
1

Deep Learning Optimised on Jean Zay

Distribution – Data parallelism

IDRIS

DLO-JZ course
Commented slides
Author: Myriam Peyrounette
June 2023

2

Distributed training

General knowledge about parallel computing ◂

Data parallelism to distribute your training ◂

This chapter begins by laying the foundations of parallel computing. In terms of
distributed training, the high-level libraries such as TensorFlow and PyTorch
offer ready-to-use tools which handle the parallelization but mask the
problematics of distribution. The idea here is to understand a little better what
is happening under the hood.

This introduction enables us to subsequently consider the distribution
problematics of a neural network training on multiple GPUs and compute nodes.
Here, we present the "data parallelism" technique which is the most
approachable and most used.

3

Sequential execution

- Only one process executes the program.

- The variables defined in the program are stored
in the memory allocated to the process.

- One process executes the code on one physical
compute unit (CPU core or GPU).

Distribution: General knowledge about parallel computing

Process

Memory

Program

When a program is launched, a group of instructions is enacted. The sequence of
instructions is stored in memory and executed by a physical computation unit (CPU
core or GPU graphics card). This computation instance is called “process”.

A code is sequentially executed when a single process executes the instructions, one
after another.

4

Parallel execution with distributed memory

- Several processes execute the code at the same
time (multi-processing).

- The variables defined in the program are private,
they are stored in the local memory allocated to
each process.

- It is possible that the processes execute
separate parts of the code.

Distribution: General knowledge about parallel computing

Process

Memory

Process

Memory

Process

Memory

Process

Memory

Program

Multiple processes can be solicited to execute a program. The processes can take
charge of different parts of the program in order to accelerate its global execution
time. This is parallel execution.

In the case of parallel execution on a distributed memory system, an independent
memory space is associated with each process. A process does not have access to
variables stored in the memory which are allocated to another process.

5

Parallel execution with distributed memory

- To share information, the processes can send each other messages through the
interconnection network.

- These communications are managed by libraries such as MPI or NCCL.

Process

Memory

Process

Memory

Process

Memory

Process

Memory

Network
Message Message Message

Distribution: General knowledge about parallel computing

In distributed memory, process synchronization or information sharing steps are
inevitable. For example : IO, overall error calculation, etc.

Processes can communicate with each other by sending messages via the
interconnection network. These communications are handled by specialized
libraries such as MPI (CPU) or NCCL (GPU, NVIDIA).

6

In a parallel code based on the MPI or NCCL library,

- The set of processes exists in a common parallel environment initialized at
the beginning of the execution.

- From the initialization to the destruction of this parallel
environment, all the processes read and execute
the program.

- During the initialization of the environment, a
communicator WORLD is created to allow the
set of processes to communicate with each other.

- The communicator has a size (the number of processes).

- Within a communicator, each process can be identified by its rank.

P

RAM

P

RAM

P

RAM

P

RAM

P

RAM

P

RAM

WORLD

Distribution: General knowledge about parallel computing

At the beginning of the execution, the library handling the communications
initializes a parallel environment by creating an overall communicator: the WORLD
communicator. This contains all of the processes allocated to the execution. Each
of these processes is identified by its rank.

The inter-process communication mechanisms are also initialized and managed by
the libraries: communication pipelines (ports, addresses), communication buffers
(temporary memory management when a communication is initiated), etc.

7

● Concrete examples based on the Horovod library

● The Horovod library is designed to ease the implementation of
Deep Learning distributed training

● TensorFlow
● Keras
● PyTorch
● Apache MXNet

Deep learning frameworks

● MPI (on CPU)
● NCCL (on GPU)

Communication libraries

Distribution: General knowledge about parallel computing

To understand the behavior of a program executed in parallel, we will present
some simple examples.

These examples are based on the use of Horovod, a library developed to facilitate
the distribution of Deep Learning training.

Horovod uses the MPI or NCCL communication libraries in backend: MPI for the
inter-CPU communications, and NCCL for the inter-GPU communications.

