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Deep Learning Optimized on Jean Zay

Profiler PyTorch

IDRIS
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PyTorch Profiler
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with prof:         
for epoch in range(0,args.epochs):

for i, (images, labels) in enumerate(train_loader):
[...]
prof.step()

PyTorch Profiler

● We use a profiler to monitor an execution.

● It allows us to know the time and memory consumed by each part of the code.

● The results returned by the profiler point to the weaknesses of our code and tell us which parts 
we should optimize in priority.

● The profiler is a wrapper which records various information during the execution of the code.

This could be slowed down depending on the requested traces. We usually monitor only a few 
training steps.
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PyTorch Profiler

from torch.profiler import profile, tensorboard_trace_handler, ProfilerActivity, schedule

prof =  profile(activities=[ProfilerActivity.CPU, ProfilerActivity.CUDA], # 1
                schedule=schedule(wait=1, warmup=1, active=5, repeat=1), # 2               
                on_trace_ready=tensorboard_trace_handler(logname),  # 3
                profile_memory=True,     # 4
                record_shapes=False,     # 5
                with_stack=False,     # 6
                with_flops=False)     # 7

1. We monitor the activity both on CPUs and GPUs.
2. We ignore the first step (wait=1) and we initialize the monitoring tools on one step (warmup=1). We activate 

the monitoring on 5 steps (active=5) and repeat the pattern only once (repeat=1).
3. We store the traces in a TensorBoard format (.json).
4. We profile the memory usage.
5. We don’t record the input shapes of the operators.
6. We don’t record call stacks (information about the active subroutines).
7. We don’t request the FLOPs estimate of the tensor operations.
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TP2_2 : Profiler PyTorch

● Implement the PyTorch profiler in dlojz.py.
● Visualize the trace with TensorBoard and draw 

conclusions about possible optimizations.
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TP2_2 : Profiler PyTorch

Holistic Trace Analysis: https://hta.readthedocs.io/en/latest/
● Analyses PyTorch Profiler traces.
● Less user-friendly than TensorBoard Plugin.
● More thorough?

https://hta.readthedocs.io/en/latest/
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TP2_2: Profiler Overview 

Type and memory
capacity of the GPU

% of time spent
with an active GPU

% of active SMs

% of active wraps
on an SM

Streaming Multiprocessor

Link to image

A100

Tutorial: https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html

https://images.nvidia.com/aem-dam/en-zz/Solutions/data-center/nvidia-ampere-architecture-whitepaper.pdf
https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html
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TP2_2: Profiler Step Time 
Breakdown
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TP2_2: Profiler Operator View
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TP2_2: Profiler Kernel View
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TP2_2: Profiler Trace

1 step

CPU

GPU
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TP2_2: Profiler Trace (1 step)

GPU idle
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TP2_2: Profiler Trace (1 step - GPU)

forward backward
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TP2_2: Profiler Trace (1 step - CPU)

reading an image (IO)
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TP2_2: Profiler Distributed

Image from the tutorial: https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html

https://pytorch.org/tutorials/intermediate/tensorboard_profiler_tutorial.html
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TP2_2: Profiler Memory View (GPU)

GPU idle
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TP2_2: Profiler Memory View (CPU)



18

TP2_2: Profiler PyTorch (conclusion)

After seeing the traces, it is obvious that the optimization 
efforts need to concentrate on the DataLoader.
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Deep Learning Optimized on Jean Zay

Optimization of the data preprocessing

IDRIS
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Optimization of the data 
preprocessing

Data preprocessing with DataLoader ◂

Optimization of the DataLoader  ◂
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Discovering the 
database 
structure

(length, type,...)

I / O

Index
shuffling

Distributing Gathering 
data per 
batch

Loading and 
transforming 

the data

Processing 
batches ahead 
of time on 

CPU

Training

CPU GPU

Dataset DistributedSampler DataLoader Distributed
DataParallel

Data preprocessing with DataLoader 

iteration over batches

iteration over epochs

CPU to GPU
transfers
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from torch.utils.data import DataLoader

# initialize the parallel environment -> init_process_group()

# duplicate the model  DistributedDataParallel→

# distribute the input data  DistributedSampler→

# preprocess data
batch_size_per_gpu = global_batch_size // idr_torch.size

data_loader = DataLoader(dataset, 
  sampler=data_sampler,

                         batch_size=batch_size_per_gpu, 
   num_workers=<int>,

                         persistent_workers=<bool>,
                         prefetch_factor=<int>,
                         pin_memory=<bool>,
                         drop_last=<bool>
                        )

●  DataLoader (data preprocessing)

Slurm

SLURM_NTASKS

Data preprocessing with DataLoader 
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Optimization of the data 
preprocessing

Data preprocessing with DataLoader ◂

Optimization of the DataLoader  ◂
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1.Loading the data in memory and 
transforming it on the CPU

2.Data transfers from CPU to GPU 

● Crucial points regarding the performance of data preprocessing:

Optimization of the DataLoader 
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1.Loading the data in memory and transforming it on the CPU

● num_workers allows us to define the number of processes (CPU cores) which 
will work in parallel to preprocess the data on the CPU.

