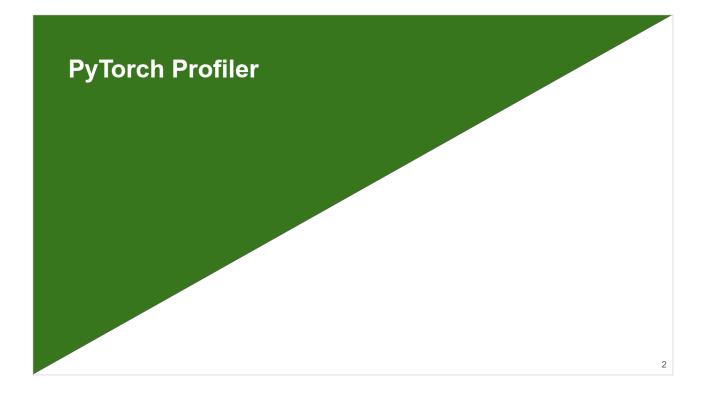


DLO-JZ course Commented slides Author: Myriam Peyrounette Updated February 2024



In this chapter, we will learn how to use the profiler implemented in PyTorch. We will visualize the traces generated with TensorBoard.

PyTorch Profiler

- We use a profiler to monitor an execution.
- It allows us to know the time and memory consumed by each part of the code.
- The results returned by the profiler point to the weaknesses of our code and tell us which parts we should optimize in priority.
- The profiler is a wrapper which records various information during the execution of the code.

This could be slowed down depending on the requested traces. We usually monitor only a few training steps.

with prof: for epoch in range(0,args.epochs): for i, (images, labels) in enumerate(train_loader): [...] prof.step()

PyTorch Profiler

4

```
from torch.profiler import profile, tensorboard_trace_handler, ProfilerActivity, schedule
prof = profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],
                                                                             # 1
                schedule=schedule(wait=1, warmup=1, active=5, repeat=1),
                                                                               2
                                                                             #
                                                                             # 3
                on_trace_ready=tensorboard_trace_handler(logname),
                                                                             # 4
                profile_memory=True,
                record_shapes=False,
                                                                             # 5
                                                                             # 6
                with_stack=False,
                                                                             # 7
                with_flops=False)
```

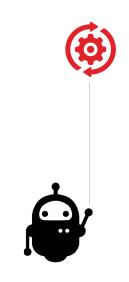
- 1. We monitor the activity both on CPUs and GPUs.
- 2. We ignore the first step (wait=1) and we initialize the monitoring tools on one step (warmup=1). We activate the monitoring on 5 steps (active=5) and repeat the pattern only once (repeat=1).
- 3. We store the traces in a TensorBoard format (.json).
- 4. We profile the memory usage.
- 5. We don't record the input shapes of the operators.
- 6. We don't record call stacks (information about the active subroutines).
- 7. We don't request the FLOPs estimate of the tensor operations.

The different input arguments of the profiler are detailed here.

If **record_shapes** is activated, a new column containing the operators input shapes appears in the Operator View tab (select "Group By: Operator + Input Shape").

By activating the **with_stack** option, call stacks are recorded and displayed in the Operator View tab (last column). This also improves the timeline readability. In return, it significantly increases the size of the traces (about x10) and more resources are required to keep the visualization fluent.

TP2_2 : Profiler PyTorch



- Implement the PyTorch profiler in dlojz.py.
- Visualize the trace with TensorBoard and draw conclusions about possible optimizations.

TP2_2 : Profiler PyTorch

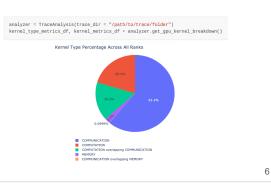
• NOTE

TensorBoard Plugin support has been deprecated, so some of these functions may not work as previously. Please take a look at the replacement, HTA.

