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PyTorch Profiler

In this chapter, we will learn how to use the profiler implemented in PyTorch.  We will 
visualize the traces generated with TensorBoard.
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with prof:         
for epoch in range(0,args.epochs):

for i, (images, labels) in enumerate(train_loader):
[...]
prof.step()

PyTorch Profiler

● We use a profiler to monitor an execution.

● It allows us to know the time and memory consumed by each part of the code.

● The results returned by the profiler point to the weaknesses of our code and tell us which parts 
we should optimize in priority.

● The profiler is a wrapper which records various information during the execution of the code.

This could be slowed down depending on the requested traces. We usually monitor only a few 
training steps.
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PyTorch Profiler

from torch.profiler import profile, tensorboard_trace_handler, ProfilerActivity, schedule

prof =  profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], # 1
                schedule=schedule(wait=1, warmup=1, active=5, repeat=1), # 2               
                on_trace_ready=tensorboard_trace_handler(logname),  # 3
                profile_memory=True,     # 4
                record_shapes=False,     # 5
                with_stack=False,     # 6
                with_flops=False)     # 7

1. We monitor the activity both on CPUs and GPUs.
2. We ignore the first step (wait=1) and we initialize the monitoring tools on one step (warmup=1). We activate 

the monitoring on 5 steps (active=5) and repeat the pattern only once (repeat=1).
3. We store the traces in a TensorBoard format (.json).
4. We profile the memory usage.
5. We don’t record the input shapes of the operators.
6. We don’t record call stacks (information about the active subroutines).
7. We don’t request the FLOPs estimate of the tensor operations.

The different input arguments of the profiler are detailed here. 

If record_shapes is activated, a new column containing the operators input shapes 
appears in the Operator View tab (select “Group By: Operator + Input Shape”).

By activating the with_stack option, call stacks are recorded and displayed in the 
Operator View tab (last column). This also improves the timeline readability. In return, 
it significantly increases the size of the traces (about x10) and more resources are 
required to keep the visualization fluent.
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TP2_2 : Profiler PyTorch

● Implement the PyTorch profiler in dlojz.py.
● Visualize the trace with TensorBoard and draw 

conclusions about possible optimizations.
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TP2_2 : Profiler PyTorch

Holistic Trace Analysis: https://hta.readthedocs.io/en/latest/
● Analyses PyTorch Profiler traces.
● Less user-friendly than TensorBoard Plugin.
● More thorough?

The TensorBoard plugin torch_tb_profiler is deprecated. The developers 
redirect people to the HTA (Holistic Trace Analysis) library.

This one is also based on the traces generated by the PyTorch profiler.

With HTA, traces can be analyzed using a series of tables (DataFrames) or plotting 
functions. 

We think the HTA library is more difficult to grasp than the TensorBoard plugin.

We think the TensorBoard plugin is still operational for now despite some minor bugs.

https://hta.readthedocs.io/en/latest/
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TP2_2: Profiler Overview 

Type and memory
capacity of the GPU

% of time spent
with an active GPU

% of active SMs

% of active wraps
on an SM

Streaming Multiprocessor

Link to image

A100

Tutorial: https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html

The Overview tab gives information on using the GPU up to a very fine granularity 
(at the scale of Streaming Multiprocessor wraps). 

The functions called during the execution are sorted by categories and the 
percentage of time spent in each category is calculated. 

Here, the DataLoader is the most time-consuming category, far ahead of the other 
categories. 

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html
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TP2_2: Profiler Step Time 
Breakdown

We are visualizing the time taken by each function category, by step.

The PyTorch profiler is capable of furnishing recommendations for possible 
optimizations of the code. 

Here, the time is principally spent in the DataLoader at each iteration.

Comment:  In general, we ignore the first iteration during which many functionalities 
are initialized because the time here is not representative. 
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TP2_2: Profiler Operator View

In the Operator View tab, we visualize the PyTorch operators which take the most 
time, on GPU (Device) and on CPU (Host).

Certain operators call other operators. During the Self Time calculation, we ignore 
the time passed in the child operators. We take this into account during the Total 
Time calculation. 