In the examples which follow, the instructions are on CPU for the sake of
simplicity and easy reading but all the concepts covered are transposable on GPU.

8

import horovod.torch as hvd

hvd.init()

size = hvd.size()

print(f'The communicator size is {size}')

$ srun --ntasks=4 <...> python script.py
The communicator size is 4
The communicator size is 4
The communicator size is 4
The communicator size is 4

● Execution on 4 processes (#SBATCH --ntasks=4):

● Parallelized code using Horovod:

Example 1: Each process reads and executes the code lines

Distribution: General knowledge about parallel computing

Example 1 :

The hvd.init() initializes the parallel environment at the start of execution. A
WORLD communicator is created.

To launch a script in parallel on Jean Zay, a number of processes > 1 must be
defined via Slurm using the --ntasks option and the script must be launched via
the srun command.

The example message: Each process reads and executes the program
independently.

9

import horovod.torch as hvd

hvd.init()

size = hvd.size()
rank = hvd.rank()

print(f'I am proc {rank} among {size}')

$ srun --ntasks=4 <...> python script.py
I am rank 1 among 4
I am rank 3 among 4
I am rank 2 among 4
I am rank 0 among 4

Example 2: We identify the processes thanks to their ranks

● Parallelized code using Horovod:

● Execution on 4 processes (#SBATCH --ntasks=4):

Distribution: General knowledge about parallel computing

Example 2 :

Example message: Each process is identified by its rank within the communicator.

We see here that each process contains a private variable, rank, a distinct value
per process.

10

Example 3: The processes can be assigned different tasks according to their ranks

import horovod.torch as hvd

hvd.init()

size = hvd.size()
rank = hvd.rank()

print(f'I am proc {rank}, my rank is {"even" if rank%2==0 else "odd"}')

$ srun --ntasks=4 <...> python script.py
I am proc 2, my rank is even
I am proc 0, my rank is even
I am proc 1, my rank is odd
I am proc 3, my rank is odd

● Parallelized code using Horovod:

● Execution on 4 processes (#SBATCH --ntasks=4):

Distribution: General knowledge about parallel computing

Example 3 :

Example message: We can make a line of code do different things on each process
depending on the local variables that each process has.

11

Example 4: The processes can be assigned different tasks according to their ranks

import horovod.torch as hvd

hvd.init()

size = hvd.size()
rank = hvd.rank()

if rank%2==0:
 print(f'I am proc {rank}, my rank is even')
else:
 print(f'I am proc {rank}, my rank is odd')

$ srun --ntasks=4 <...> python script.py
I am proc 2, my rank is even
I am proc 3, my rank is odd
I am proc 0, my rank is even
I am proc 1, my rank is odd

● Parallelized code using Horovod:

● Execution on 4 processes (#SBATCH --ntasks=4):

Distribution: General knowledge about parallel computing

Example 4 :

Example message: We can attribute different tasks per process by making certain
instructions dependent on the rank number of the process.

12

● Initial state of the memory

● Program

● Final state of the memory

for i in range(N) :
 c[i] = a[i] + b[i]
 sum += c[i]

Example 4: Parallelization of a compute loop

N = 4
a = [0, 1, 2, 3]
b = [4, 5, 6, 7]
c = [0, 0, 0, 0]
sum = 0

↓Process 0↓

N = 4
a = [0, 1, 2, 3]
b = [4, 5, 6, 7]
c = [4, 6, 8, 10]
sum = 28

Distribution: General knowledge about parallel computing

Example 4 :

Sequential execution of a computation loop.

