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Présentation de DLO-JZ

Plan «
Imagenet / Resnet-50 «

Présentation des participants «

The purpose of this introductory section is to describe the topics to be covered
during the course, the progression of the practical exercises, and to initiate a
short discussion between the participants.

The goal of this course is to present good practices in optimizing a Deep
Learning loop on a supercomputer, particularly on Jean Zay. We will look at the
system aspects and algorithmic techniques for accelerating a training.

The subjects addressed revolve around acceleration of training and the resulting
memory footprint.

This training will not cover the state-of-the-art in Deep Learning and its different
applications. We consider that you already have the necessary knowledge of the
different Deep Learning techniques. Nevertheless, we will present certain
interesting sources of information and you may engage in discussions during the
free times.

Any questions about the content of this course may be asked throughout its
duration. However, if the subject is raised late in the presentation, we may need
to postpone our response.



Présentation - Sujets traités

Jour 1
e JeanZay Jour 4
¢ Revue de code e Bonnes pratiques
e Les enjeux de la montée a I'échelle e Les parallélismes de modéle
¢ GPU computing Jour 3 ) ) e Les API pour les parallélismes
e Tensor Cores e Résultats sur Weight & Biases de modéle
e Data Augmentation
Jour 2 e Stockage et format de données
e Distribution - Data Parallelism *  HyperParameter Optimization
.
.
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Profiler PyTorch
Optimisation du DataLoader
Entrainement et large batches ‘o

The 5 principal subjects covered during this presentation are:
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e GPU computing

e Distribution on multiple GPUs in Data Parallelism

e Optimizing data preprocessing (DatalLoader)

e Optimizers and their parameterization with large batches
e Model parallelisms for very large models

The first day, we will focus on problems related to the system.

The second and third days, we will look at the algorithmic optimization
techniques linked to Data Parallelism and to the induced usage of large batches.
The fourth day will center on parallelism solutions for very large models (more
than 1 billion parameters).

We will also look at visualization tools:

e The PyTorch Profiler for the system aspects
e Weights & Biases for the training results



Imagenet Race - Déroulé des TP

e lesTPdesjours1,2et3:
* Optimisations systéme : GPU, Mixed Precision, Data Parallelism

Dataloader as
Profier S G » ame
Data Augmentation

Optimizers et hyperparamétres avec des larges batches m
Course de job sur 32 GPU pendant les nuits

o Les TP duJour4d:
+ Reésultats de la course : Meilleur Top-1 validation accuracy
* Model parallelisms avec un modéle CoAtNet-7 (gros Vision
Transformer SOTA)

e Mini Jean Zay réservé : 32 GPU V100 sur 8 noeuds

The Practice Exercises will be done exclusively in PyTorch. This choice was
made because PyTorch is perfectly optimized for the Jean Zay NVIDIA GPUs.

The prerequisites for the Practice Exercises are as follows:

e Mastery of a Python code
e Knowledge of the principles of a training in Deep Learning
e The usage of PyTorch.



Données - Imagenet N

Dataset:
Train dataset: 1,2 Millions d'images labellisées
Validation dataset: 50 000 images labellisées

http:ffiwww.image-net.org
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Other models -e- State-of-the-art models

To illustrate the themes which interest us, we decided to stay in a simple image
classification application using the famous Imagenet database which was the
cutting edge for all Deep Learning evolution, at least until 2018. This choice was
also made because we have a representative example of training on a
supercomputer, enabling us to stay within a reasonable training time while
monopolizing a reasonable part of the system.



Imagenet - Resnet-50 «*&-‘\Ya&
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We will use the ResNet model on ImageNet for most of this course (except for
the last part on very large models and model parallelism).

ResNet-50 is a ResNet model with a depth of 50 layers.

Resnet is a CNN model of reference. Nearly all the most recent and most
efficient CNNs are based directly on ResNet architecture.

Resnet has notably introduced: Residual learning with the shortcut principle to
improve and accelerate learning (solution to the vanishing gradient problem, ...),
and the BatchNorm layers which improve regularization compared to the dropout.

Recent versions of ResNet add Average Pooling which makes the model
independent of the input image sizes.



Imagenet - Resnet-50

How long does it take to train Resnet-50 on ImageNet?

14 days

2017 NVIDIA M40 GPU

We must remember that before 2017, on a computer with a GPU, 14 days were
required to train ResNet-50 on ImageNet.