At the time of this writing, a bug prevents the upper “Device” part of this view from 
being displayed.
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TP2_2: Profiler Kernel View

In the Kernel View tab, we visualize the information at the kernel level. 

On the left, we visualize the CUDA functions which take the most time.

On the right, we visualize the percentage of time spent on the TensorCores. If the  
TensorCores are used very little or not at all, this could indicate that the mixed 
precision was not correctly implemented. 
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TP2_2: Profiler Trace

1 step

CPU

GPU

In the Trace tab, the profiler furnishes an execution timeline. We differentiate the 
CPU activity from the GPU activity. 
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TP2_2: Profiler Trace (1 step)

GPU idle

By zooming in on an iteration, we note that the GPU is inactive most of the time.



13

TP2_2: Profiler Trace (1 step - GPU)

forward backward

By zooming in on the part of the iteration during which the GPU is active, we
differentiate the forward and backward steps.
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TP2_2: Profiler Trace (1 step - CPU)

reading an image (IO)

By zooming in on the part of the iteration during which the CPU is active, we see the
call to the DataLoader. It is at this moment that the reading of input images takes
place.

These “IO calls” are not displayed when num_workers>0.
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TP2_2: Profiler Distributed

Image from the tutorial: https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html

The Distributed tab is relevant when you work with multiple GPUs.

We see the computation/communication ratio on the left hand side and the 
communication efficiency on the right hand side.

These results allow us to determine if the workload is properly balanced between the 
processes.

At the time of this writing, a bug prevents the “Distributed” tab from being displayed 
when using multiple GPUs.

https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html
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TP2_2: Profiler Memory View (GPU)

GPU idle

In the Memory View tab, we see the GPU memory usage over time. 

We distinguish here also the periods during which the GPU is inactive. 
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TP2_2: Profiler Memory View (CPU)

The CPU memory usage over time is also shown.

We distinguish a progressive loading of the memory at each iteration during the 
reading of images, a peak during the data transformation, then a significant 
deallocation when the batch is transferred from CPU memory to GPU memory. 

Note: This view is not available anymore when num_workers>0.
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TP2_2: Profiler PyTorch (conclusion)

After seeing the traces, it is obvious that the optimization 
efforts need to concentrate on the DataLoader.
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Optimization of the data 
preprocessing

Data preprocessing with DataLoader ◂

Optimization of the DataLoader  ◂
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Discovering the 
database 
structure

(length, type,...)

I / O

Index
shuffling

Distributing Gathering 
data per 
batch

Loading and 
transforming 

the data

Processing 
batches ahead 
of time on 

CPU

Training

CPU GPU

Dataset DistributedSampler DataLoader Distributed
DataParallel

Data preprocessing with DataLoader 

iteration over batches

iteration over epochs

CPU to GPU
transfers

Details of the data preprocessing workflow during a training.

In this section, we will focus on the steps managed by the DataLoader.
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from torch.utils.data import DataLoader

# initialize the parallel environment -> init_process_group()

# duplicate the model  DistributedDataParallel→

# distribute the input data  DistributedSampler→

# preprocess data
batch_size_per_gpu = global_batch_size // idr_torch.size

data_loader = DataLoader(dataset, 
  sampler=data_sampler,

                         batch_size=batch_size_per_gpu, 
   num_workers=<int>,

                         persistent_workers=<bool>,
                         prefetch_factor=<int>,
                         pin_memory=<bool>,
                         drop_last=<bool>
                        )

●  DataLoader (data preprocessing)

Slurm

SLURM_NTASKS

Data preprocessing with DataLoader 

Example: A usual call to the DataLoader.

