Deep Learning Optimized on Jean Zay

Dataset optimization

Storage spaces and data format

@ IDRIS

Authors: Bertrand Cabot, Myriam Peyrounette

Commented slides

October 2023

Dataset optimization

Main bottlenecks «
Data storage — various disk spaces «
Data format — at sample level «

Data format — at dataset level «

Bottlenecks upstream of DatalLoader

Storage Disks Interconnection Network CPU workers
Omnipath

:00..:9

1. 1/O performance 2. Shared Bandwidth 3. Decoder performance

In this section, we will present different optimization possibilities in regard to the input data
format.

We are seeking to avoid three main obstacles: Slow I/O read speed on disks, bandwidth
sharing in the OPA interconnection bus and the cost of input data decoding on CPU.

Dataset optimization

Main bottlenecks «

Data storage — various disk spaces «
Data format — at sample level «

Data format — at dataset level «

Bottlenecks upstream of DataLoader

Storage Disks Interconnection Network CPU workers
Omnipath

*

1. 1/O performance 2. Shared Bandwidth 3. Decoder performance

Where should | store my dataset?

There are different storage technologies on Jean Zay. Where is it pertinent to store your input
data?

w

Various disk spaces WORK / DSDIR

Rotative disk spaces

9

Storage Disks
100 GB/s
oPA SCRATCH
Full Flash
:{3 O
500 GB/s
NVMe OPA
Local disk
1. I/O performance (test configuration)
PCle 6

The WORK and DSDIR spaces store information on rotative disks with a read/write speed of
100 GB/s.

The SCRATCH stores information on a Full Flash (SSD) disk with a read/write speed which is 5
times faster than with rotative disks. It is possible to connect local disks (NVMe) directly to a
compute node but this technology is not manageable at the level of a supercomputer and is only
available internally for tests of technology watch.

Various disk s paces dlojz.py - 50 iterations - test partition gpu_p4

14085 0.9005 0.6625 0.4519 6 6 -. 12202 04987 02953 02868 0.2559
25
13477 09242 06719 0.4407 5 5 - 12167 05175 02958 02777 02327
2.0
= 5 = =
g - 13722 08998 06684 04633 43 g 4-JRRCEIGN 12103 05089 03002 0.2723 0.2466 2
8 5 8 s
U 1
£ g 0 =
@ 3 ° 15 3
§ ER 6.3491 13493 0.8882 0.6482 04634 30 g 3- 05000 02940 0.2832 0.2384 L
w w

10
2*.’ 13985 08875 06759 04399 2 2~ 12132 05138 03294 02789 02457
-
1

. 14892 0.9879 0.7351 0.5677 1 s Bl 13149 0.5978 0.3787 0.3412 0.3441 0.5
lI 2I 4. 6I 8I 10I 2' 4‘ 6‘ 8' 10‘
num_workers num_workers
WORK / DSDIR — SCRATCH
100 GB/s - OPA =1 500 GB/s - OPA 7

Here we ran the d1ojz. py script on 50 iterations on a GPU of the gpu_p4 (A100 PCle)
partition.

We see the loading time and the data transformations (DatalLoader) in relation to the storage
technology used, the number of workers and the prefetch_factor.

We observe that the time is divided in half when we store the database on the SCRATCH rather
than on the WORK.

Va ri ous d |Sk S paces dlojz.py - 50 iterations - test partition gpu_p4

8
6 ~. 12202 04987 0.2953 02868 0.2559 6- 17300 07257 02291 01265 01121 0.1198
2.5 7

5 . 12167 05175 0.2958 02777 0.2327 5- 17220 07226 0.2244 0.1183 01158 0.1619
6
2.0
= 5 & c
g 4 12103 05089 0.3002 02723 0.2466 8 % 4- 17301 07383 02260 0.1203 0.1446 0.1621 5 2
8 5 & 5
! Q ! =]
= =
g 3 12186 05000 0.2940 02832 0.2384 » ‘g 3- 17116 07248 02286 0.1351 0.1423 0.1233 L]
w w
=
1.0
2 A 12132 05138 03294 02789 0.2457 2- 17254 07440 02686 0.2058 01421 0.1487 3
1 . 13149 05978 0.3787 03412 03441 05 1 . 0.8146 03204 0.1940 02031 0.2217 3
1 2 4 6 8 10 1 2 4 6 8 10
num_workers num_workers
500 GB/s - OPA =1 PCle 8

We observe that the time is divided by 2 when we store the database on NVMe rather than on
the SCRATCH.

