
1

Deep Learning Optimized on Jean Zay

Profiler PyTorch

IDRIS

2

PyTorch Profiler

3

with prof:
for epoch in range(0,args.epochs):

for i, (images, labels) in enumerate(train_loader):
[...]
prof.step()

PyTorch Profiler

● We use a profiler to monitor an execution.

● It allows us to know the time and memory consumed by each part of the code.

● The results returned by the profiler point to the weaknesses of our code and tell us which parts
we should optimize in priority.

● The profiler is a wrapper which records various information during the execution of the code.

This could be slowed down depending on the requested traces. We usually monitor only a few
training steps.

4

PyTorch Profiler

from torch.profiler import profile, tensorboard_trace_handler, ProfilerActivity, schedule

prof = profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], # 1
 schedule=schedule(wait=1, warmup=1, active=5, repeat=1), # 2
 on_trace_ready=tensorboard_trace_handler(logname), # 3
 profile_memory=True, # 4
 record_shapes=False, # 5
 with_stack=False, # 6
 with_flops=False) # 7

1. We monitor the activity both on CPUs and GPUs.
2. We ignore the first step (wait=1) and we initialize the monitoring tools on one step (warmup=1). We activate

the monitoring on 5 steps (active=5) and repeat the pattern only once (repeat=1).
3. We store the traces in a TensorBoard format (.json).
4. We profile the memory usage.
5. We don’t record the input shapes of the operators.
6. We don’t record call stacks (information about the active subroutines).
7. We don’t request the FLOPs estimate of the tensor operations.

5

TP2_2 : Profiler PyTorch

● Implement the PyTorch profiler in dlojz.py.
● Visualize the trace with TensorBoard and draw

conclusions about possible optimizations.

6

TP2_2 : Profiler PyTorch

Holistic Trace Analysis: https://hta.readthedocs.io/en/latest/
● Analyses PyTorch Profiler traces.
● Less user-friendly than TensorBoard Plugin.
● More thorough?

https://hta.readthedocs.io/en/latest/

7

TP2_2: Profiler Overview

Type and memory
capacity of the GPU

% of time spent
with an active GPU

% of active SMs

% of active wraps
on an SM

Streaming Multiprocessor

Link to image

A100

Tutorial: https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html

8

TP2_2: Profiler Step Time
Breakdown

9

TP2_2: Profiler Operator View

10

TP2_2: Profiler Kernel View

11

TP2_2: Profiler Trace

1 step

CPU

GPU

12

TP2_2: Profiler Trace (1 step)

GPU idle

13

TP2_2: Profiler Trace (1 step - GPU)

forward backward

14

TP2_2: Profiler Trace (1 step - CPU)

reading an image (IO)

15

TP2_2: Profiler Distributed

Image from the tutorial: https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html

https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html

16

TP2_2: Profiler Memory View (GPU)

GPU idle

17

TP2_2: Profiler Memory View (CPU)

18

TP2_2: Profiler PyTorch (conclusion)

After seeing the traces, it is obvious that the optimization
efforts need to concentrate on the DataLoader.

19

Deep Learning Optimized on Jean Zay

Optimization of the data preprocessing

IDRIS

20

Optimization of the data
preprocessing

Data preprocessing with DataLoader ◂

Optimization of the DataLoader ◂

21

Discovering the
database
structure

(length, type,...)

I / O

Index
shuffling

Distributing Gathering
data per
batch

Loading and
transforming

the data

Processing
batches ahead
of time on

CPU

Training

CPU GPU

Dataset DistributedSampler DataLoader Distributed
DataParallel

Data preprocessing with DataLoader

iteration over batches

iteration over epochs

CPU to GPU
transfers

22

from torch.utils.data import DataLoader

initialize the parallel environment -> init_process_group()

duplicate the model DistributedDataParallel→

distribute the input data DistributedSampler→

preprocess data
batch_size_per_gpu = global_batch_size // idr_torch.size

data_loader = DataLoader(dataset,
 sampler=data_sampler,

 batch_size=batch_size_per_gpu,
 num_workers=<int>,

 persistent_workers=<bool>,
 prefetch_factor=<int>,
 pin_memory=<bool>,
 drop_last=<bool>
)

● DataLoader (data preprocessing)

Slurm

SLURM_NTASKS

Data preprocessing with DataLoader

23

Optimization of the data
preprocessing

Data preprocessing with DataLoader ◂

Optimization of the DataLoader ◂

24

1.Loading the data in memory and
transforming it on the CPU

2.Data transfers from CPU to GPU

● Crucial points regarding the performance of data preprocessing:

Optimization of the DataLoader

NVLink
300 GB/sPCIe

32 G
B/sOPA

12 GB/s
GPU 1

GPU 0

GPU 3

GPU 2

GPU 5

GPU 4

GPU 7

GPU 6

6

s
w
i
t
c
h
e
sCPU 0

CPU 1

Node 8 × A100 80Go

25

1.Loading the data in memory and transforming it on the CPU

● num_workers allows us to define the number of processes (CPU cores) which
will work in parallel to preprocess the data on the CPU.

