

Deep Learning Optimized on Jean Zay

Profiler PyTorch

IDRIS

PyTorch Profiler

PyTorch Profiler

- We use a profiler to monitor an execution.
- It allows us to know the **time** and **memory** consumed by each part of the code.
- The results returned by the profiler point to the weaknesses of our code and tell us which parts we should **optimize** in priority.
- The profiler is a wrapper which records various information during the execution of the code.

This could be slowed down depending on the requested traces. We usually monitor only **a few training steps**.

```
with prof:
    for epoch in range(0,args.epochs):
        for i, (images, labels) in enumerate(train_loader):
            [...]
            prof.step()
```


<pre>from torch.profiler import profile, tensorboard_trace_handler, ProfilerAct:</pre>	ivity, schedule
<pre>prof = profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA],</pre>	# 1 # 2 # 3 # 4 # 5 # 6 # 7

- 1. We monitor the activity both on CPUs and GPUs.
- 2. We ignore the first step (wait=1) and we initialize the monitoring tools on one step (warmup=1). We activate the monitoring on 5 steps (active=5) and repeat the pattern only once (repeat=1).
- 3. We store the traces in a TensorBoard format (.json).
- 4. We profile the memory usage.
- 5. We don't record the input shapes of the operators.
- 6. We don't record call stacks (information about the active subroutines).
- 7. We don't request the FLOPs estimate of the tensor operations.

- Implement the PyTorch profiler in dlojz.py.
- Visualize the trace with TensorBoard and draw conclusions about possible optimizations.

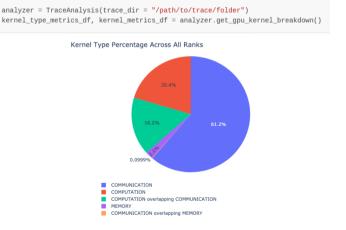
• NOTE

TensorBoard Plugin support has been deprecated, so some of these functions may not work as previously. Please take a look at the replacement, HTA.

Holistic Trace Analysis: https://hta.readthedocs.io/en/latest/

- Analyses PyTorch Profiler traces.
- Less user-friendly than TensorBoard Plugin.
- More thorough?

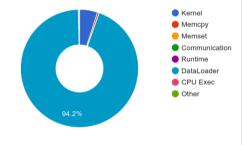
tin	me_sp	ent_df						
	rank	idle_time(ns)	compute_time(ns)	non_compute_time(ns)	kernel_time(ns)	idle_time_pctg	compute_time_pctg	non_compute_time_pct
0	0	552069	596651	884850	2033570	27.15	29.34	43.5
1	1	431771	596759	1004227	2032757	21.24	29.36	49.40
2	2	312107	596886	1124788	2033781	15.35	29.35	55.3
3	3	274646	604137	1154491	2033274	13.51	29.71	56.78
4	4	418833	598040	1021824	2038697	20.54	29.33	50.12
5	5	318972	601581	1112561	2033114	15.69	29.59	54.72
6	6	388040	598029	1047787	2033856	19.08	29.40	51.5
7	7	454830	599358	979022	2033210	22.37	29.48	48.1

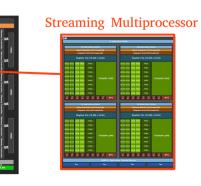


TP2_2: Profiler Overview

Tutorial: https://pytorch.org/tutorials/intermediate/tensorboard profiler tutorial.html

Configuration	GPU Summary @		Execution Summary		
Number of Worker(s) Device Type Gi	1 GPU 0: PU Name NVID	IA A100-SXM4-80GB	Category	Time Duration (us)	
Device Type Gi	Memory	79.15 GB	Average Step Time Kernel	2,721,884	
	Compute Capability	8.0		134,325	
	GPU Utilization	4.94 %	Memcpy	13,314	
	Est. SM Efficiency	4.86 %	Memset	713	
	Est. Achieved Occupancy	30.76 %	Runtime	0	
			DataLoader	2,563,866	
			CPU Exec	2,503,800	
			Other	3,098	
Type and mer capacity of the				100 na Citat Anda Na Citat Anda Na Citat Anda Na Citat Anda Na Citat Anda	
% of time with an act	ive GPU				
	active SMs of active wraps on an SM				
			Link	to image	





