job, its
value is inherited by all proceeding job steps. Exceptions to this are noted in the
keyword description.

LoadLeveler treats all job steps as independent job steps unless you use the
dependency keyword. If you use the dependency keyword, LoadLeveler
determines whether a job step should run based upon the exit status of the
previously run job step.

For example, Figure 12 contains two separate job steps. Notice that step1 is the
first job step to run and that step2 is a job step that runs only if step1 exits with
the correct exit status.

In Figure 12, step1 is called the sustaining job step. step2 is called the dependent job
step because whether or not it begins to run is dependent upon the exit status of
step1. A single sustaining job step can have more than one dependent job steps
and a dependent job step can also have job steps dependent upon it.

This job command file lists two job steps called "step1"
and "step2". "step2" only runs if "step1" completes
with exit status = 0. Each job step requires a new
queue statement.
#
@ step_name = step1
@ executable = executable1
@ input = step1.in1
@ output = step1.out1
@ error = step2.err1
@ queue
@ dependency = (step1 == 0)
@ step_name = step2
@ executable = executable2
@ input = step2.in1
@ output = step2.out1
@ error = step2.err1
@ queue

Figure 12. Job command file with multiple steps

172 LoadLeveler: Using and Administering

In Figure 12 on page 172, each job step has its own executable, input, output, and
error statements. Your job steps can have their own separate statements, or they
can use those statements defined in a previous job step. For example, in Figure 13,
step2 uses the executable statement defined in step1:

Examples: Job command files
These examples of job command files may apply to your situation.
v Example 1: Generating multiple jobs with varying outputs

To run a program several times, varying the initial conditions each time, you
could can multiple LoadLeveler scripts, each specifying a different input and
output file as described in Figure 15 on page 175. It would probably be more
convenient to prepare different input files and submit the job only once, letting
LoadLeveler generate the output files and do the multiple submissions for you.
Figure 14 illustrates the following:
– You can refer to the LoadLeveler name of your job symbolically, using

$(jobid) and $(stepid) in the LoadLeveler script file.
– $(jobid) refers to the job identifier.
– $(stepid) refers to the job step identifier and increases after each queue

command. Therefore, you only need to specify input, output, and error
statements once to have LoadLeveler name these files correctly.

Assume that you created five input files and each input file has different initial
conditions for the program. The names of the input files are in the form
longjob.in.x, where x is 0–4.
Submitting the LoadLeveler script shown in Figure 14 results in your program
running five times, each time with a different input file. LoadLeveler generates
the output file from the LoadLeveler job step IDs. This ensures that the results
from the different submissions are not merged.

This job command file uses only one executable for
both job steps.
#
@ step_name = step1
@ executable = executable1
@ input = step1.in1
@ output = step1.out1
@ error = step1.err1
@ queue
@ dependency = (step1 == 0)
@ step_name = step2
@ input = step2.in1
@ output = step2.out1
@ error = step2.err1
@ queue

Figure 13. Job command file with multiple steps and one executable

@ executable = longjob
@ input = longjob.in.$(stepid)
@ output = longjob.out.$(jobid).$(stepid)
@ error = longjob.err.$(jobid).$(stepid)
@ queue
@ queue
@ queue
@ queue
@ queue

Figure 14. Job command file with varying input statements

Chapter 7. Building and submitting jobs 173

To submit the job, type the command:
llsubmit longjob.cmd

LoadLeveler responds by issuing the following:
submit: The job "ll6.23" with 5 job steps has been submitted.

Table 38 lists the standard input files, standard output files, and standard error
files for the five job steps:

Table 38. Standard files for the five job steps

Job Step Standard Input Standard Output Standard Error

ll6.23.0 longjob.in.0 longjob.out.23.0 longjob.err.23.0

ll6.23.1 longjob.in.1 longjob.out.23.1 longjob.err.23.1

ll6.23.2 longjob.in.2 longjob.out.23.2 longjob.err.23.2

ll6.23.3 longjob.in.3 longjob.out.23.3 longjob.err.23.3

ll6.23.4 longjob.in.4 longjob.out.23.4 longjob.err.23.4

v Example 2: Using LoadLeveler variables in a job command file

Figure 15 on page 175 shows how you can use LoadLeveler variables in a job
command file to assign different names to input and output files. This example
assumes the following:
– The name of the machine from which the job is submitted is lltest1

– The user's home directory is /u/rhclark and the current working directory is
/u/rhclark/OSL

– LoadLeveler assigns a value of 122 to $(jobid).
In Job Step 0:
– LoadLeveler creates the subdirectories oslsslv_out and oslsslv_err if they do

not exist at the time the job step is started.
In Job Step 1:
– The character string rhclark denotes the home directory of user rhclark in

input, output, error, and executable statements.
– The $(base_executable) variable is set to be the “base” portion of the

executable, which is oslsslv.
– The $(host) variable is equivalent to $(hostname). Similarly, $(jobid) and

$(stepid) are equivalent to $(cluster) and $(process), respectively.
In Job Step 2:
– This job step is executed only if the return codes from Step 0 and Step 1 are

both equal to zero.
– The initial working directory for Step 2 is explicitly specified.

174 LoadLeveler: Using and Administering

v Example 3: Using the job command file as the executable

The name of the sample script shown in Figure 16 on page 176 is run_spice_job.
This script illustrates the following:
– The script does not contain the executable keyword. When you do not use

this keyword, LoadLeveler assumes that the script is the executable. (Since the
name of the script is run_spice_job, you can add the executable =
run_spice_job statement to the script, but it is not necessary.)

– The job consists of four job steps (there are 4 queue statements). The spice3f5
and spice2g6 programs are invoked at each job step using different input data
files:
- spice3f5: Input for this program is from the file spice3f5_input_x where x

has a value of 0, 1, and 2 for job steps 0, 1, and 2, respectively. The name of
this file is passed as the first argument to the script. Standard output and
standard error data generated by spice3f5 are directed to the file
spice3f5_output_x. The name of this file is passed as second argument to
the script. In job step 3, the names of the input and output files are
spice3f5_input_benchmark1 and spice3f5_output_benchmark1,
respectively.

Job step 0 ==
The names of the output and error files created by this job step are:
#
output: /u/rhclark/OSL/oslsslv_out/lltest1.122.0.out
error : /u/rhclark/OSL/oslsslv_err/lltest1_122_0_err
#
@ job_name = OSL
@ step_name = step_0
@ executable = oslsslv
@ arguments = -maxmin=min -scale=yes -alg=dual
@ environment = OSL_ENV1=20000; OSL_ENV2=500000
@ requirements = (Arch == "R6000") && (OpSys == "AIX71")
@ input = test01.mps.$(stepid)
@ output = $(executable)_out/$(host).$(jobid).$(stepid).out
@ error = $(executable)_err/$(host)_$(jobid)_$(stepid)_err
@ queue
#
Job step 1 ==
The names of the output and error files created by this job step are:
#
output: /u/rhclark/OSL/oslsslv_out/lltest1.122.1.out
error : /u/rhclark/OSL/oslsslv_err/lltest1_122_1_err
#
@ step_name = step_1
@ executable = rhclark/$(job_name)/oslsslv
@ arguments = -maxmin=max -scale=no -alg=primal
@ environment = OSL_ENV1=60000; OSL_ENV2=500000; \

OSL_ENV3=70000; OSL_ENV4=800000;
@ input = rhclark/$(job_name)/test01.mps.$(stepid)
@ output = rhclark/$(job_name)/$(base_executable)_out/$(hostname).$(cluster).$(process).out
@ error = rhclark/$(job_name)/$(base_executable)_err/$(hostname)_$(cluster)_$(process)_err
@ queue
#
Job step 2 ==
The names of the output and error files created by this job step are:
#
output: /u/rhclark/OSL/oslsslv_out/lltest1.122.2.out
error : /u/rhclark/OSL/oslsslv_err/lltest1_122_2_err
#
@ step_name = OSL
@ dependency = (step_0 == 0) && (step_1 == 0)
@ comment = oslsslv
@ initialdir = /u/rhclark/$(step_name)
@ arguments = -maxmin=min -scale=yes -alg=dual
@ environment = OSL_ENV1=300000; OSL_ENV2=500000
@ input = test01.mps.$(stepid)
@ output = $(comment)_out/$(host).$(jobid).$(stepid).out
@ error = $(comment)_err/$(host)_$(jobid)_$(stepid)_err
@ queue

Figure 15. Using LoadLeveler variables in a job command file

Chapter 7. Building and submitting jobs 175

- spice2g6: Input for this program is from the file spice2g6_input_x.
Standard output and standard error data generated by spice2g6 together
with all other standard output and standard error data generated by this
script are directed to the files spice_test_output_x and spice_test_error_x,
respectively. In job step 3, the name of the input file is
spice2g6_input_benchmark1. The standard output and standard error files
are spice_test_output_benchmark1 and spice_test_error_benchmark1.

All file names that are not fully qualified are relative to the initial working
directory /home/loadl/spice. LoadLeveler will send the job steps 0 and 1 of
this job to a machine for that has a real memory of 64 MB or more for
execution. Job step 2 most likely will be sent to a machine that has more that
128 MB of real memory and has the ESSL library installed since these
preferences have been stated using the LoadLeveler preferences keyword.
LoadLeveler will send job step 3 to the machine ll5.pok.ibm.com for
execution because of the explicit requirement for this machine in the
requirements statement.

Editing job command files
After you build a job command file, you can edit it using the editor of your choice.

You may want to change the name of the executable or add or delete some
statements.

#!/bin/ksh
@ job_name = spice_test
@ account_no = 99999
@ class = small
@ arguments = spice3f5_input_$(stepid) spice3f5_output_$(stepid)
@ input = spice2g6_input_$(stepid)
@ output = $(job_name)_output_$(stepid)
@ error = $(job_name)_error_$(stepid)
@ initialdir = /home/loadl/spice
@ requirements = ((Arch == "R6000") && \
(OpSys == "AIX71") && (Memory > 64))
@ queue
@ queue
@ preferences = ((Memory > 128) && (Feature == "ESSL"))
@ queue
@ class = large
@ arguments = spice3f5_input_benchmark1 spice3f5_output_benchmark1
@ requirements = (Machine == "ll5.pok.ibm.com")
@ input = spice2g6_input_benchmark1
@ output = $(job_name)_output_benchmark1
@ error = $(job_name)_error_benchmark1
@ queue
OS_NAME=’uname’

case $OS_NAME in
AIX)

echo "Running $OS_NAME version of spice3f5" > $2
AIX_bin/spice3f5 < $1 >> $2 2>&1
echo "Running $OS_NAME version of spice2g6"
AIX_bin/spice2g6
;;

*)
echo "spice3f5 for $OS_NAME is not available" > $2
echo "spice2g6 for $OS_NAME is not available"
;;

esac

Figure 16. Job command file used as the executable

176 LoadLeveler: Using and Administering

When you create a job command file, it is considered the job executable unless you
specify otherwise by using the executable keyword in the job command file.
LoadLeveler copies the executable to the spool directory unless the checkpoint
keyword was set to yes or interval. Jobs that are to be checkpointed cannot be
moved to the spool directory. Do not make any changes to the executable while the
job is still in the queue–it could affect the way that job runs.

Defining resources for a job step
The LoadLeveler user may use the resources keyword in the job command file to
specify the resources to be consumed by each task of a job step.

If the resources keyword is specified in the job command file, it overrides any
default_resources specified by the administrator for the job step's class.

For example, the following job requests one CPU and one FRM license for each of
its tasks:
resources = ConsumableCpus(1) FRMlicense(1)

If this were specified in a serial job step, one CPU and one FRM license would be
consumed while the job step runs. If this were a parallel job step, then the number
of CPUs and FRM licenses consumed while the job step runs would depend upon
how many tasks were running on each machine. For more information on
assigning tasks to nodes, see “Task-assignment considerations” on page 186.

Alternatively, you can use the node_resources keyword in the job command file to
specify the resources to be consumed by the job step on each machine it runs on,
regardless of the number of tasks assigned to each machine. If the node_resources
keyword is specified in the job command file, it overrides the
default_node_resources specified by the administrator for the job step's class.

For example, the following job requests 240 MB of ConsumableMemory on each
machine:
node_resources = ConsumableMemory(240 mb)

Even if one machine only runs one task of the job step, while other machines run
multiple tasks, 240 MB will be consumed on every machine.

You can use the step_resources keyword in the job command file to specify the
floating resources to be consumed by the job step as a whole (as opposed to the
task-based resources or the node-based node_resources).

For example, the following job step requests 100 units of storage:
step_resources = storage(100)

Submitting jobs requesting data staging
The dstg_in_script keyword causes LoadLeveler to generate an inbound data
staging step, without requiring the #@queue specification. The value assigned to
this keyword is the executable that will be started for data staging and any
arguments needed by this script or executable as well.

The dstg_in_wall_clock_limit keyword specifies a wall clock time for the inbound
data staging step. Specifying the estimated wall clock limit is mandatory when a
data staging script is specified. Similarly, dstg_out_script and

Chapter 7. Building and submitting jobs 177

dstg_out_wall_clock_limit will be used for generation and execution of the
outbound data staging step for the job. All data staging job steps are assigned to
the predefined class called data_stage.

Resources required for data staging can be specified using the dstg_resources
keyword.

The dstg_node keyword allows you to specify how data replicas must be created:
v If the value specified is any, one data staging task is executed on any available

node in the cluster with data staging resources. This value can be used with
either the at_submit or the just_in_time configuration options.

v If the value specified is master, one data staging task is executed on the master
node. The master node is the machine that will be used to run the inbound and
outbound data staging steps as well as the first application step of the job.

v If the value is all, a data staging task is executed on each of the nodes that will
be or were used by the first application step.

Any environment variables needed by the data staging scripts can be specified
using the dstg_environment keyword. The copy_all value can be assigned to this
keyword to get all of the user’s environment variables.

For detailed information about the data staging job command file keywords, see
“Job command file keyword descriptions” on page 335.

Working with coscheduled job steps
LoadLeveler allows you to specify that a group of two or more steps within a job
are to be coscheduled. Coscheduled steps are dispatched at the same time.

Submitting coscheduled job steps
The coschedule = yes keyword in the job command file is used to specify which
steps within a job are to be coscheduled. All steps within a job with the coschedule
keyword set to yes will be coscheduled. The coscheduled steps will continue to be
stored as individual steps in both memory and in the job queue, but when
performing certain operations, such as scheduling, the steps will be managed as a
single entity. An operation initiated on one of the coscheduled steps will cause the
operation to be performed on all other steps (unless the coscheduling dependency
between steps is broken).

Determining priority for coscheduled job steps
Coscheduled steps are supported only with the BACKFILL scheduler. The
LoadLeveler BACKFILL scheduler will only dispatch the set of coscheduled steps
when enough resource is available for all steps in the set to start. If the set of
coscheduled steps cannot be started immediately, but enough resource will be
available in the future, then the resource for all the steps will be reserved. In this
case, only one of the coscheduled steps will be designated as a top dog, but
enough resources will be reserved for all coscheduled steps and all the steps will
be dispatched when the top dog step is started. The coscheduled step with the
highest priority in the current job queue will be designated as the primary
coscheduled step and all other steps will be secondary coscheduled steps. The
primary coscheduled step will determine when the set of coscheduled steps will be
scheduled. The priority for all other coscheduled steps is ignored.

178 LoadLeveler: Using and Administering

Supporting preemption of coscheduled job steps
Preemption of coscheduled steps is supported with the following restrictions:
v In order for a step S to be preemptable by a coscheduled step, all steps in the set

of coscheduled steps must be able to preempt step S.
v In order for a step S to preempt a coscheduled step, all steps in the set of

coscheduled steps must be preemptable by step S.
v The set of job steps available for preemption will be the same for all coscheduled

steps. Any resource made available by preemption for one coscheduled step will
be available to all other coscheduled steps.

To determine the preempt type and preempt method to use when a coscheduled
step preempts another step, an order of precedence for preempt types and preempt
methods has been defined. All steps in the preempting coscheduled step are
examined and the preempt type and preempt method having the highest
precedence are used. The order of precedence for preempt type will be ALL and
ENOUGH. The precedence order for preempt method is:
v Remove
v Vacate
v System Hold
v User hold
v Suspend

For more information about preempt types and methods, see “Planning to preempt
jobs” on page 124.

When coscheduled steps are running, if one step is preempted as a result of a
system-initiated preemption, then all coscheduled steps are preempted. When
determining an optimal preempt set, the BACKFILL scheduler does not consider
coscheduled steps as a single entity. All coscheduled steps are in the initial
preempt set, but the final preempt set might not include all coscheduled steps, if
the scheduler determines the resources of some coscheduled steps are not
necessary to start the preempting job step. This implies that more resource than
necessary might be preempted when a coscheduled step is in the set of steps to be
preempted because regardless of whether or not all coscheduled steps are in the
preempt set, if one coscheduled step is preempted, then all coscheduled steps will
be preempted.

Coscheduled job steps and commands and APIs
Commands and APIs that operate on job steps are impacted by coscheduled steps.
For the llbind, llcancel, llhold, and llpreempt commands, even if all coscheduled
steps are not in the list of targeted steps, the requested operation is performed on
all coscheduled steps.

For the llmkres and llchres commands, a coscheduled job step cannot be specified
when using the -j or -f flags. For the llckpt command, you cannot specify a
coscheduled job step using the -u flag.

Termination of coscheduled steps
If a coscheduled step is dispatched but cannot be started and is rejected by the
startd daemon or the starter process, then all coscheduled steps are rejected. If a
running step is removed or vacated by LoadLeveler as a result of a system related

Chapter 7. Building and submitting jobs 179

failure, then all coscheduled steps are removed or vacated. If a running step is
vacated as a result of the VACATE expression evaluating to true for the step, then
all coscheduled steps are vacated.

Using bulk data transfer
On systems with device drivers and network adapters that support remote
direct-memory access (RDMA), LoadLeveler supports bulk data transfer for jobs
that use either the Internet or user space communication protocol mode.

You do not need to perform specific job-definition tasks to enable bulk transfer for
LoadLeveler jobs that use the IP network protocol. LoadLeveler cannot affect
whether IP communication uses bulk transfer; the implementation of IP where the
job runs determines whether bulk transfer is supported.

To enable user space jobs to use bulk data transfer, however, all of the following
tasks must be completed. If you omit one or more of these steps, the job will run
but will not be able to use bulk transfer.
v Users must request bulk transfer for their LoadLeveler jobs, using one of the

following methods:
– Specifying the bulkxfer keyword in the LoadLeveler job command file.

Example:

#@ bulkxfer=yes

If users specify this keyword for jobs that use the IP communication protocol,
LoadLeveler ignores the bulkxfer keyword.

– Specifying a POE line command parameter on interactive jobs.
Example:
poe_job -use_bulk_xfer=yes

– Specifying an environment variable on interactive jobs.
Example:
export MP_USE_BULK_XFER=yes

poe_job

Note: Setting both the MP_USE_BULK_XFER environment variable and the
-use_bulk_xfer POE command line option are not required. Set one or the
other because the -use_bulk_xfer command line option will override the
MP_USE_BULK_XFER environment variable.

Preparing a job for checkpoint/restart
You can checkpoint your entire job step, and allow a job step to restart from the
last checkpoint.

LoadLeveler has the ability to checkpoint your entire job step, and to allow a job
step to restart from the last checkpoint. When a job step is checkpointed, the entire
state of each process of that job step is saved by the operating system. This
checkpoint capability depends on MetaCluster HPC to perform checkpoint
operations.

Use the information in Table 39 on page 181 to correctly configure your job for
checkpointing.

180 LoadLeveler: Using and Administering

Table 39. Checkpoint configurations

To specify that: Do this:

Your job is
checkpointable

v Add either one of the following two options to your job
command file:
1. checkpoint = yes

This enables your job to checkpoint in any of the following
ways:
– The application can initiate the checkpoint.
– Checkpoint from a program which invokes the ll_ckpt API.
– Checkpoint using the llckpt command.
– As the result of a flush command.

OR
2. checkpoint = interval

This enables your job to checkpoint in any of the following
ways:
– The application can initiate the checkpoint.
– Checkpoint from a program which invokes the ll_ckpt API.
– Checkpoint using the llckpt command.
– Checkpoint automatically taken by LoadLeveler.
– As the result of a flush command.

v If you would like your job to checkpoint itself, use mpc_init_ckpt
for parallel jobs to cause the checkpoint to occur.

v Only parallel jobs with a US adapter requirement can be
checkpointed.

Your job step's
executable is to be
copied to the execute
node

Add the ckpt_execute_dir keyword to the job command file.

Chapter 7. Building and submitting jobs 181

Table 39. Checkpoint configurations (continued)

To specify that: Do this:

LoadLeveler
automatically
checkpoints your job
at preset intervals

1. Add the following option to your job command file:

checkpoint = interval

This enables your job to checkpoint in any of the following
ways:
v Checkpoint automatically at preset intervals
v Checkpoint initiated from user application.
v Checkpoint from a program which invokes the ll_ckpt API
v Checkpoint using the llckpt command
v As the result of a flush command

2. The system administrators must set the following two keywords
in the configuration file to specify how often LoadLeveler
should take a checkpoint of the job. These two keywords are:

MIN_CKPT_INTERVAL = number
Where number specifies the initial period, in seconds,
between checkpoints taken for running jobs.

MAX_CKPT_INTERVAL = number
Where number specifies the maximum period, in seconds,
between checkpoints taken for running jobs.

The time between checkpoints will be increased after each
checkpoint within these limits as follows:
v The first checkpoint is taken after a period of time equal to the

MIN_CKPT_INTERVAL has passed.
v The second checkpoint is taken after LoadLeveler waits twice as

long (MIN_CKPT_INTERVAL X 2)
v The third checkpoint is taken after LoadLeveler waits twice as

long again (MIN_CKPT_INTERVAL X 4) before taking the third
checkpoint.

LoadLeveler continues to double this period until the value of
MAX_CKPT_INTERVAL has been reached, where it stays for the
remainder of the job.

A minimum value of 900 (15 minutes) and a maximum value of
7200 (2 hours) are the defaults.

You can set these keyword values globally in the global
configuration file so that all machines in the cluster have the same
value, or you can specify a different value for each machine by
modifying the local configuration files.

Your job will not be
checkpointed

Add the following option to your job command file:
v checkpoint = no

This will disable checkpoint.

182 LoadLeveler: Using and Administering

Table 39. Checkpoint configurations (continued)

To specify that: Do this:

Your job has
successfully
checkpointed and
terminated. The job
has left the
LoadLeveler job queue
and you want
LoadLeveler to restart
your executable from
an existing checkpoint
file.

1. Add the following option to your job command file:
v restart_from_ckpt = yes

2. When submitting a checkpointable job, specify the name of the
checkpoint directory by setting the following job command file
keywords to specify the directory and file name of the
checkpoint directory to be used:
v ckpt_subdir

When the job command file is submitted, a new job will be started
that uses the specified checkpoint directory to restart the previously
checkpointed job.

The job command file that was used to submit the original job
should be used to restart from checkpoint. The only modifications
to this file should be the addition of restart_from_ckpt = yes and
ensuring ckpt_subdir points to the appropriate checkpoint
directory.

Your job has
successfully
checkpointed. The job
has been vacated and
remains on the
LoadLeveler job
queue.

When the job restarts, if a checkpoint file is available, the job will
be restarted from that file.

If a checkpoint file is not available upon restart, the job will be
started from the beginning.

Preparing a job for preemption
Depending on various configuration options, LoadLeveler may preempt your job
so that a higher priority job step can run.

Administrators may:
v Configure LoadLeveler or external schedulers to preempt jobs through various

methods.
v Specify preemption rules for job classes.
v Manually preempt your job using LoadLeveler interfaces.

To ensure that your job can be resumed after preemption, set the restart keyword
in the job command file to yes.

Submitting a job command file
After building a job command file, you can submit it for processing either to a
machine in the LoadLeveler cluster or one outside of the cluster.

See “Querying multiple LoadLeveler clusters” on page 74 for information on
submitting a job to a machine outside the cluster. Use the llsubmit command to
submit a job command file.

When you submit a job, LoadLeveler assigns a job identifier and one or more step
identifiers.

The LoadLeveler job identifier consists of the following:

Chapter 7. Building and submitting jobs 183

machine name
The name of the machine which assigned the job identifier.

jobid A number given to a group of job steps that were initiated from the same
job command file.

The LoadLeveler step identifier consists of the following:

job identifier
The job identifier.

stepid A number that is unique for every job step in the job you submit.

If a job command file contains multiple job steps, every job step will have the same
jobid and a unique stepid.

For an example of submitting a job, see Chapter 9, “Example: Using commands to
build, submit, and manage jobs,” on page 227.

In a multicluster environment, job and step identifiers are assigned by the local
cluster and are retained by the job regardless of what cluster the job runs in.

Job state monitoring

A job can be submitted using the llsubmit command with the -p option, so that
the submitter can be notified of when the state of the job step changes.

For example, issue:
llsubmit -p my_notification_program job1.cmd

where, my_notification_program is the full path name of the user notification
program. The user notification program must be in a file system that is accessible
by the job manager daemon managing the job. The owner of the job must have
execute permission for the program.

Submitting a job using a submit-only machine
You can submit jobs from submit-only machines. Submit-only machines allow
machines that do not run LoadLeveler daemons to submit jobs to the cluster. Use
the llsubmit command to submit a job.

To install submit-only LoadLeveler, follow the procedure in the LoadLeveler for AIX:
Installation Guide or LoadLeveler for Linux: Installation Guide.

In addition to allowing you to submit jobs, the submit-only feature allows you to
cancel and query jobs from a submit-only machine.

Working with parallel jobs
LoadLeveler allows you to schedule parallel batch jobs that have been written
using the following MPI implementations:
v On AIX and Linux:

– IBM Parallel Environment Runtime Edition. Additional documentation is
available from the IBM Clusters Information Center (http://
publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp).

– MPICH2 is an open-source, portable implementation of the Message-Passing
Interface Standard (MPI-1 and MPI-2) developed by Argonne National

184 LoadLeveler: Using and Administering

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp

Laboratory. Additional documentation is available from the MPICH2 web site
(http://www.mcs.anl.gov/research/projects/mpich2/).

– Open MPI is an open source MPI-2 implementation that is developed and
maintained by a consortium of academic, research, and industry partners.
Additional documentation is available from the Open MPI web site
(http://www.open-mpi.org/).

v On Linux:
– Intel MPI is an MPI-2 implementation that focuses on making applications

perform better on Intel architecture-based clusters. Additional documentation
is available from the Intel MPI Library web site (http://software.intel.com/
en-us/articles/intel-mpi-library/).

Step for controlling whether LoadLeveler copies environment
variables to all executing nodes

You may specify that LoadLeveler is to copy, either to all executing nodes or to
only the master executing node, the environment variables that are specified in the
environment job command file statement for a parallel job.

Before you begin: You need to know:
v Whether Parallel Environment (PE) will be used to run the parallel job; if so,

then LoadLeveler does not have to copy the application environment to the
executing nodes.

v How to correctly specify the env_copy keyword. For information about the
env_copy keyword syntax and other details, see “Job command file keyword
descriptions” on page 335.

v To specify whether LoadLeveler is to copy environment variables to only the
master node, or to all executing nodes, use the #@ env_copy keyword in the job
command file.

Ensuring that parallel jobs in a cluster run on the correct
levels of PE and LoadLeveler software

If support for parallel POE jobs is required, users must be aware that when
LoadLeveler uses Parallel Environment for parallel job submission, that the PE
software requires the same level of PE to be used throughout the parallel job.
Different levels of PE cannot be mixed.

In addition, the level of PE dependencies, including LAPI, also need to be
consistent. For instance, different levels of LAPI are required on AIX 5.3 and AIX
6.1. The requirements keyword of the job command file can be used to ensure that
all the tasks of a POE job run on compatible levels of PE, PE dependencies, and
LoadLeveler software in a cluster. For example, use of a requirements statement
similar to one of the two following statements to select machines running the same
levels of AIX, will ensure that a parallel job will run on nodes where consistent
levels are installed.
v # @ requirements = (OpSys == "AIX61")
v # @ requirements = (OpSys == "AIX71")

If a statement such as # @ executable = /bin/poe is specified in a job command
file, and if the job is intended to be run on machines with PE 1.1 installed, then it
is important that the job be submitted from a machine with PE 1.1 installed. When
the "executable" keyword is used, LoadLeveler will copy the associated binary on
the submitting machine and send it to a running machine for execution. In this

Chapter 7. Building and submitting jobs 185

http://www.mcs.anl.gov/research/projects/mpich2/
http://www.open-mpi.org/
http://software.intel.com/en-us/articles/intel-mpi-library/

example, the POE program will fail if the submitting and the running machines are
at different PE software levels. This problem can be circumvented by not using the
executable keyword in the job command file. By omitting this keyword, the job
command file itself is the shell script that will be executed. If this script invokes a
local version of the POE binary then there is no compatibility problem at run time.

Task-assignment considerations
You can use the keywords listed in Table 40 to specify how LoadLeveler assigns
tasks to nodes. With the exception of unlimited blocking, each of these methods
prioritizes machines in an order based on their MACHPRIO expressions. Various
task assignment keywords can be used in combination, and others are mutually
exclusive.

Table 40. Valid combinations of task assignment keywords are listed in each column

Keyword Valid Combinations

total_tasks X X

tasks_per_node X X

node = <min, max> X

node = <number> X X

task_geometry X

blocking X

The following examples show how each allocation method works. For each
example, consider a 3-node cluster with machines named "N1," "N2," and "N3".
The machines' order of priority, according to the values of their MACHPRIO
expressions, is: N1, N2, N3. N1 has 4 initiators available, N2 has 6, and N3 has 8.

node and total_tasks
When you specify the node keyword with the total_tasks keyword, the assignment
function will allocate all of the tasks in the job step evenly among however many
nodes you have specified. If the number of total_tasks is not evenly divisible by
the number of nodes, then the assignment function will assign any larger groups to
the first nodes on the list that can accept them. In this example, 14 tasks must be
allocated among 3 nodes:
@ node=3
@ total_tasks=14

Table 41 shows the machine, available initiators, and assigned tasks:

Table 41. node and total_tasks

Machine Available Initiators Assigned Tasks

N1 4 4

N2 6 5

N3 8 5

The assignment function divides the 14 tasks into groups of 5, 5, and 4, and begins
at the top of the list, to assign the first group of 5. The assignment function starts
at N1, but because there are only 4 available initiators, cannot assign a block of 5
tasks. Instead, the function moves down the list and assigns the two groups of 5 to
N2 and N3, the assignment function then goes back and assigns the group of 4
tasks to N1.

186 LoadLeveler: Using and Administering

node and tasks_per_node
When you specify the node keyword with the tasks_per_node keyword, the
assignment function will assign tasks in groups of the specified value among the
specified number of nodes.
@ node = 3
@ tasks_per_node = 4

node_topology and island_count

Nodes can be selected based on the islands they belong to by specifying
node_topology=island. When node_topology is used, the number of nodes can
only be specified using the node keyword.

The number of nodes requested by the node keyword are selected from among
island_count islands. For example:
@ node = 32
@ tasks_per_node = 16
@ node_topology = island
@ island_count = 1

All 32 nodes for the job step are from the same island. However, in this example:
@ node = 32
@ tasks_per_node = 16
@ node_topology = island
@ island_count = 2

The 32 nodes are selected from among 2 islands.

For more information about the node_topology and island_count keywords, see
“Job command file keyword descriptions” on page 335.

blocking
When you specify blocking, tasks are allocated to machines in groups (blocks) of
the specified number (blocking factor). The assignment function will assign one
block at a time to the machine which is next in the order of priority until all of the
tasks have been assigned. If the total number of tasks are not evenly divisible by
the blocking factor, the remainder of tasks are allocated to a single node. The
blocking keyword must be specified with the total_tasks keyword. For example:
@ blocking = 4
@ total_tasks = 17

Where blocking specifies that a job's tasks will be assigned in blocks, and 4
designates the size of the blocks. Table 42 shows how a blocking factor of 4 would
work with 17 tasks:

Table 42. Blocking

Machine Available Initiators Assigned Tasks

N1 4 4

N2 6 5

N3 8 8

The assignment function first determines that there will be 4 blocks of 4 tasks, with
a remainder of one task. Therefore, the function will allocate the remainder with
the first block that it can. N1 gets a block of four tasks, N2 gets a block, plus the
remainder, then N3 gets a block. The assignment function begins again at the top

Chapter 7. Building and submitting jobs 187

of the priority list, and N3 is the only node with enough initiators available, so N3
ends up with the last block.

unlimited blocking
When you specify unlimited blocking, the assignment function will allocate as
many jobs as possible to each node; the function prioritizes nodes primarily by
how many initiators each node has available, and secondarily on their MACHPRIO
expressions. This method allows you to allocate tasks among as few nodes as
possible. To specify unlimited blocking, specify "unlimited" as the value for the
blocking keyword. The total_tasks keyword must also be specified with unlimited
blocking. For example:
@ blocking = unlimited
@ total_tasks = 17

Table 43 lists the machine, available initiators, and assigned tasks for unlimited
blocking:

Table 43. Unlimited blocking

Machine Available Initiators Assigned Tasks

N3 8 8

N2 6 6

N1 4 3

The assignment function begins with N3 (because N3 has the most initiators
available), and assigns 8 tasks, N2 takes six, and N1 takes the remaining 3.

task_geometry
The task_geometry keyword allows you to specify which tasks run together on the
same machines, although you cannot specify which machines. In this example, the
task_geometry keyword groups 7 tasks to run on 3 nodes:
@ task_geometry = {(5,2)(1,3)(4,6,0)}

The entire task_geometry expression must be enclosed within braces. The task IDs
for each node must be enclosed within parenthesis, and must be separated by
commas. The entire range of task IDs that you specify must begin with zero, and
must end with the task ID which is one less than the total number of tasks. You
can specify the task IDs in any order, but you cannot skip numbers (the range of
task IDs must be complete). Commas may only appear between task IDs, and
spaces may only appear between nodes and task IDs.

Submitting jobs that use striping
When communication between parallel tasks occurs only over a single device such
as en0, the application and the device are gated by each other. The device must
wait for the application to fill a communication buffer before it transmits the buffer
and the application must wait for the device to transmit and empty the buffer
before it can refill the buffer. Thus the application and the device must wait for
each other and this wastes time.

The technique of striping refers to using two or more communication paths to
implement a single communication path as perceived by the application. As the
application sends data, it fills up a buffer on one device. As that buffer is
transmitted over the first device, the application's data begins filling up a second
buffer and the application perceives no delay in being able to write. When the
second buffer is full, it begins transmission over the second device and the
application moves on to the next device. When all devices have been used, the

188 LoadLeveler: Using and Administering

application returns to the first device. Much, if not all of the buffer on the first
device has been transmitted while the application wrote to the buffers on the other
devices so the application waits for a minimal amount of time or possibly does not
wait at all.

LoadLeveler supports striping in two ways. When multiple switch planes or
networks are present, striping over them is indicated by requesting sn_all
(multiple networks).

If multiple adapters are present on the same network and the communication
subsystem, such as LAPI, supports striping over multiple adapters on the same
network, specifying the instances keyword on the network statement requests
striping over adapters on the same network. The instances keyword specifies the
number of adapters on a single network to stripe on. It is possible to stripe over
multiple networks and over multiple adapters on each network by specifying both
sn_all and a value for instances greater than one.
v User space striping: When sn_all is specified on a network statement with US

mode, LoadLeveler commits an equivalent set of adapter resources (adapter
windows and memory) on each of the networks present in the system to the job
on each node where the job runs. The communication subsystem is initialized to
indicate that it should use the user space communication protocol on all the
available switch adapters to service communication requests on behalf of the
application.

v IP striping: When the sn_all device is specified on a network statement with the
IP mode, LoadLeveler attempts to locate the striped IP address associated with
the switch adapters, known as the multi-link address. If it is successful, it passes
the multi-link address to POE for use. If multi-link addresses are not available,
LoadLeveler instructs POE to use the IP address of one of the switch adapters.
The IP address that is used is different each time a choice has to be made in an
attempt to balance the adapter use. Multi-link addresses must be configured on
the system prior to running LoadLeveler. If a multi-link address is specified for a
node, LoadLeveler assigns the multi-link address and multi-link IP name to the
striping adapter on that node. If a multi-link address is not present on a node,
the sn_all adapter associated with the node will not have an IP address or IP
name. If not all of the nodes of a system have multi-link addresses but some do,
LoadLeveler will only dispatch jobs that request IP striping to nodes that have
multi-link addresses.
Jobs that request striping (both user space and IP) can be submitted to nodes
with only one switch adapter. In that situation, the result is the same as if the
job requested no striping.

Note: When configured, a multi-link address is associated with the virtual ml0
device. The IP address of this device is the multi-link address. As with any other
device with an IP address, the ml0 device can be requested in IP mode on the
network statement. Doing so would yield a comparable effect to requesting
sn_all IP except that no checking would be performed by LoadLeveler to ensure
the associated adapters are actually working. Thus it would be possible to
dispatch a job that requested communication over ml0 only to have the job fail
because the switch adapters that ml0 stripes over were down.

v Striping over one network: If the instances keyword is specified on a network
statement with a value greater than one, LoadLeveler allocates multiple sets of
resources for the protocol using as many sets as the instances keyword
specified. For User Space jobs, these sets are adapter windows and memory. For
IP jobs, these sets are IP addresses. If multiple adapters exist on each node on
the same network, then these sets of adapter resources will be distributed among

Chapter 7. Building and submitting jobs 189

all the available adapters on the same network. Even though LoadLeveler will
allocate resources to support striping over a single network, the communication
subsystem must be capable of exploiting these resources in order for them to be
used.

Understanding striping over multiple networks
Striping over multiple networks involves establishing a communication path using
one or more of the available communication networks or switch fabrics. How those
paths are established depends on the network adapter that is present. For the SP
Switch2 family of adapters, it is not necessary to acquire communication paths
among all tasks on all fabrics as long as there is at least one fabric over which all
tasks can communicate. However, each adapter on a machine, if it is available,
must use exactly the same adapter resources (window and memory amount) as the
other adapters on that machine. Switch adapters are not required to use exactly the
same resources on each network, but in order for a machine to be selected, there
must be an available communication path on all networks.

Consider these sample scenarios using the network configuration as shown in
Figure 17 where the adapters are from the SP Switch2 family:
v If a three node job requests striping over networks, it will be dispatched to Node

1, Node 2 and Node 4 where it can communicate on Network B as long as the
adapters on each machine have a common window free and sufficient memory
available. It cannot run on Node 3 because that node only has a common
communication path with Node 2, namely Network A.

Adapter A

Adapter B
fault

fault

fault

Node 1

Adapter A

Adapter B

Node 2

Switch
Network A

Switch
Network B

Adapter A

Adapter B

Node 3

Adapter A

Adapter B

Node 4

Figure 17. Striping over multiple networks

190 LoadLeveler: Using and Administering

v If a three node job does not request striping, it will not be run because there are
not enough adapters connected to Network A to run the job. Notice both the
adapter connected to Network A on Node 1 and the adapter connected to
Network A on Node 4 are both at fault. SP Switch2 family adapters can only use
the adapter connected to Network A for non-striped communication.

v If a three node job requests striped IP and some but not all of the nodes have
multi-linked addresses, the job will only be dispatched to the nodes that have
the multi-link addresses.

Consider these sample scenarios using the network configuration as shown in
Figure 17 on page 190 where the adapters are switch adapters:
v If a three node job requests striping over networks, it will not be dispatched

because there are not three nodes that have active connections to both networks.
v If a three node job does not request striping, it can be run on Node 1, Node 2,

and Node 4 because they have an active connection to network B.
v If a three node job requests striped IP and some but not all of the nodes have

multi-linked addresses, the job will only be dispatched to the nodes that have
the multi-link addresses.

Note that for all adapter types, adapters are allocated to a step that requests
striping based on what the node knows is the available set of networks or fabrics.
LoadLeveler expects each node to have the same knowledge about available
networks. If this is not true, it is possible for tasks of a step to be assigned
adapters which cannot communicate with tasks on other nodes.

Similarly, LoadLeveler expects all adapters that are identified as being on the same
Network ID or fabric ID to be able to communicate with each other. If this is not
true, such as when LoadLeveler operates with multiple, independent sets of
networks, other attributes of the Step, such as the requirements expression, must
be used to ensure that only nodes from a single network set are considered for the
step.

As you can see from these scenarios, LoadLeveler will find enough nodes on the
same communication path to run the job. If enough nodes connected to a common
communication path cannot be found, no communication can take place and the
job will not run.

Understanding striping over a single network
Striping over a single network is only supported by switch adapters.

Figure 18 on page 192 shows a network configuration where the adapters support
striping over a single network.

Chapter 7. Building and submitting jobs 191

Both Adapter A and Adapter B on a node are connected to Network 0. The entire
oval represents the physical network and the concentric ovals (shaded differently)
represent the separate communication paths created for a job by the instances
keyword on the network statement. In this case a three node job requests two
instances for communication. On Node 1, adapter A is used for instance 0 and
adapter B is used for instance 1. There is no requirement to use the same adapter
for the same instance so on Node 2, adapter B was used for instance 0 and adapter
A for instance 1.

On Node 3, where a fault is keeping adapter B from connecting to the network,
adapter A is used for both instance 0 and instance 1 and Node 3 is available for
the job to use.

The network itself does not impose any limitation on the total number of
communication paths that can be active at a given time for either a single job or all
the jobs using the network. As long as nodes with adapter resources are available,
additional communication paths can be created.

Examples: Requesting striping in network statements
You request that a job be run using striping with the network statement in your
job command file. The default when instances is not specified for a job in the
network statement is controlled by the class stanza keyword for sn_all. For more
information on the network and max_protocol_instances statements, see the
keyword descriptions in “Job command file keyword descriptions” on page 335.

Shown here are examples of IP and user space network modes:
v Example 1: Requesting striping using IP mode

To submit a job using IP striping, your network statement would look like this:
network.MPI = sn_all,,IP

Adapter A

Instance 0

Instance 1

Instance 2

Adapter B

fault

Node 1

Adapter A

Adapter B

Node 2

Adapter A

Adapter B

Node 3

A

A

A
A

B

B

Switch
Network 0

Figure 18. Striping over a single network

192 LoadLeveler: Using and Administering

v Example 2: Requesting striping using user space mode

To submit a job using user space striping, your network statement would look
like this:
network.MPI = sn_all,,US

v Example 3: Requesting striping over a single network

To request IP striping over multiple adapter on a single network, the network
statement would look like this:
network.MPI = sn_single,,IP,,instances=2

If the nodes on which the job runs have two or more adapters on the same
network, two different IP addresses will be allocated to each task for MPI
communication. If only one adapter exists per network, the same IP address will
be used twice for each task for MPI communication.

v Example 4: Requesting striping over multiple networks and multiple adapters
on the same network

To submit a user space job that will stripe MPI communication over multiple
adapters on all networks present in the system the network statement would
look like this:
network.MPI = sn_all,,US,,instances=2

If, on a node where the job runs, there are two adapters on each of the two
networks, one adapter window would be allocated from each adapter for MPI
communication by the job. If only one network were present with two adapters,
one adapter window from each of the two adapters would be used. If two
networks were present but each only had one adapter on it, two adapter
windows from each adapter would be used to satisfy the request for two
instances.

Running interactive POE jobs
POE will accept LoadLeveler job command files. However, you can still set the
following environment variables to define specific LoadLeveler job attributes before
running an interactive POE job:

LOADL_ACCOUNT_NO
The account number associated with the job.

LOADL_INTERACTIVE_CLASS
The class to which the job is assigned.

MP_TASK_AFFINITY
The affinity preferences requested for the job.

For information on other POE environment variables, see IBM Parallel Environment
Runtime Edition for AIX Operation and Use, SC23-6781.

For an interactive POE job, LoadLeveler does not start the POE process therefore
LoadLeveler has no control over the process environment or resource limits.

You also may run interactive POE jobs under a reservation. For additional details
about reservations and submitting jobs to run under them, see “Working with
reservations” on page 203.

Interactive POE jobs cannot be submitted to a remote cluster.

Chapter 7. Building and submitting jobs 193

Debugging interfaces between POE and LoadLeveler
POE interacts with LoadLeveler by calling a set of interfaces between POE and
LoadLeveler, which are provided in the LoadLeveler product. The
LL_POE_DEBUG environment variable can be used to trace the interaction from
the LoadLeveler side, mainly for debugging purposes.

When LL_POE_DEBUG is set to yes, the interfaces between POE and LoadLeveler
(called by POE processes) write LoadLeveler debug messages to standard error
(the screen or a file, whichever was specified for other standard error output from
the POE process).

When LL_POE_DEBUG is set to a file path name, the interfaces between POE and
LoadLeveler (called by POE and PMD processes) write LoadLeveler debug
messages to the following trace files (whose names include the specified file path
and the process ID):

POE process trace file
file_path_poe_process_id.poe_trace

PMD process trace file
file_path_pmd_process_id.pmd_trace

Note: When you set LL_POE_DEBUG to a file path name, the specified file path
does not have to be a directory; it is simply a prefix in the trace file's name.

If one or both of the trace files cannot be created due to a file access error, the job
itself continues and is not affected.

The following example shows the output when the trace files can be created:
$ LL_POE_DEBUG=/tmp/myjob poe date -hfile /tmp/h -resd yes
Wed Jun 1 14:36:05 EDT 2011

$ ls /tmp/myjob*
/tmp/myjob_8708.poe_trace /tmp/myjob_8738.pmd_trace

The following example shows the output when the trace files go to standard error:
$ LL_POE_DEBUG=yes poe date -hfile /tmp/h -resd yes
06/01 14:34:49.355270 pe_rm_init: rmapi_version=1300 from caller and 1300 from LoadLeveler
06/01 14:34:49.355317 pe_rm_init: listen_socket=3, ll_get_data returns 0
06/01 14:34:49.355379 pe_rm_submit_job: job_format=JOB_OBJECT
06/01 14:34:49.355388 pe_rm_submit_job: num_nodes=-1
06/01 14:34:49.355473 host 0: c197blade4b10.ppd.pok.ibm.com
....
06/01 14:34:50.521802 pe_rm_get_event: JOB_TIMER_EVENT: no event data.
Wed Jun 1 14:34:50 EDT 2011
06/01 14:34:52.664209 pe_rm_free: start
06/01 14:34:53.745940 pe_rm_free: ll_close was called.
06/01 14:34:53.746244 pe_rm_free: ll_deallocate_job was called.
06/01 14:34:53.746260 pe_rm_free: return

Running MPICH2
LoadLeveler for AIX and LoadLeveler for Linux support the MPICH2 open-source
implementation of the Message-Passing Interface (MPI).

MPICH2 is an open-source, portable implementation of the MPI Standard
developed by Argonne National Laboratory. It contains a complete implementation
of version 2 of the MPI Standard and also significant parts of MPI-2, particularly in
the area of parallel I/O. MPICH2 MPI implementation is supported by

194 LoadLeveler: Using and Administering

LoadLeveler for AIX and LoadLeveler for Linux. Additional documentation is
available from the MPICH2 web site (http://www.mcs.anl.gov/research/projects/
mpich2/).

To run MPICH2 jobs in LoadLeveler, prepare a job command file and specify the
MPICH job type. For launching MPI jobs, specify an MPICH2 provided executable
in the executable statement or in the body of the job command file (when no
executable statement is used). For MPICH job types, LoadLeveler allocates the
machines to run the parallel job and starts the job command file or the specified
executable as the master task.

To designate the number of tasks to start and where to start them, specify the
LoadLeveler LOADL_TOTAL_TASKS and LOADL_HOSTFILE run-time
environment variables in the job command file as arguments to the MPICH2
executable. Also, specify the LoadLeveler llspawn.stdio executable as the remote
command for the MPICH2 executable to use when launching MPI tasks.

The following standard mpirun script options are not supported:
v ckpoint-interval
v ckpoint-prefix
v ckpoint-num
v ckpointlib

Checkpoint in MPICH2 is supported by the BLCR library, which cannot be
embedded into the framework of LoadLeveler, so the checkpoint related options
are not supported by LoadLeveler.

Sample programs are available:
v See “MPICH2 sample job command file” on page 198 for a sample MPICH2 job

command file.
v The LoadLeveler samples directory also contains sample files:

– On AIX, use directory /usr/lpp/LoadL/full/samples/llmpich
– On Linux, use directory /opt/ibmll/LoadL/full/samples/llmpich

These sample files include:
– ivp.c: A simple MPI application that you may run as an MPICH2 job.
– Job command files to run the ivp.c program as a batch job:

For MPICH2: mpich_ivp.cmd

Running Open MPI

To run Open MPI jobs in LoadLeveler, do the following:
1. Prepare a job command file and specify the MPICH job type. For MPICH job

types, LoadLeveler allocates the machines to run the parallel job and starts the
job command file or the specified executable as the master task.

2. Specify an Open MPI provided executable for launching MPI jobs in the body
of the job command file, for example mpirun.

Notes:

1. When running with Open MPI 1.5.4, you do not have to specify any special
options to run the Open MPI job with LoadLeveler.

2. When running versions of Open MPI prior to 1.5.4
a. You must specify the LoadLeveler LOADL_TOTAL_TASKS and

LOADL_HOSTFILE run-time environment variables as arguments to the

Chapter 7. Building and submitting jobs 195

http://www.mcs.anl.gov/research/projects/mpich2/

Open MPI executable to specify the number of tasks to start and where to
start them. For more information about these run-time environment
variables, see “Run-time environment variables” on page 384.

b. You must also specify the LoadLeveler llspawn.stdio executable as the
remote command for the Open MPI executable to use when launching MPI
tasks. In addition, specify the --leave-session-attached option, which will
keep the spawned MPI tasks descendents of LoadLeveler processes. This is
a necessary step for LoadLeveler jobs.

For examples that show how to run Open MPI jobs, see:
v “Open MPI 1.5.4 sample job command file” on page 200
v The LoadLeveler samples directory (LoadL/full/samples/llmpich), which

includes:
– ivp.c: a simple MPI application that you can run as an Open MPI job
– Job command files to run the ivp.c program as a batch job. The job command

file to use for Open MPI is: open_mpirun_ivp.cmd.

Running Intel MPI jobs

To run Intel MPI jobs in LoadLeveler, follow these steps:
1. Prepare a job command file and specify MPICH as the job type.
2. In the body of the job command file, specify an Intel MPI-provided executable

for launching MPI jobs, for example, mpiexec.hydra.

Notes:

a. The LoadLeveler #@executable directive cannot be used to specify the
executable provided by Intel MPI.

b. For MPICH job types, LoadLeveler allocates the machines to run the
parallel job and starts the job command file or the specified executable as
the master task.

3. When running with Intel MPI 4.0.3, specify the LoadLeveler llspawn.stdio
executable as the remote command for the Intel MPI executable to use when
launching MPI tasks.

4. When running with Intel MPI 4.0.2, define the number of tasks (-n) to start and
where to start them (-f) by specifying the LoadLeveler
LOADL_TOTAL_TASKS and LOADL_HOSTFILE run-time environment
variables in the job command file as arguments to the Intel MPI executable. See
“Run-time environment variables” on page 384 for more information.

For examples that show how to run Intel MPI jobs, see:
v “Intel MPI 4.0.3 sample job command file” on page 199 and “Intel MPI 4.0.2

sample job command file” on page 199
v The LoadLeveler samples directory (LoadL/full/samples/llmpich), which

includes:
– ivp.c: a simple MPI application that you can run as an Intel MPI job.
– Job command files to run the ivp.c program as a batch job. The job command

file to use for Intel MPI is: intel_hydra_ivp.cmd.

Running embarassingly parallel jobs

Located in the LoadL/resmgr/full/samples/autonomous subdirectory, sample korn
shell scripts are provided, which show how an embarrassingly parallel job can be

196 LoadLeveler: Using and Administering

run as a LoadLeveler job. The sample shell scripts can be used as is or can be
modified to provide a more installation-specific solution for running
embarrassingly parallel jobs. Two sample shell scripts are provided. The first is
autonomous_master.ksh which runs on the master node and uses llspawn.stdio to
start a second script, autonomous_slave.ksh on each allocated node.
autonomous_slave.ksh starts the tasks designated to run on a node. The two
scripts are designed to run the embarrassingly parallel job in one of two ways.
v A specified command will be invoked in each initiator (or task) allocated for the

job.
v Commands from a specified command file are invoked in each initiator (or task)

allocated for the job.

More commands can be specified than there are initiators allocated for the job. If
so, the scripts will start as many commands as there are initiators, then wait for
commands to complete, and start subsequent commands until all commands have
run.

Examples: Building parallel job command files
This topic contains sample job command files for the following parallel
environments:
v IBM AIX Parallel Operating Environment (POE)
v MPICH2
v Intel Message Passing Interface (MPI) 4.0.3 and 4.0.2
v Open MPI 1.5.4
v Embarassingly parallel

POE sample job command file
This is a sample job command file for POE:
#
@ job_type = parallel
@ environment = COPY_ALL
@ output = poe.out
@ error = poe.error
@ node = 8,10
@ tasks_per_node = 2
@ network.LAPI = sn_all,US,,instances=1
@ network.MPI = sn_all,US,,instances=1
@ wall_clock_limit = 60
@ executable = /usr/bin/poe
@ arguments = /u/richc/My_POE_program -euilib "us"
@ class = POE
@ queue

In this example:
v The total number of nodes requested is a minimum of eight and a maximum of

10 (node=8,10). Two tasks run on each node (tasks_per_node=2). Thus the total
number of tasks can range from 16 to 20.

v Each task of the job will run using the LAPI protocol in US mode with a switch
adapter (network.LAPI=sn_all,,US,instances=1), and using the MPI protocol in
US mode with a switch adapter (network.MPI=sn_all,,US,instances=1).

v The maximum run time allowed for the job is 60 seconds (wall_clock_limit=60).

This is another sample job command file for POE:
#
@ job_type = parallel
@ input = poe.in.1
@ output = poe.out.1

Chapter 7. Building and submitting jobs 197

@ error = poe.err
@ node = 2,8
@ network.MPI = sn_single,shared,IP
@ wall_clock_limit = 60
@ class = POE
@ queue
/usr/bin/poe /u/richc/my_POE_setup_program -infolevel 2
/usr/bin/poe /u/richc/my_POE_main_program -infolevel 2

In this example:
v POE is invoked twice, through my_POE_setup_program and

my_POE_main_program.
v The job requests a minimum of two nodes and a maximum of eight nodes

(node=2,8).
v The job by default runs one task per node.
v The job uses the MPI protocol with a switch adapter in IP mode

(network.MPI=sn_single,shared,IP).
v The maximum run time allowed for the job is 60 seconds (wall_clock_limit=60).

MPICH2 sample job command file
This is a sample job command file for MPICH2:
! /bin/ksh
LoadLeveler JCF file for running an MPICH2 job
@ job_type = MPICH
@ node = 4
@ tasks_per_node = 2
@ output = mpich2_test.$(cluster).$(process).out
@ error = mpich2_test.$(cluster).$(process).err
@ queue
echo "--"
echo LOADL_STEP_ID=$LOADL_STEP_ID
echo "--"

/opt/mpich2/bin/mpirun -n $LOADL_TOTAL_TASKS -f \
$LOADL_HOSTFILE -launcher-exec /opt/ibmll/LoadL/full/bin/llspawn.stdio \
/common/NFS/ll_bin/mpich2_test

In the body of the job command file, the mpirun command is invoked. The
mpirun arguments specified are:

-n Specifies the number of parallel processes.

LOADL_TOTAL_TASKS
Is the environment variable set by LoadLeveler with the number of parallel
processes of the job step.

-f Specifies the machine list file.

LOADL_HOSTFILE
Is the environment variable set by LoadLeveler with the file name that contains
host names assigned to the parallel job step.

-launcher-exec
Specifies the launcher program used in MPICH2. /opt/ibmll/LoadL/full/bin/
llspawn.stdio is the path to the LoadLeveler provided remote command for
launching MPI tasks.

The following is another example of a MPICH2 job command file:
! /bin/ksh
LoadLeveler JCF file for running an MPICH2 job
@ job_type = MPICH
@ node = 4
@ tasks_per_node = 2

198 LoadLeveler: Using and Administering

@ output = mpich2_test.$(cluster).$(process).out
@ error = mpich2_test.$(cluster).$(process).err
@ executable = /opt/mpich2/bin/mpirun
@ arguments = -n $LOADL_TOTAL_TASKS -f $LOADL_HOSTFILE \
-launcher-exec /opt/ibmll/LoadL/full/bin/llspawn.stdio \
@ queue

In this example:
v The mpirun script is specified as a value of the executable job command file

keyword.
v The following mpirun script arguments are specified with the arguments job

command file keyword:
-n $LOADL_TOTAL_TASKS -f $LOADL_HOSTFILE -launcher-exec
/opt/ibmll/LoadL/full/bin/llspawn.stdio/common/NFS/ll_bin/mpich2_test

-n
Specifies the number of parallel processes.

LOADL_TOTAL_TASKS
Is the environment variable set by LoadLeveler with the number of parallel
processes of the job step.

-f Specifies the machine list file.

LOADL_HOSTFILE
Is the environment variable set by LoadLeveler with file name, which
contains host names assigned to the parallel job step.

-launcher-exec
Specifies the launcher program used in MPICH2. /opt/ibmll/LoadL/full/bin/
llspawn.stdio is the path to the LoadLeveler provided remote command for
launching MPI tasks.

Intel MPI 4.0.3 sample job command file

This is a sample job command file for Intel MPI 4.0.3:
! /bin/ksh
LoadLeveler JCF file for running an Intel MPI job
@ job_type = MPICH
@ node = 4
@ tasks_per_node = 2
@ output = intel_hydra_test.$(cluster).$(process).out
@ error = intel_hydra_test.$(cluster).$(process).err
@ queue
mpiexec.hydra -bootstrap ll \
/u/dave/mpi/intel_mpi/test_bin/excersize00A

Intel MPI 4.0.2 sample job command file

This is a sample job command file for Intel MPI 4.0.2:
! /bin/ksh
LoadLeveler JCF file for running an Intel MPI job
@ job_type = MPICH
@ node = 4
@ tasks_per_node = 2
@ output = intel_hydra_test.$(cluster).$(process).out
@ error = intel_hydra_test.$(cluster).$(process).err
@ queue
mpiexec.hydra -n $LOADL_TOTAL_TASKS \
-f $LOADL_HOSTFILE \
-bootstrap ssh \
-bootstrap-exec llspawn.stdio \
/u/dave/mpi/intel_mpi/test_bin/excersize00A

Chapter 7. Building and submitting jobs 199

In the body of the previous Intel MPI job command files, the mpiexec.hydra
command is invoked. The specified mpiexec.hydra arguments are:

-n
Specifies the number of parallel processes.

LOADL_TOTAL_TASKS
Is the environment variable set byLoadLeveler with the number of parallel
processes of the job step.

-f
Specifies the file of machine names on which to run MPI tasks.

LOADL_HOSTFILE
Is the environment variable set by LoadLeveler with the file name of the
file that contains host names assigned to the parallel job step.

-bootstrap
Specifies that the bootstrap server protocol used by mpiexec.hydra. rsh is
specified.

-bootstrap-exec
Specifies the executable to be used as the bootstrap server by mpiexec.hydra.
/opt/ibmll/LoadL/full/bin/llspawn.stdio is the path to the LoadLeveler
provided remote command for launching MPI tasks.

Open MPI 1.5.4 sample job command file

This is a sample job command file for Open MPI 1.5.4:
! /bin/ksh
LoadLeveler JCF file for running an Open MPI job
@ job_type = MPICH
@ node = 4
@ tasks_per_node = 2
@ output = ompi_test.$(cluster).$(process).out
@ error = ompi_test.$(cluster).$(process).err
@ queue
mpirun /hpcc/dave/mpi/testdir/test_bin/excersize00A

In this sample Open MPI job command file, the mpirun command is invoked.

No additional mpirun options are necessary to run the Open MPI job with
LoadLeveler.

Embarrassingly parallel sample job command file

The following job command file, onecmd.cmd, demonstrates how to run an
embarrassingly parallel job using the two shell scripts from the
LoadL/resmgr/full/samples/autonomous subdirectory:
#! /bin/ksh
@ job_type=MPICH
@ output = /hpcc/dave/mpi/testdir/embarrass.$(host).$(jobid).$(stepid).out
@ error = /hpcc/dave/mpi/testdir/embarrass.$(host).$(jobid).$(stepid).err
@ class = No_Class
@ node = 3
@ total_tasks = 6
@ queue
/hpcc/dave/embarrass/autonomous_master.ksh -c /hpcc/dave/embarrass/onecmd.ksh -n 6

In this case the command specified as an argument to autonomous_master.ksh
using -c is a shell script containing:

200 LoadLeveler: Using and Administering

#!/bin/ksh
echo "stdout: Hello world from `hostname` task $LL_SAMPLE_TASK_ID"
echo "stderr: Hello world from `hostname` task $LL_SAMPLE_TASK_ID" >&2

When the job finished running, the file of allocated machines (from the
LOADL_HOSTFILE environment variable) contained:
c111bc4n01.ppd.pok.ibm.com
c111bc4n01.ppd.pok.ibm.com
c111bc4n02.ppd.pok.ibm.com
c111bc4n02.ppd.pok.ibm.com
c111bc4n03.ppd.pok.ibm.com
c111bc4n03.ppd.pok.ibm.com

The following files were produced by the job:
embarrass.c111bc4n01.433.0.out.0
stdout: Hello world from c111bc4n01 task 0
embarrass.c111bc4n01.433.0.err.0
stderr: Hello world from c111bc4n01 task 0
embarrass.c111bc4n01.433.0.out.1
stdout: Hello world from c111bc4n01 task 1
embarrass.c111bc4n01.433.0.err.1
stderr: Hello world from c111bc4n01 task 1
embarrass.c111bc4n01.433.0.out.2
stdout: Hello world from c111bc4n02 task 2
embarrass.c111bc4n01.433.0.err.2
stderr: Hello world from c111bc4n02 task 2
embarrass.c111bc4n01.433.0.out.3
stdout: Hello world from c111bc4n02 task 3
embarrass.c111bc4n01.433.0.err.3
stderr: Hello world from c111bc4n02 task 3
embarrass.c111bc4n01.433.0.out.4
stdout: Hello world from c111bc4n03 task 4
embarrass.c111bc4n01.433.0.err.4
stderr: Hello world from c111bc4n03 task 4
embarrass.c111bc4n01.433.0.out.5
stdout: Hello world from c111bc4n03 task 5
embarrass.c111bc4n01.433.0.err.5
stderr: Hello world from c111bc4n03 task 5

Obtaining status of parallel jobs
Both end users and LoadLeveler administrators can obtain status of parallel jobs in
the same way as they obtain status of serial jobs by using the llq command. By
issuing llq -l, users get a list of machines allocated to the parallel job. If you also
need to see task instance information use the -x option in addition to the -l option
(llq -l -x). See LoadLeveler: Command and API Reference for samples of output using
the -x and -l options with the llq command.

Obtaining allocated host names
llq -l output includes information on allocated host names. Another way to obtain
the allocated host names is with the LOADL_PROCESSOR_LIST environment
variable, which you can use from a shell script in your job command file as shown
in the following example.

This example uses LOADL_PROCESSOR_LIST to perform a remote copy of a local
file to all of the nodes, and then invokes POE. Note that the processor list contains
an entry for each task running on a node. If two tasks are running on a node,
LOADL_PROCESSOR_LIST will contain two instances of the host name where the
tasks are running. This example removes any duplicate entries.

Chapter 7. Building and submitting jobs 201

Note that LOADL_PROCESSOR_LIST is set by LoadLeveler, not by the user. This
environment variable is limited to 128 hostnames. If the value is greater than the
128 limit, the environment variable is not set.
#!/bin/ksh
@ output = my_POE_program.$(cluster).$(process).out
@ error = my_POE_program.$(cluster).$(process).err
@ class = POE
@ job_type = parallel
@ node = 8,12
@ network.MPI = sn_single,shared,US
@ queue

tmp_file="/tmp/node_list"
rm -f $tmp_file

Copy each entry in the list to a new line in a file so
that duplicate entries can be removed.
for node in $LOADL_PROCESSOR_LIST

do
echo $node >> $tmp_file

done

Sort the file removing duplicate entries and save list in variable
nodelist= sort -u /tmp/node_list

for node in $nodelist
do

rcp localfile $node:/home/userid
done

rm -f $tmp_file

/usr/bin/poe /home/userid/my_POE_program

Building and submitting MPICH2 and serial interactive jobs
This topic describes how to submit MPICH2 and serial interactive LoadLeveler
jobs.

To submit a LoadLeveler job, use the llrun command. Options are provided with
the llrun command that allow:
v A command line to be specified
v Selected job characteristics to be specified
v A job command file to be specified

LoadLeveler uses either the job command file or the job characteristics option (the
job command file and characteristics option are not permitted together) to allocate
resources for the job and to start the specified command line option on the first
node allocated for the job. The input or output for the command is directed to the
console.

When a command line option is not specified, the llrun command will begin an
interactive session on the first node in the list of nodes allocated to the interactive
job. The llrun command uses LoadLeveler API calls to request resources for the
interactive job and uses ssh to initiate your command or interactive session.

For more information about the llrun command, see the LoadLeveler: Command and
API Reference.

202 LoadLeveler: Using and Administering

Working with reservations
Under the BACKFILL scheduler only, LoadLeveler allows authorized users to make
reservations, which specify a time period during which specific node resources are
reserved for use by particular users or groups.

Use Table 44 to find information about working with reservations.

Table 44. Roadmap of tasks for reservation owners and users

Subtask Associated instructions (see . . .)

Learn how reservations work in the
LoadLeveler environment

v “Overview of reservations” on page 24

v “Types of reservations”

v “Understanding the flexible job step”

v “Understanding the reservation life cycle” on page
205

Creating new reservations “Creating new reservations” on page 207

Managing jobs that run under a
reservation

v “Submitting jobs to run under a reservation” on
page 210

v “Removing bound jobs from the reservation” on
page 212

Managing existing reservations v “Querying existing reservations” on page 213
v “Modifying existing reservations” on page 213
v “Canceling existing reservations” on page 215

Managing floating resources “Reservations with floating resources” on page 215

Using the LoadLeveler interfaces for
reservations

Commands and Reservation API (see LoadLeveler:
Command and API Reference)

Types of reservations

There are different types of reservations:

One-time reservation
A reservation with a specified start time and duration.

Recurring reservation
A reservation with a specified start time and duration that reoccurs for a
specified period of time.

Flexible reservation
A reservation with a specified duration that will start as soon as the
resources it requests become available. A flexible reservation cannot be
made to recur.

Understanding the flexible job step

A flexible reservation will use a flexible job step to acquire resources for the
reservation. If the flexible reservation is created with the -f option, the first job step
in the specified job is used as the flexible job step; otherwise, LoadLeveler will
create the flexible job step. LoadLeveler will submit the flexible job step when the
reservation is being created. The job will not be dispatched by LoadLeveler.
Instead, as soon as it has been scheduled, the resources acquired by it are
transferred to the flexible reservation and the reservation becomes active. The
flexible job step will then go into NOT_RUN state.

Chapter 7. Building and submitting jobs 203

The following commands support flexible jobs:
v llfavoruser

v llfavorjob

v llprio

The following commands do not support flexible jobs:
v llckpt

v llmodify

v llmovejob

v llpreempt

Only an administrator can cancel a flexible job step. The flexible job step should
not be canceled when the flexible job step is in IDLE state. The reservation can
never become active if the flexible job step is canceled. If the reservation is
canceled, then LoadLeveler will cancel the flexible job step.

If a failure occurs while creating a flexible reservation after the flexible job is
submitted, the flexible job step will remain in the job queue with a flexible
reservation ID of FLEXRES. During llmkres processing, the flexible job is
submitted first with an ID of FLEXRES. When the reservation is created at the end
of the command processing, it is filled with the reservation ID.

If the flexible reservation is created with the -f option and the job command file
contains multiple steps, the first step will be the flexible job and it is not bound to
the reservation. Subsequent steps will be bound to the flexible reservation. The
coschedule and data_stage keywords cannot be used in the flexible job step.

If you do not specify the -f option when creating or modifying a flexible
reservation, then LoadLeveler will create a temporary job command file. The
temporary job command file contains the flexible job step in the current directory
of the user executing the command using parameters specified in the llmkres or
llchres command. The temporary flexible job step will be of the default class of the
user creating the reservation. If no default class was set up for the user, the flexible
job step will belong to the No_Class built-in class.

When you query a flexible job step by issuing the llq -l command, the long format
will display the ID of the flexible reservation to which this job is attached or
FLEXRES if it is not attached to a flexible reservation in the Flexible Res. ID field.
The flexible reservation ID is the ID of the reservation to which this job is attached.
For example:
[loadl@c197blade2b03 jcf]$ llq -l c197blade2b03.33.0
===== Job Step c197blade2b03.ppd.pok.ibm.com.33.0 =====

Job Step Id: c197blade2b03.ppd.pok.ibm.com.33.0
Job Name: c197blade2b03.ppd.pok.ibm.com.33
Step Name: 0

Structure Version: 10
Owner: loadl

Queue Date: Thu 10 Dec 2009 06:04:40 PM EST
Status: Idle

Reservation ID:
Requested Res. ID:
Flexible Res. ID: c197blade2b02.64.r

204 LoadLeveler: Using and Administering

Understanding the reservation life cycle
From the time at which LoadLeveler creates a reservation through the time the
reservation ends or is canceled, a reservation goes through various states, which
are indicated in command listings and other displays or output. Understanding
these states is important because the current state of a reservation dictates what
actions you can take; for example, if you want to modify the start time for a
reservation, you may do so only while the reservation is in Waiting state. Table 45
lists the possible reservation states, their abbreviations, and usage notes.

Table 45. Reservation states, abbreviations, and usage notes

Reservation
state

Abbreviation
in displays /
output

Usage notes

Waiting W Reservations are in the Waiting state:
1. When LoadLeveler first creates a reservation.
2. After one occurrence of a recurring reservation ends

and before the next occurrence starts.
3. While the flexible job step associated with a flexible

reservation is in IDLE state.

