
Best practices for parallel IO and MPI-IO hints

Philippe.Wautelet@idris.fr

CNRS - IDRIS

PATC Training session
Parallel filesystems and parallel IO libraries

Maison de la Simulation / March 5th and 6th 2015

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 1 / 35

mailto:philippe.wautelet@idris.fr

Plan

1 Introduction

2 MPI-IO hints
Purposes
Usage
Existing hints
Performance impact of MPI-IO hints

IOR
Application code: RAMSES

3 Best practices for parallel I/O
Why is my I/O performance bad?
Do not write or read!
General guidelines
Some tricks or practices to try

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 2 / 35

Introduction

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 3 / 35

Introduction

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 4 / 35

Introduction

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 5 / 35

Introduction

Technical evolution

The computing power of supercomputers is doubling every year (faster than
Moore’s Law)

The number of cores increases rapidly (massively parallel and many-cores
architectures)

The memory per core is constant and starts to decrease.

The storage capacity is growing faster than the access speed (SSDs may change
this)

Disk throughput increases more slowly than the computing power

I/O infrastructures becomes more complex (number of levels, performance
tuning...)

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 6 / 35

Introduction

Consequences

The amount of data generated increases with the computing power (thankfully
slower)

At IDRIS, the quantity of stored data is doubling every 2 years and the number of
files is multiplied by 1.5 every 2 years (slowing down)

The standard one file per process approach generates more and more files
resulting in saturation of metadata servers (too many simultaneous accesses and
risks of crash)

Less memory by core and more cores may reduce the average file size

Too many files = saturation of the filesystems (maximum number of supported files
and wasted space due to fixed block size)

The time spent in I/O increases (especially for massively parallel applications)

The pre-and post-processing steps are becoming heavier (need for parallelism ...)

Managing millions of file is hard

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 7 / 35

MPI-IO hints

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 8 / 35

Plan I

2 MPI-IO hints
Purposes
Usage
Existing hints
Performance impact of MPI-IO hints

IOR
Application code: RAMSES

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 9 / 35

MPI-IO hints

Purposes

MPI-IO hints allow to direct optimisation by providing information such as file access
patterns and file system specifics.

I/O performance can be increased

Use of system resources can be improved

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 10 / 35

MPI-IO hints

Usage

MPI-IO hints are provided through info objects passed to MPI_File_open,
MPI_File_set_view or MPI_File_set_info

Hints are key - value pairs (for example, key is romio_cb_write and value is enable)

MPI_INFO_NULL if no hints provided

Unknown hints are ignored

On some MPI implementations, hints can be set with environment variables (e.g.
MPICH_MPIIO_HINTS and MPICH_MPIIO_CB_ALIGN for MPICH)

Procedure

Create an info object with MPI_Info_create

Set the hint(s) with MPI_Info_set

Pass the info object to the I/O layer (through MPI_File_open,
MPI_File_set_view or MPI_File_set_info)

Free the info object with MPI_Info_free (can be freed as soon as passed)

Do the I/O operations (MPI_File_write_all...)

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 11 / 35

MPI-IO hints

C example

1 MPI_Fi le fh ;
2 MPI_Info i n f o ;
3 MPI_Info_create (& i n f o) ;
4
5 /∗ Enable the c o l l e c t i v e b u f f e r i n g o p t i m i s a t i o n ∗ /
6 MPI_Info_set (i n fo , " romio_cb_wr i te " , " enable ") ;
7
8 /∗ Set the s t r i p i n g u n i t to 4MiB ∗ /
9 MPI_Info_set (i n fo , " s t r i p i n g _ u n i t " , " 4194304 ") ;

10
11 MPI_File_open (MPI_COMM_WORLD, " h e l l o " ,
12 MPI_MODE_WRONLY | MPI_MODE_CREATE,
13 in fo , &fh) ;
14
15 MPI_Info_free (& i n f o) ;
16
17 M PI_F i l e_wr i t e_a l l (fh , var , 1 , MPI_INT , MPI_STATUS_IGNORE) ;