Percentage (%)

100

4.93

0.49

0.03

0

0

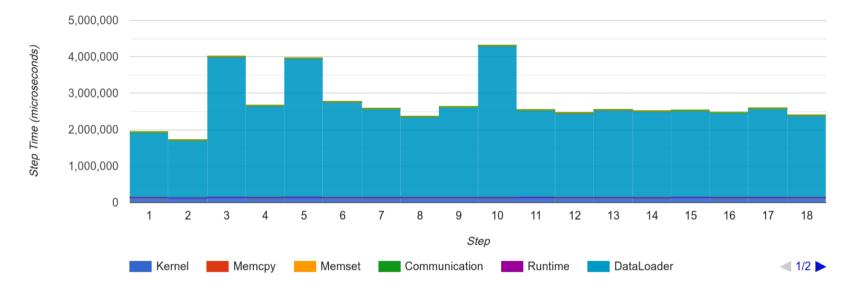
94.19

0.24

0.11

Link to image

TP2_2: Profiler Step Time

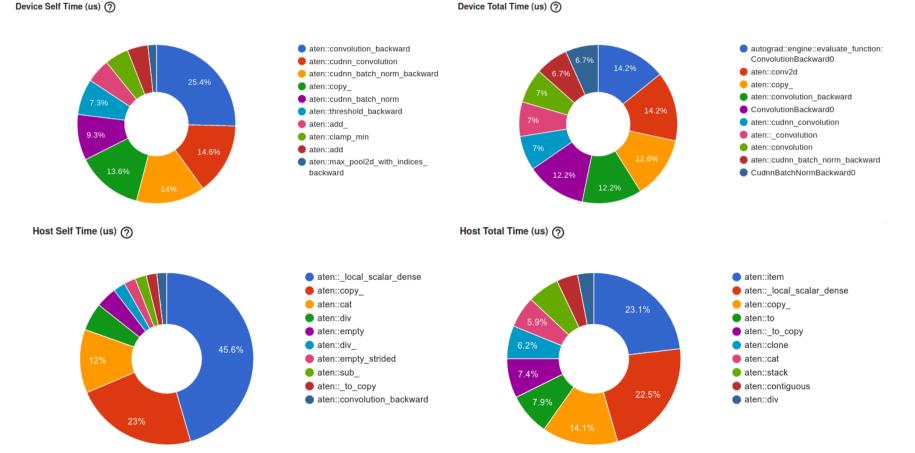


Performance Recommendation

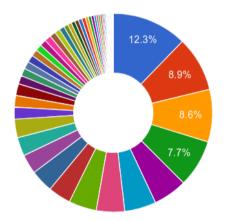
- This run has high time cost on input data loading. 94.2% of the step time is in DataLoader. You could try to set num_workers on DataLoader's construction and enable multi-processes on data loading.
- GPU 0 has low utilization. You could try to increase batch size to improve. Note: Increasing batch size may affect the speed and stability of model convergence.