Holistic Trace Analysis: https://hta.readthedocs.io/en/latest/

- Analyses PyTorch Profiler traces.
- Less user-friendly than TensorBoard Plugin.
- More thorough?

	rank	idle_time(ns)	compute_time(ns)	non_compute_time(ns)	kernel_time(ns)	idle_time_pctg	compute_time_pctg	non_compute_time_pctg
0	0	552069	596651	884850	2033570	27.15	29.34	43.51
1	1	431771	596759	1004227	2032757	21.24	29.35	49.40
2	2	312107	596886	1124788	2033781	15.35	29.35	55.3
3	3	274646	604137	1154491	2033274	13.51	29.71	56.74
4	4	418833	598040	1021824	2038697	20.54	29.33	50.12
5	5	318972	601581	1112561	2033114	15.69	29.59	54.72
6	6	388040	598029	1047787	2033856	19.08	29.40	51.52
7	7	454830	599358	979022	2033210	22.37	29.48	48.10



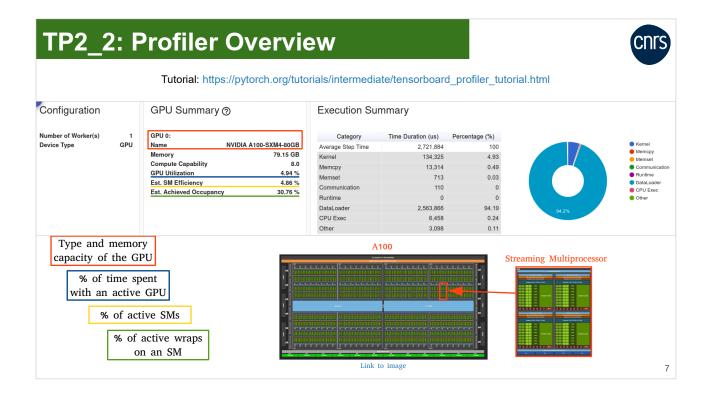
The TensorBoard plugin torch_tb_profiler is deprecated. The developers redirect people to the HTA (Holistic Trace Analysis) library.

This one is also based on the traces generated by the PyTorch profiler.

With HTA, traces can be analyzed using a series of tables (DataFrames) or plotting functions.

We think the HTA library is more difficult to grasp than the TensorBoard plugin.

We think the TensorBoard plugin is still operational for now despite some minor bugs.

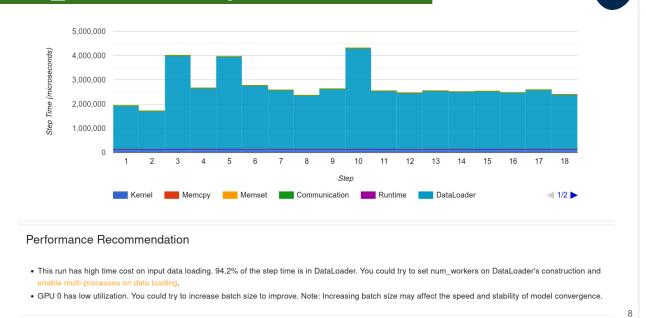


The Overview tab gives information on using the GPU up to a very fine granularity (at the scale of Streaming Multiprocessor wraps).

The functions called during the execution are sorted by categories and the percentage of time spent in each category is calculated.

Here, the DataLoader is the most time-consuming category, far ahead of the other categories.

TP2_2: Profiler Step Time

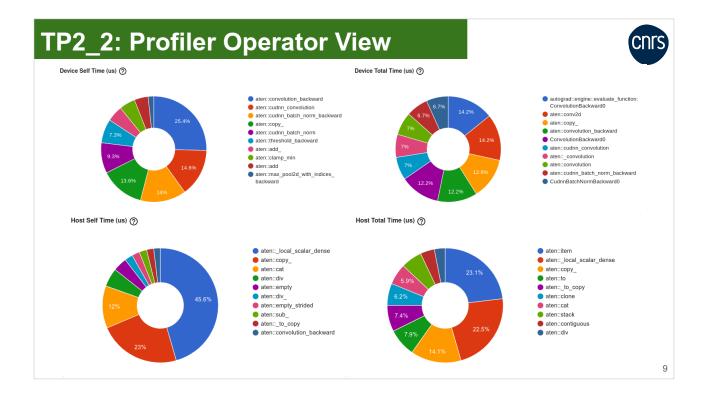


We are visualizing the time taken by each function category, by step.