Imagenet - Resnet-50

Training Resnet-50 on Imagenet

Sony
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Caffe2 Ter'\s.orﬂow ChainerMN TensorFlow Library (NNL)
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Since 2017 on supercomputers, ImageNet on Resnet-50 trains in less than an
hour but it is necessary to involve a large part of the machine.



Présentation des participant-e's
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Once the objectives of this course have been clarified, we will invite the

participants to introduce themselves and express their expectations for the
course.

Supercalculateur «
Jean Zay «
Soumission de jobs «
JupyterHub sur Jean Zay «

Outils Slurm pour notebook python «

This section is dedicated to the Jean Zay supercomputer and will describe the
computing environment of the hands-on exercises.



C’est quoi un supercalculateur ?
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A supercomputer is an aggregation of compute nodes. Each node contains CPU
cores accelerated by GPU cards, and associated RAMs.

All the supercomputer nodes together can be considered as a unique machine
with aggregated performance on condition that a high performance
communication network connects all the nodes (Omni-Path on Jean Zay).

The storage spaces are external to the compute nodes. The files are handled by
a high performance parallel file system (Spectrum Scale , ex-GPFS on Jean
Zay).



Tier1 - Premier supercalculateur convergé francais pour I'Intelligence
Jean Zay Artificielle (IA) et le Calcul Haute Performance (HPC)
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Jean Zay is the first converged supercomputer for Artificial Intelligence (Al) and
High Performance Computing (HPC) in France.
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A grand scale infrastructure is necessary to host this equipment dedicated to the
needs of modern research.

The entire infrastructure requires management by a considerable number of
human resources: administrative personnel and engineers (~40 employees at
IDRIS).



Jean Zay : Ressources disponibles
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Jean Zay users can reserve compute resources on 4 different partitions having
different configurations:

A CPU partition

An accelerated V100 quadri-GPU partition

An accelerated V100 octo-GPU partition exclusively dedicated to Al
An accelerated A100 octo-GPU partition

Access to the machine is through 5 front ends which are open to the exterior.
Compute nodes are accessed from these front ends through the Slurm job
scheduler. The compute nodes are isolated from the exterior.

Two dedicated partitions which are free of hourly computing charges and open to
the exterior are also in the system:

e A “prepost” partition for all pre/postprocessing work
e A partition dedicated to visualization



Jean Zay : Espaces de stockage
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Rotative disks
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Public Datasets

Full Flash disks
5x speedup

SCRATCH

Shared
2,5PB

deposit on request

available.

e Three spaces on rotative disks:
o The HOME to store configuration files of the computing

environment

Temporary Datasets
autocleaned limited by a 30-day
file lifespan

o The WORK to store code, data, logs, etc
o The STORE to archive data

e Public datasets and models are available on the DSDIR space and

accessible by all users

» The SCRATCH equipped with a rapid Full Flash technology for I/O-

intensive jobs



Jean Zay : Environnement de travail -)

Catalogue de modules mutualisés
(environnements conda)
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* Installés par I'IDRIS
« Enrichis sur demande

:~%$ module load pytorch-gpu/py3/1.11.0

i (pytorch-gpu-1.11.0+py3.9.12) log -2 Y |

. . Images SIF a importer sur Jean Zay \J

i + Depuis votre PC personneIA
L A partir de dépéts publics (7) i

Conflits entre les versions
Saturation de vos espaces disques

Users have a catalogue of predefined environments at their disposal. These
environments are installed on Jean Zay by IDRIS. For Al users, they correspond
to conda environments which are built around major libraries such as PyTorch,
TensorFlow or MXNet.

Computing environments are handled by the Environment Modules v4
package.

Users just need to load the associated module to activate the desired
conda environment. They are free to build or enrich their own
environments. However, we recommend that you request IDRIS to directly
enrich the catalogue environments to pool the resources and avoid
saturating your project disk spaces.

Users can also import an environment on Jean Zay via Singularity
containers.



Soumission de jobs - Slurm
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The distribution of the computing resources is managed by the job
scheduler Slurm.

Jobs submitted by users are sent to a wait queue and Slurm plan their
executions according to the requested resources (number of GPUs and
execution time).

Slurm takes into account other factors such as project under/over-
consumption and requested QoS.

Slurm’s goal is to minimize the idle time of the computing resources, while
distributing resources among users as fairly as possible.