While the reservation is in the Waiting state:
v Only administrators and reservation owners may

modify, cancel, and add users or groups to the
reservation.

v Administrators, reservation owners, and users or groups
that are allowed to use the reservation may query it, and
submit jobs to run during the reservation period.

Setup S LoadLeveler changes the state of a reservation from
Waiting to Setup just before the start time of the
reservation. The actual time at which LoadLeveler places
the reservation in Setup state depends on the value set for
the RESERVATION_SETUP_TIME keyword in the
configuration file.

While the reservation is in Setup state:
v Only administrators and reservation owners may

modify, cancel, and add users or groups to the
reservation.

v Administrators, reservation owners, and users or groups
that are allowed to use the reservation may query it, and
submit jobs to run during the reservation period.

During this setup period, LoadLeveler:
v Stops scheduling unbound job steps to reserved nodes.
v Preempts any jobs that are still running on the nodes

that are reserved through this reservation. To preempt
the running jobs, LoadLeveler uses the preemption
method specified through the
DEFAULT_PREEMPT_METHOD keyword in the
configuration file.
Note: The default value for
DEFAULT_PREEMPT_METHOD is SU (suspend),
which is not supported in all environments, and the
default value for PREEMPTION_SUPPORT is NONE. If
you want preemption to take place at the start of the
reservation, make sure the cluster is configured for
preemption (see “Steps for configuring a scheduler to
preempt jobs” on page 126 for more information).

Chapter 7. Building and submitting jobs 205

Table 45. Reservation states, abbreviations, and usage notes (continued)

Reservation
state

Abbreviation
in displays /
output

Usage notes

Active A At the reservation start time, LoadLeveler changes the
reservation state from Setup to Active. It also dispatches
only job steps that are bound to the reservation, until the
reservation completes or is canceled.

For flexible reservations, once resources have been
assigned to the associated flexible job step, LoadLeveler
changes the reservation state from Waiting to Active.

LoadLeveler does not dispatch bound job steps that:

v Require certain resources, such as floating consumable
resources, that are not available during the reservation
period.

v Have expected end times that exceed the end time of the
reservation. By default, LoadLeveler allows such jobs to
run, but their completion is subject to resource
availability. (An administrator may configure
LoadLeveler to prevent such jobs from running.) Jobs
requesting floating resources that are bound to a
reservation with assigned floating resources will not run
if the expected end time for the job exceeds the end time
of the reservation.

These bound job steps remain idle unless the required
resources become available.

While the reservation is in Active state:

v Only administrators and reservation owners may
modify, cancel, and add users or groups to the
reservation.

v Administrators, reservation owners, and users or groups
that are allowed to use the reservation may query it, and
submit jobs to run during the reservation period.

Active_Shared AS At the reservation start time, LoadLeveler changes the
reservation state from Setup to Active. It also dispatches
only job steps that are bound to the reservation, unless the
reservation was created with the SHARED mode. In this case,
if reserved resources are still available after LoadLeveler
dispatches any bound job steps that are eligible to run,
LoadLeveler changes the reservation state to
Active_Shared, and begins dispatching job steps that are
not bound to the reservation. Once the reservation state
changes to Active_Shared, it remains in that state until the
reservation completes or is canceled. During this time,
LoadLeveler dispatches both bound and unbound job
steps, pending resource availability; bound job steps are
considered before unbound job steps.

The conditions under which LoadLeveler will not dispatch
bound job steps are the same as those listed in the notes
for the Active state.

The actions that administrators, reservation owners, and
users may perform are the same as those listed in the
notes for the Active state.

206 LoadLeveler: Using and Administering

Table 45. Reservation states, abbreviations, and usage notes (continued)

Reservation
state

Abbreviation
in displays /
output

Usage notes

Canceled CA When a reservation owner, administrator, or LoadLeveler
issues a request to cancel the reservation, LoadLeveler
changes the state of a reservation to Canceled and unbinds
any job steps bound to this reservation. When the
reservation is in this state, no one can modify or submit
jobs to this reservation.

For flexible reservations, all running and idle jobs will be
canceled once the reservation ends.

Complete C When a reservation end time is reached, LoadLeveler
changes the state of a reservation to Complete. When the
reservation is in this state, no one can modify or submit
jobs to this reservation.

For flexible reservations, all running and idle jobs will be
canceled once the reservation ends.

Creating new reservations
You must be an authorized user or member of an authorized group to successfully
create a reservation. LoadLeveler administrators define authorized users by adding
the max_reservations keyword to the user or group stanza in the administration
file. The max_reservations keyword setting also defines how many reservations
you are allowed to own. Ask your administrator whether you are authorized to
create reservations.

To be authorized to create reservations, LoadLeveler administrators also must have
the max_reservations keyword set in their user or group stanza.

The reservation_type keyword in the user or group stanza defines what type of
reservations can be created by an authorized user. LoadLeveler administrators can
set it to ALL, NONE, or FLEXIBLE values. The default value is to be able to create
all types of reservations.

To create a reservation, use the llmkres command. Specify the start time of the
reservation using the -t command option and the duration of the reservation using
the -d command option. If you are creating a recurring reservation, you must use
the -t option to specify the schedule for that reservation.

To create a flexible reservation, use the -x option. The -x and -t flags are mutually
exclusive.

In addition to the start time and duration (or reservation schedule), you must also
use one of the following methods to specify how you want to select nodes for the
reservation.

Note: These methods are mutually exclusive.
v The -n option on the llmkres command instructs LoadLeveler to reserve a

number of nodes. LoadLeveler may select any unreserved node to satisfy a
reservation. This command option is perhaps the easiest to use, because you
need to know only how many nodes you want, not specific node characteristics.
The minimum number of nodes a reservation must have is 1.

Chapter 7. Building and submitting jobs 207

v The -h option on the llmkres command instructs LoadLeveler to reserve specific
nodes.

v The -f option on the llmkres command instructs LoadLeveler to submit the
specified job command file, and reserve appropriate nodes for the first job step
in the job command file. Through this action, all job steps for the job are bound
to the reservation. If the reservation request fails, LoadLeveler changes the state
for all job steps for this job to NotQueued, and will not schedule any of those
job steps to run.

v The -j option on the llmkres command instructs LoadLeveler to reserve
appropriate nodes for that job step. Through this action, the job step is bound to
the reservation. If the reservation request fails, the job step remains in the same
state as it was before. This option is not supported for a flexible reservation.

v The -c option on the llmkres command instructs LoadLeveler to reserve a
number of Blue Gene compute nodes (C-nodes). The -j and -f option also reserve
Blue Gene resources if the job type is bluegene. This option is not supported for
a flexible reservation.

You also may define other reservation attributes, including:
v Whether additional users or groups are allowed to use the reservation. Use the

-U or -G command options, respectively.
v Whether the reservation will be in one or both of these optional modes:

– SHARED mode: When you use the -s command option, LoadLeveler allows
reserved resources to be shared by job steps that are not associated with a
reservation. This mode enables the efficient use of reserved resources; if the
bound job steps do not use all of the reserved resources, LoadLeveler can
schedule unbound job steps as well so the resources do not remain idle.
Unless you specify this mode, however, only job steps bound to the
reservation may use the reserved resources. This option is not supported for a
flexible reservation.

– REMOVE_ON_IDLE mode: When you use the -i command option, LoadLeveler
automatically cancels the reservation when all bound job steps that can run
finish running. Using this mode is efficient because it prevents LoadLeveler
from wasting reserved resources when no jobs are available to use them.
Selecting this mode is especially useful for workloads that will run
unattended.

v The default binding method to use when jobs are bound to the reservation. Use
the -m option to specify whether the soft or firm binding method should be
used when the binding method is not specified by the llbind command.
– Soft binding allows the bound job to use resources outside of the reservation.
– Firm binding restricts the job to the reserved resources.
– A flexible reservation does not support soft binding.

v Floating resources for a reservation. Specify the resources using the -C option or
use the -f option to specify a job command file with the step_resources or
resources keyword. These resources must be configured as floating resources
and specified in the SCHEDULE_BY_RESOURCES keyword in the LoadLeveler
configuration.

v A notification program to be invoked whenever the reservation state changes.
Use the -p option to specify the name of the user-supplied program. Two
parameters, Reservation ID and Reservation state, will be passed to the
user-specified notification program. For example, if you issue:
llmkres -x -d 120 -f flexible_req.cmd -p ’/u/loadl/notifyme’

/u/loadl/notifyme is an example of an executable supplied by you.

208 LoadLeveler: Using and Administering

Note: The user-supplied program must be in a file system that is accessible on
the central manager node. The owner of the reservation must have execute
permission for the program. In order to run a user-supplied script program, the
first line has to specify the shell or the interpreter. Any environment variables
required by the program will need to be set by the user-supplied program.
For a script:

$1 Is the reservation ID.

$2 Is the state.
For C programs:

arg[0] Is the program name

arg[1] Is the reservation ID.

arg[2] Is the state.
Sample notification program scripts:
The LoadLeveler samples directory contains sample scripts for how the
notification program, submit notification program, and workflow engine work:
– On AIX, use directory /usr/lpp/LoadL/scheduler/full/samples/workflow

– On Linux, use directory /opt/ibmll/LoadL/scheduler/full/samples/workflow

v For a recurring reservation, when the reservation will expire. Use the -e option
to specify the expiration date of the recurring reservation.

v For a flexible reservation, a limit for the amount of time the scheduler will try to
acquire the resources required by the flexible reservation. Use the -e option to
specify the expiration date. If the limit expires, then the reservation will be
removed. If the -e flag is not specified in the llmkres command, the value of
max_reservation_expiration in the user or group stanza in the configuration will
be used as the expiration time for the flexible reservation. The value of
max_reservation_expiration defaults to 180 days from now.

v For a flexible reservation, whether down nodes can be used for the reservation.
Use the -D option to indicate that nodes may be down. The -D option can be
used only with the -h or -F options or with the -f option if the job command file
contains a host list. For example, issue:
llmkres -x -d 120 -D -f reservation_req.cmd

or:
llmkres -x -d 120 -D -h c80f1n01 c80f1n05 c80f1n08

Additional rules apply to the use of these options; see the llmkres command in
LoadLeveler: Command and API Reference for details.

Alternative: Use the ll_make_reservation and the ll_init_reservation_param
subroutines in a program.

Tips:
v If your user ID is not authorized to create any type of reservation but you are

member of a group with authority to create reservations, you must use the -g
option to specify the name of the authorized group on the llmkres command.

v Only reservations in waiting and in use are counted toward the limit of allowed
reservations set through the max_reservations keyword. LoadLeveler does not
count reservations or recurring reservations that have already ended or are in
the process of being canceled.

Chapter 7. Building and submitting jobs 209

v For accounting purposes, although recurring reservations have multiple
instances, a recurring reservation counts as one reservation no matter how many
times it may recur during its reservation period.

v Although you may create more than one reservation or recurring reservation for
a particular node or set of nodes, only one of those reservations may be active at
a time. If LoadLeveler determines that the reservation you are requesting will
overlap with another reservation, LoadLeveler fails the create request. No
reservation periods for the same set of machines can overlap.

v For a flexible reservation, the RESERVATION_MIN_ADVANCE_TIME,
RESERVATION_SETUP_TIME, and RESERVATION_PRIORITY keywords are
ignored.

v If the reservation requests floating consumable resources, there is a possibility
that jobs running on nodes that are reserved for this request will also be
preempted.

Note: If the preemption method is suspend, then floating resources will not be
released by the preempted job.

If the create request is successful, LoadLeveler assigns and returns to the owner a
unique reservation identifier, in the form host.rid.r, where:

host The name of the machine which assigned the reservation identifier.

rid A number assigned to the reservation by LoadLeveler.

r The letter r is used to distinguish a reservation identifier from a job step
identifier.

The following are examples of reservation identifiers:
c94n16.80.r
c94n06.1.r

For details about the LoadLeveler interfaces for creating reservations, see the
llmkres command and the ll_make_reservation and ll_init_reservation_param
subroutines in LoadLeveler: Command and API Reference.

Submitting jobs to run under a reservation
LoadLeveler administrators, reservation owners, and authorized users may submit
jobs to run under a reservation. You may bind both batch and interactive POE job
steps to a reservation, both before a reservation starts or while it is active.

Before you begin:

v If you are a reservation owner and used the -f or -j options on the llmkres
command when you created the reservation, you do not have to perform the
steps listed in Table 46 on page 211. Those command options automatically bind
the job steps to the reservation. To find out whether a particular job step is
bound to a reservation, use the command llq -l and check the listing for a
reservation ID.

v To find out which reservation IDs you may use, check with your LoadLeveler
administrator, or enter the command llqres -l and check the names in the Users
or Groups fields (under the Modification time field) in the output listing. If your
user name or a group name to which you belong appears in these output fields,
you are authorized to use the reservation.

v LoadLeveler cannot guarantee that certain resources will be available during a
reservation period. If you submit job steps that require these resources,

210 LoadLeveler: Using and Administering

LoadLeveler will bind the job steps to the reservation, but will not dispatch
them unless the resources become available during the reservation. These
resources include:
– Specific nodes that were not reserved under this reservation.
– Floating consumable resources for a cluster.
– Resources that are not released through preemption, such as virtual memory

and adapters.
v Whether bound job steps are successfully dispatched depends not only on

resource availability, but also on administration file keywords that set maximum
numbers, including:
– max_jobs_scheduled
– maxidle
– maxjobs
– maxqueued

If LoadLeveler determines that scheduling a bound job will exceed one or more
of these configured limits, your job will remain idle unless conditions permit
scheduling at a later time during the reservation period.

Table 46. Instructions for submitting a job to run under a reservation

To bind this
type of job: Use these instructions:

Already
submitted
jobs

Use the llbind command

Alternative: Use the ll_bind_reservation subroutine in a program.

Result: LoadLeveler either sets the reservation ID for each job step that can
be bound to the reservation, or sends a failure notification for the bind
request.

A new job
that has not
been
submitted

1. Specify the reservation ID through the LL_RES_ID environment variable
or the ll_res_id command file keyword. The ll_res_id keyword takes
precedence over the LL_RES_ID environment variable.

Tip: You can use the ll_res_id keyword to modify the reservation to
submit to in a job command file filter.

2. Use the llsubmit command to submit the job.

Result: If the job can be bound to the requested reservation, LoadLeveler
sets the reservation ID for each job step that can be bound to the
reservation. Otherwise, if the job step cannot be bound to the reservation,
LoadLeveler changes the job state to NotQueued. To change the job step's
state to Idle, issue the llbind -r command.

Use the llqres command or llq command with the -l option to check the success or
failure of the binding request for each job step.

Selecting firm or soft binding: There are two methods by which a job step can be
bound to a reservation: firm and soft. When a job step is firm bound to a
reservation, the job step can only use the reserved resources. A job step that is soft
bound to a reservation can be started before the reservation becomes active and
can use nodes that are not part of the reservation. Using soft binding is a way of
guaranteeing that resources will be available for the job step at a given time, but
allowing the job step to start earlier if there are available resources. A flexible
reservation does not support soft binding.

Chapter 7. Building and submitting jobs 211

Which method to use is specified by the -m option of the llbind command. If
neither is specified by llbind, the default method specified for the reservation is
used. Use llqres -l and review the Binding Method field to determine which
method is the default for a reservation.

Binding a job step to a recurring reservation: When a job step is bound to a
reservation, the job step can be considered for scheduling as soon as any
occurrence of the reservation is active. If you do not want the job step to run right
away, but instead you want it to run in a later occurrence of the reservation, you
can specify which occurrence the job step will be bound to by adding the
occurrence ID to the end of the reservation ID.

The format of the reservation identifier is [host.]rid[.r[.oid]].

where:
v host is the name of the machine that assigned the reservation identifier.
v rid is the number assigned to the reservation when it was created. An rid is

required.
v r indicates that this is a reservation ID (r is optional if oid is not specified).
v oid is the occurrence ID of a recurring reservation (oid is optional).

When oid is specified, the job step will not be considered for scheduling until that
occurrence of the reservation becomes active. The step will remain in Idle state
during all earlier occurrences.

If a job step is bound to a recurring reservation, and the reservation occurrence's
end time is reached before the job step can be scheduled to run, the job step will
be automatically bound to the next occurrence of the reservation by LoadLeveler.
When the next occurrence becomes active, the job step will again be considered for
scheduling.

A job can be submitted with the recurring keyword set to yes in the job command
file to specify that all steps of the job will be run in every occurrence of the
reservation to which it is bound. When all steps of the job have completed, the
entire job is requeued and all steps are bound to the next occurrence of the
reservation.

A flexible job is not bound to the flexible reservation because this job is used only
to activate the reservation and it will never go into Running state.

For details about the LoadLeveler interfaces for submitting jobs under reservations,
see the llbind command, the ll_bind subroutine, and the llsubmit command in
LoadLeveler: Command and API Reference.

Removing bound jobs from the reservation
LoadLeveler administrators, reservation owners, and authorized users may use the
llbind command to unbind one or more existing jobs from a reservation.

Alternative: Use the ll_bind_reservation subroutine in a program.

Result: LoadLeveler either unbinds the jobs from the reservation, or sends a failure
notification for the unbind request. Use the llqres or llq command to check the
success or failure of the remove request.

212 LoadLeveler: Using and Administering

For details about the LoadLeveler interfaces for removing bound jobs from the
reservation, see the llbind command and the ll_bind subroutine in LoadLeveler:
Command and API Reference.

Querying existing reservations
Any LoadLeveler administrator or user can issue the llqres and llq commands to
query the status of an existing reservation or recurring reservation.

Use these commands to request specific information about reservations:
v Various options are available to filter reservations to be displayed.
v To show details of specific reservations, use the llqres command with the -l

option.
v To show job steps that are bound to specific reservations, use the llq command

with the -R option.

When querying flexible reservations:
v The reservation type is FLEXIBLE.
v For a flexible reservation in Waiting state, the start time, end time, and node

allocation are not set until the reservation becomes active.
v For a reservation in Waiting state, the llqres -l command output will display a

section called, "Flexible Reservation Information", which will contain the
user-specified node selection method used and the expiration time.

v For a reservation in Active state, the expiration time will not be displayed.
v The setup state will not be displayed.
v The llqres -l command will show the corresponding flexible job ID for this

reservation.
v The llqres -l command will show the corresponding flexible reservation ID

(Flexible Res. ID) for this job.

For details about reservation attributes and llq or llqres command syntax and
examples, see LoadLeveler: Command and API Reference.

Modifying existing reservations
Only administrators and reservation owners can use the llchres command to
modify one or more attributes of a reservation or a recurring reservation. Certain
attributes cannot be changed after a reservation has become active. Typical uses for
the llchres command include the following:
v Using the command llchres -U +newuser1 newuser2 to allow additional users to

submit jobs to the reservation.
v If a reservation was made through the command llmkres -h free but

LoadLeveler cannot include a particular node because it is down, you can use
the command llchres -h +node to add the node to the reserved node list when
that node becomes available again.

v If a reserved node is down after the reservation becomes active, a LoadLeveler
administrator can use:
– The command llchres -h -node to remove that node from the reservation.
– The command llchres -h +1 to add another node to the reservation.

v Extending the expiration of a recurring reservation which may be about to
expire. You can use llchres -e to specify a new expiration date for the
reservation without having to create a new reservation.

v Making a temporary change to the next occurrence of a recurring reservation
without affecting any future occurrences of that reservation. For example, you

Chapter 7. Building and submitting jobs 213

can use the -o option of the llchres command to temporarily add a user (-U) or
additional nodes (-n). Once that occurrence ends, the next occurrence will not
retain the change.

Alternative: Use the ll_change_reservation subroutine in a program.

For details about the LoadLeveler interfaces for modifying reservations, see the
llchres command and the ll_change_reservation subroutine in LoadLeveler:
Command and API Reference.

Modifying flexible reservations

Only administrators and reservation owners can use the llchres command to
modify one or more attributes of a flexible reservation. The attributes that cannot
be changed after a reservation has become active for a one-time reservation also
apply to a flexible reservation. There are some additional considerations that apply
to flexible reservations:
v If node methods (-n, -h, -F, or -f), duration (-d), and floating consumable

resources (-C) are changed, the flexible job step will be canceled and a new one
will be submitted. It is possible that the new flexible job step will not have the
same priority as the previous one.

v Floating resources cannot be modified after the reservation becomes active.
v In Waiting state, a modification can only be made if the creation method

matches the modify method for the following:
– The set of nodes
– Duration
– Floating resources

For example, if you issued:
llmkres -x -n 10 -d 130

and you want to modify the flexible reservation, issue:
llchres -x -n 2

and the modification will succeed.

But, if you issue:
llchres -x -f j.cmd

the modification will fail. The node selection method of -n does not match the
change node selection method of -f.

To change the notification program of reservation c890f2ec01.19.r , issue:
llchres -p /home/llbld/jobs/myprog -R c890f2ec01.19.r

To change the floating resources of reservation c890f2ec01.20.r, issue:
llchres -C "MyArea(10)" -R c890f2ec01.20.r

Note: This is a full replacement of the original floating resources.

214 LoadLeveler: Using and Administering

Canceling existing reservations
Administrators and reservation owners may use the llrmres command to cancel
one or more reservations or to cancel some occurrences of a recurring reservation
while leaving the remaining occurrences of that reservation unchanged in the
system.

The options available when canceling a reservation are:
v Remove the entire reservation. All occurrences are removed and any bound job

steps are automatically unbound from the reservation.
v Remove a specific occurrence of the reservation. All other occurrences remain in

the system and all bound job steps remain bound to the reservation.
v Remove all occurrences during a specified interval. For example, a reservation

may recur every day for one year, but during a one-week holiday period, the
reservation is not needed. The reservation owner could cancel all of the
occurrences during that one week period and all other occurrences would
remain in the system and all bound job steps would remain bound to the
reservation.

If some occurrences are canceled and the result is that no occurrences remain, then
the entire reservation is removed and all jobs are unbound from the reservation.

For a flexible reservation, the flexible job and all jobs bound to the flexible
reservation will be canceled when the reservation is removed.

Alternative: Use the ll_remove_reservation subroutine in a program.

Use the llqres command to check the success or failure of the remove request.

Use the llqres -l command to see a list of canceled occurrence IDs or to note
individual occurrence start times which have been omitted due to cancellation.

For details about the LoadLeveler interfaces for canceling reservations, see the
llrmres command and the ll_remove_reservation subroutine in LoadLeveler:
Command and API Reference.

Reservations with floating resources

All types of reservations can reserve floating resources.

Jobs that are bound to a reservation are allocated floating consumable resources
from the reservation rather than from the general pool of cluster-wide resources
maintained by the scheduler.

If the reservation does not request floating resources, jobs bound to the reservation
requiring floating resources will get the available resources from the cluster.

If the reservation requested floating resources and a job bound to the reservation
requires more resources than those assigned to the reservation, the job will remain
idle.

If a reservation requests floating resources, any bound jobs requiring floating
resources will not start if the job's end time exceeds the reservation's end time. In
this case, the reservation_can_be_exceeded keyword is ignored.

Chapter 7. Building and submitting jobs 215

Requesting floating consumable resources

Floating consumable resources for a reservation can be requested with the llmkres
or llchres command. For example:

To create a one-time reservation requesting one LicenseABC floating resource,
issue:
llmkres -t 5/20/2010 8:00 -d 2 -n 2 -C “LicenseABC(1)”

To create a recurring reservation requesting two LicenseABC and four
CompilerOptions floating resources, issue.
llmkres -t "10 7 * * * 05/20 07:10" -d 2 -n 1 -e 06/20 07:10 -C “LicenseABC(2) \
CompilerOptionsB(4)”

To create a flexible reservation requesting one LicenseABC and three
CompilerOptions floating resources, issue.
llmkres -x -d 2 -n 2 -C “LicenseABC(1) CompilerOptionsB(3)”

The flexible reservation will create a flexible job that will request floating resources
for the flexible reservation using the step_resources keyword.

The step_resources keyword is the total floating resources for the job step used in
the job command file. The syntax for the step_resources keyword is
step_resources=name(count) name(count). For example:
step_resources = Conslicense(4) ConsBW(10)

See “Job command file keyword descriptions” on page 335 for more information
about the step_resources keyword.

To create a flexible reservation where the resource request is contained in the
user-supplied job command file named job.cmd, issue.
llmkres -x -d 2 -f /home/llbld/job.cmd

The -f and -C option are mutually exclusive.

Modifying floating consumable resources

The -C option is used to modify floating consumable resources in a reservation.
This will be a full replacement of current floating resources if any were previously
requested. Modification of floating resources can only be done on reservations that
are not in the Active state and that were created with the -C option. For example:

To modify the one-time reservation to request one LicenseABC floating resource,
issue:
llchres -C “LicenseABC(1)” -R c197e325n01.ppd.pok.ibm.com.85.r

To modify a recurring reservation to request two LicenseABC and four
CompilerOptions floating resources, issue:
llchres -C “LicenseABC(2) CompilerOptionsB(4)” -R c197e325n01.ppd.pok.ibm.com.86.r

To modify a flexible reservation requesting one LicenseABC and three
CompilerOptions floating resources, issue:
llchres -C “LicenseABC(1) CompilerOptionsB(3)” -R c197e325n01.ppd.pok.ibm.com.87.r

216 LoadLeveler: Using and Administering

The flexible reservation will cancel the existing flexible job step and submit a new
flexible job with the new resource requirements. Only the non-JCF reservation node
selection option can use the -C option.

To modify a flexible reservation where job.cmd will contain the resources keyword
requesting one LicenseABC, issue.
llchres -f /home/llbld/job.cmd -R c197e325n01.ppd.pok.ibm.com.88.r

Only a new job command file can change floating resources for reservations that
were created by the job command file.

Removing floating consumable resources

Floating resources requested for a reservation are returned for general use when a
reservation ends or expires. Any bound running jobs will be canceled to free up
resources to give back to the global count. Any jobs that will run beyond the end
of the reservation with floating resources will remain idle so the job will not need
to be canceled.

For flexible reservations, all jobs will be canceled when the reservation ends.

Submitting jobs requesting scheduling affinity
You can request that a job use scheduling affinity by setting the RSET and
TASK_AFFINITY job command file keywords.

Specify RSET with a value of:
v RSET_MCM_AFFINITY to have LoadLeveler schedule the job to machines

where RSET_SUPPORT is enabled with a value of RSET_MCM_AFFINITY.
v user_defined_rset to have LoadLeveler schedule the job to machines where

RSET_SUPPORT is enabled with a value of RSET_USER_DEFINED;
user_defined_rset is the name of a valid user-defined RSet.

Specifying the RSET job command file keyword defaults to requesting memory
affinity as a requirement and adapter affinity as a preference. Scheduling affinity
options can be customized by using the job command file keyword
MCM_AFFINITY_OPTIONS. For more information on these keywords, see “Job
command file keyword descriptions” on page 335.

Note: If a job specifies memory or adapter affinity scheduling as a requirement,
LoadLeveler will only consider machines where RSET_SUPPORT is set to
RSET_MCM_AFFINITY. If there are not enough machines satisfying the memory
affinity requirements, the job will stay in the idle state.

Specify TASK_AFFINITY with a value of:
v CORE(n) to have LoadLeveler schedule the job to machines where

RSET_SUPPORT is enabled with a value of RSET_MCM_AFFINITY. On SMT
and ST nodes, LoadLeveler will assign n physical CPUs to each job task.

v CPU(n) to have LoadLeveler schedule the job to machines where
RSET_SUPPORT is enabled with a value of RSET_MCM_AFFINITY. On SMT
nodes, LoadLeveler will assign n logical CPUs to each per job task. On ST
nodes, LoadLeveler will assign n physical CPUs to each job task.

Specify a requirement of SMT with a value of:

Chapter 7. Building and submitting jobs 217

v Enabled to have LoadLeveler schedule the job to machines where SMT is
currently enabled.
Example: #@ requirements = (SMT == "Enabled")

v Disabled to have LoadLeveler schedule the job to machines where SMT is
currently disabled or is not supported.
Example: #@ requirements = (SMT == "Disabled")

OpenMP multithreaded jobs can be submitted requesting thread-level binding,
where each individual thread of an OpenMP application is bound to a separate
physical core processor or logical CPU. Use the parallel_threads job command file
keyword to request OpenMP thread-level binding, optionally, along with the
task_affinity job command file keyword.

The CPUs to individual OpenMP threads of the tasks are selected based on the
number of parallel threads (the parallel_threads job command file keyword) in
each task and set of CPUs or cores assigned (the task_affinity job command file
keyword) to the tasks. The CPUs are assigned to the threads only if at least one
CPU is available for each thread from the set of CPUs or cores assigned to the task.
If the number of CPUs in the set of CPUs or cores assigned to the tasks are not
sufficient to bind all of the threads, the job will not run.

This example binds 4 OpenMP parallel threads to 4 separate cores:
#@ task_affinity = Core(4)
#@ parallel_threads = 4

Note: If you specify cpus_per_core along with your affinity request as:
#@ task_affinity = core(n)
#@ cpus_per_core = 1

Then LoadLeveler allocates the requested number of CPUs to each task on SMT
nodes only. The nodes running in ST mode are not assigned for the jobs requesting
cpus_per_core.

Submitting and monitoring jobs in a LoadLeveler multicluster
There are subtasks and associated instructions for submitting and monitoring jobs
in a LoadLeveler multicluster.

Table 47 shows the subtasks and associated instructions for submitting and
monitoring jobs in a LoadLeveler multicluster:

Table 47. Submitting and monitoring jobs in a LoadLeveler multicluster

Subtask Associated instructions (see . . .)

Prepare and submit a job
in the LoadLeveler
multicluster

“Steps for submitting jobs in a LoadLeveler multicluster
environment” on page 219

Display information about
a job in the LoadLeveler
multicluster environment

v Use the llq -X cluster_name command to display information
about jobs on remote clusters.

v Use llq -x -d to display the user's job command file keyword
statements.

v Use llq -X cluster_name -l to obtain multicluster specific
information.

218 LoadLeveler: Using and Administering

Table 47. Submitting and monitoring jobs in a LoadLeveler multicluster (continued)

Subtask Associated instructions (see . . .)

Transfer an idle job from
one cluster to another
cluster

Use the llmovejob command, which is described in LoadLeveler:
Command and API Reference.

Steps for submitting jobs in a LoadLeveler multicluster
environment

There are steps for submitting jobs in a LoadLeveler multicluster environment.

In a multicluster environment, you can specify one of the following:
v That a job is to run on a particular cluster.
v That LoadLeveler is to decide which cluster is best from the list of clusters,

based on an administrator-defined metric. If any is specified, the job is
submitted to the best cluster, based on an administrator-defined metric.

The following procedure explains how to prepare your job to be submitted in the
multicluster environment.

Before you begin: You need to know that:
v Only batch jobs are supported in the LoadLeveler multicluster environment.

LoadLeveler will fail any interactive jobs that you attempt to submit in a
multicluster environment.

v LoadLeveler assigns all steps of a multistep job to the same cluster.
v Job identifiers are assigned by the local cluster and are retained by the job

regardless of what cluster the job executes in.
v Remote jobs are subjected to the same configuration checks as locally submitted

jobs. Examples include account validation, class limits, include lists, and exclude
lists.

Perform the following steps to submit jobs to run in one cluster in a LoadLeveler
multicluster environment.
1. If files used by your job need to be copied between clusters, you must specify

the job files to be copied from the local to the remote cluster in the job
command file. Use the cluster_input_file and cluster_output_file keywords to
specify these files.
Rules:
v Any local file specified for copy must be accessible from the local gateway

Schedd machines. Input files must be readable. Directories and permissions
must be in place to write output files.

v Any remote file specified for copy must be accessible from the remote
gateway Schedd machines. Directories and permissions must be in place to
write input files. Output files must be readable when the job terminates.

v To copy more than one file, these keywords can be specified multiple times.
Tip: Each instance of these keywords allows you to specify a single local file
and a single remote file. If your job requires copying multiple files (for
example, all files in a directory), you may want to use a procedure to
consolidate the multiple files into a single file rather than specify multiple
cluster_file statements in the job command file. The following is an example of
how you could consolidate input files:
a. Use the tar command to produce a single tar file from multiple files.

Chapter 7. Building and submitting jobs 219

b. On the cluster_input_file keyword, specify the file that resulted from the
tar command processing.

c. Modify your job command file such that it uses the tar command to restore
the multiple files from the tar file prior to invoking your application.

2. In the job command file, specify the clusters to which LoadLeveler may submit
the job. The cluster_list keyword is a blank-delimited list of cluster names or
the reserved word any where:
v A single cluster name indicates that the job is to be submitted to that cluster.
v A list of multiple cluster names indicates that the job is to be submitted to

one of the clusters as determined by the installation exit
CLUSTER_METRIC.

v The reserved word any indicates that the job is to be submitted to any
cluster defined by the installation exit CLUSTER_METRIC.

Alternative: You can specify the clusters to which LoadLeveler can submit your
job on the llsubmit command using the -X option.

3. Use the llsubmit command to submit the job.
Tip: You may use the -X option on the llsubmit command to specify:
-X {cluster_list | any}

Is a blank-delimited list of cluster names or the reserved word any
where:
v A single cluster name indicates that the job is to be submitted to that

cluster.
v A list of multiple cluster names indicates that the job is to be

submitted to one of the clusters as determined by the installation exit
CLUSTER_METRIC.

v The reserved word any indicates that the job is to be submitted to
any cluster defined by the installation exit CLUSTER_METRIC.

Note: If a remote job is submitted with a list of clusters or the reserved word
any and the installation exit CLUSTER_METRIC is not specified, the remote
job is not submitted.

The llsubmit command displays the assigned local outbound Schedd, the assigned
remote inbound Schedd, the scheduling cluster and the job identifier when the
remote job has been successfully submitted. Use the -q flag to stop these additional
messages from being displayed.

When you are done, you can use commands to display information about the
submitted job; for example:
v Use llq -l -X cluster_name -j job_id where cluster_name and job_id were displayed

by the llsubmit command to display information about the remote job.
v Use llq -l -X cluster_list to display the long listing about jobs, including

scheduling cluster, submitting cluster, user-requested cluster, cluster input and
output files.

v Use llq -X all to display information about all jobs in all configured clusters.

Working with energy aware jobs

The energy policy tag (energy_policy_tag) helps LoadLeveler identify the energy
data associated with a job. With the energy data, LoadLeveler can decide which
frequency should be used to run the job with minimal performance degradation.

The energy policy tag identifies the energy associated with a job. The energy data
includes:

220 LoadLeveler: Using and Administering

v Power consumption and the elapsed time when run in the nominal frequency
v The estimated power consumption
v The elapsed time in other frequencies
v The percentage of performance degradation

When you set the energy policy tag in the job command file, the energy data is
generated and stored in the database when the job runs for the first time. When
the job is submitted again with the same energy policy tag, the same policy will be
used. When you submit a job using the energy functions the first time, be sure to
keep the energy tag name unique among the tags you have generated.

To set the energy keywords in the job command file to use the energy function,
follow these steps:
1. Provide a unique identifier for the energy_policy_tag when a job is submitted

the first time. For example:
user.cmd
#@ energy_policy_tag = my_long_running_job

LoadLeveler generates the energy data associated with this energy tag for the
job when the job runs. To query the energy data using the energy tag, issue:
llrqetag –e my_long_running_job

2. You can set an acceptable level of performance degradation in the job
command file and resubmit the job to run at a lower energy level. Add the
following to your job command file and submit it again:
user.cmd
#@ energy_policy_tag = my_long_running_job
#@ max_perf_decrease_allowed = 20

After the job finishes, LoadLeveler will calculate the energy consumption for
the job.

3. Issue the following command to get the energy consumption information for
your jobs from the accounting data:
llsummary -p

Submitting and monitoring Blue Gene jobs
This procedure explains how to prepare your job to be submitted to the Blue Gene
system.

The submission of Blue Gene jobs is similar to the submission of other job types.

Before you begin: You need to know that checkpointing Blue Gene jobs is not
currently supported.

Tip: Use the llstatus command to check if Blue Gene support is enabled and
whether Blue Gene is currently present. The llstatus command will display:
The BACKFILL scheduler with Blue Gene support is in use

Blue Gene is present

when Blue Gene is support is enabled and Blue Gene is currently present.

Perform the following steps to submit Blue Gene jobs:
1. In the job command file, set the job type to Blue Gene by specifying:

Chapter 7. Building and submitting jobs 221

#@job_type = bluegene

2. Specify the size or shape of the Blue Gene job or the Blue Gene block in which
the job will run.
v The size of the Blue Gene job can be specified by using the job command file

keyword bg_size to specify the size of the job.
v The shape of the Blue Gene job can be specified by using the job command

file keyword bg_shape to specify the shape of the job. If you require the
specific shape you specified, you may wish to specify the bg_rotate keyword
to false.

v The block in which the Blue Gene job is run can be specified using the
bg_block job command file keyword.

v The size of a Blue Gene job refers to the number of Blue Gene compute
nodes instead of the number of tasks running on Startd machines. The
following keywords cannot be used to control the size of a Blue Gene job:
– node
– tasks_per_node
– total_tasks

3. Specify any other job command file keywords you require, including the
bg_connectivity and bg_requirements Blue Gene job command file keywords.

4. Upon completing your job command file, submit the job using the llsubmit
command.

For more information about any of the job command file keywords mentioned in
this topic, see the detailed descriptions in “Job command file keyword
descriptions” on page 335.

If you experience a problem submitting a Blue Gene job, see “Troubleshooting in a
Blue Gene environment” on page 409 for common questions and answers
pertaining to operations within a Blue Gene environment.

When you are done, you can use the llq -b command to display information about
Blue Gene jobs in short form. For more information, see the llq command in
LoadLeveler: Command and API Reference.

The following is a sample job command file for a Blue Gene job:
#!/bin/sh
@ job_name = bgsample
@ job_type = bluegene
@ comment = "BGQ Job By Size"
@ error = $(job_name).$(Host).$(Process).err
@ output = $(job_name).$(Host).$(Process).out
@ executable = /bgsys/drivers/ppcfloor/hlcs/bin/runjob
@ arguments = --exe /bgusr/loadl/myexe
@ bg_size = 1024
@ wall_clock_limit = 30:00
@ bg_connectivity = Torus
@ queue

222 LoadLeveler: Using and Administering

Chapter 8. Managing submitted jobs

This is a list of the tasks and sources of additional information for managing
LoadLeveler jobs.

Table 48 lists the tasks and sources of additional information for managing
LoadLeveler jobs.

Table 48. Roadmap of user tasks for managing submitted jobs

To learn about: Read the following:

Displaying information about
a submitted job or its
environment

v “Querying the status of a job”

v “Working with machines”

v “Displaying currently available resources” on page 224

v llclass, llq, llstatus, and llsummary commands (see
LoadLeveler: Command and API Reference)

Changing the priority of a
submitted job

v “Setting and changing the priority of a job” on page 224

v llmodify command (see LoadLeveler: Command and API
Reference)

Changing the state of a
submitted job

v “Placing and releasing a hold on a job” on page 225

v “Canceling a job” on page 226

v llcancel and llhold commands (see LoadLeveler: Command
and API Reference)

Checkpointing a submitted
job

v “Checkpointing a job” on page 226

v llckpt command (see LoadLeveler: Command and API
Reference)

Querying the status of a job
Once you submit a job, you can query the status of the job to determine, for
example, if it is still in the queue or if it is running.

You also receive other job status related information such as the job ID and the
submitting user ID. You can query the status of a LoadLeveler job by using the llq
command. For an example of querying the status of a job, see Chapter 9,
“Example: Using commands to build, submit, and manage jobs,” on page 227.

Querying the status of a job using a submit-only machine: In addition to
allowing you to submit and cancel jobs, a submit-only machine allows you to
query the status of jobs. You can query a job by using the llq command. For
information on the llq command, see LoadLeveler: Command and API Reference.

Working with machines
There are types of tasks related to machines.

You can perform the following types of tasks related to machines:
v Display central manager

© Copyright IBM Corp. 1986, 2012 223

The LoadLeveler administrator designates one of the machines in the
LoadLeveler cluster as the central manager. When jobs are submitted to any
machine, the central manager is notified and decides where to schedule the jobs.
In addition, it keeps track of the status of machines in the cluster and jobs in the
system by communicating with each machine. LoadLeveler uses this information
to make the scheduling decisions and to respond to queries.
Usually, the system administrator is more concerned about the location of the
central manager than the typical end user but you may also want to determine
its location. One reason why you might want to locate the central manager is if
you want to browse some configuration files that are stored on the same
machine as the central manager.

v Display public scheduling machines

Public scheduling machines are machines that participate in the scheduling of
LoadLeveler jobs on behalf of users at submit-only machines and users at other
workstations that are not running the Schedd daemon. You can find out the
names of all these machines in the cluster.
Submit-only machines allow machines that are not part of the LoadLeveler
cluster to submit jobs to the cluster for processing.

Displaying currently available resources
The LoadLeveler user can get information about currently available resources by
using the llstatus command with either the -F, or -R options.

The -F option displays a list of all of the floating resources associated with the
LoadLeveler cluster. The -R option lists all of the consumable resources associated
with all of the machines in the LoadLeveler cluster. The user can specify a hostlist
with the llstatus command to display only the consumable resources associated
with specific hosts.

Setting and changing the priority of a job
LoadLeveler uses the priority of a job to determine its position among a list of all
jobs waiting to be dispatched.

LoadLeveler schedules jobs based on the adjusted system priority, which takes in
account both system priority and user priority:

User priority
Every job has a user priority associated with it. A job with a higher priority
runs before a job with a lower priority (when both jobs are owned by the
same user). You can set this priority through the user_priority keyword in
the job command file, and modify it through the llprio command. For
more information on the llprio command, see LoadLeveler: Command and
API Reference.

System priority
Every job has a system priority associated with it. Administrators can set
this priority in the configuration file using the SYSPRIO keyword
expression. The SYSPRIO expression can contain class, group, and user
priorities, as shown in the following example:
SYSPRIO : (ClassSysprio * 100) + (UserSysprio * 10) + (GroupSysprio * 1) - (QDate)

The SYSPRIO expression is evaluated by LoadLeveler to determine the
overall system priority of a job. To determine which jobs to run first,
LoadLeveler does the following:

224 LoadLeveler: Using and Administering

1. Assigns a system priority value when the negotiator adds the new job
to the queue of jobs eligible for dispatch.

2. Orders jobs first by system priority.
3. Assigns jobs belonging to the same user and the same class an adjusted

system priority, which takes all the system priorities and orders them
by user priority. Jobs with a higher adjusted system priority are
scheduled ahead of jobs with a lower adjusted system priority.

Only administrators may modify the system priority through the llmodify
command with the -s option. For more information on the llmodify
command, see LoadLeveler: Command and API Reference.

Example: How does a job's priority affect dispatching order?
To understand how a job's priority affects dispatching order, consider the sample
jobs in Table 49, which lists the priorities assigned to jobs submitted by two users,
Rich and Joe.

Two of the jobs belong to Joe, and three belong to Rich. User Joe has two jobs (Joe1
and Joe2) in Class A with SYSPRIOs of 9 and 8 respectively. Since Joe2 has the
higher user priority (20), and because both of Joe's jobs are in the same class, Joe2's
priority is swapped with that of Joe1 when the adjusted system priority is
calculated. This results in Joe2 getting an adjusted system priority of 9, and Joe1
getting an adjusted system priority of 8. Similarly, the Class A jobs belonging to
Rich (Rich1 and Rich3) also have their priorities swapped. The priority of the job
Rich2 does not change, since this job is in a different class (Class B).

Table 49. How LoadLeveler handles job priorities

Job User Priority
System Priority

(SYSPRIO) Class
Adjusted

System Priority

Rich1 50 10 A 6

Joe1 10 9 A 8

Joe2 20 8 A 9

Rich2 100 7 B 7

Rich3 90 6 A 10

Placing and releasing a hold on a job
You may place a hold on a job and thereby cause the job to remain in the queue
until you release it.

There are two types of holds: a user hold and a system hold. Both you and your
LoadLeveler administrator can place and release a user hold on a job. Only a
LoadLeveler administrator, however, can place and release a system hold on a job.

You can place a hold on a job or release the hold by using the llhold command.
For examples of holding and releasing jobs, see Chapter 9, “Example: Using
commands to build, submit, and manage jobs,” on page 227.

As a user or an administrator, you can also use the startdate keyword in “Job
command file keyword descriptions” on page 335 to place a hold on a job. This
keyword allows you to specify when you want to run a job.

Chapter 8. Managing submitted jobs 225

Canceling a job
You can cancel one of your jobs that is either running or waiting to run by using
the llcancel command. You can use llcancel to cancel LoadLeveler jobs, including
jobs from a submit-only machine.

For more information about the llcancel command, see LoadLeveler: Command and
API Reference.

Checkpointing a job
Checkpointing is a method of periodically saving the state of a job so that, if for
some reason, the job does not complete, it can be restarted from the saved state.
Checkpoints can be taken either under the control of the user application or
external to the application.

To initiate a checkpoint from within a parallel application, use the API
mpc_init_ckpt. This API allows the writer of the application to determine at what
points in the application it would be appropriate save the state of the job. To
enable parallel applications to initiate checkpointing, you must use the APIs
provided with the Parallel Environment (PE) program. For information on parallel
checkpointing, see IBM Parallel Environment for AIX and Linux: Operation and Use,
Volume 1.

It is also possible to checkpoint a program running under LoadLeveler outside the
control of the application. There are several ways to do this:
v Use the llckpt command to initiate checkpoint for a specific job step. For more

information, see LoadLeveler: Command and API Reference.
v Checkpoint from a program which invokes the ll_ckpt API to initiate checkpoint

of a specific job step. For more information, see LoadLeveler: Command and API
Reference.

v Have LoadLeveler automatically checkpoint all running jobs that have been
enabled for checkpoint. To enable this automatic checkpoint, specify checkpoint
= interval in the job command file.

v As the result of an llctl flush command.

Note: For interactive parallel jobs, the environment variable CHECKPOINT must
be set to yes in the environment prior to starting the parallel application or the job
will not be enabled for checkpoint. For more information see, IBM Parallel
Environment for AIX and Linux: MPI Programming Guide.

226 LoadLeveler: Using and Administering

Chapter 9. Example: Using commands to build, submit, and
manage jobs

This procedure presents a series of simple tasks that a user might perform using
commands.

For additional information about individual commands noted in the procedure, see
LoadLeveler: Command and API Reference.
1. Build your job command file by using a text editor to create a script file. Into

the file enter the name of the executable, other keywords designating such
things as output locations for messages, and the necessary LoadLeveler
statements, as shown in the following example:
This job command file is called longjob.cmd. The
executable is called longjob, the input file is longjob.in,
the output file is longjob.out, and the error file is
longjob.err.
#
@ executable = longjob
@ input = longjob.in
@ output = longjob.out
@ error = longjob.err

@ queue

2. You can optionally edit the job command file you created in step 1.
3. To submit the job command file that you created in step 1, use the llsubmit

command:
llsubmit longjob.cmd

LoadLeveler responds by issuing a message similar to:
submit: The job "wizard.22" has been submitted.

Where wizard is the name of the machine to which the job was submitted and
22 is the job identifier (ID). You may want to record the identifier for future use
(although you can obtain this information later if necessary).

4. To display the status of the job you just submitted, use the llq command. This
command returns information about all jobs in the LoadLeveler queue:
llq wizard.22

Where wizard is the machine name to which you submitted the job, and 22 is
the job ID. You can also query this job using the command llq wizard.22.0,
where 0 is the step ID.

5. To change the priority of a job, use the llprio command. To increase the priority
of the job you submitted by a value of 10, enter:
llprio +10 wizard.22.0

You can change the user priority of a job that is in the queue or one that is
running. This only affects jobs belonging to the same user and the same class. If
you change the priority of a job in the queue, the job's priority increases or
decreases in relation to your other jobs in the queue. If you change the priority
of a job that is running, it does not affect the job while it is running. It only
affects the job if the job re-enters the queue to be dispatched again. For more
information, see “Setting and changing the priority of a job” on page 224.

© Copyright IBM Corp. 1986, 2012 227

6. To place a temporary hold on a job in a queue, use the llhold command. This
command only takes effect if jobs are in the Idle or NotQueued state. To place a
hold on wizard.22.0, enter:
llhold wizard.22.0

7. To release the hold you placed in step 6, use the llhold command:
llhold -r wizard.22.0

8. To display the status of the machine to which you submitted a job, use the
llstatus command:
llstatus -l wizard

9. To cancel wizard.22.0, use the llcancel command:
llcancel wizard.22.0

228 LoadLeveler: Using and Administering

Part 4. LoadLeveler interfaces reference

The topics in the LoadLeveler interfaces reference provide the details you need to
know to correctly use the IBM LoadLeveler interfaces for specifying keywords in
the LoadLeveler control files.

© Copyright IBM Corp. 1986, 2012 229

230 LoadLeveler: Using and Administering

Chapter 10. Configuration keyword reference

The configuration contains many parameters that you can set or modify to control
how LoadLeveler operates.

For a file-based configuration, you can control LoadLeveler's operation either:
v Across the cluster, by modifying the global configuration file, LoadL_config, or
v Locally, by modifying the LoadL_config.local file on individual machines.

For a database-based configuration, you can control LoadLeveler's operation either:
v Across the cluster, by modifying values in tables for the cluster or for the default

machine, or
v By modifying the records for individual machines in the database tables.

Table 50 shows the configuration subtasks:

Table 50. Configuration subtasks

Subtask Associated information (see . . .)

To find out what administrator tasks
you can accomplish by using the
configuration

Chapter 4, “Configuring the LoadLeveler
environment,” on page 39

To learn how to correctly specify the
contents of a configuration

v “Configuration keyword syntax”

v “Configuration keyword descriptions” on page 233

v “User-defined keywords” on page 284

v “LoadLeveler variables” on page 286

Configuration keyword syntax
For files-based configuration, the information in both the LoadL_config and the
LoadL_config.local files is in the form of a statement. These statements are made
up of keywords and values.

There are three types of configuration keywords:
v Keywords, described in “Configuration keyword descriptions” on page 233.
v User-defined variables, described in “User-defined keywords” on page 284.
v LoadLeveler variables, described in “LoadLeveler variables” on page 286.

Configuration file statements take one of the following formats:
keyword=value
keyword:value

Statements in the form keyword=value are used primarily to customize an
environment. Statements in the form keyword:value are used by LoadLeveler to
specify expressions. For example, the SYSPRIO keyword specifies the expression
used to calculate the system priority for job steps:
SYSPRIO: 0 - QDate

Keywords are not case sensitive. This means you can enter them in lower case,
upper case, or mixed case.

© Copyright IBM Corp. 1986, 2012 231

Note: For the keyword=value form, if the keyword is of a boolean type and only
true and false are valid input, a value string starting with t or T is taken as true;
all other values are taken as false.

To continue configuration file statements, use the back-slash character (\).

In the configuration file, comments must be on a separate line from keyword
statements.

You can use the following types of constants and operators in configuration
keywords.

Numerical and alphabetical constants
These are the numerical and alphabetical constants.

Constants may be represented as:
v Boolean expressions
v Signed integers
v Floating point values
v Strings enclosed in double quotes (" ").

Mathematical operators
You can use the following C operators.

The operators are listed in order of precedence. All of these operators are evaluated
from left to right:
v !
v * /
v - +
v < <= > >=
v == !=
v &&
v ||

64-bit support for configuration file keywords and expressions
Administrators can assign 64-bit integer values to selected configuration keywords.

floating_resources
Consumable resources associated with the floating_resources keyword may be
assigned 64-bit integer values. Fractional and unit specifications are not
allowed. The predefined ConsumableCpus, ConsumableMemory,
ConsumableLargePageMemory, and ConsumableVirtualMemory may not be
specified as floating resources.

Example:
floating_resources = spice2g6(9876543210123) db2_license(1234567890)

MACHPRIO expression
The LoadLeveler variables: Disk, ConsumableCpus, ConsumableMemory,
ConsumableVirtualMemory, ConsumableLargePageMemory, PagesScanned,
Memory, VirtualMemory, FreeRealMemory, and PagesFreed may be used in a
MACHPRIO expression. They are 64-bit integers and 64-bit arithmetic is used
to evaluate them.

Example:
MACHPRIO: (Memory + FreeRealMemory) - (LoadAvg*1000 + PagesScanned)

232 LoadLeveler: Using and Administering

Configuration keyword descriptions
This topic provides an alphabetical list of the keywords you can use in a
LoadLeveler configuration.

It also provides examples of statements that use these keywords.

ACCT
Turns the accounting function on or off.

Syntax:
ACCT = flag ...

The available flags are:

A_DETAIL
Enables extended accounting. Using this flag causes LoadLeveler to
record detail resource consumption by machine and by events for each
job step. This flag also enables the -x flag of the llq command,
permitting users to view resource consumption for active jobs.

A_ENERGY
Turns energy data recording on.

A_RES
Turns reservation data recording on.

A_OFF
Turns accounting data recording off.

A_ON Turns accounting data recording on. If specified without the
A_DETAIL flag, the following is recorded:
v The total amount of CPU time consumed by the entire job
v The maximum memory consumption of all tasks (or nodes).

A_VALIDATE
Turns account validation on.

Default value: A_OFF

Examples:

This example specifies that accounting should be turned on and that extended
accounting data should be collected and that the -x flag of the llq command be
enabled.
ACCT = A_ON A_DETAIL

This example specifies that accounting should be turned on and that extended
accounting data and energy consumption data should be collected.
ACCT = A_ON A_DETAIL A_ENERGY

ACCT_VALIDATION
Identifies the executable called to perform account validation.

Syntax:
ACCT_VALIDATION = program

Where program is a validation program.

Default value: $(BIN)/llacctval (the accounting validation program shipped
with LoadLeveler.

Chapter 10. Configuration keyword reference 233

ACTION_ON_MAX_REJECT
Specifies the state in which jobs are placed when their rejection count has
reached the value of the MAX_JOB_REJECT keyword. HOLD specifies that
jobs are placed in User Hold status; SYSHOLD specifies that jobs are placed in
System Hold status; CANCEL specifies that jobs are canceled. When a job is
rejected, LoadLeveler sends a mail message stating why the job was rejected.

Syntax:
ACTION_ON_MAX_REJECT = HOLD | SYSHOLD | CANCEL

Default value: HOLD

ACTION_ON_SWITCH_TABLE_ERROR
Points to an administrator supplied program that will be run when
DRAIN_ON_SWITCH_TABLE_ERROR is set to true and a switch table
unload error occurs.

Syntax:
ACTION_ON_SWITCH_TABLE_ERROR = program

Default value: The default is to not run a program.

ADAPTER_HEARTBEAT_INTERVAL
Specifies the amount of time, in seconds, that defines the heartbeat interval
between the region manager and startd. This keyword is used by the resource
manager component only.

Syntax:
ADAPTER_HEARTBEAT_INTERVAL = interval

where:

interval is in seconds.

Default value: The default is 30 seconds. If a value of 0 is specified, the default
will be used.

ADAPTER_HEARTBEAT_PORT
Specifies the port number on which the region manager listens for heartbeats
from startd. This keyword is used by the resource manager component only.

Syntax:
ADAPTER_HEARTBEAT_PORT = port

where:

port is a positive whole number.

Default value: The default is 9684.

ADAPTER_HEARTBEAT_RETRIES
Specifies the number of heartbeat intervals that the region manager will wait
before declaring the adapter on startd as down. This keyword is used by the
resource manager component only.

Syntax:
ADAPTER_HEARTBEAT_RETRIES = retries

where:

retries is a positive whole number.

Default value: The default is 2. If a value of 0 is specified, the default will be
used.

234 LoadLeveler: Using and Administering

ADMIN_FILE
Points to the administration file containing user, class, group, machine_group,
machine, cluster, and region stanzas.This keyword is not used for the database
configuration option.

Syntax:
ADMIN_FILE = directory

Default value: $(tilde)/admin_file

AFS_GETNEWTOKEN
Specifies a filter that, for example, can be used to refresh an AFS token.

Syntax:
AFS_GETNEWTOKEN = full_path_to_executable

Where full_path_to_executable is an administrator-supplied program that
receives the AFS authentication information on standard input and writes the
new information to standard output. The filter is run when the job is
scheduled to run and can be used to refresh a token which expired when the
job was queued.

Default value: The default is to not run a program.

AGGREGATE_ADAPTERS
Allows an external scheduler to specify per-window adapter usages.

Syntax:
AGGREGATE_ADAPTERS = YES | NO

When this keyword is set to YES, the resources from multiple switch adapters
on the same switch network are treated as one aggregate pool available to each
job. When this keyword is set to NO, the switch adapters are treated
individually and a job cannot use resources from multiple adapters on the
same network.

Set this keyword to NO when you are using an external scheduler; otherwise,
set to YES (or accept the default).

Default value: YES

ARCH
Indicates the standard architecture of the system. The architecture you specify
here must be specified in the same format in the requirements and preferences
statements in job command files. The administrator defines the character string
for each architecture.

Syntax:
ARCH = string

Default value: Use the command llstatus -l to view the default.

Example: To define a machine as an RS/6000®, the keyword would look like:
ARCH = R6000

BG_ALLOW_LL_JOBS_ONLY
Specifies if only jobs submitted through LoadLeveler will be accepted by the
Blue Gene job launcher program.

Syntax:
BG_ALLOW_LL_JOBS_ONLY = true | false

Default value: false

Chapter 10. Configuration keyword reference 235

BG_CACHE_BLOCKS
Specifies whether allocated blocks are to be reused for Blue Gene jobs
whenever possible.

Syntax:
BG_CACHE_BLOCKS = true | false

Default value: true

BG_ENABLE_PASSTHROUGH
Specifies whether LoadLeveler should consider "pass-through" midplanes when
scheduling. This will allow for scheduling solutions using midplanes that are
not topologically next to each other.

Syntax:
BG_ENABLE_PASSTHROUGH = true | false

Default value: false

BG_ENABLED
Specifies whether Blue Gene support is enabled.

Syntax:
BG_ENABLED = true | false

If the value of this keyword is true, the central manager will load the Blue
Gene control system libraries and query the state of the Blue Gene system so
that jobs of type bluegene can be scheduled.

Default value: false

BG_MIN_BLOCK_SIZE
Specifies the smallest number of compute nodes in a block.

Syntax:
BG_MIN_BLOCK_SIZE = 32 | 64 | 128 | 256 | 512

The value for this keyword must not be smaller than the minimum block size
supported by the physical Blue Gene hardware. If the number of compute
nodes requested by the job is less than the minimum block size, then
LoadLeveler will increase the requested size to the minimum block size.

Note: The minimum block size is also limited by the Blue Gene System I/O
ratio. If the system only has a I/O ratio of 1:128, the minimum block size will
be set by LoadLeveler to 128, regardless of the value specified by
BG_MIN_BLOCK_SIZE.

Default value: 32

BIN
Defines the directory where LoadLeveler binaries are kept.

Syntax:
BIN = $(RELEASEDIR)/bin

Default value: $(tilde)/bin

CENTRAL_MANAGER_HEARTBEAT_INTERVAL
Specifies the amount of time, in seconds, that defines how frequently the
primary and alternate central manager communicate with each other.

Note: This keyword is deprecated in favor of the
FAILOVER_HEARTBEAT_INTERVAL keyword.

236 LoadLeveler: Using and Administering

Syntax:
CENTRAL_MANAGER_HEARTBEAT_INTERVAL = number

Default value: The default value is 300 seconds or 5 minutes.

CENTRAL_MANAGER_LIST
Specifies the list of machines where the primary and alternate central manager
daemons run. This keyword overrides the central_manager statement in the
machine stanza in the administration file. This keyword is used by the
scheduler component only.

Syntax:
CENTRAL_MANAGER_LIST = primary_central_manager_machine \
[alternate_central_manager_machine_list]

Where primary_central_manager_machine is the host name of the machine that
the primary central manager daemon will run on and
alternate_central_manager_machine_list is a blank delimited list of host names for
the alternate central manager daemons.

Default value: No default value is set.

CENTRAL_MANAGER_TIMEOUT
Specifies the number of heartbeat intervals that an alternate central manager
will wait before declaring that the primary central manager is not operating.

Syntax:
CENTRAL_MANAGER_TIMEOUT = number

Default value: The default is 6.

Note: This keyword is deprecated in favor of the
FAILOVER_HEARTBEAT_RETRIES keyword.

CKPT_CLEANUP_INTERVAL
Specifies the interval, in seconds, at which the Schedd daemon will run the
program specified by the CKPT_CLEANUP_PROGRAM keyword.

Syntax:
CKPT_CLEANUP_INTERVAL = number

number must be a positive integer.

Default value: -1

CKPT_CLEANUP_PROGRAM
Identifies an administrator-provided program which is to be run at the interval
specified by the ckpt_cleanup_interval keyword. The intent of this program is
to delete old checkpoint files created by jobs running under LoadLeveler
during the checkpoint process.

Syntax:
CKPT_CLEANUP_PROGRAM = program

Where program is the fully qualified name of the program to be run. The
program must be accessible and executable by LoadLeveler.

A sample program to remove checkpoint files is provided in the
/usr/lpp/LoadL/full/samples/llckpt/rmckptfiles.c file.

Default value: No default value is set.

Chapter 10. Configuration keyword reference 237

CKPT_EXECUTE_DIR
Specifies the directory where the job step's executable will be saved for
checkpointable jobs. You can specify this keyword in either the configuration
keyword or the job command file; different file permissions are required
depending on where this keyword is set. When used as a configuration
keyword, it specifies a “base” directory. For each job step, a subdirectory with
the name job_step_id is created and the job step's executable is copied to this
subdirectory. For additional information, see “Planning considerations for
checkpointing jobs” on page 136.

Syntax:
CKPT_EXECUTE_DIR = directory

This directory cannot be the same as the current location of the executable file,
or LoadLeveler will not stage the executable. In this case, the user must have
execute permission for the current executable file.

Default value: By default, the executable of a checkpointable job step is not
staged.

Note: The staged executables are not deleted because they may be needed for
restart operations. It is your responsibility to manage the files in the
ckpt_execute_dir directory and remove any files that are no longer needed.

CLASS
Determines whether a machine will accept jobs of a certain job class. For
parallel jobs, you must define a class instance for each task you want to run on
a node using one of two formats:
v The format, CLASS = class_name (count), defines the CLASS names using a

statement that names the classes and sets the number of tasks for each class
in parenthesis.
With this format, the following rules apply:
– Each class can have only one entry
– If a class has more than one entry or there is a syntax error, the entire

CLASS statement will be ignored
– If the CLASS statement has a blank value or is not specified, it will be

defaulted to No_Class (1)
– The number of instances for a class specified inside the parenthesis ()

must be an unsigned integer. If the number specified is 0, it is correct
syntactically, but the class will not be defined in LoadLeveler

– If the number of instances for all classes in the CLASS statement are 0,
the default No_Class(1) will be used

v The format, CLASS = { "class1" "class2" "class2" "class2"}, defines the CLASS
names using a statement that names each class and sets the number of tasks
for each class based on the number of times that the class name is used
inside the {} operands.

Note: With both formats, the class names list is blank delimited.

For a LoadLeveler job to run on a machine, the machine must have a vacancy
for the class of that job. If the machine is configured for only one No_Class job
and a LoadLeveler job is already running there, then no further LoadLeveler
jobs are started on that machine until the current job completes.

You can have a maximum of 1024 characters in the class statement. You cannot
use allclasses or data_stage as a class name, since these are reserved
LoadLeveler keywords.

238 LoadLeveler: Using and Administering

You can assign multiple classes to the same machine by specifying the classes
in the LoadLeveler configuration file (called LoadL_config) or in the local
configuration file (called LoadL_config.local). The classes, themselves, should
be defined in the administration file. See “Setting up a single machine to have
multiple job classes” on page 415 and “Defining classes” on page 94 for more
information on classes.

Syntax:
CLASS = { "class_name" ... } | {"No_Class"} | class_name (count) ...

Default value: {"No_Class"}

Note: This keyword is deprecated in the configuration file and has been
moved to the administration file.

CLIENT_TIMEOUT
Specifies the maximum time, in seconds, that a daemon waits for a response
over TCP/IP from a process. If the waiting time exceeds the specified amount,
the daemon tries again to communicate with the process. In general, you
should use the default setting unless you are experiencing delays due to an
excessively loaded network. If so, you should try increasing this value.

Syntax:
CLIENT_TIMEOUT = number

Default value: The default is 30 seconds.

CLUSTER_METRIC
Indicates the installation exit to be run by the Schedd to determine where a
remote job is distributed. If a remote job is submitted with a list of clusters or
the reserved word any and the installation exit is not specified, the remote job
is not submitted.

Syntax:
CLUSTER_METRIC = full_pathname_to_executable

The installation exit is run with the following parameters passed as input. All
parameters are character strings.
v The job ID of the job to be distributed
v The number of clusters in the list of clusters
v A blank-delimited list of clusters to be considered

If the user specifies the reserved word any as the cluster_list during job
submission, the job is sent to the first outbound Schedd defined for the first
configured remote cluster. The CLUSTER_METRIC is executed on this
machine to determine where the job will be distributed. If this machine is not
the outbound_hosts Schedd for the assigned cluster, the job will be forwarded
to the correct outbound_hosts Schedd. If the user specifies a list of clusters as
the cluster_list during job submission, the job is sent to the first outbound
Schedd defined for the first specified remote cluster. The CLUSTER_METRIC
is executed on this machine to determine where the job will be distributed. If
this machine is not the outbound_hosts Schedd for the assigned cluster, the job
will be forwarded to the correct outbound_hosts Schedd.

Note: The list of clusters may contain a single entry of the reserved word any,
which indicates that the CLUSTER_METRIC installation exit must determine
its own list of clusters to select from. This can be all of the clusters available
using the data access API or a predetermined list set by the administrator. If
any is specified in place of a cluster list, the metric will receive a count of 1

Chapter 10. Configuration keyword reference 239

followed by the keyword any.
The installation exit must write the remote cluster name to which the job is
submitted as standard output and exit with a value of 0. An exit value of -1
indicates an error in determining the cluster for distribution and the job is not
submitted. Returned cluster names that are not valid also cause the job to be
not submitted. STDERR from the exit is written to the Schedd log.

LoadLeveler provides a set of sample exits for use in distributing jobs by the
following metrics:
v The number of jobs in the idle queue
v The number of jobs in the specified class
v The number of free nodes in the cluster

The installation exit samples are available in the ${RELEASEDIR}/samples/
llcluster directory.

CLUSTER_REMOTE_JOB_FILTER
Indicates the installation exit to be run by the inbound Schedd for each remote
job request to filter the user's job command file statements during submission
or move job. If the keyword is not specified, no job filtering is done.

Syntax:
CLUSTER_REMOTE_JOB_FILTER = full_pathname_to_executable

The installation exit is run with the submitting user's ID. All parameters are
character strings.

This installation exit is executed on the inbound_hosts of the local cluster
when receiving a job submission or move job request.

The executable specified is called with the submitting user's unfiltered job
command file statements as the standard input. The standard output is
submitted to LoadLeveler. If the exit returns with a nonzero exit code, the
remote job submission or job move will fail. A submit filter can only make
changes to LoadLeveler job command file statements.

The data access API can be used by the remote job filter to query the Schedd
for the job object received from the sending cluster.

If the local submission filter on the submitting cluster has added or deleted
steps from the original user's job command file, the remote job filter must add
or delete the same number of steps. The job command file statements returned
by the remote job filter must contain the same number of steps as the job
object received from the sending cluster.

Changes to the following job command file keyword statements are ignored:
v executable

v environment

v image_size

v cluster_input_file

v cluster_output_file

v cluster_list

The following job command file keyword will have different behavior:
v initialdir – If not set by the remote job filter or the submitting user's

unfiltered job command file, the default value will remain the current
working directory at the time the job was submitted. Access to the initialdir

240 LoadLeveler: Using and Administering

will be verified on the cluster selected to run the job. If access to initialdir
fails, the submission or move job will fail.

To maintain compatibility between the SUBMIT_FILTER and
CLUSTER_REMOTE_JOB_FILTER programs, the following environment
variables are set when either exit is invoked:
v LOADL_ACTIVE – the LoadLeveler version.
v LOADL_STEP_COMMAND – the location of the job command file passed

as input to the program. This job command file only contains LoadLeveler
keywords.

v LOADL_STEP_ID – The job identifier, generated by the submitting
LoadLeveler cluster.

Note: The environment variable name is LOADL_STEP_ID although the
value it contains is a "job" identifier. This name is used to be compatible
with the local job filter interface.

v LOADL_STEP_OWNER – The owner (UNIX user name) of the job.

CLUSTER_USER_MAPPER
Indicates the installation exit to be run by the inbound Schedd for each remote
job request to determine the user mapping of the cluster. This keyword implies
that user mapping is performed. If the keyword is not specified, no user
mapping is done.

Syntax:
CLUSTER_USER_MAPPER = full_pathname_to_executable

The installation exit is run with the following parameters passed as input. All
parameters are character strings.
v The user name to be mapped
v The cluster name where the user originated from

This installation exit is executed on the inbound_hosts of the local cluster
when receiving a job submission, move job request or remote command.

The installation exit must write the new user name as standard output and exit
with a value of 0. An exit value of -1 indicates an error and the job is not
submitted. STDERR from the exit is written to the Schedd log. An exit value of
1 indicates that the user name returned for this job was not mapped.

CM_CHECK_USERID
Specifies whether the central manager will check the existence of user IDs that
sent requests through a command or API on the central manager machine.

Syntax:
CM_CHECK_USERID = true | false

Default value: true

CM_COLLECTOR_PORT
Specifies the port number used when connecting to a daemon.

Syntax:
CM_COLLECTOR_PORT = port number

Default value: The default is 9612.

COMM
Specifies a local directory where LoadLeveler keeps special files used for UNIX
domain sockets for communicating among LoadLeveler daemons running on

Chapter 10. Configuration keyword reference 241

the same machine. This keyword allows the administrator to choose a different
file system other than /tmp for these files. If you change the COMM option
you must stop and then restart LoadLeveler using the llctl command.

Syntax:
COMM = local directory

Default value: The default location for the files is /tmp.

CONTINUE
Determines whether suspended jobs should continue execution.

Syntax:
CONTINUE: expression that evaluates to T or F (true or false)

When T, suspended LoadLeveler jobs resume execution on the machine.

Default value: No default value is set.