The PyTorch profiler is capable of furnishing recommendations for possible optimizations of the code.

Here, the time is principally spent in the DataLoader at each iteration.

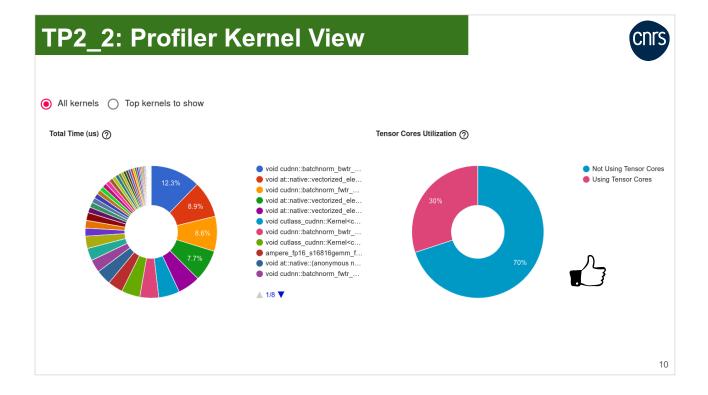
<u>Comment</u>: In general, we ignore the first iteration during which many functionalities are initialized because the time here is not representative.



In the Operator View tab, we visualize the PyTorch operators which take the most time, on GPU (Device) and on CPU (Host).

Certain operators call other operators. During the Self Time calculation, we ignore the time passed in the child operators. We take this into account during the Total Time calculation.

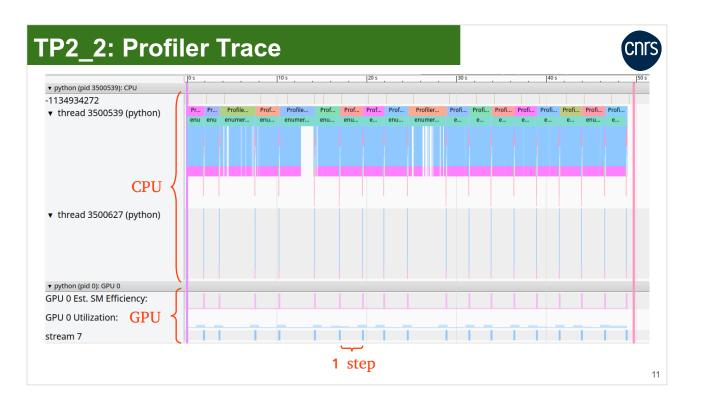
At the time of this writing, a bug prevents the upper "Device" part of this view from being displayed.



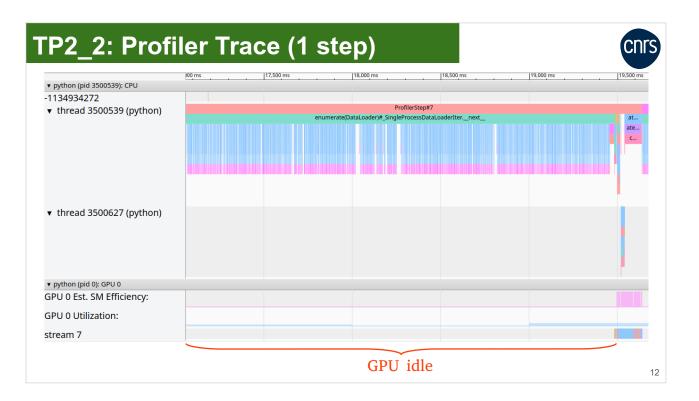
In the Kernel View tab, we visualize the information at the kernel level.

On the left, we visualize the CUDA functions which take the most time.