Soumission de jobs - Slurm o
Slurm

script.slurm

#!/bin/bash

#SBATCH --job-name="dlojz" # number of job
#SBATCH --output="dlojz%j.out" # out file

#SBATCH --error="dlojz%j.err" # error file

#SBATCH --nodes=2 # nb of node
#SBATCH --gres=gpu:4 # nb of GPU per node
#SBATCH --ntasks-per-node=4 # nb of tasks per node
#SBATCH --cpus-per-task=10 # nb of cores
#SBATCH --hint=nomultithread # no hyper threading
#SBATCH --time=03:00:00 # max execution time
module load pytorch-gpu/py3/1.11.0 # environment

srun python script.py # run script

To submit a job via Slurm, users need to create a batch script defining all
the necessary parameters to reserve a computing slot, and the commands
they want to be executed on these resources.

To launch a parallel execution on multiple tasks (or processes), the
execution command of the python script must be preceded by a call to the
parallel Slurm launcher srun.



Soumission de jobs - Slurm

script.slurm

slurm

workioad manages

#l/bin/bash

#SBATCH

--job-name="dlojz"
#SBATCH --
#SBATCH --
#SBATCH --
#SBATCH --
#SBATCH --
#SBATCH --
#SBATCH --
#SBATCH --

module load pytorch-gpu/py3/1.11.0

srun python script.py

:~$ sbatch script.slurm [ESTIVNIESTTaRe[Tel]

output="dlojz%j.out"
error="dlojz%j.err"

l Passage dans la file d'attente

nodes:Z :~$ squeue --me _ _ - i h B

! ITION NAME USER ST TIME NODES NODELIST(REASON)
gres=gpu:4 5 gpu_pi3 dlojz PD 0:00 2 (Priority)
ntasks-per-node=4
cpus-per-task=10 l L .
. ; ancement du job
hint=nomultithread l
time=03:00:00

' srun python script.py ]

NODE 0 NODE 1

GPUO GPU1 GPUO GPU1
GPU2 GPU3 GPU2 GPU3

Once the batch script is written, you can submit it thanks to the sbatch
command.

Slurm will send the job in the wait queue. The jobs currently handled by
Slurm can be listed with the squeue command.

Once the computing resources are available, the execution is automatically
launched by Slurm on all the requested tasks (thanks to the parallel
launcher srun called in the batch script).



JupyterHub sur Jean Zay Jup';;'e'ﬁ .
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You can access Jean Zay computing resources through a JupyterHub
platform. This platform has been developed by IDRIS engineers to comply
with the security constraints of the center.

https://jupyterhub.idris.fr/

You can run a Jupyter instance:

» Either on a front end, to use it like an augmented shell enabling job
submission on the compute nodes, data preprocessing, visualization of
results,... This front end has limited resources and is not equipped with
GPUs.

e Ordirectly on a compute node, in order to run tests in interactive mode. In
this case, access to the internet is lost. This configuration is restricted to
one node.

We will launch a Jupyter instance from a front end during the practice excercises
of this training.


https://jupyterhub.idris.fr/

Jean Zay : outils Slurm pour notebook python

‘ from idr_pytools import gpu_jobs_submitter

|

command = ‘dlojz.py —batch-size 128 —image_size 176

n_gpu=28

MODULE = ‘pytorch-gpu/py3/1.11.0°
name = ‘dlojz’

jobid = gpu_jobs_submitter(command, n_gpu, MODULE, name=name, account="xyz@v100', time_max='05:00:00")

command
n_gpu
MODULE
name
account

time_max

script.slurm

#/oinbash

#SBATCH —job-name="dojz"
#SBATCH —output="digz) our
#SBATCH —arror="diojz3 a”
#SBATCH -nodes=2

#SBATCH —gres=gou
#SBATCH -ntasks-per-node=4
#SBATCH -cpus-pertask=10
#SBATCH —hint=nomusmmead
#SBATCH -time=0500:00
#SBATCH —accunt=xyz&v100

module load pylorch-gpulfpy3/1 1.0

SrUN pyTON Aoz py —akn-size 128 —mage_size 176
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IDRIS developed a python library called idr pytools to ease the
interaction with Slurm from a python notebook.

The gpu_jobs submitter function allows you to easily submit jobs.

From a reduced number of instructions (the command to execute, the
number of GPUs, the module to load, the name you want to give to your
job,...), gpu_jobs submitter will write the corresponding batch script for
you and submit it.