Important:  The batch size indicated at the moment of the creation of the 
DataLoader is the batch size per GPU:  batch_size_per_gpu.
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Optimization of the data 
preprocessing

Data preprocessing with DataLoader ◂

Optimization of the DataLoader  ◂
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1.Loading the data in memory and 
transforming it on the CPU

2.Data transfers from CPU to GPU 

● Crucial points regarding the performance of data preprocessing:

Optimization of the DataLoader 

NVLink
300 GB/sPCIe

32 G
B/sOPA 

12 GB/s
GPU 1

GPU 0

GPU 3

GPU 2

GPU 5

GPU 4

GPU 7

GPU 6
6
 
s
w
i
t
c
h
e
sCPU 0

CPU 1

Node 8 × A100 80Go

The performance of the DataLoader is mainly driven by: the CPU performance for 
data loading and transformation, and the time spent in CPU to GPU transfers.
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1.Loading the data in memory and transforming it on the CPU

● num_workers allows us to define the number of processes (CPU cores) which 
will work in parallel to preprocess the data on the CPU.

Compute time speedup on CPU.

The multiprocessing environment which is 
created occupies some space in the CPU RAM.

co
m

p
u

te
 t

im
e

num_workers

optimum

Optimization of the DataLoader 

#SBATCH --ntasks=1        
#SBATCH --gres=gpu:1      
#SBATCH --cpus-per-task=8

Standard Slurm reservation
on a 8 × A100 node

GPU GPU

GPU GPU

GPU GPU

GPU GPU

CPU

CPU

+

The data loading and transformation operations can be effectuated in parallel on 
multiple CPU cores.  The processes implicated are called “workers” here.

Instead of one batch, num_workers batches will be preprocessed at the same time.

This option offers an important speedup in preprocessing time. On the other hand, 
the creation of a parallel environment takes up space in the CPU RAM.

In a typical Slurm allocation on a  Jean Zay octo-GPU, we reserve 8 CPU cores per 
task. Optimization tests should be conducted for each test case to define the 
optimal number of workers (lower than 8? multiple of 8?).   
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1.Loading the data in memory and transforming it on the CPU

● num_workers allows us to define the number of processes (CPU cores) which 
will work in parallel to preprocess the data on the CPU.

● persistent_workers=True allows us to maintain the active processes 
throughout the training.

Time gain: We avoid reinitializing the processes at each epoch.

Usage of the CPU RAM (can become an issue if multiple DataLoaders 
are used).

Optimization of the DataLoader 

Initializing the workers takes time (proportionately to their number). It is advised 
to avoid reinitializing them at each epoch unless you need to make room in the 
CPU RAM.
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1.Loading the data in memory and transforming it on the CPU

● prefetch_factor allows us to define the maximum number of batches the CPU 
can preprocess in advance.

       Prevents GPU inactivity if CPU occasionally struggles
Usage of the CPU RAM

prefetch_factor = 1

prefetch_factor = 2

0
0

0computation on GPU

computation on CPU

CPU → GPU transfer

Optimization of the DataLoader 

0
0

0 1

computation on GPU

computation on CPU

CPU → GPU transfer

Preprocessing batches in advance on CPU can prevent GPU inactivity in case of 
occasional CPU slowdowns.

The CPU will preprocess input data per pack of num_workers×prefetch_factor 
batches.

Important: The preprocessed batches occupy CPU memory and could saturate it if 
the prefetch factor is too large. 
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2.Data transfers from CPU to GPU

● pin_memory=True allows storing batches directly in pinned memory. 

Speedup of CPU/GPU 
transfers

Slows CPU memory
management

pin_memory=True

https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/

pin_memory=False

Optimization of the DataLoader 

To be transferred to the GPU, a message must first be copied from the pageable 
memory to the pinned memory on the CPU. 

The pin_memory=True option enables storing the message directly in pinned 
memory to speed up the transfer.  

It is advised to activate this option except if it slows down the CPU performance. 
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2.Data transfers from CPU to GPU

● pin_memory=True allows storing batches in pinned memory.

Storing on pinned memory allows activating the asynchronism  mechanism during the 
transfers of CPU to GPU : data = data.to(gpu, non_blocking=True).

Usage of the CPU RAM (intermediate memory buffers).

CPU → GPU transfer

computation on CPU

CPU → GPU transfer

computation on CPU

non_blocking=False

non_blocking=True

Optimization of the DataLoader 

Activating the pin_memory option allows effectuating asynchronous sends during 
the transfers from CPU to GPU. 

As a result, the CPU no longer needs to wait for the GPU to receive the message 
before continuing its computation. 