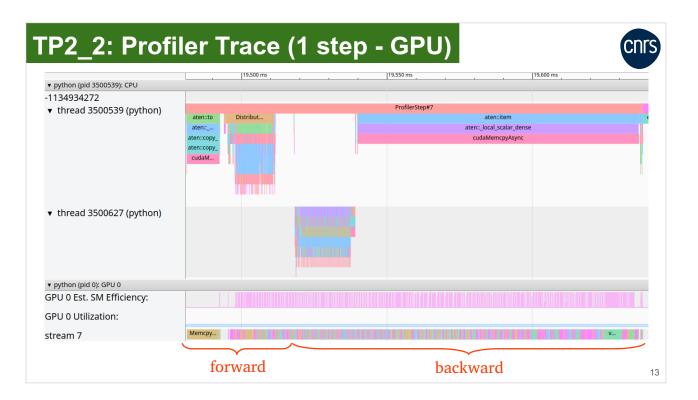
On the right, we visualize the percentage of time spent on the TensorCores. If the TensorCores are used very little or not at all, this could indicate that the mixed precision was not correctly implemented.



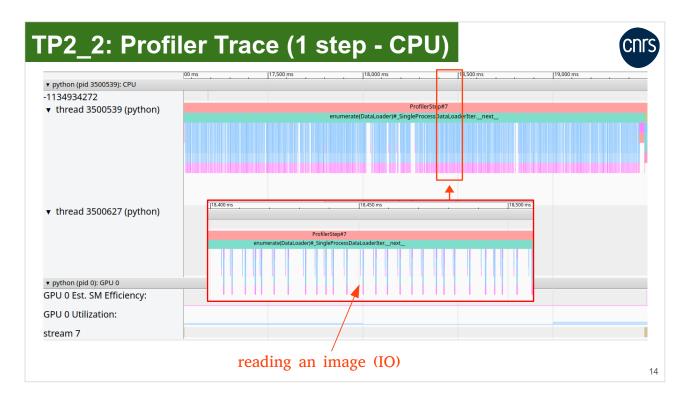
In the Trace tab, the profiler furnishes an execution timeline. We differentiate the CPU activity from the GPU activity.



By zooming in on an iteration, we note that the GPU is inactive most of the time.



By zooming in on the part of the iteration during which the GPU is active, we differentiate the forward and backward steps.



By zooming in on the part of the iteration during which the CPU is active, we see the call to the DataLoader. It is at this moment that the reading of input images takes place.

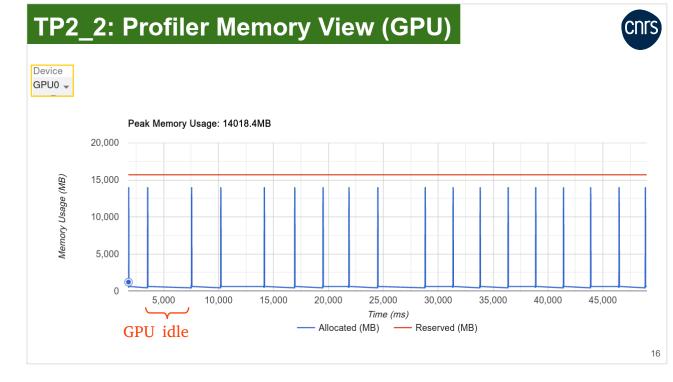
These "IO calls" are not displayed when num_workers>0.

The Distributed tab is relevant when you work with multiple GPUs.

We see the computation/communication ratio on the left hand side and the communication efficiency on the right hand side.

These results allow us to determine if the workload is properly balanced between the processes.

At the time of this writing, a bug prevents the "Distributed" tab from being displayed when using multiple GPUs.



In the Memory View tab, we see the GPU memory usage over time.

We distinguish here also the periods during which the GPU is inactive.

TP2_2: Profiler Memory View (CPU)

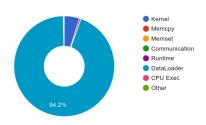
Device CPU 🚽 Peak Memory Usage: 544.5MB 600 500 Memory Usage (MB) 400 300 200 100 0 5,000 10,000 15,000 20,000 25,000 30,000 35,000 40,000 45,000 Time (ms) Allocated (MB) ----- Reserved (MB) 17

The CPU memory usage over time is also shown.

We distinguish a progressive loading of the memory at each iteration during the reading of images, a peak during the data transformation, then a significant deallocation when the batch is transferred from CPU memory to GPU memory.