Various disk spaces

+ NVMe
v Best IO performance
— You need to copy your dataset on the local disk first, which can take a very long time
— This solution is not suitable at the scale of a supercomputer so it is not available to users

+ SCRATCH
v Second best |0 performance
v" Very large quota (bytes and inodes)
— 30 days file lifespan
— Not backed up

+ WORK/DSDIR
— Worst performance (but it is still acceptable)
— Only 5 TB and 500k inodes
v" IDRIS support team manages the dataset for you in the DSDIR (downloading, preprocessing,...)

v Backed up

The advantages and disadvantages of the different storage spaces.

Dataset optimization

Main bottlenecks «
Data storage — various disk spaces «
Data format — at sample level «

Data format — at dataset level «

Bottlenecks upstream of DatalLoader

Storage Disks Interconnection Network

Omnipath
=
\—/o

N\

1. I/O performance 2. Shared Bandwidth

CPU workers

L

3. Decoder performance

Which format for my data?

The input data format will have an impact on all the steps.

At sample level - Sample decoding

Binary format: Pickle format, hdf5, ... Compressed format: jpeg, png,...
Decoded more quickly, takes more space Decoded more slowly, takes less space

v Decoder performance — Decoder performance

— Shared bandwidth v Shared bandwidth

— Storage volume v' Storage volume "

The binary formats enable a rapid decoding on CPU but use more disk space (~10x) and,
therefore, more OPA bandwidth.

The compressed formats reduce the necessary storage volume and use less OPA bandwidth
but the decoding time on CPU is longer.

Dataset optimisation

Main bottlenecks «
Data storage — various disk spaces «
Data format — at sample level «

Data format — at dataset level «

Bottlenecks upstream of DatalLoader

Storage Disks

=

1. I/O performance

Interconnection Network

2.

Omnipath

) S—

0000.9

Shared Bandwidth

Which format for my dataset?

Which format should | use for my database?

CPU workers

L

3. Decoder performance

Intuitive way

Map-style dataset

__getitem__ / \
40008 Rando ces

to File Store 52 Index
3999 shuffling

Storage 32941
SEVEr 3 w

~

E _'________,: T

HR| — ® .=

. ’
| < Tequest sample 3999 |
:

data
! T Ann Sus
: request sample 32941 | ~ batch ~batch
——— e Y
NMENES | < Tequestsample 93 | Mr GPU es’8sr0s03856>
' data '
| imede inode inode inode EEE——— \ /

Pros: Easy to handle, random access possible
Cons: Lots of inodes, lots of I/Os 15
Here: 1 image = 1 file.
A map-style dataset corresponds to a dictionary (idx, image).
We access one data at a time from its index.
We generate one |/O request per each accessed data.

The shuffling is carried out on the indexes of the whole dataset before creating the batches.

Too many inodes is an issue

Error: Disk quota exceeded

Reminder:
+ $WORK quota per useris 5 TB / 500 kinodes
+ $SCRATCH safety quota per user is 250TB / 150 Minodes

+ IBM Spectrum Scale file system does not like small file I/O intensive workloads

Reminder of the inode quotas on the Jean Zay disk spaces.

Originally, the IBM Spectrum Scale file system was designed to optimize parallel access to the
same large file. It is adapting to new practices but is still suboptimal for I/O-intensive workloads

on small-size files.

WebDataset format — Gathering inodes

POSIX
TAR Shard 0 Shard N
=[N - o
B Shard 1
gl
TAR
inode inode
inode

We present the alternative format, WebDataset, in order to minimize the number of inodes.

The idea is to group the data in archive form.

WebDataset format — lterable dataset

lterable-style dataset
_iter__

Pipelined Access

to Object Store
[] Next!
Stme . M!
server m!
e . Y
“ requestfor shard
———__data {
—_______d-:?a___) 1 m! \
———
_ :::——» Buffered KR
—_— am > shuffling ~ batch
{— e > 1
inode P daa Cesese u/o
Pros: Fewer |/Os, fewer inodes
Cons: Difficult to shuffle or distribute, unknown dataset length 18

WebDataset is an iterable-style dataset. We access data contiguously. There is no mapping
(idx, image).