13

size = hvd.size()
rank = hvd.rank()

istart = rank * N / size
iend = (rank+1) * N / size

for i in range(istart,iend) :
 c[i] = a[i] + b[i]
 sum += c[i]

N = 4
a = [0, 1, 2, 3]
b = [4, 5, 6, 7]
c = [0, 0, 0, 0]
sum = 0

N = 4
a = [0, 1, 2, 3]
b = [4, 5, 6, 7]
c = [0, 0, 0, 0]
sum = 0

↓Process 0↓ ↓Process 1↓

N = 4
a = [0, 1, 2, 3]
b = [4, 5, 6, 7]
c = [4, 6, 0, 0]
sum = 10

N = 4
a = [0, 1, 2, 3]
b = [4, 5, 6, 7]
c = [0, 0, 8, 10]
sum = 18

● Initial state of the memory

● Program

● Final state of the memory

Example 4: Parallelization of a compute loop

Distribution: General knowledge about parallel computing

Parallelization of the computation loop + vision of a parallel execution on 2
processes.

1/ To parallelize a loop, we distribute the loop indexes on the different processes.
It is important for this to be the most equitable distribution possible. (iend -
istart ideally identical on each process) in order to balance the computation load
on all the processes and to optimize the computation acceleration.

2/ We see the impact of the private variables:

- Vector c is only partially filled by processes. If we consider that the interest of
this program is to compute the value of sum, we can ignore it. A memory gain is
even possible by setting the size of vector c for iend - istart on each process.

- The sum value is incorrect, and differs depending on the process, because each
process only reads a part of vector c. An inter-process communication is necessary.

14

size = hvd.size()
rank = hvd.rank()

istart = rank * N / size
iend = (rank+1) * N / size

for i in range(istart,iend) :
 c[i] = a[i] + b[i]
 sum += c[i]
sum = hvd.allreduce(sum,op=hvd.Sum)

N = 4
a = [0, 1, 2, 3]
b = [4, 5, 6, 7]
c = [0, 0, 0, 0]
sum = 0

N = 4
a = [0, 1, 2, 3]
b = [4, 5, 6, 7]
c = [4, 6, 0, 0]
sum = 28

N = 4
a = [0, 1, 2, 3]
b = [4, 5, 6, 7]
c = [0, 0, 0, 0]
sum = 0

N = 4
a = [0, 1, 2, 3]
b = [4, 5, 6, 7]
c = [0, 0, 8, 10]
sum = 28

↓Process 0↓ ↓Process 1↓

P0 P1

18

2828

10

● Initial state of the memory

● Program

● Final state of the memory

Example 4: Parallelization of a compute loop

Distribution: General knowledge about parallel computing

Parallelization of a computation loop + vision of a parallel execution on 2 processes
+ inter-GPU communication

The AllReduce communication operation enables performing a reduction operation
(sum, product, minimum, maximum) on a value held by all of the communicator
processes. The result of this operation is recuperated by all of the processes.

15

● Inter-process communication AllReduce()

● Collective communication
● Synchronization barrier

P0

P1

P2

P3

AllReduce
(∑, ∏, min, max)

a0

a1

a2

a3

∑ai

∑ai

∑ai

∑aiP3P2P1P0

Barrier

P3P2P1P0 P3P2P1P0

costly communication

Distribution: General knowledge about parallel computing

AllReduce is a collective communication: It solicits all the processes.

Here, all the processes must both send and receive a piece of information (value
sent = ai, value received = ∑ai).

This communication represents a synchronization barrier: All the processes must
wait before continuing their computation.

This synchronization can represent an important loss of time if the computing load
is unevenly distributed between the processes.

16

● NCCL communications

P0

P1

P2

P3

Reduce
(∑, ∏, min, max)

∑ai

a0

a1

a2

a3

P0

P1

P2

P3

AllReduce
(∑, ∏, min, max)

a0

a1

a2

a3

∑ai

∑ai

∑ai

∑ai

P0

P1

P2

P3

ReduceScatter
(∑, ∏, min, max)

∑ai

∑bi

∑ci

∑di

a0

a1

a2

a3

b0

b1

b2

b3

c0

c1

c2

c3

d0

d1

d2

d3

P0

P1

P2

P3

Broadcast

a

a

a

a

a

P0

P1

P2

P3

AllGather

a0

a1

a2

a3

a0

a0

a0

a0

a1 a2 a3

a1 a2 a3

a1 a2 a3

a1 a2 a3

P0

P1

P2

P3

Send/Receive

a

a

Distribution: General knowledge about parallel computing

A quick overview of the inter-process communications offered by the NCCL library.