This function will be used during the practice excercises of this training.



Jean Zay : outils Slurm pour notebook python

‘ from idr_pytools import display_slurm_queue |

name = ‘dlojz’
display_slurm_queue(name) $ squeue --me -n <name>

from idr_pytools import search_log |

jobid = [123457
search_log(contains=jobid)[0] ’ nom du fichier output

search_log(contains=jobid, with_err=True)[0] __’ nom du fichier error

21

Moreover, the idr pytools library allows you to visualize the Slurm wait
queue from a python notebook thanks to the display slurm queue
function.

The log files generated during the execution of a job can be displayed
thanks to the search_1log function.

This function will be used during the practice excercises of this training.



TPO : Préparation de I’environnement

(.a_ e Lancer un terminal et faire les copies
nécéssaires

local:~$ ssh jean-zay

jz:~% cd $WORK
jz:~% cp -r $ALL_CCFRWORK/DLO-JZ .

e Lancer firefox
e Accéder a jupyterhub.idris.fr

TPO : Acces et prise en main du notebook

® OQuvrir le notebook DLO-JZ_Jour1.ipynb
Choisir le kernel pytorch-gpu/py3/1.11.0 (en hauta
droite) s’il n’est pas détecté automatiquement

® Choisir un pseudonyme
Lancer un job

® Prendre en main le script de référence et les
différentes fonctionnalités

22



Les enjeux de la montée a
I'échelle

Temps d’apprentissage «
Empreinte Mémoire «
Solutions «

Economie énergétique «
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The objective of this section is to identify the problems of Deep Learning on a
supercomputer and to rapidly list the possible available solutions .

When we speak of memory footprint, this refers to the RAM occupation induced
by the process.



Apprentissage / Inférence
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There are two distinct fields in Deep Learning engineering: training and
inference. The challenges of the two fields are not the same.

Training is tending towards larger and larger models trained on large computing
resources. This represents the core of Al research. It is a long interative process,
with the search for optimal solutions through replicated trials.

Inference seeks to minimize the model sizes to be able to deploy them on
various equipment with techniques such as Quantization, Layer fusion, Pruning,
Distillation, ... Inference is a direct process which is meant to be as rapid as
possible.

This DLO-JZ course is only interested in problems in the training field because
this is what is principally done on Jean Zay.



Contraintes du Deep Learning

2 problémes a traiter:

Temps d’apprentissage Surconsommation mémoire (OOM)
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Les Gros MOde Ies Les énormes modéles provoquent de trés colteux

temps de calcul et de larges empreintes mémoire

Crammimmanalhoaral hetweik (4 Go pour un modéle d’1 milliard de paramétres).

Transformers

GPT-3
(1758) o

parameters)

Megatron-LM ;
(8.38) r
: o (17.28)

Turing-NIG

Top-1 accuracy [%)]

°
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GPT-2
(1.58)

ze (in billions of

BERT-Large
(340M)

P 1 fo 1
Model S

Operations [G-FLOPs]

Les modéles gros, et profonds permettent EUTREELE
d’obtenir de meilleurs métriques d'accuracy.

Larger and larger models in terms of parameters, number of layers and
mathematical operations are invading the world of Deep Learning. They enable
obtaining higher and higher accuracy and training functions which are more and
more complex.

Huge models such as the Transformers pushing the limits of neural networks
provoke costly computing times and large memory footprints.

A model with 1 billion parameters represents a variable of more than 4GB,
knowing that a parameter saved in float32 is represented by 4 bytes.



Le temps de calcul

Le temps de calcul augmente avec le nombre de FLOP
nécessaire, dépendant de :

e Lataille du modéle &aa

fennend 1
e La profondeur du modéle @ @
e Lataille des données d'entrée (Résolution des images,
longueur de la séquence, ...) r——n

e Lataille du dataset
e Nombre d’'epochs nécessaire
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The number of FLOPs representing the number of necessary calculations
depends on the size of the model, the depth of the model, and the size of the
input data.

The larger the model, the more it is complex, the larger the necessary size of the
dataset and the more consequential the number of epochs to reach the end of
the training: This increases the duration of the computing time even more.



Taille de batch et Mémoire

Needed
GPU
memory

/

<

Training acceleration

Desired
: Batch Size

3 Max
. Batch Size

Augmenter la taille du batch et ainsi
augmenter le pas d'itération permet
d’accélérer I'apprentissage.