Note: This view is not available anymore when $num_workers>0$.

TP2_2: Profiler PyTorch (conclusion)



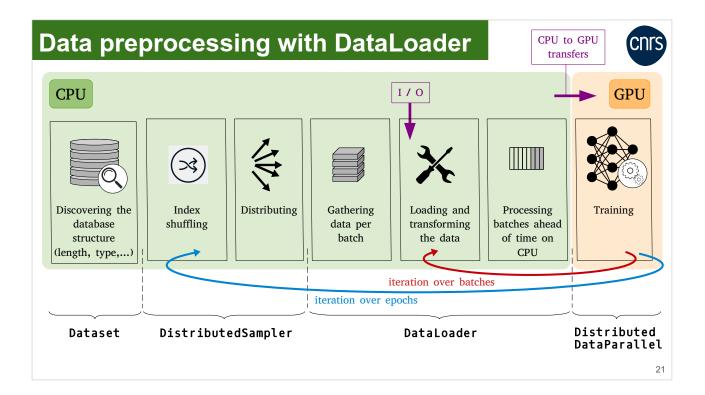
After seeing the traces, it is obvious that the optimization efforts need to concentrate on the DataLoader.

CNrs

Optimization of the data preprocessing

IDRIS

<section-header><section-header><section-header><section-header><section-header><text>



Details of the data preprocessing workflow during a training.

In this section, we will focus on the steps managed by the DataLoader.

Data preprocessing with DataLoader

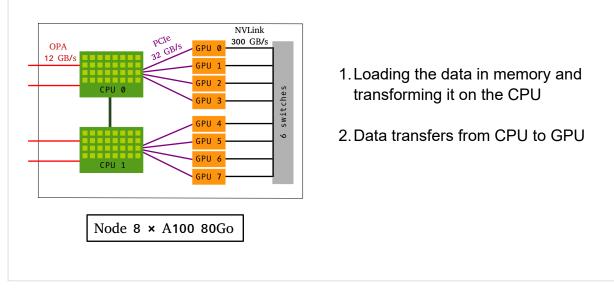


Example: A usual call to the DataLoader.

Important: The batch size indicated at the moment of the creation of the DataLoader is the batch size per GPU: batch_size_per_gpu.

Optimization of the DataLoader

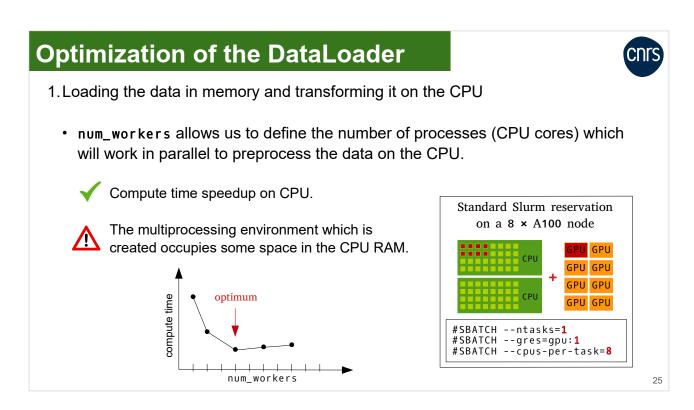
• Crucial points regarding the performance of data preprocessing:



CNI

24

The performance of the DataLoader is mainly driven by: the CPU performance for data loading and transformation, and the time spent in CPU to GPU transfers.



The data loading and transformation operations can be effectuated in parallel on multiple CPU cores. The processes implicated are called "workers" here.

Instead of one batch, num_workers batches will be preprocessed at the same time.

This option offers an important speedup in preprocessing time. On the other hand, the creation of a parallel environment takes up space in the CPU RAM.

In a typical Slurm allocation on a Jean Zay octo-GPU, we reserve 8 CPU cores per task. Optimization tests should be conducted for each test case to define the optimal number of workers (lower than 8? multiple of 8?).