For information about time-related variables that you may use for this
keyword, see “Variables to use for setting times” on page 291.

CUSTOM_METRIC
Specifies a machine's relative priority to run jobs.

Syntax:
CUSTOM_METRIC = number

This is an arbitrary number which you can use in the MACHPRIO expression.
Negative values are not allowed.

Default value: If you specify neither CUSTOM_METRIC nor
CUSTOM_METRIC_COMMAND, CUSTOM_METRIC = 1 is assumed. For
more information, see “Setting negotiator characteristics and policies” on page
47.

For more information related to using this keyword, see “Defining a
LoadLeveler cluster” on page 45.

CUSTOM_METRIC_COMMAND
Specifies an executable and any required arguments. The exit code of this
command is assigned to CUSTOM_METRIC. If this command does not exit
normally, CUSTOM_METRIC is assigned a value of 1. This command is
forked every (POLLING_FREQUENCY * POLLS_PER_UPDATE) period.

Syntax:
CUSTOM_METRIC_COMMAND = command

Default value: No default is set; LoadLeveler does not run any command to
determine CUSTOM_METRIC.

DCE_AUTHENTICATION_PAIR
Specifies a pair of installation supplied programs that are used to authenticate
DCE security credentials.

Restriction: DCE security is not supported by LoadLeveler for Linux.

Syntax:
DCE_AUTHENTICATION_PAIR = program1, program2

Where program1 and program2 are LoadLeveler- or installation-supplied
programs that are used to authenticate DCE security credentials. program1
obtains a handle (an opaque credentials object), at the time the job is

242 LoadLeveler: Using and Administering

submitted, which is used to authenticate to DCE. program2 uses the handle
obtained by program1 to authenticate to DCE before starting the job on the
executing machines.

Default value: See “Handling DCE security credentials” on page 77 for
information about defaults.

DEFAULT_PREEMPT_METHOD
Specifies the default preemption method for LoadLeveler to use when a
preempt method is not specified in a PREEMPT_CLASS statement or in the
llpreempt command. LoadLeveler also uses this default preemption method to
preempt job steps that are running on reserved machines when a reservation
period begins.

Restrictions:

v This keyword is valid only for the BACKFILL scheduler.
v The suspend method of preemption (the default) might not be supported on

your level of Linux. If you want to preempt jobs that are running where
process tracking is not supported, you must use this keyword to specify a
method other than suspend.

Syntax:
DEFAULT_PREEMPT_METHOD = rm | sh | su | vc | uh

Valid values are:
rm LoadLeveler preempts the jobs and removes them from the job queue. To

rerun the job, the user must resubmit the job to LoadLeveler.
sh LoadLeveler ends the jobs and puts them into System Hold state. They

remain in that state on the job queue until an administrator releases them.
After being released, the jobs go into Idle state and will be rescheduled to
run as soon as resources for the job are available.

su LoadLeveler suspends the jobs and puts them in Preempted state. They
remain in that state on the job queue until the preempting job has
terminated, and resources are available to resume the preempted job on the
same set of nodes. To use this value, process tracking must be enabled.

vc LoadLeveler ends the jobs and puts them in Vacate state. They remain in
that state on the job queue and will be rescheduled to run as soon as
resources for the job are available.

uh LoadLeveler ends the jobs and puts them into User Hold state. They
remain in that state on the job queue until an administrator releases them.
After being released, the jobs go into Idle state and will be rescheduled to
run as soon as resources for the job are available.

Default value: su (suspend method)

For more information related to using this keyword, see “Steps for configuring
a scheduler to preempt jobs” on page 126.

DRAIN_ON_SWITCH_TABLE_ERROR
Specifies whether the startd should be drained when the switch table fails to
unload. This will flag the administrator that intervention may be required to
unload the switch table. When DRAIN_ON_SWITCH_TABLE_ERROR is set
to true, the startd will be drained when the switch table fails to unload.

Syntax:
DRAIN_ON_SWITCH_TABLE_ERROR = true | false

Default value: false

Chapter 10. Configuration keyword reference 243

DSTG_MAX_STARTERS
Specifies a machine-specific limit on the number of data staging initiators.
Since each task of a data staging job step consumes one initiator from the
data_stage class on the specified machine, DSTG_MAX_STARTERS provides
the maximum number of data staging tasks that can run at the same time on
the machine.

Syntax:
DSTG_MAX_STARTERS = number

Notes:

1. If you have not set the DSTG_MAX_STARTERS value in either the global
or local configuration files, there will not be any data staging initiators on
the specified machine. In this configuration, the executing machine will not
be allowed to perform data staging tasks.

2. The value specified for DSTG_MAX_STARTERS will be the number of
initiators available for the built-in data_stage class on that machine.

3. The value specified for MAX_STARTERS will not limit the value specified
for DSTG_MAX_STARTERS.

Default value: 0

Note: This keyword is deprecated in the configuration file and has been
moved to the administration file.

DSTG_MIN_SCHEDULING_INTERVAL
Specifies a minimum interval between scheduling inbound data staging job
steps when they cannot be scheduled immediately. With a workload that
involves a lot of data staging jobs, this keyword can be adjusted down from
the default value of 900 seconds, if data staging jobs remain idle when there
are data staging resources available. Setting this keyword to a smaller interval
may impact scheduler performance when there is contention for data staging
resources and a large number of idle jobs in the queue.

Syntax:
DSTG_MIN_SCHEDULING_INTERVAL = seconds

Notes:

1. You can only specify this keyword in the global configuration file; it will be
ignored in local configuration files.

2. LoadLeveler ignores DSTG_MIN_SCHEDULING_INTERVAL when
DSTG_TIME=AT_SUBMIT.

Default value: 900 seconds

DSTG_TIME
Specifies that either:

AT_SUBMIT
LoadLeveler can schedule data staging steps any time after a job
requiring data staging has been submitted.

JUST_IN_TIME
LoadLeveler must schedule data staging job steps as close as possible
to the application job steps that were submitted in the same job.

Syntax:
DSTG_TIME = AT_SUBMIT | JUST_IN_TIME

244 LoadLeveler: Using and Administering

Note: You can only specify the DSTG_TIME keyword in the global
configuration file. Any value specified for this keyword in local configuration
files will be ignored.

Default value: AT_SUBMIT

ENFORCE_RESOURCE_MEMORY
Specifies whether the Workload Manager is configured to limit, as precisely as
possible, the real memory usage of a WLM class. For this keyword to be valid,
ConsumableMemory must be set through the ENFORCE_RESOURCE_USAGE
keyword.

Syntax:
ENFORCE_RESOURCE_MEMORY = true | false

Default value: false

ENFORCE_RESOURCE_POLICY
Specifies what type of resource entitlements will be assigned to the Workload
Manager classes. If the value specified is shares, it means a share value is
assigned to the class based on the job step's requested resources (one unit of
resource equals one share). This is the default policy. If the value specified is
soft, it means a percentage value is assigned to the class based on the job
step's requested resources and the total machine resources. This percentage can
be exceeded if there is no contention for the resource. If the value specified is
hard, it means a percentage value is assigned to the class based on the job
step's requested resources and the total machine resources. This percentage
cannot be exceeded regardless of the contention for the resource. This keyword
is only valid for CPU and real memory with either shares or percent limits. If
desired, this keyword can be used in the LoadL_config.local file to set up a
different policy for each machine. The ENFORCE_RESOURCE_USAGE
keyword must be set for this keyword to be valid.

Syntax:
ENFORCE_RESOURCE_POLICY = hard |soft | shares

Default value: shares

ENFORCE_RESOURCE_SUBMISSION
Indicates whether jobs submitted should be checked for the resources and
node_resources keywords. If the value specified is true, LoadLeveler will
check all jobs at submission time for the resources and node_resources
keywords. The job command file resources and node_resources keywords
combined need to have at least the resources specified in the
ENFORCE_RESOURCE_USAGE keyword in order for the job to be submitted
successfully. When RSET_MCM_AFFINITY is enabled, the task_affinity or
parallel_threads keyword can be used instead of the resources and
node_resources keywords when the resource being enforced is
ConsumableCpus.

If the value specified is false, no checking will be done and jobs submitted
without the resources or node_resources keywords will not have resources
enforced. In this instance, those jobs might interfere with other jobs whose
resources are enforced.

Syntax:
ENFORCE_RESOURCE_SUBMISSION = true | false

Default value: false

Chapter 10. Configuration keyword reference 245

ENFORCE_RESOURCE_USAGE
Specifies whether the Workload Manager is used to enforce CPU and memory
resources. This keyword accepts either a value of deactivate or a list of one or
more of the following predefined resources:
v ConsumableCpus

v ConsumableMemory

v ConsumableVirtualMemory

v ConsumableLargePageMemory

Either memory or CPUs or both can be enforced but the resources must also be
specified on the SCHEDULE_BY_RESOURCES keyword. If deactivate is
specified, LoadLeveler will deactivate Workload Manager on all the nodes in
the LoadLeveler cluster.

Syntax:
ENFORCE_RESOURCE_USAGE = name name ... name | deactivate

EXECUTE
Specifies the local directory to store the executables of jobs submitted by other
machines.

Syntax:
EXECUTE = local directory/execute

Default value: $(tilde)/execute

EXT_ENERGY_POLICY_PROGRAM
Specifies a user-supplied executable to be run by Startd to determine the CPU
frequency to use when running the job. For a job that has the energy function
enabled, LoadLeveler will pass the job policy tag LL_ENERGY_TAG_NAME
environment variable to the program. The output of the program is the
frequency value the job will use.

When this keyword is enabled, LoadLeveler will ignore the
MAX_PERF_DECREASE_ALLOWED, ENERGY_SAVING_REQ, and
ADJUST_WALL_CLOCK_LIMIT keywords that are defined in the job
command file. To accommodate the longer running time at a lower frequency,
ensure the WALL_CLOCK_LIMIT is set high enough or change it by using the
llmodify command.

Syntax:
EXT_ENERGY_POLICY_PROGRAM = full_path_to_executable

where:

full_path_to_executable
Is a user-supplied program that calculates the frequency the job will use.

Default value: NULL

FAILOVER_HEARTBEAT_INTERVAL
Specifies the amount of time, in seconds, that defines how frequently the
primary and alternate central manager, resource manager, or region manager
communicate with each other.

Syntax:
FAILOVER_HEARTBEAT_INTERVAL = seconds

Default value: The default value is 300 seconds or 5 minutes.

246 LoadLeveler: Using and Administering

FAILOVER_HEARTBEAT_RETRIES
Specifies the number of heartbeat intervals that an alternate manager will wait
before declaring that the primary central manager, resource manager, or region
manager is not operating.

Syntax:
FAILOVER_HEARTBEAT_RETRIES = number

Default value: The default value is 6.

FAIR_SHARE_INTERVAL
Specifies, in units of hours, the time interval it takes for resource usage in fair
share scheduling to decay to 5% of its initial value. Historic fair share data
collected before the most recent time interval of this length will have little
impact on fair share scheduling.

Syntax:
FAIR_SHARE_INTERVAL = hours

Default value: The default value is 168 hours (one week). If a negative value
or 0 is specified, the default value is used.

FAIR_SHARE_TOTAL_SHARES
Specifies the total number of shares that the cluster CPU or Blue Gene
resources are divided into. If this value is less than or equal to 0, fair share
scheduling is turned off.

Syntax:
FAIR_SHARE_TOTAL_SHARES = shares

Default value: The default value is 0.

FEATURE
Specifies an optional characteristic to use to match jobs with machines. You can
specify unique characteristics for any machine using this keyword. When
evaluating job submissions, LoadLeveler compares any required features
specified in the job command file to those specified using this keyword. You
can have a maximum of 1024 characters in the feature statement.

Syntax:
Feature = {"string" ...}

Default value: No default value is set.

Example: If a machine has licenses for installed products ABC and XYZ in the
local configuration file, you can enter the following:
Feature = {"abc" "xyz"}

When submitting a job that requires both of these products, you should enter
the following in your job command file:
requirements = (Feature == "abc") && (Feature == "xyz")

Note: One optional way to run dynamic simultaneous multithreading (SMT) is
to define a feature on all machines. SMT is only supported on POWER7
processor-based systems.

Example: When submitting a job that requires the SMT function, first specify
smt = yes in the job command file (or select a class which had smt = yes
defined). Next, specify job_type = parallel and node_usage = not_shared and
last, enter the following in the job command file:
requirements = (Feature == "smt")

Chapter 10. Configuration keyword reference 247

Note: This keyword is deprecated in the configuration file and has been
moved to the administration file.

FLOATING_RESOURCES
Specifies which consumable resources are available collectively on all of the
machines in the LoadLeveler cluster. The count for each resource must be an
integer greater than or equal to zero, and each resource can only be specified
once in the list. Any resource specified for this keyword that is not already
listed in the SCHEDULE_BY_RESOURCES keyword will not affect job
scheduling. If a resource is specified incorrectly with the
FLOATING_RESOURCES keyword, then that resource will be ignored. All
other correctly specified resources will be accepted. ConsumableCpus,
ConsumableMemory, ConsumableVirtualMemory, and
ConsumableLargePageMemory may not be specified as floating resources.

Syntax:
FLOATING_RESOURCES = name(count) name(count) ... name(count)

Default value: No default value is set.

FS_INTERVAL
Defines the number of minutes used as the interval for checking free file
system space or inodes. If your file system receives many log messages or
copies large executables to the LoadLeveler spool, the file system will fill up
quicker and you should perform file size checking more frequently by setting
the interval to a smaller value. LoadLeveler will not check the file system if the
value of FS_INTERVAL is:
v Set to zero
v Set to a negative integer

Syntax:
FS_INTERVAL = minutes

Default value: If FS_INTERVAL is not specified but any of the other
file-system keywords (FS_NOTIFY, FS_SUSPEND, FS_TERMINATE,
INODE_NOTIFY, INODE_SUSPEND, INODE_TERMINATE) are specified, the
FS_INTERVAL value will default to 5 and the file system will be checked. If no
file-system or inode keywords are set, LoadLeveler does not monitor file
systems at all.

For more information related to using this keyword, see “Setting up file system
monitoring” on page 58.

FS_NOTIFY
Defines the lower and upper amounts, in bytes, of free file-system space at
which LoadLeveler is to notify the administrator:
v If the amount of free space becomes less than the lower threshold value,

LoadLeveler sends a mail message to the administrator indicating that
logging problems may occur.

v When the amount of free space becomes greater than the upper threshold
value, LoadLeveler sends a mail message to the administrator indicating that
problem has been resolved.

Syntax:
FS_NOTIFY = lower threshold, upper threshold

Specify space in bytes with the unit B. A metric prefix such as K, M, or G may
precede the B. The valid range for both the lower and upper thresholds are -1B
and all positive integers. If the value is set to -1, the transition across the
threshold is not checked.

248 LoadLeveler: Using and Administering

Default value: In bytes: 1KB, -1B

For more information related to using this keyword, see “Setting up file system
monitoring” on page 58.

FS_SUSPEND
Defines the lower and upper amounts, in bytes, of free file system space at
which LoadLeveler drains and resumes the Schedd and startd daemons
running on a node.
v If the amount of free space becomes less than the lower threshold value,

then LoadLeveler drains the Schedd and the startd daemons if they are
running on a node. When this happens, logging is turned off and mail
notification is sent to the administrator.

v When the amount of free space becomes greater than the upper threshold
value, LoadLeveler signals the Schedd and the startd daemons to resume.
When this happens, logging is turned on and mail notification is sent to the
administrator.

Syntax:
FS_SUSPEND = lower threshold, upper threshold

Specify space in bytes with the unit B. A metric prefix such as K, M, or G may
precede the B. The valid range for both the lower and upper thresholds are -1B
and all positive integers. If the value is set to -1, the transition across the
threshold is not checked.

Default value: In bytes: -1B, -1B

For more information related to using this keyword, see “Setting up file system
monitoring” on page 58.

FS_TERMINATE
Defines the lower and upper amounts, in bytes, of free file system space at
which LoadLeveler is terminated. This keyword sends the SIGTERM signal to
the Master daemon which then terminates all LoadLeveler daemons running
on the node.
v If the amount of free space becomes less than the lower threshold value, all

LoadLeveler daemons are terminated.
v An upper threshold value is required for this keyword. However, since

LoadLeveler has been terminated at the lower threshold, no action occurs.

Syntax:
FS_TERMINATE = lower threshold, upper threshold

Specify space in bytes with the unit B. A metric prefix such as K, M, or G may
precede the B. The valid range for the lower threshold is -1B and all positive
integers. If the value is set to -1, the transition across the threshold is not
checked.

Default value: In bytes: -1B, -1B

For more information related to using this keyword, see “Setting up file system
monitoring” on page 58.

GLOBAL_HISTORY
Identifies the directory that will contain the global history files produced by
llacctmrg command when no directory is specified as a command argument.

Syntax:
GLOBAL_HISTORY = directory

Chapter 10. Configuration keyword reference 249

Default value: The default value is $(SPOOL) (the local spool directory).

For more information related to using this keyword, see “Collecting the
accounting information and storing it into files” on page 69.

HISTORY
Defines the path name where a file containing the history of local LoadLeveler
jobs is kept.

Syntax:
HISTORY = directory

Default value: $(SPOOL)/history

For more information related to using this keyword, see “Collecting the
accounting information and storing it into files” on page 69.

HISTORY_PERMISSION
Specifies the owner, group, and world permissions of the history file associated
with a LoadL_schedd daemon.

Syntax:
HISTORY_PERMISSION = permissions | rw-rw----

permissions must be a string with a length of nine characters and consisting of
the characters, r, w, x, or -.

Default value: The default settings are 660 (rw-rw----). LoadL_schedd will use
the default setting if the specified permission are less than rw-------.

Example: A specification such as HISTORY_PERMISSION = rw-rw-r-- will result
in permission settings of 664.

INODE_NOTIFY
Defines the lower and upper amounts, in inodes, of free file-system inodes at
which LoadLeveler is to notify the administrator:
v If the number of free inodes becomes less than the lower threshold value,

LoadLeveler sends a mail message to the administrator indicating that
logging problems may occur.

v When the number of free inodes becomes greater than the upper threshold
value, LoadLeveler sends a mail message to the administrator indicating that
problem has been resolved.

Syntax:
INODE_NOTIFY = lower threshold, upper threshold

The valid range for both the lower and upper thresholds are -1 and all positive
integers. If the value is set to -1, the transition across the threshold is not
checked.

Default value: In inodes: 1000, -1

For more information related to using this keyword, see “Setting up file system
monitoring” on page 58.

INODE_SUSPEND
Defines the lower and upper amounts, in inodes, of free file system inodes at
which LoadLeveler drains and resumes the Schedd and startd daemons
running on a node.
v If the number of free inodes becomes less than the lower threshold value,

then LoadLeveler drains the Schedd and the startd daemons if they are

250 LoadLeveler: Using and Administering

running on a node. When this happens, logging is turned off and mail
notification is sent to the administrator.

v When the number of free inodes becomes greater than the upper threshold
value, LoadLeveler signals the Schedd and the startd daemons to resume.
When this happens, logging is turned on and mail notification is sent to the
administrator.

Syntax:
INODE_SUSPEND = lower threshold, upper threshold

The valid range for both the lower and upper thresholds are -1 and all positive
integers. If the value is set to -1, the transition across the threshold is not
checked.

Default value: In inodes: -1, -1

For more information related to using this keyword, see “Setting up file system
monitoring” on page 58.

INODE_TERMINATE
Defines the lower and upper amounts, in inodes, of free file system inodes at
which LoadLeveler is terminated. This keyword sends the SIGTERM signal to
the Master daemon which then terminates all LoadLeveler daemons running
on the node.
v If the number of free inodes becomes less than the lower threshold value, all

LoadLeveler daemons are terminated.
v An upper threshold value is required for this keyword. However, since

LoadLeveler has been terminated at the lower threshold, no action occurs.

Syntax:
INODE_TERMINATE = lower threshold, upper threshold

The valid range for the lower threshold is -1 and all positive integers. If the
value is set to -1, the transition across the threshold is not checked.

Default value: In inodes: -1, -1

For more information related to using this keyword, see “Setting up file system
monitoring” on page 58.

JOB_ACCT_Q_POLICY
Specifies the amount of time, in seconds, that determines how often the startd
daemon updates the Schedd daemon with accounting data of running jobs.
This controls the accuracy of the llq -x command.

Syntax:
JOB_ACCT_Q_POLICY = number

Default value: The default is 300.

For more information related to using this keyword, see “Gathering job
accounting data” on page 65.

JOB_EPILOG
Path name of the epilog program.

Syntax:
JOB_EPILOG = program name

Default value: No default value is set.

For more information related to using this keyword, see “Writing prolog and
epilog programs” on page 80.

Chapter 10. Configuration keyword reference 251

JOB_LIMIT_POLICY
Specifies the amount of time, in seconds, that LoadLeveler checks to see if
job_cpu_limit has been exceeded. The smaller of JOB_LIMIT_POLICY and
JOB_ACCT_Q_POLICY is used to control how often the startd daemon
collects resource consumption data on running jobs, and how often the
job_cpu_limit is checked.

Syntax:
JOB_LIMIT_POLICY = number

Default value: The default is 300.

JOB_PROLOG
Path name of the prolog program.

Syntax:
JOB_PROLOG = program name

Default value: No default value is set.

For more information related to using this keyword, see “Writing prolog and
epilog programs” on page 80.

JOB_USER_EPILOG
Path name of the user epilog program.

Syntax:
JOB_USER_EPILOG = program name

Default value: No default value is set.

For more information related to using this keyword, see “Writing prolog and
epilog programs” on page 80.

JOB_USER_PROLOG
Path name of the user prolog program.

Syntax:
JOB_USER_PROLOG = program name

Default value: No default value is set.

For more information related to using this keyword, see “Writing prolog and
epilog programs” on page 80.

KBDD
Location of kbdd executable (LoadL_kbdd).

Syntax:
KBDD = directory

Default value: $(BIN)/LoadL_kbdd

KBDD_COREDUMP_DIR
Local directory for storing LoadL_kbdd daemon core dump files.

Syntax:
KBDD_COREDUMP_DIR = directory

Default value: The /tmp directory.

For more information related to using this keyword, see “Specifying file and
directory locations” on page 49.

252 LoadLeveler: Using and Administering

KILL
Determines whether or not vacated jobs should be sent the SIGKILL signal and
replaced in the queue. It is used to remove a job that is taking too long to
vacate.

Syntax:
KILL: expression that evaluates to T or F (true or false)

When T, vacated LoadLeveler jobs are removed from the machine with no
attempt to take checkpoints.

For information about time-related variables that you may use for this
keyword, see “Variables to use for setting times” on page 291.

LL_RSH_COMMAND
Specifies an administrator provided executable to be used by llctl start when
starting LoadLeveler on remote machines in the administration file. The
LL_RSH_COMMAND keyword is any executable that can be used as a
substitute for /usr/bin/rsh. The llctl start command passes arguments to the
executable specified by LL_RSH_COMMAND in the following format:
LL_RSH_COMMAND hostname -n llctl start options

Syntax:
LL_RSH_COMMAND = full_path_to_executable

Default value: /usr/bin/rsh. This keyword must specify the full path name to
the executable provided. If no value is specified, LoadLeveler will use
/usr/bin/rsh as the default when issuing a start. If an error occurred while
locating the executable specified, an error message will be displayed.

Example: This example shows that using the secure shell (/usr/bin/ssh) is the
preferred method for the llctl start command to communicate with remote
nodes. Specify the following in the configuration file:
LL_RSH_COMMAND=/usr/bin/ssh

LOADL_ADMIN
Specifies a list of LoadLeveler administrators.

Syntax:
LOADL_ADMIN = list of user names

Where list of user names is a blank-delimited list of those individuals who will
have administrative authority.

Default value: No default value is set, which means no one has administrator
authority until this keyword is defined with one or more user names.

Example: To grant administrative authority to users bob and mary, enter the
following in the configuration file:
LOADL_ADMIN = bob mary

For more information related to using this keyword, see “Defining LoadLeveler
administrators” on page 45.

LOCAL_CONFIG
Specifies the path name of the optional local configuration file containing
information specific to a node in the LoadLeveler network. This keyword is not
used for the database configuration option.

Syntax:

Chapter 10. Configuration keyword reference 253

LOCAL_CONFIG = directory

Default value: No default value is set.

Examples:

v If you are using a distributed file system like NFS, some examples are:
LOCAL_CONFIG = $(tilde)/$(host).LoadL_config.local
LOCAL_CONFIG = $(tilde)/LoadL_config.$(host).$(domain)
LOCAL_CONFIG = $(tilde)/LoadL_config.local.$(hostname)

See “LoadLeveler variables” on page 286 for information about the tilde,
host, and domain variables.

v If you are using a local file system, an example is:
LOCAL_CONFIG = /var/LoadL/LoadL_config.local

LOG
Defines the local directory to store log files. It is not necessary to keep all the
log files created by the various LoadLeveler daemons and programs in one
directory, but you will probably find it convenient to do so.

Syntax:
LOG = local directory/log

Default value: $(tilde)/log

LOG_MESSAGE_THRESHOLD
Specifies the maximum amount of memory, in bytes, for the message queue.
Messages in the queue are waiting to be written to the log file. When the
message logging thread cannot write messages to the log file as fast as they
arrive, the memory consumed by the message queue can exceed the threshold.
In this case, LoadLeveler will curtail logging by turning off all debug flags
except D_ALWAYS, therefore, reducing the amount of logging that takes place.
If the threshold is exceeded by the curtailed message queue, message logging
is stopped. Special log messages are written to the log file, which indicate that
some messages are missing. Mail is also sent to the administrator indicating
that messages are missing. A value of -1 for this keyword will turn off the
buffer threshold meaning that the threshold is unlimited.

Syntax:
LOG_MESSAGE_THRESHOLD = bytes

Default value: 20*1024*1024 (bytes)

MACHINE_AUTHENTICATE
Specifies whether machine validation is performed. When set to true,
LoadLeveler only accepts connections from machines specified in the
administration file. When set to false, LoadLeveler accepts connections from
any machine.

When set to true, every communication between LoadLeveler processes will
verify that the sending process is running on a machine which is identified via
a machine stanza in the administration file. The validation is done by
capturing the address of the sending machine when the accept function call is
issued to accept a connection. The gethostbyaddr function is called to translate
the address to a name, and the name is matched with the list derived from the
administration file.

Syntax:
MACHINE_AUTHENTICATE = true | false

Default value: false

254 LoadLeveler: Using and Administering

For more information related to using this keyword, see “Defining a
LoadLeveler cluster” on page 45.

MACHINE_UPDATE_INTERVAL
Specifies the time, in seconds, during which machines must report to the
central manager.

Syntax:
MACHINE_UPDATE_INTERVAL = number

Where number specifies the time period, in seconds, during which machines
must report to the central manager. Machines that do not report in this number
of seconds are considered down. number must be a numerical value and cannot
be an arithmetic expression.

Default value: The default is 300 seconds.

For more information related to using this keyword, see “Setting negotiator
characteristics and policies” on page 47.

MACHPRIO
Machine priority expression.

Syntax:
MACHPRIO = expression

You can use the following LoadLeveler variables in the MACHPRIO
expression:
v LoadAvg
v Connectivity
v Cpus
v Speed
v Memory
v VirtualMemory
v Disk
v CustomMetric
v MasterMachPriority
v ConsumableCpus
v ConsumableMemory
v ConsumableVirtualMemory
v ConsumableLargePageMemory
v PagesFreed
v PagesScanned
v FreeRealMemory

For detailed descriptions of these variables, see “LoadLeveler variables” on
page 286.

Default value: (0 - LoadAvg)

Examples:

v Example 1
This example orders machines by the Berkeley one-minute load average.
MACHPRIO : 0 - (LoadAvg)

Therefore, if LoadAvg equals .7, this example would read:
MACHPRIO : 0 - (.7)

The MACHPRIO would evaluate to -.7.

Chapter 10. Configuration keyword reference 255

v Example 2
This example orders machines by the Berkeley one-minute load average
normalized for machine speed:
MACHPRIO : 0 - (1000 * (LoadAvg / (Cpus * Speed)))

Therefore, if LoadAvg equals .7, Cpus equals 1, and Speed equals 2, this
example would read:
MACHPRIO : 0 - (1000 * (.7 / (1 * 2)))

This example further evaluates to:
MACHPRIO : 0 - (350)

The MACHPRIO would evaluate to -350.
Notice that if the speed of the machine were increased to 3, the equation
would read:
MACHPRIO : 0 - (1000 * (.7 / (1 * 3)))

The MACHPRIO would evaluate to approximately -233. Therefore, as the
speed of the machine increases, the MACHPRIO also increases.

v Example 3
This example orders machines accounting for real memory and available
swap space (remembering that Memory is in Mbytes and VirtualMemory is
in Kbytes):
MACHPRIO : 0 - (10000 * (LoadAvg / (Cpus * Speed))) +
(10 * Memory) + (VirtualMemory / 1000)

v Example 4
This example sets a relative machine priority based on the value of the
CUSTOM_METRIC keyword.
MACHPRIO : CustomMetric

To do this, you must specify a value for the CUSTOM_METRIC keyword or
the CUSTOM_METRIC_COMMAND keyword in either the
LoadL_config.local file of a machine or in the global LoadL_config file. To
assign the same relative priority to all machines, specify the
CUSTOM_METRIC keyword in the global configuration file. For example:
CUSTOM_METRIC = 5

You can override this value for an individual machine by specifying a
different value in that machine's LoadL_config.local file.

v Example 5
This example gives master nodes the highest priority:
MACHPRIO : (MasterMachPriority * 10000)

v Example 6
This example gives nodes the with highest percentage of switch adapters
with connectivity the highest priority:
MACHPRIO : Connectivity

For more information related to using this keyword, see “Setting negotiator
characteristics and policies” on page 47.

MAIL
Name of a local mail program used to override default mail notification.

Syntax:
MAIL = program name

256 LoadLeveler: Using and Administering

Default value: No default value is set.

For more information related to using this keyword, see “Using your own mail
program” on page 85.

MASTER
Location of the master executable (LoadL_master).

Syntax:
MASTER = file

Default value: $(BIN)/LoadL_master

For more information related to using this keyword, see “How LoadLeveler
daemons process jobs” on page 8.

MASTER_COREDUMP_DIR
Local directory for storing LoadL_master core dump files.

Syntax:
MASTER_COREDUMP_DIR = directory

Default value: The /tmp directory.

For more information related to using this keyword, see “Specifying file and
directory locations” on page 49.

MASTER_DGRAM_PORT
The port number used when connecting to the daemon.

Syntax:
MASTER_DGRAM_PORT = port number

Default value: The default is 9617.

For more information related to using this keyword, see “Defining network
characteristics” on page 49.

MASTER_STREAM_PORT
Specifies the port number to be used when connecting to the daemon.

Syntax:
MASTER_STREAM_PORT = port number

Default value: The default is 9616.

For more information related to using this keyword, see “Defining network
characteristics” on page 49.

MAX_CKPT_INTERVAL
The maximum number of seconds between checkpoints for running jobs.

Syntax:
MAX_CKPT_INTERVAL = number

where: number specifies the maximum period in seconds between checkpoints
taken for running jobs.

Default value: 7200 (2 hours)

For more information related to using this keyword, see “LoadLeveler support
for checkpointing jobs” on page 135.

MAX_JOB_REJECT
Determines the number of times a job is rejected before it is canceled or put in
User Hold or System Hold status.

Chapter 10. Configuration keyword reference 257

Syntax:
MAX_JOB_REJECT = number

number must be a numerical value and cannot be an arithmetic expression.
MAX_JOB_REJECT may be set to unlimited rejects by specifying a value of –1.

Default value: The default value is 0, which indicates a rejected job will
immediately be canceled or placed on hold.

For related information, see the NEGOTIATOR_REJECT_DEFER keyword.

MAX_RESERVATIONS
Specifies the maximum number of reservations that this LoadLeveler cluster
can have. Only reservations in waiting and in use are counted toward this
limit; LoadLeveler does not count reservations that have already ended or are
in the process of being canceled.

Notes:

1. Having too many reservations in a LoadLeveler cluster can have
performance impacts. Administrators should select a suitable value for this
keyword.

2. A recurring reservation only counts as one reservation towards the
MAX_RESERVATIONS limit regardless of the number of times that the
reservation recurs.

Syntax:
MAX_RESERVATIONS = number

The value for this keyword can be 0 or a positive integer.

Default value: The default is 10.

MAX_STARTERS
Specifies the maximum number of tasks that can run simultaneously on a
machine. In this case, a task can be a serial job step or a parallel task.
MAX_STARTERS defines the number of initiators on the machine (the number
of tasks that can be initiated from a startd).

Syntax:
MAX_STARTERS = number

Default value: If this keyword is not specified, the default is the number of
elements in the Class statement.

For more information related to using this keyword, see “Specifying how many
jobs a machine can run” on page 60.

Note: This keyword is deprecated in the configuration file and has been
moved to the administration file.

MAX_TOP_DOGS
Specifies the maximum total number of top dogs that the central manager
daemon will allocate. When scheduling jobs, after MAX_TOP_DOGS total top
dogs have been allocated, no more will be considered.

Syntax:
MAX_TOP_DOGS = k | 1

where: k is a non-negative integer specifying the global maximum top dogs
limit.

258 LoadLeveler: Using and Administering

Default value: The default value is 1.

For more information related to using this keyword, see “Using the BACKFILL
scheduler” on page 114.

MIN_CKPT_INTERVAL
The minimum number of seconds between checkpoints for running jobs.

Syntax:
MIN_CKPT_INTERVAL = number

where: number specifies the initial period, in seconds, between checkpoints
taken for running jobs.

Default value: 900 (15 minutes)

For more information related to using this keyword, see “LoadLeveler support
for checkpointing jobs” on page 135.

NEGOTIATOR
Location of the negotiator executable (LoadL_negotiator).

Syntax:
NEGOTIATOR = file

Default value: $(BIN)/LoadL_negotiator

For more information related to using this keyword, see “How LoadLeveler
daemons process jobs” on page 8.

NEGOTIATOR_COREDUMP_DIR
Local directory for storing LoadL_negotiator core dump files.

Syntax:
NEGOTIATOR_COREDUMP_DIR = directory

Default value: The /tmp directory.

For more information related to using this keyword, see “Specifying file and
directory locations” on page 49.

NEGOTIATOR_CYCLE_DELAY
Specifies the minimum time, in seconds, the negotiator delays between periods
when it attempts to schedule jobs. This time is used by the negotiator daemon
to respond to queries, reorder job queues, collect information about changes in
the states of jobs, and so on. Delaying the scheduling of jobs might improve
the overall performance of the negotiator by preventing it from spending
excessive time attempting to schedule jobs.

Syntax:
NEGOTIATOR_CYCLE_DELAY = number

number must be a numerical value and cannot be an arithmetic expression.

Default value: The default is 0 seconds

NEGOTIATOR_CYCLE_TIME_LIMIT
Specifies the maximum amount of time, in seconds, that LoadLeveler will
allow the negotiator to spend in one cycle trying to schedule jobs. The
negotiator cycle will end, after the specified number of seconds, even if there
are additional jobs waiting for dispatch. Jobs waiting for dispatch will be
considered at the next negotiator cycle. The
NEGOTIATOR_CYCLE_TIME_LIMIT keyword applies only to the BACKFILL
scheduler.

Chapter 10. Configuration keyword reference 259

Syntax:
NEGOTIATOR_CYCLE_TIME_LIMIT = number

Where number must be a positive integer or zero and cannot be an arithmetic
expression.

Default value: If the keyword value is not specified or a value of zero is used,
the negotiator cycle will be unlimited.

NEGOTIATOR_INTERVAL
The time interval, in seconds, at which the negotiator daemon updates the
status of jobs in the LoadLeveler cluster and negotiates with machines that are
available to run jobs.

Syntax:
NEGOTIATOR_INTERVAL = number

Where number specifies the interval, in seconds, at which the negotiator
daemon performs a “negotiation loop” during which it attempts to assign
available machines to waiting jobs. A negotiation loop also occurs whenever
job states or machine states change. number must be a numerical value and
cannot be an arithmetic expression.

When this keyword is set to zero, the central manager's automatic scheduling
activity is been disabled, and LoadLeveler will not attempt to schedule any
jobs unless instructed to do so through the llrunscheduler command or
ll_run_scheduler subroutine.

Default value: The default is 30 seconds.

For more information related to using this keyword, see “Controlling the
central manager scheduling cycle” on page 76.

NEGOTIATOR_LOADAVG_INCREMENT
Specifies the value the negotiator adds to the startd machine's load average
whenever a job in the Pending state is queued on that machine. This value is
used to compensate for the increased load caused by starting another job.

Syntax:
NEGOTIATOR_LOADAVG_INCREMENT = number

number must be a numerical value and cannot be an arithmetic expression.

Default value: The default value is .5

NEGOTIATOR_PARALLEL_DEFER
Specifies the amount of time, in seconds, that defines how long a job stays out
of the queue after it fails to get the correct number of processors. This keyword
applies only to the default LoadLeveler scheduler. This keyword must be
greater than the NEGOTIATOR_INTERVAL. value; if it is not, the default is
used.

Syntax:
NEGOTIATOR_PARALLEL_DEFER = number

number must be a numerical value and cannot be an arithmetic expression.

Default value: The default is NEGOTIATOR_INTERVAL multiplied by 5.

NEGOTIATOR_PARALLEL_HOLD
Specifies the amount of time, in seconds, that defines how long a job is given
to accumulate processors. This keyword applies only to the default

260 LoadLeveler: Using and Administering

LoadLeveler scheduler. This keyword must be greater than the
NEGOTIATOR_INTERVAL value; if it is not, the default is used.

Syntax:
NEGOTIATOR_PARALLEL_HOLD = number

number must be a numerical value and cannot be an arithmetic expression.

Default value: The default is NEGOTIATOR_INTERVAL multiplied by 5.

NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL
Specifies the amount of time, in seconds, between calculation of the SYSPRIO
values for waiting jobs. Recalculating the priority can be CPU-intensive;
specifying low values for the
NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL keyword may lead to
a heavy CPU load on the negotiator if a large number of jobs are running or
waiting for resources. A value of 0 means the SYSPRIO values are not
recalculated.

You can use this keyword to base the order in which jobs are run on the
current number of running, queued, or total jobs for a user or a group.

Syntax:
NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL = number

number must be a numerical value and cannot be an arithmetic expression.

Default value: The default is 120 seconds.

NEGOTIATOR_REJECT_DEFER
Specifies the amount of time in seconds the negotiator waits before it considers
scheduling a job to a machine that recently rejected the job.

Syntax:
NEGOTIATOR_REJECT_DEFER = number

number must be a numerical value and cannot be an arithmetic expression.

Default value: The default is 120 seconds.

For related information, see the MAX_JOB_REJECT keyword.

NEGOTIATOR_REMOVE_COMPLETED
Specifies the amount of time, in seconds, that you want the negotiator to keep
information regarding completed and removed jobs so that you can query this
information using the llq command.

Syntax:
NEGOTIATOR_REMOVE_COMPLETED = number

number must be a numerical value and cannot be an arithmetic expression.

Default value: The default is 0 seconds.

NEGOTIATOR_RESCAN_QUEUE
specifies the amount of time in seconds that defines how long the negotiator
waits to rescan the job queue for machines which have bypassed jobs which
could not run due to conditions which may change over time. This keyword
must be greater than the NEGOTIATOR_INTERVAL value; if it is not, the
default is used.

Syntax:
NEGOTIATOR_RESCAN_QUEUE = number

Chapter 10. Configuration keyword reference 261

number must be a numerical value and cannot be an arithmetic expression.

Default value: The default is 900 seconds.

NEGOTIATOR_STREAM_PORT
Specifies the port number used when connecting to the daemon.

Syntax:
NEGOTIATOR_STREAM_PORT = port number

Default value: The default is 9614.

For more information related to using this keyword, see “Defining network
characteristics” on page 49.

OBITUARY_LOG_LENGTH
Specifies the number of lines from the end of the file that are appended to the
mail message. The master daemon mails this log to the LoadLeveler
administrators when one of the daemons dies.

Syntax:
OBITUARY_LOG_LENGTH = number

number must be a numerical value and cannot be an arithmetic expression.

Default value: The default is 25.

POLLING_FREQUENCY
Specifies the interval, in seconds, with which the startd daemon evaluates the
load on the local machine and decides whether to suspend, resume, or abort
jobs. This time is also the minimum interval at which the kbdd daemon reports
keyboard or mouse activity to the startd daemon.

Syntax:
POLLING_FREQUENCY = number

number must be a numerical value and cannot be an arithmetic expression.

Default value: The default is 300.

POLLS_PER_UPDATE
Specifies how often, in POLLING_FREQUENCY intervals, startd daemon
updates the central manager. Due to the communication overhead, it is
impractical to do this with the frequency defined by the
POLLING_FREQUENCY keyword. Therefore, the startd daemon only updates
the central manager every nth (where n is the number specified for
POLLS_PER_UPDATE) local update. Change POLLS_PER_UPDATE when
changing the POLLING_FREQUENCY.

Syntax:
POLLS_PER_UPDATE = number

number must be a numerical value and cannot be an arithmetic expression.

Default value: The default is 1.

PRESTARTED_STARTERS
Specifies how many prestarted starter processes LoadLeveler will maintain on
an execution node to manage jobs when they arrive. The startd daemon starts
the number of starter processes specified by this keyword. You may specify
this keyword in either the global or local configuration file.

Syntax:

262 LoadLeveler: Using and Administering

PRESTARTED_STARTERS = number

number must be less than or equal to the value specified through the
MAX_STARTERS keyword. If the value of PRESTARTED_STARTERS specified
is greater then MAX_STARTERS, LoadLeveler records a warning message in
the startd log and assigns PRESTARTED_STARTERS the same value as
MAX_STARTERS.

If the value PRESTARTED_STARTERS is zero, no starter processes will be
started before jobs arrive on the execution node.

Default value: The default is 1.

Note: This keyword is deprecated in the configuration file and has been
moved to the administration file.

PREEMPT_CLASS
Defines the preemption rule for a job class.

Syntax: The following forms illustrate correct syntax.

PREEMPT_CLASS[incoming_class] = ALL[:preempt_method] { outgoing_class1
[outgoing_class2 ...] }

Using this form, ALL indicates that job steps of incoming_class have
priority and will not share nodes with job steps of outgoing_class1,
outgoing_class2, or other outgoing classes. If a job step of the
incoming_class is to be started on a set of nodes, all job steps of
outgoing_class1, outgoing_class2, or other outgoing classes running on
those nodes will be preempted.

Note: The ALL preemption rule does not apply to Blue Gene jobs.

PREEMPT_CLASS[incoming_class] = ENOUGH[:preempt_method] {
outgoing_class1 [outgoing_class2 ...] }

Using this form, ENOUGH indicates that job steps of incoming_class
will share nodes with job steps of outgoing_class1, outgoing_class2, or
other outgoing classes if there are sufficient resources. If a job step of
the incoming_class is to be started on a set of nodes, one or more job
steps of outgoing_class1, outgoing_class2, or other outgoing classes
running on those nodes may be preempted to get needed resources.

Combinations of these forms are also allowed.

Note:

1. The optional specification preempt_method indicates which method
LoadLeveler is to use to preempt the jobs; this specification is valid only
for the BACKFILL scheduler. Valid values for this specification in keyword
syntax are the highlighted abbreviations in parentheses:
v Remove (rm)
v System hold (sh)
v Suspend (su)
v Vacate (vc)
v User hold (uh)

For more information about preemption methods, see “Steps for
configuring a scheduler to preempt jobs” on page 126.

2. Using the "ALL" value in the PREEMPT_CLASS keyword places implied
restrictions on when a job can start. See “Planning to preempt jobs” on
page 124 for more information.

Chapter 10. Configuration keyword reference 263

3. The incoming class is designated inside [] brackets.
4. Outgoing classes are designated inside { } curly braces.
5. The job classes on the right hand (outgoing) side of the statement must be

different from incoming class, or it may be allclasses. If the outgoing side
is defined as allclasses then all job classes are preemptable with the
exception of the incoming class specified within brackets.

6. A class name or allclasses should not be in both the ALL list and the
ENOUGH list. If you do so, the entire statement will be ignored. An
example of this is:
PREEMPT_CLASS[Class_A]=ALL{allclasses} ENOUGH {allclasses}

7. If you use allclasses as an outgoing (preemptable) class, then no other
class names should be listed at the right hand side as the entire statement
will be ignored. An example of this is:
PREEMPT_CLASS[Class_A]=ALL{Class_B} ENOUGH {allclasses}

8. More than one ALL statement and more than one ENOUGH statement
may appear at the right hand side. Multiple statements have a cumulative
effect.

9. Each ALL or ENOUGH statement can have multiple class names inside
the curly braces. However, a blank space delimiter is required between
each class name.

10. Both the ALL and ENOUGH statements can include an optional
specification indicating the method LoadLeveler will use to preempt the
jobs. Valid values for this specification are listed in the description of the
DEFAULT_PREEMPT_METHOD keyword. If a value is specified on the
PREEMPT_CLASS ALL or ENOUGH statement, that value overrides the
value set on the DEFAULT_PREEMPT_METHOD keyword, if any.

11. ALL and ENOUGH may be in mixed cases.
12. Spaces are allowed around the brackets and curly braces.
13. PREEMPT_CLASS [allclasses] will be ignored.

Default value: No default value is set.

Examples:

PREEMPT_CLASS[Class_B]=ALL{Class_E Class_D} ENOUGH {Class_C}
This indicates that all Class_E jobs and all Class_D jobs and enough
Class_C jobs will be preempted to enable an incoming Class_B job to
run.

PREEMPT_CLASS[Class_D]=ENOUGH:VC {Class_E}
This indicates that zero, one, or more Class_E jobs will be preempted
using the vacate method to enable an incoming Class_D job to run.

PREEMPTION_SUPPORT
For the BACKFILL or API schedulers only, specifies the level of preemption
support for a cluster.

Syntax:
PREEMPTION_SUPPORT= full | no_adapter | none

v When set to full, preemption is fully supported.
v When set to no_adapter, preemption is supported but the adapter resources

are not released by preemption.
v When set to none, preemption is not supported, and preemption requests

will be rejected.

264 LoadLeveler: Using and Administering

Note:

1. If the value of this keyword is set to any value other than none for the
default scheduler, LoadLeveler will not start.

2. For the BACKFILL or API scheduler, when this keyword is set to full or
no_adapter and preemption by the suspend method is required, the
configuration keyword PROCESS_TRACKING must be set to true.

3. The environment variable MP_DEBUG_COMM_TIMEOUT=yes must be
set when the no_adapter option is used for preemption on the IBM Power
775 server.

Default value: The default value for all schedulers is none; if you want to
enable preemption under these schedulers, you must set a value for this
keyword.

PROCESS_TRACKING
Specifies whether or not LoadLeveler will cancel any processes (throughout the
entire cluster), left behind when a job terminates.

Syntax:
PROCESS_TRACKING = TRUE | FALSE

When TRUE ensures that when a job is terminated, no processes created by
the job will continue running.

Note: It is necessary to set this keyword to true to do preemption by the
suspend method with the BACKFILL or API scheduler.

Default value: FALSE

PROCESS_TRACKING_EXTENSION
Specifies the directory containing the kernel module LoadL_pt_ke (AIX only).

Syntax:
PROCESS_TRACKING_EXTENSION = directory

Default value: The directory $HOME/bin

For more information related to using this keyword, see “Tracking job
processes” on page 73.

PUBLISH_OBITUARIES
Specifies whether or not the master daemon sends mail to the administrator
when any daemon it manages ends abnormally. When set to true, this keyword
specifies that the master daemon sends mail to the administrators identified by
LOADL_ADMIN keyword.

Syntax:
PUBLISH_OBITUARIES = true | false

Default value: true

RAS_MSG_FILE_DIR
Specifies the directory where the Reliability, Availability, and Serviceability
(RAS) message files or RAS logs are stored. When a cluster uses file-based
configuration, the manager daemons will write the RAS logs into this directory.
When a cluster uses the database, this directory will be used as the temporary
space when writing RAS messages into the database.

Syntax:
RAS_MSG_FILE_DIR = directory

Default value: $LOG

Chapter 10. Configuration keyword reference 265

REGION_MGR
Specifies the location of the region manager executable (LoadL_region_mgr).
This keyword is used by the resource manager component only.

Syntax:
REGION_MGR = file

Default value: $(BIN)/LoadL_region_mgr

REGION_MGR_COREDUMP_DIR
Local directory for storing LoadL_region_mgr core dump files. This keyword is
used by the resource manager component only.

Syntax:
REGION_MGR_COREDUMP_DIR = directory

Default value: The /tmp directory.

For more information related to using this keyword, see “Specifying file and
directory locations” on page 49.

REGION_MGR_DGRAM_PORT
Specifies the port number used when connecting to the daemon. This keyword
is used by the resource manager component only.

Syntax:
REGION_MGR_DGRAM_PORT = port number

Default value: The default is 9682.

For more information related to using this keyword, see “Defining network
characteristics” on page 49.

REGION_MGR_STREAM_PORT
Specifies the port number used when connecting to the daemon. This keyword
is used by the resource manager component only.

Syntax:
REGION_MGR_STREAM_PORT = port number

Default value: The default is 9680.

For more information related to using this keyword, see “Defining network
characteristics” on page 49.

REJECT_ON_RESTRICTED_LOGIN
Specifies whether the user's account status will be checked on every node
where the job will be run by calling the AIX loginrestrictions function with the
S_DIST_CLNT flag.

Restriction: Login restriction checking is ignored by LoadLeveler for Linux.

Login restriction checking includes:
v Does the account still exist?
v Is the account locked?
v Has the account expired?
v Do failed login attempts exceed the limit for this account?
v Is login disabled via /etc/nologin?

If the AIX loginrestrictions function indicates a failure then the user's job will
be rejected and will be processed according to the LoadLeveler configuration
parameters MAX_JOB_REJECT and ACTION_ON_MAX_REJECT.

Syntax:
REJECT_ON_RESTRICTED_LOGIN = true | false

266 LoadLeveler: Using and Administering

Default value: false

RELEASEDIR
Defines the directory where all the LoadLeveler software resides.

Syntax:
RELEASEDIR = release directory

Default value: $(RELEASEDIR)

RESERVATION_CAN_BE_EXCEEDED
Specifies whether LoadLeveler will schedule job steps that are bound to a
reservation when their end times (based on hard wall-clock limits) exceed the
reservation end time.

Syntax:
RESERVATION_CAN_BE_EXCEEDED = true | false

When this keyword is set to false, LoadLeveler schedules only those job steps
that will complete before the reservation ends. When set to true, LoadLeveler
schedules job steps to run under a reservation even if their end times are
expected to exceed the reservation end time. When the reservation ends,
however, the reserved nodes no longer belong to the reservation, and so these
nodes might not be available for the jobs to continue running. In this case,
LoadLeveler might preempt the running jobs.

Note that this keyword setting does not change the actual end time of the
reservation. It only affects how LoadLeveler manages job steps whose end
times exceed the end time of the reservation.

Default value: true

RESERVATION_HISTORY
Defines the name of a file that is to contain the local history of reservations.

Syntax:
RESERVATION_HISTORY = file name

LoadLeveler appends a single line to the reservation history file for each
completed occurrence of each reservation. For an example, see “Collecting
accounting data for reservations” on page 67.

Default value: $(SPOOL)/reservation_history

RESERVATION_MIN_ADVANCE_TIME
Specifies the minimum time, in minutes, between the time at which a
reservation is created and the time at which the reservation is to start.

Syntax:
RESERVATION_MIN_ADVANCE_TIME = number of minutes

By default, the earliest time at which a reservation may start is the current time
plus the value set for the RESERVATION_SETUP_TIME keyword.

Default value: 0 (zero)

RESERVATION_PRIORITY
Specifies whether LoadLeveler administrators may reserve nodes on which
running jobs are expected to end after the reservation start time. This keyword
value applies only for LoadLeveler administrators; other reservation owners do
not have this capability.

Syntax:
RESERVATION_PRIORITY = NONE | HIGH

Chapter 10. Configuration keyword reference 267

When you set this keyword to HIGH, before activating the reservation,
LoadLeveler preempts the job steps running on the reserved nodes (Blue Gene
job steps are handled the same way). The only exceptions are non-preemptable
jobs; LoadLeveler will not preempt those jobs because of any reservations.

Default value: NONE

RESERVATION_SETUP_TIME
Specifies how much time, in seconds, that LoadLeveler may use to prepare for
a reservation before it is to start. The tasks that LoadLeveler performs during
this time include checking and reporting node conditions, and preempting job
steps still running on the reserved nodes.

For a given reservation, LoadLeveler uses the RESERVATION_SETUP_TIME
keyword value that is set at the time that the reservation is created, not
whatever value might be set when the reservation starts. If the start time of the
reservation is modified, however, LoadLeveler uses the
RESERVATION_SETUP_TIME keyword value that is set at the time of the
modification.

Syntax:
RESERVATION_SETUP_TIME = number of seconds

Default value: 60

RESOURCE_MGR
Specifies the location of the resource manager daemon executable
(LoadL_resource_mgr). This keyword is used by the resource manager
component only.

Syntax:
RESOURCE_MGR = file

Default value: $(BIN)/LoadL_resource_mgr

RESOURCE_MGR_COREDUMP_DIR
Specifies the local directory for storing LoadL_resource_mgr core dump files.
This keyword is used by the resource manager component only.

Syntax:
RESOURCE_MGR_COREDUMP_DIR = directory

Default value: The /tmp directory

RESOURCE_MGR_DGRAM_PORT
Specifies the port number used when connecting to the daemon. This keyword
is used by the resource manager component only.

Syntax:
RESOURCE_MGR_DGRAM_PORT = port_number

Default value: The default is 9619

RESOURCE_MGR_LIST
Specifies the machines where the primary and alternate resource manager
daemons run. If no machines are specified, the central manager list will be
used for the resource manager list. This keyword is used by the resource
manager component only.

Syntax:
RESOURCE_MGR_LIST = primary_resource_manager_machine \

[alternate_resource_manager_machine_list]

where:

268 LoadLeveler: Using and Administering

primary_resource_manager_machine is the hostname of the machine on which
the primary resource manager daemon will run.

[alternate_resource_manager_machine_list] is a blank-delimited list of
hostnames for the alternate resource manager daemons.

RESOURCE_MGR_STREAM_PORT
Specifies the port number used when connecting to the daemon. This keyword
is used by the resource manager component only.

Syntax:
RESOURCE_MGR_STREAM_PORT = port_number

Default value: The default value is 9618.

RESTARTS_PER_HOUR
Specifies how many times the master daemon attempts to restart a daemon
that dies abnormally. Because one or more of the daemons may be unable to
run due to a permanent error, the master only attempts
$(RESTARTS_PER_HOUR) restarts within a 60 minute period. Failing that, it
sends mail to the administrators identified by the LOADL_ADMIN keyword
and exits.

Syntax:
RESTARTS_PER_HOUR = number

number must be a numerical value and cannot be an arithmetic expression.

Default value: The default is 12.

RESUME_ON_SWITCH_TABLE_ERROR_CLEAR
Specifies whether or not the startd that was drained when the switch table
failed to unload will automatically resume once the unload errors are cleared.
The unload error is considered cleared after LoadLeveler can successfully
unload the switch table. For this keyword to work, the
DRAIN_ON_SWITCH_TABLE_ERROR option in the configuration file must
be turned on and not disabled. Flushing, suspending, or draining of a startd
manually or automatically will disable this option until the startd is manually
resumed.

Syntax:
RESUME_ON_SWITCH_TABLE_ERROR_CLEAR = true | false

Default value: false

RSET_SUPPORT
Indicates the level of RSet support present on a machine.

Syntax:
RSET_SUPPORT = option

The available options are:

RSET_MCM_AFFINITY
Indicates that the machine can run jobs requesting MCM (memory or
adapter) and processor affinity.

RSET_NONE
Indicates that LoadLeveler RSet support is not available on the
machine.

Chapter 10. Configuration keyword reference 269

RSET_USER_DEFINED
Indicates that the machine can be used for jobs with a user-created
RSet in their job command file.

Note: The RSET_USER_DEFINED option is not supported on Linux
on x86 or Linux on POWER systems.

Default value: RSET_NONE

SAVELOGS
Specifies the directory in which log files are archived.

Syntax:
SAVELOGS = directory

Where directory is the directory in which log files will be archived.

Default value: No default value is set.

For more information related to using this keyword, see “Configuring
recording activity and log files” on page 52.

SAVELOGS_COMPRESS_PROGRAM
Compresses logs after they are copied to the SAVELOGS directory. If not
specified, SAVELOGS are copied, but are not compressed.

Syntax:
SAVELOGS_COMPRESS_PROGRAM = program

Where program is a specific executable program. It can be a system-provided
facility (such as, /bin/gzip) or an administrator-provided executable program.
The value must be a full path name and can contain command-line arguments.
LoadLeveler will call the program as: program filename.

Default value: If blank, the logs are not compressed.

Example: In this example, LoadLeveler will run the gzip -f command. The log
file in SAVELOGS will be compressed after it is copied to SAVELOGS. If the
program cannot be found or is not executable, LoadLeveler will log the error
and SAVELOGS will remain uncompressed.
SAVELOGS_COMPRESS_PROGRAM = /bin/gzip -f

SCHEDD
Location of the Schedd executable (LoadL_schedd).

Syntax:
SCHEDD = file

Default value: $(BIN)/LoadL_schedd

For more information related to using this keyword, see “How LoadLeveler
daemons process jobs” on page 8.

SCHEDD_COREDUMP_DIR
Specifies the local directory for storing LoadL_schedd core dump files.

Syntax:
SCHEDD_COREDUMP_DIR = directory

Default value: The /tmp directory.

For more information related to using this keyword, see “Specifying file and
directory locations” on page 49.

270 LoadLeveler: Using and Administering

SCHEDD_INTERVAL
Specifies the interval, in seconds, at which the Schedd daemon checks the local
job queue and updates the negotiator daemon.

Syntax:
SCHEDD_INTERVAL = number

number must be a numerical value and cannot be an arithmetic expression.

Default value: The default is 60 seconds.

SCHEDD_RUNS_HERE
Specifies whether the Schedd daemon runs on the host. If you do not want to
run the Schedd daemon, specify false.

This keyword does not designate a machine as a public scheduling machine.
Unless configured as a public scheduling machine, a machine configured to
run the Schedd daemon will only accept job submissions from the same
machine running the Schedd daemon. A public scheduling machine accepts job
submissions from other machines in the LoadLeveler cluster. To configure a
machine as a public scheduling machine, see the schedd_host keyword
description in “Administration keyword descriptions” on page 298.

Syntax:
SCHEDD_RUNS_HERE = true | false

Default value: true

Note: This keyword is deprecated in the configuration file and has been
moved to the administration file.

SCHEDD_SUBMIT_AFFINITY
Specifies whether job submissions are directed to a locally running Schedd
daemon. When the keyword is set to true, job submissions are directed to a
Schedd daemon running on the same machine where the submission takes
place, provided there is a Schedd daemon running on that machine. In this
case the submission is said to have "affinity" for the local Schedd daemon. If
there is no Schedd daemon running on the machine where the submission
takes place, or if this keyword is set to false, the job submission will only be
directed to a Schedd daemon serving as a public scheduling machine. In this
case, if there are no public scheduling machines configured the job cannot be
submitted. A public scheduling machine accepts job submissions from other
machines in the LoadLeveler cluster. To configure a machine as a public
scheduling machine, see the schedd_host keyword description in
“Administration keyword descriptions” on page 298.

Installations with a large number of nodes should consider setting this
keyword to false to more evenly distribute dispatching of jobs among the
Schedd daemons. For more information, see “Scaling considerations” on page
411.

Syntax:
SCHEDD_SUBMIT_AFFINITY = true | false

Default value: true

SCHEDD_STATUS_PORT
Specifies the port number used when connecting to the daemon.

Syntax:
SCHEDD_STATUS_PORT = port number

Chapter 10. Configuration keyword reference 271

Default value: The default is 9606.

For more information related to using this keyword, see “Defining network
characteristics” on page 49.

SCHEDD_STREAM_PORT
Specifies the port number used when connecting to the daemon.

Syntax:
SCHEDD_STREAM_PORT = port number

Default value: The default is 9605.

For more information related to using this keyword, see “Defining network
characteristics” on page 49.

SCHEDULE_BY_RESOURCES
Specifies which consumable resources are considered by the LoadLeveler
schedulers. Each consumable resource name may be an administrator-defined
alphanumeric string, or may be one of the following predefined resources:
v ConsumableCpus
v ConsumableMemory
v ConsumableVirtualMemory
v ConsumableLargePageMemory
v RDMA
v CollectiveGroups

Each string may only appear in the list once. These resources are either floating
resources, or machine resources. If any resource is specified incorrectly with
the SCHEDULE_BY_RESOURCES keyword, then all scheduling resources will
be ignored.

When using IBM Host Fabric Interface (HFI) switch adapters, the predefined
resource CollectiveGroups must be in the SCHEDULE_BY_RESOURCES list.

Syntax:
SCHEDULE_BY_RESOURCES = name name ... name

Default value: No default value is set.

SCHEDULER_TYPE
Specifies the LoadLeveler scheduling algorithm:

LL_DEFAULT
Specifies the default LoadLeveler scheduling algorithm. If
SCHEDULER_TYPE has not been defined, LoadLeveler will use the
default scheduler (LL_DEFAULT).

BACKFILL
Specifies the LoadLeveler BACKFILL scheduler. When you specify this
keyword, you should use only the default settings for the START
expression and the other job control expressions described in
“Managing job status through control expressions” on page 72.

API Specifies that you will use an external scheduler. External schedulers
communicate to LoadLeveler through the job control API. For more
information on setting an external scheduler, see “Using an external
scheduler” on page 119.

Syntax:
SCHEDULER_TYPE = LL_DEFAULT | BACKFILL | API

Default value: LL_DEFAULT

272 LoadLeveler: Using and Administering

Note:

1. If a scheduler type is not set, LoadLeveler will start, but it will use the
default scheduler.

2. If you have set SCHEDULER_TYPE with an option that is not valid,
LoadLeveler will not start.

3. If you change the scheduler option specified by SCHEDULER_TYPE, you
must stop and restart LoadLeveler using llctl or recycle using llctl.

For more information related to using this keyword, see “Defining a
LoadLeveler cluster” on page 45.

SEC_ADMIN_GROUP
When security services are enabled, this keyword points to the name of the
UNIX group that contains the local identities of the LoadLeveler
administrators.

Restriction: CtSec security is not supported on LoadLeveler for Linux.

Syntax:
SEC_ADMIN_GROUP = name of lladmin group

Default value: No default value is set.

For more information related to using this keyword, see “Configuring
LoadLeveler to use cluster security services” on page 61.

SEC_ENABLEMENT
Specifies the security mechanism to be used.

Restriction: Do not set this keyword to CtSec in the configuration file for a
Linux machine. CtSec security is not supported on LoadLeveler for Linux.

Syntax:
SEC_ENABLEMENT = COMPAT | CTSEC

Default value: No default value is set.

SEC_SERVICES_GROUP
When security services are enabled, this keyword specifies the name of the
LoadLeveler services group.

Restriction: CtSec security is not supported on LoadLeveler for Linux.

Syntax:
SEC_SERVICES_GROUP=group name

Where group name defines the identities of the LoadLeveler daemons.

Default value: No default value is set.

SEC_IMPOSED_MECHS
Specifies a blank-delimited list of LoadLeveler's permitted security mechanisms
when Cluster Security (CtSec) services are enabled.

Restriction: CtSec security is not supported on LoadLeveler for Linux.

Syntax: Specify a blank delimited list containing combinations of the following
values:

none If this is the only value specified, then users will run unauthenticated
and, if authorization is necessary, the job will fail. If this is not the only
value specified, then users may run unauthenticated and, if
authorization is necessary, the job will fail.

Chapter 10. Configuration keyword reference 273

unix If this is the only value specified, then UNIX host-based authentication
will be used; otherwise, other mechanisms may be used.

Default value: No default value is set.

Example:
SEC_IMPOSED_MECHS = none unix

SPOOL
Defines the local directory where LoadLeveler keeps the local job queue and
checkpoint files.

Syntax:
SPOOL = local directory/spool

Default value: $(tilde)/spool

SSHD_PORTS
Port numbers used by sshd daemons started by LoadLeveler for interactive
jobs.

Syntax:
SSHD_PORTS = port number

Where the port number list can be a blank delimited list of port numbers or a
range of port number specified by two numbers separated by a ‘-‘.

Default value: 9620-9629.

Ports defined for this purpose can only be specified in the LoadLeveler
configuration. LoadLeveler does not look in /etc/services for these ports.

STALE_ENERGY_TAG_CLEANUP
Removes the energy tag from the database automatically when an energy tag
has not been referenced in the last the_number_of_days. LoadLeveler will not
remove the energy tag by default.

Syntax:
STALE_ENERGY_TAG_CLEANUP = the_number_of_days

where:

the_number_of_days
Indicates the days that the energy tag has not been used.

Default value: -1.

Example:

Remove energy tags that have not been used in 30 days from the database:
STALE_ENERGY_TAG_CLEANUP = 30

START
Determines whether a machine can run a LoadLeveler job.

Syntax:
START: expression that evaluates to T or F (true or false)

When the expression evaluates to T, LoadLeveler considers dispatching a job
to the machine. When you use a START expression that is based on the CPU
load average, the negotiator may evaluate the expression as F even though the
load average indicates the machine is Idle. This is because the negotiator adds

274 LoadLeveler: Using and Administering

a compensating factor to the startd machine's load average every time the
negotiator assigns a job. For more information, see the
NEGOTIATOR_INTERVAL keyword.

Default value: No default value is set, which means that no jobs will be
started.

For information about time-related variables that you may use for this
keyword, see “Variables to use for setting times” on page 291.

START_CLASS
Specifies the rule for starting a job of the incoming_class. The START_CLASS
rule is applied whenever the BACKFILL scheduler decides whether a job step
of the incoming_class should start or not.

Syntax:
START_CLASS[incoming_class] = (start_class_expression) [&& (start_class_expression) ...]

Where start_class_expression takes the form:

run_class < number_of_tasks
Which indicates that a job step of the incoming_class is only allowed to
run on a node when the number of tasks of run_class running on that
node is less than number_of_tasks.

Notes:

1. START_CLASS [allclasses] will be ignored.
2. The job class specified by run_class may be the same as or different from

the class specified by incoming_class.
3. You can also define run_class as allclasses. If you do, the total number of all

job tasks running on that node cannot exceed the value specified by
number_of_tasks.

4. A class name or allclasses should not appear twice on the right-hand side
of the keyword statement. However, you can use other class names with
allclasses on the right hand side of the statement.

5. If there is more than one start_class_expression, you must use && between
adjacent start_class_expressions.

6. Both the START keyword and the START_CLASS keyword have to be true
before a new job can start.

7. Parenthesis () are optional around start_class_expression.

For information related to using this keyword, see “Planning to preempt jobs”
on page 124.

Default value: No default value is set.

Examples:

START_CLASS[Class_A] = (Class_A < 1)
This statement indicates that a Class_A job can only start on nodes that
do not have any Class_A jobs running.

START_CLASS[Class_B] = allclasses < 5
This statement indicates that a Class_B job can only start on nodes
with maximum 4 tasks running.

START_DAEMONS
Specifies whether to start the LoadLeveler daemons on the node.

Syntax:

Chapter 10. Configuration keyword reference 275

START_DAEMONS = true | false

Default value: true

When true, the daemons are started. In most cases, you will probably want to
set this keyword to true. An example of why this keyword would be set to
false is if you want to run the daemons on most of the machines in the cluster
but some individual users with their own local configuration files do not want
their machines to run the daemons. The individual users would modify their
local configuration files and set this keyword to false. Because the global
configuration file has the keyword set to true, their individual machines would
still be able to participate in the LoadLeveler cluster.

Also, to define the machine as strictly a submit-only machine, set this keyword
to false.

STARTD
Location of the startd executable (LoadL_startd).

Syntax:
STARTD = file

Default value: $(BIN)/LoadL_startd

For more information related to using this keyword, see “How LoadLeveler
daemons process jobs” on page 8.

STARTD_COREDUMP_DIR
Local directory for storing LoadL_startd core dump files.

Syntax:
STARTD_COREDUMP_DIR = directory

Default value: The /tmp directory.

For more information related to using this keyword, see “Specifying file and
directory locations” on page 49.

STARTD_DGRAM_PORT
Specifies the port number used when connecting to the daemon.

Syntax:
STARTD_DGRAM_PORT = port number

Default value: The default is 9615.

For more information related to using this keyword, see “Defining network
characteristics” on page 49.

STARTD_RUNS_HERE = true | false
Specifies whether the startd daemon runs on the host. If you do not want to
run the startd daemon, specify false.

Syntax:
STARTD_RUNS_HERE = true | false

Default value: true

Note: This keyword is deprecated in the configuration file and has been
moved to the administration file.

STARTD_STREAM_PORT
Specifies the port number used when connecting to the daemon.

Syntax:

276 LoadLeveler: Using and Administering

STARTD_STREAM_PORT = port number

Default value: The default is 9611.

For more information related to using this keyword, see “Defining network
characteristics” on page 49.

STARTER
Location of the starter executable (LoadL_starter).

Syntax:
STARTER = directory

Default value: $(BIN)/LoadL_starter

For more information related to using this keyword, see “How LoadLeveler
daemons process jobs” on page 8.

STARTER_COREDUMP_DIR
Local directory for storing LoadL_starter coredump files.

Syntax:
STARTER_COREDUMP_DIR = directory

Default value: The /tmp directory.

For more information related to using this keyword, see “Specifying file and
directory locations” on page 49.

SUBMIT_FILTER
Specifies the program you want to run to filter a job script when the job is
submitted.

Syntax:
SUBMIT_FILTER = full_path_to_executable

Where full_path_to_executable is called with the job command file as the
standard input. The standard output is submitted to LoadLeveler. If the
program returns with a nonzero exit code, the job submission is canceled. A
submit filter can only make changes to LoadLeveler job command file keyword
statements.

Default value: No default value is set.