SEND / RECV = point-to-point operations soliciting only two processes.

The other operations are collective.

17

● Global execution time: T (N procs) =
T paral(1 proc)

N
+ T seq + T comm

P
RAM

Sequential execution

Global
execution time

Program
P

RAM

P
RAM

P
RAM

P
RAM

Parallel execution

Global
execution time

Program

Distribution: General knowledge about parallel computing

How much time gain to expect from the parallelization of a program?

Ideally, to solve the same problem, a parallelized code goes N times faster on N
processes than a sequential.

In practice:

- Certain code parts are not parallelizable and stay sequential. This cost is
inherent to the code structure.

- Inter-process communications have a cost (initialization of buffers, physical time
of message propagation on the interconnection network, …). This cost becomes
potentially prohibitive when the number of processes is too large for a given
computation load.

18

● Scalability study:

● Strong scaling
(problem size is constant)

● Weak scaling
(problem size is proportional to the
number of processes)

sp
ee

du
p

nb proc

idé
al

(1) (2)

ef
fic

ie
nc

y

nb proc

idéal

(1) (2)

(1) impact of the
sequential parts
of the code

(2) cost of the
inter-process
communications

T (1 proc)
T (N procs)

Distribution: General knowledge about parallel computing

To estimate the impact of parallelization on a code, it is advised to conduct a
scalability study. This study links the execution time of the code in parallel to the
number of processes.

Strong scaling: We maintain a fixed problem size and we trace the speedup based
on the number of processes. Tracing this scaling shows us the optimal number of
processes to define for a given problem.

Weak scaling: We increase the problem size proportionally to the number of
processes and we trace the efficiency based on the number of processes. Tracing
this scaling shows us the maximum problem size which the code is capable of
processing.

19

● Bandwidths of the interconnection networks on Jean Zay:

GPU 1 GPU 3

GPU 0 GPU 2

NVLink 25 Go/s

PCIe 16 Go/s

Noeud quadri-GPU

CPU 0 CPU 1 OPA 12,4 Go/s
Strong scaling

Flaubert benchmark

Mono-node Multi-node

NVLink
25 GB/sPCIe

16 GB/s

OPA
12 GB/s

CPU 0

Node 4 × V100 16GB

GPU 1

GPU 0

GPU 3

GPU 2

CPU 1

Distribution: General knowledge about parallel computing

The cost of communications on Jean Zay.

Different types of interconnection networks quadri-GPU V100 nodes:
- NVLink ~ 25 GB/s intra-node→
- PCIe ~ 16 GB/s CPU/GPU→
- OPA ~ 12 GB/s inter-nodes→
Conclusion: Good intra-node scalability expected; less good inter-node scalability.

On the right, example of strong scaling of the “Flaubert” classification bench (fine-
tuning). Executed on Jean Zay. Illustration of the divergence at the moment of
changing to multi-nodes.

20

GPU 1 GPU 3

GPU 0 GPU 2

NVLink 25 Go/s

PCIe 16 Go/s

Noeud quadri-GPU

CPU 0 CPU 1 OPA 12,4 Go/s

NVLink
300 GB/sPCIe

32 GB/sOPA
12 GB/s

GPU 1

GPU 0

GPU 3

GPU 2

GPU 5

GPU 4

GPU 7

GPU 6
6

s
w
i
t
c
h
e
sCPU 0

CPU 1

Node 8 × A100 80GB

1gpus 2gpus 4gpus 8gpus 16gpus 32gpus
0

5

10

15

20

25

30

35

speedup réel

speedup idéal

Strong scaling

Flaubert benchmark

Mono-node Multi-node

● Bandwidths of the interconnection networks on Jean Zay:

Distribution: General knowledge about parallel computing

The cost of communications on Jean Zay.