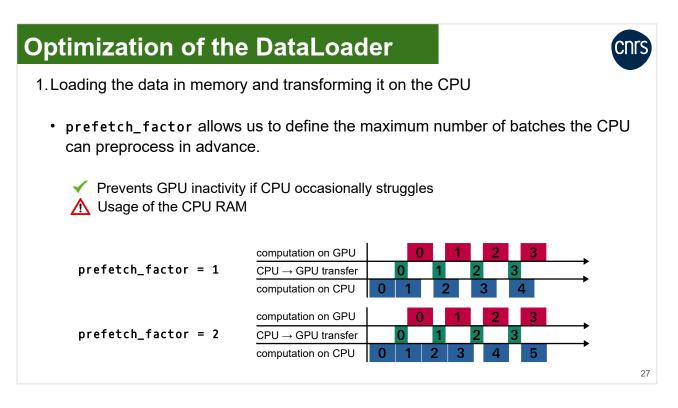
Optimization of the DataLoader

- 1. Loading the data in memory and transforming it on the CPU
 - num_workers allows us to define the number of processes (CPU cores) which will work in parallel to preprocess the data on the CPU.
 - persistent_workers=True allows us to maintain the active processes throughout the training.

Time gain: We avoid reinitializing the processes at each epoch.

Usage of the CPU RAM (can become an issue if multiple DataLoaders are used).

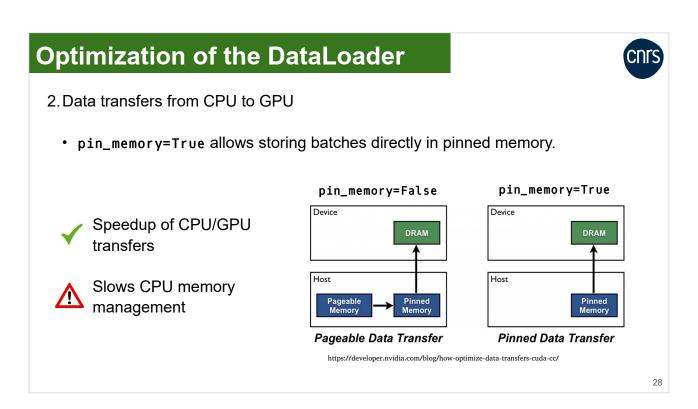
Initializing the workers takes time (proportionately to their number). It is advised to avoid reinitializing them at each epoch unless you need to make room in the CPU RAM.



Preprocessing batches in advance on CPU can prevent GPU inactivity in case of occasional CPU slowdowns.

The CPU will preprocess input data per pack of num_workers*prefetch_factor batches.

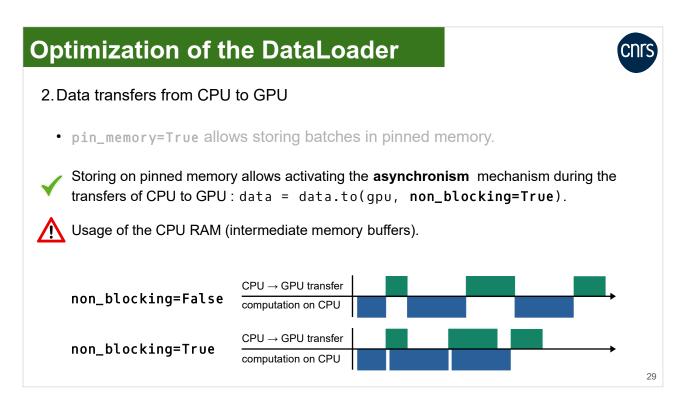
Important: The preprocessed batches occupy CPU memory and could saturate it if the prefetch factor is too large.



To be transferred to the GPU, a message must first be copied from the pageable memory to the pinned memory on the CPU.

The pin_memory=True option enables storing the message directly in pinned memory to speed up the transfer.

It is advised to activate this option except if it slows down the CPU performance.



Activating the pin_memory option allows effectuating asynchronous sends during the transfers from CPU to GPU.

As a result, the CPU no longer needs to wait for the GPU to receive the message before continuing its computation.