- T

OOM
Process killed

Cependant cela augmente d’autant
'empreinte mémoire risquant
d’atteindre la limite du systéme.
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A simple solution to accelerate the training, considering that a fixed number of
epochs is sufficient to reach the end of the training, would be to increase the
batch size and thereby, to augment the iteration step.

However, we will see that this is not so simple.

The first constraint is that this equally increases the memory footprint which will
rapidly reach the limit of the available RAM.



Données a haute dimension
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The format of the data processed by the model plays an important role in the
memory occupation during the training and is greatly accentuated by the model
depth.

With 3D images or with very deep models, it is very easy to saturate the memory
space available on the equipment.

We will find the explanation for this phenomenon in the following slides.



Forward /| Backward — mémoire du modeéle
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A training loop is composed of: loading and preprocessing the data per
batch, forwarding, computing the loss, backwarding, computing the
gradients, calling the optimizer and updating the weights.

During this training loop, the algorithm needs to keep in memory all the
weights of the model, a replica of the gradient of each weight, a replica of
the optimizer for each momentum.

The memory footprint required to contain a given model is twice to four
times the model size. However, for a model such as Resnet-50, this
represents only hundreds of megabytes. So what is the memory constraint
mentioned above?



Forward / Backward - probleme des activations
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Note: Pour la backpropagation, il est nécessaire de garder en

mémoire les activations intermédiaires. -

In the training loop, during the gradient backpropagation calculation, the system
needs the outputs of the activation function of the preceding layer.

Unless the same operations are recalculated numerous times which would
produce a solution much too slowly, it is necessary to keep in memory each
activation function output for each layer.



Inférence et évaluation

Propagation

with torch.no_grad():
val_outputs = model(val_images)
loss = criterion(val_outputs, val_labels)

Propagation

d = o(vw'd ! + V) = 02

For the inference and validation steps, there aren't any gradient calculations so it
is not necessary to keep the intermediate activations. It is important, therefore, to
indicate to the system to not allocate this needed memory for the
backpropagation which then does not uses its autograd mechanism.



Empreinte Mémoire
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During the training step, the memory footprint divides into two parts:

The part with intermediate activations dependent on the batch size, data
format and neural network depth. This part can occupy a space which
becomes rapidly too large if we augment one of these characteristics.

The part directly linked to the storage of model weights and gradients
which together represent several times the model size. This size, however,
is often insignificant when compared to the system memory (except for
very large models).



Solutions systéme
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There are two possible scalability axes, from a hardware system point of view, to
resolve the problems of acceleration and memory occupation:

» The Scale-up, or replacing equipment with upgraded versions; for
example, going from V100s to A100s.
» The Scale-out, or the distribution of calculations on multiple equipment.



Solutions: Distribution — Scale-out

Data Parallelism Model Parallelism

Tensor parallelism
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~ Spatial Partitioning

34

The distribution solutions in Deep Learning are as follows:

e Data Parallelism, we will discuss at length during this course.

¢ Model Parallelism, we will discuss at the end of the course.

e Spatial Partitioning, we will not address during this course (as very rarely
used). It consists of directly dividing the input data and can be useful for
very large data formats but would be costly to implement.



Solutions de contournement

Gradient aggregation Gradient/activation checkpointing
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There are also alternative solutions which are less efficient but enable saving
memory space at the price of slower calculations:

» Gradient aggregation, which sequentially computes mini-batch gradients
but waits for several iterations before updating the model. This is similar to
Data Parallelism except that it is completely sequential and non-distributed.

» Gradient checkpointing, which does not save all the activations but only
some of them (the checkpoints!!) and recomputes the missing activations
from the last checkpoints.



Un 3e probléme a traiter ...

La consommation électrique !!

2 problémes a traiter:

Temps d'apprentissage

Surconsommation mémoire (OOM)

Consommation énergétique

| [A100PCle | A100SXM2 | V100PCle | V100 SXM2
250W 400W

~30W ~BOW
poromance PR

Images/s

2500

2000

1500

1000

Throughput / Power

32 64 128 256 512 1024 2048

Batch size

GPU Power consumption (Watt)

Pourunneceud : Le CPU

250W 300W (souvent 2 processeurs)
~40W ~45W consomme ce que
45% 50% consomme a peu prés 1

GPU.

La consommation électrique varie
selon l'utilisation partielle ou globale
du GPU.