Multicluster use: In a multicluster environment, if you specified a valid cluster
list with either the llsubmit -X option or the ll_cluster API, then the
SUBMIT_FILTER will instead be invoked with a modified job command file
that contains a cluster_list keyword generated from either the llsubmit -X
option or the ll_cluster API.

The modified job command file will contain an inserted # @ cluster_list =
cluster statement just prior to the first # @ queue statement. This cluster_list
statement takes precedence and overrides all previous specifications of any
cluster_list statements from the original job command file.

Example: SUBMIT_FILTER in a multicluster environment

The following job command file, job.cmd, requests to be run remotely on
cluster1:
#!/bin/sh
@ cluster_list = cluster1
@ error = job1.$(Host).$(Cluster).$(Process).err
@ output = job1.$(Host).$(Cluster).$(Process).out
@ queue

Chapter 10. Configuration keyword reference 277

After issuing llsubmit -X cluster2 job.cmd, the modified job command file
statements will be run on cluster2:
#!/bin/sh
@ cluster_list = cluster1
@ error = job1.$(Host).$(Cluster).$(Process).err
@ output = job1.$(Host).$(Cluster).$(Process).out
@ cluster_list = cluster2
@ queue

For more information related to using this keyword, see “Filtering a job script”
on page 79.

SUSPEND
Determines whether running jobs should be suspended.

Syntax:
SUSPEND: expression that evaluates to T or F (true or false)

When T, LoadLeveler temporarily suspends jobs currently running on the
machine. Suspended LoadLeveler jobs will either be continued or vacated. This
keyword is not supported for parallel jobs.

Default value: No default value is set.

For information about time-related variables that you may use for this
keyword, see “Variables to use for setting times” on page 291.

SUSPEND_CONTROL
Specifies the action to take when LoadLeveler fails to suspend an idle machine.

Syntax:
SUSPEND_CONTROL = noact | reset | shutdown

The available actions are:

shutdown
Shuts the failed machine down.

reset
Reboots the failed machine.

noact
No action is taken. Keep the failed machine in the current state.

Default value: noact

SYSPRIO
System priority expression.

Syntax:
SYSPRIO : expression

You can use the following LoadLeveler variables to define the SYSPRIO
expression:
v ClassSysprio
v GroupQueuedJobs
v GroupRunningJobs
v GroupSysprio
v GroupTotalJobs
v GroupTotalShares
v GroupUsedBgShares
v GroupUsedShares
v JobIsBlueGene

278 LoadLeveler: Using and Administering

v QDate
v UserHoldTime
v UserPrio
v UserQueuedJobs
v UserRunningJobs
v UserSysprio
v UserTotalJobs
v UserTotalShares
v UserUsedBgShares
v UserUsedShares

For detailed descriptions of these variables, see “LoadLeveler variables” on
page 286.

Default value: noact

Notes:

1. The SYSPRIO keyword is valid only on the machine where the central
manager is running. Using this keyword in a local configuration file has no
effect.

2. It is recommended that you do not use UserPrio in the SYSPRIO
expression, since user jobs are already ordered by UserPrio.

3. The string SYSPRIO can be used as both the name of an expression
(SYSPRIO: value) and the name of a variable (SYSPRIO = value).
To specify the expression to be used to calculate job priority you must use
the syntax for the SYSPRIO expression. If the variable is mistakenly used
for the SYSPRIO expression, which requires a colon (:) after the name, the
job priority value will always be 0 because the SYSPRIO expression has not
been defined.

4. When the UserRunningJobs, GroupRunningJobs, UserQueuedJobs,
GroupQueuedJobs, UserTotalJobs, GroupTotalJobs, GroupTotalShares,
GroupUsedShares, UserTotalShares, UserUsedShares,
GroupUsedBgShares, JobIsBlueGene, and UserUsedBgShares variables
are used to prioritize the queue based on current usage, you should also set
NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL so that the
priorities are adjusted according to current usage rather than usage only at
submission time.

Examples:

v Example 1
This example creates a FIFO job queue based on submission time:
SYSPRIO : 0 - (QDate)

v Example 2
This example accounts for Class, User, and Group system priorities:
SYSPRIO : (ClassSysprio * 100) + (UserSysprio * 10) + (GroupSysprio * 1) - (QDate)

v Example 3
This example orders the queue based on the number of jobs a user is
currently running. The user who has the fewest jobs running is first in the
queue. You should set
NEGOTIATOR_RECALCULATE_SYSPRIO_INTERVAL in conjunction with
this SYSPRIO expression.
SYSPRIO : 0 - UserRunningJobs

v Example 4

Chapter 10. Configuration keyword reference 279

This example shows one possible way to set up the SYSPRIO expression for
fair share scheduling. For those jobs whose owner has no unused shares
($(UserHasShares)= 0), that job priority depends only on QDate, making it a
simple FIFO queue as in Example 1.
For those jobs whose owner has unused shares ($(UserHasShares)= 1), job
priority depends not only on QDate, but also on a uniform boost of 31 536
000 (the equivalent to the job being submitted one year earlier). These jobs
still have priority differences because of submit time differences. It is like
forming two priority tiers: the higher priority tier for jobs with unused
shares and the lower priority tier for jobs without unused shares.
SYSPRIO: 31536000 * $(UserHasShares) - QDate

v Example 5
This example divides the jobs into three priority tiers:
– Those jobs whose owner and group both have unused shares are at the

top tier
– Those jobs whose owner or group has unused shares are at the middle

tier
– Those jobs whose owner and group both have no shares remaining are at

the bottom tier

A user can submit two jobs to two different groups, the first job to a group
with shares remaining and the second job to a group without any unused
shares. If the user has unused shares, the first job will belong to the top tier
and the second job will belong to the middle tier. If the user has no shares
remaining, the first job will belong to the middle tier and the second job will
belong to the bottom tier. The jobs in the top tier will be considered to run
first, then the jobs in the middle tier, and lastly the jobs in the bottom tier.
SYSPRIO: 31536000 * ($(UserHasShares)+$(GroupHasShares)) - (QDate)

For more information related to using this keyword, see “Setting negotiator
characteristics and policies” on page 47.

v Example 6
This example show one possible way to prevent a job in user hold from
increasing in priority relative to other jobs in the queue:
SYSPRIO : 0 - QDate - UserHoldTime

SYSPRIO_THRESHOLD_TO_IGNORE_STEP
Specifies a threshold value for system priority. When the system priority
assigned to a job step is less than the value set for this keyword, the scheduler
ignores the job, which will remain in Idle state.

Syntax:
SYSPRIO_THRESHOLD_TO_IGNORE_STEP = integer

Any integer is a valid value.

Default value: INT_MIN

For more information related to using this keyword, see “Controlling the
central manager scheduling cycle” on page 76.

TRACE
Specifies the debug control flags that are used to control the trace function of
LoadLeveler.

Syntax:
TRACE = flags

280 LoadLeveler: Using and Administering

The debug control flags that can be used are:

D_JOB_LIFECYCLE
Enables job lifecycle tracing if this flag was specified. If this debug flag
is not used, job lifecycle information will not be logged (even if you
request job tracing).

D_DISPATCHING_CYCLE
Turns on dispatching cycle tracing when LoadLeveler is started.

Default value: No default value is set.

TRUNC_KBDD_LOG_ON_OPEN
When true, specifies the log file is restarted with every invocation of the
daemon.

Syntax:
TRUNC_KBDD_LOG_ON_OPEN = true | false

Default value: false

For more information related to using this keyword, see “Configuring
recording activity and log files” on page 52.

TRUNC_MASTER_LOG_ON_OPEN
When true, specifies the log file is restarted with every invocation of the
daemon.

Syntax:
TRUNC_MASTER_LOG_ON_OPEN = true | false

Default value: false

For more information related to using this keyword, see “Configuring
recording activity and log files” on page 52.

TRUNC_NEGOTIATOR_LOG_ON_OPEN
When true, specifies the log file is restarted with every invocation of the
daemon.

Syntax:
TRUNC_NEGOTIATOR_LOG_ON_OPEN = true | false

Default value: false

For more information related to using this keyword, see “Configuring
recording activity and log files” on page 52.

TRUNC_REGION_MGR_LOG_ON_OPEN
When true, specifies the log file is restarted with every invocation of the
daemon. This keyword is used by the resource manager component only.

Syntax:
TRUNC_REGION_MGR_LOG_ON_OPEN = true | false

Default value: false

For more information related to using this keyword, see “Configuring
recording activity and log files” on page 52.

TRUNC_RESOURCE_MGR_LOG_ON_OPEN
When true, specifies the log file is restarted with every invocation of the
daemon. This keyword is used by the resource manager component only.

Syntax:
TRUNC_RESOURCE_MGR_LOG_ON_OPEN = true | false

Chapter 10. Configuration keyword reference 281

Default value: false

TRUNC_SCHEDD_LOG_ON_OPEN
When true, specifies the log file is restarted with every invocation of the
daemon.

Syntax:
TRUNC_SCHEDD_LOG_ON_OPEN = true | false

Default value: false

For more information related to using this keyword, see “Configuring
recording activity and log files” on page 52.

TRUNC_STARTD_LOG_ON_OPEN
When true, specifies the log file is restarted with every invocation of the
daemon.

Syntax:
TRUNC_STARTD_LOG_ON_OPEN = true | false

Default value: false

For more information related to using this keyword, see “Configuring
recording activity and log files” on page 52.

TRUNC_STARTER_LOG_ON_OPEN
When true, specifies the log file is restarted with every invocation of the
daemon.

Syntax:
TRUNC_STARTER_LOG_ON_OPEN = true | false

Default value: false

For more information related to using this keyword, see “Configuring
recording activity and log files” on page 52.

UPDATE_ON_POLL_INTERVAL_ONLY
Specifies whether or not the LoadLeveler startd daemons will send machine
update transactions to the central manager. Normally the LoadLeveler startd
daemons running on executing nodes will send transactions to the central
manager to provide updates of machine information at various times. An
update is sent every polling interval. The polling interval is calculated by
multiplying the values for the two keywords, POLLING_FREQUENCY and
POLLS_PER_UPDATE, specified in the LoadLeveler configuration file.

In addition, updates are sent at other times such as when new jobs are started
and when jobs terminate on the executing node. If you have a large and highly
active cluster (the workload consists of a large number of short running jobs),
the normal method for updating the central manager can add excessive
network traffic. UPDATE_ON_POLL_INTERVAL_ONLY can help reduce this
source of network traffic.

When true is specified, the LoadLeveler startd daemon will only send machine
updates to the central manager at every polling interval and not at other times.

Syntax:
UPDATE_ON_POLL_INTERVAL_ONLY = false | true

Default value: false

VACATE
Determines whether suspended jobs should be vacated.

282 LoadLeveler: Using and Administering

Syntax:
VACATE: expression that evaluates to T or F (true or false)

When T, suspended LoadLeveler jobs are removed from the machine and
placed back into the queue (provided you specify restart=yes in the job
command file). If a checkpoint was taken, the job restarts from the checkpoint.
Otherwise, the job restarts from the beginning.

Default value: No default value is set.

For information about time-related variables that you may use for this
keyword, see “Variables to use for setting times” on page 291.

VM_IMAGE_ALGORITHM
Specifies the virtual memory algorithm, which is used for checking the
image_size requirement. This keyword is used together with the large_page job
command file keyword to specify which algorithm the central manager uses to
decide whether a machine has enough virtual memory to run a job step.

This keyword is critical for job steps that must use Large Page memory
(specified by the job command file keyword large_page=M). If the
VM_IMAGE_ALGORITHM keyword is set to FREE_PAGING_SPACE, the
Large Page job step will never be scheduled to run. This keyword must be set
to FREE_PAGING_SPACE_PLUS_FREE_REAL_MEMORY to run Large Page
jobs.

When FREE_PAGING_SPACE is specified, LoadLeveler considers only free
paging space when determining if a machine has enough virtual memory to
run a job step.

When FREE_PAGING_SPACE_PLUS_FREE_REAL_MEMORY is specified and
the job step specifies:
v large_page=N (does not use Large Page memory), LoadLeveler considers

free paging space and free regular memory when determining if a machine
has enough virtual memory to run a job step.

v large_page=Y (uses Large Page memory, if available), LoadLeveler considers
free paging space, free regular memory, and free Large Page memory when
determining if a machine has enough virtual memory to run a job step,
although Large Page memory is only considered for machines configured to
exploit the Large Page feature.

v large_page=M (must use Large Page memory), LoadLeveler considers only
Large Page memory when determining if a machine has enough virtual
memory to run a job step. Only machines configured to exploit the Large
Page feature are considered.

IBM suggests that you set this keyword to the value
FREE_PAGING_SPACE_PLUS_FREE_REAL_MEMORY since more types of
virtual memory are considered, increasing the chances of finding a machine
with enough virtual memory to run the job step.

Syntax:
VM_IMAGE_ALGORITHM = FREE_PAGING_SPACE | FREE_PAGING_SPACE_PLUS_FREE_REAL_MEMORY

Default value: FREE_PAGING_SPACE

WALLCLOCK_ENFORCE
Specifies whether the job command file keyword wall_clock_limit will be
enforced for this job. The WALLCLOCK_ENFORCE keyword is valid only
when an external scheduler is enabled.

Chapter 10. Configuration keyword reference 283

Syntax:
WALLCLOCK_ENFORCE = true | false

Default value: true

X_RUNS_HERE
Specifies whether the kbdd (keyboard) daemon runs on the host. If you want
to run the kbdd daemon, specify true.

Syntax:
X_RUNS_HERE = true | false

Default value: false

User-defined keywords
This type of variable, which is generally created and defined by the user, can be
named using any combination of letters and numbers.

A user-defined variable is set equal to values, where the value defines conditions,
names files, or sets numeric values. For example, you can create a variable named
MY_MACHINE and set it equal to the name of your machine named iron as
follows:

MY_MACHINE = iron.ore.met.com

You can then identify the keyword using a dollar sign ($) and parenthesis. For
example, the literal $(MY_MACHINE) following the definition in the previous
example results in the automatic substitution of iron.ore.met.com in place of
$(MY_MACHINE).

User-defined definitions may contain references, enclosed in parenthesis, to
previously defined keywords. Therefore:
A = xxx
C = $(A)

is a valid expression and the resulting value of C is xxx. Note that C is actually
bound to A, not to its value, so that
A = xxx
C = $(A)
A = yyy

is also legal and the resulting value of C is yyy.

User-defined keywords can be specified in certain LoadLeveler configuration
statements. Typically, the statements that can specify user-defined keywords are
LoadLeveler expressions and statements that define file paths. The following list
contains the LoadLeveler statements that can contain user-defined keywords:

acct_validation afs_getnewtoken arch

bin ckpt_execute_dir comm

continue custom_metric_command execute

ext_energy_policy_program global_history history

job_epilog job_prolog job_user_epilog

job_user_prolog kbdd kbdd_coredump_dir

kbdd_log kill ll_rsh_command

284 LoadLeveler: Using and Administering

log machprio master

master_coredump_dir master_log negotiator

negotiator_coredump_dir negotiator_log opsys

process_tracking_extension region_mgr region_mgr_coredump_dir

region_mgr_log releasedir reservation_history

resource_mgr resource_mgr_coredump_dir resource_mgr_log

resource_mgr_spool schedd schedd_coredump_dir

schedd_log spool start

startd startd_coredump_dir startd_log

starter starter_coredump_dir starter_log

submit_filter suspend sysprio

vacate

The sample configuration file shipped with the product defines and uses the
following “user-defined” variables.

BackgroundLoad
Defines the variable BackgroundLoad and assigns to it a floating point
constant. This might be used as a noise factor indicating no activity.

CPU_Busy
Defines the variable CPU_Busy and reassigns to it at each evaluation the
Boolean value True or False, depending on whether the Berkeley one-minute
load average is equal to or greater than the saturation level of 1.5.

CPU_Idle
Defines the variable CPU_Idle and reassigns to it at each evaluation the
Boolean value True or False, depending on whether the Berkeley one-minute
load average is equal or less than 0.7.

HighLoad
Is a keyword that the user can define to use as a saturation level at which no
further jobs should be started.

HOUR
Defines the variable HOUR and assigns to it a constant integer value.

JobLoad
Defines the variable JobLoad which defines the load on the machine caused by
running the job.

KeyboardBusy
Defines the variable KeyboardBusy and reassigns to it at each evaluation the
Boolean value True or False, depending on whether the keyboard and mouse
have been idle for fifteen minutes.

LowLoad
Defines the variable LowLoad and assigns to it the value of BackgroundLoad.
This might be used as a restart level at which jobs can be started again and
assumes only running 1 job on the machine.

mail
Specifies a local program you want to use in place of the LoadLeveler default
mail notification method.

Chapter 10. Configuration keyword reference 285

MINUTE
Defines the variable MINUTE and assigns to it a constant integer value.

StateTimer
Defines the variable StateTimer and reassigns to it at each evaluation the
number of seconds since the current state was entered.

LoadLeveler variables
LoadLeveler provides variables that you can use in your configuration file
statements. LoadLeveler variables are evaluated by the LoadLeveler daemons at
various stages. They do not require you to use any special characters (such as a
parenthesis or a dollar sign) to identify them.

Arch
Indicates the system architecture.

ClassSysprio
The priority for the class of the job step, defined in the class stanza in the
administration file.

Default: 0

For additional information about using this variable, see the SYSPRIO
keyword description.

Connectivity
The ratio of the number of active switch adapters on a node to the total
number of switch adapters on the node. The value ranges from 0.0 (all switch
adapters are down) to 1.0 (all switch adapters are active). A node with no
switch adapters has a connectivity of 0.0. Connectivity can be used in a
MACHPRIO expression to favor nodes that do not have any down switch
adapters or in a job's REQUIREMENTS to require only nodes with a certain
connectivity.

For additional information about using this variable, see the MACHPRIO
keyword description.

ConsumableCpus
The number of ConsumableCpus currently available on the machine, if
ConsumableCpus is defined in the configuration file keyword,
SCHEDULE_BY_RESOURCES. If it is not defined in
SCHEDULE_BY_RESOURCES, then it is equivalent to Cpus.

For additional information about using this variable, see the MACHPRIO
keyword description.

ConsumableLargePageMemory
The amount of ConsumableLargePageMemory, in megabytes, currently
available on the machine, if ConsumableVirtualMemory is defined in the
SCHEDULE_BY_RESOURCES configuration file keyword. If it is not defined
in SCHEDULE_BY_RESOURCES, then it is equal to the total amount of large
page memory on the machine.

For additional information about using this variable, see the MACHPRIO
keyword description.

ConsumableMemory
The amount of ConsumableMemory, in megabytes, currently available on the
machine, if ConsumableMemory is defined in the configuration file keyword,
SCHEDULE_BY_RESOURCES. If it is not defined in
SCHEDULE_BY_RESOURCES, then it is equivalent to Memory.

286 LoadLeveler: Using and Administering

For additional information about using this variable, see the MACHPRIO
keyword description.

ConsumableVirtualMemory
The amount of ConsumableVirtualMemory, in megabytes, currently available
on the machine, if ConsumableVirtualMemory is defined in the configuration
file keyword, SCHEDULE_BY_RESOURCES. If it is not defined in
SCHEDULE_BY_RESOURCES, then it is equivalent to VirtualMemory.

For additional information about using this variable, see the MACHPRIO
keyword description.

Cpus
The number of processors of the machine, reported by the startd daemon.

For additional information about using this variable, see the MACHPRIO
keyword description.

CurrentTime
The UNIX date; the current system time, in seconds, since January 1, 1970, as
returned by the time() function.

CustomMetric
Sets a relative priority number for one or more machines, based on the value
of the CUSTOM_METRIC keyword.

For additional information about using this variable, see the MACHPRIO
keyword description.

Disk
The free disk space in kilobytes on the file system where the executables for
the LoadLeveler jobs assigned to this machine are stored. This refers to the file
system that is defined by the execute keyword.

For additional information about using this variable, see the MACHPRIO
keyword description.

domain or domainname
Dynamically indicates the official name of the domain of the current host
machine where the program is running. Whenever a machine name can be
specified or one is assumed, a domain name is assigned if none is present.

EnteredCurrentState
The value of CurrentTime when the current state (START, SUSPEND, and so
on) was entered.

FreeRealMemory
The amount of free real memory, in megabytes, on the machine. This value
should track very closely with the "fre" value of the vmstat command and the
"free" value of the svmon -G command (units are 4K blocks).

For additional information about using this variable, see the MACHPRIO
keyword description.

GroupQueuedJobs
The number of job steps associated with a LoadLeveler group which are either
running or queued. (That is, job steps which are in one of these states:
Checkpointing, Preempted, Preempt Pending, Resume Pending, Running,
Starting, Pending, or Idle.)

For additional information about using this variable, see the SYSPRIO
keyword description.

Chapter 10. Configuration keyword reference 287

GroupRunningJobs
The number of job steps for the LoadLeveler group which are in one of these
states: Checkpointing, Preempted, Preempt Pending, Resume Pending,
Running, Starting, or Pending.

For additional information about using this variable, see the SYSPRIO
keyword description.

GroupSysprio
The priority for the group of the job step, defined in the group stanza in the
administration file.

Default: 0

For additional information about using this variable, see the SYSPRIO
keyword description.

GroupTotalJobs
The total number of job steps associated with this LoadLeveler group. Total job
steps are all job steps reported by the llq command.

For additional information about using this variable, see the SYSPRIO
keyword description.

GroupTotalShares
The total number of shares allocated to a group as specified by the fair_shares
keyword in the group stanza.

For additional information about using this variable, see the SYSPRIO
keyword description.

GroupUsedBgShares
The number of Blue Gene shares already used by a group or jobs owned by
the group.

For additional information about using this variable, see the SYSPRIO
keyword description.

GroupUsedShares
The number of shares already used by a group or jobs of the LoadLeveler
group.

For additional information about using this variable, see the SYSPRIO
keyword description.

host or hostname
Dynamically indicates the standard host name as returned by gethostname()
for the machine where the program is running. host and hostname are
equivalent, and contain the name of the machine without the domain name
appended to it. If administrators need to specify the domain name in the
configuration file, they may use domain or domainname along with host or
hostname. For example:
$(host).$(domain)

JobIsBlueGene
Indicates whether the job whose priority is being calculated using the
SYSPRIO keyword is a Blue Gene job.

For additional information about using this variable, see the SYSPRIO
keyword description.

KeyboardIdle
The number of seconds since the keyboard or mouse was last used. It also
includes any telnet or interactive activity from any remote machine.

288 LoadLeveler: Using and Administering

LoadAvg
The Berkely one-minute load average, a measure of the CPU load on the
system. The load average is the average of the number of processes ready to
run or waiting for disk I/O to complete. The load average does not map to
CPU time.

For additional information about using this variable, see the MACHPRIO
keyword description.

MasterMachPriority
A value that is equal to 1 for nodes which are master nodes (those with
master_node_exclusive = true); this value is equal to 0 for nodes which are not
master nodes. Assigning a high priority to master nodes may help job
scheduling performance for parallel jobs which require master node features.

For additional information about using this variable, see the MACHPRIO
keyword description.

Memory
The size of real memory, in megabytes, of the machine, reported by the startd
daemon.

For additional information about using this variable, see the MACHPRIO
keyword description.

OpSys
Indicates the operating system on the host where the program is running. This
value is automatically determined and should not be defined in the
configuration file.

PagesFreed
The number of pages freed per second by the page replacement algorithm of
the virtual memory manager.

For additional information about using this variable, see the MACHPRIO
keyword description.

PagesScanned
The number of pages scanned per second by the page replacement algorithm
of the virtual memory manager.

For additional information about using this variable, see the MACHPRIO
keyword description.

QDate
The difference in seconds between the UNIX date when the job step enters the
queue and the UNIX date when the negotiator daemon starts up.

For additional information about using this variable, see the SYSPRIO
keyword description.

Speed
The relative speed of the machine, defined in a machine stanza in the
administration file.

Default: 1

For additional information about using this variable, see the MACHPRIO
keyword description.

State
The state of the startd daemon.

Chapter 10. Configuration keyword reference 289

tilde
The home directory for the LoadLeveler user ID.

UserHoldTime
The total time that a job is in User Hold state.

For additional information about using this variable, see the SYSPRIO
keyword description.

UserPrio
The user-defined priority of the job step, specified in the job command file
with the user_priority keyword. The priority ranges from 0 to 100, with higher
numbers corresponding to greater priority.

Default: 50

For additional information about using this variable, see the SYSPRIO
keyword description.

UserQueuedJobs
The number of job steps either running or queued for the user. (That is, job
steps that are in one of these states: Checkpointing, Preempted, Preempt
Pending, Resume Pending, Running, Starting, Pending, or Idle.)

For additional information about using this variable, see the SYSPRIO
keyword description.

UserRunningJobs
The number of job step steps for the user which are in one of these states:
Checkpointing, Preempted, Preempt Pending, Resume Pending, Running,
Starting, or Pending.

For additional information about using this variable, see the SYSPRIO
keyword description.

UserSysprio
The priority of the user who submitted the job step, defined in the user stanza
in the administration file.

Default: 0

For additional information about using this variable, see the SYSPRIO
keyword description.

UserTotalJobs
The total number of job steps associated with this user. Total job steps are all
job steps reported by the llq command.

For additional information about using this variable, see the SYSPRIO
keyword description.

UserTotalShares
The total number of shares allocated to a user as specified by the fair_shares
keyword in the user stanza.

For additional information about using this variable, see the SYSPRIO
keyword description.

UserUsedBgShares
The number of Blue Gene shares already used by a user or jobs owned by the
user.

For additional information about using this variable, see the SYSPRIO
keyword description.

290 LoadLeveler: Using and Administering

UserUsedShares
The number of shares already used by a user or jobs owned by the user.

For additional information about using this variable, see the SYSPRIO
keyword description.

VirtualMemory
The size of available swap space (free paging space) on the machine, in
kilobytes, reported by the startd daemon.

For additional information about using this variable, see the MACHPRIO
keyword description.

Variables to use for setting dates
You can use the following date variables:

tm_mday
The number of the day of the month (1-31).

tm_mon
Number of months since January (0-11).

tm_wday
Number of days since Sunday (0-6).

tm_yday
Number of days since January 1 (0-365).

tm_year
The number of years since 1900 (0-9999). For example:
tm_year == 100

Denotes the year 2000.

tm4_year
The integer representation of the current year. For example:
tm4_year == 2010

Denotes the year 2010.

Variables to use for setting times
You can use the following time variables in the START, SUSPEND, CONTINUE,
VACATE, and KILL expressions.

If you use these variables in the START expression and you are operating across
multiple time zones, unexpected results may occur. This is because the negotiator
daemon evaluates the START expressions and this evaluation is done in the time
zone in which the negotiator resides. Your executing machine also evaluates the
START expression and if your executing machine is in a different time zone, the
results you may receive may be inconsistent. To prevent this inconsistency from
occurring, ensure that both your negotiator daemon and your executing machine
are in the same time zone.

tm_hour
The number of hours since midnight (0-23).

tm_isdst
Daylight Savings Time flag: positive when in effect, zero when not in effect,

Chapter 10. Configuration keyword reference 291

negative when information is unavailable. For example, to start jobs between 5
PM and 8 AM during the month of October, factoring in an adjustment for
Daylight Savings Time, you can issue:
START: (tm_mon == 9) && (tm_hour < 8) && (tm_hour > 17) && (tm_isdst = 1)

tm_min
Number of minutes after the hour (0-59).

tm_sec
Number of seconds after the minute (0-59).

292 LoadLeveler: Using and Administering

Chapter 11. Administration keyword reference

For a file-based configuration, the administration file lists and defines the machines
in the LoadLeveler cluster, as well as the characteristics of classes, users, groups,
and clusters.

LoadLeveler does not prevent you from having multiple copies of administration
files, but having only one administration file prevents confusion and avoids
potential problems that might arise from having multiple files to update. To use
only one administration file that is available to all machines in a cluster, you must
place the file in a shared file system.

For the database configuration option, the definitions for the machines in the
LoadLeveler cluster, as well as the characteristics of classes, users, groups, and
clusters are kept in database tables.

Table 51 lists the administration file subtasks:

Table 51. Administration file subtasks

Subtask Associated information (see . . .)

To find out what administrator tasks
you can accomplish by using the
administration file

Chapter 4, “Configuring the LoadLeveler
environment,” on page 39

To learn how to correctly specify the
contents of an administration file

v “Administration file structure and syntax”

v “Administration keyword descriptions” on page
298

Administration file structure and syntax
The administration file is called LoadL_admin and it lists and defines the machine,
machine_group, user, class, group, cluster and region. For the database configuration
option, there are one or more tables that correspond to each of these stanzas.

Machine and machine_group stanzas
Defines the roles that the machines in the LoadLeveler cluster play. See
“Defining machines” on page 89 for more information.

User stanza
Defines LoadLeveler users and their characteristics. See “Defining users”
on page 102 for more information.

Class stanza
Defines the characteristics of the job classes. To define characteristics that
apply to specific users, user substanzas can be added within a class stanza.
See “Defining classes” on page 94 and “Defining user substanzas in class
stanzas” on page 99 for more information.

Group stanza
Defines the characteristics of a collection of users that form a LoadLeveler
group. See “Defining groups” on page 103 for more information.

Cluster stanza
Defines the characteristics of a LoadLeveler cluster for use in a multicluster
environment. See “Defining clusters” on page 104 for more information.

© Copyright IBM Corp. 1986, 2012 293

Region stanza
Defines the characteristics of a region in a LoadLeveler cluster. See
“Defining regions” on page 106 for more information.

Stanzas have the following general format:
label: type = type_of_stanza
keyword1 = value1
keyword2 = value2
...

Substanzas have the following general format:
label: {

type = type_of_stanza
keyword1 = value1
keyword2 = value2
...
substanza_label: {

type = type_of_substanza
keyword3 = value3

}
}

Keywords are not case sensitive. This means you can enter them in lower case,
upper case, or mixed case.

The following is a simple example of an administration file illustrating several
stanzas:
machine_a: type = machine

central_manager = true # defines this machine as the central manager

class_a: type = class
priority = 50 # priority of this class

user_a: type = user
priority = 50 # priority of this user

group_a: type = group
priority = 50 # priority of this group

adapter_a: type = adapter
adapter_name = en0 #defines an adapter

The following is a simple example of an administration file illustrating a class
stanza that contains user substanzas:
default:

type = machine
central_manager = false
schedd_host = true

default:
type = class
wall_clocK-limit = 60:00, 30:00

parallel: {
type = class

Allow at most 50 running jobs for class parallel
maxjobs = 50

Allow at most 10 running jobs for any single
user of class parallel
default: {

294 LoadLeveler: Using and Administering

type = user
maxjobs = 10

}

Allow user dept_head to run as many as 20 jobs
of class parallel
dept_head: {

type = user
maxjobs = 20

}
}

dept_head:
type = user
maxjobs = 30

Stanza characteristics
There are a number of characteristics associated with stanzas. The characteristics of
a stanza are:
v Every stanza has a label associated with it. The label specifies the name you give

to the stanza.
v Every stanza has a type field that specifies it as a machine, machine_group, user,

class, group, cluster, or region stanza.
v New line characters are ignored. This means that separate parts of a stanza can

be included on the same line. However, it is not recommended to have parts of a
stanza cross line boundaries.

v White space is ignored, other than to delimit keyword identifiers. This eliminates
confusion between tabs and spaces at the beginning of lines.

v A crosshatch sign (#) identifies a comment and can appear anywhere on the line.
All characters following this sign on that line are ignored.

v Multiple stanzas of the same label are allowed, but only the first label is used.
v Default stanzas specify the default values for any keywords which are not

otherwise specified. Each stanza type can have an associated default stanza. A
default stanza must appear in the administration file ahead of any specific
stanza entries of the same type. For example, a default class stanza must appear
ahead of any specific class stanzas you enter.

v Stanzas can be nested within other stanzas (these are known as substanzas). See
“Defining user substanzas in class stanzas” on page 99 for more information.

v The use of opening and closing braces ({ and }) to mark the beginning and end
of a stanza is optional for stanzas that do not contain substanzas. A stanza that
contains substanzas must be specified using braces as delimiting characters. Only
user substanzas within class stanzas are supported. No types of stanzas other
than class support substanzas and no types of stanzas other than user can be
provided as substanzas within a class.

v If a syntax error is encountered, the remainder of the stanza is ignored and
processing resumes with the next stanza.

Syntax for limit keywords
The syntax for setting a limit is:
limit_type = hardlimit,softlimit

For example:
core_limit = 120kb,100kb

To specify only a hard limit, you can enter, for example:

Chapter 11. Administration keyword reference 295

core_limit = 120kb

To specify only a soft limit, you can enter, for example:
core_limit = ,100kb

In a keyword statement, you cannot have any blanks between the numerical value
(100 in the previous example) and the units (kb). Also, you cannot have any blanks
to the left or right of the comma when you define a limit in a job command file.

For limit keywords that refer to a data limit — such as data_limit, core_limit,
file_limit, stack_limit, rss_limit, as_limit, and memlock_limit — the hard limit
and the soft limit are expressed as:
integer[.fraction][units]

The allowable units for these limits are:
b bytes
w words
kb kilobytes (2**10 bytes)
kw kilowords (2**12 bytes)
mb megabytes (2**20 bytes)
mw megawords (2**22 bytes)
gb gigabytes (2**30 bytes)
gw gigawords (2**32 bytes)
tb terabytes (2**40 bytes)
tw terawords (2**42 bytes)
pb petabytes (2**50 bytes)
pw petawords (2**52 bytes)
eb exabytes (2**60 bytes)
ew exawords (2**62 bytes)

If no units are specified for data limits, then bytes are assumed.

For limit keywords that refer to a number limit — such as nproc_limit,
locks_limit, and nofile_limit — the hard limit and the soft limit are expressed as:
integer[.fraction][units]

The allowable units for these limits are:
K Kilo (2**10)
M Mega (2**20)
G Giga (2**30)
T Tera (2**40)
P Peta (2**50)
E Exa (2**60)

For limit keywords that refer to a time limit — such as ckpt_time_limit, cpu_limit,
job_cpu_limit, and wall_clock_limit — the hard limit and the soft limit are
expressed as:
[[hours:]minutes:]seconds[.fraction]

Fractions are rounded to seconds.

You can use the following character strings with all limit keywords except the copy
keyword for wall_clock_limit, job_cpu_limit, and ckpt_time_limit:
rlim_infinity

Represents the largest positive number.
unlimited

Has same effect as rlim_infinity.
copy Uses the limit currently active when the job is submitted.

296 LoadLeveler: Using and Administering

64-bit support for administration file keywords
Administrators can assign 64-bit integer values to selected keywords in the
administration file. System resource limits, with the exception of CPU limits, are
treated by LoadLeveler daemons and commands as 64-bit limits.

Table 52 describes 64-bit support for specific administration file keywords.

Table 52. Notes on 64-bit support for administration file keywords

Keyword Stanza Notes

as_limit Class See the notes for core_limit and data_limit.

core_limit Class 64-bit integer values can be assigned to these limits. Fractional specifications are
allowed and will be converted to 64-bit integer values. Unit specifications are
accepted and can be one of the following: b, w, kb, kw, mb, mw, gb, gw, tb, tw,
pb, pw, eb, ew.

Example:

core_limit = 8gb,4.25gb

data_limit

default_resources Class Consumable resources associated with the default_resources and
default_node_resources keywords can be assigned 64-bit integer values.
Fractional specifications are not allowed. Unit specifications are valid only when
specifying the values of the predefined ConsumableMemory,
ConsumableVirtualMemory, and ConsumableLargePageMemory resources.

Example:

default_resources = ConsumableVirtualMemory(12 gb)db2_license(112)

default_node_resources

file_limit Class See the notes for core_limit and data_limit.

locks_limit Class See the notes for nproc_limit.

memlock_limit Class See the notes for core_limit and data_limit.

nofile_limit Class See the notes for nproc_limit.

nproc_limit Class 64-bit integer values can be assigned to these limits. Fractional specifications are
allowed and will be converted to 64-bit integer values. Unit specifications is
number.

Unit specification is a number that can be used in conjunction with the
following abbreviations:
K kilo
M mega
G giga
T tera
P peta
E exa

Examples:

nproc_limit = 1000,285

resources Machine Consumable resources associated with the resources keyword can be assigned
64-bit integer values. Fractional specifications are not allowed. Unit
specifications are valid only when specifying the values of the predefined
ConsumableMemory, ConsumableVirtualMemory, and
ConsumableLargePageMemory resources.

Examples:

resources = spice2g6(9123456789012) ConsumableMemory(10 gw)
resources = ConsumableVirtualMemory(15 pb) db2_license(1234567890)

Chapter 11. Administration keyword reference 297

Table 52. Notes on 64-bit support for administration file keywords (continued)

Keyword Stanza Notes

rss_limit Class See the notes for core_limit and data_limit.

Example:

rss_limit = 1.25eb,3.33pw

stack_limit

64-bit limits on Linux systems
Applications managed by LoadLeveler for AIX can be 64-bit applications if the
hardware architecture on which AIX is running is capable of supporting 64-bit
processes.

Resource limits, such as data limits and stack limits, can be 64-bit limits. When a
value of unlimited is specified for a process limit (cpu_limit excepted) in the
LoadLeveler administration file or job command file, the AIX version of
LoadLeveler stores this value internally as INT64_MAX. Before starting the user job,
LoadL_starter sets the appropriate limit to this value. This behavior is correct
because, on AIX, RLIM64_INFINITY is the same as INT64_MAX (=
0x7FFFFFFFFFFFFFFFLL).

On Linux systems, RLIM64_INFINITY is equal to UINT64_MAX (=
0xFFFFFFFFFFFFFFFFULL). To maintain compatibility with AIX, LoadLeveler for
Linux also stores unlimited internally as INT64_MAX. However, LoadL_starter on
Linux sets all process limits (cpu_limit excepted) that are in the range (INT64_MAX,
UINT64_MAX) to UINT64_MAX before starting the jobs managed by LoadLeveler.

For historical reasons, LoadLeveler for AIX treats the hard and soft time limits,
such as cpu_limit, job_cpu_limit, and wall_clock_limit, as 32-bit limits and
unlimited means INT32_MAX. For consistency reasons, LoadLeveler for Linux
assumes the same behavior.

Administration keyword descriptions
This topic contains an alphabetical list of the LoadLeveler administration
keywords.

account
Specifies a list of account numbers available to a user submitting jobs.

Syntax:
account =list

Where list is a blank-delimited list of account numbers that identifies the
account numbers a user can use when submitting jobs.

Default: A null list.

admin
Specifies a list of administrators for a group or class.

Syntax:
admin = list

Where list is a blank-delimited list of administrators for either this class or this
group, depending on whether this keyword appears in a class or group stanza,
respectively. These administrators can hold, release, and cancel jobs in this
class or this group.

298 LoadLeveler: Using and Administering

adapter_list
Specifies a list of adapters to be used on the machine.

Syntax:
adapter_list = list1 list2 ...

or
adapter_list = none

Where the list of adapters consists of interface names in the order that will be
used for scheduling. If the adapter_list keyword is not specified, all adapters
that were found dynamically will be used for scheduling. If adapter_list is set
to none, no adapters will be used by this machine. The adapter_list cannot be
set to a blank value.

as_limit
Specifies the hard limit, soft limit, or both for the address space to be used by
each process of the submitted job.

Syntax:
as_limit = hardlimit,softlimit

Examples:
as_limit = 125621 # hardlimit = 125621 bytes
as_limit = 5621kb # hardlimit = 5621 kilobytes
as_limit = 2mb # hardlimit = 2 megabytes
as_limit = 2.5mw # hardlimit = 2.5 megawords
as_limit = unlimited # hardlimit = 9,223,372,036,854,775,807 \

bytes (X’7FFFFFFFFFFFFFFF’)
as_limit = rlim_infinity # hardlimit = 9,223,372,036,854,775,807 \

bytes (X’7FFFFFFFFFFFFFFF’)

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

central_manager
Determines whether the machine is the LoadLeveler central manager.

Syntax:
central_manager = true| false | alt

Where:
v true designates this machine as the LoadLeveler central manager host, where

the negotiator daemon runs. You must specify one and only one machine
stanza identifying the central manager. For example:
machine_a: type = machine
central_manager = true

v false specifies that this machine is not the central manager.
v alt specifies that this machine can serve as an alternate central manager in

the event that the primary central manager is not functioning. For more
information on recovering if the primary central manager is not operating,
refer to “What happens if the central manager isn't operating?” on page 399.
Submit-only machines cannot have their machine stanzas set to this value.
If you are going to select machines to serve as alternate central managers,
you should look at the following keywords in the configuration file:
– FAILOVER_HEARTBEAT_INTERVAL

– FAILOVER_HEARTBEAT_RETRIES

Chapter 11. Administration keyword reference 299

For information on setting these keywords, see “Specifying alternate central
managers” on page 48.

Default: false

Note: This keyword is deprecated, use the central_manager_list keyword
instead.

ckpt_dir
Specifies the directory to be used for checkpoint files for jobs that did not
specify this directory in the job command file.

The actual directory used to store the checkpoint files is a combination of the
value of this keyword and the value of the ckpt_subdir keyword.

Syntax:
ckpt_dir = directory

Where directory is the directory location to be used for checkpoint files that did
not have a directory name specified in the job command file. If the value
specified does not have a fully qualified directory path (including the
beginning forward slash), the initial working directory will be inserted before
the specified value.

The value specified by the ckpt_dir keyword is only used when the
ckpt_subdir keyword does not contain a full path name in the job command
file or is not specified in the job command file.

Default: Initial working directory

ckpt_time_limit
Specifies the hard limit, soft limit, or both limits for the elapsed time that
checkpointing a job can take.

Syntax:
ckpt_time_limit = hardlimit,softlimit

Where hardlimit,softlimit defines the maximum time that checkpointing a job
can take. When LoadLeveler detects that the softlimit has been exceeded, it
attempts to end the checkpoint and allow the job to continue. If this is not
possible, and the hard limit is exceeded, LoadLeveler will terminate the job.
The start time of the checkpoint is defined as the time when the Startd daemon
receives status from the starter that a checkpoint has started.

Default: Unlimited

Examples:
ckpt_time_limit = 30:45 #hardlimit - 30 minutes 45 seconds
ckpt_time_limit = 30:45,25:00 #hardlimit - 30 minutes 45 seconds

#softlimit - 25 minutes

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

class
Determines whether a machine will accept jobs of a certain job class. For
parallel jobs, you must define a class instance for each task you want to run on
a node using the format, class = class_name (count). This format defines the
class names using a statement that names the classes and sets the number of
tasks for each class in parenthesis.

300 LoadLeveler: Using and Administering

With this format, the following rules apply:
v Each class can have only one entry
v If a class has more than one entry or there is a syntax error, the entire class

statement will be ignored
v If the class statement has a blank value or is not specified, it will be

defaulted to No_Class (1)
v The number of instances for a class specified inside the parenthesis () must

be an unsigned integer. If the number specified is 0, it is correct syntactically,
but the class will not be defined in LoadLeveler

v If the number of instances for all classes in the class statement are 0, the
default No_Class(1) will be used

Note: The class names list is blank delimited.

For a LoadLeveler job to run on a machine, the machine must have a vacancy
for the class of that job. If the machine is configured for only one No_Class job
and a LoadLeveler job is already running there, then no further LoadLeveler
jobs are started on that machine until the current job completes.

You can have a maximum of 1024 characters in the class statement. You cannot
use allclasses or data_stage as a class name, since these are reserved
LoadLeveler keywords.

You can assign multiple classes to the same machine by specifying the classes
in the LoadLeveler administration file (called LoadL_admin). The classes,
themselves, should also be defined in the administration file. See “Setting up a
single machine to have multiple job classes” on page 415 and “Defining
classes” on page 94 for more information on classes.

Syntax:
class = class_name (count) ...

Default value: No_Class(1)

class_comment
Text characterizing the class.

Syntax:
class_comment = "string"

Where string is text characterizing the class. The comment string associated
with this keyword cannot contain an equal sign (=) or a colon (:) character. The
length of the string cannot exceed 1024 characters.

Default: No default value is set.

collective_groups
Requests the Collective Acceleration Unit (CAU) groups for the specified
protocol instances of the job.

Syntax:
collective_groups = number

The value of the collective groups must be greater than or equal to zero. The
value specified for the collective_groups keyword in the job command file
overwrites any value specified for the collective_groups keyword in the
administration file. If the job is not sharing the nodes with other jobs, then the
protocol instance of the job will be allocated at least number CAU groups.
Additional CAUs can be allocated to the job step if additional CAU groups are
available on the node and the node is not shared with other jobs. If the job is

Chapter 11. Administration keyword reference 301

sharing the node with other jobs, then exactly number CAU groups are
allocated to each protocol instance of the job.

Default value: The default value varies depending on whether the job shares
the nodes with other jobs or not. If the job is not sharing the nodes with other
jobs, then all the CAU groups are allocated to all the protocol instances of the
job proportionally. If the job is sharing the nodes with other jobs, then zero
CAU groups are allocated to the protocol instances of the job.

core_limit
Specifies the hard limit, soft limit, or both limits for the size of a core file a job
can create.

Syntax:
core_limit = hardlimit,softlimit

Examples:
core_limit = unlimited
core_limit = 30mb

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

cpu_limit
Specifies hard limit, soft limit, or both limits for the CPU time to be used by
each individual process of a job step.

Syntax:
cpu_limit = hardlimit,softlimit

For example, if you impose a cpu_limit of five hours and you have a job step
composed of five processes, each process can consume five CPU hours; the
entire job step can therefore consume 25 total hours of CPU.

Examples:
cpu_limit = 12:56:21 # hardlimit = 12 hours 56 minutes 21 seconds
cpu_limit = 56:00,50:00 # hardlimit = 56 minutes 0 seconds

softlimit = 50 minutes 0 seconds
cpu_limit = 1:03 # hardlimit = 1 minute 3 seconds
cpu_limit = unlimited # hardlimit = 2,147,483,647 seconds

(X’7FFFFFFF’)
cpu_limit = rlim_infinity # hardlimit = 2,147,483,647 seconds

(X’7FFFFFFF’)
cpu_limit = copy # current CPU hardlimit value on the

submitting machine.

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

cpu_speed_scale
Determines whether CPU time is normalized according to machine speed.

Syntax:
cpu_speed_scale = true | false

Where true specifies that CPU time (which is used, for example, in setting
limits, in accounting information, and reported by the llq -x command), is in
normalized units for each machine. false specifies that CPU time is in native

302 LoadLeveler: Using and Administering

units for each machine. For an example of using this keyword to normalize
accounting information, see “Example: Setting up job accounting files” on page
71.

Default: false

data_limit
Specifies hard limit, soft limit, or both for the data segment to be used by each
process of the submitted job.

Syntax:
data_limit = hardlimit,softlimit

Examples:
data_limit = 125621 # hardlimit = 125621 bytes
data_limit = 5621kb # hardlimit = 5621 kilobytes
data_limit = 2mb # hardlimit = 2 megabytes
data_limit = 2.5mw # hardlimit = 2.5 megawords
data_limit = unlimited # hardlimit = 9,223,372,036,854,775,807 bytes

(X’7FFFFFFFFFFFFFFF’)
data_limit = rlim_infinity # hardlimit = 9,223,372,036,854,775,807 bytes

(X’7FFFFFFFFFFFFFFF’)
data_limit = copy # copy data hardlimit value from

submitting machine.

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

default_class
Specifies a class name that is the default value assigned to jobs submitted by
users for which no class statement appears.

Syntax:
default_class = list

Where list is a blank-delimited list of class names used for jobs which do not
include a class statement in the job command file. If you specify only one
default class name, this class is assigned to the job. If you specify a list of
default class names, LoadLeveler searches the list to find a class which satisfies
the resource limit requirements. If no class satisfies these requirements,
LoadLeveler rejects the job.

Suppose a job requests a CPU limit of 10 minutes. Also, suppose the default
class list is default_class = short long, where short is a class for jobs up to
five minutes in length and long is a class for jobs up to one hour in length.
LoadLeveler will select the long class for this job because the short class does
not have sufficient resources.

Default: If no default_class is specified in the user stanza, or if there is no user
stanza at all, then jobs submitted without a class statement are assigned to the
default_class that appears in the default user stanza. If you do not define a
default_class, jobs are assigned to the class called No_Class.

default_group
Specifies the default group name to which the user belongs.

Syntax:
default_group = group_name

Where group_name is the default group assigned to jobs submitted by the user.

Chapter 11. Administration keyword reference 303

If you specify default_group = Unix_Group, LoadLeveler sets the user's
LoadLeveler group to the user's current UNIX group.

Default: If a default_group statement does not appear in the user stanza, or if
there is no user stanza at all, then jobs submitted by the user without a group
statement are assigned to the default_group that appears in the default user
stanza. If you do not define a default_group, jobs are assigned to the group
called No_Group.

default_interactive_class
Specifies a class to which interactive jobs are assigned for jobs submitted by
users who do not specify a class using the LOADL_INTERACTIVE_CLASS
variable. You can specify only one default interactive class name.

Syntax:
default_interactive_class = class_name

Where class_name is the class to which an interactive job submitted by this user
is assigned if the user does not specify a class using the
LOADL_INTERACTIVE_CLASS environment variable.

Default: If you do not set a default_interactive_class value in the user stanza,
or if there is no user stanza at all, then interactive jobs submitted without a
class statement are assigned to the default_interactive_class that appears in
the default user stanza. If you do not define a default_interactive_class,
interactive jobs are assigned to the class called No_Class.

See “Examples: User stanzas” on page 102 for more information on how
LoadLeveler assigns a default interactive class to jobs.

default_network

Specifies the default communication protocols, adapters, and their
characteristics provided there is no network statement in the job step.

Note: Default values for collective_groups, imm_send_buffers, and endpoints
cannot be specified in the default_network statement. MPI, LAPI, and
MPI_LAPI are the only protocols that can be specified. The default_network
statement is not supported when using the database configuration option.

Syntax:
default_network.protocol = type[, usage[, mode[,comm_level[, instances=<number
|max> [, rcxtblocks=number]]]]]

where:

protocol
Specifies the communication protocols that are used with an adapter,
and can be the following:
MPI Specifies the message passing interface (MPI). You can specify

in a class stanza both default_network.MPI and
default_network.LAPI.

LAPI Specifies the low-level application programming interface
(LAPI). You can specify in a class stanza both
default_network.MPI and default_network.LAPI.

MPI_LAPI
Specifies sharing adapter windows between MPI and LAPI.
When you specify default_network.MPI_LAPI in a class
stanza, you cannot specify any other network statements in
that class stanza.

304 LoadLeveler: Using and Administering

|
|
|
|

type This field is required and specifies one of the following:
sn_single

When used for switch adapters, it specifies that LoadLeveler
use a common, single switch network.

sn_all Specifies that striped communication should be used over all
available switch networks. The networks specified must be
accessible by all machines selected to run the job. For more
information on striping, see “Submitting jobs that use striping”
on page 188.

The following are optional and if omitted their position must be specified with
a comma:
usage Specifies whether the adapter can be shared with tasks of other job

steps. Possible values are shared, which is the default, or not_shared.
If not_shared is specified, LoadLeveler can only guarantee that the
adapter will not be shared by other jobs running on the same OSI. If
the adapter is shared by more than one OSI, LoadLeveler cannot
guarantee that the adapter is not shared with jobs running on a
different OSI.

mode Specifies the communication subsystem mode used by the
communication protocol that you specify, and can be either IP (Internet
Protocol), which is the default, or US (User Space). Note that each
instance of the US mode requested by a task running on switch
adapters requires an adapter window. For example, if a task requests
both the MPI and LAPI protocols such that both protocol instances
require US mode, two adapter windows will be used.

comm_level

Note: This keyword is obsolete and will be ignored, however it is
being retained for compatibility and because the parameters in the
default_network statement are positional.
The comm_level keyword should be used to suggest the amount of
inter-task communication that users expect to occur in their parallel
jobs. This suggestion is used to allocate adapter device resources.
Specifying a level that is higher than what the job actually needs will
not speed up communication, but may make it harder to schedule a
job (because it requires more resources). The comm_level keyword can
only be specified with US mode. The three communication levels are:
LOW Implies that minimal inter-task communication will occur.
AVERAGE

This is the default value. Unless you know the specific
communication characteristics of your job, the best way to
determine the comm_level is through trial-and-error.

instances=<number|max>
If instances is specified as a number, it indicates the number of parallel
communication paths made available to the protocol on each network.
The number actually used will depend on the implementation of the
protocol subsystem. If instances is specified by max, the actual value
used is determined by the MAX_PROTOCOL_INSTANCES in the
class when the job is submitted. The default value for instances is 1.

For the best performance set MAX_PROTOCOL_INSTANCES so that
the communication subsystem uses every available adapter before it
reuses any of the adapters.

rcxtblocks=number
Integer value specifying the number of user rCxt blocks requested for
each window used by the associated protocol.

Chapter 11. Administration keyword reference 305

Note: Use of this keyword will prevent adapters from the SP Switch2
family from being used by the job.

default_node_resources
Specifies quantities of the consumable resources consumed by each node of a
job step provided that a node_resources keyword is not coded for the step in
the job command file. If a node_resources keyword is coded for a job step, it
overrides any default node resources associated with the associated job class.
The resources must be machine resources; floating resources cannot be
assigned with the node_resources keyword.

Syntax:
default_node_resources = name(count) name(count) ... name(count)

The administrator defines the name and count for default_node_resources. In
addition, name(count) could be ConsumableCpus(count),
ConsumableMemory(count units), ConsumableLargePageMemory(count units),
or ConsumableVirtualMemory(count units).

The ConsumableMemory, ConsumableVirtualMemory, and
ConsumableLargePageMemory can be specified with both a count and units.
ConsumableMemory or ConsumableVirtualMemory specified resource count
must be an integer greater than zero. ConsumableLargePageMemory specified
resource count must be an integer greater than or equal to zero. The allowable
units are those normally used with LoadLeveler data limits:
b bytes
w words
kb kilobytes (2**10 bytes)
kw kilowords (2**12 bytes)
mb megabytes (2**20 bytes)
mw megawords (2**22 bytes)
gb gigabytes (2**30 bytes)
gw gigawords (2**32 bytes)
tb terabytes (2**40 bytes)
tw terawords (2**42 bytes)
pb petabytes (2**50 bytes)
pw petawords (2**52 bytes)
eb exabytes (2**60 bytes)
ew exawords (2**62 bytes)

The ConsumableMemory, ConsumableVirtualMemory, and
ConsumableLargePageMemory values are stored in MB (megabytes) and are
rounded up. For ConsumableMemory or ConsumableVirtualMemory the
smallest amount that you can request is 1 MB. If no units are specified, then
megabytes are assumed. Resources defined here that are not in the
SCHEDULE_BY_RESOURCES list in the global configuration file will not
affect the scheduling of the job.

default_resources
Specifies the default amount of resources consumed by a task of a job step,
provided that the resources or dstg_resources keyword is not coded for the
step in the job command file. If a resources keyword is coded for a job step,
then it overrides any default resources associated with the associated job class.

Syntax:
default_resources = name(count) name(count)...name(count)

The administrator defines the name and count values for default_resources. In
addition, name(count) could be ConsumableCpus(count),
ConsumableMemory(count units), ConsumableVirtualMemory(count units), or
ConsumableLargePageMemory(count units).

306 LoadLeveler: Using and Administering

The ConsumableMemory, ConsumableVirtualMemory, and
ConsumableLargePageMemory can be specified with both a count and units.
ConsumableMemory or ConsumableVirtualMemory specified resource count
must be an integer greater than zero. ConsumableLargePageMemory specified
resource count must be an integer greater than or equal to zero. The allowable
units are those normally used with LoadLeveler data limits:
b bytes
w words
kb kilobytes (2**10 bytes)
kw kilowords (2**12 bytes)
mb megabytes (2**20 bytes)
mw megawords (2**22 bytes)
gb gigabytes (2**30 bytes)
gw gigawords (2**32 bytes)
tb terabytes (2**40 bytes)
tw terawords (2**42 bytes)
pb petabytes (2**50 bytes)
pw petawords (2**52 bytes)
eb exabytes (2**60 bytes)
ew exawords (2**62 bytes)

The ConsumableMemory and ConsumableVirtualMemory values are stored
in MB (megabytes) and are rounded up. Therefore, the smallest amount of
ConsumableMemory or ConsumableVirtualMemory that you can request is 1
MB. If no units are specified, then megabytes are assumed. Resources defined
here that are not in the SCHEDULE_BY_RESOURCES list in the global
configuration file will not effect the scheduling of the job.

default_wall_clock_limit

Sets a default value for jobs not specifying a wall clock limit in the job
command file. The wall_clock_limit keyword serves only as the maximum
value allowed for the class. The default_wall_clock_limit value can be
overridden by a job using the wall_clock_limit job command file keyword, but
that limit cannot exceed the wall_clock_limit configured in the class stanza.

Note: If default_wall_clock_limit is not specified, it will be assigned the value
of wall_clock_limit for the same class.

Syntax:
default_wall_clock_limit = hardlimit,softlimit

An example is:
default_wall_clock_limit = 5:00,4:30

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

dstg_max_starters
Specifies a machine-specific limit on the number of data staging initiators.
Since each task of a data staging job step consumes one initiator from the
data_stage class on the specified machine, dstg_max_starters provides the
maximum number of data staging tasks that can run at the same time on the
machine.

Syntax:
dstg_max_starters = number

Notes:

Chapter 11. Administration keyword reference 307

1. If you have not set the dstg_max_starters value in either the global or local
configuration files, there will not be any data staging initiators on the
specified machine. In this configuration, the executing machine will not be
allowed to perform data staging tasks.

2. The value specified for dstg_max_starters will be the number of initiators
available for the built-in data_stage class on that machine.

3. The value specified for dstg_max_starters will not limit the value specified
for dstg_max_starters.

Default value: 0

endpoints
Specifies the number of endpoints that can be used by each task per protocol
instance.

Syntax:
endpoints = 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128

where:

number
Must be a power of 2 and no greater than 128 (that is, from {1, 2, 4, 8, 16,
32, 64, 128}). If the value specified is not a power of 2, the next higher
power of 2 is used and a warning message is issued. The value of the
endpoints keyword is inherited to all the protocol instances of the jobs.

Default value: One endpoints value is assigned for each task per protocol
instance.

env_copy

Specifies a default value for the job command file env_copy keyword for the
class, group or user stanza containing the keyword.

Syntax:
env_copy = all | master

Table 53 states the value that LoadLeveler uses depending on the combination
of values set in the user, group, or class stanzas.

Table 53. Summary of possible values set for the env_copy keyword in the administration file

env_copy keyword setting in applicable
stanzas in the administration file

Resulting LoadLeveler default behavior for
copying the job environment

All stanzas that set the env_copy keyword
specify env_copy = master

master becomes the default value for the job
command file env_copy keyword.

One or more stanzas explicitly set env_copy =
all

all becomes the default value for the job
command file env_copy keyword.

The env_copy keyword is not specified in
any stanza

Default value: No default value is set.

For more information, see:
v The job command file env_copy keyword description.
v “Steps for reducing job launch overhead for parallel jobs” on page 111.

exclude_bg
Specifies that jobs using this class cannot run using the specified list of Blue
Gene resources.

308 LoadLeveler: Using and Administering

Syntax:
exclude_bg = list

Where list is a blank-delimited list of Blue Gene resources that cannot be used
by jobs in this class.

An item on the list can be the name of a midplane (for example, R00-M0), the
name of a rack (for example, R00), or the name of a row of racks (for example,
R0). Other types of Blue Gene resources are not subject to any restrictions by
the include_bg or exclude_bg keyword.

If both exclude_bg and include_bg are specified, exclude_bg takes precedence.

Default: The default is that no Blue Gene resources are excluded.

Examples:

In a Blue Gene/Q system, if job class ClassB has:
exclude_bg = R0 R11 R32-M0

the jobs in ClassB cannot use racks starting with "R0" (which includes
midplanes R00, R01, R02, and so on), rack R11 (which includes midplanes
R11–M0 and R11–M1), and midplane R32–M0.

exclude_classes

exclude_classes can be specified within a cluster stanza.

Specifies a blank-delimited list of one or more job classes that will not accept
remote jobs within the cluster.

Syntax:
exclude_classes = class_name[(cluster_name)] ...

Where class_name specifies a class to be excluded and cluster_name can be used
to specify that remote jobs from cluster_name submitted under class_name will
be excluded but any other jobs submitted under class_name from other clusters
will be allowed.

Do not specify a list of exclude_classes and include_classes. Only one of these
keywords can be used within any cluster stanza. exclude_classes takes
precedence over include_classes if both are specified.

Default: The default is that no classes are excluded.

exclude_groups

exclude_groups can be specified within a class stanza and a cluster stanza.

Class stanza:

When used within a class stanza, exclude_groups specifies a list of group
names identifying those who cannot submit jobs of a particular class.

Syntax:
exclude_groups = list

Where list is a blank-delimited list of groups who are not allowed to submit
jobs of class name.

This list can contain individual user names. To allow a list of users to be
included with the list of group names, add a plus sign (+) to each user name
that you add to the list. LoadLeveler treats these names as implicit groups.

For example, to add user mike to a list of group names, specify:

Chapter 11. Administration keyword reference 309

exclude_groups = prod +mike

If the string +mike is also the actual name of a group stanza, LoadLeveler
treats this name as a group, not an implicit group. In this case, LoadLeveler
will not prevent user mike from submitting jobs to this class unless the user is
a member of the prod or +mike group.

If this keyword is specified, this list limits groups and users of that class to
those on the list.

Do not specify both a list of included groups and a list of excluded groups.
Only one of these may be used for any class stanza. exclude_groups takes
precedence over include_groups if both are specified.

Default: The default is that no groups are excluded.

Cluster stanza:

When used within a cluster stanza, exclude_groups specifies a blank-delimited
list of one or more groups that will not accept remote jobs within the cluster.

Syntax:
exclude_groups = group_name[(cluster_name)] ...

Where group_name specifies a group that is not allowed to submit remote jobs
and cluster_name can be used to specify that remote jobs from cluster_name
submitted under group_name will be excluded but any other jobs submitted
under group_name from other clusters will be allowed.

Do not specify a list of exclude_groups and include_groups. Only one of these
may be used within any cluster stanza. exclude_groups takes precedence over
include_groups if both are specified.

Default: The default is that no groups are excluded.

exclude_users

exclude_users may be specified within a class, group, and cluster stanza.

Class or group stanza:

When used within a class or group stanza exclude_users specifies a list of user
names identifying those who cannot submit jobs of a particular class or who
are not members of the group.

Syntax:
exclude_users = list

The definition of this keyword varies slightly, depending on the type of
administration file stanza in which the keyword appears:
v In a class stanza: list is a blank-delimited list of users who are not permitted

to submit jobs of class_name.
v In a group stanza: list is a blank-delimited list of users who do not belong to

the group.

Do not specify both a list of included users and a list of excluded users. Only
one of these may be used for any class or group. exclude_users takes
precedence over include_users if both are specified. In a class stanza,
exclude_users also takes precedence over any user substanzas.

Default: The default is that no users are excluded.

Cluster stanza:

310 LoadLeveler: Using and Administering

When used within a cluster stanza, exclude_users specifies a blank-delimited
list of one or more users who cannot submit jobs to the cluster.

Syntax:
exclude_users = user_name[(cluster_name)] ...

Where user_name specifies a user that is not allowed to submit remote jobs and
cluster_name can be used to specify that remote jobs from cluster_name
submitted under the user_name will be excluded but any other jobs submitted
under that user_name from other clusters will be allowed.

Do not specify a list of exclude_users and include_users. Only one of these
may be used within any cluster stanza. exclude_users takes precedence over
include_users if both are specified.

Default: The default is that no users are excluded.

fair_shares
Specifies the number of shares allocated to jobs of this user or group for fair
share scheduling. If the user or group stanza does not specify fair_shares, or if
there is no user or group stanza at all, the value in the default user or group
stanza is used (which defaults to zero if not explicitly specified). The user or
group has this number of shares of the cluster CPU resources as well as this
number of shares of the Blue Gene resources (if Blue Gene resources are also
available in the cluster).

Syntax:
fair_shares = number

For additional information about the fair share scheduling keyword, see
“Using fair share scheduling” on page 158.

feature
Specifies an optional characteristic to use to match jobs with machines. You can
specify unique characteristics for any machine using this keyword. When
evaluating job submissions, LoadLeveler compares any required features
specified in the job command file to those specified using this keyword. You
can have a maximum of 1024 characters in the feature statement.

Syntax:
feature = string ...

Default value: No default value is set.

Example: If a machine has licenses for installed products ABC and XYZ in the
local configuration file, you can enter the following:
feature = abc xyz

When submitting a job that requires both of these products, you should enter
the following in your job command file:
requirements = (feature == abc) && (feature == xyz)

Note: One optional way to run dynamic simultaneous multithreading (SMT) is
to define a feature on all machines. SMT is only supported on POWER7
processor-based systems.

Example: When submitting a job that requires the SMT function, first specify
smt = yes in the job command file (or select a class which had smt = yes
defined). Next, specify job_type = parallel and node_usage = not_shared and
last, enter the following in the job command file:
requirements = (Feature == smt)

Chapter 11. Administration keyword reference 311

file_limit
Specifies the hard limit, soft limit, or both limits for the size of a file that a job
can create.

Syntax:
file_limit = hardlimit,softlimit

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

imm_send_buffers
Requests a number of immediate send buffers for each window allocated for
each protocol instance of the job.

Syntax:
imm_send_buffers=number

The value of the immediate send buffers must be greater than or equal to zero.
The value of the immediate send buffers is inherited from all the protocol
instances of the job step unless the individual protocol instances are specified
with their own immediate send buffers. If the job is sharing nodes with other
jobs, then exactly number immediate send buffers are allocated to each window
assigned to each protocol instance of the job. If the job is not sharing the nodes
with other jobs then at least number immediate send buffers are allocated to
each window assigned to each protocol instance of the job. Additional
immediate send buffers can be distributed evenly to the windows assigned to
the job if the nodes are not shared with other jobs.

Default value: The default value varies depending on whether the job shares
the nodes with other jobs or not. If the job is not sharing the nodes with other
jobs, then all the immediate send buffers are allocated to all the protocol
instances of the job proportionally. If the job is sharing the nodes with other
jobs, then one immediate send buffer is assigned for each window assigned to
the job.

inbound_hosts
Specifies a blank-delimited list of hostnames that define the machines
configured for inbound connections from other clusters.

Syntax:
inbound_hosts = hostname[(cluster_name)] ...

Where hostname specifies a machine configured for inbound connections from
other clusters and cluster_name can be used to specify a specific cluster if the
host is not connected to all clusters in the multicluster. These hostnames must
be fully qualified with domain names if the machines exist in a different
domain. This keyword is required in a multicluster environment.

Note: The same machine can be defined as both an inbound host and an
outbound host.

inbound_schedd_port
Specifies the port number to use to connect to the Schedd for inbound
transactions to this cluster.

Syntax:
inbound_schedd_port = port_number

312 LoadLeveler: Using and Administering

Where port_number is a positive integer which specifies the port number used
to connect to the Schedd for inbound transactions to this cluster.

Default: The default port is 9605.

include_bg
Specifies that jobs using this class will run only on the list of specified Blue
Gene resources.

Syntax:
include_bg = list

Where list is a blank-delimited list of Blue Gene resources that can be used by
jobs in this class.

An item on the list can be the name of a midplane (for example, R00–M0), the
name of a rack (for example, R00), or the name of a row of racks (for example,
R0). Other types of Blue Gene resources are not subject to any restrictions by
the include_bg or exclude_bg keyword.

If both exclude_bg and include_bg are specified, exclude_bg takes precedence.

Default: The default is that all Blue Gene resources are included.

Examples:

In a BG/Q system, if job class ClassA has:
include_bg = R00

then jobs in ClassA can use all midplanes in rack R00 (R00–M0 and R00–M1).

include_classes

include_classes can be specified within a cluster stanza.

Specifies a blank-delimited list of one or more job classes that will accept
remote jobs within the cluster.

Syntax:
include_classes = class_name[(cluster_name)] ...

Where class_name specifies a class to be included and cluster_name can be used
to specify that remote jobs from cluster_name will be included but any other
jobs submitted under class_name from other clusters will not be allowed.

Do not specify a list of exclude_classes and include_classes. Only one of these
can be used within any cluster stanza. exclude_classes takes precedence over
include_classes if both are specified.

Default: The default is that all classes are included.

include_groups

include_groups can be specified within a class stanza and a cluster stanza.

Class stanza:

When used within a class stanza, include_groups specifies a list of group
names identifying those who can submit jobs of a particular class.

Syntax:
include_groups = list

Where list is a blank-delimited list of groups who are allowed to submit jobs of
class name.

Chapter 11. Administration keyword reference 313

This list can contain individual user names. To allow a list of users to be
included with the list of group names, add a plus sign (+) to each user name
that you add to the list. LoadLeveler treats these names as implicit groups.

For example, to add user mike to a list of group names, specify:
exclude_groups = prod +mike

If the string +mike is also the actual name of a group stanza, LoadLeveler
treats this name as a group, not an implicit group. In this case, LoadLeveler
will not allow user mike to submit jobs to this class unless the user is a
member of the prod or +mike group.

If this keyword is specified, this list limits groups and users of that class to
those on the list.

Do not specify both a list of included groups and a list of excluded groups.
Only one of these may be used for any class stanza. exclude_groups takes
precedence over include_groups if both are specified.

Default: The default is that all groups are included.

Cluster stanza:

When used within a cluster stanza, include_groups specifies a blank-delimited
list of one or more groups that will accept remote jobs within the cluster.

Syntax:
include_groups = group_name[(cluster_name)] ...

Where group_name specifies a group that is allowed to submit remote jobs and
cluster_name can be used to specify that remote jobs from cluster_name
submitted under group_name will be included but any other jobs submitted
under group_name from other clusters will not be allowed.

Do not specify a list of exclude_groups and include_groups. Only one of these
may be used within any cluster stanza. exclude_groups takes precedence over
include_groups if both are specified.

Default: The default is that all groups are included.

include_users

include_users may be specified within a class, group, and cluster stanza.

Class or group stanza:

When used within a class or group stanza include_users specifies a list of user
names identifying those who can submit jobs of a particular class or who are
members of the group.