TP2_2: Profiler Operator View

cnrs

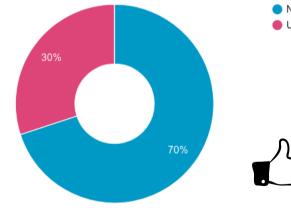


Total Time (us) ⑦



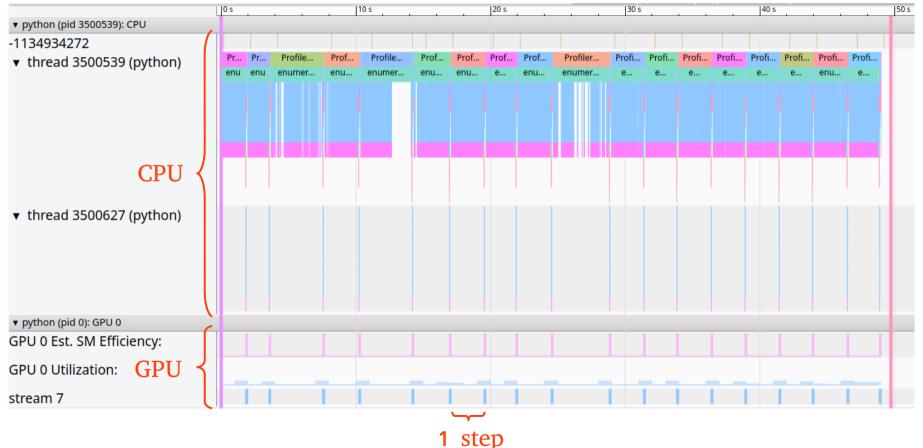
void cudnn::batchnorm_bwtr_...
void at::native::vectorized_ele...
void cudnn::batchnorm_fwtr_....
void at::native::vectorized_ele...
void at::native::vectorized_ele...
void cutlass_cudnn::Kernel<c...
void cutlass_cudnn::Kernel<c...
ampere_fp16_s16816gemm_f...
void at::native::(anonymous n....
void cudnn::batchnorm_fwtr_....