Cependant le rapport performance
énergétique est en faveur d’'une pleine
utilisation du GPU.
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Economie énergétique / Heures GPU

Fnnainiie énergétique Optimisation du systéeme (DLO-JZ)

~

« Chercher le throughput le plus
important

Economie d’heures GPU

« Optimiser le chargement de
données pour éliminer les temps
vides du GPU

= Paralléliser 'apprentissage a la
bonne mesure du modéle : ni trop,
ni pas assez
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The manufacturers and hosts of systems such as Jean Zay develop complex
techniques to reduce electricity consumption while keeping high performance.

As a user, the best way to save energy is to use GPU hours sparingly.
To do this, it is first necessary to apply the optimizations described in this course.

It is worth noticing that scaling up enables saving energy but scaling out
does not since we increase the number of GPUs.



Economie énergétique / Heures GPU

% A100
f N @ @@ 0000 - -
@Q 80 GB 80GB 160GB 320GB
a | A100 40GB 80GB 160GB
? 40 GB B L Q@O - 9000 -------- -
[ 0 - A
S 32GB 64GB 128GB
175}
16GB 3263 64GB
Scale-out ! «
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Meéthodologie (économiser la recherche,
ne répéter pas les apprentissages
inutilement)

* Chercher les hypers paramétres dans les
publications et reproduire I'état de I'art

* Chercher les bons hypers parameétres sur
des plus petits modeéles, puis appliquer a
I’échelle

* Techniques d'Hyper-Parameter
Optimization (HPO)
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Also, to save GPU hours or reduce electrical consumption, we need to be
methodical in our search for good hyperparameters for training our model, and
not repeat unnecessary trials which are energy-intensive.



GPU computing

V100, A100 «
CUDA «
CuDNN «
AMP <«
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The objective of this section is to present GPU hardware accelerators which
often have a much higher computing speed than CPUs but with less memory.

GPU computing m
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Matrix Multiply-accumulate operations 42

GPUs were initially used for the 3D rendering of video games, permitting
multiplication computation and matrix accumulation organized by warp (multi-
threads).

They are especially adapted for linear algebra and, therefore, for conventional
neural networks and convolutional neural networks.



Galaxie NVIDIA >N
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NVIDIA is a manufacturer of Graphics Processing Units and produces
accelerated systems for personal computers, data centers, supercomputers, on-
board equipment and autonomous cars.

The success of NVIDIA also stems from the whole suite of available Al and HPV
applications surrounding CUDA technology.
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CuDNN —
Caffe Q " % Cognitive & NVIDIA.

. Chainer “.L7 Toolkit MATLAB
O PyTorch Coffe?
y PYTORCH 1L

@xnet
Tensor

' NVIDIA DEEP LEARNING SDK and CUDA

Up to 3x Faster RNN Training

L'ingénierie CUDA pour le deep learning
sur GPU est gérée par cuDNN.
Merci cuDNN !!

]

Tokens/ses
g

- 88§

des Tensor Cores et des Cuda Cores : Utiliser
des tenseurs aux dimensions (batch size,
s ongr o s sample size, channel, etc ...) multiples de 8 !!

3 P100 + cuDNN 6

. Recommandation: pour optimiser 'utilisation
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CuDNN is the CUDA application dedicated to neural networks. CuDNN is
integrated into most of the Deep Learning frameworks such as PyTorch,
TensorFlow and MXNET.

The complex engineering of CUDA is managed by CuDNN. The following slides
explaining CUDA engineering can be ignored at our level as CuDNN enables
managing this in a transparent way for the users.

Only the following recommendation should be taken into account: To optimize
the computation on GPUs, you must size the tensors in multiples of 8 (batch size,
data format, number of filters,etc, ...).



GPU computing : CUDA >N

CUDA thread CUDA core
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In CUDA language, a function or method, called kernel, is cut into threads. A
thread is a simple operation (multiplication/addition of scalars).

Each thread is processed by a CUDA core.
A block of threads is processed by a Streaming Multiprocessor.

A grid block allocated to a kernel is processed by the GPU.



<3

NVIDIA.

Architecture V100

6 GPC

84 Streaming Multiprocessors (SMs)
5376 CUDA Cores - -
672 Tensor Cores per full GPU Source : NVidia
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The V100 GPU architecture consists of 6 Graphics Processing Clusters (GPCs).

Each GPC contains a number of Streaming Multiprocessors (SMs) which
process the thread blocks.