Different types of interconnection networks of octo-GPU 80GB A100 nodes:
- NVLink ~ 300 GB/s intra-node→
- PCIe ~ 32 GB/s CPU/GPU→
- OPA ~ 12 GB/s inter-nodes→
Conclusion: Good intra-node scalability expected; less good inter-node scalability.

On the right, example of strong scaling of the “Flaubert” classification bench (fine-
tuning). Executed on Jean Zay. Illustration of the divergence at the moment of
changing to multi-nodes.

21

Distributed training

General knowledge about parallel computing ◂

Data parallelism to distribute your training ◂

22

Distribution: Data parallelism

● Data parallelism

● Training time speedup

● Model small enough to be contained on one GPU in memory

● Causes large batches
(consequences on the training quality)

The main objective of data parallelism is to speed up the training.

Here, the model will be replicated on each GPU. Therefore, the model must be
contained in memory on 1 GPU.

The consequence of data parallelism is the augmentation of batch size in proportion
to the number of GPUs used. This implies adjusting certain parameters of the
model. This will be presented in the following chapters.

23

ForwardLocal dataset

ε
Prediction

error Backward

∇ f local

Local
gradients

∇ f global

Glocal
gradients UpdateOptimizer

Local
batches

ForwardLocal dataset

ε
Prediction

error Backward

∇ f local

Local
gradients

∇ f global

Glocal
gradients UpdateOptimizer

Local
batches

ForwardLocal dataset

ε

Prediction
error Backward

∇ f local

Local
gradients

∇ f global

Glocal
gradients UpdateOptimizer

Local
batche

s

Global dataset
⁞

Pr
oc

es
s
0

Pr
oc

es
s
1

Pr
oc

es
s
N

Allreduce
Average

Distribution: Data parallelism

Data parallelism consists of equally distributing the dataset on all the available
processes so that each process treats only one part of the data.

The batches created per process are called local batches here (i.e. contained in
memory by only one process). The propagation and backpropagation steps are
effectuated from these local batches, resulting in local gradient computation.

The local gradients are averaged on all the processes through AllReduce, a
collective communication reduction. The model parameters are updated based on
these overall gradients.

Important: In data parallelism, a training iteration implies N local batches in
parallel with N representing the number of active processes. The overall batch size
used for this training is, therefore, N x batch_size_per_gpu.

24

● Implementation of the data parallelism

● PyTorch → DistributedDataParallel (integrated solution)

● TensorFlow → MultiWorkerMirroredStrategy (integrated solution)

● Horovod (external librairy)

Distribution: Data parallelism

The data parallelism is implemented in classes within the PyTorch or TensorFlow
libraries. It is also possible to use Horovod in these two frameworks.

25

ForwardLocal dataset

ε
Prediction

error Backward

∇ f local

Local
gradients

∇ f global

Glocal
gradients UpdateOptimizer

Local
batches

ForwardLocal dataset

ε
Prediction

error Backward

∇ f local

Local
gradients

∇ f global

Glocal
gradients UpdateOptimizer

Local
batches

ForwardLocal dataset

ε
Prediction

error Backward

∇ f local

Local
gradients

∇ f global

Glocal
gradients UpdateOptimizer

Local
batches

Global dataset
⁞

Pr
oc

es
s
0

Pr
oc

es
s
1

Pr
oc

es
s
N

Allreduce
Average

DistributedDataParallel

Allreduce
Average

Distribution: Data parallelism

We will focus on the PyTorch DistributedDataParallel class.

26

● Execution of the parallel code → Slurm environment

Distribution example on : 4 nodes
3 GPUs per node

Slurm script

#SBATCH --nodes=4 # nb nodes
#SBATCH --ntasks=12 # nb proc
#SBATCH --ntasks-per-node=3 # nb proc / node
#SBATCH --gres=gpu:3 # nb GPUs / node

srun python script.py

Each GPU must be binded with one process.