Syntax:
include_users = list

The definition of this keyword varies slightly, depending on the type of
administration file stanza in which the keyword appears:
v In a class stanza: list is a blank-delimited list of users who are permitted to

submit jobs of class_name.
v In a group stanza: list is a blank-delimited list of users who belong to the

group.

Do not specify both a list of included users and a list of excluded users. Only
one of these may be used for any class or group. exclude_users takes

314 LoadLeveler: Using and Administering

precedence over include_users if both are specified. In a class stanza, users in
user substanzas are also permitted to submit jobs of class_name, even if those
users are not in the include_users list.

Default: The default is that all users are included.

Cluster stanza:

When used within a cluster stanza, include_users specifies a blank-delimited
list of one or more users who can submit jobs to the cluster.

Syntax:
include_users = user_name[(cluster_name)] ...

Where user_name specifies a user that is allowed to submit remote jobs and
cluster_name can be used to specify that remote jobs from cluster_name
submitted under the user_name will be included but any other jobs submitted
under that user_name from other clusters will not be allowed.

Do not specify a list of exclude_users and include_users. Only one of these
may be used within any cluster stanza. exclude_users takes precedence over
include_users if both are specified.

Default: The default is that all users are included.

island
Specifies the name of the island to which the machine belongs.

Syntax:
island = name

Where name is the name of the island. The island keyword can be specified in
the machine stanza or the machine_group stanza. When used in a
machine_group stanza, all machines belonging to that machine group belong to
the specified island. The island keyword cannot be overridden in a machine
substanza within a machine_group stanza. If the island keyword is not
specified for a machine, then the machine does not belong to any island. A
machine which does not belong to any island will not be considered by the
LoadLeveler scheduler for job steps requiring the node_topology = island
keyword.

Default value: No default value is set.

job_cpu_limit
Specifies the hard limit, soft limit, or both limits for the total amount of CPU
time that all tasks of an individual job step can use per machine.

Syntax:
job_cpu_limit = hardlimit,softlimit

Example:
job_cpu_limit = 10000

For more information on this keyword, see:
v JOB_LIMIT_POLICY keyword
v For additional information about limit keywords, see the following topics:

– “Syntax for limit keywords” on page 295
– “Using limit keywords” on page 94

local
Specifies the scope of the cluster definition.

Chapter 11. Administration keyword reference 315

Syntax:
local = true| false

This keyword is required in the local cluster's administration file in a
multicluster environment.

Default: false

locks_limit
Specifies the hard limit, soft limit, or both for the file locks to be used by each
process of the submitted job.

Syntax:
locks_limit = hardlimit,softlimit

Examples:
locks_limit = 125621 # hardlimit = 125621

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

machine_list
Specifies a list of machines that belong to the machine_group.

Syntax:

The syntax of machine_list, which consists of a list of expressions separated by
comma, is modeled after the xCAT noderange concept. machine_list will
support a subset of the xCAT syntaxes. The supported usages are:
v A single machine

– x330n01, pccluster21, c197blade1b04
v '-' or ':' to represent a range of machines

– Only appended numbers can be expanded, and paddings can be properly
added

– Only one range of numbers can be specified within each set of enclosing
brackets

– x330n01-x330n04 (x330n01, x330n02, x330n03, x330n04)
– x330n01-x330n123 (x330n01, x330n02, ...x330n10... x330n99, x330n100, ...

x330n123)
– pccluster[1-1000] (pccluster1, pccluster2...pccluter1000)
– c197blade1b[01:99] (c197blade1b01, c197blade1b02...c197blade1b99)
– c250f08c[06-12]ap[01-08] (c250f08c06ap01, c250f08c06ap02, ...,

c250f08c07ap01, c250f08c07ap02, ... c250f08c12ap08)
v '+' to represent an incremented range of machines

– Only appended numbers can be expanded, and paddings can be properly
added

– x330n01+3 (x330n01, x330n02, x330n03, x330n04)
– pccluster1+999 (pccluster1, pccluster2...pccluter1000)
– c197blade1b01+98 (c197blade1b01, c197blade1b02...c197blade1b99)

v '-' serving as a prefixed exclusion operator to represent the range of
machines to be excluded from the result
– '-' as exclusion operator has precedence over other expressions
– -x330n02, x330n01+3
– pccluster1-1000, -pccluster21-34

316 LoadLeveler: Using and Administering

The following usages are supported by xCAT, but are not supported in
LoadLeveler:
v '@' because there is only one machine_list in a stanza
v '^' as file operator
v Multiple expansion
v Regular expression is not supported
v Suffix
v “node” as the default prefix

machine_mode
Specifies the type of jobs this machine can run.

Syntax:
machine_mode = batch | interactive | general

Where:

batch Specifies this machine can run only batch jobs.

interactive
Specifies this machine can run only interactive jobs. Only POE is
currently enabled to run interactively.

general
Specifies this machine can run both batch jobs and interactive jobs.

Default: general

master_node_exclusive
Specifies whether or not this machine is used only as a master node.

Syntax:
master_node_exclusive = true| false

Where true specifies that the machine accepts only jobs (serial or parallel)
submitted to classes that have master_node_requirement set to true. If the job
type is parallel, only the master task is run on a machine with
master_node_exclusive set to true.

Default: false

master_node_requirement
Specifies whether or not parallel jobs in this class require the master node
feature.

Syntax:
master_node_requirement = true|false

Where true specifies that parallel jobs do require the master node feature. For
these jobs, LoadLeveler allocates the first node (called the “master”) on a
machine having the master_node_exclusive = true setting in its machine
stanza. If most or all of your parallel jobs require this feature, you should
consider placing the statement master_node_requirement = true in your
default class stanza. Then, for classes that do not require this feature, you can
use the statement master_node_requirement = false in their class stanzas to
override the default setting. One machine per class should have the true
setting; if more than one machine has this setting, normal scheduling selection
is performed.

Default: false

Chapter 11. Administration keyword reference 317

max_jobs_scheduled
Specifies the maximum number of job steps that this machine can run.

Syntax:
max_jobs_scheduled = number

Where number is the maximum number of jobs submitted from this scheduling
(Schedd) machine that can run (or start running) in the LoadLeveler cluster at
one time. If number of jobs are already running, no other jobs submitted from
this machine will run, even if resources are available in the LoadLeveler
cluster. When one of the running jobs completes, any waiting jobs then become
eligible to be run.

Default: The default is -1, which means there is no maximum.

max_node
Specifies the maximum number of nodes that can be requested for a particular
class or by a particular user or group for a parallel job.

Syntax:
max_node = number

Where number specifies the maximum number of nodes for a parallel job in a
job command file using the node keyword.

Default: The default is -1, which means there is no limit.

max_node_resources
Specifies the maximum number of consumable resources that you can request
for all tasks of a job step running on the same node.

Syntax:
max_node_resources = name(count) name(count) ... name(count)

Notes:

1. If the requirement in a job command file for the node_resources keyword
exceeds what the administrator allows in the max_node_resources keyword
of the corresponding class, the job will not be submitted to LoadLeveler.

2. If the default_node_resources specified in the class stanza exceed what is
allowed by MAX_NODE_RESOURCES:
v An error will be logged while reading the administration file.
v The max_node_resources keyword will be ignored for the class.

Default value: No default value is set.

max_protocol_instances
Specifies the maximum number of instances on the network statement.

Syntax:
max_protocol_instances = number

Where number specifies the maximum value allowed on the instances keyword
on the network statement for jobs submitted on this class.

Default: The default is 2.

max_reservation_duration
Specifies the maximum time, in minutes, that advance reservations made for
this user or group can last.

Syntax:

318 LoadLeveler: Using and Administering

max_reservation_duration = number of minutes

When the duration is defined in both the user and group stanza for a specific
user, LoadLeveler uses the more restrictive of the two values to determine the
maximum duration.

Default: The default is -1, which means that no limit is placed on the duration
of the reservation.

For more information, see “Steps for configuring reservations in a LoadLeveler
cluster” on page 128.

max_reservation_expiration
Specifies the time, in days, before a recurring reservation for a user or group
must expire.

Syntax:
MAX_RESERVATION_EXPIRATION = number_of_days

The expiration date of a recurring reservation owned by this user or group can
be at most MAX_RESERVATION_EXPIRATION days from the start time of
the next occurrence of the reservation. For example, if
MAX_RESERVATION_EXPIRATION = 180 for a user, any reservation created
by that user can be in the system for at most 180 days from the start of the
first occurrence to the start of the last occurrence. When the maximum
expiration is defined in both the user and group stanza for a specific user,
LoadLeveler uses the more restrictive of the two values to determine the
maximum expiration.

A value of -l means that no limit is placed on the expiration date; otherwise,
the value must be a positive integer.

Default value: The default is 180.

max_reservations
Specifies the maximum number of advance reservations that this user or group
can make.

Syntax:
max_reservations = number of reservations

This number includes all reservations except those in COMPLETE or CANCEL
state.

Note: A recurring reservation only counts as one reservation towards the
MAX_RESERVATIONS limit regardless of the number of times that the
reservation recurs.

Table 54 summarizes the resulting behavior for various sample combinations of
max_reservations settings in user and group stanzas.

Table 54. Sample user and group settings for the max_reservations keyword

When the user
stanza value is:

And the group
stanza value is:

Then the user can create this number of
reservations in this group:

Not defined Not defined 0 (zero)

2 Not defined 2 (with any group as the owning group)

Not defined 1 1

3 1 1 (the user can create more reservations in
other groups)

Chapter 11. Administration keyword reference 319

Table 54. Sample user and group settings for the max_reservations keyword (continued)

When the user
stanza value is:

And the group
stanza value is:

Then the user can create this number of
reservations in this group:

1 2 1

0 2 0

1 0 0 (the user can create one reservation in
another group)

Default: Undefined, which means that no reservations will be authorized or
disallowed. LoadLeveler considers this keyword undefined if negative values
are set for it.

max_resources
Specifies the maximum number of consumable resources that you can request
for a task of a job step.

Syntax:
max_resources = name(count) name(count) ... name(count)

Notes:

1. If the requirement in a job command file for the resources keyword or the
dstg_resources keyword exceeds what the administrator allows in the
max_resources keyword of the corresponding class, the job will not be
submitted to LoadLeveler.

2. If the default_resources specified in the class stanza exceed what is allowed
by max_resources:
v An error will be logged while reading the administration file.
v The max_resources keyword will be ignored for the class.

Default value: No default value is set.

max_starters
Specifies the maximum number of tasks that can run simultaneously on a
machine. In this case, a task can be a serial job step or a parallel task.
max_starters defines the number of initiators on the machine (the number of
tasks that can be initiated from a startd).

Syntax:
max_starters = number

Default value: If this keyword is not specified, the default is the number of
elements in the class statement.

For more information related to using this keyword, see “Specifying how many
jobs a machine can run” on page 60.

max_top_dogs
Specifies the maximum total number of top dogs that the central manager
daemon will allocate per class.

Syntax:
max_top_dogs = number

where number is any positive integer.

Default: The default value for this keyword is 1 for each class, unless a default
is specified in the default class stanza

320 LoadLeveler: Using and Administering

max_total_tasks
Specifies the maximum number of tasks that the BACKFILL scheduler allows a
user, group, or class to run at any given time.

Syntax:
max_total_tasks = number

where number is -1, 0, or any positive integer.

Note: This keyword can be specified in a user substanza within a class when
the BACKFILL scheduler is in use. This limits the number of tasks that user
can run in that class at any given time.

Default: The default value for this keyword is -1, which allows an unlimited
number of tasks.

maxidle
Specifies the maximum number of idle job steps this user or group can have
simultaneously.

Syntax:
maxidle = number

Where number is the maximum number of idle jobs either this user or this
group can have in queue, depending on whether this keyword appears in a
user or group stanza. That is, number is the maximum number of jobs which
the negotiator will consider for dispatch for the user or group. Jobs above this
maximum are placed in the NotQueued state. This action prevents one of the
following situations:
v Individual users from dominating the number of jobs that are either running

or are being considered to run.
v Groups from flooding the job queue.

Notes:

1. This keyword can be specified in a user substanza within a class.
2. For the purposes of enforcing the number of idle job steps this user or

group can have in queue, a job step is considered idle even if llq reports
the state as Pending or Starting.

Default: If the user or group stanza does not specify maxidle or if there is no
user or group stanza at all, the maximum number of jobs that can be
simultaneously in queue for the user or group is defined in the default stanza.
If no value is found, or the limit found is -1, then no limit is placed on the
number of jobs that can be simultaneously idle for the user or group.

For more information, see “Controlling the mix of idle and running jobs” on
page 413.

maxjobs
Specifies the maximum number of job steps this user, class, or group can have
running simultaneously.

Syntax:
maxjobs = number

Note: This keyword can be specified in a user substanza within a class when
the BACKFILL scheduler is in use.

Chapter 11. Administration keyword reference 321

Default: If the stanza does not specify maxjobs, or if there is no class, user, or
group stanza at all, the maximum jobs is defined in the default stanza. The
default is -1.

For more information, see “Controlling the mix of idle and running jobs” on
page 413.

maxqueued
Specifies the maximum number of job steps a single group or user can have
queued at the same time.

Syntax:
maxqueued = number

Where number is the maximum number of jobs allowed in the queue for this
user or group, depending on whether this keyword appears in a user or group
stanza. This is the maximum number of jobs which can be either running or
being considered to be dispatched by the negotiator for that user or group.
Jobs above this maximum are placed in the NotQueued state. This action
prevents one of the following situations:
v Individual users from dominating the number of jobs that are either running

or are being considered to run.
v Groups from flooding the job queue.

Note: This keyword can be specified in a user substanza within a class.

Default: If the user or group stanza does not specify maxqueued or if there is
no user or group stanza at all, the maximum number of jobs that can be
simultaneously in queue for the user or group is defined in the default stanza.
If no value is found, or the limit found is -1, then no limit is placed on the
number of jobs that can be simultaneously idle for the user or group.
Regardless of this limit, there is no limit to the number of jobs a user or group
can submit.

For more information, see “Controlling the mix of idle and running jobs” on
page 413.

memlock_limit
Specifies the hard limit, soft limit, or both for the memory that can be locked
by each process of the submitted job.

Syntax:
memlock_limit = hardlimit,softlimit

Examples:
memlock_limit = 125621 # hardlimit = 125621 bytes
memlock_limit = 5621kb # hardlimit = 5621 kilobytes
memlock_limit = 2mb # hardlimit = 2 megabytes
memlock_limit = 2.5mw # hardlimit = 2.5 megawords
memlock_limit = unlimited # hardlimit = 9,223,372,036,854,775,807 \

bytes (X’7FFFFFFFFFFFFFFF’)
memlock_limit = rlim_infinity # hardlimit = 9,223,372,036,854,775,807 \

bytes (X’7FFFFFFFFFFFFFFF’)

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

multicluster_security
Specifies a security mechanism to use for authentication and authorization of
intercluster communications.

322 LoadLeveler: Using and Administering

Syntax:
multicluster_security = SSL

The only valid specification for this keyword is SSL. When SSL is specified,
LoadLeveler uses the OpenSSL library to provide secure intercluster
transactions. If this keyword is omitted or left blank and the
MACHINE_AUTHENTICATE in the configuration file is set to true, then
LoadLeveler will accept intercluster transactions only from machines listed as
inbound_hosts or outbound_hosts in the administration file. Otherwise,
intercluster transactions are accepted from any machine.

For more information, see “Steps for securing communications within a
LoadLeveler multicluster” on page 153.

name_server
Specifies a list of name servers used for a machine.

Syntax:
name_server = list

Where list is a blank-delimited list of character strings that is used to specify
which nameservers are used for the machine. Valid strings are DNS, NIS, and
LOCAL. LoadLeveler uses the list to determine when to append a DNS
domain name for machine names specified in LoadLeveler commands.

If DNS is specified alone, LoadLeveler will always append the DNS domain
name to machine names specified in LoadLeveler commands. If NIS or LOCAL
is specified, LoadLeveler will never append a DNS domain name to machine
names specified in LoadLeveler commands.

Note: The name_server keyword is a cluster-wide keyword that can only be
specified for the default machine or default machine group stanza.

nice
Increments the nice value of a job.

Syntax:
nice = value

Where value is the amount by which the current UNIX nice value is
incremented. The nice value is one factor in a job's run priority. The lower the
number, the higher the run priority. If two jobs are running on a machine, the
nice value determines the percentage of the CPU allocated to each job.

The default value is 0. If the administrator has decided to enforce consumable
resources, the nice value will only adjust priorities of processes within the same
WLM class. Because LoadLeveler defines a single class for every job step, the
nice value has no effect.

For more information, consult the appropriate UNIX documentation.

nofile_limit
Specifies the hard limit, soft limit, or both for the number of open file
descriptors that can be used by each process of the submitted job.

Syntax:
nofile_limit = hardlimit,softlimit

Examples:
nofile_limit = 1000 # hardlimit = 1000

For additional information about limit keywords, see the following topics:

Chapter 11. Administration keyword reference 323

v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

nproc_limit
Specifies the hard limit, soft limit, or both for the number of processes that can
be created for the real user ID of the submitted job.

Syntax:
nproc_limit = hardlimit,softlimit

Examples:
nproc_limit = 256 # hardlimit = 256

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

outbound_hosts
Blank-delimited list of hostnames that define the machines configured for
outbound connections to other clusters.

Syntax:
outbound_hosts = hostname[(cluster_name)] ...

Where hostname specifies a machine configured for outbound connections to
other clusters and cluster_name can be used to specify a specific cluster if the
host is not connected to all clusters in the multicluster. These hostnames must
be fully qualified with domain names if the machines exist in a different
domain. This keyword is required in a multicluster environment.

Note: The same machine can be defined as both an outbound host and an
inbound host.

pool_list
Specifies a list of pool numbers to which the machine belongs. Do not use
negative numbers in a machine pool_list.

Syntax:
pool_list = pool_numbers

Where pool_numbers is a blank-delimited list of non-negative numbers
identifying pools to which the machine belongs. These numbers can be any
positive integers including zero.

power_management_policy

Syntax:
power_management_policy = start_time;duration | off

Where:

off
Disables the site energy policy.

start_time
Is the same format used by crontab.

duration
Is the number of minutes the machine will be in standby state. Set the
duration and the time between durations to a value more than 10 minutes.

Example 1:

324 LoadLeveler: Using and Administering

In this example, the machine will go in standby state from 0 o’clock every day
for 5 hours:
power_management_policy=00 00 * * *; 18000

The machine will stay in standby state at least 5 hours if there is no job
assigned to it.

Example 2:

In this example, the node will be in standby state when there is no job
running. The node will wake up when a job is dispatched to run on it, or
when the llrchgmstat command is issued to wake it up:
power_management_policy=* * * * *

For more information about the llrchgmstat command, see LoadLeveler: Resource
Manager.

Example 3:

In this example, node c197blade4b06 will use the site policy that is configured
in machine group mgroup1 and node c197blade4b05 will use the site policy
that is set in the machine stanza:
c197blade4b05.ppd.pok.ibm.com: {

type = machine
central_manager = true

schedd_host = true
class = No_Class(128)
power_management_policy = 00 03 1 3 *;1800

}
mgroup1: {

type = machine_group
schedd_runs_here = false
startd_runs_here = true
max_starters = 128
class = No_Class(128)
machine_mode = general
machine_list = c197blade4b06.ppd.pok.ibm.com
power_management_policy = 00 03 1 5 *;1200

}

prestarted_starters
Specifies how many prestarted starter processes LoadLeveler will be
maintained on an execution node to manage jobs when they arrive. The startd
daemon starts the number of starter processes specified by this keyword.

Syntax:
prestarted_starters = number

number must be less than or equal to the value specified through the
max_starters keyword. If the value of prestarted_starters specified is greater
then max_starters, LoadLeveler records a warning message in the startd log
and assigns prestarted_starters the same value as max_starters.

If the value prestarted_starters is zero, no starter processes will be started
before jobs arrive on the execution node.

Default value: The default is 1.

priority
Identifies the priority of the appropriate user, class, or group.

Syntax:
priority = number

Chapter 11. Administration keyword reference 325

Where number is a integer that specifies the priority for jobs either in this class,
or submitted by this user or group, depending on whether this keyword
appears in a class, user, or group stanza, respectively.

The number specified for priority is referenced as either ClassSysprio,
UserSysprio, or GroupSysprio in the configuration file. You can use
ClassSysprio, UserSysprio, or GroupSysprio when assigning job priorities. If
the variable ClassSysprio, UserSysprio, or GroupSysprio does not appear in
the SYSPRIO expression in the configuration file, then the priority specified in
the administration file is ignored. See “LoadLeveler variables” on page 286 for
more information about the ClassSysprio, UserSysprio, or GroupSysprio
keywords.

Default: The default is 0.

region
Defines the region to which the machine or machine_group belongs. The
machine cannot be defined as the primary region manager or alternate region
manager of another region. Substanzas cannot use this keyword. All machines
within a machine_group can belong to only one region.

Syntax:
region = region_name

Default: No default value is set.

reservation_type
Specifies the type of reservation users can use.

Syntax:
reservation_type = all | none | flexible

Default: The default is all.

resources
Specifies quantities of the consumable resources initially available on the
machine.

Syntax:
resources = name(count) name(count) ... name(count)

Where name(count) is an administrator-defined name and count, or could also
be ConsumableCpus(count), ConsumableMemory(count units),
ConsumableVirtualMemory(count units), or
ConsumableLargePageMemory(count units).

The ConsumableMemory, ConsumableVirtualMemory, and
ConsumableLargePageMemory can be specified with both a count and units.
The ConsumableMemory or ConsumableVirtualMemory specified resource
count must be an integer greater than zero. The
ConsumableLargePageMemory specified resource count must be an integer
greater than or equal to zero. The allowable units are those normally used with
LoadLeveler data limits:
b bytes
w words
kb kilobytes (2**10 bytes)
kw kilowords (2**12 bytes)
mb megabytes (2**20 bytes)
mw megawords (2**22 bytes)
gb gigabytes (2**30 bytes)
gw gigawords (2**32 bytes)
tb terabytes (2**40 bytes)

326 LoadLeveler: Using and Administering

tw terawords (2**42 bytes)
pb petabytes (2**50 bytes)
pw petawords (2**52 bytes)
eb exabytes (2**60 bytes)
ew exawords (2**62 bytes)

The ConsumableMemory, ConsumableVirtualMemory, and
ConsumableLargePageMemory values are stored in MB (megabytes) and
rounded up. For ConsumableMemory or ConsumableVirtualMemory, the
smallest amount that you can request is one megabyte. If no units are
specified, then megabytes are assumed. Resources defined here that are not in
the SCHEDULE_BY_RESOURCES list in the global configuration file will not
effect the scheduling of the job.

For the ConsumableCpus resource, a value of all can be specified instead of
count. This indicates that the CPU resource value will be obtained from the
Startd daemons. However, these resources will not be available for scheduling
until the first Startd update.

A list within < > angle brackets indicates a list of CPU IDs. Only CPUs with
logical IDs specified in the list will be considered available for LoadLeveler
jobs. The following example specifies a list of CPUs:
resources = ConsumableCpus< 0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 >

CPU IDs can also be specified using a list of ranges:
resources = ConsumableCpus< 0-6 10-16 >

Jobs requesting processor affinity with the task_affinity keyword in the job
command file will only run on machines where the resource statement contains
the ConsumableCpus keyword.

The logical IDs of the CPUs available on a machine can be found issuing the
bindprocessor -q command.

Default: No default value is set.

restart
Specifies whether LoadLeveler considers a job to be restartable.

Syntax:
restart = yes | no

Default: yes

rss_limit
Specifies the hard limit, soft limit, or both limits for the resident set size for a
job.

Syntax:
rss_limit = hardlimit,softlimit

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

schedd_fenced
Specifies whether or not the central manager is to ignore connections from the
Schedd daemon running on this machine.

Syntax:
schedd_fenced = true | false

Chapter 11. Administration keyword reference 327

Where true specifies that the central manager ignores connections from the
Schedd daemon running on this machine. Use the true setting together with
the llmovespool command when you want to attempt to recover resources lost
when a node running the Schedd daemon fails. A true setting prevents
conflicts when you use the llmovespool command to move jobs from one
Schedd machine to another. For more information, see “How do I recover
resources allocated by a Schedd machine?” on page 401.

Default: false

schedd_host
Specifies whether or not this machine is used to help submit-only machines
access LoadLeveler hosts that run LoadLeveler jobs.

Syntax:
schedd_host = true | false

When true this keyword specifies that if a Schedd is running on a machine
that it will serve as a public scheduling machine. A public scheduling machine
accepts job submissions from other machines in the LoadLeveler cluster. Jobs
are submitted to a public scheduling machine if:
v The submission occurs on a machine which does not run the Schedd

daemon. These include submit-only machines and machines which are
configured to run other LoadLeveler daemons but not the Schedd daemon.

v The submission occurs on a machine which runs the Schedd daemon but is
configured to submit jobs to a public scheduling machine by having the
SCHEDD_SUBMIT_AFFINITY keyword set to false in the global or local
configuration file.

This keyword does not configure LoadLeveler to run the Schedd daemon on a
node. Use the administration keyword schedd_runs_here to run the Schedd
daemon on a node.

Default: false

schedd_runs_here
Specifies whether the Schedd daemon runs on the host. If you do not want to
run the Schedd daemon, specify false.

This keyword does not designate a machine as a public scheduling machine.
Unless configured as a public scheduling machine, a machine configured to
run the Schedd daemon will only accept job submissions from the same
machine running the Schedd daemon. A public scheduling machine accepts job
submissions from other machines in the LoadLeveler cluster. To configure a
machine as a public scheduling machine, see the schedd_host keyword
description in “Administration keyword descriptions” on page 298.

Syntax:
schedd_runs_here = true | false

Default value: true

secure_schedd_port
Specifies the port number to use to connect to the Schedd for secure inbound
transactions to this cluster.

Syntax:
secure_schedd_port = port_number

328 LoadLeveler: Using and Administering

Where port_number is a positive integer that specifies the port number used to
connect to the Schedd for secure inbound transactions to this cluster. This port
is only used if the multicluster_security keyword is set to SSL. The secure
Schedd port should be different from the normal Schedd port.

Default: 9607

smt
Indicates the required simultaneous multithreading (SMT) state for all job steps
assigned to the class.

Syntax:
smt = yes | no | as_is

Where:

yes The job step requires SMT to be enabled.

no The job step requires SMT to be disabled.

as_is The SMT state will not be changed.

Note: You cannot use the smt and rset keywords together if smt is set to either
yes or no. Using these keywords together will cause your job to fail.

Default value: as_is

Examples:
smt = yes

speed
Specifies the weight associated with the machine for scheduling purposes.

Syntax:
speed = number

Where number is a floating point number that is used for machine scheduling
purposes in the MACHPRIO expression. For more information on machine
scheduling and the MACHPRIO expression, see “Setting negotiator
characteristics and policies” on page 47. In addition, the speed keyword is also
used to define the weight associated with the machine. This weight is used
when gathering accounting data on a machine basis.

To distinguish speed among different machines, you must include this value in
the local configuration file. For information on how the speed keyword can be
used to schedule machines, refer to “Setting negotiator characteristics and
policies” on page 47.

Default: The default is 1.0.

ssl_cipher_list
Specifies a cipher list defining what encryption methods are available to
OpenSSL when securing multicluster connections.

Syntax:
ssl_cipher_list = cipher_list

Where cipher_list is a valid cipher list as documented by the OpenSSL ciphers
command.

Default: This keyword will default to the "ALL:eNULL:!aNULL" string.

Chapter 11. Administration keyword reference 329

stack_limit
Specifies the hard limit, soft limit, or both limits for the size of a stack.

Syntax:
stack_limit = hardlimit,softlimit

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

startd_runs_here = true | false
Specifies whether the startd daemon runs on the host. If you do not want to
run the startd daemon, specify false.

Syntax:
startd_runs_here = true | false

Default value: true

striping_with_minimum_networks
Specifies whether or not nodes which have more than half of their networks in
READY state are considered for sn_all jobs. This makes certain that at least
one network is UP and in READY state between any two nodes assigned for
the job.

Syntax:
striping_with_minimum_networks = true| false

When set to true, then the nodes which have more than half the minimum
number of networks in the READY state are considered for sn_all jobs. If set to
false, then only nodes which have all networks in the READY state are
considered for sn_all jobs.

Default: false

submit_only
Specifies whether or not this machine is a submit-only machine.

Syntax:
submit_only = true| false

Where true designates this as a submit-only machine. If you set this keyword
to true, in the administration file set central_manager and schedd_host to
false.

Default: false

total_tasks
Specifies the maximum number of tasks that can be requested for a particular
class or by a particular user or group for a parallel job.

Syntax:
total_tasks = number

Where number specifies the maximum number of tasks for a parallel job in a
job command file using the total_tasks keyword.

Default: The default is -1, which means there is no limit.

type
Identifies the type of stanza in the administration file.

Syntax:

330 LoadLeveler: Using and Administering

type = stanza_type

Where stanza_type is one of the following:
v Class
v Cluster
v Group
v Machine
v Region
v User

Default: No default value is set.

wall_clock_limit
Specifies the hard limit, soft limit, or both limits for the amount of elapsed
time for which a job can run.

Syntax:
wall_clock_limit = hardlimit,softlimit

Note that LoadLeveler uses the time the negotiator daemon dispatches the job
as the start time of the job. When a job is checkpointed, vacated, and then
restarted, the wall_clock_limit is not adjusted to account for the amount of
time that elapsed before the checkpoint occurred.

If you are running the BACKFILL scheduler, you must set a wall clock limit
either in the job command file or in a class stanza (for the class associated with
the job you submit). LoadLeveler administrators should consider setting a
default wall clock limit in a default class stanza. For more information on
setting a wall clock limit when using the BACKFILL scheduler, see “Choosing
a scheduler” on page 46.

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

Chapter 11. Administration keyword reference 331

332 LoadLeveler: Using and Administering

Chapter 12. Job command file reference

A LoadLeveler job consists of one or more job steps, each of which is defined in a
single job command file. A job command file specifies the name of the job, as well
as the job steps that you want to submit, and can contain other LoadLeveler
statements.

Table 55 lists the job command file subtasks:

Table 55. Job command file subtasks

Subtask Associated information (see . . .)

To find out how to work with a job
command file

Chapter 7, “Building and submitting jobs,” on page
171

To learn how to correctly specify the
contents of a job command file

v “Job command file syntax”

v “Job command file keyword descriptions” on page
335

Job command file syntax
There are general rules that apply to job command files.
v Keyword statements begin with # @. There can be any number of blanks

between the # and the @.
v Comments begin with #. Any line whose first non-blank character is a pound

sign (#) and is not a LoadLeveler keyword statement is regarded as a comment.
v Statement components are separated by blanks. You can use blanks before or

after other delimiters to improve readability but they are not required if another
delimiter is used.

v The back-slash (\) is the line continuation character. Note that the continued line
must not begin with # @. If your job command file is the script to be executed,
you must start the continued line with a #. See Example 2 and Example 3 in
topic “Examples: Job command files” on page 173 for examples that use the
back-slash for line continuation.

v Keywords are not case sensitive. This means you can enter them in lower case,
upper case, or mixed case.

Serial job command file
The serial job command file is run from the current working directory.

The following is an example of a simple serial job command file which is run from
the current working directory. The job command file reads the input file,
longjob.in1, from the current working directory and writes standard output and
standard error files, longjob.out1 and longjob.err1, respectively, to the current
working directory.
The name of this job command file is file.cmd.
The input file is longjob.in1 and the error file is
longjob.err1. The queue statement marks the end of
the job step.
#
@ executable = longjob

© Copyright IBM Corp. 1986, 2012 333

@ input = longjob.in1
@ output = longjob.out1
@ error = longjob.err1
@ queue

Parallel job command file
In addition to building job command files to submit serial jobs, you can also build
job command files to submit parallel jobs.

Before constructing parallel job command files, consult your LoadLeveler system
administrator to see if your installation is configured for parallel batch job
submission.

For more information on submitting parallel jobs, see “Working with parallel jobs”
on page 184.

Syntax for limit keywords
There is a syntax for limit keywords. See “Syntax for limit keywords” on page 295
for additional information about limit keywords.

64-bit support for job command file keywords
Users can assign 64-bit integer values to selected keywords in the job command
file.

System resource limits, with the exception of CPU limits, are treated by
LoadLeveler daemons and commands as 64-bit limits.

Table 56 describes 64-bit support for specific job command file keywords.

Table 56. Notes on 64-bit support for job command file keywords

Keyword name Notes

as_limit 64-bit integer values can be assigned to these limits. Fractional specifications are allowed and
will be converted to 64-bit integer values. Refer to the allowable units for these limits listed
under the “Syntax for limit keywords” on page 295 topic.

ckpt_time_ limit Not supported. The hard and soft time limits associated with this keyword are 32-bit integers.
If a value that cannot be contained in a 32-bit integer is assigned to this limit, the value will be
truncated to either 2147483647 or -2147483648.

core_limit 64-bit integer values may be assigned to this limit. Fractional specifications are allowed and will
be converted to 64-bit integer values. Refer to the allowable units for these limits listed under
“Syntax for limit keywords” on page 295.

cpu_limit Not supported. The hard and soft time limits associated with this keyword are 32-bit integers.
If a value that cannot be contained in a 32-bit integer is assigned to this limit, the value will be
truncated to either 2147483647 or -2147483648.

data_limit 64-bit integer values may be assigned to these limits. Fractional specifications are allowed and
will be converted to 64-bit integer values. Refer to the allowable units for these limits listed
under “Syntax for limit keywords” on page 295.

file_limit

image_size 64-bit integer values may be assigned to this keyword. Fractional and unit specifications are not
allowed. The default unit of image_size is kb.

Example:

image_size = 12345678901

job_cpu_limit Not supported. The hard and soft time limits associated with this keyword are 32-bit integers.
If a value that cannot be contained in a 32-bit integer is assigned to this limit, the value will be
truncated to either 2147483647 or -2147483648.

334 LoadLeveler: Using and Administering

Table 56. Notes on 64-bit support for job command file keywords (continued)

Keyword name Notes

locks_limit 64-bit integer values can be assigned to these limits. Fractional specifications are allowed and
will be converted to 64-bit integer values. Refer to the allowable units for these limits listed
under the “Syntax for limit keywords” on page 295 topic.

memlock_limit See notes for as_limit.

nofile_limit See notes for locks_limit.

nproc_limit See notes for locks_limit.

preferences 64-bit integer values may be associated with the LoadLeveler variables "Memory" and "Disk" in
the expressions assigned to these keywords. Fractional and unit specifications are not allowed.

Examples:

requirements = (Arch == "R6000") && (Disk > 500000000) && (Memory > 6000000000)
preferences = (Disk > 6000000000) && (Memory > 9000000000)

requirements

resources Consumable resources associated with the resources keyword may be assigned 64-bit integer
values. Fractional specifications are not allowed. Unit specifications are valid only when
specifying the values of the predefined ConsumableMemory, ConsumableVirtualMemory, and
ConsumableLargePageMemory resources.

Examples:

resources = spice2g6(123456789012) ConsumableMemory(10 gb)
resources = ConsumableVirtualMemory(15 pb) db2_license(1)
resources = ConsumableLargePageMemory(2048mb)

node_resources

rss_limit 64-bit integer values may be assigned to these limits. Fractional specifications are allowed and
will be converted to 64-bit integer values. Refer to the allowable units for these limits listed
under “Syntax for limit keywords” on page 295.

stack_limit

wall_clock_ limit Not supported. The hard and soft time limits associated with this keyword are 32-bit integers.
If a value that cannot be contained in a 32-bit integer is assigned to this limit, the value will be
truncated to either 2147483647 or -2147483648.

Job command file keyword descriptions
This topics contains an alphabetical list of the keywords you can use in a
LoadLeveler script.

This topic also provides examples of statements that use these keywords. For most
keywords, if you specify the keyword in a job step of a multistep job, its value is
inherited by all proceeding job steps. Exceptions to this are noted in the keyword
description.

If a blank value is used after the equal sign, it is as if no keyword was specified.

account_no

Supports centralized accounting. Allows you to specify an account number to
associate with a job. This account number is stored with job resource
information in local and global history files. It may also be validated before
LoadLeveler allows a job to be submitted. For more information, see
“Gathering job accounting data” on page 65.

Syntax:
account_no = string

where string is a text string that can consist of a combination of numbers and
letters.

Chapter 12. Job command file reference 335

Default value: No default value is set.

Example: If the job accounting group charges for job time based upon the
department to which you belong, your account number would be similar to:
account_no = dept34ca

adjust_wall_clock_limit
Indicates if the wall_clock_limit for the job will be adjusted automatically by
LoadLeveler when the job runs with a lower CPU frequency.

Syntax:
adjust_wall_clock_limit = yes | no

where:

yes
Indicates that LoadLeveler will increase the wall clock limit of the job
when the job runs with a lower CPU frequency. LoadLeveler will add
twice the estimated performance degradation to the original wall clock
limit to get the adjusted wall clock limit. For example, if the job has 5
percent performance degradation, the adjusted wall clock limit will be set
to (1 + 2 * 5%) * (step wall clock limit). The job will be stopped if the job
cannot be finished with the adjusted wall clock time. The adjusted wall
clock limit can exceed the wall clock limit value, which is set in class
stanza. When the wall clock limit (after adjustment) is longer than the
value of the wall clock time in the class stanza, the adjusted wall clock
limit value will be used.

no LoadLeveler will not increase the wall clock limit for the job when the job
runs with a lower CPU frequency. You must increase the wall clock limit
on your own when the job runs with a lower frequency.

Note: This keyword is only applicable when the energy function is enabled.

Default value: yes

arguments

Specifies the list of arguments to pass to your program when your job runs.

Syntax:
arguments = arg1 arg2 ...

Default value: No default arguments are set.

Example: If your job requires the numbers 5, 8, 9 as input, your arguments
keyword would be similar to:
arguments = 5 8 9

as_limit

Specifies the hard limit, soft limit, or both limits for the size of address space
that the submitted job can use. This limit is a per process limit.

Syntax:
as_limit = hardlimit,softlimit

Default value: No default value is set.

Example:

336 LoadLeveler: Using and Administering

as_limit = ,125621
as_limit = 5621kb
as_limit = 2mb
as_limit = 2.5mw,2mb

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

bg_block

Specifies the name of an existing block on the Blue Gene system in which the
job is to be started.

Syntax:
bg_block = block_name

where block_name is the name identifying a block in the Blue Gene system.

This keyword is only valid for job_type = bluegene. The bg_block keyword
cannot be used if any of the following keywords are specified: bg_size,
bg_shape, bg_connectivity, and bg_rotate. The value of the keyword applies
only to the job step in which you specify the keyword (that is, the keyword is
not inherited by other job steps).

Default value: No default is set.

bg_connectivity

Specifies the type of connectivity requested for the Blue Gene block in which
the job step will run. Torus or Mesh can be specified on a per dimension basis.
The E dimension is always a Torus. Connectivity is only applicable for large
block jobs (>= 1 midplane). If the size in a given dimension is equal to 1 or the
dimension size, and connectivity specified is not Torus, the connectivity will be
changed to Torus.

Syntax:
bg_connectivity = Torus | Mesh | Either | Xa Xb Xc Xd

where:

Xa Is equal to Torus or Mesh, specified for the A dimension.

Xb Is equal to Torus or Mesh, specified for the B dimension.

Xc Is equal to Torus or Mesh, specified for the C dimension.

Xd Is equal to Torus or Mesh, specified for the D dimension.

Torus Specifies that the admissible blocks should have Torus connectivity in
all dimensions.

Mesh Specifies that the admissible blocks should have Mesh connectivity in
all dimensions.

Either Specified for the entire block (not on a dimension basis) and will set
the connectivity to Torus for all dimensions, if possible, otherwise, it
will set the connectivity to Mesh for all dimensions.

This keyword is only valid for job_type = bluegene. The bg_connectivity
keyword cannot be used if the bg_block keyword is specified. The value of the
keyword applies only to the job step in which you specify the keyword (that
is, the keyword is not inherited by other job steps).

Default value: Mesh

Examples:

Chapter 12. Job command file reference 337

bg_connectivity = Torus Mesh Mesh Torus

will set the connections per dimension as follows:
A: Torus
B: Mesh
C: Mesh
D: Torus
E: Torus

bg_connectivity = Mesh

will set the connections per dimension as follows:
A: Mesh
B: Mesh
C: Mesh
D: Mesh
E: Torus

bg_requirements

Specifies the requirements which a Blue Gene midplane in the LoadLeveler
cluster must meet to run any job steps.

Syntax:
bg_requirements = Boolean_expression

The only requirement supported at this time is memory, where memory
specifies the amount, in megabytes, of regular physical memory required in the
C-nodes of the Blue Gene midplane where you want your job step to run.

Example 1: To require Blue Gene midplanes with 512 megabytes of physical
memory in their C-nodes, enter:
bg_requirements = (Memory == 512)

Example 2: To require Blue Gene midplanes with more than 512 megabytes of
physical memory in their C-nodes, enter:
bg_requirements = (Memory > 512)

This keyword is only valid for job type= bluegene. This keyword cannot be
used if the bg_block keyword is specified. This keyword is not inherited by
other job steps.

Default value: No default value is set.

bg_rotate

Specifies whether the scheduler should consider all possible rotations of the
given shape of the job when searching for a block for the job.

Syntax:
bg_rotate = true | false

where the value true implies that the shape can be rotated to fit some free
block and the value false implies that the shape will not be rotated. The
default for the bg_rotate job command file keyword is true, so not specifying
this keyword is equivalent to specifying bg_rotate = true.

Using bg_rotate = true will increase the likelihood of the scheduler finding a
block to run the job and optimizes overall scheduling of Blue Gene resources.

Note: Be aware that this keyword should be set to false when using the
--mapping option for runjob to specify how the job tasks are to be assigned to
the allocated compute nodes.

338 LoadLeveler: Using and Administering

Example 1:

Suppose for a 4x4x4x2 system, a particular job command file specifies
keywords bg_rotate = true and bg_shape = 3x1x2x4. There exists the following
24 possible rotations of the shape specified:
1x2x3x4, 1x2x4x3, 1x3x4x2, 1x3x2x4, 1x4x2x3, 1x4x3x2
2x1x3x4, 2x1x4x3, 2x3x4x1, 2x3x1x4, 2x4x1x3, 2x4x3x1
3x1x2x4, 3x1x4x2, 3x2x4x1, 3x2x1x4, 3x4x1x2, 3x4x2x1,
4x1x2x3, 4x1x3x2, 4x2x3x1, 4x2x1x3, 4x3x1x2, 4x3x2x1

However, due to the machine size constraint, only the following shapes are
valid:
1x3x4x2, 1x4x3x2, 2x3x4x1, 2x4x3x1, 3x1x4x3, 3x2x4x1
3x4x1x2, 3x4x2x1, 4x1x3x2, 4x2x3x1, 4x3x1x2, 4x3x2x1

Example 2:

Suppose that some other job command file specifies keywords bg_rotate =
false and bg_shape = 3x1x2x4, and that there is an available block of shape
4x1x3x2. Then the scheduler will not be able to use that block for this job.

This keyword is only valid for job type= bluegene. The bg_rotate keyword
cannot be used if the bg_block keyword is specified. The value of the
bg_rotate keyword applies only to the job step in which you specify the
keyword (that is, this keyword is not inherited by other job steps.)

In BG/Q, the connectivity is specified on a per-dimension basis and the
connectivity will be rotated along with the shape. This means if the user
specifies a shape of 3x1x2x4 (AxBxCxD) with a connectivity of Torus(A)
Mesh(B) Torus(C) Mesh(D) then a rotation to 4x2x3x1 (AxBxCxD) would result
in a connectivity of Mesh(A) Torus(B) Torus(C) Mesh(D).

Note: This keyword can only be used together with the bg_shape job
command file keyword. If the bg_shape keyword is not present, then this
keyword is not relevant.

Default value: The default value is true.

bg_shape

Specifies the requested shape of the Blue Gene job to be started in the system.

Syntax:
bg_shape = AxBxCxD

where: where A, B, C, and D are the number of midplanes in the A-direction,
B-direction, C-direction, and D-direction, respectively, of the requested
bg_shape of the job. This keyword is only valued for job_type = bluegene.
The bg_shape keyword cannot be used if the bg_size or bg_blocks keywords
are specified.

The values of A, B, C, and D must not be greater than the corresponding A, B,
C, and D sizes of the Blue Gene machine, otherwise, the job will never be able
to start. The maximum supported size of BG/Q is 1024 racks (32x32) or 2048
midplanes in an 8x8x8x4 configuration.

Note: In order to have the A, B, C, and D dimensions of the allocation block
exactly as defined by the bg_shape job command file keyword, the job
command file keyword bg_rotate needs to be set to false.

Default value: No default is set.

bg_size

Chapter 12. Job command file reference 339

Specifies the requested size of the Blue Gene job to be started in the system.

Syntax:
bg_size = bg_size

where bg_size is an integer indicating the size of the job in units of compute
nodes. No guarantees are made as to the shape of the allocated block for a
given size. The only guarantee is that the size of the allocated shape will be no
smaller than the requested size and as close to the request size as possible.

This keyword is only valid for job type bluegene. This keyword cannot be
used if the bg_block or bg_shape keyword is specified. This keyword is not
inherited by other job steps.

Note: Not all values given for bg_size are representable. For example, consider
a 2x4x2x2 Blue Gene system in units of midplanes and a requested bg_size of
5632 (equivalent to 11 midplanes). Because 11 is a prime number, it cannot be
decomposed. Furthermore, it is greater than any one dimension of the system.
In this case, a 2x3x2x1 block is allocated, because it is the smallest number of
midplanes larger than the requested size.

Default value: If bg_size, bg_shape, or bg_block are not specified then
bg_size defaults to the configured minimum block size. This is the value of the
BG_MIN_BLOCK_SIZE keyword in the configuration file.

blocking

Blocking specifies that tasks be assigned to machines in multiples of a certain
integer. Unlimited blocking specifies that tasks be assigned to each machine
until it runs out of initiators, at which time tasks will be assigned to the
machine which is next in the order of priority. If the total number of tasks are
not evenly divisible by the blocking factor, the remainder of tasks are allocated
to a single node.

This keyword is supported by the BACKFILL and API schedulers.

Syntax:
blocking = integer | unlimited

where:

integer
Specifies the blocking factor to be used. The blocking factor must be a
positive integer. With a blocking factor of 4, LoadLeveler will allocate 4
tasks at a time to each machine with at least 4 initiators available. This
keyword must be specified with the total_tasks keyword. Example:
blocking = 4
total_tasks = 17

LoadLeveler will allocate tasks to machines in an order based on the
values of their MACHPRIO expressions (beginning with the highest
MACHPRIO value). In cases where total_tasks is not a multiple of the
blocking factor, LoadLeveler assigns the remaining number of tasks as
soon as possible (even if that means assigning the remainder to a
machine at the same time as it assigns another block).

unlimited
Specifies that LoadLeveler allocate as many tasks as possible to each
machine, until all of the tasks have been allocated. LoadLeveler will
prioritize machines based on the number of initiators each machine

340 LoadLeveler: Using and Administering

currently has available. Unlimited blocking is the only means of
allocating tasks to nodes that does not prioritize machines primarily by
MACHPRIO expression.

Default value: No default is set, which means that no blocking is requested.

bulkxfer
Indicates whether the communication subsystem will use bulk data transfer for
user space communication.

Syntax:
bulkxfer = yes | no

Default: no

For additional information about bulk data transfer, see “Using bulk data
transfer” on page 180.

checkpoint

Indicates if a job is able to be checkpointed. Checkpointing a job is a way of
saving the state of the job so that if the job does not complete it can be
restarted from the saved state rather than starting the job from the beginning.

If you specify a value that is not valid for the checkpoint keyword, an error
message is generated and the job is not submitted.

Syntax:
checkpoint = interval [(number)] | yes | no

where:

interval
Specifies that LoadLeveler will automatically checkpoint your program
at preset intervals. The time interval can be optionally specified by
providing the number of seconds for the interval with the interval
option. If a value for the interval is not specified, the settings in the
MIN_CKPT_INTERVAL and MAX_CKPT_INTERVAL keywords in
the configuration file will be used. Because a job with a setting of
interval is considered checkpointable, you can initiate a checkpoint
using any method in addition to the automatic checkpoint. The
difference between interval and yes is that interval enables
LoadLeveler to automatically take checkpoints on the specified
intervals, while the value yes does not enable that ability.

yes Enables a job step to be checkpointed. With this setting, a checkpoint
can be initiated either under the control of an application or by a
method external to the application. With a setting of yes, LoadLeveler
will not checkpoint on the intervals specified by the
MIN_CKPT_INTERVAL and MAX_CKPT_INTERVAL keywords in
the configuration file. The difference between yes and interval is that
interval enables LoadLeveler to automatically take checkpoints on the
specified intervals while the value yes does not enable that ability.

no The step cannot be checkpointed.

Default value: no

Restriction: If a job with checkpoint = interval or checkpoint = yes is
dispatched to an AIX machine that does not have MetaCluster installed, the job
is rejected.

Example: If a checkpoint is initiated from within the application but
checkpoints are not to be taken automatically by LoadLeveler you can use:

Chapter 12. Job command file reference 341

checkpoint = yes

Tips:

v The location of the checkpoint files will be determined by keyword values
set in the job command file, the administration file, or by default values.

v The checkpoint keyword value can be in mixed case.

For detailed information on checkpointing, see “LoadLeveler support for
checkpointing jobs” on page 135.

ckpt_dir
On the LoadLeveler for AIX platform, the ckpt_dir keyword specifies the
directory that contains the checkpoint file. The actual directory used to store
the checkpoint files is a combination of the value of this keyword and the
value of the ckpt_subdir keyword.

Checkpoint files can become quite large. When specifying ckpt_dir, make sure
that there is sufficient disk space to contain the files. Guidelines can be found
in “LoadLeveler support for checkpointing jobs” on page 135.

Syntax:
ckpt_dir = pathname

The values for ckpt_dir are case sensitive.

Default value: The value of the ckpt_dir keyword in the class stanza of the
administration file

Restriction: The keyword ckpt_dir is not allowed in the command file for
interactive POE sessions.

Example: If checkpoint files were to be stored in the /tmp directory the job
command file would include:
ckpt_dir = /tmp

Tips:

v When the ckpt_dir keyword is specified in the job command file and the
value specifies a fully qualified directory path, this value is used to identify
the “base” directory location.

v When the ckpt_dir keyword is specified in the job command file but the
value does not specify a fully qualified directory path, the name is appended
to the initial working directory and this path is used to identify the “base”
directory location.

v When specified in the job command file, the value of the ckpt_dir keyword
overrides the value of the ckpt_dir specified in the class stanza of the
LoadLeveler administration file.

v When either ckpt_file or ckpt_subdir is specified and contains the fully
qualified directory path, the value ckpt_dir is ignored.

ckpt_execute_dir
Specifies the directory where the job step's executable will be saved for
checkpointable jobs. You may specify this keyword in either the configuration
file or the job command file; different file permissions are required depending
on where this keyword is set. For additional information, see “Planning
considerations for checkpointing jobs” on page 136.

Syntax:
ckpt_execute_dir = directory

342 LoadLeveler: Using and Administering

This directory cannot be the same as the current location of the executable file,
or LoadLeveler will not stage the executable. In this case, the user must have
execute permission for the current executable file.

Default value: No default value is set.

ckpt_subdir

On the LoadLeveler for AIX platform, with MetaCluster HPC enabled for
checkpoint/restart capability, the ckpt_subdir keyword specifies the directory
that will hold the files created by LoadLeveler, IBM Parallel Environment (PE),
and MetaCluster HPC relating to the checkpoint and restart of the job.

If directory starts with a forward slash (/), this name is used as the full path
name to the checkpoint directory. In this case, the ckpt_dir keyword is ignored.
Otherwise, the actual directory used to store the checkpoint files is a
concatenation of the directory specified by ckpt_dir and directory.

Syntax:
ckpt_subdir = directory

Note: The value for the ckpt_subdir keyword is case sensitive.

Default value: The default value is [jobname.]job_step_id.ckpt.

Restriction: The keyword ckpt_subdir is not allowed in the command file for
interactive POE sessions.

Example 1: If you are storing checkpoint files in a subdirectory named
myckptdir in the directory named by the ckpt_dir keyword in the class stanza
of the administration file, the job command file would contain:
ckpt_subdir = myckptdir

Example 2: Alternatively, if you are naming the checkpoint subdirectory
myckptdir and storing them in /tmp, the keyword in the job command file can
contain:
ckpt_subdir = /tmp/myckptdir

Or, the combination of ckpt_dir and ckpt_subdir keywords can be used,
producing the same result:
ckpt_dir = /tmp
ckpt_subdir = myckptdir

ckpt_time_limit

Specifies the hard or soft limit, or both limits for the elapsed time
checkpointing a job can take. When the soft limit is exceeded, LoadLeveler will
attempt to stop the checkpoint and allow the job to continue. If the checkpoint
is not able to be stopped and the hard limit is exceeded, LoadLeveler will
terminate the job.

Syntax:
ckpt_time_limit = hardlimit,softlimit

Default value: The value of the ckpt_time_limit keyword in the class stanza of
the administration file

Examples:
ckpt_time_limit = 00:10:00,00:05:00
ckpt_time_limit = 12:30,7:10
ckpt_time_limit = rlim_infinity
ckpt_time_limit = unlimited

Chapter 12. Job command file reference 343

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

class

Specifies the name of a job class defined locally in your cluster. You can use
the llclass command to find out information on job classes.

Syntax:
class = name

Default value: If you do not specify a value for this keyword, the default job
class, No_Class, is assigned.

Example: If you are allowed to submit jobs belonging to a class called
“largejobs”, your class keyword would look like the following:
class = largejobs

cluster_input_file

Specifies an individual file to be copied from the local path name to the remote
path name when the job is run.

Syntax:
cluster_input_file = local_pathname, remote_pathname

where:

local_pathname
Specifies the full path name of the file to be copied from the local cluster.
This file must be accessible by the submitting user on the node where the
local gateway Schedd runs. local_pathname must be specified.

remote_pathname
Specifies the full path name the file will be copied to on the assigned
cluster. This file must be accessible by the mapped user on the Schedd
node of the selected cluster. remote_pathname must be specified. Normally
the file specified by remote_pathname will be deleted following the job
termination. It will not be deleted if the cluster selected to run the job is
the same cluster where the job was submitted and remote_pathname resolves
to the same path name specified as local_pathname.

If LoadLeveler fails to copy an input file to the selected cluster, the assignment
of the job to the selected cluster will fail. If the cluster was assigned by the
administrator using the llmovejob command, an error message will be
displayed in the command response describing the reason for failure and the
job will remain in the cluster it was in and be placed in system hold. If the
cluster was assigned during job submission, the job submission fails and an
error message will be displayed in the command response describing the
reason for failure.

Default value: No default value is set.

cluster_list

Allows you to specify that a job is to run on a particular cluster or that
LoadLeveler is to decide which cluster is best from the list of clusters specified.
If this keyword is specified, it must be in the first job step of a multistep job.
Any definitions in other steps are ignored.

Syntax:

344 LoadLeveler: Using and Administering

cluster_list = cluster_list

where cluster_list is a blank-delimited list of cluster names or the reserved
word any. Depending on the specified value, cluster_list can have one of three
effects:
v Specifying a single cluster name indicates that a job is to be submitted to

that cluster.
v Specifying a list of multiple cluster names indicates that the job is to be

submitted to one of the clusters specified with the installation exit
CLUSTER_METRIC choosing from the list.

v Specifying the reserved word any indicates the job is to be submitted to any
cluster defined by the installation exit CLUSTER_METRIC.

Note: If a cluster list is specified using either the llsubmit -X command or the
ll_cluster API, then that cluster list takes precedence over a cluster_list
specified in the job command file.

cluster_output_file

Specifies an individual output file to be copied to the submitting cluster from
the cluster selected to run the job after the job completes.

Syntax:
cluster_output_file = local_pathname, remote_pathname

where:

local_pathname
Specifies the full path name the file will be copied to on the local cluster.
This file must be accessible by the submitting user on the node where the
local gateway Schedd runs. local_pathname must be specified.

remote_pathname
Specifies the full path name of the file that will be copied from the
assigned cluster. This file must be accessible by the mapped user on the
Schedd node of the selected cluster. remote_pathname must be specified.
Normally the file specified by remote_pathname will be deleted following
the job termination. It will not be deleted if the cluster selected to run the
job is the same cluster where the job was submitted and remote_pathname
resolves to the same path name specified as local_pathname.

If LoadLeveler fails to copy an output file from a selected cluster to the local
cluster during job termination, the job termination will proceed and the remote
file will not be deleted. Mail will be sent to the user describing the reason for
the failed copy.

Default value: No default value is set.

collective_groups
Requests the Collective Acceleration Unit (CAU) groups for the specified
protocol instances of the job.

Syntax:
collective_groups = number

The value of the collective groups must be greater than or equal to zero. The
value specified for the collective_groups keyword in the job command file
overwrites any value specified for the collective_groups keyword in the
administration file. If the job is not sharing the nodes with other jobs, then the

Chapter 12. Job command file reference 345

protocol instance of the job will be allocated at least number CAU groups.
Additional CAUs can be allocated to the job step if additional CAU groups are
available on the node and the node is not shared with other jobs. If the job is
sharing the node with other jobs, then exactly number CAU groups are
allocated to each protocol instance of the job.

Default value: The default value varies depending on whether the job shares
the nodes with other jobs or not. If the job is not sharing the nodes with other
jobs, then all the CAU groups are allocated to all the protocol instances of the
job proportionally. If the job is sharing the nodes with other jobs, then zero
CAU groups are allocated to the protocol instances of the job.

comment

Specifies text describing characteristics or distinguishing features of the job.

core_limit

Specifies the hard limit, soft limit, or both limits for the size of a core file. This
limit is a per process limit.

Syntax:
core_limit = hardlimit,softlimit

Default value: No default value is set.

Examples:
core_limit = 125621,10kb
core_limit = 5621kb,5000kb
core_limit = 2mb,1.5mb
core_limit = 2.5mw
core_limit = unlimited
core_limit = rlim_infinity
core_limit = copy

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

coschedule

Specifies the steps within a job that are to be scheduled and dispatched at the
same time.

This keyword is supported only by the BACKFILL scheduler.

Syntax:
coschedule = yes | no

where yes implies that the step is to be coscheduled with all other steps in the
job that have the value of this keyword set to yes. This keyword is not
inherited by other job steps.

Default value: The default value is set to no.

Examples:
coschedule = yes

cpu_limit

Specifies the hard limit, soft limit, or both limits for the amount of CPU time
that a submitted job step can use. This limit is a per process limit.

Syntax:
cpu_limit = hardlimit,softlimit

346 LoadLeveler: Using and Administering

Default value: No default value is set.

Examples:
cpu_limit = 12:56:21,12:50:00
cpu_limit = 56:21.5
cpu_limit = 1:03,21
cpu_limit = unlimited
cpu_limit = rlim_infinity
cpu_limit = copy

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

cpus_per_core

Customizes the affinity scheduling request specific to the SMT environment.
This keyword specifies the number of logical CPUs per processor core that
needs to be allocated to each task of a job with the processor-core affinity
requirement. By default, LoadLeveler will try to allocate all of the CPUs from a
core while trying to meet the processor-core affinity requirement of a job
specified by the task_affinity keyword. This keyword can only be used along
with the task_affinity keyword.

Syntax:
cpus_per_core = number

Default value: No default value is set.

data_limit

Specifies the hard limit, soft limit, or both limits for the size of the data
segment to be used by the job step. This limit is a per process limit.

Syntax:
data_limit = hardlimit,softlimit

Default value: No default value is set.

Examples:
data_limit = ,125621
data_limit = 5621kb
data_limit = 2mb
data_limit = 2.5mw,2mb

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

dependency

Specifies the dependencies between job steps. A job dependency, if used in a
given job step, must be explicitly specified for that step.

Syntax:
dependency = step_name operator value

where:

step_name
Is the name of a previously defined job step (as described in the step_name
keyword).

operator
Is one of the following:

Chapter 12. Job command file reference 347

== Equal to
!= Not equal to
<= Less than or equal to
>= Greater than or equal to
< Less than
> Greater than
&& And
|| Or

value
Is usually a number that specifies the job return code to which the
step_name is set. It can also be one of the following LoadLeveler defined
job step return codes:
CC_NOTRUN

The return code set by LoadLeveler for a job step which is not run
because the dependency is not met. The value of CC_NOTRUN is
1002.

CC_REMOVED
The return code set by LoadLeveler for a job step which is
removed from the system (because, for example, llcancel was
issued against the job step). The value of CC_REMOVED is 1001.

Default value: No default value is set.

Examples: The following are examples of dependency statements:
v Example 1: In the following example, the step that contains this dependency

statement will run if the return code from step 1 is zero:
dependency = (step1 == 0)

v Example 2: In the following example, step1 will run with the executable
called myprogram1. Step2 will run only if LoadLeveler removes step1 from
the system. If step2 does run, the executable called myprogram2 gets run.
Beginning of step1
@ step_name = step1
@ executable = myprogram1
@ ...
@ queue
Beginning of step2
@ step_name = step2
@ dependency = step1 == CC_REMOVED
@ executable = myprogram2
@ ...
@ queue

v Example 3: In the following example, step1 will run with the executable
called myprogram1. Step2 will run if the return code of step1 equals zero. If
the return code of step1 does not equal zero, step2 does not get executed. If
step2 is not run, the dependency statement in step3 gets evaluated and it is
determined that step2 did not run. Therefore, myprogram3 gets executed.
Beginning of step1
@ step_name = step1
@ executable = myprogram1
@ ...
@ queue
Beginning of step2
@ step_name = step2
@ dependency = step1 == 0
@ executable = myprogram2
@ ...
@ queue
Beginning of step3
@ step_name = step3

348 LoadLeveler: Using and Administering

@ dependency = step2 == CC_NOTRUN
@ executable = myprogram3
@ ...
@ queue

v Example 4: In the following example, the step that contains step2 returns a
non-negative value if successful. This step should take into account the fact
that LoadLeveler uses a value of 1001 for CC_REMOVED and 1002 for
CC_NOTRUN. This is done with the following dependency statement:
dependency = (step2 >= 0) && (step2 < CC_REMOVED)

dstg_environment
Specifies the environment that must be passed to the data staging scripts.
dstg_environment is similar to the environment keyword and the usage rules
for this keyword are identical to the environment keyword. For example, with
both keywords, COPY_ALL will copy all the environment variables from your
user environment.

Syntax:
dstg_environment = env1; env2 ...;COPY_ALL

Default value: No default value is set.

dstg_in_script
Specifies the script or executable that is used to stage in data. You are only
allowed to have one instance of this keyword in a job command file. Any
arguments must be included as part of the value specified for this keyword.
No arguments can be separately or explicitly passed to the script or executable.

Note: If you specify the dstg_in_wall_clock_limit keyword, then you must
specify a value for the dstg_in_script keyword. If you do not do so, the job
will not be submitted to LoadLeveler.

Syntax:
dstg_in_script = name

Default value: No default value is set.

dstg_in_wall_clock_limit
Specifies both the hard wall clock limit and the soft wall clock limit for an
inbound data staging script. You can assign the value in either seconds or
using the HH:MM:SS,HH:MM:SS format. The usage rules will be the same as
those for the wall_clock_limit keyword.

Note: If you specify the dstg_in_wall_clock_limit keyword, then you must
specify a value for the dstg_in_script keyword. If you do not do so, the job
will not be submitted to LoadLeveler.

Syntax:
dstg_in_wall_clock_limit = HH:MM:SS,HH:MM:SS

Default value: No default value is set.

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

dstg_node
Specifies which node to use for running the staging steps.

Syntax:
dstg_node = any | master| all

Chapter 12. Job command file reference 349

Default value: any

The possible values for this keyword are:

any Specifies a shared staging area is accessible from any executing
machine. The staging task will be executed on any node in the cluster
that has an available data staging initiator and any other required data
staging resources.

master
Specifies the data staging job step must run on the master node of the
application job step. If this value is specified, the central manager will
schedule the application job step first and get the host list on which
the step will run. It will then ensure that data staging resources are
available on the master node and schedule the data staging job step to
run on the master node. This option can be specified only if the
dstg_time configuration keyword is set to JUST_IN_TIME.

all Specifies that a data staging task needs to run on each node allocated
to the application job step. A possible use of this value is when data
has to be staged to or from the local disk on the executing machine.
The central manager will ensure that resources are available on the
required nodes for data staging. The central manager will also
schedule the application job step in the future to determine the nodes
that have to be used and then schedule the data staging master task.
Usually, the data staging master task is a POE command or an MPI
script that spawns data staging tasks on all the selected nodes. This
option can be specified only if the dstg_time configuration keyword is
set to JUST_IN_TIME.

Note: If you are using the master or all options for this keyword, the
administrators should setup one or more data staging initiators on every
compute node in the cluster. Although this is not mandatory, if you do not set
up the initiators, jobs may remain in idle states for extended periods.

dstg_out_script
Specifies the script or executable that is used to stage out data. You are only
allowed to have one instance of this keyword in a job command file. Any
arguments must be included as part of the value specified for this keyword.
No arguments can be separately or explicitly passed to the script or executable.

Note: If you specify the dstg_out_wall_clock_limit keyword, then you must
specify a value for the dstg_out_script keyword. If you do not do so, the job
will not be submitted to LoadLeveler.

Syntax:
dstg_out_script = name

Default value: No default value is set.

dstg_out_wall_clock_limit
Specifies the hard wall clock limit and the soft wall clock limit for an outbound
data staging script. You can assign a value using seconds or the
HH:MM:SS,HH:MM:SS format. The usage rules for dstg_out_wall_clock_limit
are the same as those for wall_clock_limit keyword.

Note: If you specify the dstg_out_wall_clock_limit keyword, then you must
specify a value for the dstg_out_script keyword. If you do not do so, the job
will not be submitted to LoadLeveler.

350 LoadLeveler: Using and Administering

Syntax:
dstg_out_wall_clock_limit = HH:MM:SS,HH:MM:SS

Default value: No default value is set.

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

dstg_resources
Specifies the quantities of consumable resources consumed by each task of
both the inbound and outbound data staging job steps. These resources may be
either machine resources or floating resources. The syntax and usage of this
keyword are the same as those used for the resources keyword in the job
command file. However, dstg_resources applies to data staging job steps while
the resources keyword applies to all other job steps. The dstg_resources are
checked at job submit time to ensure their availability. They are not enforced at
runtime.

Note: The limits specified in the max_resources keyword of the data_stage
class stanza also apply to dstg_resources. If the resources you requested for the
data staging step of the job exceed what is allowed in the max_resources
keyword, the job will not be submitted and an error message stating this will
be displayed by the llsubmit command.

Syntax:
dstg_resources = name(count) name(count) ... name(count)

Default value: If you do not specify dstg_resources in the job command file,
then the default_resources applicable to the data_stage class in the
administration file will be applied to each task of a data staging job step.

energy_policy_tag
Specifies the energy policy tag name for the job. LoadLeveler uses this
keyword to identify the energy data for a job. Be sure to use a unique tag
name for the job when you submit it for the first time. On subsequent
submissions the energy data identified by the tag name is used to determine
the CPU frequency the job will run with.

Syntax:
energy_policy_tag = tag_name

where:

tag_name
Is a unique energy policy name that you set in the job command file. If the
tag name does not contain a user name as a prefix (delimited by a period),
then LoadLeveler will add your user name as a prefix in the specified tag
name.

Default value: No tag name is set.

Examples:

1. To set the energy_policy_tag in job command file, enter:
tom.cmd
@ energy_policy_tag = long_running_job

In this example, the energy policy tag is tom.long_running_job.
2. For user Tom to use the energy policy tag that was generated by John,

enter:

Chapter 12. Job command file reference 351

tom.cmd
@ energy_policy_tag = john.IO_job

In this example, because Tom wants to use the energy tag that was
generated by John, John has to have previously generated the IO_job
energy tag by submitting a job specifying it, otherwise this job is not
successfully submitted by LoadLeveler when Tom wants to use John’s
energy tag and the tag does not exist in the database.

energy_saving_req
Specifies the minimum energy savings percentage that is required. The value
can be an integer between 0 and 99, inclusive.

Syntax:
energy_saving_req = percent_number

where:

percent_number
Is the required energy savings percentage. This keyword cannot be used
with the max_perf_decrease_allowed keyword. The job is not successfully
submitted if the required energy savings percentage cannot be satisfied.

Default value: 0

Examples:

In this example, the energy tag content for userA is shown:
userA.logn_running_job:

Generated by: c111bc4n13.ppd.pok.ibm.com.91.0
Last used Time: Tue May 10 05:00:01 EDT 2011

User: userA
Nominal Frequency: 3.3 GHZ
Energy Consumption: 0.8 Kwh

Execution Time: 950 Seconds
Frequency(GHZ) EstedEnergyCons(Kwh) EngSaving(%) EstedTime(Seconds) PerfDeg(%)
3.1 0.75 6 1000 5
2.8 0.65 19 1050 11
2.6 0.6 25 1100 16
2.2 0.5 38 1150 21

UserA required saving at least 20% energy consumption as specified in the job
command file:
userA.cmd
@ energy_policy_tag = long_running_job
@ energy_saving_req = 20

The submitted job will be run in the frequency 2.6 GHZ.

UserA required saving at least 40% energy consumption as specified in the job
command file:
userA.cmd
@ energy_policy_tag = long_running_job
@ energy_saving_req = 40

In this instance, the submitted job is rejected because there is no suitable
frequency in the energy tag that can meet the energy saving requirement.

env_copy

Specifies whether environment variables for a batch or interactive parallel job
are copied to all executing nodes, or to only the master node. When all is
specified either explicitly or by default, any environment variables (specified

352 LoadLeveler: Using and Administering

by the environment keyword in the job command file) will be copied to all
nodes where the job step runs. When master is specified, the environment
variables will be copied only to the node selected to run the master task of the
parallel job.

Although a LoadLeveler administrator may set this keyword in one or more
class, group, or user stanzas in the administration file, an explicit setting in the
job command file overrides any settings in the administration file that are
relevant for the parallel job.

LoadLeveler ignores this keyword if it is set for a serial job.