Compute time speedup on CPU.

The multiprocessing environment which is 
created occupies some space in the CPU RAM.

co
m

p
ut

e 
tim

e

num_workers

optimum

Optimization of the DataLoader 

#SBATCH --ntasks=1        
#SBATCH --gres=gpu:1      
#SBATCH --cpus-per-task=8

Standard Slurm reservation
on a 8 × A100 node

GPU GPU

GPU GPU

GPU GPU

GPU GPU

CPU

CPU

+
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1.Loading the data in memory and transforming it on the CPU

● num_workers allows us to define the number of processes (CPU cores) which 
will work in parallel to preprocess the data on the CPU.

● persistent_workers=True allows us to maintain the active processes 
throughout the training.

Time gain: We avoid reinitializing the processes at each epoch.

Usage of the CPU RAM (can become an issue if multiple DataLoaders 
are used).

Optimization of the DataLoader 
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1.Loading the data in memory and transforming it on the CPU

● prefetch_factor allows us to define the maximum number of batches the CPU 
can preprocess in advance.

       Prevents GPU inactivity if CPU occasionally struggles
Usage of the CPU RAM

prefetch_factor = 1

prefetch_factor = 2

0
0

0computation on GPU

computation on CPU

CPU → GPU transfer

Optimization of the DataLoader 

0
0

0 1

computation on GPU

computation on CPU

CPU → GPU transfer
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2.Data transfers from CPU to GPU

● pin_memory=True allows storing batches directly in pinned memory. 

Speedup of CPU/GPU 
transfers

Slows CPU memory
management

pin_memory=True

https://developer.nvidia.com/blog/how-optimize-data-transfers-cuda-cc/

pin_memory=False

Optimization of the DataLoader 
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2.Data transfers from CPU to GPU

● pin_memory=True allows storing batches in pinned memory.

Storing on pinned memory allows activating the asynchronism  mechanism during the 
transfers of CPU to GPU : data = data.to(gpu, non_blocking=True).

Usage of the CPU RAM (intermediate memory buffers).

CPU → GPU transfer

computation on CPU

CPU → GPU transfer

computation on CPU

non_blocking=False

non_blocking=True

Optimization of the DataLoader 
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● Other DataLoader option:

● drop_last=True allows us to ignore the last samples if the size of the dataset 
is not a multiple of the number of batches.

The workload per process is balanced.

We avoid the cost of treating an incomplete batch.

Loss of information? 

Optimization of the DataLoader 
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● Modify the DataLoader options.
● Measure the time gain on a few steps.

TP2_3 : Optimization of the DataLoader
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● The most efficient optimization is the increase of num_workers.

num_workers=0

num_workers=4

num_workers=2

num_workers=8

TP2_3 : Optimization of the DataLoader
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TP2_3 : Optimization of the DataLoader

training_time

81.492809s

146.490717s

150.194498s

151.584189s

87.450866s
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TP2_3 : Optimization of the DataLoader

Intermediate conclusion about num_workers setting:

● Increase num_workers progressively and observe if the DataLoader scales or 

not on a few steps.

● For low CPU workload, num_workers can be a multiple of cpus-per-task.

● Setting too many workers creates bottlenecks or Out Of Memory failures.

● Be aware that few steps are not completely representative. 

● IOs on Jean Zay are erratic.
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CPU  GPU transfer→ GPU

CPU

TP2_3 : Optimization of the DataLoader
pin_memory=False, non_blocking=False
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CPU

TP2_3 : Optimization of the DataLoader

CPU  GPU transfer→ GPU

pin_memory=True, non_blocking=False
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CPU

pin_memory=True, non_blocking=True

TP2_3 : Optimization of the DataLoader

CPU  GPU transfer→ GPU
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● Chosen optimizations:
num_wokers = 16
persistent_workers = True
pin_memory = True
non_blocking = True
prefetch_factor = 2

TP2_3: Optimization of the DataLoader
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● Impact of the prefetch factor
dlojz.py - 50 iterations - test partition gpu_p4
NB: These results don’t correspond to our usage case but still illustrate the influence of the parameters.

Appendix: Optimization of the DataLoader