Each SM has 4 warp schedulers which contain a multiple of 8 CUDA cores for
the integers, the float32s and float64s.

It is important to note the presence of Tensor cores which we will address in the
following section about mixed precision.



Architecture A100 >N

8 GPC

128 Streaming Multiprocessors (SMs)
8192 CUDA Cores - - .
512 Tensor Cores per full GPU Source - 11Vidi:

The A100 GPU architecture is almost the same except for the presence of 8
Graphics Processing Clusters (GPCs) and, therefore, more CUDA cores on the
whole of the GPUs.

The Tensor cores are the generation which follows that of the V100 GPUs.



Gestion de la mémoire optimisée <3
NVIDIA.

SM-0 SM-1 SM-(N-1)

Registers Registers
(256 KB per SM) (256 KB per SM)

L1/SMEM L1/SMEM
(192 KB) (192 KB)

| L2 Cache (40 MB) |

| Global Memory (DRAM, 40 GB) |
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The memory to store the variables before or after the computation comprises a
funnel-shaped architecture: The closer we get to the thread, the more the
memories are small and rapid; inversely, the farther we get from the thread, the
more the memories are large and slow.

The RAM is global to all the GPUs: The L2 level corresponds to the GPCs, the
L1 level corresponds to the SMs, the LO level corresponds to the warp
schedulers.

From this we understand that the blocks must be regrouped locally on the GPUs
as much as possible to economize the residual times of communications
between its different memories.



Ingénierie CUDA >N

This CUDA application uses 256 threads per block each warp contains 32 threads 4 Warp schedulers per SM

Warp 0

INT32 INT32
Wamp1 |
INT32 INT32
INT32 INT32
INT3Z INT32
INT32 INT32

INT32INT22

Warp7 INT22 INT32
(32 threads)

INT32 INT32

Block | Warp 1
instruction 10
e duremplissage d'un block e Fusion des kernels pour économiser
e del'étalement surle GPU les temps d'initialisation
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CUDA engineering consists of distributing the threads of a kernel into several
blocks which will be divided into warps, and which will be executed in a subset of
the GPU cores.

The challenge of CUDA, therefore, is to sufficiently fill each SM and spread all
the threads on the whole kernel (as for filling an ice cube tray).

A substantial effort is also brought to the fusion of kernels in order to economize
the initialization time of the kernels.

TP1 : Accélération GPU

e Envoyer le calcul surle GPU
e Test Mémoire
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Tensor Cores

Tensor Cores «
Precisions «
AMP <«

Channel last memory format «
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The objective of this section is to present Mixed Precision and the acceleration
brought by using Tensor Cores available on the NVIDIA GPUs calibrated for the
supercomputers.



Tensor Cores <
NVIDIA.

Les CUDA Core sont spécialisés pour
le calcul vectoriel.

Les Tensor Core sont specialisés pour
le calcul matriciel.

D=

Ay
FP16 or FP32 FP16

FP16 or FP32

Chaque Tensor Core est capable de
traiter 64 opérations en 1 temps
d’horloge.

Source : [\Vi
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NVIDIA has added Tensor Cores to its dedicated GPUs for the computing
centers: Turing, Volta, Ampere.

The standard CUDA cores are specialized for vector calculations. Tensor Cores
are specialized for tensorial (AKA matricial) calculations.

The Tensor Core version in V100s is capable of multiplying two 4x4 tables and
aggregating it in one clock time.

Tensor Cores use lower precision to accelerate the computation.

Tensor Cores, therefore, are more rapid than CUDA cores at equal density.



Précisions & Tensor Cores <

NVIDIA.
NVIDIA A100 NVIDIA Volta

Supported Tensor FP64, TF32, bfloat16, FP16, FP16
Core Precisions INT8, INT4, INT1
Supported CUDA® FP64, FP32, FP16, bfloat16, FP64, FP32,
Core Precisions INT8 FP16, INT8
Sign B o
N N
FP32
TF32 Range
Tensor FLOAT 32 (1732) [N
TF32 Precision
O

BFLOAT16 (BF16) m

Source : [N Vidia
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Different versions of Tensor Cores use certain precisions.

Each floating number precision uses a fixed number of bits with a signed bit, an
exponent and a mantissa.

For the A100s, most of the precisions can be accelerated by Tensor Cores.



Précisions & Tensor Cores
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For V100s, FP16 precision using Tensor Cores is accelerated 8x in theory,
compared to FP32 precision using CUDA Cores.