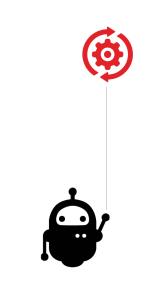
The CPU computation and the CPU to GPU transfer overlap so we gain time.

Optimization of the DataLoader

30

- Other DataLoader option:
 - drop_last=True allows us to ignore the last samples if the size of the dataset is not a multiple of the number of batches.
 - The workload per process is balanced.
 - We avoid the cost of treating an incomplete batch.

Loss of information?



- Modify the DataLoader options.
- Measure the time gain on a few steps.

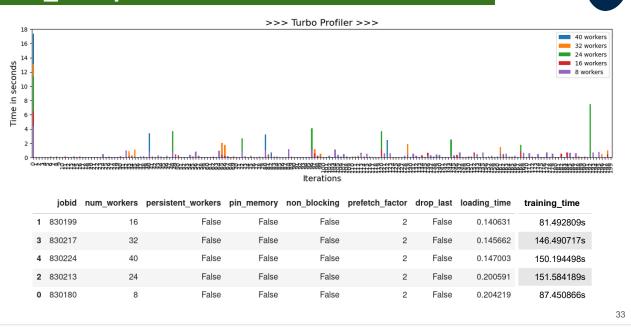
Cnrs

• The most efficient optimization is the increase of num_workers.

CNrs

Since the CPU preprocesses packs of num_workers batches, we can see that num_workers steps can run in a row without waiting.

We gain a lot of time by increasing the number of workers .



CNI

During the first iteration, we can see that the initialization takes more time when using more workers.

Even when using a large number of workers, time peaks still appear due to the variability of IO performance on Jean Zay.

cnrs

Intermediate conclusion about num_workers setting:

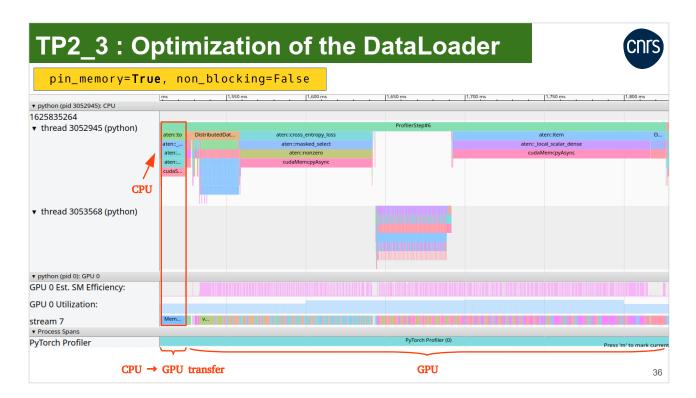
- Increase num_workers progressively and observe if the DataLoader scales or not on a few steps.
- For low CPU workload, num_workers can be a multiple of cpus-per-task.
- Setting too many workers creates bottlenecks or Out Of Memory failures.
- Be aware that few steps are not completely representative.
- IOs on Jean Zay are erratic.

TP2_3 : Op	otimizatio	n of t	the Data	Loade	er	cnrs
<pre>pin_memory=False</pre>	e, non_blocking=	=False				
	1,600 ms	1 I	1,700 ms		1,800 ms	1,900 ms
ypython (pid 593863): CPU thread 593863 (python)	aten::to	Distribut	ProfilerSt aten::cross_entropy_loss	tep#6	aten::item	0.
	aten::_to_copy aten::copy_ aten::copy_		aten::masked_select aten::nonzero cudaMemcpyAsync		aten::_local_scalar_ cudaMemcpyAs	
1	cudaMemcpyAsync					
CPU ▼ thread 594417 (python)						
▼ python (pid 0): GPU 0				1		
GPU 0 Est. SM Efficiency:						
GPU 0 Utilization:						
stream 7	Memcpy HtoD (Pa	voi				
 Process Spans 				D (1)		
PyTorch Profiler			PyTorch	n Profiler (0)		
	$CPU \rightarrow GPU \ transfer$			GPU		35