▲ 1/8 **▼**

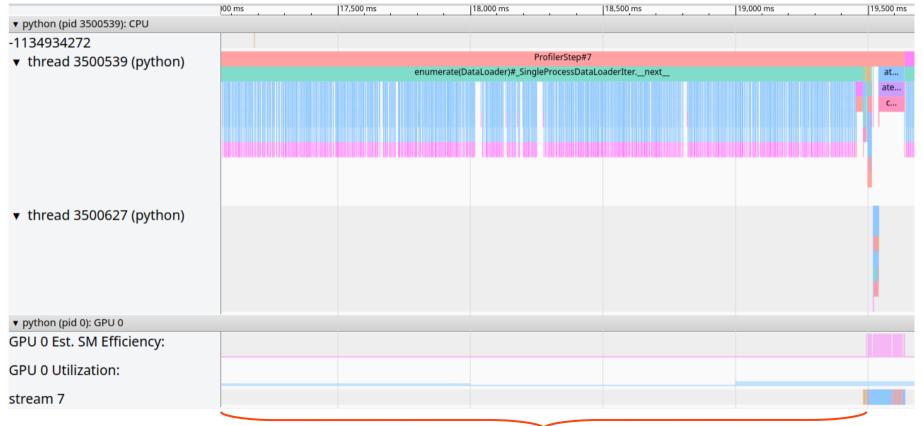


Not Using Tensor Cores Using Tensor Cores

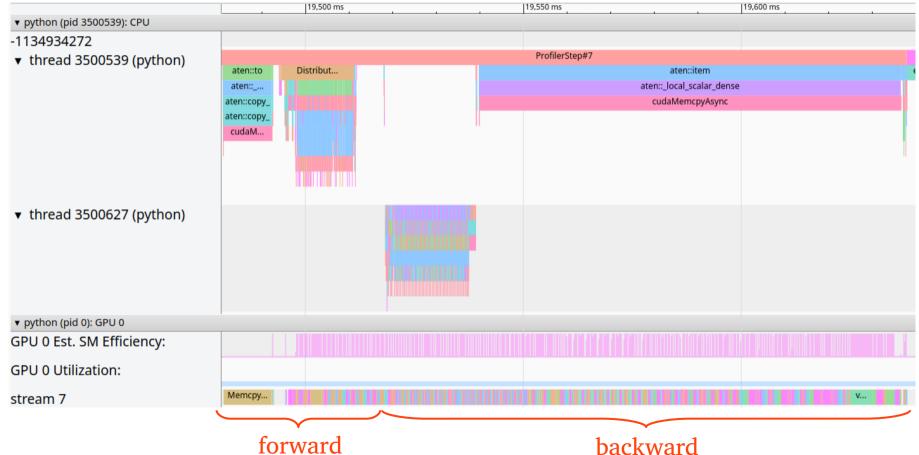
TP2_2: Profiler Trace



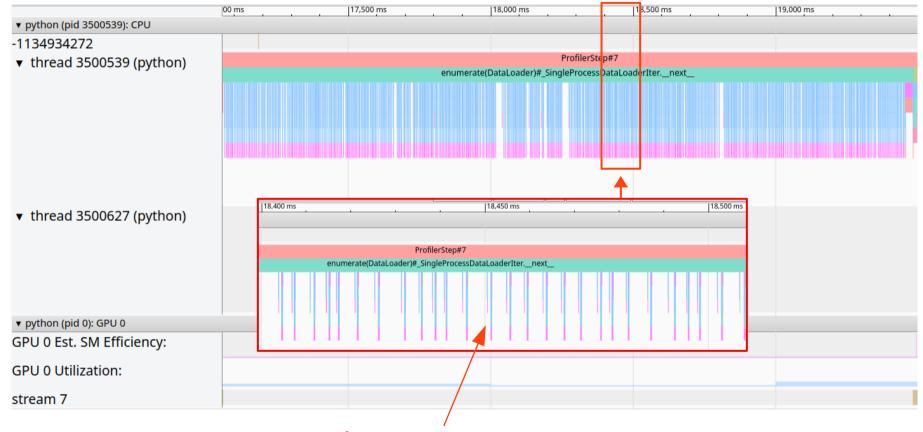
TP2_2: Profiler Trace (1 step)



TP2_2: Profiler Trace (1 step - GPU)



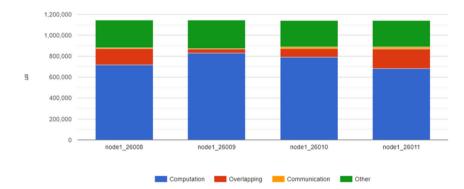
TP2_2: Profiler Trace (1 step - CPU)



reading an image (IO)

TP2_2: Profiler Distributed

Computation/Communication Overview (?)



Synchronizing/Communication Overview (?)

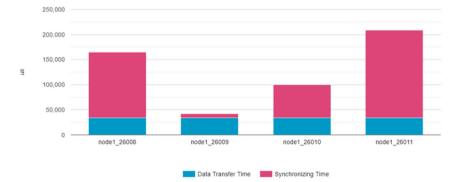
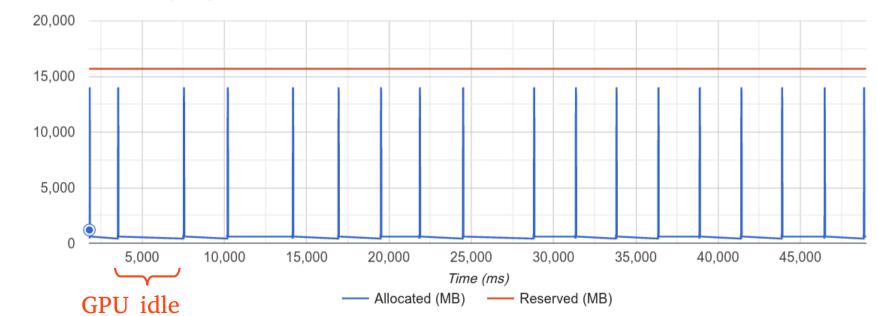


Image from the tutorial: https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html

TP2_2: Profiler Memory View (GPU)