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 12 / 35

MPI-IO hints

Fortran example

1 integer fh , i e r r , i n f o ;
2 c a l l MPI_Info_create (i n fo , i e r r)
3
4 ! Enable the c o l l e c t i v e b u f f e r i n g o p t i m i s a t i o n
5 c a l l MPI_Info_set (i n fo , " romio_cb_wr i te " , " enable " , i e r r)
6
7 ! Set the s t r i p i n g u n i t to 4MiB
8 c a l l MPI_Info_set (i n fo , " s t r i p i n g _ u n i t " , " 4194304 " , i e r r)
9

10 c a l l MPI_File_open (MPI_COMM_WORLD, " h e l l o " ,
11 MPI_MODE_WRONLY | MPI_MODE_CREATE,
12 in fo , fh , i e r r)
13
14 c a l l MPI_Info_free (in fo , i e r r)
15
16 c a l l MPI_F i l e_wr i t e_a l l (fh , var , 1 , MPI_INTEGER, MPI_STATUS_IGNORE, i e r r)

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 13 / 35

MPI-IO hints

Other MPI subroutines for hints

Call Usage
MPI_Info_dup To duplicate an info object
MPI_Info_delete To delete a key - value pair
MPI_Info_get To retrieve the value of a key
MPI_File_get_info To get the hints values associated to a file
MPI_Info_get_nkeys To get the number of defined keys
MPI_Info_get_nthkey To extract a given key
MPI_Info_get_valuelen To get the length of a key

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 14 / 35

Existing hints

Data sieving

I/O performance suffers considerably when making many small I/O requests

Access on small, non-contiguous regions of data can be optimized by grouping
requests and using temporary buffers

This optimisation is local to each process (non-collective operation)

Warning: most filesystems perform very similar optimisations. Therefore, data
sieving is often not useful and can even reduce performance (this has to be
checked for each application/system combination).

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 15 / 35

Existing hints

Data sieving for reading

A contiguous block of data is read into a local buffer

Non-contiguous readings are made from the local buffer

Data sieving for writing

A contiguous block of data is read into a local buffer (read)

Non-contiguous modifications are made in the local buffer (modify)

The modified block is written back to the filesystem (write)

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 16 / 35

Existing hints

Collective buffering

Collective buffering, also called two-phase collective I/O, re-organises data across
processes to match data layout in file.

Mix of I/O and MPI communications to read or write data

Communication phase to merge data from different processes into large chunks

File accesses are done only by selected processes (called aggregators), the
others communicates with them

Large operations are split into multiple phases (to limit the size of the buffers and
to overlap communications and I/O)

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 17 / 35

Existing hints

On Ada and Turing (IBM GPFS filesystem) and on CURIE (Lustre filesystem)

Existing hints and their usefulness for an application developer/user.

Hint Usefulness Usage
romio_cb_read High Enable or not collective buffering
romio_cb_write High Enable or not collective buffering
romio_cb_fr_types Low Tuning of collective buffering
romio_cb_fr_alignment Low Tuning of collective buffering
romio_cb_alltoall Low Tuning of collective buffering
romio_cb_pfr Low Tuning of collective buffering
romio_cb_ds_threshold Low Tuning of collective buffering
cb_buffer_size Medium Tuning of collective buffering
cb_nodes Medium Tuning of collective buffering
cb_config_list (not on Turing) Medium Tuning of collective buffering
romio_no_indep_rw Low Deferred open + only collective I/O
ind_rd_buffer_size Low Buffer size for data sieving
ind_wr_buffer_size Low Buffer size for data sieving
romio_ds_read High Enable or not data sieving
romio_ds_write High Enable or not data sieving

Most of the time, it is better to disable the data sieving optimisation because a similar
one is already performed by the filesystem.

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 18 / 35

Existing hints

On CURIE (Lustre filesystem)

Existing hints and their usefulness for an application developer/user.
Same than Ada/Turing plus:

Hint Usefulness Usage
striping_unit High Size of each stripe
striping_factor High Number of OST ("disks") per file
romio_lustre_start_iodev Low Position of the first stripe
direct_read Low Direct I/O
direct_write Low Direct I/O
romio_lustre_co_ratio Low Max number of clients per OST

in collective I/O
romio_lustre_coll_thresh Low Disable collective I/O if request bigger