Distribution: Data parallelism

Example of a Slurm configuration for the parallel execution of a training.

Important: In data parallelism, one process is attached to each GPU and the script
is launched with the srun command.

27

import torch.distributed
from torch.nn.parallel import DistributedDataParallel

initialize the parallel environment
torch.distributed.init_process_group(backend='nccl',

init_method='env://',
 world_size=world_size,

rank=rank)
bind one GPU per process
torch.cuda.set_device(local_rank)

duplicate the model
ddp_model = DistributedDataParallel(model, device_ids=[local_rank])

● DistributedDataParallel (training distribution)

Slurm

SLURM_NTASKS

SLURM_PROCID

SLURM_LOCALID

MASTER_ADDR

MASTER_PORT

Distribution: Data parallelism

Implementing data parallelism with DistributedDataParallel.

The parallel environment is initialized by the call to the init_process_group()
function.

NCCL is the backend to use on a GPU architecture.

The MASTER_ADDR (name of the compute node which will be designated as
“master” during the inter-node communications) and MASTER_PORT (port number
of the “master” node chosen between 10000 and 20000 arbitrarily) variables must
also be defined in the computing environment.

The characteristic values of the parallel environment (world_size, rank and
local_rank) are recovered from the Slurm environment by the corresponding
environment variables.

28

● DistributedDataParallel (training distribution)
● idr_torch.py script from IDRIS

idr_torch.py
import os
import hostlist

get SLURM variables
size = int(os.environ['SLURM_NTASKS'])
rank = int(os.environ['SLURM_PROCID'])
local_rank = int(os.environ['SLURM_LOCALID'])
cpus_per_task = int(os.environ['SLURM_CPUS_PER_TASK'])

get node list from slurm
hostnames = hostlist.expand_hostlist(os.environ['SLURM_JOB_NODELIST'])

get IDs of reserved GPU
gpu_ids = os.environ['SLURM_STEP_GPUS'].split(",")

define MASTER_ADD & MASTER_PORT
os.environ['MASTER_ADDR'] = hostnames[0]
os.environ['MASTER_PORT'] = str(12345 + int(min(gpu_ids)))

Distribution: Data parallelism

IDRIS developed the idr_torch model to facilitate the interfacing with Slurm. It
enables recovering the values of the size, rank and local_rank environment
variables and to define the MASTER_PORT and MASTER_ADDR environment
variables.

29

import idr_torch
import torch.distributed
from torch.nn.parallel import DistributedDataParallel

initialize the parallel environment
torch.distributed.init_process_group(backend='nccl',

init_method='env://',
 world_size=idr_torch.size,

rank=idr_torch.rank)

bind one GPU per process
torch.cuda.set_device(idr_torch.local_rank)

duplicate the model
ddp_model = DistributedDataParallel(model, device_ids=[idr_torch.local_rank])

● DistributedDataParallel (training distribution)

Slurm

SLURM_NTASKS

SLURM_PROCID

MASTER_ADDR

MASTER_PORT

SLURM_LOCALID

Distribution: Data parallelism

Using the module idr_torch. module.

30

● What about torchrun? → Possible but cumbersome.

Distribution: Data parallelism

[…]
#SBATCH --ntasks-per-node=1
[…]

GPUS_PER_NODE=8

MASTER_ADDR=$(scontrol show hostnames $SLURM_JOB_NODELIST | head -n 1)
MASTER_PORT=15000

CMD="train.py --arg1 1 --arg2 2"

export LAUNCHER="torchrun --nproc_per_node $GPUS_PER_NODE \
 --nnodes $SLURM_NNODES \

 --rdzv_backend c10d \
 --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT"

srun bash -c "$LAUNCHER --node_rank \$SLURM_PROCID $CMD"

slurm.sh

[…]
parser.add_argument("--local_rank", type=int, help="Local rank. Necessary for using torchrun.")
[...]
WORLD_RANK = int(os.environ['RANK'])
LOCAL_RANK = int(os.environ['LOCAL_RANK'])
WORLD_SIZE = int(os.environ['WORLD_SIZE']) train.py

Using the launcher torchrun is possible on Jean Zay but cumbersome.