Device GPU0 、

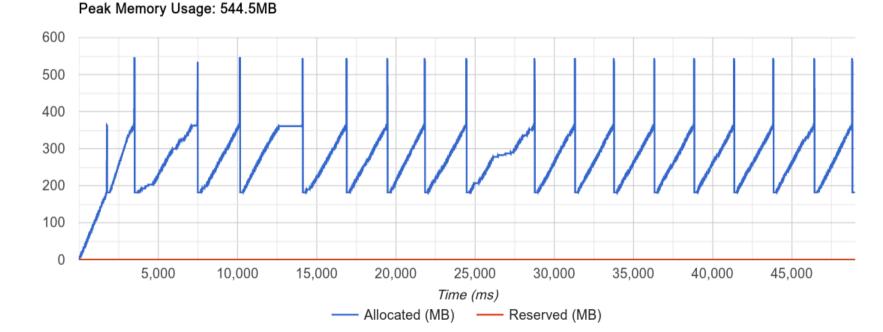
Memory Usage (MB)



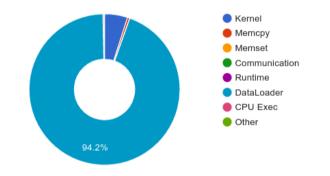
Peak Memory Usage: 14018.4MB

TP2_2: Profiler Memory View (CPU)

Device CPU 🚽



TP2_2: Profiler PyTorch (conclusion)



After seeing the traces, it is obvious that the optimization efforts need to concentrate on the DataLoader.

Deep Learning Optimized on Jean Zay

Optimization of the data preprocessing

Optimization of the data preprocessing

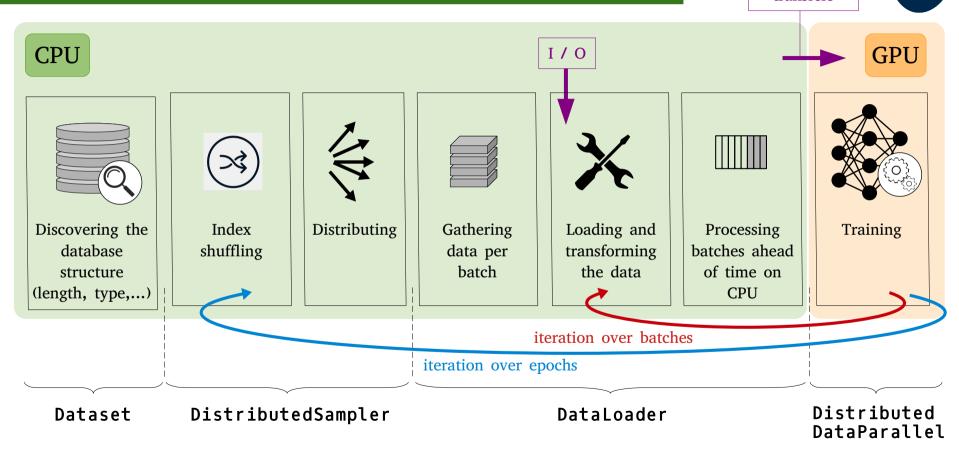
Data preprocessing with DataLoader <

Optimization of the DataLoader <

Data preprocessing with DataLoader

CPU to GPU transfers

CNrs



Data preprocessing with DataLoader

• DataLoader (data preprocessing)

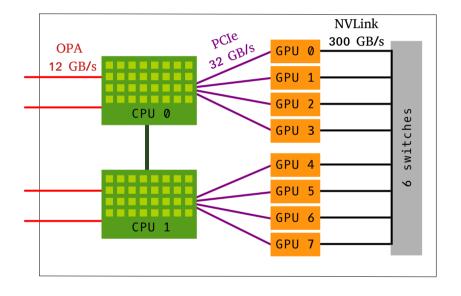
```
from torch.utils.data import DataLoader
                                                                                 Slurm
# initialize the parallel environment -> init process group()
# duplicate the model \rightarrow DistributedDataParallel
                                                                         SLURM NTASKS
# distribute the input data \rightarrow DistributedSampler
# preprocess data
batch size per gpu = global batch size // idr_torch.size
data_loader = DataLoader(dataset,
                          sampler=data_sampler,
                          batch_size=batch_size_per_gpu,
                          num_workers=<int>,
                          persistent workers=<bool>,
                          prefetch factor=<int>,
                          pin_memory=<bool>,
                          drop last=<bool>
```