Compute time speedup on CPU.

The multiprocessing environment which is
created occupies some space in the CPU RAM.

co
m

p
ut

e
tim

e

num_workers

optimum

Optimization of the DataLoader

#SBATCH --ntasks=1
#SBATCH --gres=gpu:1
#SBATCH --cpus-per-task=8

Standard Slurm reservation
on a 8 × A100 node

GPU GPU

GPU GPU

GPU GPU

GPU GPU

CPU

CPU

+

26

1.Loading the data in memory and transforming it on the CPU

● num_workers allows us to define the number of processes (CPU cores) which
will work in parallel to preprocess the data on the CPU.

● persistent_workers=True allows us to maintain the active processes
throughout the training.

Time gain: We avoid reinitializing the processes at each epoch.

Usage of the CPU RAM (can become an issue if multiple DataLoaders
are used).

Optimization of the DataLoader

27

543
3

3
2

2

21
1

1

3
3

4
2

2

3
1

1

2

1.Loading the data in memory and transforming it on the CPU

● prefetch_factor allows us to define the maximum number of batches the CPU
can preprocess in advance.

 Prevents GPU inactivity if CPU occasionally struggles
Usage of the CPU RAM

prefetch_factor = 1

prefetch_factor = 2

0
0

0computation on GPU

computation on CPU

CPU → GPU transfer

Optimization of the DataLoader

0
0

0 1

computation on GPU

computation on CPU

CPU → GPU transfer

28

2.Data transfers from CPU to GPU

● pin_memory=True allows storing batches directly in pinned memory.

Speedup of CPU/GPU
transfers

Slows CPU memory
management

pin_memory=True

https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/

pin_memory=False

Optimization of the DataLoader

29

2.Data transfers from CPU to GPU

● pin_memory=True allows storing batches in pinned memory.

Storing on pinned memory allows activating the asynchronism mechanism during the
transfers of CPU to GPU : data = data.to(gpu, non_blocking=True).

Usage of the CPU RAM (intermediate memory buffers).

CPU → GPU transfer

computation on CPU

CPU → GPU transfer

computation on CPU

non_blocking=False

non_blocking=True

Optimization of the DataLoader

30

● Other DataLoader option:

● drop_last=True allows us to ignore the last samples if the size of the dataset
is not a multiple of the number of batches.

The workload per process is balanced.

We avoid the cost of treating an incomplete batch.

Loss of information?

Optimization of the DataLoader

31

● Modify the DataLoader options.
● Measure the time gain on a few steps.

TP2_3 : Optimization of the DataLoader

32

● The most efficient optimization is the increase of num_workers.

num_workers=0

num_workers=4

num_workers=2

num_workers=8

TP2_3 : Optimization of the DataLoader

33

TP2_3 : Optimization of the DataLoader

training_time

81.492809s

146.490717s

150.194498s

151.584189s

87.450866s

34

TP2_3 : Optimization of the DataLoader

Intermediate conclusion about num_workers setting:

● Increase num_workers progressively and observe if the DataLoader scales or

not on a few steps.

● For low CPU workload, num_workers can be a multiple of cpus-per-task.

● Setting too many workers creates bottlenecks or Out Of Memory failures.

● Be aware that few steps are not completely representative.

● IOs on Jean Zay are erratic.

35
CPU GPU transfer→ GPU

CPU

TP2_3 : Optimization of the DataLoader
pin_memory=False, non_blocking=False

36

CPU

TP2_3 : Optimization of the DataLoader

CPU GPU transfer→ GPU

pin_memory=True, non_blocking=False

37

CPU

pin_memory=True, non_blocking=True

TP2_3 : Optimization of the DataLoader

CPU GPU transfer→ GPU

38

● Chosen optimizations:
num_wokers = 16
persistent_workers = True
pin_memory = True
non_blocking = True
prefetch_factor = 2

TP2_3: Optimization of the DataLoader

39

● Impact of the prefetch factor
dlojz.py - 50 iterations - test partition gpu_p4
NB: These results don’t correspond to our usage case but still illustrate the influence of the parameters.

Appendix: Optimization of the DataLoader