“#SBATCH --ntasks-per-node=1”
Only one task must be launched per node, then torchrun spawns the processes on each
node for you (1 process per GPU).

“GPUS_PER_NODE=8”
The number of GPUs per node must correspond to the current compute configuration.

“--nproc_per_node $GPUS_PER_NODE --nnodes $SLURM_NNODES”
Each node must be aware of the number of GPUs per node and the total number of
nodes involved.

“--rdzv_backend c10d --rdzv_endpoint $MASTER_ADDR:$MASTER_PORT”
Each node must use the same MASTER_ADDR and MASTER_PORT to be able to
communicate.

“--node_rank $SLURM_PROCID”
Each node must have a unique rank.

A new argument --local_rank must be defined in your training script.

New environment variables WORLD_SIZE, RANK and LOCAL_RANK are created by
torchrun and can be used in the training script.

31

ForwardLocal dataset

ε
Prediction

error Backward

∇ f local

Local
gradients

∇ f global

Glocal
gradients UpdateOptimizer

Local
batches

ForwardLocal dataset

ε
Prediction

error Backward

∇ f local

Local
gradients

∇ f global

Glocal
gradients UpdateOptimizer

Local
batches

ForwardLocal dataset

ε
Prediction

error Backward

∇ f local

Local
gradients

∇ f global

Glocal
gradients UpdateOptimizer

Local
batches

Global dataset
⁞

Pr
oc

es
s
0

Pr
oc

es
s
1

Pr
oc

es
s
N

Allreduce
Average
Allreduce
Average

DistributedSampler

⁞
Allreduce
Average

Distribution: Data parallelism

Distributing the dataset on all the available processes is managed by the
DistributedSampler class.

32

import idr_torch
import torch.distributed
from torch.nn.parallel import DistributedDataParallel
from torch.utils.data.distributed import DistributedSampler

initialize the parallel environmenet
[...]

bind one GPU per process
[...]

duplicate the model
[...]

distribute the input data
data_sampler = DistributedSampler(dataset, shuffle=True,
 num_replicas=idr_torch.size, rank=idr_torch.rank)

● DistributedSampler (distributing the input data)

SLURM_NTASKS
SLURM_PROCID

Slurm

The shuffling step is assigned to the Sampler.

Distribution: Data parallelism

Implementating DistributedSampler.

DistributedSampler will distribute the dataset to all of the processes according
to the size and rank parameters.

Important: The shuffling step (random reorganization of the data indexes) is
attributed to the Sampler and not to the DataLoader.

33

● DistributedSampler (distributing the input data)

● Parallel execution on 4 processes using the DistributedSampler:

dataset = [1, 2, ..., 100]
batch_size_per_gpu = 5
ntasks = 4
batch_size=20

$ srun --ntasks=4 <...> python script.py
Rank 0: Batch 0 = tensor([1, 5, 9, 13, 17])
Rank 1: Batch 0 = tensor([2, 6, 10, 14, 18])
Rank 2: Batch 0 = tensor([3, 7, 11, 15, 19])
Rank 3: Batch 0 = tensor([4, 8, 12, 16, 20])

Distribution: Data parallelism

Example of using DistributedSampler.

34

● DistributedSampler + shuffling

● The index shuffling is performed by each GPU from a common seed.

● Parallel execution on 4 processes using the DistributedSampler:

dataset = [1, 2, ..., 100]
batch_size_per_gpu = 5
ntasks = 4
batch_size=20

$ srun --ntasks=4 <...> python script.py
Rank 0: Batch 0 = tensor([46, 36, 80, 17, 23])
Rank 1: Batch 0 = tensor([16, 64, 97, 12, 59])
Rank 2: Batch 0 = tensor([91, 18, 49, 24, 4])
Rank 3: Batch 0 = tensor([33, 73, 37, 81, 63])

Distribution: Data parallelism

Example of using DistributedSampler with random reorganization of the
indexes.