This style of dataset is adapted to databases whose structure is not known beforehand. This is
the case here because the data are « hidden » in the archives.

Shuffling is managed by the CPU at the level of a buffer. The size of this buffer is chosen by the
user (proportionate to the batch size, for example).

WebDataset format - Sharding

Sharding is necessary to benefit from parallel implementation
(DataLoader multi-processing and Distributed Data Parallelism).

Shard 0 Shard 1 Shard N
ul LI} i
Next! Next! Next!
Li.e Li.e Li.e

wnode Mr GPU inode MrGPU ke Mr GPU

The number of shards should be a multiple of the number of tasks/GPUs.

1 shard = 1 archive.

Sharding consists of dividing the original dataset on multiple archives. A minimum number of

archives is necessary to generate parallelism at the 1/O level.
For example, 2 DatalLoader workers will access two different archives.
Likewise, 2 GPUs must be supplied by different archives.

For example: nshards = ngpus x nworkers

WebDataset format - Sharding

Shard N
Shard 0 .
[|
inode

inode

Samples must be evenly distributed among the
shards to balance the workload between processes.

For the workload to be optimally distributed on the different processes, the data must be
distributed as equally as possible in the archives.

20

WebDataset format - More or less shards?

More Less
shards shards
Large scale distribution + =
Shared bandwidth + =
Inodes quota = +
Number of 1/0 - +

The advantages and disadvantages of having a dataset with more/less shards.

Shard 0

inode

Shard 1

inode

Shard ?

inode

21

WebDataset — Multiworker sharding

WebDataset Shards

'E_b.

TA11 E-B

TAR

&I G
v 7

The shards are distributed on different processes according to the splitter function.

@ 111}
3 B
2

ShardList
69\'*\6(= 2 . Y E_sh
/,x' TAR R | [CiAR]
_____________ . (89 B [Be
iR | [7R | [iar
S B [B
. (i) (O] [
* 53 B P
TAR AR | [CAR |

(

22

WebDataset - Shuffling

\
I

E‘h Shard Shuffling
u11 E} 0 8 -5—4[3 -
7 : =

A

Ay
>
o
;.
£
al

6]

TAR

o

E-NE
11104
L

-
em |®
i
7
|/
&1l CIII
© |11} 7 l/
| /
}
1
1
1
1
1
1
1
1
1
1
1
v

¥ @ 111}
W =N d
|/

= £ £
E

iy — task 2
5, %]

3 1"
TAR AR | [CiAR | =

23

We can activate the first shuffling on the shard indexes. This shuffling is performed per process.

WebDataset - Shuffling

Buffered
Shuffling

AR 4

&I G
v 7
Gl
-
Gl Y ~
7
G

_.
ail
e 11l
|/
|/
@] - 7
|/

11104
i

24

We can also activate a shuffling at the level of all the data contained on a process.

Combining the two types of shuffling (shard shuffling and buffered shuffling) is the most effective
method.

WebDataset - Generation

When generating WebDataset shards, don't forget to:
» Distribute the samples as evenly as possible among the shards.
= Choose the number of shards according to the number of GPUs you will use.

= Distribute the samples so that each shard contains a representative part of the dataset.

S
+ Converting data before creating the archives to improve decoding performance? @

Some advice for generating a dataset of the WebDataset type.

,‘

25

WebDataset - Implementation

import webdataset as wds

my spl (paths) :
paths = list(paths)
return paths[idr_torch.rank::idr torch.world size]

paths = os.environ[' "1+ /i 0 12
train dataset_len = 67
train_dataset = wds.WebDataset (paths, nodesplitter=my splicter, shardshuffle=Tr
.shuffle(l
.decode ("t
.to_tuple(’' Py A .pyd")