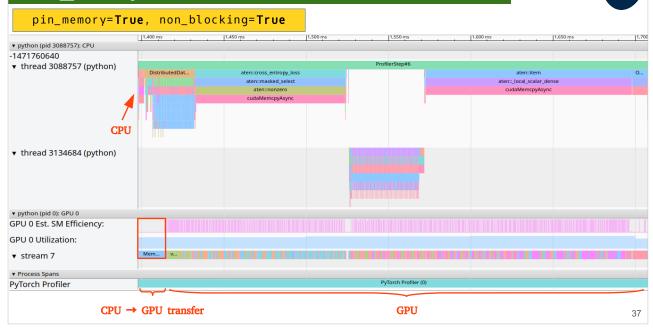
If we zoom on an iteration, we note that the time taken by the DataLoader on CPU becomes negligible when increasing the number of workers.

The GPU is now active three-quarters of the time.

We will try to optimize the part outlined in red which corresponds to the transfer of data from CPU to GPU.



By storing the preprocessed batches directly in pinned memory, we reduce the transfer time.



CNr

By activating the asynchronism mechanism, the CPU does not wait for the transfer from CPU to GPU to be terminated before continuing its instructions.

• Chosen opti	mizations:	persi pin_m non_b	emory = locking	16 orkers = 1 True = True tor = 2	rue				
Configuration	nfiguration GPU Summary @			Execution Summary					
Number of Worker(s) 1	GPU 0: Name NVIDIA A100-SXM4-80GB Memory 79.15 GB Compute Capability 8.0 GPU Utilization 86.84 % Est. SM Efficiency 85.55 % Est. Achieved Occupancy 32.15 %	Category	Time Duration (us)	Percentage (%)					
Device Type GPU		NVIDIA A10	NVIDIA A100-SXM4-80GB	Average Step Time	142,633	100		Kernel	
		8.0 86.84 % 85.55 %	Kernel	123,861	86.84		Memcpy		
				Memcpy	9,311	6.53		Communication Runtime DataLoader CPU Exec Other	
				Memset	558	0.39			
				Communication	39	0.03			
		incy	icy 32.15 %	Runtime	0	0	86.8%		
				DataLoader	327	0.23			
				CPU Exec	3,862	2.71			
			Other	4,675	3.28				
								38	

The major optimization of the DataLoader is the parallelization of the data loading and transformation on CPU with num_workers>1.

The optimal number of workers depends on your use case. You should run tests on a few steps to choose. To many workers can slow down the execution.

We advise you to:

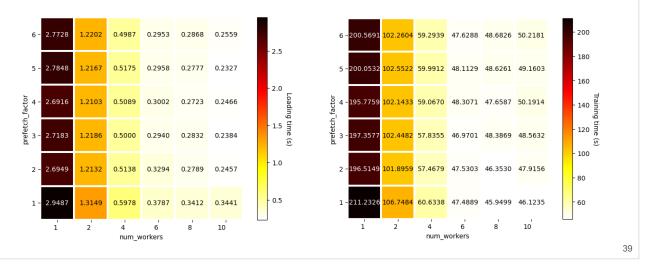
- Avoid reinitializing the workers at each epoch by setting persistent_workers=True.
- Store batches directly on the pinned memory by setting pin_memory=True unless you observe some weird CPU slowdown.
- Activate the asynchronism of CPU to GPU tranfers by setting non_blocking=True when sending batches to GPU.
- Avoid incomplete batches by setting drop_last=True unless you think you might lose too much information.

Setting prefetch_factor=2 (default) is usually enough.

Appendix: Optimization of the DataLoader

Impact of the prefetch factor

dlojz.py - 50 iterations - test partition gpu_p4 NB: These results don't correspond to our usage case but still illustrate the influence of the parameters.



We present here the results of a parametric study on the impact of the num_workers and prefetch_factor parameters on the data preprocessing time on CPU.

This study was conducted on the dlojz.py test case on 50 iterations, on the Jean Zay gpu_p4 partition (octo-GPU A100 PCIe node). The numbers seen here are not completely the same as in our "hands-on" case but the same trends appear.

The principal acceleration factor is the number of workers. For a given number of workers, a prefetch_factor of 2 or 3 is generally sufficient.