35

● DistributedSampler + shuffling

● The index shuffling is performed by each GPU from a common seed.

>>> Epoch 1
Rank 0: Batch 0 = tensor([46, 36, 80, 17, 23])
Rank 1: Batch 0 = tensor([16, 64, 97, 12, 59])
Rank 2: Batch 0 = tensor([91, 18, 49, 24, 4])
Rank 3: Batch 0 = tensor([33, 73, 37, 81, 63])
>>> Epoch 2
Rank 0: Batch 0 = tensor([46, 36, 80, 17, 23])
Rank 1: Batch 0 = tensor([16, 64, 97, 12, 59])
Rank 2: Batch 0 = tensor([91, 18, 49, 24, 4])
Rank 3: Batch 0 = tensor([33, 73, 37, 81, 63])

for epoch in range(1,30):

for i, batch in enumerate(dataloader):
...

Distribution: Data parallelism

Important: The seed used by DistributedSampler for the shuffling step is
calculated from the epoch number but this number is not updated automatically
during the training.

36

● DistributedSampler + shuffling

● The index shuffling is performed by each GPU from a common seed.

>>> Epoch 1
Rank 0: Batch 0 = tensor([46, 36, 80, 17, 23])
Rank 1: Batch 0 = tensor([16, 64, 97, 12, 59])
Rank 2: Batch 0 = tensor([91, 18, 49, 24, 4])
Rank 3: Batch 0 = tensor([33, 73, 37, 81, 63])
>>> Epoch 2
Rank 0: Batch 0 = tensor([49, 91, 8, 76, 48])
Rank 1: Batch 0 = tensor([98, 50, 21, 15, 22])
Rank 2: Batch 0 = tensor([2, 11, 71, 92, 75])
Rank 3: Batch 0 = tensor([82, 9, 74, 39, 53])

for epoch in range(1,30):
data_sampler.set_epoch(epoch)
for i, batch in enumerate(dataloader):

...

Distribution: Data parallelism

To update the epoch number and, therefore, the seed used for shuffling in the
DistributedSampler class, it is necessary to call the set_epoch() function at
each epoch.

37

● Custom Sampler (inspired by DistributedSampler)

class MyCustomDistributedSampler(Sampler):

def __init__(self,dataset,world_size,rank):
self.datalen = len(dataset)
self.world_size = world_size
self.rank = rank

def __len__(self):
return self.datalen

def __iter__(self):
indices = list(range(self.datalen))
shuffle or not shuffle
indices = indices[self.rank:self.datalen:self.world_size]
return iter(indices)

sampler = MyCustomDistributedSampler(dataset,idr_torch.size,idr_torch.rank)

$ srun --ntasks=4 <...> script.py
Rank 0: Batch 0 = tensor([1, 5, 9, 13, 17])
Rank 1: Batch 0 = tensor([2, 6, 10, 14, 18])
Rank 2: Batch 0 = tensor([3, 7, 11, 15, 19])
Rank 3: Batch 0 = tensor([4, 8, 12, 16, 20])

Distribution: Data parallelism

If you use a custom Sampler, a distribution of indexes is possible as illustrated.
This example is based on the DistributedSampler class.

38

● Go into the directory tp_pi/
● Follow instructions in the notebook DLO-JZ_Compute_pi.ipynb
● Parallelize the code compute_pi.py
● Compute PI on 4 GPUs

TP_PI: Parallel computation of PI using torch.distributed

39

● Follow instructions in the notebook DLO-JZ_Jour2.ipynb
● Implement data parallelism in the script dlojz.py
● Measure the gain in time when using 4 GPUs

TP2_1: Implement data parallelism in dlojz.py