.map tuple (transform, 1 %)
.batched (mini_batch size)\

.with_length(train_dataset_len)

nbatches = train dataset_len // global_batch size

train_loader = wds.WebLoader (train_dataset, batch_size=None, \
num_workers=num workers,
persistent_workers=persistent_workers, \
pin_memory=pin_memory,
prefetch factor=prefetch factor
) .slice(nbatches)

train loader.length = nbatches

WebDataset - Implementation

import webdataset as wds

(paths) :

return paths[idr torch.rank::idr torch.world size]

paths = os.environ['

train_dataset_len = 1 6
train_dataset = wds.WebDataset (paths, nodesplitter=my_sp
.shuffle (1000)
.decode ("t
.to_tuple('input

.map tuple(transform, lar
.batched(mini_batch size)
.with_length(train dataset_len)

nbatches = train dataset_len // global batch_size

train_loader = wds.WebLoader (train_dataset, batch_ size=lone,
num_workers=num_ workers,
persi5tent_worker5=per5istent_workers,.
pin_memory=pin memory,
prefetch_ factor=prefetch factor
) .slice(nbatches)

train loader.length = nbatches

ue)

st (paths) distribute shards among processes

26

27

WebDataset - Implementation

import webdataset as wds

paths = lis:(paths)
return paths[idr_torch.rank::idr torch.world size]

paths = os.environ['
train dataset_len = 12 6
train_dataset = wds.WebDataset (paths, nodesplitter=my_ splitter, shardshuffle=Trus)
.shuffle(l
.decode ("t ‘\\\
.to_tuple(’' - Bl pyd")
.map tuple (transform ®: x)
.batched (mini_batch size)\

.with_length(train_dataset_len) per process

nbatches = train dataset_len // global_batch size

train_loader = wds.WebLoader (train_dataset, batch_size=None, \
num_workers=num workers,
persistent_workers=persistent_workers, \
pin_memory=pin_memory,
prefetch factor=prefetch factor
) .slice(nbatches)

train loader.length = nbatches

WebDataset - Implementation

import webdataset as wds

list(paths)
. paths[idr_torch.rank::idr torch.world size]

paths = os.environ['D

train_dataset_len = 128116
train_dataset = wds.WebDataset (paths, nodesplitter=my_sp

.shuffle (1000) 1-_______;;—--______ ;
.decode ("t)N - shuffling samples

.to_tuple('in

.map tuple(transform, 1z
.batched(mini_batch size)
.with_length(train dataset_len)

nbatches = train dataset_len // global batch_size

train_loader = wds.WebLoader (train_dataset, batch_ size=lone,
num_workers=num_ workers,
persi5tent_worker5=per5istent_workers,.
pin_memory=pin memory,
prefetch_ factor=prefetch factor
) .slice(nbatches)

train loader.length = nbatches

shuffling shards indexes

28

29

WebDataset - Implementation

import webdataset as wds

my spl (paths) :
paths = list(paths)
return paths[idr_torch.rank::idr torch.world size]

paths = os.environ['

"1+ /im
train dataset_len = 57

train_dataset = wds.WebDataset (paths, nodesplitter=my splicter, shardshuffle=Trus)
.shuffle(l
.decode ("= . 4.
A it i by } description of shard content

.map tuple (transform, 1
.batched (mini_batch size)\
.with_length(train_dataset_len)

nbatches = train dataset_len // global_batch size

train_loader = wds.WebLoader (train_dataset, batch_size=None, \
num_workers=num workers,
persistent_workers=persistent_workers, \
pin_memory=pin_memory,
prefetch factor=prefetch factor
) .slice(nbatches)

train loader.length = nbatches
30

WebDataset - Implementation

import webdataset as wds

(paths) :
st (paths)
return paths[idr torch.rank::idr torch.world size]

paths = os.environ['

train_dataset_len = 1 16

train_dataset = wds.WebDataset (paths, nodesplitter=my splitter, shardshuffle=True)
.shuffle(1000)
.decode ("t

d")
=)

.to_tuple('input.pyd’,
.map tuple (transform, lar
.batzhed(mini_batch_size)
.with_length(train dataset_len)

