
Authors: Bertrand Cabot, Myriam Peyrounette

Commented slides

October 2023



In this section, we will present different optimization possibilities in regard to the input data
format.

We are seeking to avoid three main obstacles: Slow I/O read speed on disks, bandwidth
sharing in the OPA interconnection bus and the cost of input data decoding on CPU.





There are different storage technologies on Jean Zay. Where is it pertinent to store your input
data?



The WORK and DSDIR spaces store information on rotative disks with a read/write speed of
100 GB/s.

The SCRATCH stores information on a Full Flash (SSD) disk with a read/write speed which is 5
times faster than with rotative disks. It is possible to connect local disks (NVMe) directly to a
compute node but this technology is not manageable at the level of a supercomputer and is only
available internally for tests of technology watch.



Here we ran the dlojz.py script on 50 iterations on a GPU of the gpu_p4 (A100 PCIe)
partition.

We see the loading time and the data transformations (DataLoader) in relation to the storage
technology used, the number of workers and the prefetch_factor.

We observe that the time is divided in half when we store the database on the SCRATCH rather
than on the WORK.



We observe that the time is divided by 2 when we store the database on NVMe rather than on
the SCRATCH.



The advantages and disadvantages of the different storage spaces.





The input data format will have an impact on all the steps.



The binary formats enable a rapid decoding on CPU but use more disk space (~10x) and,
therefore, more OPA bandwidth.

The compressed formats reduce the necessary storage volume and use less OPA bandwidth
but the decoding time on CPU is longer.





Which format should I use for my database?



Here: 1 image = 1 file.

A map-style dataset corresponds to a dictionary (idx, image).

We access one data at a time from its index.

We generate one I/O request per each accessed data.

The shuffling is carried out on the indexes of the whole dataset before creating the batches.



Reminder of the inode quotas on the Jean Zay disk spaces.

Originally, the IBM Spectrum Scale file system was designed to optimize parallel access to the
same large file. It is adapting to new practices but is still suboptimal for I/O-intensive workloads
on small-size files.



We present the alternative format, WebDataset, in order to minimize the number of inodes.

The idea is to group the data in archive form.



WebDataset is an iterable-style dataset. We access data contiguously. There is no mapping
(idx, image).

This style of dataset is adapted to databases whose structure is not known beforehand. This is
the case here because the data are « hidden » in the archives.

Shuffling is managed by the CPU at the level of a buffer. The size of this buffer is chosen by the
user (proportionate to the batch size, for example).



1 shard = 1 archive.

Sharding consists of dividing the original dataset on multiple archives. A minimum number of
archives is necessary to generate parallelism at the I/O level.

For example, 2 DataLoader workers will access two different archives.

Likewise, 2 GPUs must be supplied by different archives.

For example: nshards = ngpus x nworkers



For the workload to be optimally distributed on the different processes, the data must be
distributed as equally as possible in the archives.



The advantages and disadvantages of having a dataset with more/less shards.



The shards are distributed on different processes according to the splitter function.



We can activate the first shuffling on the shard indexes. This shuffling is performed per process.



We can also activate a shuffling at the level of all the data contained on a process.

Combining the two types of shuffling (shard shuffling and buffered shuffling) is the most effective
method.



Some advice for generating a dataset of the WebDataset type.















It is expected that the WebDataset format will be integrated into the PyTorch library via a new
class in construction: TorchData.

This new class should simplify the whole data pipeline, from reading to pre-processing
(DataLoader).

Unfortunately, development of this class has been paused since July 2023.



On a Resnet50/Imagenetcomplete training, no advantage is seen in using the WebDataset
format.

I have reduced the test to a simple dataset path to isolate the I/0 performance. This test is
executed on only 1 GPU.



Test on CIFAR10.

Observe that the more shards there are, the more we generate parallelism.

Here we are using a small dataset to be able to rapidly generate WebDataset versions with a
higher or lower number of shards.

In reality, using WebDataset on such a small dataset deteriorates the I/O performances.

The next tests will be conducted on Imagenet.



Test sur Imagenet.

In WebDataset format on128 shards, Imagenet weighs 826GB (versus 153GB for the jpeg
version).

When increasing the batch size, we increase the number of I/O requests.

We see that with the WebDataset format, a decrease in the number of I/Os optimizes the code
speed.



We increase the number of workers to verify the scalability of the WebDataset version.



On a complete Resnet50/Imagenet training, we have verified that using the WebDataset format
does not degrade the performances, either in time or in accuracy.