(except if set to 0)
romio_lustre_ds_in_coll Low Enable or not read-modify-write step

in collective I/O

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 19 / 35

IOR

IOR overview

IOR is a benchmark frequently used to evaluate parallel filesystems performance

Handle separate POSIX, MPI-I/O, HDF5 and Parallel-NetCDF files

Collective or individual mode

Each process writes its part of the file of size blocksize by writing blocks of size
xfersize

Chosen sizes: total filesize: 256 GiB, xfersize = 4MiB (corresponding to the GPFS
blocksize)
MPI-I/O hints (necessary for good collective performance):
• on Ada : romio_ds_write=disable
• on Turing : romio_ds_write=disable and romio_cb_read=disable

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 20 / 35

IOR and MPI-I/O hints

Hints on Ada: example

Writing tests of IOR on Ada with 128 processes and in collective mode.

Hint MPI-I/O HDF5 pNetCDF
romio_cb_write = automatic 9893 1081 9592
romio_ds_write = automatic
romio_cb_write = enable 429 459 465
romio_ds_write = automatic
romio_cb_write = automatic 10824 8295 9772
romio_ds_write = disable

Values are in MiB/s. romio_cb_write = automatic and romio_ds_write = automatic are
the default values.

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 21 / 35

RAMSES

Overview

RAMSES is an astrophysics application originally developed by Romain Teyssier
(CEA) under CeCILL license (equivalent to GPL).

Solves the Euler equations in the presence of self-gravity and cooling treated as
source terms in the equations of time and energy.

Adaptive mesh refinement (AMR method) with load balancing and dynamic
memory defragmentation

Multi-grid method and conjugate gradient for Poisson’s equation

Riemann solvers (Lax-Friedrich, HLLC, exact) for adiabatic gas dynamics

Dynamic particles (without collisions) for the dark matter and the stars

Star formation, supernovae...

Code using MPI optimized by IDRIS (among others) and running on more than
tens of thousands of processes on a regular basis

RAMSES is available at http://www.itp.uzh.ch/ teyssier/ramses/RAMSES.html

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 22 / 35

http://www.itp.uzh.ch/~teyssier/ramses/RAMSES.html

RAMSES file structure

AMR file

A set of identical parameters on all processes (14 integers, 22 double precisions,
a small array of integers (10*nlevelmax) and a string)

A set of different variables on each process (8 integers per process and 3 data
structures (ncpu*nlevelmax integers per process)). The values on the different
processes of a variable are arranged one behind another in the file.

A set of large data structures (8 structures containing between 1 and 8 integers or
double precision by grid cell) for a total of 156 bytes * number of cells. They are
structured as follows:

Notes: grids (or levels) are of increasing sizes (factor 8 for the complete grids) and
some processes may contain no values for some levels (depending on refinement).

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 23 / 35

RAMSES file structure

hydro file

A set of identical parameters on all processes (5 integers, 1 double precision)

A set of different variables on each process (2 data structures (ncpu*nlevelmax
and 100*nlevelmax integers per process)). The values on the different processes
of a variable are arranged one behind another in the file.

A set of large data structures (5 structures containing eight double-precision
values per cell) for a total of 320 bytes * number of cells. They are structured the
same way as in AMR except that the values are grouped by 8 (so 8 times more
values per level).

AMR file vs hydro file

The AMR file is more complex and contains more variables

The first 2 sections are much bigger in the AMR file (but still relatively small in
absolute size)

The hydro file is about 2 times larger (320 bytes per cell instead of 156 for the third
section)

The granularity of the entries is significantly larger in the hydro file

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 24 / 35

MPI-I/O hints

Hints on Ada: example

HDF5 writing tests (sedov3d 10243 256 processes)

Hint AMR hydro
romio_cb_write = automatic 18.4s 15.1s
romio_ds_write = automatic
romio_cb_write = enable 16.9s 13.2s
romio_ds_write = automatic
romio_cb_write = disable 160.4s 77.3s
romio_ds_write = automatic
romio_cb_write = automatic 18.8s 15.9s
romio_ds_write = enable
romio_cb_write = automatic 18.5s 16.0s
romio_ds_write = disable

The first line corresponds to the default values.