The CPU computation and the CPU to GPU transfer overlap so we gain time.
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● Other DataLoader option:

● drop_last=True allows us to ignore the last samples if the size of the dataset 
is not a multiple of the number of batches.

The workload per process is balanced.

We avoid the cost of treating an incomplete batch.

Loss of information? 

Optimization of the DataLoader 

To avoid GPU inactivity, setting drop_last=True is is good practice. In return, you 
may lose some information.
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● Modify the DataLoader options.
● Measure the time gain on a few steps.

TP2_3 : Optimization of the DataLoader
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● The most efficient optimization is the increase of num_workers.

num_workers=0

num_workers=4

num_workers=2

num_workers=8

TP2_3 : Optimization of the DataLoader

Since the CPU preprocesses packs of num_workers batches, we can see that 
num_workers steps can run in a row without waiting.

We gain a lot of time by increasing the number of workers .
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TP2_3 : Optimization of the DataLoader

training_time

81.492809s

146.490717s

150.194498s

151.584189s

87.450866s

During the first iteration, we can see that the initialization takes more time when using 
more workers.

Even when using a large number of workers, time peaks still appear due to the 
variability of IO performance on Jean Zay.
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TP2_3 : Optimization of the DataLoader

Intermediate conclusion about num_workers setting:

● Increase num_workers progressively and observe if the DataLoader scales or 

not on a few steps.

● For low CPU workload, num_workers can be a multiple of cpus-per-task.

● Setting too many workers creates bottlenecks or Out Of Memory failures.

● Be aware that few steps are not completely representative. 

● IOs on Jean Zay are erratic.
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CPU  GPU transfer→ GPU

CPU

TP2_3 : Optimization of the DataLoader
pin_memory=False, non_blocking=False

If we zoom on an iteration, we note that the time taken by the DataLoader on CPU 
becomes negligible when increasing the number of workers. 

The GPU is now active three-quarters of the time. 

We will try to optimize the part outlined in red which corresponds to the transfer of data 
from CPU to GPU. 
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CPU

TP2_3 : Optimization of the DataLoader

CPU  GPU transfer→ GPU

pin_memory=True, non_blocking=False

By storing the preprocessed batches directly in pinned memory, we reduce the transfer 
time.
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CPU

pin_memory=True, non_blocking=True

TP2_3 : Optimization of the DataLoader

CPU  GPU transfer→ GPU

By activating the asynchronism mechanism, the CPU does not wait for the transfer from 
CPU to GPU to be terminated before continuing its instructions.
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● Chosen optimizations:
num_wokers = 16
persistent_workers = True
pin_memory = True
non_blocking = True
prefetch_factor = 2

TP2_3: Optimization of the DataLoader

The major optimization of the DataLoader is the parallelization of the data loading 
and transformation on CPU with num_workers>1.

The optimal number of workers depends on your use case. You should run tests on 
a few steps to choose. To many workers can slow down the execution.

We advise you to:
● Avoid reinitializing the workers at each epoch by setting 

persistent_workers=True.
● Store batches directly on the pinned memory by setting pin_memory=True 

unless you observe some weird CPU slowdown.
● Activate the asynchronism of CPU to GPU tranfers by setting 

non_blocking=True when sending batches to GPU.
● Avoid incomplete batches by setting drop_last=True unless you think you 

might lose too much information.

Setting prefetch_factor=2 (default) is usually enough.
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● Impact of the prefetch factor
dlojz.py - 50 iterations - test partition gpu_p4
NB: These results don’t correspond to our usage case but still illustrate the influence of the parameters.

Appendix: Optimization of the DataLoader

We present here the results of a parametric study on the impact of the num_workers 
and prefetch_factor parameters on the data preprocessing time on CPU. 

This study was conducted on the dlojz.py test case on 50 iterations, on the Jean Zay 
gpu_p4 partition (octo-GPU A100 PCIe node). The numbers seen here are not 
completely the same as in our “hands-on” case but the same trends appear.  

The principal acceleration factor is the number of workers. For a given number of 
workers, a  prefetch_factor of 2 or 3 is generally sufficient.