Syntax:
env_copy = all | master

Default value: LoadLeveler uses the default value all only when both of the
following conditions are true:
v The env_copy keyword is not specified in the job command file.
v The env_copy keyword is not specified in any class, group, or user stanza

that is relevant to the parallel job.

environment

Specifies login initial environment variables set by LoadLeveler when your job
step starts. If the same environment variables are set in the user's initialization
files (such as the .profile), those set by the login initialization files will
supersede those set by LoadLeveler.

You may use the env_copy keyword to instruct LoadLeveler to copy these
environment variables to all executing nodes, or to only the master executing
node.

Syntax:
environment = env1 ; env2 ; ...

Separate environment specifications (env1, env2, and so on) with semicolons.
An environment specification may be one of the following:
COPY_ALL

Specifies that all the environment variables from your shell be copied.
$var Specifies that the environment variable var be copied into the

environment of your job when LoadLeveler starts it.
!var Specifies that the environment variable var not be copied into the

environment of your job when LoadLeveler starts it. This specification
is most useful together with COPY_ALL.

var=value
Specifies that the environment variable var be set to the value “value”
and copied into the environment of your job when LoadLeveler starts
it.

When processing the string you specify for var, LoadLeveler first
removes any leading or trailing blanks, and copies the remaining
string, as is, into the environment.

Default value: No default value is set.

Additional considerations:

If you specify the environment job command file keyword with COPY_ALL,
the $USER and $HOME environment variables from your shell are not copied
and set when your job step starts. The $USER and $HOME environment
variables of the user ID on the executing node will be set. If you explicitly
specify $USER or $HOME it will be copied and set when your job step starts.

Chapter 12. Job command file reference 353

If more than one environment specification is defined for the same
environment keyword, the rightmost specification takes precedence. For
example if you specify:
environment = COPY_ALL; USER=jsmith

The $USER environment variable will be set to jsmith.

However, if you specify:
environment = USER=jsmith; COPY_ALL

The $USER environment variable is not set to jsmith. Instead, the $USER
environment variable of the user ID on the executing node is set.

If the executable keyword is not specified, the job command file is run as a
shell script. In this case, LoadLeveler initializes the environment as described
previously and then starts the shell command. Any environment variable set
during shell startup overrides values initialized by LoadLeveler.

Examples:

v This example illustrates how to specify that LoadLeveler is to copy all the
environment variables from your shell except for env2:
environment = COPY_ALL; !env2;

v This example illustrates how LoadLeveler processes the string you specify
with var: If you specify the following:
environment = env3 = "quoted string"; env4 = imbedded blanks;

LoadLeveler uses these values:
– For env3: "quoted string"
– For env4: imbedded blanks

error

Specifies the name of the file to use as standard error (stderr) when your job
step runs.

Syntax:
error = filename

Default value: If you do not specify a value for this keyword, the file /dev/null
is used.

Example:
error = $(jobid).$(stepid).err

executable

Identifies the name of the program to run, which can be a shell script or a
binary. For parallel jobs, executable must be the parallel job launcher (POE or
mpirun), or the name of a program that invokes the parallel job launcher.

Note that the executable statement automatically sets the $(base_executable)
variable, which is the file name of the executable without the directory
component. See Example 2 in topic “Examples: Job command files” on page
173 for an example of using the $(base_executable) variable.

Syntax:
executable = name

Default value: If you do not include this keyword, then it will default to the
job command file that is being submitted, and LoadLeveler will assume that
the file is a valid shell script.

354 LoadLeveler: Using and Administering

Examples:

v # @ executable = a.out

v # @ executable = /usr/bin/poe (for POE jobs)

file_limit

Specifies the hard limit, soft limit, or both limits for the size of a file. This limit
is a per process limit.

Syntax:
file_limit = hardlimit,softlimit

Default value: No default value is set.

Example:
file_limit = 100pb,50tb

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

first_node_tasks
Specifies a different task count for the first node assigned to a job step using
first_node_tasks. All remaining nodes will run tasks_per_node tasks. The
first_node_tasks keyword can only be specified in conjunction with node and
tasks_per_node; it cannot be specified with the total_tasks keyword.

When first_node_tasks is used, a maximum node specification is not
permitted. For example, node = 6 is acceptable but node = 6, 12 is not.

A value of 0 means that the first node will get the same number of tasks as all
other nodes (tasks_per_node tasks). A negative value will result in an error
and the job will not be submitted.

Syntax:
first_node_tasks = number

Default value: The default value is 0.

Example:

In the following example, a total of 7 machines are selected for the job step.
The first machine will run only 1 task, task ID 0, and the remaining 6 machines
will run 16 tasks each. The total number of tasks in this job step is 97.
#@ node = 7
#@ first_node_tasks = 1
#@ tasks_per_node = 16

group

Specifies the LoadLeveler group.

Syntax:
group = group_name

Default value: If you do not specify a value for this keyword, the default
group for the user is used, If a default group is not defined for the user,
LoadLeveler uses the group, No_Group.

Example:
group = my_group_name

hold

Chapter 12. Job command file reference 355

|
|
|
|
|

|
|

|
|
|

|

|

|

|

|
|
|

|
|
|

Specifies whether you want to place a hold on your job step when you submit
it. There are three types of holds:
user Specifies user hold
system

Specifies system hold
usersys

Specifies user and system hold

To remove the hold on the job, use the llhold -r command.

Syntax:
hold = user | system | usersys

Default value: No default is set, which means that no hold is requested.

Example: To put a user hold on a job, the keyword statement would be:
hold = user

host_file

Specifies the name of the file containing the host list for task allocation.

Syntax:
host_file = host_list_file_name

If a full path name is not specified, the host_file_name will be under the current
working directory. The host_file_name is an ASCII file that must contain one
host name per line (using a new line separator).

Host file usage notes:
v Leading and trailing tabs and spaces will be removed
v Blank lines are deleted
v Comment lines that start with a # will be skipped
v Tabs or spaces before the first comment line are allowed
v No more than one word per line is allowed; otherwise, the entire line will be

treated as a host name

Default value: The default is empty (a NULL file pointer) meaning no host file
input.

Example: To specify host file my_host_file in the current working directory in
the job command file, the keyword statement would be:
host_file = my_host_file

image_size

Specifies the maximum virtual image size to which your program will grow
during execution. LoadLeveler tries to execute your job steps on a machine
that has enough resources to support executing and checkpointing your job
step. If your job command file has multiple job steps, the job steps will not
necessarily run on the same machine, unless you explicitly request that they
do.

If you underestimate the image size of your job step, your job step may crash
due to the inability to acquire more address space. If you overestimate the
image size, LoadLeveler may have difficulty finding machines that have the
required resources.

Syntax:
image_size = number

356 LoadLeveler: Using and Administering

where number must be a positive integer. If you do not specify the units
associated with this keyword, LoadLeveler uses the default unit, which is
kilobytes. For a list of allowable units, see the resources keyword description.

Default value: If you do not specify the image size of your job command file,
the image size is that of the executable.

Example: To set an image size of 11 KB, the keyword statement would be:
image_size = 11

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

imm_send_buffers
Requests a number of immediate send buffers for each window allocated for
each protocol instance of the job.

Syntax:
imm_send_buffers=number

The value of the immediate send buffers must be greater than or equal to zero.
The value of the immediate send buffers is inherited from all the protocol
instances of the job step unless the individual protocol instances are specified
with their own immediate send buffers. If the job is sharing nodes with other
jobs, then exactly number immediate send buffers are allocated to each window
assigned to each protocol instance of the job. If the job is not sharing the nodes
with other jobs then at least number immediate send buffers are allocated to
each window assigned to each protocol instance of the job. Additional
immediate send buffers can be distributed evenly to the windows assigned to
the job if the nodes are not shared with other jobs.

Default value: The default value varies depending on whether the job shares
the nodes with other jobs or not. If the job is not sharing the nodes with other
jobs, then all the immediate send buffers are allocated to all the protocol
instances of the job proportionally. If the job is sharing the nodes with other
jobs, then one immediate send buffer is assigned for each window assigned to
the job.

initialdir

Specifies the path name of the directory to use as the initial working directory
during execution of the job step. File names mentioned in the command file
which do not begin with a slash (/) are relative to the initial directory. The
initial directory must exist on the submitting machine as well as on the
machine where the job runs.

Syntax:
initialdir = pathname

Note: When operating in a multicluster environment, access to initialdir will
be verified on the cluster selected to run the job. If access to initialdir fails, the
submission or move job will fail.

Default value: If you do not specify a value for this keyword, the initial
directory is the current working directory at the time you submitted the job.

Example:
initialdir = /var/home/mike/ll_work

input

Chapter 12. Job command file reference 357

Specifies the name of the file to use as standard input (stdin) when your job
step runs.

Syntax:
input = filename

Default value: If you do not specify an input file, LoadLeveler uses the file
/dev/null

Example:
input = input.$(process)

island_count
Specifies the minimum and maximum number of islands to select for this job
step, as well as whether the minimum or maximum is preferred.

Syntax:

island_count = number[,number]

Where the two number values are the preferred and acceptable number of
islands to select for this job step. The first value is the preferred allocation. A
value of -1 is used to represent all islands in the cluster. Other than this special
value of -1, both numbers must be greater than zero. This keyword is only
used when node_topology = island, otherwise the island_count keyword is
ignored. See the node_topology keyword for more information.

Default value: The default value is 1,1, which specifies that all machines
allocated to the job step must come from a single island.

Example 1:
island_count = -1,4

In example 1, the scheduler will try to schedule this job step to run across all
islands in the cluster. If there are not machines available in every island, then
fewer islands may be allocated, down to a minimum of 4 islands.

Example 2:
island_count = 1,2

In example 2, the scheduler will try to schedule this job step to run within a
single island. If there are not enough available machines within 1 island to run
the job step, then machines from more than 1 island may be used, up to a
maximum of 2.

Example 3:
island_count = 4

Example 3 shows that this is the same as specifying island_count=4,4, and it
means that the scheduler will use exactly 4 islands to run the job step. If there
are less than 4 islands with available machines, then the job step will remain
Idle. If there are more than 4 islands with available machines, only 4 islands
will be used to run the job step.

job_cpu_limit

Specifies the hard limit, soft limit, or both limits for the CPU time used by all
processes of a serial job step. For example, if a job step runs as multiple
processes, the total CPU time consumed by all processes is added and
controlled by this limit.

358 LoadLeveler: Using and Administering

For parallel job steps, LoadLeveler enforces these limits differently. Parallel job
steps usually have tasks running on several different nodes and each task can
have several processes associated with it. In addition, the parallel tasks
running on a node are descendants of a LoadL_starter process. Therefore, if
you specify a hard or soft CPU time limit of S seconds and if a LoadL_starter
has N tasks running under it, then all tasks associated with that LoadL_starter
will be terminated if the total CPU time of the LoadL_starter process and its
children is greater than S*N seconds.

If several LoadL_starter processes are involved in running a parallel job step,
then LoadLeveler enforces the limits associated with the job_cpu_limit
keyword independently for each LoadL_starter. LoadLeveler determines how
often to check the job_cpu_limit by looking at the values for
JOB_LIMIT_POLICY and JOB_ACCT_Q_POLICY. The smaller value associated
with these two configuration keywords sets the interval for checking the
job_cpu_limit. For more information on JOB_LIMIT_POLICY and
JOB_ACCT_Q_POLICY see “Collecting job resource data on serial and parallel
jobs” on page 66.

Syntax:
job_cpu_limit = hardlimit,softlimit

Default value: No default is set.

Example:
job_cpu_limit = 12:56,12:50

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

job_name

Specifies the name of the job. This keyword must be specified in the first job
step. If it is specified in other job steps in the job command file, it is ignored.

The job_name only appears in the long reports of the llq, llstatus, and
llsummary commands, and in mail related to the job.

Syntax:
job_name = job_name

You can name the job using any combination of letters, numbers, or both.

Default value: No default value is set.

Example:
job_name = my_first_job

job_type

Specifies the type of job step to process.

Syntax:
job_type = serial | parallel | bluegene | MPICH

This keyword is inherited by each job step in the job command file.

Default value: serial

large_page

Specifies whether or not a job step requires Large Page support from AIX.

Chapter 12. Job command file reference 359

Restriction: Large Page memory is not supported in LoadLeveler for Linux. In
this case, specifying M would cause the job to never be sent.

Syntax:
large_page = value

where value can be Y, M, or N. Y informs LoadLeveler to use Large Page
memory, if available, but to otherwise use regular memory. M means use of
Large Page memory is mandatory.

Default value: N, which means to not use Large Page memory.

Example: To ask LoadLeveler to use Large Page memory for the job step, if
available, specify:
large_page = Y

ll_res_id

Specifies the reservation to which the job is submitted.

This keyword, if specified, overrides the LL_RES_ID environment variable.

If the keyword is present in the job command file with no value, the job will
not be bound to any reservation. If the keyword is not present in the job
command file, the LL_RES_ID environment variable determines the reservation
to which the job is submitted.

The value of this keyword is ignored when the job command file is used by
the llmkres -f or the llchres -f command. The reservation ID can be obtained
from the llqres command or when the llmkres command is issued.

The format of the reservation identifier is [host.]rid[.r[.oid]].

where:
v host is the name of the machine that assigned the reservation identifier.
v rid is the number assigned to the reservation when it was created. An rid is

required.
v r indicates that this is a reservation ID (r is optional if oid is not specified).
v oid is the occurrence ID of a recurring reservation (oid is optional).

When oid is specified, the job step will not be considered for scheduling until
that occurrence of the reservation becomes active. The step will remain in Idle
state during all earlier occurrences. When oid is not specified, the job will be
bound to the first occurrence of the reservation, including a currently active
occurrence.

Syntax:
ll_res_id = reservation ID

Default value: No default value is set.

locks_limit

Specifies the hard limit, soft limit, or both limits for the number of file locks
that the submitted job can use. This limit is a per process limit.

Syntax:
locks_limit = hardlimit,softlimit

Default value: No default value is set.

Example:
locks_limit = 200,65

360 LoadLeveler: Using and Administering

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

max_perf_decrease_allowed
Specifies the performance degradation percentage that is acceptable for the job.
The value that can be specified is an integer between 0 and 99, inclusive.

Syntax:
max_perf_decrease_allowed = percent_number

where:

percent_number
Is the performance degradation percentage. This keyword cannot be used
at the same time as the energy_saving_req keyword.

Default value: 0

Note: This keyword is ignored if the energy_policy_tag is not valid.

Examples:

In this example, userA set the performance degradation to 20% in the job
command file:
userA.cmd
@ energy_policy_tag = long_running_job
@ max_perf_decrease_allowed = 20

The content for the energy tag long_running_job is:
long_running_job:

Generated by: c111bc4n13.ppd.pok.ibm.com.91.0
Last used Time: Tue May 10 05:00:01 EDT 2011

User: userA
Nominal Frequency: 3.3 GHZ
Energy Consumption: 0.8 Kwh

Execution Time: 950 Seconds
Frequency(GHZ) EstedEnergyCons(Kwh) EngSaving(%) EstedTime(Seconds) PerfDeg(%)

3.1 0.75 6 1000 5
2.8 0.65 19 1050 11
2.6 0.6 25 1100 16
2.2 0.5 38 1150 21

In this example, the maximum performance degradation of the tag is 21% and
the maximum performance degradation allowed by userA is 20% in the job
command file. The job will run at the frequency 2.6 GHZ.

mcm_affinity_options

Specifies the affinity options for a job.

Syntax:
mcm_affinity_options = affinity_option

where affinity_option is a blank-delimited list of one, two, or three keywords
chosen from the three groupings of keywords in the list that follows. Only one
option from each group may be specified.
task affinity options

The following options are task affinity options. These options are
mutually exclusive.

Chapter 12. Job command file reference 361

mcm_accumulate
Specifying this option tells the central manager to accumulate
tasks on the same MCM whenever possible.

mcm_distribute
Specifying this option tells the central manager to distribute
tasks across all available MCMs on a machine.

memory affinity options
The following options are memory affinity options. These options are
mutually exclusive.
mcm_mem_none

When you specify mcm_mem_none, the job does not request
memory affinity.

mcm_mem_pref
When you specify mcm_mem_pref, the job requests memory
affinity as a preference.

mcm_mem_req
When you specify mcm_mem_req, the job requests memory
affinity as a requirement.

adapter affinity options
The following options are adapter affinity options. These options are
mutually exclusive.
mcm_sni_none

Specifying this option indicates the job has no adapter affinity
requirement.

mcm_sni_pref
Specifying this option indicates the job requests adapter
affinity.

mcm_sni_req
Specifying this option indicates the job requires adapter
affinity. When the mcm_sni_req option is specified, the
network usage should be requested as not_shared.

Your job containing the keyword mcm_affinity_options will not be submitted
to LoadLeveler unless the rset keyword is set to RSET_MCM_AFFINITY.

Default value: Table 57 describes the default values for mcm_affinity_options
depending on the type of affinity (MCM affinity or task affinity) and network
requirements.

Table 57. mcm_affinity_options default values

If the following keywords are specified in the
job command file: Memory Affinity Task Allocation Adapter Affinity

#@ rset = rset_mcm_affinity
#@ network.protocol = sn_all,,,,

mcm_mem_req mcm_accumulate mcm_sni_none

#@ rset = rset_mcm_affinity
#@ network.protocol = sn_single,,,,

mcm_mem_req mcm_accumulate mcm_sni_pref

#@ task_affinity = cpu(number) | core(number)
#@ network.protocol = sn_all,,,,

mcm_mem_pref mcm_accumulate mcm_sni_none

#@ task_affinity = cpu(number) | core(number)
#@ network.protocol = sn_single,,,,

mcm_mem_pref mcm_accumulate mcm_sni_pref

Examples:

1. This example shows how to have a job set memory affinity as a
requirement, adapter affinity as a preference, and MCM task allocation
method as distribute.

362 LoadLeveler: Using and Administering

mcm_affinity_options = mcm_mem_req mcm_sni_pref mcm_distribute

2. This example shows how to have a job set adapter affinity as a
requirement:
mcm_affinity_options = mcm_sni_req
...
network.mpi = sn_single, not_shared, us,, instances=1
...

memlock_limit

Specifies the hard limit, soft limit, or both limits for the memory that can be
locked by each process of the submitted job. This limit is a per process limit.

Syntax:
memlock_limit = hardlimit,softlimit

Default value: No default value is set.

Example:
memlock_limit = 1gb,256mb

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

network

Specifies communication protocols, adapters, and their characteristics. You
need to specify this keyword when you want a task of a parallel job step to
request a specific adapter that is defined in the LoadLeveler administration file.
You do not need to specify this keyword when you want a task to access a
shared, default adapter through TCP/IP. (A default adapter is an adapter
whose name matches a machine stanza name.)

Note that you cannot specify both the network statement and the Adapter
requirement in a job command file. Also, the value of the network keyword
applies only to the job step in which you specify the keyword. (That is, this
keyword is not inherited by other job steps.)

This keyword is supported by the BACKFILL and API schedulers.

Syntax:
network.protocol[(number)]=type[,usage[,mode[,comm_level[,instances=<number|max> \
[,rcxtblocks=number[,collective_groups=number[,imm_send_buffers=number] \
[,endpoints=number]]]]]]]

where:

protocol
Specifies any communication protocols that are supported by Parallel
Environment Runtime Edition.

number
The protocol can include an optional number of contexts, expressed as:
protocol(number)

For more information, see:
v IBM Parallel Environment Runtime Edition for AIX: Operation and Use

v IBM Parallel Environment Runtime Edition for AIX: MPI Programming
Guide

type This field is required and specifies one of the following:

Chapter 12. Job command file reference 363

sn_single
When used for switch adapters, it specifies that LoadLeveler
use a common, single switch network.

sn_all Specifies that striped communication should be used over all
available switch networks. The networks specified must be
accessible by all machines selected to run the job. For more
information on striping, see “Submitting jobs that use striping”
on page 188.

The following are optional and if omitted their position must be specified with
a comma:
usage Specifies whether the adapter can be shared with tasks of other job

steps. Possible values are shared, which is the default, or not_shared.
If not_shared is specified, LoadLeveler can only guarantee that the
adapter will not be shared by other jobs running on the same OSI. If
the adapter is shared by more than one OSI, LoadLeveler cannot
guarantee that the adapter is not shared with jobs running on a
different OSI.

mode Specifies the communication subsystem mode used by the
communication protocol that you specify, and can be either IP (Internet
Protocol), which is the default, or US (User Space). Note that each
instance of the US mode requested by a task running on switch
adapters requires an adapter window. For example, if a task requests
both the MPI and LAPI protocols such that both protocol instances
require US mode, two adapter windows will be used.

comm_level

Note: This keyword is obsolete and will be ignored, however it is
being retained for compatibility and because the parameters in the
network statement are positional.
The comm_level keyword should be used to suggest the amount of
inter-task communication that users expect to occur in their parallel
jobs. This suggestion is used to allocate adapter device resources.
Specifying a level that is higher than what the job actually needs will
not speed up communication, but may make it harder to schedule a
job (because it requires more resources). The comm_level keyword can
only be specified with US mode. The three communication levels are:
LOW Implies that minimal inter-task communication will occur.
AVERAGE

This is the default value. Unless you know the specific
communication characteristics of your job, the best way to
determine the comm_level is through trial-and-error.

HIGH Implies that a great deal of inter-task communication will
occur.

instances=<number|max>
If instances is specified as a number, it indicates the number of parallel
communication paths made available to the protocol on each network.
The number actually used will depend on the implementation of the
protocol subsystem. If instances is specified by max, the actual value
used is determined by the MAX_PROTOCOL_INSTANCES for the
class to which the job is submitted. The default value for instances is
1.

For the best performance set MAX_PROTOCOL_INSTANCES so that
the communication subsystem uses every available adapter before it
reuses any of the adapters.

364 LoadLeveler: Using and Administering

rcxtblocks=number
Integer value specifying the number of user rCxt blocks requested for
each window used by the associated protocol. The values of this
keyword are not inherited between steps in a multistep job.

Note: Use of this keyword will prevent adapters from the SP Switch2
family from being used by the job.

collective_groups=number
Requests the Collective Acceleration Unit (CAU) groups for the
specified protocol instances of the job.

The value of the collective groups must be greater than or equal to
zero. The value specified for the collective_groups keyword in the job
command file overwrites any value specified for the collective_groups
keyword in the administration file. If the job is not sharing the nodes
with other jobs, then the protocol instance of the job will be allocated
at least number CAU groups. Additional CAUs can be allocated to the
job step if additional CAU groups are available on the node and the
node is not shared with other jobs. If the job is sharing the node with
other jobs, then exactly number CAU groups are allocated to each
protocol instance of the job.

The default value varies depending on whether the job shares the
nodes with other jobs or not. If the job is not sharing the nodes with
other jobs, then all the CAU groups are allocated to all the protocol
instances of the job proportionally. If the job is sharing the nodes with
other jobs, then zero CAU groups are allocated to the protocol
instances of the job.

imm_send_buffers=number
Requests a number of immediate send buffers for each window
allocated for each protocol instance of the job.

The value of the immediate send buffers must be greater than or equal
to zero. The value of the immediate send buffers is inherited from all
the protocol instances of the job step unless the individual protocol
instances are specified with their own immediate send buffers. If the
job is sharing nodes with other jobs, then exactly number immediate
send buffers are allocated to each window assigned to each protocol
instance of the job. If the job is not sharing the nodes with other jobs
then at least number immediate send buffers are allocated to each
window assigned to each protocol instance of the job. Additional
immediate send buffers can be distributed evenly to the windows
assigned to the job if the nodes are not shared with other jobs.

endpoints= 1 | 2 | 4 | 8 | 16 | 32 | 64 | 128
Requests the number of endpoints that can be used by each task per
protocol instance.

The number value must be a power of 2 and no greater than 128 (that
is, from {1, 2, 4, 8, 16, 32, 64, 128}). If the value specified is not a power
of 2, the next higher power of 2 is used and a warning message is
issued. The value of endpoints is inherited to all the protocol instances
of the job step unless the individual protocol instances are specified
with their own endpoints.

Note: If multiple network statements with endpoints are used, all the
endpoints values must be the same.

Chapter 12. Job command file reference 365

Default value: If there is no network statement in the job command file, the
default_network.MPI and default_network.LAPI keywords defined in the
class stanza will serve as the defaults of network.MPI and network.LAPI in
the job command file. If you do not specify default_network in the class
stanza and you do not specify the network keyword in the job command file,
LoadLeveler allows the task to access a shared default adapter through
TCP/IP. The default adapter is the adapter associated with the machine name.

Examples:

v Example 1: To use the MPI protocol with an adapter in User Space mode
without sharing the adapter, enter the following:
network.MPI = sn_single,not_shared,US,HIGH

v Example 2: To use the MPI protocol with a shared adapter in IP mode, enter
the following:
network.MPI = sn_single,,IP

Because a shared adapter is the default, you do not need to specify shared.
v Example 3: A communication level can only be specified if User Space mode

is also specified:
network.MPI = sn_single,,US,AVERAGE

Note that LoadLeveler can ensure that an adapter is dedicated (not shared)
if you request the adapter in US mode, since any user who requests a user
space adapter must do so using the network statement. However, if you
request a dedicated adapter in IP mode, the adapter will only be dedicated if
all other LoadLeveler users who request this adapter do so using the
network statement.

node

Specifies the minimum and maximum number of nodes requested by a job
step. You must specify at least one of these values. The value of the node
keyword applies only to the job step in which you specify the keyword. (That
is, this keyword is not inherited by other job steps.)

When you use the node keyword together with the total_tasks keyword, the
min and max values you specify on the node keyword must be equal, or you
must specify only one value. For example:
node = 6
total_tasks = 12

This keyword is supported by the BACKFILL and API schedulers.

Syntax:
node = [min][,max]

where:
min Specifies the minimum number of nodes requested by the job step.
max Specifies the maximum number of nodes requested by the job step.

The maximum number of nodes a job step can request is limited by the
max_node keyword in the administration file (provided this keyword
is specified). That is, the maximum must be less than or equal to any
max_node value specified in a user, group, or class stanza.

Default value: The default value for min is 1; the default value for max is the
min value for this keyword.

Example: To specify a range of six to twelve nodes, enter the following:
node = 6,12

366 LoadLeveler: Using and Administering

To specify a maximum of seventeen nodes, enter the following:
node = ,17

For information about specifying the number of tasks you want to run on a
node, see “Task-assignment considerations” on page 186 and the
task_geometry, tasks_per_node, and total_tasks job command file keywords.

node_resources

Specifies quantities of the consumable resources consumed by each node of a
job step. The resources must be machine resources; floating resources cannot be
requested with the node_resources keyword.

Syntax:
node_resources =name(count) name(count) ... name(count)

where name(count) is one of the following:
v An administrator-defined name and count
v ConsumableCpus(count)
v ConsumableMemory(count units)
v ConsumableVirtualMemory(count units)
v ConsumableLargePageMemory(count units)

The count for each specified resource must be an integer greater than or equal
to zero, except for the following instances in which the integer must be greater
than zero:
v ConsumableMemory
v ConsumableVirtualMemory
v ConsumableCpus when the enforcement policy is hard or soft

ConsumableCpus can have a value of zero when the administrator has not
requested that consumable resources be enforced, or when the enforcement
policy is shares.

When you set ConsumableCpus to zero, the meaning varies depending on
whether use is being enforced. With no enforcement, zero means that the job is
requesting a negligible amount of CPU. With an enforcement policy of shares, it
means that the job is requesting a small percentage of available shares.

If the count is not valid, LoadLeveler will issue a message and the job will not
be submitted. The allowable units are those normally used with LoadLeveler
data limits:
b bytes
w words (4 bytes)
kb kilobytes (2**10 bytes)
kw kilowords (2**12 bytes)
mb megabytes (2**20 bytes)
mw megawords (2**22 bytes)
gb gigabytes (2**30 bytes)
gw gigawords (2**32 bytes)
tb terabytes (2**40 bytes)
tw terawords (2**42 bytes)
pb petabytes (2**50 bytes)
pw petawords (2**52 bytes)
eb exabytes (2**60 bytes)
ew exawords (2**62 bytes)

ConsumableMemory, ConsumableVirtualMemory, and
ConsumableLargePageMemory values are stored in megabytes (MB) and are
rounded up. For ConsumableMemory and ConsumableVirtualMemory, the
smallest amount you can request is 1 MB. If no units are specified, megabytes

Chapter 12. Job command file reference 367

are assumed. Resources defined here that are not in the
SCHEDULE_BY_RESOURCES list in the global configuration file will not
affect the scheduling of the job.

When resource usage and resource submission is enforced, either the resources
or node_resources keyword must specify requirements for the resources
defined in the ENFORCE_RESOURCE_USAGE keyword.

Both resources and node_resources can be specified in a single job step
provided that the resources requested in each are different.

ConsumableCpus cannot be used in the node_resources list when the rset
keyword is also specified in the job command file.

Default value: If the node_resources keyword is not specified in the job step,
then the default_node_resources (if any) defined in the administration file for
the class will be used for each task of the job step.

node_topology
Indicates that the scheduler must select the nodes to run the job step based on
some common topology grouping. If no value is specified in the job command
file, the default value is none, which means topology is not a consideration
when the scheduler selects nodes to run the job step, and the job step could
span multiple groups.

Job steps that specify node_topology must specify the node keyword. If
blocking, task_geometry, or host_file is used, then the submission will fail.

By specifying node_topology, the value for node_usage is assumed to be
not_shared. If node_usage=shared and node_topology are both specified for a
job step, the request will automatically be changed to node_usage=not_shared.

Syntax:
node_topology = [none | island]

where:
none Specifies that topology is not a consideration when the scheduler

selects nodes to run the job step. The nodes could come from any
group or groups of machines.

island Specifies that the nodes will be selected to run job steps based on the
island to which they belong. If the island_count keyword is not
specified for the job step, then all nodes will be from the same island.

Default value: none.

node_usage

Specifies whether this job step shares nodes with other job steps.

This keyword is supported by the BACKFILL and API schedulers.

Syntax:
node_usage = shared | not_shared

where:
shared

Specifies that nodes can be shared with other tasks of other job steps.
not_shared

Specifies that nodes are not shared. No other job steps are scheduled
on this node.

Default value: shared

368 LoadLeveler: Using and Administering

nofile_limit

Specifies the hard limit, soft limit, or both for the number of open file
descriptors that can be used by each process of the submitted job. This limit is
a per process limit.

Syntax:
nofile_limit = hardlimit,softlimit

Default value: No default value is set.

Example:
nofile_limit = 1000,386

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

notification

Specifies when the user specified in the notify_user keyword is sent mail.

Syntax:
notification = always|error|start|never|complete

where:
always

Notify the user when the job begins, ends, or if it incurs error
conditions.

error Notify the user only if the job fails.
start Notify the user only when the job begins.
never Never notify the user.
complete

Notify the user only when the job ends.

Default value: complete

Examples:

v If you want to be notified with mail only when your job step completes,
your notification keyword would be:
notification = complete

v When a LoadLeveler job ends, you may receive mail notification indicating
the job exit status. For example, you could get the following mail message:
Your LoadLeveler job
myjob1
exited with status 4.

The return code 4 is from the user's job. LoadLeveler retrieves the return
code and returns it in the mail message, but it is not a LoadLeveler return
code.

notify_user

Specifies the user to whom mail is sent based on the notification keyword.

Syntax:
notify_user = userID

Default value: The default is the submitting user at the submitting machine.

Example: If you are the job step owner but you want a coworker whose name
and user ID is bob, to receive mail regarding the job step, your notify keyword
would be:

Chapter 12. Job command file reference 369

notify_user = bob@mailserv.pok.ibm.com

nproc_limit

Specifies the hard limit, soft limit, or both for the number of processes that can
be created for the real user ID of the submitted job. This limit is a per process
limit.

Syntax:
nproc_limit = hardlimit,softlimit

Default value: No default value is set.

Example:
nproc_limit = 288,200

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

output

Specifies the name of the file to use as standard output (stdout) when your job
step runs.

Syntax:
output = filename

Default value: If you do not specify this keyword, LoadLeveler uses the file
/dev/null

Example:
output = out.$(jobid)

parallel_threads

Requests OpenMP thread-level binding.

This keyword assigns separate CPUs to individual threads of an OpenMP task.
The CPUs assigned to threads are selected from the set of CPUs or cores
assigned to the task. The CPUs for individual OpenMP threads of the tasks are
selected based on the number of parallel threads in each task and set of CPUs
or cores assigned to the task. The CPUs are assigned to the threads only when
at least one CPU is available for each thread from the set of CPUs or cores
assigned to the task. If cores are assigned to the task instead of CPUs, then
parallel threads are assigned to the CPUs of the cores in a round-robin method
until all threads are bound.

LoadLeveler uses the parallel_threads value to set the value for the
OMP_NUM_THREADS OpenMP runtime environment variable for all job
types. For serial jobs, LoadLeveler uses the parallel_threads value to set the
GOMP_CPU_AFFINITY (GNU compiler), KMP_AFFINITY (Intel compiler)
runtime environment variables and the 'parthds' suboption of the XLSMPOPTS
runtime environment variable. See C/C++ and Fortran compiler
documentation for more details about the OpenMP runtime environment.

Syntax:
parallel_threads = number

where number specifies the number of parallel threads in each OpenMP task of
the job.

Default value: No default value is set.

370 LoadLeveler: Using and Administering

preferences

Specifies the characteristics that you prefer be available on the machine that
executes the job steps. LoadLeveler attempts to run the job steps on machines
that meet your preferences. If such a machine is not available, LoadLeveler will
then assign machines that meet only your requirements.

The values you can specify in a preferences statement are the same values you
can specify in a requirements statement, with the exception of the Adapter
requirement.

Syntax:
preferences = Boolean_expression

where:

Default value: No default preferences are set.

Examples:
preferences = (Memory <=16) && (Arch == "R6000")
preferences = Memory >= 64

queue
Places one or more copies of the job step in the queue. This statement is
required. The queue statement essentially marks the end of the job step. Note
that you can specify statements between queue statements.

Syntax:
queue = [number]

where:

number
Is the number of serial job steps to generate from the prior job command
file statements. A value may only be specified for steps with job_type =
serial. Only the #@queue syntax (without a value) is permitted for steps
with job_type = bluegene, job_type = mpich, or job_type = parallel.

Default value: The default value is 1.

Note: The specification of a number on the queue statement is limited to the
job command file that contains only one queue statement.

Job command file keyword values specified prior to this queue statement must
be inherited by all proceeding job steps. The following keywords are not
permitted when using this feature because their values are not inherited:
v bg_block
v bg_connectivity
v bg_requirements
v bg_rotate
v bg_shape
v bg_size
v blocking
v bulkxfer
v coschedule
v host_file
v network
v node
v step_resources
v task_geometry

Chapter 12. Job command file reference 371

v tasks_per_node
v total_tasks

Example:

There are two ways to specify five identical steps for a job. Five separate queue
statements can be specified for a serial job:
#@ queue
#@ queue
#@ queue
#@ queue
#@ queue

Or a single queue statement with a value of 5 may be specified:
#@ queue = 5

recurring

Indicates whether the job will be run in every occurrence of the reservation to
which it is bound.

Syntax:
recurring = yes | no

This keyword applies to all steps of a job. When all steps of a job have
terminated that had recurring = yes specified, all steps will be automatically
bound to the next occurrence of the reservation that they are bound to and are
scheduled to run again. If the steps are not bound to any reservation or the
reservation has expired, the job will be removed from the system upon
termination of all steps as though the recurring keyword had not been set.

If a step specifies both recurring = yes and restart =yes, it is not a conflict. The
recurring keyword indicates that once the step has terminated, it will be able
to run again in the next occurrence of the reservation to which it is bound.
Termination could be the result of successful completion, cancellation by the
job's owner or an administrator, or a vacate or rejection, or some other failure.
The restart keyword allows the same occurrence of the step to be restarted in
the event of a vacate or rejection. A step could be restarted several times, then
finally run to completion, then be requeued as a recurring job to run again.
Similarly, a job could be rejected up to the maximum allowed rejects for a job,
be removed as a result, then requeued as a recurring job to run in the next
occurrence of its reservation.

Note that to permanently remove a recurring job, the job must first be
unbound from its reservation, then removed with the llcancel command. As
long as a recurring job is still bound to a reservation, it will continue to be
requeued upon termination to run in the next occurrence of that reservation.

Default value: no

requirements

Specifies the requirements which a machine in the LoadLeveler cluster must
meet to execute any job steps. You can specify multiple requirements on a
single requirements statement.

Syntax:
requirements = Boolean_expression

When strings are used as part of a Boolean expression that must be enclosed in
double quotes. Sample requirement statements are included following the
descriptions of the supported requirements, which are:

372 LoadLeveler: Using and Administering

Adapter
Specifies the predefined type of network you want to use to run a parallel
job step. In any new job command files you create, you should use the
network keyword to request adapters and types of networks.

It is also the way to specify when running with the default LoadLeveler
scheduler. When using the default scheduler, the Adapter requirement is
specified as the physical name of the device, such as en0.

This keyword is supported by the LL_DEFAULT and BACKFILL
schedulers.

Note that you cannot specify both the Adapter requirement and the
network statement in a job command file.

For the BACKFILL scheduler you can use the predefined network types.
The predefined network types are:
ethernet

Refers to Ethernet.
fddi Refers to Fiber Distributed Data Interface (FDDI).
tokenring

Refers to Token Ring.
fcs Refers to Fiber Channel Standards.

Note that LoadLeveler converts the network types to the network
statement.

Arch
Specifies the machine architecture on which you want your job step to run.
It describes the particular kind of platform for which your executable has
been compiled.

Connectivity
Connectivity is the ratio of the number of active switch adapters on a node
to the total number of switch adapters on the node. The value ranges from
0.0 (all switch adapters are down) to 1.0 (all switch adapters are active). A
node with no switch adapters has a connectivity of 0.0 . Connectivity can
be used in a MACHPRIO expression to favor nodes that do not have any
down switch adapters or in a job REQUIREMENTS statement to require
only nodes with a certain connectivity.

Disk
Specifies the amount of disk space in kilobytes you believe is required in
the LoadLeveler execute directory to run the job step.

Note: The Disk variable in an expression associated with the requirements
and preferences keywords are 64-bit integers.

Feature
Specifies the name of a feature defined on a machine where you want your
job step to run. Be sure to specify a feature in the same way in which the
feature is specified in the configuration file. To find out what features are
available, use the llstatus command.

Island
Specifies the name of the island where you want your job step to run.

LargePageMemory
Specifies the amount, in megabytes, of Large Page memory required to run
the job.

Chapter 12. Job command file reference 373

Note: The Memory variable in an expression associated with the
requirements and preferences keywords are 64-bit integers.

LL_Version
Specifies the LoadLeveler version, in dotted decimal format, on which you
want your job step to run. For example, LoadLeveler Version 5 Release 1
(with no modification levels) is written as 5.1.0.0.

Machine
Specifies the names of machines on which you want the job step to run. Be
sure to specify a machine name in lower case and in the same way in
which it is specified in the configuration.

MachineGroup
Specifies the name of the machine group where you want your job step to
run.

Memory
Specifies the amount, in megabytes, of regular physical memory required
in the machine where you want your job step to run.

Note: The Memory variable in an expression associated with the
requirements and preferences keywords are 64-bit integers.

OpSys
Specifies the operating system on the machine where you want your job
step to run. It describes the particular kind of platform for which your
executable has been compiled.

Pool
Specifies the number of a pool where you want your job step to run.

Region
Specifies the name of the region where you want your job step to run.

SMT
Specifies the SMT state of the machines where the job request is to run.
Accepted values are "Disabled" and "Enabled."

If "Enabled" is specified, only machines on which SMT is enabled are
considered for the job request. If "Disabled" is specified, only machines on
which either SMT is disabled or machines that do not support SMT are
considered for the job request.

TotalMemory
Specifies the amount, in megabytes, of regular physical memory and Large
Page memory required in the machine where you want your job step to
run.

Note: The Memory variable in an expression associated with the
requirements and preferences keywords are 64-bit integers.

Default value: No default requirements are set.

Examples:

v Example 1: To specify a memory requirement and a machine architecture
requirement, enter:
requirements = (Memory >=16) && (Arch == "R6000")

v Example 2: To specify that your job requires multiple machines for a parallel
job, enter:
requirements = (Machine == { "ll6" "ll5" "ll0" })

374 LoadLeveler: Using and Administering

v Example 3: You can set a machine equal to a job step name. This setting
means that you want the job step to run on the same machine on which the
previous job step ran. For example:
requirements = (Machine == machine.step_name)

where step_name is a step name previously defined in the job command file.
The use of Machine == machine.step_name is limited to serial jobs.
Example:
@ step_name = step1
@ executable = c1
@ output = $(executable).$(jobid).$(step_name).out
@ queue
@ step_name = step2
@ dependency = (step1 == 0)
@ requirements = (Machine == machine.step1)
@ executable = c2
@ output = $(executable).$(jobid).$(step_name).out
@ queue

v Example 4: To specify a requirement for a specific pool number, enter:
requirements = (Pool == 7)

v Example 5: To specify a requirement that the job runs on LoadLeveler
Version 5 Release 1 or any follow-on release, enter:
requirements = (LL_Version >= "5.1")

Note that the statement requirements = (LL_Version == "5.1") matches only
the value 5.1.0.0.

v Example 6: To specify the job runs if all switch connections are up, enter:
@ requirements = (Connectivity == 1.0)

To specify the job runs if at least half of the switch connections are up, enter:
@ requirements = (Connectivity >= .5)

To specify the job runs if there is at least some connectivity, enter:
@ requirements = (Connectivity > 0)

v Example 7: To specify a requirement for SMT-enabled machines, enter:
@ requirements = (SMT == “Enabled”)

resources

Specifies quantities of the consumable resources consumed by each task of a
job step. The resources may be machine resources or floating resources.

Syntax:
resources=name(count) name(count) ... name(count)

where name(count) is one of the following:
v An administrator defined name and count
v ConsumableCpus(count)
v ConsumableMemory(count units)
v ConsumableVirtualMemory(count units)
v ConsumableLargePageMemory(count units)

The count for each specified resource must be an integer greater than or equal
to zero, except for the following instances in which the integer must be greater
than zero:
v ConsumableMemory
v ConsumableVirtualMemory

Chapter 12. Job command file reference 375

v ConsumableCpus when the enforcement policy is hard or soft

ConsumableCpus can have a value of zero when the administrator has not
requested that consumable resources be enforced, or when the enforcement
policy is shares.

When you set ConsumableCpus to zero, the meaning varies depending on
whether use is being enforced. With no enforcement, zero means the job is
requesting a negligible amount of CPU. With an enforcement policy of shares, it
means the job is requesting a tiny percentage of available shares.

If the count is not valid then LoadLeveler will issue a message and the job will
not be submitted. The allowable units are those normally used with
LoadLeveler data limits:
b bytes
w words (4 bytes)
kb kilobytes (2**10 bytes)
kw kilowords (2**12 bytes)
mb megabytes (2**20 bytes)
mw megawords (2**22 bytes)
gb gigabytes (2**30 bytes)
gw gigawords (2**32 bytes)
tb terabytes (2**40 bytes)
tw terawords (2**42 bytes)
pb petabytes (2**50 bytes)
pw petawords (2**52 bytes)
eb exabytes (2**60 bytes)
ew exawords (2**62 bytes)

ConsumableMemory, ConsumableVirtualMemory, and
ConsumableLargePageMemory values are stored in MB (megabytes) and
rounded up. For ConsumableMemory or ConsumableVirtualMemory the
smallest amount which you can request is 1 MB. If no units are specified, then
megabytes are assumed. However, image_size units are in kilobytes. Resources
defined here that are not in the SCHEDULE_BY_RESOURCES list in the
global configuration file will not affect the scheduling of the job.

When resource usage and resource submission is enforced, the resources
keyword must specify requirements for the resources defined in the
ENFORCE_RESOURCE_USAGE keyword.

Default value: If the resources keyword is not specified in the job step, then
the default_resources (if any) defined in the administration file for the class
will be used for each task of the job step.

restart

Specifies whether LoadLeveler considers a job to be “restartable.”

Syntax:
restart = yes|no

If restart=yes, and the job is vacated from its executing machine before
completing, the central manager requeues the job. It can start running again
when a machine on which it can run becomes available. If restart=no, a
vacated job is canceled rather than requeued.

Note that jobs which are checkpointable (checkpoint = yes | interval) are
always considered "restartable".

If restart=no, a vacated, user-hold, or system-hold job is canceled rather than
requeued.

Default value: yes

376 LoadLeveler: Using and Administering

restart_from_ckpt

Indicates whether a job step is to be restarted from a checkpoint file.

Restriction: This keyword is ignored by LoadLeveler for Linux.

Syntax:
restart_from_ckpt = yes | no

where:

yes Indicates LoadLeveler will restart the job step from the checkpoint files
in the directory specified by the ckpt_subdir job command file
keyword, which must be set when restart_from_ckpt = yes. .

If ckpt_subdir does not contain a fully qualified path name, the
location of the file or directory will be determined by the default
location, which is the current directory.

This value is valid only when a job is being restarted from a previous
checkpoint.

no The job step will be started from the beginning, not from the
checkpoint file.

Default value: no

If you specify a value that is not valid for this keyword, the system generates
an error message and the job is not submitted.

Tips:

v If the value specified by the restart_from_ckpt keyword is not valid, an
error message is generated and the job is not submitted.

v The restart_from_ckpt = yes keyword value is used only when a job is being
restarted from a previous checkpoint.

restart_on_same_nodes

Indicates that a job step is to be restarted on the same set of nodes that it was
run on previously. This keyword applies only to restarting a job step after a
vacate (this condition is when the job step is terminated and then returned to
the LoadLeveler job queue).

Syntax:
restart_on_same_nodes = yes | no

where:
yes Indicates that the job step is to be restarted on the same set of nodes

on which it had run.
no Indicates that it is not required to restart a vacated job on the same

nodes.

Default value: no

Tip: If the value specified by the restart_on_same_nodes keyword is not valid,
an error message is generated and the job is not submitted.

rset

This keyword indicates that the job tasks need to be attached to RSets with
CPUs selected by different LoadLeveler scheduling algorithms or RSets created
by users.

Syntax:

Chapter 12. Job command file reference 377

rset = value

value can be a user-defined RSet name or the following keyword:

RSET_MCM_AFFINITY
Specifying this value requests affinity scheduling with memory affinity
as a requirement, adapter affinity as a preference, and the task MCM
allocation method set to accumulate. The affinity options may be
changed from these defaults by using the mcm_affinity_options
keyword.

When anything other than the RSET_MCM_AFFINITY is specified,
LoadLeveler considers the value to be a user-defined RSet name and schedules
the job to nodes with RSET_SUPPORT set to RSET_USER_DEFINED.

Default value: If task_affinity is specified, then the default is rset =
RSET_MCM_AFFINITY; otherwise, no default is set.

Example:
rset = RSET_MCM_AFFINITY

This example shows how to request affinity scheduling for a job. To request
processor-core affinity, the jobs needs to specify the task_affinity keyword.

shell

Specifies the name of the shell to use for the job step.

Syntax:
shell = name

Default value: If you do not specify a value for this keyword, LoadLeveler
uses the shell used in the owner's password file entry. If none is specified,
LoadLeveler uses /bin/sh

Example: If you want to use the Korn shell, the shell keyword would be:
shell = /bin/ksh

smt

Indicates the required simultaneous multithreading (SMT) state for the job
step.

LoadLeveler can satisfy this job request on AIX by dynamically enabling SMT
if a node has SMT disabled. Once the job completes, LoadLeveler will return
SMT to its original state.

To enable or disable smt, you must specify smt = yes or smt = no in the job
command file. You must also specify job_type = parallel and node_usage =
not_shared. For example:
#@ job_type = parallel
#@ node_usage = not_shared
#@ smt = yes | no

If smt = as_is is specified, it is not necessary to specify job_type or
node_usage.

Syntax:
smt = yes | no | as_is

where:
yes

The job step requires SMT to be enabled.
no The job step requires SMT to be disabled.

378 LoadLeveler: Using and Administering

as_is
The SMT state will not be changed.

Default value: as_is.

Examples:
smt = yes

stack_limit

Specifies the hard limit, soft limit, or both limits for the size of the stack that is
created.

Syntax:
stack_limit = hardlimit,softlimit

Default value: No default is set.

Example:
stack_limit = 120000,100000

Because no units have been specified in this example, LoadLeveler assumes
that the figure represents a number of bytes.

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

startdate

Specifies when you want to run the job step.

Syntax:
startdate = date time

date is expressed as MM/DD/YYYY, and time is expressed as HH:mm(:ss).

Default value: If you do not specify a start date, LoadLeveler uses the current
date and time.

Example: If you want the job to run on August 28th, 2010 at 1:30 PM, issue:
startdate = 08/28/2010 13:30

If you specify a start date that is in the future, your job is kept in the Deferred
state until that start date.

step_name

Specifies the name of the job step. You can name the job step using any
combination of letters, numbers, underscores (_) and periods (.). You cannot,
however, name it T or F, or use a number in the first position of the step name.
The step name you use must be unique and can be used only once.

Syntax:
step_name = step_name

Default value: If you do not specify a step name, by default the first job step is
named the character string "0", the second is named the character string "1",
and so on.

Example:
step_name = step_3

step_resources
Specifies quantities of the floating resources consumed by a job step. The

Chapter 12. Job command file reference 379

resources must be floating resources and be in the
SCHEDULE_BY_RESOURCES list in the global configuration file.

Syntax:
step_resources = name(count) name(count)...name(count)

where: name is an administrator defined name and count is an integer greater
than or equal to zero. This keyword is not inherited by other job steps.

Default value: No default value is set.

Example:
step_resources = Conslicense(4) ConsBW(10)

task_affinity

Requests affinity scheduling in an SMT environment.

This keyword accepts either core or cpu as values. Optionally, you can specify
an integer quantity for core or cpu by specifying a quantity within parenthesis
'(' and ')'. If not specified, the default quantity is one.

The job will be scheduled to run only to the machines having LoadLeveler
ConsumableCpus and rset_mcm_affinity configurations. When core is
specified, each task of the job is bound to run on as many processor cores as
specified. If cpu is specified, each task of the job is bound to run on the
specified number of logical CPUs selected from the same cores. The CPUs
allocated to the tasks of a processor-core affinity job will not be shared by
other tasks. The processor cores allocated to the tasks of a processor-core
affinity job can only be shared by tasks from other jobs, but not by tasks from
the same job. If task_affinity is specified without the rset job command file
keyword, rset is set to rset_mcm_affinity and mcm_affinity_options is set to
“mcm_mem_pref mcm_accumulate mcm_sni_pref” for an sn_single parallel
job; otherwise, it is set to “mcm_mem_pref mcm_accumulate mcm_sni_none”.

In a multistep job command file, if you set task_affinity equal to a blank, no
task affinity will be set for the job step. If no task_affinity is specified for this
job step, it will inherit the task_affinity value from its previous step.

Syntax:
task_affinity = core[(number)] | cpu[(number)]

Default value: If parallel_threads = number is specified, then the default is
task_affinity = cpu(number); otherwise, no default is set.

Example:
1. task_affinity = core

2. task_affinity = core(2)
cpus_per_core = 1

3. task_affinity = cpu(4)
cpus_per_core = 1

task_geometry

The task_geometry keyword allows you to group tasks of a parallel job step to
run together on the same node. Although task_geometry allows for a great
deal of flexibility in how tasks are grouped, you cannot specify the particular
nodes that these groups run on; the scheduler will decide which nodes will
run the specified groupings.

This keyword is supported by the BACKFILL and API schedulers.

380 LoadLeveler: Using and Administering

Syntax:
task_geometry={(task id,task id,...)(task id,task id, ...) ... }

Default value: No default value is set.

Example: A job with 6 tasks will run on 4 different nodes:
task_geometry={(0,1) (3) (5,4) (2)}

Each number in this example represents a task ID in a job, each set of
parenthesis contains the task IDs assigned to one node. The entire range of
tasks specified must begin with 0, and must be complete; no number can be
skipped (the largest task id number should end up being the value that is one
less than the total number of tasks). The entire statement following the
keyword must be enclosed in braces, and each grouping of nodes must be
enclosed in parenthesis. Commas can only appear between task IDs, and
spaces can only appear between nodes and task IDs.

The task_geometry keyword cannot be specified under any of the following
conditions:
v The step is serial.
v job_type is anything other than parallel

v Any of the following keywords are specified:
– tasks_per_node
– total_tasks
– node
– blocking
– endpoints, where the value specified is not equal to 1.

For more information, see “Task-assignment considerations” on page 186.

tasks_per_node

Specifies the number of tasks of a parallel job you want to run per node. Use
this keyword together with the node keyword. The value you specify on the
node keyword can be a range or a single value. If the node keyword is not
specified, then the default value is one node.

The maximum number of tasks a job step can request is limited by the
total_tasks keyword in the administration file (provided this keyword is
specified). That is, the maximum must be less than any total_tasks value
specified in a user, group, or class stanza.

The value of the tasks_per_node keyword applies only to the job step in which
you specify the keyword. (That is, this keyword is not inherited by other job
steps.)

Also, you cannot specify both the tasks_per_node keyword and the total_tasks
keyword within a job step.

This keyword is supported by the BACKFILL and API schedulers.

Syntax:
tasks_per_node = number

where number is the number of tasks you want to run per node.

Default value: The default is one task per node.

Example: To specify a range of seven to 14 nodes, with four tasks running on
each node, enter the following:

Chapter 12. Job command file reference 381

node = 7,14
tasks_per_node = 4

This job step runs 28 to 56 tasks, depending on the number of nodes allocated
to the job step.

total_tasks

Specifies the total number of tasks of a parallel job you want to run on all
available nodes. Use this keyword together with the node keyword. The value
you specify on the node keyword must be a single value rather than a range of
values. If the node keyword is not specified, then the default value is one
node.

The maximum number of tasks a job step can request is limited by the
total_tasks keyword in the administration file (provided this keyword is
specified). That is, the maximum must be less than any total_tasks value
specified in a user, group, or class stanza. The value of the total_tasks keyword
applies only to the job step in which you specify the keyword. (That is, this
keyword is not inherited by other job steps.) Also, you cannot specify both the
total_tasks keyword and the tasks_per_node keyword within a job step.

If you specify an unequal distribution of tasks per node, LoadLeveler allocates
the tasks on the nodes in a round-robin fashion. For example, if you have three
nodes and five tasks, two tasks run on the first two nodes and one task runs
on the third node.

This keyword is supported by the BACKFILL and API schedulers.

Syntax:
total_tasks = number

where number is the total number of tasks you want to run.

Default value: No default is set.

Example: To run two tasks on each of 12 available nodes for a total of 24 tasks,
enter the following:
node = 12
total_tasks = 24

trace
Requests tracing of a job step's lifecycle from its submission time.

For tracing to occur, the administrator must first set the TRACE configuration
file keyword to allow job life cycle tracing in the cluster. After that, either this
keyword can be set to yes in the job command file to trace a job, or as an
alternative, the LOADL_JOB_TRACE environment variable can be set to yes
to trace all jobs that are subsequently submitted.

To trace

Syntax:
trace = yes|no

where:

yes
Requests tracing records for the events in this job's life cycle.

no A request is not made for tracing records for the events in this job's life
cycle.

Default value: no

382 LoadLeveler: Using and Administering

user_priority

Sets the initial priority of your job step. Priority only affects your job steps. It
orders job steps you submitted with respect to other job steps submitted by
you, not with respect to job steps submitted by other users.

Syntax:
user_priority = number

where number is a number between 0 and 100, inclusive. A higher number
indicates the job step will be selected before a job step with a lower number.
Note that this keyword is not the UNIX nice priority.

This priority guarantees the order the jobs are considered for dispatch. It does
not guarantee the order in which they will run.

Default value: The default priority is 50.

wall_clock_limit

Sets the hard limit, soft limit, or both limits for the elapsed time for which a
job can run. In computing the elapsed time for a job, LoadLeveler considers
the start time to be the time the job is dispatched.

If you are running the BACKFILL scheduler, you must either set a wall clock
limit in the job command file or the administrator must define a wall clock
limit value for the class to which a job is assigned. In most cases, this wall
clock limit value should not be unlimited. For more information, see
“Choosing a scheduler” on page 46.

Syntax:
wall_clock_limit = hardlimit,softlimit

An example is:
wall_clock_limit = 5:00,4:30

For additional information about limit keywords, see the following topics:
v “Syntax for limit keywords” on page 295
v “Using limit keywords” on page 94

Job command file variables
LoadLeveler has several variables you can use in a job command file. These
variables are useful for distinguishing between output and error files.

You can refer to variables in mixed case, but you must specify them using the
following syntax:
$(variable_name)

The following variables are available to you:

$(domain)
The domain of the host from which the job was submitted.

$(home)
The home directory for the user on the cluster selected to run the job. Since the
user may differ from the submitting user when a remote cluster is selected to
run the job and user mapping is used, so may the home directory differ.

Chapter 12. Job command file reference 383

$(host)
The hostname of the machine from which the job was submitted. In a job
command file, the $(host) variable and the $(hostname) variable are
equivalent.

$(jobid)
The sequential number assigned to this job by the Schedd daemon. The
$(jobid) variable and the $(cluster) variable are equivalent.

$(schedd_host)
The hostname of the scheduling machine.

$(schedd_hostname)
The hostname and domain name of the scheduling machine.

$(stepid)
The sequential number assigned to this job step when multiple queue
statements are used with the job command file. The $(stepid) variable and the
$(process) variable are equivalent.

$(user)
The user name on the cluster selected to run the job. This might be a different
user name than the user name who submitted the job. It is possible for the
value of this variable to differ from the submitting user name when a remote
cluster is selected to run the job and user name mapping is being used.

In addition, the following keywords are also available as variables. However, you
must define them in the job command file. These keywords are described in detail
in “Job command file keyword descriptions” on page 335.
v $(executable)
v $(class)
v $(comment)
v $(job_name)
v $(step_name)

Note that for the $(comment) variable, the keyword definition must be a single
string with no blanks. Also, the executable statement automatically sets the
$(base_executable) variable, which is the file name of the executable without the
directory component. See Figure 15 on page 175 for an example of using the
$(base_executable) variable.

Run-time environment variables
The following environment variables are set by LoadLeveler for all jobs. These
environment variables are also set before running prolog and epilog programs. For
more information on prolog and epilog programs, see “Writing prolog and epilog
programs” on page 80.

LL_DSTG_IN_EXIT_CODE
The exit code from the inbound data staging program. LoadLeveler sets
the environment variable to the value obtained from executing
WEXITSTATUS on the status returned in the wait3 system call when the
inbound data staging program terminates.

LL_ENERGY_TAG_NAME
Specifies the energy tag name associated with the job. LoadLeveler sets the
environment variable before it executes the user-supplied frequency setting
program.

384 LoadLeveler: Using and Administering

LOADL_ACTIVE
The LoadLeveler version.

LOADL_BG_BLOCK
The name of the allocated block.

LOADL_BG_CONNECTIVITY
The connectivity per dimension of the allocated block.

LOADL_BG_IOLINKS
The I/O links in a midplane of the allocated block.

LOADL_BG_MPS
The midplanes of the allocated blocks.

LOADL_BG_SHAPE
The shape of the allocated block in the form AxBxCxD representing the
number of midplanes

LOADL_BG_SIZE
The size of the allocated block in number of compute nodes.

LOADLBATCH
Set to yes to indicate that the job is running under LoadLeveler.

LOADL_CKPT_FILE
Identifies the directory and file name for checkpointing files. LoadLeveler
will only set this environmental variable if checkpointing is enabled.

LOADL_HOSTFILE
Specifies the full path name of the file that contains the host names
assigned to all the tasks of the step. This environment variable is available
only when the job_type is set to parallel or MPICH. This file is created in
the execute directory and is deleted once the step has completed. The host
names are stored in the file as one host name per line. The base name of
this file is step_hosts.step_id.

LOADL_JOB_NAME
The three part job identifier.

LOADL_PID
The process ID of the starter process.

LOADL_PROCESSOR_LIST
A blank-delimited list of hostnames allocated for the step. This
environment variable is limited to 128 hostnames. If the value is greater
than the 128 limit, the environment variable is not set.

LOADL_STARTD_PORT
The port number where the startd daemon runs.

LOADL_STEP_ACCT
The account number of the job step owner.

LOADL_STEP_ARGS
Any arguments passed by the job step.

LOADL_STEP_CLASS
The job class for serial jobs.

LOADL_STEP_COMMAND
The name of the executable (or the name of the job command file if the job
command file is the executable).

Chapter 12. Job command file reference 385

LOADL_STEP_ERR
The file used for standard error messages (stderr).

LOADL_STEP_GROUP
The UNIX group name of the job step owner.

LOADL_STEP_ID
The job step ID.

LOADL_STEP_IN
The file used for standard input (stdin).

LOADL_STEP_INITDIR
The initial working directory.

LOADL_STEP_NAME
The name of the job step.

LOADL_STEP_NICE
The UNIX nice value of the job step. This value is determined by the nice
keyword in the class stanza. For more information, see “Defining classes”
on page 94.

LOADL_STEP_NUMBER
Contains the step number assigned for the running step. This number can
serve as a task ID for multistep jobs that run the same application in each
step to distinguish what work needs to be done by the application.

LOADL_STEP_OUT
The file used for standard output (stdout).

LOADL_STEP_OWNER
The job step owner.

LOADL_STEP_TYPE
The job type (SERIAL or PARALLEL)

LOADL_TOTAL_TASKS
Specifies the total number of tasks of the MPICH job step. This variable is
available only when the job_type is set to MPICH.

RM_CPUTASKn
A comma-delimited list of CPU IDs allocated for task n.

RM_MEM_AFFINITY
This environment variable is set as a directive to the process manager of a
parallel job. A value of yes indicates that a task must use the memory only
located on the same non-uniform memory access (NUMA) nodes as the
task's allocated CPUs. A value of no indicates that a task can use memory
on all available NUMA nodes.

Job command file examples
These job command file examples may apply to your situation.
1. The following job command file creates an output file called stance.78.out,

where stance is the host and 78 is the job ID:
@ executable = my_job
@ arguments = 5
@ output = $(host).$(jobid).out
@ queue

2. The following job command file creates an output file called
computel.step1.March05:

386 LoadLeveler: Using and Administering

@ comment = March05
@ job_name = computel
@ step_name = step1
@ executable = my_job
@ output = $(job_name).$(step_name).$(comment)
@ queue

3. For a Blue Gene/Q job using two midplanes, the values for the run-time
environment variables would be set similar to the following:
LOADL_BG_BLOCK=LL11120510045401
LOADL_BG_SIZE=1024
LOADL_BG_SHAPE=1x1x1x2
LOADL_BG_CONNECTIVITY=Torus Torus Torus Torus
LOADL_BG_MPS=R01-M0,R01-M1
LOADL_BG_IOLINKS=R01-M0-N04-J06,R01-M0-N12-J06,R01-M0-N06-J06,
R01-M0-N02-J06,R01-M0-N08-J06,R01-M0-N14-J06,R01-M0-N00-J06,
R01-M0-N10-J06,R01-M0-N04-J11,R01-M0-N12-J11,R01-M0-N06-J11,
R01-M0-N02-J11,R01-M0-N08-J11,R01-M0-N14-J11,R01-M0-N00-J11,
R01-M0-N10-J11,R01-M1-N12-J06,R01-M1-N06-J06,R01-M1-N08-J06,
R01-M1-N10-J06,R01-M1-N00-J06,R01-M1-N04-J06,R01-M1-N02-J06,
R01-M1-N14-J06,R01-M1-N12-J11,R01-M1-N06-J11,R01-M1-N08-J11,
R01-M1-N10-J11,R01-M1-N00-J11,R01-M1-N04-J11,R01-M1-N02-J11,
R01-M1-N14-J11

For additional information, see “Examples: Job command files” on page 173.

Chapter 12. Job command file reference 387

388 LoadLeveler: Using and Administering

Part 5. Appendixes

© Copyright IBM Corp. 1986, 2012 389

390 LoadLeveler: Using and Administering

Appendix A. Troubleshooting LoadLeveler

LoadLeveler offers troubleshooting information to help you resolve problems.

This topic is divided into the following subtopics:
v “Frequently asked questions,” which contains answers to questions frequently

asked by LoadLeveler customers. This topic focuses on answers that may help
you get out of problem situations. The questions and answers are organized into
the following categories:
– LoadLeveler won't start. See “Why won't LoadLeveler start?” on page 392 for

more information.
– Jobs submitted to LoadLeveler do not run. See “Why won't my job run?” on

page 392 for more information.
– One or more of your machines goes down. See “What happens to running

jobs when a machine goes down?” on page 397 for more information.
– The central manager is not operating. See “What happens if the central

manager isn't operating?” on page 399 for more information.
– Resources need to be recovered from the Schedd machine. See “How do I

recover resources allocated by a Schedd machine?” on page 401 for more
information.

– A core file needs to be found on Linux. See “Why can't I find a core file on
Linux?” on page 401 for more information.

– Inconsistencies are found in llfs output. See “Why am I seeing
inconsistencies in my llfs output?” on page 402 for more information.

– Configuration or administration file errors. See “What happens if errors are
found in my configuration or administration file?” on page 402 for more
information.

– Miscellaneous questions. See “Other questions” on page 403 for more
information.

v “Troubleshooting in a multicluster environment” on page 405, which contains
common questions and answers pertaining to operations within a multicluster
environment.

v “Troubleshooting in a Blue Gene environment” on page 409, which contains
common questions and answers pertaining to operations within a Blue Gene
environment.

v “Helpful hints” on page 411, which contains tips on running LoadLeveler,
including some productivity aids.

v “Getting help from IBM” on page 416, which tells you how to contact IBM for
assistance.

It is helpful to create error logs when you are diagnosing a problem. See to
“Configuring recording activity and log files” on page 52 for information on
setting up error logs.

Frequently asked questions
This topic contains answers to questions frequently asked by LoadLeveler
customers.

© Copyright IBM Corporation © IBM 1986, 2012 391

Why won't LoadLeveler start?
Follow these instructions if the master daemon will not run. If the master daemon
will not run, go to the node where LoadL_master will not start and issue the
following at the command line:
LoadL_master -t

This generates messages that might help to diagnose the problem. In addition,
ensure the following are true:
1. The Release and bin directories are properly specified in the configuration

files.
2. The administration file exists and is properly defined in the configuration file.
3. The central manager is correctly defined in the administration file.
4. The log directories are correctly defined in the configuration file.
5. The spool, execute, and log directories exist and permissions are set as follows:

v The spool subdirectory is set to 700
v The execute subdirectory is set to 1777
v The log subdirectory is set to 775

6. The LoadL_master binary, in /usr/lpp/LoadL/full/bin for AIX or
/opt/ibmll/LoadL/full/bin for Linux, is owned by root and has the setuid bit
set.

7. The daemons are not already running. If they are already running, use the ps
command to identify the processes, and then use the kill command to kill the
daemons.

8. When cluster security services is enabled, all machines in the LoadLeveler
cluster must list each other in their trusted hosts list for authentication.

9. When cluster security services is enabled, the loadl ID must be a member of
the UNIX group identified by the SEC_SERVICES_GROUP configuration file
keyword.

Note: LoadLeveler for Linux does not support cluster security services.

Why won't my job run?
If you submitted your job but it has not run, issue llq -s first to help diagnose the
problem. If you need more help diagnosing the problem, refer to Table 58:

Table 58. Why your job might not be running

Why your job might not be
running: Possible solution

Job requires specific machine,
operating system, or other
resource.

Does the resource exist in the LoadLeveler cluster? If
yes, wait until it becomes available.

Job requires specific job class v Is the class defined in the administration file? Use
llclass to determine this. If yes,

v Is there a machine in the cluster that supports that
class? If yes, you need to wait until the machine
becomes available to run your job.

The maximum number of jobs are
already running on all the eligible
machines

Wait until one of the machines finishes a job before
scheduling your job.

392 LoadLeveler: Using and Administering

Table 58. Why your job might not be running (continued)

Why your job might not be
running: Possible solution

The start expression evaluates to
false.

Examine the configuration files (both LoadL_config and
LoadL_config.local) to determine the START control
function expression used by LoadLeveler to start a job.
As a problem determination measure, set the START
and SUSPEND values, as shown in this example:

START: T
SUSPEND: F

A job step is running on the node
that your job requires, and that
job step's preemption rules list
your job's class as one that cannot
share the node

The running job step is in a job class for which an
administrator has defined preemption rules through the
PREEMPT_CLASS keyword. When your job step's class
is listed in the ALL clause of that keyword, your job
step must wait until the running job step finishes.

The priority of your job is lower
than the priority of other jobs.

You cannot affect the system priority given to this job
by the negotiator daemon but you can try to change
your user priority to move this job ahead of other jobs
you previously submitted using the llprio command.

The information the central
manager has about machines and
jobs may not be current.

Wait a few minutes for the central manager to be
updated and then the job may be dispatched. This time
limit (a few minutes) depends upon the polling
frequency and polls per update set in the LoadL_config
file. The default polling frequency is five seconds.

You do not have the same user ID
on all the machines in the cluster.

To run jobs on any machine in the cluster, you have to
have the same user ID and the same uid number on
every machine in the pool. If you do not have a userid
on one machine, your jobs will not be scheduled to that
machine.

CtSec is enabled and the .rhosts
file was not updated.

The .rhosts file should contain entries which specify all
the host and user combinations allowed to submit jobs
which will run as the local user. See “Steps for enabling
CtSec services” on page 62 for more details.

Appendix A. Troubleshooting LoadLeveler 393

Table 58. Why your job might not be running (continued)

Why your job might not be
running: Possible solution

Your job is not bound to a
reservation under which nodes
that your job requires to run are
reserved

When an unbound job requires nodes that are reserved
under a reservation, LoadLeveler will not start the job
unless one of the following conditions is true:

v The reservation was created with SHARED mode
specified. If the reservation is using SHARED mode,
your job will remain idle until the reservation state
becomes Active_Shared.

v The job's expected end time (current time plus the
hard wall clock limit) indicates that the job will
complete before the reservation starts.

If neither condition is true, but you have the authority
to use the reservation, you may use the llbind
command to bind your job to the reservation.
Otherwise, your unbound job will remain idle until the
reservation completes or is canceled.