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 25 / 35

MPI-I/O hints

Hints on Blue Gene/Q: example

MPI-IO reading tests (sedov3d 10243 4096 processes (1 per core))

hint AMR hydro
romio_cb_read = enable 37.4s 18.1s
romio_ds_read = automatic
romio_cb_read = disable 1297.7s 177.9s
romio_ds_read = automatic
romio_cb_read = automatic 1128.4s 149.0s
romio_ds_read = automatic
romio_cb_read = enable 42.2s 20.2s
romio_ds_read = disable
romio_cb_read = enable 40.5s 18.8s
romio_ds_read = enable

The first line corresponds to the default values.

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 26 / 35

Sedov3d 20483 on Curie: striping_factor effect

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 27 / 35

Sedov3d 20483 on Curie : striping_unit effect

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 28 / 35

Best practices for parallel I/O

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 29 / 35

Plan I

3 Best practices for parallel I/O
Why is my I/O performance bad?
Do not write or read!
General guidelines
Some tricks or practices to try

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 30 / 35

Best practices for parallel I/O

Why is my I/O performance bad?

Conflicts to access the same portion of the file (locks) and false sharing

Contention with other I/O

Random accesses

I/O requests too small compared to the filesystem block size

Read-Modify-Write effect

Saturation of the metadata server(s)

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 31 / 35

Best practices for parallel I/O

Do not write or read!

Write/read only what is necessary and when needed/useful

Write/read as infrequently as possible (group small operations)

Reduce accuracy (write in single precision, for example)

Recalculate when it’s faster

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 32 / 35

Best practices for parallel I/O

General guidelines

I/O needs and patterns are very different from one application to another. There are no
universal rules. Beyond that, the following guidelines can prove successful:

Use parallelism (multiple simultaneous accesses, parallel I/O libraries such as
MPI-IO, HDF5, netCDF-4, Parallel-netCDF, SIONlib, ADIOS...)

Limit the number of files (less metadata and easier to postprocess)

Make large and contiguous requests

Avoid small accesses

Avoid non-contiguous accesses

Avoid random accesses

Prefer collective I/O to independent I/O (especially if the operations can be
aggregated as single large contiguous requests)

Use derived datatypes and file views to ease the MPI I/O collective work

Try MPI I/O hints (especially the collective buffering optimisation; disabling data
sieving is also very often a good idea; also useful for libraries based on MPI-IO)

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 33 / 35

Best practices for parallel I/O

Some tricks or practices to try

Open files in the correct mode. If a file is only intended to be read, it must be
opened in read-only mode because choosing the right mode allows the system to
apply optimisations and to allocate only the necessary resources.

Write/read arrays/data structures in one call rather than element per element. Not
complying with this rule will have a significant negative impact on the I/O
performance.

Do not open and close files too frequently because it involves many system
operations. The best way is to open the file the first time it is needed and to close
it only if its use is not necessary for a long enough period of time.

Limit the number of simultaneous open files because for each open file, the
system must assign and manage some resources.

Do make flushes (drain buffers) only if necessary. Flushes are expensive
operations.

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 34 / 35

Best practices for parallel I/O

Some tricks or practices to try

Separate procedures involving I/O from the rest of the source code for better
readability and maintainability.

Separate metadata from data. Metadata is anything that describes the data. This
is usually the parameters of calculations, the sizes of arrays... It is often easier to
separate files into a first part (header) containing the metadata followed by the
data.

Create files independent of the number of processes. This will make life much
easier for post-processing and also for restarts with a different number of
processes.

Align accesses to the frontiers of the file system blocks and have only one process
per data server (not easy).

Create specialised processes (approach already followed by several groups; see
the DAMARIS or XIOS libraries for example).

Modify data structures (in file but also in memory).

Use non-blocking MPI-I/O calls (not implemented/available on all systems).

Use higher level libraries based on MPI-I/O (HDF5, netCDF-4, Parallel-netCDF,
XIOS, ADIOS, SIONlib...).

Philippe WAUTELET (CNRS/IDRIS) Parallel I/O Best Practices March 5th 2015 35 / 35

	Introduction
	MPI-IO hints
	Purposes
	Usage
	Existing hints
	Performance impact of MPI-IO hints

	Best practices for parallel I/O
	Why is my I/O performance bad?
	Do not write or read!
	General guidelines
	Some tricks or practices to try