Optimization of the data preprocessing

Data preprocessing with DataLoader <

Optimization of the DataLoader <

• Crucial points regarding the performance of data preprocessing:



1. Loading the data in memory and transforming it on the CPU

2. Data transfers from CPU to GPU

Node 8 × A100 80Go

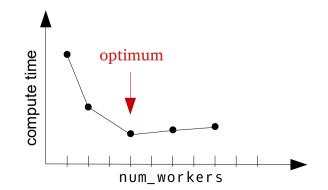
1. Loading the data in memory and transforming it on the CPU

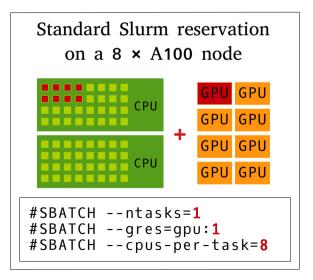
 num_workers allows us to define the number of processes (CPU cores) which will work in parallel to preprocess the data on the CPU.

 \checkmark

Compute time speedup on CPU.

The multiprocessing environment which is created occupies some space in the CPU RAM.





1. Loading the data in memory and transforming it on the CPU

- num_workers allows us to define the number of processes (CPU cores) which
 will work in parallel to preprocess the data on the CPU.
- persistent_workers=True allows us to maintain the active processes throughout the training.

Time gain: We avoid reinitializing the processes at each epoch.

Usage of the CPU RAM (can become an issue if multiple DataLoaders are used).

CNIS

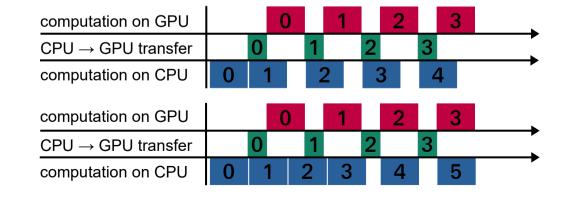
1. Loading the data in memory and transforming it on the CPU

 prefetch_factor allows us to define the maximum number of batches the CPU can preprocess in advance.

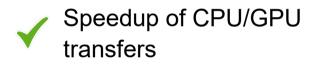
Prevents GPU inactivity if CPU occasionally struggles
 Usage of the CPU RAM

prefetch_factor = 1

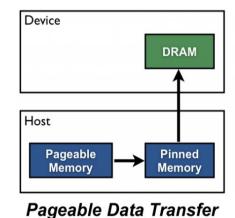
prefetch_factor = 2



- 2. Data transfers from CPU to GPU
 - pin_memory=True allows storing batches directly in pinned memory.

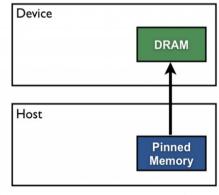


Slows CPU memory management



pin_memory=False

pin_memory=True



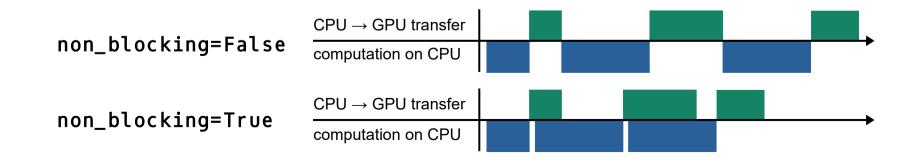
Pinned Data Transfer

https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/

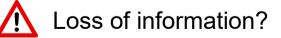
- 2. Data transfers from CPU to GPU
 - pin_memory=True allows storing batches in pinned memory.

Storing on pinned memory allows activating the **asynchronism** mechanism during the transfers of CPU to GPU: data = data.to(gpu, **non_blocking=True**).