For A100s, TF32 precision using Tensor Cores is accelerated 8x in theory, and
FP16 precision using Tensor Cores is accelerated 16x in theory compared to
FP32 precision using CUDA Cores.

With CuDNN, FP32 precision is automatically transformed into TF32 without
adding any code.

To transform the FP32s into FP16, it is necessary to implement some code lines
by using, for example, the Automatic Mixed Precision (AMP) described later.

BF16 precision is what made TPUs successful. A100s, therefore, offer a
compatibility with this precision.

The other precisions which A100s take into account concern inference. We will,
therefore, not address inference during this course.

A100s also offer an optimization for sparse tensors. => Structured Sparsity



Automatic Mixed Precision

e Automatic Mixed Precision :
o MNeécessaire pour les V100 pour utiliser les Tensor Core

o Les A100 utilisent les Tensor Core avec ou sans MP Deep Neural Networks
TRAINING LAYER AUTOMATIC MIXED PRECISION ACCELERATED BY GPU
: 3 DL Frameworks
m'm r,:j: we = o
_—— 4% n &) NVIDIA AMP
o) L8 o= — 2l g
[ com | — &2

O Termor Cores

o |Intéréts: NVIDIA Tensor Cores
o Perte de précision non significative pour I'apprentissage
du modéle (gradient, loss, accuracy)
o Réduit 'empreinte mémoire
o Accélére les calculs

e 2 étapes a coder:
o transformation des couches éligibles en FP16

o Utilise un scaling pour le calcul des gradients
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Mixed Precision means using some or all of the parameters in half precision, or
FP16, to use Tensor Cores. This is necessary for V100 Tensor Cores. However,
it requires a minimum of code.

It reduces the memory footprint and accelerates computations, while also
causing what is usually an absolutely negligible precision loss in the calculation
of gradients, Loss and Accuracy.

Automatic Mixed Precision dedicated to Deep Learning is an automation of the
principle of Mixed Precision.

It transforms layers which are eligible for Mixed Precision (for example,
ConvlLayers are eligible but Batchnorm layers are not) and uses a scaling system
for the calculation of gradients (see the following slide).



AMP Scaler
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The AMP Scaler method is often necessary as the calculated gradients can
reach very small values or very close to zero. Indeed, FP16 precision considers
every value inferior to 5.96e-8 as a nul value (value 0). Moreover, very high
gradient values do not exist in reality.

Therefore, it is advantageous to transfer the FP16 precision normalized values to
values closer to zero for the gradients. This is what is called scaling here.

In practice, the model with its weights expressed in FP32 is transformed into
FP16 by the AMP (for the eligible weights), then the forward executes on the
Tensor Core.

We obtain the FP32 Loss calculation in output.

We apply the scaling on the Loss.

During the backpropagation, the gradients are calculated on the Tensor Cores
from the activation values in FP16. Then, the result of the gradients scaled in
FP32 is inversely unscaled to update the model weights according to the
optimizer method at the end.

This describes a single iteration of training with the AMP.



Empreinte mémoire avec la Mixed Precision

Sans mixed precision
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The impact of Mixed Precision on the memory footprint is advantageous most of
the time because it divides the major activation ouputs by 2.

However, it should be noted that the memory footprint linked to the model is
increased with Mixed Precision as the gradients and parameters are conserved
in FP32 and in FP16 at the same time. As we have seen, this is negligible for
most of the models. Nevertheless, this should be taken into consideration for
very large models.



Channel last memory format

batch channel height width

-shape() memory contiguity by default
A classic (contiguous) memory storage of NCHW tensor :
N ¢
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H
4x4 l
Channels last memory format orders data differently:
_—
W bOx000111222333444555666777888999aaabbbcccdddeeefff
stride()

a0x[000111222B33%44555666/777888999%9aagbbbcccdddeeefff

3x3 | Convolution filter
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Data movement and memory allocation are essential to benefit from the
Tensor Cores performance.

An image input in PyTorch corresponds to an NCHW (Batch Channel
Height Width) tensor format. The memory is contiguously allocated
according to this order.

Forcing memory contiguity in the Channel direction first enables pooling
contiguous data when applying convolutional filters.

TP2&3 : Automatic Mixed Precision

®

e Activer ’Automatic Mixed Precision
e Test Mémoire
e Activer le channel last memory format
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