To check the reservation's status and attributes, use the
llqres command. To find out which reservations you
may use, check with your LoadLeveler administrator, or
enter the command llqres -l and check the names in the
Users or Groups fields (under the Modification time
field) in the output listing. If your user name or a group
name to which you belong appears in these output
fields, you are authorized to use the reservation.

Your job is bound to a reservation
but the reservation is not active
yet

LoadLeveler schedules bound job steps to run only
when a reservation becomes active. Use the command
llq -l to find the ID of the reservation to which the job
is bound. Use the command llqres -l to find the start
time of the reservation, and wait until that time to check
the job status again.

Your job is bound to a reservation
that does not reserve all of the
resources that your job requires to
run

If a bound job requires specific resources that are not
available during the reservation period, LoadLeveler
will not dispatch the job to run under the reservation.
This situation can occur if the job requires one or more
of the following:
v Specific nodes that were not selected for the

reservation.
v More than the total number of reserved nodes.
v Floating consumable resources, which cannot be

reserved under a reservation.

If the LoadLeveler cluster has the resources that the job
requires, use the command llbind -r, which unbinds the
job from the reservation.

Your job is bound to a reservation
but the maximum number of jobs
you may run has been reached
already

If LoadLeveler detects that you currently are running
the maximum number of jobs that you are allowed to
run, it will not start your bound job even if the
reservation is active.

394 LoadLeveler: Using and Administering

Table 58. Why your job might not be running (continued)

Why your job might not be
running: Possible solution

Your job is bound to a reservation
but the job's expected end time
exceeds the reservation's end time

LoadLeveler will dispatch your job only if its expected
end time (current time plus the hard wall clock limit)
does not exceed the end time of the reservation, or if
both of the following conditions are true:

v This reservation is configured to allow jobs to
continue running even when their expected end time
exceeds the end of the reservation, and

v The resources required to run your job are available.

Otherwise, this bound job will remain idle until either:
v The reservation completes or is canceled, or
v You use the command llbind -r, which unbinds the

job from the reservation.

Your job is bound to a reservation
that does not exist

LoadLeveler puts your job in NotQueued state until the
reservation is created. In that case, LoadLeveler will
bind your job to the reservation. Otherwise, use the
command llbind -r to unbind the job from the
reservation.

Your job is being rejected because
a communication error is
occurring while attempting to
start the job. (Hic_Comm_Error
occurred during job start.)

Check for mail sent by LoadLeveler when a job is
rejected. If the job is being rejected because of a
communication error (Hic_Comm_Error), verify that you
can connect to the node for which the error occurred
over the interface (generally Ethernet adapter)
configured for LoadLeveler. Also verify that the
Loadl_startd daemon is running on that node.

Your flexible job could not find a
corresponding reservation

A flexible job is attached to a flexible reservation ID. If
there was an error and the flexible job was not able to
be attached to a flexible reservation, the administrator
can remove the flexible job from the queue. For more
information about flexible reservations, see “Working
with reservations” on page 203.

You can use the llq command to query the status of your job or the llstatus
command to query the status of machines in the cluster. Refer to LoadLeveler:
Command and API Reference for information on these commands.

Why won't my parallel job run?
If you submitted your parallel job but it has not run, issue llq -s first to help
diagnose the problem. If issuing this command does not help, refer to Table 58 on
page 392 and to Table 59 for more information:

Table 59. Why your job might not be running

Why your job might not be running: Possible solution

The minimum number of processors
requested by your job is not available.

Sufficient resources must be available. Specifying a
smaller number of processors may help if your job
can run with fewer resources.

The pool in your requirements
statement specifies a pool that is either
not valid or not available.

The specified pool must be valid and available.

Appendix A. Troubleshooting LoadLeveler 395

Table 59. Why your job might not be running (continued)

Why your job might not be running: Possible solution

The adapter specified in the
requirements statement or the network
statement identifies an adapter that is
either not valid or not available.

The specified adapter must be valid and available.

Use llstatus -a to check the status of the adapters
in the system. Switch adapters that show a state of
'NOT READY' or '-1' should be reported to the
LoadLeveler administrator. Switch adapters with a
state of '-1' indicate that the machine those
adapters are on could not be queried for status.

If the network statement specifies rcxtblocks, only
switch adapters can be used for the step.

Your user space job is requesting
stripping (sn_all) and the nodes
allocated to the job do not have the
same number of networks.

A user space job requesting striping will be
rejected if the allocated nodes do not have the
same number of networks. If notification is
enabled for the job, mail will be sent to the user
indicating that the job was rejected because the
network table for the job could not be loaded. Use
the llstatus –a command to verify that all the
nodes in the cluster have same number of
networks configured. The system administrator
must take appropriate actions to insure the
number of networks is the same on all nodes that
will run user space jobs.

Common set-up problems with parallel jobs
This topic presents a list of common problems found in setting up parallel jobs:
v If jobs appear to remain in a Pending or Starting state: check that the

nameserver is consistent. Compare results of host machine_name and host
IP_address

v For POE:
– Specify the POE partition manager as the executable. Do not specify the

parallel job as the executable.
– Pass the parallel job as an argument to POE.
– The parallel job must exist and must be specified as a full path name.
– If the job runs in user space, specify the flag -euilib us.
– Specify the correct adapter (when needed).
– Specify a POE job only once in the job command file.
– Compile only with the supported level of POE.
– Specify only parallel as the job_type.

Why won't my checkpointed job restart?
If the job you submitted has the keyword restart_from_ckpt = yes and if the
checkpoint file specified does not exist, the job will move to the Starting state and
will then be removed from the queue.

A mail message will be generated indicating the checkpoint file does not exist and
a message will also appear in the SchedLog. Verify the values of the ckpt_subdir
keyword in the job command file to ensure that they resolve to the directory and
file name of the desired checkpoint file.

396 LoadLeveler: Using and Administering

Note: When a job is enabled for checkpoint, it is important to ensure the name of
the checkpoint file is unique.

Why won't my submit-only job run?
If a job you submitted from a submit-only machine does not run, verify that you
have defined the following statements in the machine stanza of the administration
file of the submit-only machine:
submit_only = true
schedd_host = false
central_manager = false

Verify that another machine has set schedd_host = true and schedd_runs_here =
true.

Why does a job stay in the Pending (or Starting) state?
If a job appears to stay in the Pending or Starting state, it is possible the job is
continually being dispatched and rejected.

Check the setting of the MAX_JOB_REJECT keyword. If it is set to -1 the job will
be rejected an unlimited number of times. Try resetting this keyword to a small
number, such as 10. Also, check the setting of the ACTION_ON_MAX_REJECT
keyword. These keywords are described in Chapter 10, “Configuration keyword
reference,” on page 231. The reason for rejecting a job is sent to the user in mail if
notification is enabled for the job.

Run llq –lx command on the job which is stuck in starting (ST) or pending (VP,
RP). At the bottom of the llq –lx output the nodes allocated to the job and status
of the job on those nodes is displayed. Look for the first node whose status is
either starting or pending. Generally the first node whose state is starting or
pending failed to report status and caused the job to be stuck in starting or
pending state. Verify the node whose state is starting or pending is up and the
LoadL_startd daemon on that node is running.

What happens to running jobs when a machine goes down?
Both the startd daemon and the Schedd daemon maintain persistent states of all
jobs. Both daemons use a specific protocol to ensure that the state of all jobs is
consistent across LoadLeveler. In the event of a failure, the state can be recovered.
Neither the Schedd nor the startd daemon discard the job state information until it
is passed onto and accepted by another daemon in the process. Refer to Table 60
for more information.

Table 60. Troubleshooting running jobs when a machine goes down

If Then

The network goes down
but the machines are
still running

If the network goes down but the machines are still running,
when LoadLeveler is restarted, it looks for all jobs that were
marked running when it went down. On the machine where the
job is running, the startd daemon searches for the job and if it can
verify that the job is still running, it continues to manage the job
through completion. On the machine where Schedd is running,
Schedd queues a transaction to the startd to reestablish the state
of the job. This transaction stays queued until the state is
established. Until that time, LoadLeveler assumes the state is the
same as when the system went down.

Appendix A. Troubleshooting LoadLeveler 397

Table 60. Troubleshooting running jobs when a machine goes down (continued)

If Then

The network partitions
or goes down.

All transactions are left queued until the recipient has
acknowledged them. Critical transactions such as those between
the Schedd and startd are recorded on disk. This ensures complete
delivery of messages and prevents incorrect decisions based on
incomplete state information.

The machine with startd
goes down.

Because job state is maintained on disk in startd, when
LoadLeveler is restarted it can forward correct status to the rest of
LoadLeveler. In the case of total machine failure, this is usually
"JOB VACATED", which causes the job to be restarted elsewhere.
In the case that only LoadLeveler failed, it is often possible to
"find" the job if it is still running and resume management of it. In
this case LoadLeveler sends JOB RUNNING to the Schedd and
central manager, thereby permitting the job to run to completion.

The central manager
machine goes down.

All machines in the cluster send current status to the central
manager on a regular basis. When the central manager restarts, it
queries each machine that checks in, requesting the entire queue
from each machine. Over the period of a few minutes the central
manager restores itself to the state it was in before the failure.
Each Schedd is responsible for maintaining the correct state of
each job as it progressed while the central manager is down.
Therefore, it is guaranteed that the central manager will correctly
rebuild itself.

All jobs started when the central manager was down will
continue to run and complete normally with no loss of
information. Users may continue to submit jobs. These new jobs
will be forwarded correctly when the central manager is restarted.

The Schedd machine
goes down

When Schedd starts up again, it reads the queue of jobs and for
every job which was in some sort of active state (i.e. PENDING,
STARTING, RUNNING), it queries the machine where it is
marked active.

The running machine is required to return current status of the
job. If the job completed while Schedd was down, JOB
COMPLETE is returned with exit status and accounting
information. If the job is running, JOB RUNNING is returned. If
the job was vacated, JOB VACATED is returned. Because these
messages are left queued until delivery is confirmed, no job will
be lost or incorrectly dispatched due to Schedd failure.

During the time the Schedd is down, the central manager will not
be able to start new jobs that were submitted to that Schedd.

To recover the resources allocated to jobs scheduled by a Schedd
machine, see “How do I recover resources allocated by a Schedd
machine?” on page 401.

The llsubmit machine
goes down

Schedd gets its own copy of the executable so it does not matter if
the llsubmit machine goes down.

Why does llstatus indicate that a machine is down when llq
indicates a job is running on the machine?

If a machine fails while a job is running on the machine, the central manager does
not change the status of any job on the machine. When the machine comes back up
the central manager will be updated.

398 LoadLeveler: Using and Administering

Why won't my job run on a cluster with both AIX and Linux
machines?

The default shell on Linux (in both Red Hat Enterprise Linux and SUSE Linux
Enterprise Server) is bash and bash may not be available on AIX.

If a job step contains a bash script it will be rejected if it is run on an AIX node.
The ksh is available on both AIX and Linux. You can specify which shell to use in
the keyword shell in your job command file:
@shell = /bin/ksh

Also, AIX and Linux are not binary compatible so jobs written in compiled
languages such as C or FORTRAN must be compiled for the environment they will
run on.

Why won't my jobs run that were directed to an idle pool?
To determine why a job that was directed to an idle pool, but did not run, first
check the total number of jobs in the LoadLeveler queue. LoadLeveler can only
process a specific number of jobs in the queue within a given amount of time.
Some jobs are not considered for scheduling if they do not have the appropriate
priority. In this case, despite the fact that a different pool is a requirement from the
jobs, it is not a factor in LoadLeveler's scheduling consideration.

To direct LoadLeveler's attention to scheduling jobs based on a priority, a job
priority must be set or LoadLeveler's system priority must be defined.

A job's priority can be set by the system administrator with the class it is
associated with. See the class stanza in the LoadL_admin file. The stanza keyword
for setting the job class priority is:
priority = number

where the larger the number, the higher the priority. An example of a class stanza
with a high priority is:
priority = 1000

You can also use the SYSPRIO expression defined in LoadL_config as an
alternative. An example SYSPRIO expression that emphasizes a job priority is:
SYSPRIO: (ClassSysprio * 100) - (QDate)

System administrators can experiment with either priority or SYSPRIO to
determine the appropriate priority or expression for a specific LoadLeveler cluster.
You only need to specify one or the other.

What happens if the central manager isn't operating?
In one of your machine stanzas specified in the administration file, you specified a
machine to serve as the central manager.

It is possible for some problem to cause this central manager to become unusable
such as network communication or software or hardware failures. In such cases,
the other machines in the LoadLeveler cluster believe that the central manager
machine is no longer operating. If you assigned one or more alternate central
managers in the machine stanza, a new central manager will take control. The
alternate central manager is chosen based upon the order in which its respective
machine stanza appears in the administration file.

Appendix A. Troubleshooting LoadLeveler 399

Once an alternate central manager takes control, it starts up its negotiator daemon
and notifies all of the other machines in the LoadLeveler cluster that a new central
manager has been selected. Figure 19 illustrates how a machine can become the
alternate central manager.
The diagram illustrates that Machine Z is the primary central manager but

Machine A took control of the LoadLeveler cluster by becoming the alternate
central manager. Machine A remains in control as the alternate central manager
until either:
v The primary central manager, Machine Z, resumes operation. In this case,

Machine Z notifies Machine A that it is operating again and, therefore, Machine
A terminates its negotiator daemon.

v Machine A also loses contact with the remaining machines in the pool. In this
case, another machine authorized to serve as an alternate central manager takes
control. Note that Machine A may remain as its own central manager.

Figure 20 illustrates how multiple central managers can function within the same
LoadLeveler pool.

In this diagram, the primary central manager is serving Machines A and B. Due to
some network failure, Machines C, D, and E have lost contact with the primary
central manager machine and, therefore, Machine C which is authorized to serve as
an alternate central manager, assumes that role. Machine C remains as the alternate
central manager until either:
v The primary central manager is able to contact Machines C, D, and E. In this

case, the primary central manager notifies the alternate central managers that it

Machine Z

negotiator

Machine A

Machine Z

negotiator

Figure 19. When the primary central manager is unavailable

Machine Z

negotiator

Machine C

Machine D

Machine E

Machine A

negotiator

Machine B

Figure 20. Multiple central managers

400 LoadLeveler: Using and Administering

is operating again and, therefore, Machine C terminates its negotiator daemon.
The negotiator daemon running on the primary central manager machine is
refreshed to discard any old job status information and to pick up the new job
status information from the newly rejoined machines.

v Machine C loses contact with Machines D and E. In this case, if machine D or E
is authorized to act as an alternate central manager, it assumes that role.
Otherwise, there will be no central manager serving these machines. Note that
Machine C remains as its own central manager.

While LoadLeveler can handle this situation of two concurrent central managers
without any loss of integrity, some installations may find administering it
somewhat confusing. To avoid any confusion, you should specify all primary and
alternate central managers on the same LAN segment.

For information on selecting alternate central managers, refer to “Defining
machines” on page 89.

How do I recover resources allocated by a Schedd machine?
If a node running the Schedd daemon fails, resources allocated to jobs scheduled
by this Schedd cannot be freed up until you restart the Schedd.

Administrators must do the following to enable the recovery of Schedd resources:
1. Recognize that a node running the Schedd daemon is down and will be down

long enough such that it is necessary for you to recover the Schedd resources.
2. Add the statement schedd_fenced=true to the machine stanza of the failed

node. This statement specifies that the central manager ignores connections
from the Schedd daemon running on this machine, and prevents conflicts from
arising when a Schedd machine is restarted while llmovespool is running.

3. Reconfigure the central manager node so that it recognizes the “fenced” Schedd
daemon. From the central manager machine issue llctl reconfig.

4. Issue the llmovespool -d spool_directory -h target_schedd_hostname command to
move a job queue database to another Schedd within a local cluster.

5. Remove all files in the LoadLeveler spool directory of the failed node. Once the
failed node is working again, you can remove the schedd_fenced=true
statement.

For more information, see the ll_move_spool subroutine in LoadLeveler: Command
and API Reference and the “Procedure for recovering a job spool” on page 164.

Why can't I find a core file on Linux?
On Linux, when a LoadLeveler daemon terminates abnormally a core file is not
generated. Why?

Although a LoadLeveler daemon begins its existence as a root process, it uses the
system functions seteuid() and setegid() to switch to effective user ID of loadl and
effective group ID of loadl immediately after startup if the file /etc/LoadL.cfg is
not defined. If this file is defined, the user ID associated with the LoadLUserid
keyword and the group ID associated with the LoadLGroupid keyword are used
instead of the default loadl user and group IDs.

On Linux systems, unless the default kernel runtime behavior is modified, the
standard kernel action for a process that has successfully invoked seteuid() and
setegid() to have a different effective user ID and effective group ID is not to

Appendix A. Troubleshooting LoadLeveler 401

dump a core file. So, if you want Linux to create a core file when a LoadLeveler
daemon terminates abnormally use one of the following commands to change the
default kernel core file creation behavior.

If you want core files to be owned by the current user, use the command:
sysctl -w fs.suid_dumpable=1

If you want core files to be readable by root only, use the command:
sysctl -w fs.suid_dumpable=2

Why am I seeing inconsistencies in my llfs output?
Generally, the sum of the used shares by all users and the sum of the used shares
by all LoadLeveler groups should have similar values.

If there is a large (much larger than the number of entries in the llfs output) and
increasing difference between the two sums, the cluster should be checked to make
sure that all nodes have the same clock time. Large time differences among nodes
in a cluster could lead to errors in the llfs output.

Why don't I see my job when I issue the llq command?
By default, the llq command requires validation of the user ID that issues the
command.

A user ID must exist on the central manager machine in order for LoadLeveler to
validate the user ID. If the user ID does not exist on the central manager machine,
then the validation will fail and the llq command will not return job data. User ID
validation can be disabled by setting the LoadL_config file keyword
CM_CHECK_USERID to false. Note that when user ID validation is disabled, any
user can query data for any job.

What happens if errors are found in my configuration or
administration file?

When errors are found during administration file processing, processing continues
in nearly all cases. Because processing continues, it is possible that even though the
administration file has been read, it might not resemble the intended configuration.
This is especially true in cases where opening and closing braces are mismatched.
It is possible for the parser to interpret stanzas as substanzas of another substanza,
and when this happens, those stanzas are effectively ignored. Consider these cases:
v A machine stanza is interpreted to be a substanza within a class stanza. Because

class stanzas only support substanzas of the user type, the machine substanza is
completely ignored.

v A user stanza is incorrectly interpreted to be a substanza within a class.
Although this is valid, that user stanza will not exist on its own, but will instead
be part of the class stanza, which was not the administrator's intent.

It is difficult to determine whether an error in the administration file will
completely change the meaning of the file or if the error will effect only a single
keyword value. Because it is not necessarily desirable to shutdown LoadLeveler
daemons and commands for every possible error, and because the behavior should
be consistent, processing will continue. It is important for the administrator to be
aware of this behavior and to investigate and repair any configuration errors
reported by the llctl start command (see the llctl command in LoadLeveler:
Command and API Reference for more information).

402 LoadLeveler: Using and Administering

Use the llctl ckconfig command to display a list of configuration errors (see the
llctl command in LoadLeveler: Command and API Reference for more information).

Why is my flexible reservation not activated?

If your flexible reservation has not been activated, check the flexible job by issuing
the llq -s command to see the reason. Make sure there are resources available for
the job to be scheduled.

Why was my energy aware job rejected?

If your energy aware job was rejected, it could be because the energy policy tag
does not exist in the database. If you were trying to use an energy policy tag that
was generated by another user, which is permissible, that tag must be valid in the
system. LoadLeveler will reject the job if the tag does not exist.

For example, for user Tom to use the energy policy tag that was generated by
John, the job command file would be:
Tom.cmd
@ energy_policy_tag = John.IO_job

In this example, John has to first generate the IO_job energy tag, otherwise this job
will be rejected by LoadLeveler.

Your energy aware job might also be rejected because the required energy saving
percentage cannot be satisfied.

For example, the maximum energy saving percentage of energy tag
long_running_job is 20. Your job will be rejected if you required more than 20
percent energy savings in your job command file:
User.cmd
@ energy_policy_tag = long_running_job
@ energy_saving_req = 21

Other questions
This topic contains answers to some miscellaneous questions asked by LoadLeveler
customers.

Why do I have to setuid = 0?
The master daemon starts the startd daemon and the startd daemon starts the
starter process.

The starter process runs the job. The job needs to be run by the userid of the
submitter. You either have to have a separate master daemon running for every ID
on the system or the master daemon has to be able to su to every userid and the
only user ID that can su any other userid is root.

Why does LoadLeveler not execute my .profile or .login script?
When you submit a batch job to LoadLeveler, the operating system will execute
your .profile script before executing the batch job if your login shell is the Korn
shell.

On the other hand, if your login shell is the Bourne shell, on most operating
systems (including AIX), the .profile script is not executed. Similarly, if your login

Appendix A. Troubleshooting LoadLeveler 403

shell is the C shell then AIX will execute your .login script before executing your
LoadLeveler batch job but some other variants of UNIX may not invoke this script.

The reason for this discrepancy is due to the interactions of the shells and the
operating system. To understand the nature of the problem, examine the following
C program that attempts to open a login Korn shell and execute the "ls" command:
#include <stdio.h>
main()
{
execl("/bin/ksh","-","-c","ls",NULL);
}

UNIX documentations in general (SunOS, HP-UX, AIX, IRIX) give the impression
that if the second argument is "-" then you get a login shell regardless of whether
the first argument is /bin/ksh or /bin/csh or /bin/sh. In practice, this is not the
case. Whether you get a login shell or not is implementation dependent and varies
depending upon the UNIX version you are using. On AIX you get a login shell for
/bin/ksh and /bin/csh but not the Bourne shell.

If your login shell is the Bourne shell and you would like the operating system to
execute your .profile script before starting your batch job, add the following
statement to your job command file:
@ shell = /bin/ksh

LoadLeveler will open a login Korn shell to start your batch job which may be a
shell script of any type (Bourne shell, C shell, or Korn shell) or just a simple
executable.

What happens when a mksysb is created when LoadLeveler is
running jobs?
When you create a mksysb (an image of the currently installed operating system)
at a time when LoadLeveler is running jobs, the state of the jobs is saved as part of
the mksysb.

When the mksysb is restored on a node, those jobs will appear to be on the node,
in the same state as when they were saved, even though the jobs are not actually
there. To delete these phantom jobs, you must remove all files from the
LoadLeveler spool and execute directories and then restart LoadLeveler.

What can I do when a reserved node is down?
If the reservation has not started yet, the node might become available before the
reservation start time. If the node is still not available when the reservation starts,
a LoadLeveler administrator may use the llchres command to remove the node
and replace it with another.

How do I add or remove a node from the LoadLeveler
administration file?
To add or remove a node from the LoadLeveler administration file, you must stop
and restart LoadLeveler. Because stopping LoadLeveler will cause all running jobs
to be vacated, you might want to drain the cluster before stopping LoadLeveler.

To add or remove nodes from the LoadL_admin file, do the following:
1. (Optional) Drain all nodes to allow all running jobs to complete by issuing the

following command:
llctl -g drain startd allclasses

2. Stop LoadLeveler by issuing the following command:

404 LoadLeveler: Using and Administering

llctl -g stop

3. Add or remove nodes from the LoadL_admin file.
4. Start LoadLeveler by issuing the following command:

llctl -g start

Why does a job stay in the running state?
If a job appears to be stuck in the running state, it is possible that the node is not
up or that a task has not completed.

Run llq –lx command on the job which is stuck in running state. At the bottom of
the llq –lx output, the display shows the nodes allocated to the job and status of
the job on those nodes. Look for the first node whose status is running. Generally
the first node whose state is running, failed to report status and caused the job to
be stuck in running state. Verify that the node whose state is running is actually up
and that the LoadL_startd daemon on that node is running. If node is up and
LoadL_startd is running then verify that all the tasks of the job are completed on
that node.

Why is a job in the hold state?
If a job is in the hold state for an unknown reason, it is possible that LoadLeveler
moved the job into that state.

LoadLeveler will move a job to hold state after the number of startup attempts
reaches the value set in the configuration keyword MAX_JOB_REJECT and the
configuration keyword ACTION_ON_MAX_REJECT is set to hold. The reason for
rejecting a job is sent to the user in mail if notification is enabled for the job.

Why does the llstatus –a command show that adapters are
NOT_READY?
If llstatus –a shows that adapters are NOT_READY, you must verify that the
interfaces are running and that they are defined correctly.

Use the ifconfig and ibstat commands to verify that the interfaces are up and
running. Reconfigure LoadLeveler using the llctl –g reconfig command. Check the
PNSD log (/tmp/serverlog) to verify that the adapter status is UP.

Troubleshooting in a multicluster environment
This topic will help you troubleshoot your multicluster environment.

How do I determine if I am in a multicluster environment?
Use this procedure to determine whether your are functioning in a multicluster
environment.
v Issue the llstatus command.

– Output of command will display "Cluster name is cluster_name".

How do I determine how my multicluster environment is
defined and what are the inbound and outbound hosts defined
for each cluster?

Use this procedure to determine how your multicluster environment is defined and
what are the inbound and outbound hosts defined for each cluster.
v Issue llstatus -C command.

Appendix A. Troubleshooting LoadLeveler 405

– Output of command will display the local cluster's administration file cluster
stanza information.

v Issue llstatus -X all -C command.
– Output of command will display the administration file cluster stanza

information for all clusters defined in the local cluster's configuration.

Why is my multicluster environment not enabled?
Use this procedure to determine why your multicluster environment is not
enabled.
v Issue llstatus -X all -C.

– The cluster stanzas defined for each cluster participating in the multicluster
environment must have the same outbound_hosts and inbound_hosts
defined.

– Determine if any of the clusters are being started with
SCHEDD_STREAM_PORT defined. The inbound_schedd_port keyword
must be set for that cluster.

v Set the D_MUSTER debug flag for the SCHEDD_DEBUG configuration
keyword on the machines defined as inbound_hosts andoutbound_hosts,
reconfigure LoadLeveler and examine the SchedLog on those machines for
information about configuration errors.

v If the clusters are trying to enable OpenSSL, examine the SchedLog on the
inbound_hosts and outbound_hosts for messages about SSL initialization errors
and that multicluster is being disabled.

How do I find log messages from my multicluster-defined
installation exits?

Use this procedure to determine how to find log messages from your
multicluster-defined installation exits.
v Determine which machine is executing the installation exit.

– For CLUSTER_METRIC:
- If the user specifies the reserved word any as the cluster_list during job

submission, the job is sent to the first outbound Schedd defined for the first
configured remote cluster. The CLUSTER_METRIC is executed on this
Schedd to determine where the job will be distributed. If this Schedd is not
the outbound_hosts schedd for the assigned cluster, the job will be
forwarded to the correct outbound_hosts schedd. If the user specifies a list
of clusters as the cluster_list during job submission, the job is sent to the
first outbound Schedd defined for the first specified remote cluster. The
CLUSTER_METRIC is executed on this Schedd to determine where the job
will be distributed. If this Schedd is not the outbound_hosts schedd for the
assigned cluster, the job will be forwarded to the correct outbound_hosts
schedd.

– For CLUSTER_USER_MAPPER:
- This installation exit is executed on the inbound_hosts of the local cluster

when receiving a job submission, move job request or remote command.
– For CLUSTER_REMOTE_JOB_FILTER:

- This installation exit is executed on the inbound_hosts of the local cluster
when receiving a job submission or move job request.

406 LoadLeveler: Using and Administering

v Set the D_MUSTER debug flag for the SCHEDD_DEBUG configuration
keyword on the machines defined as inbound_hosts and outbound_hosts,
reconfigure LoadLeveler and examine the SchedLog on those machines for
information about configuration errors.

Why won't my remote job be submitted or moved?
Use this procedure to determine why your remote job is not submitted or moved.
v Determine if the remote job filter has changed the number of steps within the

job.
– If the local submission filter on the submitting cluster has added or deleted

steps from the original user's job command file, the remote job filter must add
or delete the same number of steps. The job command file statements
returned by the remote job filter must contain the same number of steps as
the job object received from the sending cluster.

v Determine if the job failed the assigned cluster's include and exclude rules for
the cluster and/or class stanzas.
– If the assigned cluster has CLUSTER_USER_MAPPING enabled, the mapped

user ID is applied to the rules.
v Issue llq to determine if the job being moved has all of its steps in an idle-like

state.
– The llmovejob command should fail and report this situation.

v Issue llq -x -d job_id to determine if the job being moved has a job command file
associated with it.
– A job cannot be moved that was not submitted while in the multicluster

environment.
v See “How do I find log messages from my multicluster-defined installation

exits?” on page 406 to determine if an installation exit has returned an error.
v Determine that the file system in the assigned cluster has the desired availability

and permissions.
– User may be mapped to another user ID thus another $HOME.
– User needs to have initialdir available.
– cluster_input_file and cluster_output_file need requested file locations to be

available.
– If clusters share a common file system, users requesting cluster_input_file

and cluster_output_file may have their remote location files removed if a
local job is moved to another cluster. During a llmovejob operation, the files
are copied from the remote location to the remote location instead of from the
local location to the remote location. LoadLeveler only knows that the job
being moved has access to the remote location because they were copied
during the local submission. After the llmovejob is complete, LoadLeveler
removes the files from the local cluster in the remote location, thus removing
the files just copied.

v Determine if the job is an interactive jobs.
– Interactive jobs may not be submitted to remote clusters.

v If the llsubmit or llmovejob command times out while waiting for a response
from the remote cluster, LoadLeveler is not able to determine if the command
was successful and it is recommended that the user issue llq to the remote
cluster to determine if the job was submitted or moved.

Appendix A. Troubleshooting LoadLeveler 407

Why did the CLUSTER_REMOTE_JOB_FILTER not update the
job with all of the statements I defined?

Use this procedure to determine why the CLUSTER_REMOTE_JOB_FILTER did
not update the job with all of the statements that you defined.
v See the CLUSTER_REMOTE_JOB_FILTERCLUSTER_REMOTE_JOB_FILTER

configuration file keyword description for a list of keywords that are not
changed by the filter.

How do I find my remote job?
Use this procedure to find your remote job.
v Capture the stdout of the llsubmit and llmovejob commands to see the

outbound_hosts machine assigned to the job, the inbound_hosts machine
assigned to the job, the cluster assigned to the job, and the job identifier
assigned to the job.
– The Schedd host represented in the job identifier for remote jobs does not

represent the managing Schedd of the job. It represents the Schedd that
assigned the job number.

v Issue the llq -X all command and search for the desired job identifier.
v Check for pertinent mail messages.

– If a job has been moved by an administrator, the submitting user will receive
mail notification.

– The job may have completed already. If the user has notify_user and
notification set, mail will indicate job status.

Why won't my remote job run?
Use this procedure to determine why your remote job will not run. If the remote
job has been received by the central manager of the remote cluster:
v Follow the troubleshooting tips for local jobs in “Why won't my job run?” on

page 392 or “Why won't my parallel job run?” on page 395.
v Use the information from the llsubmit and llq commands to determine the

machines that have processed the job. Examine the Schedd logs on those
machines for information relating to the specific job.

v Capture the stdout of the llsubmit and llmovejob commands to see the
outbound_hosts machine assigned to the job, the inbound_hosts machine
assigned to the job, the cluster assigned to the job, and the job identifier
assigned to the job.

Note: The Schedd host represented in the job identifier for remote jobs does not
represent the managing Schedd of the job. It represents the Schedd that assigned
the job number.

v Issue llq -X remote_cluster -l job_ID.
v Check for the multicluster environment related keywords (see the llq command

for detailed data descriptions):
– Scheduling Cluster - what cluster is the job running in.
– Submitting Cluster - what cluster was the job submitted from
– Sending Cluster - during move job what cluster did the job come from
– Requested Cluster - cluster_list specified by user.
– Schedd History - history of managing Schedds
– Outbound Schedds - history of outbound Schedds

408 LoadLeveler: Using and Administering

– Submitting User - user name that the job was submitted under
v Check for pertinent mail messages.

Why does llq -X all show no jobs running when there are jobs
running?

Use this procedure to determine why llq -X all shows no jobs running when there
are jobs running.
v When not using CLUSTER_USER_MAPPER, check that the user's uid are the

same between the local cluster and remote cluster.

Troubleshooting adapter availability

If the user space adapters are down, or are in error, or they are seen as Ethernet
adapters in the llstatus -a or llrstatus -a command, check the following:
v Run the ifconfig command to check adapter availability.
v Check to see if the PNSD daemon is up.
v Check the PNSD log to see if there are any errors.
v Ping the user space adapter addresses between machines.
v Set the D_ADAPTERS debug flag for Startd, reconfigure LoadLeveler and run

the grep command for PNSD in the Startd log to see the error messages.

Troubleshooting in a Blue Gene environment
This topic will help you troubleshoot your Blue Gene environment.

For information on preparing your job for submission to the Blue Gene system, see
“Submitting and monitoring Blue Gene jobs” on page 221.

Why do all of my Blue Gene jobs fail even though llstatus
shows that Blue Gene is present?

Use this procedure to determine why all of your Blue Gene jobs fail even though
llstatus shows that Blue Gene is present.

LoadLeveler queries Blue Gene information through the Blue Gene Scheduler APIs.
If LoadLeveler receives all requested information from the Blue Gene Scheduler
APIs without any problems, the llstatus output will indicate Blue Gene is present.
Note, however, that other Blue Gene factors can cause jobs to fail.

In the event that the Blue Gene system is not completely ready to run jobs (for
example, if the bgmaster status shows that some of the Blue Gene daemons are not
running), then runjob jobs might not be able to run successfully. To determine if
that is the case, run a runjob job outside of LoadLeveler and make sure that it can
run to completion without problems. Sometimes file system failures can also cause
all runjob jobs to fail. Contact the Blue Gene system administrator to resolve the
problem when a runjob job fails outside of LoadLeveler. After those problems are
resolved, run the jobs through LoadLeveler again.

Why does llstatus show that Blue Gene is absent?
Use this procedure to determine why llstatus shows that Blue Gene is absent.

Appendix A. Troubleshooting LoadLeveler 409

LoadLeveler must load some of the Blue Gene libraries dynamically before it tries
to call the Blue Gene Scheduler APIs. LoadLeveler will indicate that Blue Gene is
absent in the llstatus output in the following situations:
v If the environment variables needed to use the Blue Gene Scheduler APIs and to

run a runjob job are not properly set
v If the Blue Gene libraries cannot be loaded
v If the Blue Gene database cannot be accessed

LoadLeveler jobs will not be able to run in these situations. The LoadLeveler
central manager log will contain error messages indicating what kind of failures
occurred. Contact the Blue Gene administrator to resolve the problems in the Blue
Gene environment. After all Blue Gene issues have been resolved, LoadLeveler
might need to be restarted. The llstatus command must show Blue Gene is
present before LoadLeveler jobs can run again.

Why did my Blue Gene job fail when the job was submitted to
a remote cluster?

Use this procedure to determine why your Blue Gene job failed when the job was
submitted to a remote cluster.

If Blue Gene jobs are submitted to a remote cluster where the version of the Blue
Gene software is not compatible with the version installed on the submitting
cluster, the executable statement cannot be used to specify the runjob program.
The following job command file example shows how to invoke the runjob
program without using the executable statement.
#!/bin/bash#
@ comment = "Script to invoke runjob"
@ error = $(job_name).$(jobid).out
@ output = $(job_name).$(jobid).out
@ wall_clock_limit = 00:20:00
@ job_type = bluegene
@ bg_size = 32
@ queue
runjob --exe myexe --verbose 1 --args "myargs"

Why does llmkres or llchres return "Insufficient resources to
meet the request" for a Blue Gene reservation when resources
appear to be available?

If it appears that a Blue Gene reservation does not have enough resources, there
are several simple items that you can check to determine if there is a real problem.

There are many reasons why resources are not available for a reservation request.
These reasons include but are not limited to:
v The resources are in use
v The resources are not included in the job class or cluster
v The available resources are not the right type

In the case of a Blue Gene reservation, be aware that the number of I/O nodes in a
midplane affect the smallest block size that can be supported by the midplane. If a
midplane does not have enough I/O nodes, a reservation request asking for a
smaller block than it can support will not get satisfied by the resources on the
midplane.

410 LoadLeveler: Using and Administering

Helpful hints
This topic contains tips on running LoadLeveler, including some productivity aids.

Scaling considerations
If you are running LoadLeveler on a large number of nodes (128 or more) consider
the following recommendations:
v To reduce network traffic, and jitter from LoadLeveler daemons:

– Set POLLS_PER_UPDATE, POLLING_FREQUENCY,
JOB_ACCT_Q_POLICY, and JOB_LIMIT_POLICY such that
POLLING_FREQUENCY * POLLS_PER_UPDATE = JOB_ACCT_Q_POLICY
= JOB_LIMIT_POLICY. This reduces the number of timer threads required
by LoadLeveler.

– Set UPDATE_ON_POLL_INTERVAL_ONLY = TRUE. This limits how often
Startd daemons send machine updates.

– The following settings are recommended to reduce jitter and network traffic
for installations with long-running parallel workloads. These settings reduce
how often monitoring activity takes place and how often Startd daemons
send updates to other LoadLeveler daemons.

POLLING_FREQUENCY >= 300

POLLS_PER_UPDATE = 1

JOB_ACCT_Q_POLICY >= 300

JOB_LIMIT_POLICY >= 300

v If your installation's mix of jobs includes a high percentage of parallel jobs
requiring many nodes, specify schedd_host=yes in the machine stanza of each
Schedd machine. The Schedd daemons must communicate with hundreds of
startd daemons every time a job runs. You can distribute this communication by
activating many Schedd daemons. Typically, the number of Schedd machines in
a LoadLeveler cluster ranges from 2 to 10, depending on the mix of workload
and number of jobs in the system.

v If your installation allows jobs to be submitted from machines running the
Schedd daemon, you should consider avoiding “Schedd affinity” by specifying
SCHEDD_SUBMIT_AFFINITY=FALSE in the LoadLeveler configuration file.
By default, the llsubmit command submits a job to the machine where the
command was invoked provided the Schedd daemon is running on the machine.
(This is called Schedd affinity.)

v You can decrease the amount of time the negotiator daemon spends running
negotiation loops by increasing the NEGOTIATOR_INTERVAL and the
NEGOTIATOR_CYCLE_DELAY. For example, set NEGOTIATOR_INTERVAL
to 600, and set NEGOTIATOR_CYCLE_DELAY to 30.

v Make sure the machine update interval is not too short by setting the
MACHINE_UPDATE_INTERVAL to a value larger than three times the polling
interval (POLLS_PER_UPDATE*POLLING_FREQUENCY). This prevents the
negotiator from prematurely marking a machine as “down” or prematurely
cancelling jobs.

v In a large LoadLeveler cluster, issuing the llctl command with -g can take
minutes to complete. To speed this up, set up a working collective containing
the machines in the cluster and use the xdsh command; for example, xdsh llctl
reconfig. This command also allows you to limit your operation to a subset of
machines by defining other working collectives.

v To reduce the cost of file I/O on execute nodes, the execute directory should be
located on a local disk (if available) or in RAM disk.

Appendix A. Troubleshooting LoadLeveler 411

Hints for running jobs
The following subtopics provide some helpful hints that are useful for running
jobs.

Determining when your job started and stopped
By reading the notification mail you receive after submitting a job, you can
determine the time the job was submitted, started, and stopped.

Suppose you submit a job and receive the following mail when the job finishes:

Submitted at: Mon Jan 14 11:40:41 2008
Started at: Mon Jan 14 11:45:00 2008
Exited at: Mon Jan 14 12:49:10 2008

Real Time: 0 01:08:29
Job Step User Time: 0 00:30:15
Job Step System Time: 0 00:12:55
Total Job Step Time: 0 00:43:10

Starter User Time: 0 00:00:00
Starter System Time: 0 00:00:00
Total Starter Time: 0 00:00:00

This mail tells you the following:

Submitted at
The time you issued the llsubmit command.

Started at
The time the starter process executed the job.

Exited at
The actual time your job completed.

Real Time
The wall clock time from submit to completion.

Job Step User Time
The CPU time the job consumed executing in user space.

Job Step System Time
The CPU time the system (AIX) consumed on behalf of the job.

Total Job Step Time
The sum of the Job Step User Time and Job Step System Time fields.

Starter User Time
The CPU time consumed by the LoadLeveler starter process for this job,
executing in user space. Time consumed by the starter process is the only
LoadLeveler overhead which can be directly attributed to a user's job.

Starter System Time
The CPU time the system (AIX) consumed on behalf of the LoadLeveler
starter process running for this job.

Total Starter Time
The sum of the Starter User Time and Starter System Time fields.

You can also get the starting time by issuing llsummary -l -x and then issuing awk
/Date|Event/ against the resulting file. For this to work, you must have ACCT =
A_ON A_DETAIL set in the LoadL_config file.

412 LoadLeveler: Using and Administering

Running jobs at a specific time of day
Using a machine's local configuration file, you can set up the machine to run jobs
at a certain time of day (sometimes called an execution window).

The following coding in the local configuration file runs jobs between 5:00 PM and
8:00 AM daily, and suspends jobs the rest of the day:
START: (tm_hour >= 1700) || (tm_hour <= 0800)
SUSPEND: (tm_hour > 0800) && (tm_hour < 1700)
CONTINUE: (tm_hour >= 1700) || (tm_hour <= 0800)

Controlling the mix of idle and running jobs
The following keywords determine the mix of idle and running jobs for a user or
group. These keywords, which are described in detail in “Defining users” on page
102, are:

maxqueued
Controls the number of jobs in any of these states: Idle, Pending, Starting,
Running, Preempt Pending, Preempted, Resume Pending, and Checkpointing.

maxjobs
Controls the number of jobs in any of these states: Running, Pending, or
Starting; thus it controls a subset of what maxqueued controls. The maxjobs
keyword effectively controls the number of jobs in the Running state, since
Pending and Starting are usually temporary states.

Note: The maxjobs keyword can also be configured in the class stanza to limit
the total number of running job steps of a particular class.

maxidle
Controls the number of jobs in any of these states: Idle, Pending, or Starting;
thus it controls a subset of what maxqueued controls. The maxidle keyword
effectively controls the number of jobs in the Idle state, since Pending and
Starting are usually temporary states.

Administrators can restrict the number of queued, idle, and running job steps on a
per-class, per-user basis. The LoadLeveler administrator specifies the per-class,
per-user constraints in the LoadL_admin file using user substanzas within each
class stanza. For more information about substanzas, see “Defining user substanzas
in class stanzas” on page 99.

What happens when you submit a job
This is what happens when you submit a job.

For a user's job to be allowed into the job queue and then dispatched:
v The total of other jobs (in the Idle, Pending, Starting, and Running states) for

that user must be less than the maxqueued value for that user.
v The total idle jobs (those in the Idle, Pending, and Starting states) must be less

than the maxidle value for the user.
v Constraints on the group's jobs and the user's jobs belonging to a particular class

are considered.

Also, if the number of jobs exceeds the value specified by any of these max
keywords, the job being considered is placed in the Not Queued state until one of
the other jobs changes state. If the user is at the maxqueued limit, a job must
complete, be canceled, or be held before the new job can enter the queue. If the
user is at the maxidle limit, a job must start running, be canceled, or be held
before the new job can enter the queue.

Appendix A. Troubleshooting LoadLeveler 413

Once a job is in the queue, the job is not taken out of queue unless the user places
a hold on the job, the job completes, or the job is canceled. This even applies to a
job which is rejected or vacated and returned to the queue in the Idle state. (An
exception to this, when you are running the default LoadLeveler scheduler, is
parallel jobs which do not accumulate sufficient machines in a given time period.
These jobs are moved to the Deferred state, meaning they must vie for the queue
when their Deferred period expires.)

Once a job is in the queue, the job will run unless the maxjobs limit for the user is
at a maximum.

Note the following restrictions for using these keywords:
v If maxqueued is greater than (maxjobs + maxidle), the maxqueued value will

never be reached.
v If either maxjobs or maxidle is greater than maxqueued, then maxqueued will

be the only restriction in effect, since maxjobs and maxidle will never be
reached.

Sending output from several job steps to one output file
You can use dependencies in your job command file to send the output from many
job steps to the same output file. For example:
@ step_name = step1
@ executable = ssba.job
@ output = ssba.tmp
@ ...
@ queue
#
@ step_name = append1
@ dependency = (step1 != CC_REMOVED)
@ executable = append.ksh
@ output = /dev/null
@ queue
@
@ step_name = step2
@ dependency = (append1 == 0)
@ executable = ssba.job
@ output = ssba.tmp
@ ...
@ queue
@
@ step_name = append2
@ dependency = (step2 != CC_REMOVED)
@ executable = append.ksh
@ output = /dev/null
@ queue
#
...

Then, the file append.ksh could contain the line cat ssba.tmp >> ssba.log. All your
output will reside in ssba.log. (Your dependencies can look for different return
values, depending on what you need to accomplish.)

You can achieve the same result from within ssba.job by appending your output to
an output file rather than writing it to stdout. Then your output statement for each
step would be /dev/null and you wouldn't need the append steps.

Hints for using machines
The following subtopics provide some helpful hints for using machines.

414 LoadLeveler: Using and Administering

Setting up a single machine to have multiple job classes
You can define a machine to have multiple job classes which are active at different
times. For example, suppose you want a machine to run jobs of Class A any time,
and you want the same machine to run Class B jobs between 6 p.m. and 8 a.m.

You can combine the Class keyword with a user-defined macro (called Off_shift in
this example).

For example:
Off_Shift = ((tm_hour >= 18) || (tm_hour < 8))

Then define your START statement:
START : (Class == "A") || ((Class == "B") && $(Off_Shift))

Make sure you have the parenthesis around the Off_Shift macro, since the logical
OR has a lower precedence than the logical AND in the START statement.

Also, to take weekends into account, code the following statements. Remember
that Saturday is day 6 and Sunday is day 0.
Off_Shift = ((tm_wday == 6) || (tm_wday == 0) || (tm_hour >=18) \
|| (tm_hour < 8))

Prime_Shift = ((tm_wday != 6) && (tm_wday != 0) && (tm_hour >= 8) \
&& (tm_hour < 18))

Reporting the load average on machines
You can use the /usr/bin/rup command to report the load average on a machine.

The rup machine_name command gives you a report that looks similar to the
following:
localhost up 23 days, 10:25, load average: 1.72, 1.05, 1.17

You can use this command to report the load average of your local machine or of
remote machines. Another command, /usr/bin/uptime, returns the load average
information for only your local host.

History files and Schedd
The Schedd daemon writes to the spool/history file only when a job is completed
or removed. Therefore, you can delete the history file and restart Schedd even
when some jobs are scheduled to run on other hosts.

However, you should clean up the spool/LlObject.Job.*, spool/LlObject.Step.* and
spool/jobnnnnnn.* files only when no jobs are being scheduled on the machine.

You should not delete these files if there are any jobs in the job queue that are
being scheduled from this machine (for example, jobs with names such as
thismachine.clusterno.jobno).

For fair share scheduling, Schedd daemons store historic CPU data for users and
groups when their jobs terminate. Usually, a LoadLeveler cluster has more than
one Schedd daemon. Each Schedd daemon only saves its own portion of the
historic CPU data. Files in the directory specified by the SPOOL keyword on each
Schedd machine that are named LlObject.FairShare.* contain the historic CPU
data.

Appendix A. Troubleshooting LoadLeveler 415

Note: Similarly for reservations, the Schedd daemon writes to the
reservation_history file as each occurrence of each reservation completes. You
should only clean up files named LlObject.Reservation.* when no reservations are
being managed by the machine.

Getting help from IBM
Should you require help from IBM in resolving a LoadLeveler problem, you can
get assistance by calling IBM Support.

Before you call, be sure you have the following information:
1. Your access code (customer number).
2. The LoadLeveler product number.
3. The name and version of the operating system you are using.
4. A telephone number where you can be reached.

In addition, issue the following command:
llctl version

This command will provide you with code level information. Provide this
information to the IBM representative.

The number for IBM support in the United States is 1-800-IBM-4YOU (426-4968).

The Facsimile number is 800-2IBM-FAX (2426-329).

416 LoadLeveler: Using and Administering

Appendix B. LoadLeveler port usage

This topic describes LoadLeveler port usage.

A port number is an integer that specifies the port to use to connect to the
specified daemon. For most ports used by LoadLeveler, you can define the port
numbers in the configuration file or the /etc/services file or you can accept the
defaults. LoadLeveler first looks in the configuration file for these port numbers. If
LoadLeveler does not find the value in the configuration file, it looks in the
/etc/services file. If the value is not found in this file, the default is used.

There are two exceptions to this rule:
1. The LoadL_master_config service cannot be specified in the LoadLeveler

configuration data. This special port is used by LoadLeveler to retrieve
configuration data from LoadLeveler nodes configured in the master
configuration file as LoadLConfigHost. This port number can be specified in
/etc/services.

2. Port numbers used by sshd daemons started by LoadLeveler for interactive
jobs cannot be specified in /etc/services. A range of port numbers are used by
LoadLeveler when starting an sshd daemon for an interactive job. This range
can be configured using the SSHD_PORTS configuration keyword.

Note: See Table 61 on page 418 for the configuration file keywords associated
with the port numbers.

The first column on each line in Table 61 on page 418 represents the name of a
service. In most cases, these services are also the names of daemons with the
following exceptions:
v LoadL_negotiator_collector is the service name for a second stream port that is

used by the LoadL_negotiator daemon.
v LoadL_schedd_status is the service name for a second stream port used by the

LoadL_schedd daemon.
v LoadL_master_config is the service name for a second stream port used by a

LoadL_master daemon which is a configuration server when the database option
is being used.

For each LoadLeveler service definition shown in Table 61 on page 418, the
following information is shown:

Service name
Specifies the service name. The service names shown are examples of how the
names might appear in the /etc/services file.

Port number
Specifies the port number used for the service.

Protocol name
Specifies the transport protocol used for the service.

Source port range
A range of port numbers used on either the client side or daemon (server) side
of the service.

© Copyright IBM Corporation © IBM 1986, 2012 417

Required or optional
Whether or not the service is required.

Description/associated keywords
A short description of the service along with its associated configuration file
keyword or keywords.

Table 61. LoadLeveler default port usage

Service name
Port
number

Protocol
name

Source port
range¹

Required
or optional Description/associated keywords

LoadL_master 9616 tcp LB Required Master port number for stream port

Keyword:

MASTER_STREAM_PORT (tcp)

9617 udp LB Required Master port number for dgram port

Keyword:

MASTER_DGRAM_PORT (udp)

LoadL_master_config 9601 tcp LB Required Master port number for configuration
stream port

Keyword: None. This port cannot be
specified in the LoadLeveler
configuration; only in /etc/services.

LoadL_negotiator 9614 tcp LB Required Negotiator port number for stream
port

Keyword:

NEGOTIATOR_STREAM_PORT

LoadL_negotiator_collector 9612 tcp LB Required Second negotiator stream port

Keyword:

CM_COLLECTOR_PORT (tcp)

LoadL_region_mgr 9680 tcp LB Required Region manger port number for
stream port

Keyword:

REGION_MGR_STREAM_PORT

9684 udp LB Required Required adapter heartbeat port
number

Keyword:

ADAPTER_HEARTBEAT_PORT
(udp)

418 LoadLeveler: Using and Administering

Table 61. LoadLeveler default port usage (continued)

Service name
Port
number

Protocol
name

Source port
range¹

Required
or optional Description/associated keywords

LoadL_resource_mgr 9618 tcp LB Required Resource manager port number for
stream port

Keyword:

RESOURCE_MGR_STREAM_PORT

9619 udp LB Resource manager port number for
dgram port

Keyword:

RESOURCE_MGR_DGRAM_PORT
(udp)

LoadL_schedd 9605 tcp LB Required Schedd port number for stream port

Keyword:

SCHEDD_STREAM_PORT

LoadL_schedd_status 9606 tcp LB Required Schedd stream port for job status
data

Keyword:

SCHEDD_STATUS_PORT

LoadL_startd 9611 tcp LB Required Startd port number for stream port

Keyword:

STARTD_STREAM_PORT

9615 udp LB Startd port number for dgram port

Keyword:

STARTD_DGRAM_PORT (udp)

N/A 9620-9629 tcp LB Required Range of port numbers used by
LoadLeveler when starting sshd
daemons for interactive jobs

Keyword:

SSHD_PORTS

Note: ¹A value of LB indicates that the source port range value should be left blank. In other words, no source port
range value should be specified.

For more information about configuration file keyword syntax and configuring the
LoadLeveler environment, see the following:
v Chapter 4, “Configuring the LoadLeveler environment,” on page 39
v Chapter 10, “Configuration keyword reference,” on page 231

Appendix B. LoadLeveler port usage 419

420 LoadLeveler: Using and Administering

Accessibility features for LoadLeveler

Accessibility features help users who have a disability, such as restricted mobility
or limited vision, to use information technology products successfully.

Accessibility features
The following list includes the major accessibility features in IBM LoadLeveler:
v Keyboard-only operation
v Interfaces that are commonly used by screen readers
v Keys that are discernible by touch but do not activate just by touching them
v Industry-standard devices for ports and connectors
v The attachment of alternative input and output devices

The IBM Cluster information center, and its related publications, are
accessibility-enabled. The accessibility features of the information center are
described in the IBM Cluster information center (http://publib.boulder.ibm.com/
infocenter/clresctr/vxrx/topic/com.ibm.cluster.addinfo.doc/access.html).

Keyboard navigation
This product uses standard Microsoft Windows navigation keys.

IBM and accessibility
See the IBM Human Ability and Accessibility Center (http://www.ibm.com/able/)
for more information about the commitment that IBM has to accessibility.

© Copyright IBM Corp. 1986, 2012 421

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp
http://www.ibm.com/able/

422 LoadLeveler: Using and Administering

Notices

This information was developed for products and services offered in the U.S.A.

IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not grant you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation
North Castle Drive
Armonk, NY 10504-1785
U.S.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

Intellectual Property Licensing
Legal and Intellectual Property Law
IBM Japan, Ltd.
19-21, Nihonbashi-Hakozakicho, Chuo-ku
Tokyo 103-8510, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law: INTERNATIONAL
BUSINESS MACHINES CORPORATION PROVIDES THIS PUBLICATION "AS IS"
WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED,
INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF
NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS FOR A PARTICULAR
PURPOSE. Some states do not allow disclaimer of express or implied warranties in
certain transactions, therefore, this statement may not apply to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM Web sites are provided for
convenience only and do not in any manner serve as an endorsement of those Web
sites. The materials at those Web sites are not part of the materials for this IBM
product and use of those Web sites is at your own risk.

© Copyright IBM Corporation © IBM 1986, 2012 423

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

IBM Corporation
Mail Station P300
2455 South Road,
Poughkeepsie, NY 12601-5400
USA

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrate programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. The sample

424 LoadLeveler: Using and Administering

programs are provided "AS IS", without warranty of any kind. IBM shall not be
liable for any damages arising out of your use of the sample programs.

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs.

© Copyright IBM Corp. _enter the year or years_. All rights reserved.

If you are viewing this information softcopy, the photographs and color
illustrations may not appear.

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the Web at Copyright and
trademark information (http://www.ibm.com/legal/copytrade.shtml).

Intel, Intel Inside (logos), MMX and Pentium are trademarks of Intel Corporation
in the United States, other countries, or both.

Java and all Java-based trademarks and logos are trademarks or registered
trademarks of Sun Microsystems, Inc. in the United States, other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Red Hat, the Red Hat “Shadow Man” logo, and all Red Hat-based trademarks and
logos are trademarks or registered trademarks of Red Hat, Inc., in the United
States and other countries.

UNIX is a registered trademark of the Open Group in the United States and other
countries.

Notices 425

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

426 LoadLeveler: Using and Administering

Glossary

This glossary includes terms and definitions for
LoadLeveler.

The following cross-references are used in this
glossary:
v See refers you from a term to a preferred

synonym, or from an acronym or abbreviation
to the defined full form.

v See also refers you to a related or contrasting
term.

To view glossaries for other IBM products, go to
IBM Terminology (http://www-01.ibm.com/
software/globalization/terminology/index.jsp).

A

AFS A distributed file system for large
networks that is known for its ease of
administration and expandability.

AIX A UNIX operating system developed by
IBM that is designed and optimized to
run on POWER microprocessor-based
hardware such as servers, workstations,
and blades.

authentication
The process of validating the identity of a
user or server.

authorization
The process of obtaining permission to
perform specific actions.

B

Berkeley Load Average
The average number of processes on the
operating system's ready-to-run queue.

C

C language
A language used to develop application
programs in compact, efficient code that
can be run on different types of
computers with minimal change.

client A system or process that is dependent on
another system or process (usually called
the server) to provide it with access to
data, services, programs, or resources.

cluster
A collection of complete systems that
work together to provide a single, unified
computing capability.

D

daemon
A program that runs unattended to
perform continuous or periodic functions,
such as network control.

DCE See Distributed Computing Environment.

default
Pertaining to an attribute, value, or option
that is assumed when none is explicitly
specified.

DFS See Distributed File System.

Distributed Computing Environment (DCE)
In network computing, a set of services
and tools that supports the creation, use,
and maintenance of distributed
applications across heterogeneous
operating systems and networks.

Distributed File Service (DFS)
A component of a Distributed Computing
Environment (DCE) that enables a single,
integrated file system to be shared among
all DCE users and host computers in a
DCE cell. DFS prevents DCE users from
simultaneously modifying the same
information.

F

flexible job
A job step that is only used for
scheduling resources for a flexible
reservation.

flexible reservation
A reservation that starts as soon as
resources are first available.

H

host A computer that is connected to a
network and provides an access point to
that network. The host can be a client, a
server, or both a client and server
simultaneously.

© Copyright IBM Corp. 1986, 2012 427

http://www-01.ibm.com/software/globalization/terminology/index.jsp

L

LAPI See low-level application programming
interface.

low-level application programming interface
(LAPI)

An IBM message-passing interface that
implements a one-sided communication
model.

M

MCM See multiple chip module.

memory affinity
A feature available in AIX to allocate
memory attached to the same multiple
chip module (MCM) on which the process
runs. Memory affinity improves the
performance of applications on IBM
System p® servers.

menu A displayed list of items from which a
user can make a selection.

Message Passing Interface (MPI)
A library specification for message
passing. MPI is a standard application
programming interface (API) that can be
used with parallel applications and that
uses the best features of a number of
existing message-passing systems.

MPI See Message Passing Interface.

MPICH2
A portable implementation of the
Message Passing Interface (MPI).

multiple chip module (MCM)
The fundamental, processor, building
block of IBM System p servers.

N

network
In data communication, a configuration in
which two or more locations are
physically connected for the purpose of
exchanging data.

Network File System (NFS)
A protocol, developed by Sun
Microsystems, Incorporated, that enables
a computer to access files over a network
as if they were on its local disks.

NFS See Network File System.

node A computer location defined in a
network.

nominal CPU frequency
The vendor specified frequency for the
CPU.

P

parameter
A value or reference passed to a function,
command, or program that serves as
input or controls actions. The value is
supplied by a user or by another program
or process.

process
A separately executable unit of work.

R

RDMA
See Remote Direct Memory Access.

Remote Direct Memory Access (RDMA)
A communication technique in which data
is transmitted from the memory of one
computer to that of another without
passing through a processor. RDMA
accommodates increased network speeds.

resource set (RSet)
A data structure in AIX used to represent
physical resources such as processors and
memory. AIX uses resource sets to restrict
a set of processes to a subset of the
system's physical resources.

RSet See resource set.

S

S3 state
A power state where everything in the
system is put into a low-power state
except for memory.

server In a network, hardware or software that
provides facilities to clients. Examples of
a server are a file server, a printer server,
or a mail server.

shell A software interface between users and an
operating system. Shells generally fall into
one of two categories: a command line
shell, which provides a command line
interface to the operating system; and a
graphical shell, which provides a
graphical user interface (GUI).

simultaneous multithreading (SMT)
Pertaining to a processor design that
combines hardware multithreading with
superscalar processor technology. Using

428 LoadLeveler: Using and Administering

SMT, a single physical processor emulates
multiple processors by enabling multiple
threads to issue instructions
simultaneously during each cycle.

SMT See simultaneous multithreading.

system administrator
The person who controls and manages a
computer system.

T

TCP See Transmission Control Protocol.

Transmission Control Protocol (TCP)
A communication protocol used in the
Internet and in any network that follows
the Internet Engineering Task Force (IETF)
standards for internetwork protocol. TCP
provides a reliable host-to-host protocol in
packet-switched communication networks
and in interconnected systems of such
networks.

U

UDP See User Datagram Protocol.

User Datagram Protocol (UDP)
An Internet protocol that provides
unreliable, connectionless datagram
service. It enables an application program
on one machine or process to send a
datagram to an application program on
another machine or process.

W

workflow
An application that has been partitioned
into a complex sequence of
interdependent jobs is called a workflow.
The execution of jobs in a workflow may
depend on the success/failure of
previously executed jobs. Some jobs in a
workflow may need to use output of jobs
that executed before them; jobs that are
not interdependent may be able to
execute in parallel.

workflow engine
A software tool that manages the
execution of a workflow. By integrating
with LoadLeveler, a workflow engine can
benefit from features like flexible
reservations and state change notifications
to automate several workflows in parallel.

working directory
The active directory. When a file name is
specified without a directory, the current
directory is searched.

workstation
A configuration of input/output
equipment at which an operator works. A
workstation is a terminal or
microcomputer at which a user can run
applications and that is usually connected
to a mainframe or a network.