Usage of the CPU RAM (intermediate memory buffers).



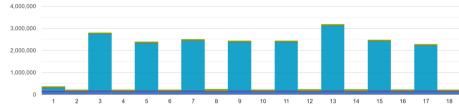
- Other DataLoader option:
 - drop_last=True allows us to ignore the last samples if the size of the dataset is not a multiple of the number of batches.
 - The workload per process is balanced.
 - We avoid the cost of treating an incomplete batch.



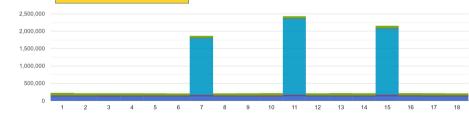
• Measure the time gain on a few steps.

• The most efficient optimization is the increase of num_workers.

num_workers=2

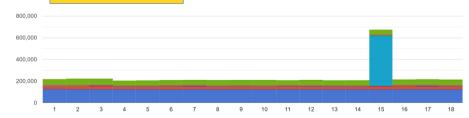


num_workers=4

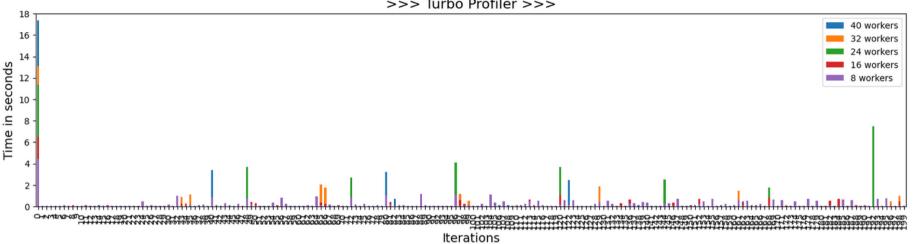


Memcov

num workers=8



Memset



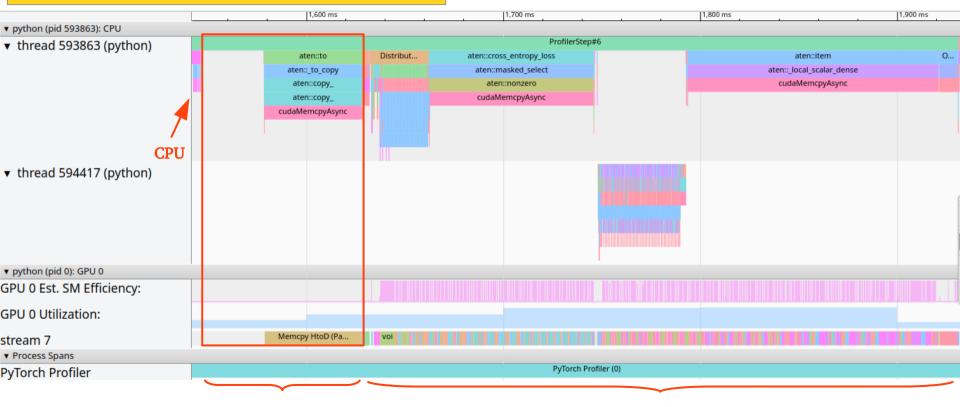
	jobid	num_workers	persistent_workers	pin_memory	non_blocking	prefetch_factor	drop_last	loading_time	training_time
	830199	16	False	False	False	2	False	0.140631	81.492809s
;	830217	32	False	False	False	2	False	0.145662	146.490717s
4	830224	40	False	False	False	2	False	0.147003	150.194498s
:	830213	24	False	False	False	2	False	0.200591	151.584189s
(830180	8	False	False	False	2	False	0.204219	87.450866s

>>> Turbo Profiler >>>

Intermediate conclusion about num_workers setting:

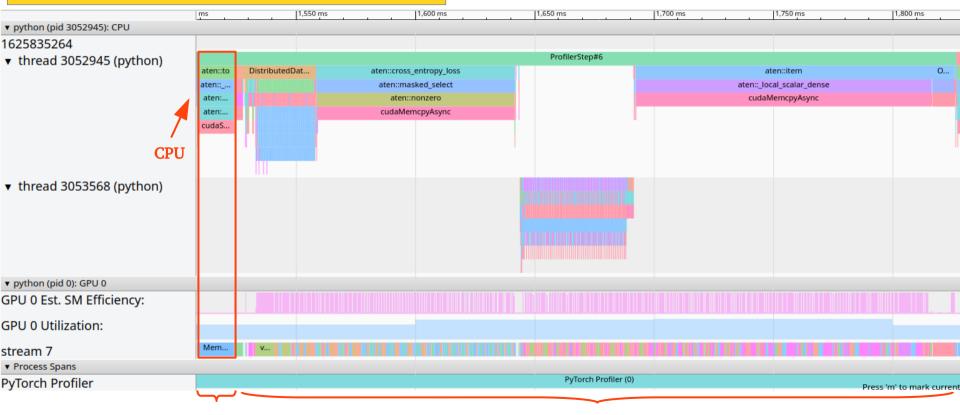
- Increase num_workers progressively and observe if the DataLoader scales or not on a few steps.
- For low CPU workload, num_workers can be a multiple of cpus-per-task.
- Setting too many workers creates bottlenecks or Out Of Memory failures.
- Be aware that few steps are not completely representative.
- IOs on Jean Zay are erratic.

pin_memory=False, non_blocking=False



 $CPU \rightarrow GPU$ transfer

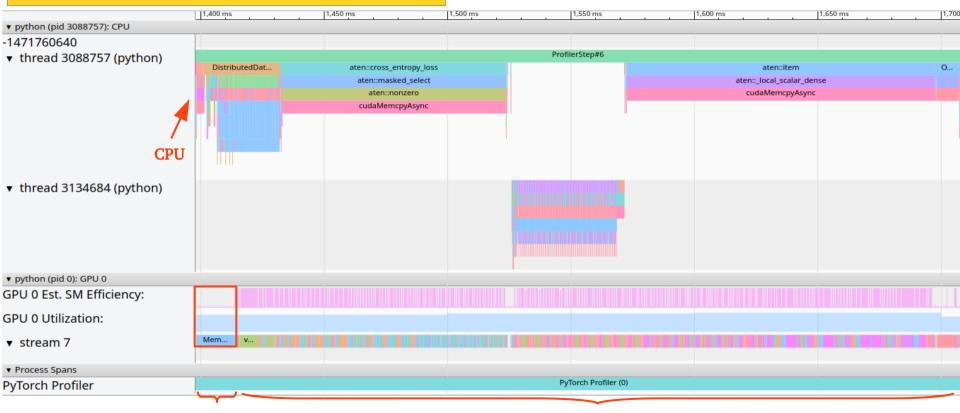
pin_memory=True, non_blocking=False



 $CPU \rightarrow GPU$ transfer

GPU

pin_memory=True, non_blocking=True



 $CPU \rightarrow GPU$ transfer

• Chosen optimizations:

num_wokers = 16
persistent_workers = True
pin_memory = True
non_blocking = True
prefetch_factor = 2

nfiguration GPU Summary () Execution Summary
Cer TypeGPUGPU 0:Time Duration (us)Percentage (%)NameNVIDIA A100-SXM4-80GBAverage Step Time142,633100Memory79.15 GB6686.84 %80.694 %123,86186.84GPU Utilization86.84 %55.55 %55.55 %55.55 %1006100Est. SM Efficiency32.15 %60.030.030.030.03Runtime000000DataLoader3.8620.2710.1230.13Other4,6753.280.390.32

Appendix: Optimization of the DataLoader

Impact of the prefetch factor

dlojz.py - 50 iterations - test partition gpu_p4 NB: These results don't correspond to our usage case but still illustrate the influence of the parameters.