Glossary 429

430 LoadLeveler: Using and Administering

Index

Special characters
!var 353
!var specification

on environment keyword 353
/etc/LoadL.cfg file 74
$var specification

on environment keyword 353

Numerics
64-bit

keywords supported
administration file 297
configuration file 232
job command file 334

support for accounting functions 71

A
accessibility 421

keyboard 421
shortcut keys 421

account keyword
detailed description 298

account_no keyword
detailed description 335

accounting
collecting data 65

based on events 68
based on machines 67, 68
based on user accounts 69
for serial or parallel jobs 66

correlating AIX and LoadLeveler records 70
functions

64-bit support 71
in job command file 335
job setup 71
keywords

ACCT 65
ACCT_VALIDATION 65
GLOBAL_HISTORY 65
HISTORY_PERMISSION 65
JOB_ACCT_Q_POLICY 65
JOB_LIMIT_POLICY 65

llacctval program 65
producing reports 70
recurring jobs 66
storing data 69

ACCT keyword
detailed description 233

ACCT_VALIDATION keyword
detailed description 233

ACTION_ON_MAX_REJECT keyword
detailed description 234

ACTION_ON_SWITCH_TABLE_ERROR keyword
detailed description 234

adapter
dedicated 366
dynamic discovery 93
monitoring 94

adapter (continued)
shared 366
specifying in administration file 304
specifying in job command file 363, 373

adapter stanza keywords
type 330

ADAPTER_HEARTBEAT_INTERVAL keyword
detailed description 234

ADAPTER_HEARTBEAT_PORT keyword
detailed description 234

adjust_wall_clock_limit keyword
detailed description 336

admin keyword
detailed description 298

ADMIN_FILE 49
administering LoadLeveler

customizing the administration file 89
LoadL_admin file 293
stanzas 89

administration
keyword descriptions 298

administration file 42
account keyword 298
admin keyword 298
as_limit keyword 299
central_manager keyword 299
ckpt_dir keyword 300
ckpt_time_limit keyword 300
class keyword 300
class_comment keyword 301
core_limit keyword 302
cpu_limit keyword 302
cpu_speed_scale keyword 302
customizing 89
data_limit keyword 303
default_class keyword 303
default_group keyword 303
default_interactive_class keyword 304
default_network keyword 304
default_node_resources keyword 306
default_resources keyword 306
dstg_max_starters keyword 307
env_copy keyword 308
exclude_bg keyword 308
exclude_classes keyword 309
exclude_groups keyword 309
exclude_users keyword 310
fair_shares keyword 311
feature keyword 311
file_limit keyword 312
inbound_hosts keyword 312
inbound_schedd_port keyword 312
include_bg keyword 313
include_classes keyword 313
include_groups keyword 313
include_users keyword 314
job_cpu_limit keyword 315
local keyword 315
locks_limit keyword 316
machine_list keyword 316
machine_mode keyword 317

© Copyright IBM Corp. 1986, 2012 431

administration file (continued)
master_node_exclusive keyword 317
master_node_requirement keyword 317
max_jobs_scheduled keyword 318
max_node keyword 318
max_protocol_instances keyword 318
max_reservation_duration keyword 318
max_reservations keyword 319
max_starters keyword 320
max_top_dogs keyword 320
max_total_tasks keyword 321
maxidle keyword 321
maxjobs keyword 321
maxqueued keyword 322
memlock_limit keyword 322
multicluster_security keyword 322
multiple statements 126
name_server keyword 323
nice keyword 323
nofile_limit keyword 323
nproc_limit keyword 324
outbound_hosts keyword 324
pool_list keyword 324
power_management_policy keyword 324
prestarted_starters keyword 325
priority keyword 325
region keyword 326
reservation_type keyword 326
resources keyword 326
restart keyword 327
rss_limit keyword 327
schedd_fenced keyword 327
schedd_host keyword 328
schedd_runs_here keyword 328
secure_schedd_port keyword 328
smt keyword 329
speed keyword 329
ssl_cipher_list keyword 329
stack_limit keyword 330
startd_runs_here keyword 330
striping_with_minimum_networks keyword 330
structure and syntax 293
submit_only keyword 330
total_tasks keyword 330
type keyword 330
wall_clock_limit keyword 331

affinity support
scheduling 147

AFS authentication 235
AFS authentication installation exit 78
AFS_GETNEWTOKEN keyword

detailed description 235
AGGREGATE_ADAPTERS keyword 46

detailed description 235
AIX accounting

correlating AIX and LoadLeveler records 70
alternate region manager

specifying 49
API scheduler 46
APIs

ll_ckpt
initiating a checkpoint of serial jobs 146

Arch
requirement in job command file 373

ARCH keyword
detailed description 235

Arch variable
detailed description 286

arguments keyword
detailed description 336

as_limit keyword
detailed description 299, 336

authentication process, DCE 78
authentication programs 77

B
BACKFILL scheduler

advantages of using 46
reservations 203
using 114

BACKFILL scheduling
avoiding circular preemption 124
implied START_CLASS values 124
releasing resources of preemptable jobs 126
selecting a preemption method 125

BackgroundLoad keyword 285
basics, LoadLeveler 4
BG_ALLOW_LL_JOBS_ONLY keyword

detailed description 235
bg_block keyword

detailed description 337
BG_CACHE_BLOCKS keyword

detailed description 236
bg_connectivity keyword

detailed description 337
BG_ENABLE_PASSTHROUGH keyword

detailed description 236
BG_ENABLED keyword

detailed description 236
BG_MIN_BLOCK_SIZE keyword

detailed description 236
bg_requirements keyword

detailed description 338
bg_rotate keyword

detailed description 338
bg_shape keyword

detailed description 339
bg_size keyword

detailed description 340
BIN 49
BIN keyword

detailed description 236
binaries

locating when the scheduler component is not installed 51
binding

a job step to a recurring reservation 212
selecting firm or soft 211

blocking 186
blocking factor 186
blocking keyword

detailed description 340
Blue Gene

documentation 154
fair share scheduling support 157
heterogeneous memory support 157
preemption support 157
reservation support 157
troubleshooting 409

inconsistencies in llstatus output for jobs 409, 410
why job fails when submitted to a remote cluster 410

buffer, logging 53

432 LoadLeveler: Using and Administering

building and submitting
llrun command 202
MPICH2 and serial interactive jobs 202

building jobs
using a job command file 171

bulk data transfer
specifying for jobs 180

bulkxfer keyword
detailed description 341

C
Canceled job state

abbreviations 19
detailed description 19

cancellation, partial 215
cancelling jobs

using llcancel 228
central manager 6, 398

controlling scheduling cycle
example 76

local 149
querying fair share scheduling information 163
remote 149
specifying an alternate 48

central manager machine 6
central_manager keyword

detailed description 299
CENTRAL_MANAGER_HEARTBEAT_ INTERVAL keyword

detailed description 236
CENTRAL_MANAGER_LIST keyword

detailed description 237
CENTRAL_MANAGER_TIMEOUT keyword

detailed description 237
changing job priority

example 227
changing scheduler types

example 122
reconfiguring 122

checklist
parallel jobs 396

checkpoint
file naming 138
removing old files 144
restarting a job 396

checkpoint and restart
limitations 138

checkpoint files, removing 144
checkpoint keyword

detailed description 341
checkpoint keywords

summary 136
checkpointing

how to checkpoint a job 226
jobs 138

periodically 142
restarting 140
restarting from user hold 140
running a new job to restart 140
submitting 138
using llckpt 140
using the ckpt_dir keyword 143
using the ckpt_execute_dir keyword 144
using the ckpt_subdir keyword 143

planning considerations 136
serial jobs

using the ll_ckpt API 146

checkpointing (continued)
system-initiated 135, 341
user-initiated 135, 341

Checkpointing job state
abbreviations 19
detailed description 19

circular preemption
avoiding 124

CKPT_CLEANUP_PROGRAM keyword
detailed description 237

ckpt_dir keyword
detailed description 300, 342
using to checkpoint jobs 143

ckpt_execute_dir keyword
detailed description 342
using to checkpoint jobs 144

CKPT_EXECUTE_DIR keyword
detailed description 238

ckpt_subdir keyword
detailed description 343
using to checkpoint jobs 143

ckpt_time_limit keyword
detailed description 300, 343

class
defining for a machine 301
keyword 301
multiple job classes 415

Class
defining for a machine 238
keyword 238

class keyword
detailed description 300, 344

CLASS keyword
detailed description 238

class stanza keywords
admin 298
as_limit 299
ckpt_dir 300
class_comment 301
core_limit 302
cpu_limit 302
data_limit 303
default_node_resources 306
default_resources 306
env_copy_name 308
exclude_groups 309
exclude_users 310
file_limit 312
include_groups 313
include_users 314
job_cpu_limit 315
locks_limit 316
master_node_requirement 317
max_node 318
max_protocol_instances 318
max_top_dogs 320
max_total_tasks 321
maxjobs 321
memlock_limit 322
nice 323
nofile_limit 323
nproc_limit 324
priority 325
rss_limit 327
stack_limit 330
total_tasks 330
type 330

Index 433

class stanza keywords (continued)
wall_clock_limit 331

class stanzas
defining substanzas 99
examples 98
format 103

class_comment keyword
detailed description 301

ClassSysprio variable
detailed description 286
use on SYSPRIO keyword 278

CLIENT_TIMEOUT keyword
detailed description 239

cluster
definition 3
local 149
querying multiple clusters 74
remote 149
submitting jobs to multiple clusters 74

cluster stanza keywords
exclude_bg 308
exclude_classes 309
exclude_groups 309
exclude_users 310
inbound_hosts 312
inbound_schedd_port 312
include_bg 313
include_classes 313
include_groups 313
include_users 314
local 315
multicluster_security 322
outbound_hosts 324
secure_schedd_port 328
ssl_cipher_list 329

cluster stanzas
examples 105

cluster with both AIX and Linux machines
troubleshooting 399

cluster_input_file keyword
detailed description 344

cluster_list keyword
detailed description 344

CLUSTER_METRIC keyword
detailed description 239

cluster_output_file keyword
detailed description 345

CLUSTER_REMOTE_JOB_FILTER keyword
detailed description 240

CLUSTER_USER_MAPPER keyword
detailed description 241

CM_CHECK_USERID keyword
detailed description 241

CM_COLLECTOR_PORT keyword
detailed description 241

COMM keyword
detailed description 241

commands
llbind 211, 212
llchres 213
llckpt

using to checkpoint jobs 140
llmkres 207
llq 211, 212, 213, 215
llqres 210, 212, 213, 215
llrmres 215
llsubmit 211

commands and APIs, coscheduled job steps 179
comment keyword

detailed description 346
common name space 90
communication level 304, 363
Complete Pending job state

abbreviations 19
detailed description 19

Completed job state
abbreviations 19
detailed description 19

configuration
keyword descriptions 233
remotely configured nodes 43
structure and syntax 231
syntax 231

configuration data
modifying 45

configuration file
ACCT keyword 233
ACCT_VALIDATION keyword 233
ACTION_ON_MAX_REJECT keyword 234
ACTION_ON_SWITCH_TABLE_ERROR keyword 234
ADAPTER_HEARTBEAT_INTERVAL keyword 234
ADAPTER_HEARTBEAT_PORT keyword 234
ADAPTER_HEARTBEAT_RETRIES keyword 234
AFS_GETNEWTOKEN keyword 235
AGGREGATE_ADAPTERS keyword 235
ARCH keyword 235
BG_ALLOW_LL_JOBS_ONLY keyword 235
BG_CACHE_BLOCKS keyword 236
BG_ENABLE_PASSTHROUGH keyword 236
BG_ENABLED keyword 236
BG_MIN_BLOCK_SIZE keyword 236
BIN keyword 236
CENTRAL_MANAGER_HEARTBEAT_ INTERVAL

keyword 236
CENTRAL_MANAGER_LIST keyword 237
CENTRAL_MANAGER_TIMEOUT keyword 237
CKPT_CLEANUP_PROGRAM keyword 237
ckpt_execute_dir keyword 342
CKPT_EXECUTE_DIR keyword 238
CLASS keyword 238
CLIENT_TIMEOUT keyword 239
CLUSTER_METRIC keyword 239
CLUSTER_REMOTE_JOB_FILTER keyword 240
CLUSTER_USER_MAPPER keyword 241
CM_CHECK_USERID keyword 241
CM_COLLECTOR_PORT keyword 241
COMM keyword 241
CONTINUE expression 242
CUSTOM_METRIC keyword 242
CUSTOM_METRIC_COMMAND keyword 242
customizing 39
DCE_AUTHENTICATION_PAIR keyword 242
DEFAULT_PREEMPT_METHOD keyword 243
defaults 39
DRAIN_ON_SWITCH_TABLE_ERROR keyword 243
DSTG_MAX_STARTERS keyword 244
DSTG_MIN_SCHEDULING keyword 244
ENFORCE_RESOURCE_MEMORY keyword 245
ENFORCE_RESOURCE_POLICY keyword 245
ENFORCE_RESOURCE_SUBMISSION keyword 245
ENFORCE_RESOURCE_USAGE keyword 246
EXECUTE keyword 246
EXT_ENERGY_POLICY_PROGRAM keyword 246
FAILOVER_HEARTBEAT_INTERVAL keyword 246

434 LoadLeveler: Using and Administering

configuration file (continued)
FAILOVER_HEARTBEAT_RETRIES keyword 247
FAIR_SHARE_INTERVAL keyword 247
FAIR_SHARE_TOTAL_SHARES keyword 247
FEATURE keyword 247
FLOATING_RESOURCES keyword 248
FS_INTERVAL keyword 248
FS_NOTIFY keyword 248
FS_SUSPEND keyword 249
FS_TERMINATE keyword 249
GLOBAL_HISTORY keyword 249
HISTORY keyword 250
HISTORY_PERMISSION keyword 250
INODE_NOTIFY keyword 250
INODE_SUSPEND keyword 250
INODE_TERMINATE keyword 251
island keyword 315
JOB_ACCT_Q_POLICY keyword 251
JOB_EPILOG keyword 251
JOB_LIMIT_POLICY keyword 252
JOB_PROLOG keyword 252
JOB_USER_EPILOG keyword 252
JOB_USER_PROLOG keyword 252
KBDD keyword 252
KBDD_COREDUMP_DIR keyword 252
KILL expression 253
LL_RSH_COMMAND 253
LOADL_ADMIN keyword 253
LoadLConfig keyword 41
LoadLConfigHosts keyword 41
LoadLConfigShmKey keyword 42
LoadLDB keyword 41
LoadLGroupid keyword 40
LoadLUserid keyword 40
LOCAL_CONFIG keyword 253
LOG keyword 254
LOG_MESSAGE_THRESHOLD keyword 254
MACHINE_AUTHENTICATE keyword 254
MACHINE_UPDATE_INTERVAL keyword 255
MACHPRIO keyword 255
MAIL keyword 256
MASTER keyword 257
MASTER_COREDUMP_DIR keyword 257
MASTER_DGRAM_PORT keyword 257
MASTER_STREAM_PORT keyword 257
MAX_CKPT_INTERVAL keyword 257
MAX_JOB_REJECT keyword 257
max_node_resources keyword 318
MAX_RESERVATION_EXPIRATION keyword 319
MAX_RESERVATIONS keyword 258
max_resources keyword 320
MAX_STARTERS keyword 258
MAX_TOP_DOGS keyword 258
MIN_CKPT_INTERVAL keyword 259
multiple statements 126
NEGOTIATOR keyword 259
NEGOTIATOR_COREDUMP_DIR keyword 259
NEGOTIATOR_CYCLE_DELAY keyword 259
NEGOTIATOR_CYCLE_TIME_LIMIT keyword 259
NEGOTIATOR_INTERVAL keyword 260
NEGOTIATOR_LOADAVG_INCREMENT keyword 260
NEGOTIATOR_PARALLEL_DEFER keyword 260
NEGOTIATOR_PARALLEL_HOLD keyword 260
NEGOTIATOR_RECALCULATE_SYSPRIO_ INTERVAL

keyword 261
NEGOTIATOR_REJECT_DEFER keyword 261
NEGOTIATOR_REMOVE_COMPLETED keyword 261

configuration file (continued)
NEGOTIATOR_RESCAN_QUEUE keyword 261
NEGOTIATOR_STREAM_PORT keyword 262
OBITUARY_LOG_LENGTH keyword 262
POLLING_FREQUENCY keyword 262
POLLS_PER_UPDATE keyword 262
PREEMPT_CLASS keyword 263
PREEMPTION_SUPPORT keyword 264
PRESTARTED_STARTERS keyword 262
PROCESS_TRACKING keyword 265
PROCESS_TRACKING_EXTENSION keyword 265
PUBLISH_OBITUARIES keyword 265
REGION_MGR keyword 266
REGION_MGR_COREDUMP_DIR keyword 266
REGION_MGR_DGRAM_PORT keyword 266
REGION_MGR_STREAM_PORT keyword 266
REJECT_ON_RESTRICTED_LOGIN keyword 266
RELEASEDIR keyword 267
RESERVATION_CAN_BE_EXCEEDED keyword 267
RESERVATION_HISTORY keyword 267
RESERVATION_MIN_ADVANCE_TIME keyword 267
RESERVATION_PRIORITY keyword 267
RESERVATION_SETUP_TIME keyword 268
RESOURCE_MGR keyword 268
RESOURCE_MGR_COREDUMP_DIR keyword 268
RESOURCE_MGR_DGRAM_PORT keyword 268
RESOURCE_MGR_LIST keyword 268
RESOURCE_MGR_STREAM_PORT keyword 269
RESTARTS_PER_HOUR keyword 269
RESUME_ON_SWITCH_TABLE_ERROR_CLEAR

keyword 269
RSET_SUPPORT keyword 269
SAVELOGS keyword 270
SAVELOGS_COMPRESS_PROGRAM keyword 270
SCHEDD keyword 270
SCHEDD_COREDUMP_DIR keyword 270
SCHEDD_INTERVAL keyword 271
SCHEDD_RUNS_HERE keyword 271
SCHEDD_STATUS_PORT keyword 271
SCHEDD_STREAM_PORT keyword 272
SCHEDD_SUBMIT_AFFINITY keyword 271
SCHEDULE_BY_RESOURCES keyword 272
SCHEDULER_TYPE keyword 272
SEC_ADMIN_GROUP keyword 273
SEC_ENABLEMENT keyword 273
SEC_IMPOSED_MECHS keyword 273
SEC_SERVICES_GROUP keyword 273
SPOOL keyword 274
START expression 274
START_CLASS keyword 275
START_DAEMONS keyword 275
STARTD keyword 276
STARTD_COREDUMP_DIR keyword 276
STARTD_DGRAM_PORT keyword 276
STARTD_RUNS_HERE keyword 276
STARTD_STREAM_PORT keyword 276
STARTER keyword 277
STARTER_COREDUMP_DIR keyword 277
SUBMIT_FILTER keyword 277
SUSPEND expression 278
SUSPEND_CONTROL keyword 278
SYSPRIO keyword 278
SYSPRIO_THRESHOLD_TO_ IGNORE_STEP

keyword 280
TRUNC_KBDD_LOG_ON_OPEN keyword 281
TRUNC_MASTER_LOG_ON_OPEN keyword 281
TRUNC_NEGOTIATOR_LOG_ON_OPEN keyword 281

Index 435

configuration file (continued)
TRUNC_REGION_MGR_LOG_ON_OPEN keyword 281
TRUNC_RESOURCE_MGR_LOG_ON_OPEN

keyword 281
TRUNC_SCHEDD_LOG_ON_OPEN keyword 282
TRUNC_STARTD_LOG_ON_OPEN keyword 282
TRUNC_STARTER_LOG_ON_OPEN keyword 282
UPDATE_ON_POLL_INTERVAL_ONLY keyword 282
user-defined keywords 284
VACATE expression 282
VM_IMAGE_ALGORITHM keyword 283
WALLCLOCK_ENFORCE keyword 283
X_RUNS_HERE keyword 284

configuration file keyword
LOADL_ADMIN 45

configuration file keywords associated with port
numbers 417

configuration files
global and local 39

configuration source
setting 41

configuration statements 284
configuring

cluster security services 61
security service 60

configuring and using
island scheduling 165

Connectivity
requirement in job command file 373

Connectivity variable
detailed description 286
use on MACHPRIO keyword 255

considerations
checkpointing 136
parallel jobs 110
POE 112

consumable resources 65
introduction 22
job scheduling 22
Workload Manager 23

ConsumableCpus variable
detailed description 286
use on MACHPRIO keyword 255

ConsumableLargePageMemory variable
detailed description 286
use on MACHPRIO keyword 255

ConsumableMemory variable
detailed description 286
use on MACHPRIO keyword 255

ConsumableVirtualMemory variable
detailed description 287
use on MACHPRIO keyword 255

CONTINUE expression
detailed description 242

control functions 72
controlling locking records 54
controlling the logging buffer 53
conventions and terminology xi
copy 296
COPY_ALL specification

on environment keyword 353
core file on Linux

troubleshooting 401
core_limit keyword

detailed description 302, 346
coschedule keyword

detailed description 346

coscheduling job steps 178
commands and APIs 179
determining priority 178
preemption 179
submitting 178
termination 179

CPU_Busy keyword 285
CPU_Idle keyword 285
cpu_limit keyword

detailed description 302, 346
cpu_speed_scale keyword

detailed description 302
Cpus variable

detailed description 287
CPUs variable

use on MACHPRIO keyword 255
cpus_per_core keyword

detailed description 347
CtSec services 61
CurrentTime variable

detailed description 287
CUSTOM_METRIC keyword

detailed description 242
CUSTOM_METRIC_COMMAND keyword

detailed description 242
customizing

administration file 89
configuration 231
configuration file 39

CustomMetric variable
detailed description 287
use on MACHPRIO keyword 255

D
daemons

kbdd 15
master 9
negotiator 15
overview 8
region manager 14
resource manager 15
Schedd 10
startd 12

data staging 117
configuring 118
submitting jobs 177

data_limit keyword
detailed description 303, 347

database configuration
using the forms-based configuration editor 44

database configuration option 43
DCE

authentication process 78
authentication programs 77
handling security credentials 77

DCE authentication 242
DCE_AUTHENTICATION_PAIR keyword

detailed description 242
debugging

controlling output 55
interfaces between POE and LoadLeveler 194

dedicated adapters 304, 363
default scheduler

advantages of using 46
default values

machine_group and machine stanzas 92

436 LoadLeveler: Using and Administering

default_class keyword
detailed description 303

default_group keyword
detailed description 303

default_interactive_class keyword
detailed description 304

default_network keyword
detailed description 304

default_node resources keyword
detailed description 306

DEFAULT_PREEMPT_METHOD keyword
detailed description 243

default_resources keyword
detailed description 306

default_wall_clock_limit keyword
detailed description 307

Deferred job state
abbreviations 19
detailed description 19

defining classes 94
dependency 414
dependency keyword

detailed description 347
details

API scheduler 46
determining priority for coscheduled job steps 178
determining the frequency to use to run a job

writing an installation exit 85
diagnosing problems 391
directories

LoadLeveler location after installation 33
disability 421
Disk

requirement in job command file 373
Disk variable

detailed description 287
use on MACHPRIO keyword 255

displaying job status
using the command llq 227

displaying machine status
using llstatus 228

documentation
Blue Gene 154

domain variable
detailed description 287

DRAIN_ON_SWITCH_TABLE_ERROR keyword
detailed description 243

dsh command 411
dstg_environment keyword

detailed description 349
dstg_in_script keyword

detailed description 349
dstg_in_wall_clock_limit keyword

detailed description 349
dstg_max_starters keyword

detailed description 307
DSTG_MAX_STARTERS keyword

detailed description 244
DSTG_MIN_SCHEDULING keyword

detailed description 244
dstg_node keyword

detailed description 349
dstg_out_script keyword

detailed description 350
dstg_out_wall_clock_limit keyword

detailed description 350

dstg_resources keyword
detailed description 351

dynamic adapter discovery 93

E
editing jobs 176
embarassingly parallel jobs

running 196
embarrassingly parallel sample job command file 200
energy aware job

rejected 403
energy aware job support 166

S3 state support 166
energy_policy_tag

using 220
energy_policy_tag keyword

detailed description 351
energy_saving_req keyword

detailed description 352
ENFORCE_RESOURCE_MEMORY keyword

detailed description 245
ENFORCE_RESOURCE_POLICY keyword

detailed description 245
ENFORCE_RESOURCE_SUBMISSION keyword

detailed description 245
ENFORCE_RESOURCE_USAGE keyword

detailed description 246
EnteredCurrentState variable

detailed description 287
env_copy keyword

detailed description 308, 352
environment keyword

detailed description 353
specifications

!var 353
$var 353
COPY_ALL 353
var=value 353

environment variable
MALLOCTYPE 32

environment variables
LOADL_JOB_CPU_LIMIT 78
LOADL_PROCESSOR_LIST 202
LOADL_STEP_CLASS 78
LOADL_STEP_COMMAND 78
LOADL_STEP_ID 78
LOADL_STEP_OWNER 78
LOADL_WALL_LIMIT 78

epilog programs 80
error keyword

detailed description 354
example 122
examples

machine and machine_group stanzas 92
examples of requesting striping in network statements 192
examples, fair share scheduling 161
exclude_bg keyword

detailed description 308
exclude_classes keyword

detailed description 309
exclude_groups keyword

detailed description 309
exclude_users keyword

detailed description 310
executable 173

job command file 175

Index 437

executable (continued)
specified in a job command file 171

executable keyword
detailed description 354

EXECUTE 49
EXECUTE keyword

detailed description 246
executing machine 6
execution window for jobs 413
exit status 369

prolog program 83
expressions

CONTINUE 72
KILL 72
START 72
SUSPEND 72
VACATE 72

expressions and statements that define file paths 284

F
failed network

striping 113
FAILOVER_HEARTBEAT_INTERVAL keyword

detailed description 246
FAILOVER_HEARTBEAT_RETRIES keyword

detailed description 247
fair share scheduling

Blue Gene 157
central manager 163
configuring 158
keywords 158
overview 27
reconfiguring 161

when the Schedd daemons are down 161
when the Schedd daemons are up 161

resetting historic data 163
restoring historic data 164
saving historic data 163

FAIR_SHARE_INTERVAL keyword 158
detailed description 247

FAIR_SHARE_TOTAL_SHARES keyword 158
detailed description 247

fair_shares keyword 158
detailed description 311

feature
requirement in job command file 373

feature keyword
detailed description 311

FEATURE keyword
detailed description 247

file
customizing administration file 89
customizing configuration file 39

file structure and syntax
administration file 293

file system monitoring 58
file_limit keyword

detailed description 312, 355
file-based configuration administration file

global configuration file 42
local configuration file 42

files
naming checkpoint files 138

filtering a job script 79
first_node_tasks keyword

detailed description 355

flexible reservation not activated
troubleshooting 403

flexible reservations
modifying attributes 214
modifying floating consumable resources 216
removing floating consumable resources 217
understanding the flexible job step 203

floating consumable resources
modifying 216
removing 217
requesting 216

floating resources
reservations 215

FLOATING_RESOURCES keyword
detailed description 248

format and keyword summary
machine_group stanza 90

format and keyword summarymachine substanza 91
FreeRealMemory variable

detailed description 287
use on MACHPRIO keyword 255

FS_INTERVAL keyword
detailed description 248

FS_NOTIFY keyword
detailed description 248

FS_SUSPEND keyword
detailed description 249

FS_TERMINATE keyword
detailed description 249

G
getting a quick start using the default configuration 29
global configuration file 42

configuring 39
GLOBAL_HISTORY keyword

detailed description 249
group

default 303
UNIX 303

group keyword
detailed description 355

group stanza keywords
env_copy_name 308
exclude_users 310
fair_shares 311
include_users 314
max_node 318
max_reservation_duration 318
max_reservations 319
max_total_tasks 321
maxidle 321
priority 325
total_tasks 330
type 330

group stanzas
examples 104
format 99

GroupBgSharesExceeded user-defined variable
use on SYSPRIO keyword 160

GroupHasBgShares user-defined variable
use on SYSPRIO keyword 160

GroupHasShares user-defined variable
use on SYSPRIO keyword 160

GroupIsBlueGene variable
use on SYSPRIO keyword 278

438 LoadLeveler: Using and Administering

GroupQueuedJobs variable
detailed description 287
use on SYSPRIO keyword 278

GroupRemainingBgShares user-defined variable
use on SYSPRIO keyword 160

GroupRemainingShares user-defined variable
use on SYSPRIO keyword 160

GroupRunningJobs variable
detailed description 288
use on SYSPRIO keyword 278

GroupSharesExceeded user-defined variable
use on SYSPRIO keyword 160

GroupSysprio variable
detailed description 288
use on SYSPRIO keyword 278

GroupTotalJobs variable
detailed description 288
use on SYSPRIO keyword 278

GroupTotalShares variable
detailed description 288

GroupUsedBgShares variable
detailed description 288
use on SYSPRIO keyword 278

GroupUsedShares variable
detailed description 288

H
help

calling IBM 415
heterogeneous memory support, Blue Gene 157
HighLoad keyword 285
hints for running LoadLeveler 411
hints for using machines 414
HISTORY 49
history file

troubleshooting 415
HISTORY keyword

detailed description 250
HISTORY_PERMISSION keyword

detailed description 250
hold keyword

detailed description 356
holding jobs

using llhold 225, 228
host variable

detailed description 288
host_file keyword

detailed description 356
hostname variable

detailed description 288
HOUR keyword 285
how to checkpoint a job 226

I
Idle job state

abbreviations 19
detailed description 19

image_size keyword
detailed description 356

implied START_CLASS values 124
inbound_hosts keyword

detailed description 312
inbound_schedd_port keyword

detailed description 312

include_bg keyword
detailed description 313

include_classes keyword
detailed description 313

include_groups keyword
detailed description 313

include_users keyword
detailed description 314

initialdir keyword
detailed description 357

initiators 258
INODE_NOTIFY keyword

detailed description 250
INODE_SUSPEND keyword

detailed description 250
INODE_TERMINATE keyword

detailed description 251
input keyword

detailed description 358
installation exit

writing 85
instances 189
integer blocking 186
integrating LoadLeveler with WLM 133
Intel MPI 1.5.4

sample job command file 200
Intel MPI 4.0.2

job command file sample 199
Intel MPI jobs

running 196
interactive jobs

planning considerations 112
interfaces between POE and LoadLeveler

debugging 194
Island

requirement in job command file 373
island keyword

detailed description 315
island scheduling

configuring and using 165
island_count keyword 187

J
job

accounting 65
based on events 68
based on machines 67, 68
based on user accounts 69
for serial or parallel jobs 66
recurring 66
storing data 69

batch 5
building a job command file 171
canceling 226
class name 344
cluster_input_file name 344
cluster_list name 344
cluster_output_file name 345
diagnosing problems with 392, 395, 397
editing 176
environment variables 183
exit status 369
filter 79
holding 225
interactive 112
parallel 395

Index 439

job (continued)
priority 224, 325
running 412
samples 227
serial 171, 223
status 223
submit-only 397
submitting 171, 183, 223
system priority 47

job accounting setup procedure 71
job command file

account_no keyword 335
adjust_wall_clock_limit keyword 336
arguments keyword 336
as_limit keyword 336
bg_block keyword 337
bg_connectivity keyword 337
bg_requirements keyword 338
bg_rotate keyword 338
bg_shape keyword 339
bg_size keyword 340
blocking keyword 340
building 171
bulkxfer keyword 341
checkpoint keyword 341
ckpt_dir keyword 342
ckpt_subdir keyword 343
ckpt_time_limit keyword 343
class keyword 344
cluster_input_file keyword 344
cluster_list keyword 344
cluster_output_file keyword 345
comment keyword 346
core_limit keyword 346
coschedule 346
cpu_limit keyword 346
cpus_per_core keyword 347
data_limit keyword 347
default_wall_clock_limit keyword 307
dependency keyword 347
dstg_environment keyword 349
dstg_in_script keyword 349
dstg_in_wall_clock_limit keyword 349
dstg_node keyword 349
dstg_out_script keyword 350
dstg_out_wall_clock_limit keyword 350
dstg_resources keyword 351
energy_policy_tag keyword 351
energy_saving_req keyword 352
env_copy keyword 352
environment keyword 353
error keyword 354
example 172, 173, 174, 333
executable example 175
executable keyword 354
file_limit keyword 355
first_node_tasks keyword 355
group keyword 355
hold keyword 356
host_file keyword 356
image_size keyword 356
initialdir keyword 357
input keyword 358
job_cpu_limit keyword 358
job_name keyword 359
job_type keyword 359
keyword descriptions 335

job command file (continued)
large_page keyword 359
ll_res_id keyword 360
LoadLeveler variables 383
locks_limit keyword 360
max_perf_decrease_allowed 361
mcm_affinity_options keyword 361
memlock_limit keyword 363
MPICH2 198
network keyword 363
node keyword 366
node_resources keyword 367
node_topology keyword 368
node_usage keyword 368
nofile_limit keyword 369
notification keyword 369
notify_user keyword 369
nproc_limit keyword 370
output keyword 370
parallel 334
parallel_threads keyword 370
preferences keyword 371
queue keyword 371
recurring keyword 372
requirements keyword 372
resources keyword 375
restart keyword 376
restart_from_ckpt keyword 377
restart_on_same_nodes keyword 377
rset keyword 377
run-time environment variables 384
samples 199
serial 333
shell keyword 378
smt 378
stack_limit keyword 379
startdate keyword 379
step_name keyword 379
step_resources keyword 379
submitting 183
syntax 333
task_affinity keyword 380
task_geometry keyword 380
tasks_per_node keyword 381
total_tasks keyword 382
trace keyword 382
user_priority keyword 383
wall_clock_limit keyword 383

job command file sample
Intel MPI 1.5.4 200

job command file samples
embarrassingly parallel 200

job definition 5
job manager machine 6
Job object 11
job queue

definition 7
job scheduling

consumable resources 22
job spool recovery

procedure 164
job state

abbreviations 19
descriptions 19

job state monitoring
using llsubmit -p 184

job stays in the hold state 405

440 LoadLeveler: Using and Administering

job stays in the running state 405
job step

flexible 203
job steps 5
job steps, coscheduled 178
job support

energy aware 166
JOB_ACCT_Q_POLICY keyword

detailed description 251
job_cpu_limit keyword

detailed description 315, 358
JOB_EPILOG keyword

detailed description 251
JOB_LIMIT_POLICY keyword

detailed description 252
job_name keyword

detailed description 359
JOB_PROLOG keyword

detailed description 252
job_type keyword

detailed description 359
JOB_USER_EPILOG keyword

detailed description 252
JOB_USER_PROLOG keyword

detailed description 252
JobIsBlueGene variable

detailed description 288
JobIsNotBlueGene user-defined variable

use on SYSPRIO keyword 160
JobLoad keyword 285
jobs

checkpointing 138
using llckpt 140
using the ckpt_dir keyword 143
using the ckpt_execute_dir keyword 144
using the ckpt_subdir keyword 143

data staging
submitting 177

periodic checkpoints 142
restarting from a checkpoint 140
restarting from user hold 140
running a new job to restart from a checkpoint 140
serial

activating the LoadLeveler/MetaCluster HPC
interface 138

submitting 138
checkpoint 138

K
kbdd daemon 15
KBDD keyword

detailed description 252
KBDD_COREDUMP_DIR keyword

detailed description 252
KeyboardBusy keyword 285
KeyboardIdle variable

detailed description 288
keywords

administration 298
administration file 89

64-bit support 297
checkpoint 136
ckpt_dir

using to checkpoint jobs 143
ckpt_execute_dir

using to checkpoint jobs 144

keywords (continued)
ckpt_subdir

using to checkpoint jobs 143
configuration 231, 233
configuration file 48

64-bit support 232
LoadLeveler variables 286
user-defined 284

fair share scheduling 158
job command file 335

64-bit support 334
user-defined 284, 286

KILL expression
detailed description 253

L
LAPI 304
large_page keyword

detailed description 359
LargePageMemory

requirement in job command file 373
LIB 49
limitations

checkpoint and restart 138
ll_change_reservation (subroutine)

using 214
ll_ckpt API

using to initiate a checkpoint of serial jobs 146
ll_make_reservation (subroutine)

using 209
ll_modify subroutine

using 76
ll_remove_reservation (subroutine)

using 215
ll_res_id keyword

detailed description 360
LL_RSH_COMMAND keyword

detailed description 253
ll_run_scheduler subroutine

using 76
LL_Version

requirement in job command file 374
llbind command

using to remove a bound job 212
using to submit a job 211

llchres command
using 213

llchres or llmkres return "Insufficient resources to meet the
request" for a Blue Gene reservation 410

llckpt command
using to checkpoint jobs 140

llmkres command
using 207

llmkres or llchres return "Insufficient resources to meet the
request" for a Blue Gene reservation 410

llmodify command
using 76

llq command
using for reservations 211, 212, 213, 215

llqres command
using 210, 212, 213, 215

llrmres command
using 215

llrunscheduler command
using 76

llstatus –a shows adapters are NOT_READY 405

Index 441

llsubmit command
using for reservations 211

load average 415
LoadAvg variable

detailed description 289
use on MACHPRIO keyword 255

loadl user ID 29, 39
LoadL_admin file 293
LOADL_ADMIN keyword 45

detailed description 253
LOADL_CONFIG 74
LoadL_config file 39
LoadL_config.local file 39
LOADL_INTERACTIVE_CLASS variable 304
LOADL_JOB_CPU_LIMIT

environment variable 78
LOADL_PROCESSOR_LIST

environment variable 202
LOADL_STEP_CLASS

environment variable 78
LOADL_STEP_COMMAND

environment variable 78
LOADL_STEP_ID

environment variable 78
LOADL_STEP_OWNER

environment variable 78
LOADL_WALL_LIMIT

environment variable 78
LoadLConfig keyword

detailed description 41
LoadLConfigHosts keyword 43

detailed description 41
LoadLConfigShmKey keyword

detailed description 42
LoadLDB keyword

detailed description 41
LoadLeveler

directory location after installation 33
job states 19
port usage information 417
starting 32
steps for integrating with WLM 133

LoadLeveler and POE, interfaces between
debugging 194

LoadLeveler basics 4
LoadLeveler daemon

overview 8
LoadLeveler for Linux quick installation and

configuration 30
LoadLeveler multicluster support

local central manager 149
local cluster 149
local gateway Schedd 149
overview 149
remote central manager 149
remote cluster 149
remote gateway Schedd 149

LoadLeveler support for checkpointing jobs 135
LoadLeveler user

setting 40
LoadLeveler user ID 29
LoadLeveler variables 286

Arch 286
ClassSysprio 286
Connectivity 286
ConsumableCpus 286
ConsumableLargePageMemory 286

LoadLeveler variables (continued)
ConsumableMemory 286
ConsumableVirtualMemory 287
Cpus 287
CurrentTime 287
CustomMetric 287
Disk 287
domain 287
EnteredCurrentState 287
for setting dates

tm_mday 291
tm_mon 291
tm_wday 291
tm_yday 291
tm_year 291
tm4_year 291
usage 291

for setting time
tm_isdst 291
tm_min 292
tm_sec 292
tm4_year 291
usage 291

FreeRealMemory 287
GroupQueuedJobs 287
GroupRunningJobs 288
GroupSysprio 288
GroupTotalJobs 288
GroupTotalShares 288
GroupUsedBgShares 288
GroupUsedShares 288
host 288
hostname 288
in a job command file 383
JobIsBlueGene 288
KeyboardIdle 288
LoadAvg 289
MasterMachPriority 289
Memory 289
OpSys 289
PagesFreed 289
PagesScanned 289
QDate 289
Speed 289
state 289
tilde 290
UserHoldTime 290
UserPrio 290
UserQueuedJobs 290
UserRunningJobs 290
UserSysprio 290
UserTotalJobs 290
UserTotalShares 290
UserUsedBgShares 290
UserUsedShares 291
VirtualMemory 291

LoadLeveler/MetaCluster HPC interface
activating

serial jobs 138
LoadLGroupid keyword

detailed description 40
LoadLUserid keyword

detailed description 40
local central manager 149
local cluster 149
local configuration file 42

configuring 39

442 LoadLeveler: Using and Administering

local gateway Schedd 149
local keyword

detailed description 315
LOCAL_CONFIG 49
LOCAL_CONFIG keyword

detailed description 253
locating LoadLeveler binaries

when the scheduler component is not installed 51
locking records

controlling 54
locks_limit keyword

detailed description 316, 360
LOG 49
log files 49
LOG keyword

detailed description 254
LOG_MESSAGE_THRESHOLD keyword

detailed description 254
logging buffer

controlling 53
LowLoad keyword 285

M
machine

central manager 6
executing 6
job managing (scheduling) 6
public scheduling 328
resource 6
submitting 6

Machine
requirement in job command file 374

machine and machine_group stanza keyword
class 300
dstg_max_starters 307
feature 311
max_starters 320
power_management_policy 324
prestarted_starters 325
schedd_runs_here 328
startd_runs_here 330

machine and machine_group stanzas
examples 92

machine stanza keywords
central_manager 299
cpu_speed_scale 302
machine_mode 317
master_node_exclusive 317
max_jobs_scheduled 318
name_server 323
pool_list 324
resources 326
schedd_fenced 327
schedd_host 328
speed 329
submit_only 330
type 330

machine stanzas
format 89

machine substanza
format and keyword summary 91

MACHINE_AUTHENTICATE keyword
detailed description 254

machine_group and machine stanzas
default values 92

machine_group stanza
format and keyword summary 90

machine_group stanza keywords 316
machine_list keyword

detailed description 316
machine_mode keyword

detailed description 317
MACHINE_UPDATE_INTERVAL 411
MACHINE_UPDATE_INTERVAL keyword

detailed description 255
MachineGroup

requirement in job command file 374
MACHPRIO 47
MACHPRIO keyword

detailed description 255
mail keyword 285
MAIL keyword

detailed description 256
mail program 85
MALLOCTYPE 32
master configuration file

modifying 40
master daemon 9
MASTER keyword

detailed description 257
master node 113
MASTER_COREDUMP_DIR keyword

detailed description 257
MASTER_DGRAM_PORT keyword

detailed description 257
master_node_exclusive keyword

detailed description 317
master_node_requirement keyword

detailed description 317
MASTER_STREAM_PORT keyword

detailed description 257
MasterMachPriority variable

detailed description 289
use on MACHPRIO keyword 255

MAX_CKPT_INTERVAL 181
MAX_CKPT_INTERVAL keyword

detailed description 257
MAX_JOB_REJECT keyword

detailed description 257
max_jobs_scheduled keyword

detailed description 318
max_node keyword

detailed description 318
max_node_resources keyword

detailed description 318
max_perf_decrease_allowed

detailed description 361
max_protocol_instances 192
max_protocol_instances keyword

detailed description 318
max_reservation_duration keyword

detailed description 318
MAX_RESERVATION_EXPIRATION keyword

detailed description 319
max_reservations keyword

detailed description 319
MAX_RESERVATIONS keyword

detailed description 258
max_resources keyword

detailed description 320
MAX_STARTERS

limits set by 60

Index 443

max_starters keyword
detailed description 320

MAX_STARTERS keyword
detailed description 258

max_top_dogs keyword
detailed description 320

MAX_TOP_DOGS keyword
detailed description 258

max_total_tasks keyword
detailed description 321

maxidle 413
maxidle keyword

detailed description 321
maxjobs 413
maxjobs keyword

detailed description 321
maxqueued 413
maxqueued keyword

detailed description 322
mcm_affinity_options keyword

detailed description 361
memlock_limit keyword

detailed description 322, 363
Memory

requirement in job command file 374
Memory variable

detailed description 289
use on MACHPRIO keyword 255

MetaCluster HPC
checkpointing 138

MIN_CKPT_INTERVAL 181
MIN_CKPT_INTERVAL keyword

detailed description 259
MINUTE keyword 286
modifying configuration data 45
monitoring

adapters 94
job state 184
nodes 94

monitoring, file system 58
MPI 304
MPICH2

job command file 198
running jobs 194

MPICH2 and serial interactive jobs
building and submitting 202

multicluster
troubleshooting 405

multicluster support
overview 149

multicluster_security keyword
detailed description 322

multiple statements
in administration file 126
in configuration file 126

N
name_server keyword

detailed description 323
naming

checkpoint files 138
negotiator daemon 15

job states 19
NEGOTIATOR keyword

detailed description 259

NEGOTIATOR_COREDUMP_DIR keyword
detailed description 259

NEGOTIATOR_CYCLE_DELAY keyword
detailed description 259

NEGOTIATOR_CYCLE_TIME_LIMIT keyword
detailed description 259

NEGOTIATOR_INTERVAL 411
NEGOTIATOR_INTERVAL keyword

detailed description 260
using 76

NEGOTIATOR_LOADAVG_INCREMENT keyword
detailed description 260

NEGOTIATOR_PARALLEL_DEFER keyword
detailed description 260

NEGOTIATOR_PARALLEL_HOLD keyword
detailed description 260

NEGOTIATOR_RECALCULATE_SYSPRIO_ INTERVAL
keyword

detailed description 261
NEGOTIATOR_REJECT_DEFER keyword

detailed description 261
NEGOTIATOR_REMOVE_COMPLETED keyword

detailed description 261
NEGOTIATOR_RESCAN_QUEUE keyword

detailed description 261
NEGOTIATOR_STREAM_PORT keyword

detailed description 262
network keyword

detailed description 363
nice keyword

detailed description 323
node

monitoring 94
node availability 90
node keyword 186

detailed description 366
node_resources keyword

detailed description 367
node_topology keyword 187

detailed description 368
node_usage keyword

detailed description 368
nofile_limit keyword

detailed description 323, 369
Not Run job state

abbreviations 19
detailed description 19

notification keyword
detailed description 369

notify_user keyword
detailed description 369

NotQueued job state
abbreviations 19
detailed description 19

nproc_limit keyword
detailed description 324, 370

O
OBITUARY_LOG_LENGTH keyword

detailed description 262
obtaining status, parallel jobs 201
Open MPI

running 195
OpenSSL

administration keyword
multicluster_security 322

444 LoadLeveler: Using and Administering

OpenSSL (continued)
administration keyword (continued)

ssl_cipher_list 329
multicluster, securing 153

operators 232
OpSys

requirement in job command file 374
OpSys variable

detailed description 289
option

database configuration 43
outbound_hosts keyword

detailed description 324
output 414

debugging 55
output keyword

detailed description 370
overriding the shared memory key 41
overview

fair share scheduling 27
overview of reservations 25

P
PagesFreed variable

detailed description 289
use on MACHPRIO keyword 255

PagesScanned variable
detailed description 289
use on MACHPRIO keyword 255

parallel job command files 334
parallel jobs

administration 110
checklist 396
Class keyword 112
class stanza 112
job command file examples 197
master node 113
obtaining status 201
scheduling considerations 110
supported keywords 110

parallel jobs, scheduling 184
parallel_threads keyword

detailed description 370
partial cancellation 215
pending job state 397
Pending job state

abbreviations 19
detailed description 19

planning
checkpointing 136
POE 112

POE
environment variables 193
job command file 197
planning considerations 112

POE and LoadLeveler, interfaces between
debugging 194

POLLING_FREQUENCY keyword
detailed description 262

POLLS_PER_UPDATE keyword
detailed description 262

Pool
requirement in job command file 374

pool_list keyword
detailed description 324

port number definition 417

port numbers, configuration file keywords 417
port usage information 417
post-installation considerations

LoadLeveler directory location 33
starting LoadLeveler 32

power_management_policy keyword
detailed description 324

Preempt Pending job state
abbreviations 19
detailed description 19

PREEMPT_CLASS keyword
detailed description 263

Preempted job state
abbreviations 19
detailed description 19

preemption
avoiding 124
releasing job resources 126
selecting a method 125
two types 123

preemption and coscheduled job steps 179
preemption method

selecting 125
preemption support, Blue Gene 157
PREEMPTION_SUPPORT keyword

detailed description 264
preferences keyword

detailed description 371
prestarted_starters keyword

detailed description 325
PRESTARTED_STARTERS keyword

detailed description 262
priority (of jobs)

setting or changing 224
system priority 224

setting or changing 47, 76
user priority 224

priority keyword
detailed description 325

procedure
job accounting setup 71
job spool recovery 164

process
starter 13

PROCESS_TRACKING 73
PROCESS_TRACKING keyword

detailed description 265
PROCESS_TRACKING_EXTENSION 73
PROCESS_TRACKING_EXTENSION keyword

detailed description 265
productivity aids 411
prolog programs 80
public job manager machines 6
public scheduling machine 328
public scheduling machines 224
PUBLISH_OBITUARIES keyword

detailed description 265

Q
QDate variable

detailed description 289
use on SYSPRIO keyword 278

querying multiple clusters 74
questions and answers 391
queue keyword

detailed description 371

Index 445

queue, see job queue 7
quick start procedure

before you begin 29
LoadLeveler for Linux 30
using the default configuration files 29

R
RDMA

specifying for jobs 180
reconfiguration

changing scheduler types 122
reconfiguring

fair share scheduling 161
recurring keyword

detailed description 372
recurring reservation

binding a job step 212
canceling 215

Region
requirement in job command file 374

region keyword
detailed description 326

region manager
specifying an alternate 49

region manager daemon 14
region stanzas

examples 106
format 106

REGION_MGR keyword
detailed description 266

REGION_MGR_COREDUMP_DIR keyword
detailed description 266

REGION_MGR_DGRAM_PORT keyword
detailed description 266

REGION_MGR_STREAM_PORT keyword
detailed description 266

regions
defining 106

Reject Pending job state
abbreviations 19
detailed description 19

REJECT_ON_RESTRICTED_LOGIN keyword
detailed description 266

Rejected job state
abbreviations 19
detailed description 19

RELEASEDIR 49
RELEASEDIR keyword

detailed description 267
remote central manager 149
remote cluster 149
remote direct-memory access (RDMA)

specifying for jobs 180
remote gateway Schedd 149
remotely configured nodes 43
Remove Pending job state

abbreviations 19
detailed description 19

Removed job state
abbreviations 19
detailed description 19

requesting floating consumable resources 216
requirements keyword

detailed description 372
reservation support, Blue Gene 157
reservation types 203

RESERVATION_CAN_BE_EXCEEDED keyword
detailed description 267

RESERVATION_HISTORY keyword
detailed description 267

RESERVATION_MIN_ADVANCE_TIME keyword
detailed description 267

RESERVATION_PRIORITY keyword
detailed description 267

RESERVATION_SETUP_TIME keyword
detailed description 268

reservation_type keyword
detailed description 326
group stanza keywords

reservation_type 326
user stanza keywords

reservation_type 326
reservations

canceling 215
modifying attributes 213
overview 25
owner tasks 207, 213, 214, 215
querying 213
removing bound jobs 212
steps for configuring 128
submitting jobs 210
troubleshooting 392
working with 203

reservations with floating resources 215
reservations, configuring

roadmap 128
resetting historic data

fair share scheduling 163
resource manager

specifying an alternate 49
resource manager machine 6
resource managers daemon 15
RESOURCE_MGR keyword

detailed description 268
RESOURCE_MGR_COREDUMP_DIR keyword

detailed description 268
RESOURCE_MGR_DGRAM_PORT keyword

detailed description 268
RESOURCE_MGR_LIST keyword

detailed description 268
RESOURCE_MGR_STREAM_PORT keyword

detailed description 269
resources

held by preemptable jobs 126
resources keyword

detailed description 326, 375
resources, consumable

job scheduling 22
Workload Manager 23

resources, reserving
roadmap 128

restart
restarting a checkpointed job 396

restart keyword
detailed description 327, 376

restart_from_ckpt keyword
detailed description 377

restart_on_same_nodes keyword
detailed description 377

RESTARTS_PER_HOUR keyword
detailed description 269

restoring historic data
fair share scheduling 164

446 LoadLeveler: Using and Administering

restrictions
checkpointing 136

Resume Pending job state
abbreviations 19
detailed description 19

RESUME_ON_SWITCH_TABLE_ERROR_CLEAR keyword
detailed description 269

retrieving information 122
rlim_infinity 296
rset keyword

detailed description 377
RSET_SUPPORT keyword

detailed description 269
rss_limit keyword

detailed description 327
run-time environment variables

in a job command file 384
running

embarassingly parallel jobs 196
Intel MPI jobs 196
MPICH2 jobs 194
Open MPI 195

Running job state
abbreviations 19
detailed description 19

running jobs at a specific time of day 413

S
S3 state support 166
sample job command file

Intel MPI 4.0.2 199
samples

job command file 199
SAVELOGS keyword 58

detailed description 270
SAVELOGS_COMPRESS_PROGRAM keyword

detailed description 270
saving historic data

fair share scheduling 163
scaling considerations 411
Schedd

local gateway 149
remote gateway 149
troubleshooting 415

Schedd daemon 10, 397
recovery 401

SCHEDD keyword
detailed description 270

SCHEDD_COREDUMP_DIR keyword
detailed description 270

schedd_fenced keyword
detailed description 327

schedd_host 411
schedd_host keyword

detailed description 328
SCHEDD_INTERVAL keyword

detailed description 271
schedd_runs_here keyword

detailed description 328
SCHEDD_RUNS_HERE keyword

detailed description 271
SCHEDD_STATUS_PORT keyword

detailed description 271
SCHEDD_STREAM_PORT keyword

detailed description 272
SCHEDD_SUBMIT_AFFINITY 411

SCHEDD_SUBMIT_AFFINITY keyword
detailed description 271

SCHEDULE_BY_RESOURCES keyword
detailed description 272

SCHEDULER_TYPE keyword
detailed description 272

schedulers
API 46
BACKFILL 46
choosing 46
data-aware 46
Default 46
external 46

scheduling
affinity support 147
avoiding circular preemption 124
BACKFILL

implied START_CLASS values 124
releasing resources of preemptable jobs 126
selecting a preemption method 125

parallel jobs 110
reconfiguration 122
using BACKFILL 114

scheduling affinity
configuring LoadLeveler to use 148
submitting jobs 217

scheduling cycle
controlling

example 76
scheduling machine

public 328
scheduling, job

consumable resources 22
script not executing

troubleshooting 403
SEC_ADMIN_GROUP keyword

detailed description 273
SEC_ENABLEMENT keyword

detailed description 273
SEC_IMPOSED_MECHS keyword

detailed description 273
SEC_SERVICES_GROUP keyword

detailed description 273
secure_schedd_port keyword

detailed description 328
security

configuring cluster security services 61
security credentials

DCE 77
security service

configuring 60
selecting

firm or soft binding 211
serial job command files 333
serial jobs

activating the LoadLeveler/MetaCluster HPC
interface 138

checkpointing
using the ll_ckpt API 146

service_class 304, 363
shell keyword

detailed description 378
shortcut keys

keyboard 421
single network

striping 191

Index 447

SMT
requirement in job command file 374

smt keyword
detailed description 329, 378

speed keyword
detailed description 329

Speed variable
detailed description 289
use on MACHPRIO keyword 255

SPOOL
log 49

SPOOL keyword
detailed description 274

ssl_cipher_list keyword
detailed description 329

stack_limit keyword
detailed description 330, 379

staging, data 117
stanzas

characteristics 295
class 103
default 295
label 295
machine 89
region 106
type 295
user 89

START expression
detailed description 274

start failure
MALLOCTYPE 32

START_CLASS keyword
detailed description 275
implied values 124

START_DAEMONS keyword
detailed description 275

startd daemon 12, 397, 411
STARTD keyword

detailed description 276
STARTD_COREDUMP_DIR keyword

detailed description 276
STARTD_DGRAM_PORT keyword

detailed description 276
startd_runs_here keyword

detailed description 330
STARTD_RUNS_HERE keyword

detailed description 276
STARTD_STREAM_PORT keyword

detailed description 276
startdate keyword

detailed description 379
STARTER keyword

detailed description 277
starter process 13
STARTER_COREDUMP_DIR keyword

detailed description 277
Starting job state

abbreviations 19
detailed description 19

starting LoadLeveler
post-installation considerations 32

State variable
detailed description 289

StateTimer keyword 286
status, obtaining

parallel jobs 201

step_name keyword
detailed description 379

step_resources keyword
detailed description 379

striping
definition of 188
over multiple networks 190
over single network 191
submitting jobs 188
with failed network 113

striping_with_minimum_networks keyword
detailed description 330

structure
administration file 293

SUBMIT_FILTER 79
SUBMIT_FILTER keyword

detailed description 277
submit_only keyword

detailed description 330
submit-only machine

canceling jobs 226
definition 3
keywords 330
master daemon interaction 9
querying jobs from 223
querying multiple clusters 74
Schedd daemon interaction 10
submitting jobs from 184
troubleshooting 397
types 6

submitting coscheduled job steps 178
submitting jobs

across multiple clusters 74
using a job command file 183
using llsubmit 227

submitting machine 6
subroutines

ll_change_reservation 214
ll_make_reservation 209
ll_remove_reservation 215

substanzas
defining in class stanzas 99

support services 415
support, 64-bit keywords 232, 297, 334
SUSPEND expression

detailed description 278
SUSPEND_CONTROL keyword

detailed description 278
syntax

administration file 293
sys/wait.h 83
SYSPRIO keyword 47, 224

detailed description 278
SYSPRIO_THRESHOLD_TO_ IGNORE_STEP keyword

detailed description 280
System Hold job state

abbreviations 19
detailed description 19

system priority
definition 224
setting or changing 47, 76, 224

system-initiated checkpointing 135, 341

T
task assignment 186

448 LoadLeveler: Using and Administering

task_affinity keyword
detailed description 380

task_geometry 186
task_geometry keyword

detailed description 380
tasks

Blue Gene
overview 154

Blue Gene jobs, submitting
steps 221

Blue Gene support, configuring
roadmap 155
steps 155

configuring and managing the LoadLeveler environment
roadmap 37

fair share scheduling
examples 161, 162

flexible reservations, managing
owners only 214

jobs, building
roadmap 171, 223

jobs, preempting
roadmap 123

jobs, submitting
roadmap 171, 223

jobs, submitting in multicluster
steps 219

LoadLeveler interfaces, using
roadmap 231

modifying the master configuration file 40
multicluster

overview 149
multicluster, configuring

roadmap 150, 218
steps 151

multicluster, securing
steps 153

overriding the shared memory key 41
parallel jobs, launching

steps for reducing overhead 111
providing additional job-processing controls

roadmap 75
reservations

removing bound jobs 212
submitting jobs 210

reservations, configuring 128
steps 128

reservations, creating
administrators only 207
owners only 207

reservations, managing
owners only 213, 215
querying 213

resources, reserving 128
scheduler, configure for preemption

steps 126
setting the configuration source 41
setting the LoadLeveler user 40

tasks_per_node keyword 186
detailed description 381

Terminated job state
abbreviations 19
detailed description 19

termination of coscheduled job steps 179
tilde variable

detailed description 290
tm_isdst variable 291

tm_mday variable 291
tm_min variable 292
tm_mon variable 291
tm_sec variable 292
tm_wday variable 291
tm_yday variable 291
tm_year variable 291
tm4_year variable 291
total_tasks keyword 186

detailed description 330, 382
TotalMemory

requirement in job command file 374
trace keyword

detailed description 382
trademarks 425
troubleshooting 391

.login script not executing 403

.profile script not executing 403
adapter availability 409

troubleshooting 409
Blue Gene environment 409
Blue Gene job fails when submitted to a remote

cluster 410
central manager isn't operating 399
checkpointed job won't restart 396
configuration or administration file 402
core file on Linux 401
flexible reservation not activated 403
history file and Schedd 415
inconsistencies in llfs output 402
inconsistencies in llq output 402
inconsistencies in llstatus output for Blue Gene jobs 409,

410
job stays in pending or starting state 397
job stays in the hold state 405
job stays in the running state 405
job won't run 392
job won't run on cluster with both AIX and Linux

machines 399
jobs won't run that were directed to an idle pool 399
llmkres or llchres return "Insufficient resources to meet the

request" for a Blue Gene reservation 410
llstatus –a shows adapters are NOT_READY 405
llstatus does not agree with llq 398
mksysb created when running jobs 404
multicluster environment 405
parallel job won't run 395
recovering resources 401
reservations 392
reserved node is down 404
running jobs when a machine goes down 397
set up problems with parallel jobs 396
setuid = 0 403
starting LoadLeveler 392
submit-only job won't run 397

TRUNC_KBDD_LOG_ON_OPEN keyword
detailed description 281
usage 53

TRUNC_MASTER_LOG_ON_OPEN keyword
detailed description 281
usage 53

TRUNC_NEGOTIATOR_LOG_ ON_OPEN keyword
usage 53

TRUNC_NEGOTIATOR_LOG_ON_OPEN keyword
detailed description 281

TRUNC_REGION_MGR_LOG_ON_OPEN keyword
detailed description 281

Index 449

TRUNC_REGION_MGR_LOG_ON_OPEN keyword
(continued)

usage 53
TRUNC_RESOURCE_MGR_LOG_ON_OPEN keyword

detailed description 281
usage 53

TRUNC_SCHEDD_LOG_ON_OPEN keyword
detailed description 282
usage 53

TRUNC_STARTD_LOG_ON_OPEN keyword
detailed description 282
usage 53

TRUNC_STARTER_LOG_ON_OPEN keyword
detailed description 282
usage 53

type keyword
detailed description 330

types of reservations 203

U
understanding striping over multiple networks 190
UNIX group 303
unlimited blocking 186, 340
UPDATE_ON_POLL_INTERVAL_ONLY keyword

detailed description 282
User and System Hold job state

abbreviations 19
detailed description 19

User Hold job state
abbreviations 19
detailed description 19

user name 90
user priority

definition 224
setting or changing 224

user space jobs
using bulk data transfer 180

user stanza keywords
account 298
default_class 303
default_group 303
default_interactive_class 304
env_copy_name 308
fair_shares 311
max_node 318
max_reservation_duration 318
max_reservations 319
max_total_tasks 321
maxidle 321
maxjobs 321
maxqueued 322
total_tasks 330
type 330

user stanzas
examples 102
format 89

user substanzas
examples 100, 101

user substanzas in class stanzas
defining 99

user_priority keyword
detailed description 383

user-defined keywords 284
BackgroundLoad 285
CPU_Busy 285
CPU_Idle 285

user-defined keywords (continued)
expressions and statements that define file paths 284
HighLoad 285
HOUR 285
JobLoad 285
KeyboardBusy 285
LowLoad 285
mail 285
MINUTE 286
StateTimer 286

user-initiated checkpointing 135, 341
UserBgSharesExceeded user-defined variable

use on SYSPRIO keyword 160
UserHasBgShares user-defined variable

use on SYSPRIO keyword 160
UserHasShares user-defined variable

use on SYSPRIO keyword 160
UserHoldTime variable

detailed description 290
use on SYSPRIO keyword 278

UserPrio variable
detailed description 290
use on SYSPRIO keyword 278

UserQueuedJobs variable
detailed description 290
use on SYSPRIO keyword 278

UserRemainingBgShares user-defined variable
use on SYSPRIO keyword 160

UserRemainingShares user-defined variable
use on SYSPRIO keyword 160

UserRunningJobs variable
detailed description 290
use on SYSPRIO keyword 278

UserSharesExceeded user-defined variable
use on SYSPRIO keyword 160

UserSysprio variable
detailed description 290
use on SYSPRIO keyword 278

UserTotalJobs variable
detailed description 290
use on SYSPRIO keyword 278

UserTotalShares variable
detailed description 290
use on SYSPRIO keyword 278

UserUsedBgShares variable
detailed description 290
use on SYSPRIO keyword 278

UserUsedShares variable
detailed description 291
use on SYSPRIO keyword 278

using
BACKFILL scheduler 114

using the default configuration files
quick start procedure 29

using the energy_policy_tag 220
using the forms-based configuration editor

database configuration 44

V
VACATE expression

detailed description 282
Vacate Pending job state

abbreviations 19
detailed description 19

Vacated job state
abbreviations 19

450 LoadLeveler: Using and Administering

Vacated job state (continued)
detailed description 19

var=value specification
on environment keyword 353

variables
LoadLeveler 383
run-time environment 384

VirtualMemory variable
detailed description 291
use on MACHPRIO keyword 255

VM_IMAGE_ALGORITHM keyword
detailed description 283

W
wall_clock_limit keyword

detailed description 331, 383
WALLCLOCK_ENFORCE keyword

detailed description 283
why was my energy aware job rejected? 403
WLM

consumable resources 23
steps for integrating with LoadLeveler 133

working with energy aware jobs
energy_policy_tag 220

working with parallel jobs 184
working with reservations 203
Workload Manager

consumable resources 23
steps for integrating with LoadLeveler 133

writing an installation exit
to determine frequency to use to run a job 85

X
X_RUNS_HERE keyword

detailed description 284

Index 451

452 LoadLeveler: Using and Administering

����

Product Number: 5725-G01
5641-LL1
5641-LL3
5765-L50
5765-LLP

Printed in USA

SC23-6792-04

	Contents
	Figures
	Tables
	About this information
	Who should use this information
	Conventions and terminology used in this information
	Prerequisite and related information
	How to send your comments

	Summary of changes
	Part 1. Overview of LoadLeveler concepts and operation
	Chapter 1. What is LoadLeveler?
	LoadLeveler basics
	LoadLeveler: A network job management and scheduling system
	Job definition
	Machine definition
	Roles of machines
	Machine availability

	How LoadLeveler schedules jobs
	How LoadLeveler daemons process jobs
	The master daemon
	The Schedd daemon
	The startd daemon
	The starter process

	The region manager daemon
	The resource manager daemon
	The kbdd daemon
	The negotiator daemon

	The LoadLeveler job cycle
	LoadLeveler job states

	Consumable resources
	Consumable resources and Workload Manager

	Overview of reservations
	Fair share scheduling overview

	Chapter 2. Getting a quick start using the default configuration
	What you need to know before you begin
	Using the default configuration files
	LoadLeveler for Linux quick start
	Quick installation
	Quick configuration
	Quick verification

	Post-installation considerations
	Starting LoadLeveler
	Directory considerations

	Chapter 3. What operating systems are supported by LoadLeveler?
	LoadLeveler for AIX and LoadLeveler for Linux compatibility
	Restrictions for LoadLeveler for Linux
	Features not supported in LoadLeveler for Linux
	Restrictions for LoadLeveler for AIX and LoadLeveler for Linux mixed clusters

	Part 2. Configuring and managing the LoadLeveler environment
	Chapter 4. Configuring the LoadLeveler environment
	The master configuration file
	Setting the LoadLeveler user
	Setting the configuration source
	Overriding the shared memory key

	File-based configuration
	Database configuration option
	Understanding remotely configured nodes

	Using the configuration editor
	Modifying configuration data
	Defining LoadLeveler administrators
	Defining a LoadLeveler cluster
	Choosing a scheduler
	Setting negotiator characteristics and policies
	Specifying alternate central managers
	Specifying alternate resource managers
	Specifying alternate region managers
	Defining network characteristics
	Specifying file and directory locations
	Locating LoadLeveler binaries when the scheduler component is not installed
	Configuring recording activity and log files
	Setting up file system monitoring

	Defining LoadLeveler machine characteristics
	Defining job classes that a LoadLeveler machine will accept
	Specifying how many jobs a machine can run

	Defining security mechanisms
	Configuring LoadLeveler to use cluster security services

	Defining usage policies for consumable resources
	Gathering job accounting data
	Collecting job resource data on serial and parallel jobs
	Collecting accounting information for recurring jobs
	Collecting accounting data for reservations
	Collecting job resource data based on machines
	Collecting job resource data based on events
	Collecting job resource information based on user accounts
	Collecting the accounting information and storing it into files
	Producing accounting reports
	Correlating AIX and LoadLeveler accounting records
	64-bit support for accounting functions
	Example: Setting up job accounting files

	Managing job status through control expressions
	How control expressions affect jobs

	Tracking job processes
	Querying multiple LoadLeveler clusters
	Handling switch-table errors
	Providing additional job-processing controls through installation exits
	Controlling the central manager scheduling cycle
	Handling DCE security credentials
	Handling an AFS token
	Filtering a job script
	Writing prolog and epilog programs
	Using your own mail program
	Determining the frequency to use to run a job

	Chapter 5. Defining LoadLeveler resources to administer
	Defining machines
	Planning considerations for defining machines
	Machine_group stanza format and keyword summary
	Machine substanza format and keyword summary
	Machine stanza format and keyword summary
	Default values for machine_group and machine stanzas
	Examples of machine_group and machine stanzas

	Dynamic adapter discovery
	LoadLeveler adapter and node status monitoring
	Defining classes
	Using limit keywords
	Enforcing limits

	Allowing users to use a class
	Class stanza format and keyword summary
	Examples: Class stanzas

	Defining user substanzas in class stanzas
	Examples: Substanzas

	Defining users
	User stanza format and keyword summary
	Examples: User stanzas

	Defining groups
	Group stanza format and keyword summary
	Examples: Group stanzas

	Defining clusters
	Cluster stanza format and keyword summary
	Examples: Cluster stanzas

	Defining regions
	Region stanza format and keyword summary
	Examples: Region stanzas

	Chapter 6. Performing additional administrator tasks
	Setting up the environment for parallel jobs
	Scheduling considerations for parallel jobs
	Steps for reducing job launch overhead for parallel jobs
	Steps for allowing users to submit interactive POE jobs
	Setting up a class for parallel jobs
	Striping when some networks fail
	Setting up a parallel master node

	Using the BACKFILL scheduler
	Tips for using the BACKFILL scheduler
	Example: BACKFILL scheduling

	Data staging
	Configuring LoadLeveler to support data staging

	Using an external scheduler
	Replacing the default LoadLeveler scheduling algorithm with an external scheduler
	Customizing the configuration file to define an external scheduler
	Example: Retrieving specific information

	Example: Changing scheduler types
	Preempting and resuming jobs
	Overview of preemption
	Planning to preempt jobs
	Steps for configuring a scheduler to preempt jobs

	Configuring LoadLeveler to support reservations
	Steps for configuring reservations in a LoadLeveler cluster
	Examples: Reservation keyword combinations in the administration file

	Steps for integrating LoadLeveler with the Workload Manager
	LoadLeveler support for checkpointing jobs
	Checkpoint keyword summary
	Planning considerations for checkpointing jobs
	Additional planning considerations for checkpointing MetaCluster HPC jobs on AIX
	Checkpoint and restart limitations

	Submitting a MetaCluster HPC checkpoint job to LoadLeveler
	job_1.cmd - A checkpointable job command file
	Using the llckpt command to checkpoint a job step
	Restarting a job step from a checkpoint
	Restarting a job step from user hold
	Running a new job to restart a job step from a checkpoint

	Making periodic checkpoints
	Example - checkpoint every 30 seconds
	Example - checkpoint interval

	Using the ckpt_dir and ckpt_subdir keywords
	Example - storing checkpoint information for the job step in the /gpfs/user_1/ckpt_test1 directory
	Example - storing checkpoint information for the job step in the /gpfs/MetaC/CKPT/ckpt_test1 directory
	Example - storing checkpoint information for the job in the /gpfs/MetaC/CKPT_small/ckpt_test1 directory
	Example - storing checkpoint information for the job in the /gpfs/MetaC/test99.hostname3.pok.ibm.com.905.1.ckpt directory

	Removing old checkpoint files
	Using the ckpt_execute_dir keyword
	Example - using the llsubmit job_2.cmd
	Example - using the llsubmit job_3.cmd

	Initiating a checkpoint using the ll_ckpt() API
	The test_ll_ckpt.c program

	LoadLeveler scheduling affinity support
	Configuring LoadLeveler to use scheduling affinity

	LoadLeveler multicluster support
	Configuring a LoadLeveler multicluster
	Steps for configuring a LoadLeveler multicluster
	Steps for securing communications within a LoadLeveler multicluster

	LoadLeveler Blue Gene support
	Configuring LoadLeveler Blue Gene support
	Steps for configuring LoadLeveler Blue Gene support

	Blue Gene reservation support
	Blue Gene fair share scheduling support
	Blue Gene heterogeneous memory support
	Blue Gene preemption support

	Using fair share scheduling
	Fair share scheduling keywords
	Reconfiguring fair share scheduling keywords
	Reconfiguring when the Schedd daemons are up
	Reconfiguring when the Schedd daemons are down

	Example: three groups share a LoadLeveler cluster
	Example: two thousand students share a LoadLeveler cluster
	Querying information about fair share scheduling
	Resetting fair share scheduling
	Saving historic data
	Restoring saved historic data

	Procedure for recovering a job spool
	Configuring and using island scheduling
	Energy aware job support
	S3 state support

	Part 3. Submitting and managing LoadLeveler jobs
	Chapter 7. Building and submitting jobs
	Building a job command file
	Using multiple steps in a job command file
	Examples: Job command files

	Editing job command files
	Defining resources for a job step
	Submitting jobs requesting data staging
	Working with coscheduled job steps
	Submitting coscheduled job steps
	Determining priority for coscheduled job steps
	Supporting preemption of coscheduled job steps
	Coscheduled job steps and commands and APIs
	Termination of coscheduled steps

	Using bulk data transfer
	Preparing a job for checkpoint/restart
	Preparing a job for preemption
	Submitting a job command file
	Job state monitoring
	Submitting a job using a submit-only machine

	Working with parallel jobs
	Step for controlling whether LoadLeveler copies environment variables to all executing nodes
	Ensuring that parallel jobs in a cluster run on the correct levels of PE and LoadLeveler software
	Task-assignment considerations
	node and total_tasks
	node and tasks_per_node
	node_topology and island_count
	blocking
	unlimited blocking
	task_geometry

	Submitting jobs that use striping
	Understanding striping over multiple networks
	Understanding striping over a single network
	Examples: Requesting striping in network statements

	Running interactive POE jobs
	Debugging interfaces between POE and LoadLeveler
	Running MPICH2
	Running Open MPI
	Running Intel MPI jobs
	Running embarassingly parallel jobs
	Examples: Building parallel job command files
	POE sample job command file
	MPICH2 sample job command file
	Intel MPI 4.0.3 sample job command file
	Intel MPI 4.0.2 sample job command file
	Open MPI 1.5.4 sample job command file
	Embarrassingly parallel sample job command file

	Obtaining status of parallel jobs
	Obtaining allocated host names

	Building and submitting MPICH2 and serial interactive jobs
	Working with reservations
	Types of reservations
	Understanding the flexible job step
	Understanding the reservation life cycle
	Creating new reservations
	Submitting jobs to run under a reservation
	Removing bound jobs from the reservation
	Querying existing reservations
	Modifying existing reservations
	Canceling existing reservations
	Reservations with floating resources

	Submitting jobs requesting scheduling affinity
	Submitting and monitoring jobs in a LoadLeveler multicluster
	Steps for submitting jobs in a LoadLeveler multicluster environment

	Working with energy aware jobs
	Submitting and monitoring Blue Gene jobs

	Chapter 8. Managing submitted jobs
	Querying the status of a job
	Working with machines
	Displaying currently available resources
	Setting and changing the priority of a job
	Example: How does a job's priority affect dispatching order?

	Placing and releasing a hold on a job
	Canceling a job
	Checkpointing a job

	Chapter 9. Example: Using commands to build, submit, and manage jobs
	Part 4. LoadLeveler interfaces reference
	Chapter 10. Configuration keyword reference
	Configuration keyword syntax
	Numerical and alphabetical constants
	Mathematical operators
	64-bit support for configuration file keywords and expressions

	Configuration keyword descriptions
	User-defined keywords
	LoadLeveler variables
	Variables to use for setting dates
	Variables to use for setting times

	Chapter 11. Administration keyword reference
	Administration file structure and syntax
	Stanza characteristics
	Syntax for limit keywords
	64-bit support for administration file keywords
	64-bit limits on Linux systems

	Administration keyword descriptions

	Chapter 12. Job command file reference
	Job command file syntax
	Serial job command file
	Parallel job command file
	Syntax for limit keywords
	64-bit support for job command file keywords

	Job command file keyword descriptions
	Job command file variables
	Run-time environment variables
	Job command file examples

	Part 5. Appendixes
	Appendix A. Troubleshooting LoadLeveler
	Frequently asked questions
	Why won't LoadLeveler start?
	Why won't my job run?
	Why won't my parallel job run?
	Common set-up problems with parallel jobs

	Why won't my checkpointed job restart?
	Why won't my submit-only job run?
	Why does a job stay in the Pending (or Starting) state?
	What happens to running jobs when a machine goes down?
	Why does llstatus indicate that a machine is down when llq indicates a job is running on the machine?
	Why won't my job run on a cluster with both AIX and Linux machines?
	Why won't my jobs run that were directed to an idle pool?
	What happens if the central manager isn't operating?
	How do I recover resources allocated by a Schedd machine?
	Why can't I find a core file on Linux?
	Why am I seeing inconsistencies in my llfs output?
	Why don't I see my job when I issue the llq command?
	What happens if errors are found in my configuration or administration file?
	Why is my flexible reservation not activated?
	Why was my energy aware job rejected?
	Other questions
	Why do I have to setuid = 0?
	Why does LoadLeveler not execute my .profile or .login script?
	What happens when a mksysb is created when LoadLeveler is running jobs?
	What can I do when a reserved node is down?
	How do I add or remove a node from the LoadLeveler administration file?
	Why does a job stay in the running state?
	Why is a job in the hold state?
	Why does the llstatus –a command show that adapters are NOT_READY?

	Troubleshooting in a multicluster environment
	How do I determine if I am in a multicluster environment?
	How do I determine how my multicluster environment is defined and what are the inbound and outbound hosts defined for each cl
	Why is my multicluster environment not enabled?
	How do I find log messages from my multicluster-defined installation exits?
	Why won't my remote job be submitted or moved?
	Why did the CLUSTER_REMOTE_JOB_FILTER not update the job with all of the statements I defined?
	How do I find my remote job?
	Why won't my remote job run?
	Why does llq -X all show no jobs running when there are jobs running?
	Troubleshooting adapter availability

	Troubleshooting in a Blue Gene environment
	Why do all of my Blue Gene jobs fail even though llstatus shows that Blue Gene is present?
	Why does llstatus show that Blue Gene is absent?
	Why did my Blue Gene job fail when the job was submitted to a remote cluster?
	Why does llmkres or llchres return "Insufficient resources to meet the request" for a Blue Gene reservation when resources ap

	Helpful hints
	Scaling considerations
	Hints for running jobs
	Determining when your job started and stopped
	Running jobs at a specific time of day
	Controlling the mix of idle and running jobs
	What happens when you submit a job
	Sending output from several job steps to one output file

	Hints for using machines
	Setting up a single machine to have multiple job classes
	Reporting the load average on machines

	History files and Schedd

	Getting help from IBM

	Appendix B. LoadLeveler port usage
	Accessibility features for LoadLeveler
	Accessibility features
	Keyboard navigation
	IBM and accessibility

	Notices
	Trademarks

	Glossary
	Index
	Special characters
	Numerics
	A
	B
	C
	D
	E
	F
	G
	H
	I
	J
	K
	L
	M
	N
	O
	P
	Q
	R
	S
	T
	U
	V
	W
	X