} transforming and batching

nbatches = train dataset_len // global batch_size

train_loader = wds.WebLoader (train_dataset, batch_ size=lone,
num_workers=num_ workers,
persi5tent_worker5=per5istent_workers,.
pin_memory=pin memory,
prefetch_ factor=prefetch factor
) .slice(nbatches)

train loader.length = nbatches
31

WebDataset - Implementation

import webdataset as wds

paths = lis:(paths)
return paths[idr_torch.rank::idr torch.world size]

paths = os.environ['

train dataset_len = 12

train_dataset = wds.WebDataset (paths, nodesplitter=my splicter, shardshuffle=Trus)
.shuffle(l
.decode ("t
.to_tuple(’ d’,
.map tuple (transform
.batched (mini_batch size)\

.with length(train dataset_len) *—— define len(train_dataset)

.pyd")

®: x)

nbatches = train dataset_len // global_batch size

train_loader = wds.WebLoader (train_dataset, batch_size=None, \
num_workers=num workers,
persistent_workers=persistent_workers, \
pin_memory=pin_memory,
prefetch factor=prefetch factor
) .slice(nbatches)

train loader.length = nbatches

32
import webdataset as wds
t list(paths)
. paths[idr_torch.rank::idr torch.world size]
paths = os.environ['D imagenet_train-{00000 0 127} .tar’
train_dataset_len = 1281167
train_dataset = wds.WebDataset (paths, nodesplitter=my_ splitter, shardshuffle=True)'
.shuffle(1000)
.decode ("t
.to_tuple('in Bl
.map tuple(transform, 1z
.batched(mini_batch size)'
.with_length(train dataset_len)
nbatches = train dataset_len // global batch_size batching handled by

train loader = wds.WebLoader (train dataset, batch size=None, -
- num_wgrkers.:num_workgrs, WEbDataSEt CIaSS
persistent_workers=per5i5tent_workers, \
pin_memory=pin memory,
prefetch_ factor=prefetch factor
) .slice(nbatches)
train loader.length = nbatches

33

WebDataset - Implementation

import webdataset as wds

my spl (paths) :
paths = list(paths)
return paths[idr_torch.rank::idr torch.world size]

paths = os.environ[' "1+ /i 0 12
train dataset_len = 67
train_dataset = wds.WebDataset (paths, nodesplitter=my splicter, shardshuffle=Trus)
.shuffle(l
.decode ("t
.to_tuple('ing pyd’, .pyd")
.map tuple (transform, 1 x®)
.batched (mini_batch size)\
.with_length(train_dataset_len)
nbatches = train dataset_len // global_batch size
train_loader = wds.WebLoader (train_dataset, batch_size=None, \
num_workers=num_workers,
persistent_workers=persistent_workers, \ Usual DataLoader args

pin_memory=pin_memory,
prefetch factor=prefetch factor'
) .slice(nbatches)

train loader.length = nbatches
34

WebDataset - Implementation

import webdataset as wds

(paths) :
st (paths)
return paths[idr torch.rank::idr torch.world size]

paths = os.environ['

train_dataset_len = 1 16

train_dataset = wds.WebDataset (paths, nodesplitter=my splitter, shardshuffle=True)
.shuffle(1000)
.decode ("t

.to_tuple('input

- Bl

.map tuple(transform, lar
.batched(mini_batch size)
.with_length(train dataset_len)

nbatches = train dataset_len // global batch_size
train_loader = wds.WebLoader (train_dataset, batch_ size=lone,
num_workers=num_ workers,
persi5tent_worker5=per5istent_workers,.
pin_memory=pin memory,
prefetch_ factor=prefetch factor
)::é1lice(nbatches) 4 drop_last equivalent

train loader.length = nbatches

35

WebDataset - Implementation

import webdataset as wds

p_agh:a = list(paths)
return paths[idr_torch.rank::idr torch.world size]

paths = os.environ['

IR']+"/ima

train dataset_len = 1

train_dataset = wds.WebDataset (paths, nodesplitter=my splicter, shardshuffle=Trus)
.shuffle(l
.decode (")
.to_tuple(’' B

.map tuple (transform, 1z
.batched (mini_batch size)\
.with_length(train_dataset_len)

nbatches = train dataset_len // global_batch size

train_loader = wds.WebLoader (train_dataset, batch_size=None, \
num_workers=num workers,
persistent_workers=persistent_workers, \
pin_memory=pin_memory,
prefetch factor=prefetch factor!
) .slice(nbatches)

train loader.length = nbatches ¢

define len(train_loader)

Soon in TorchData?

TorchData url

O PyTorch Get Started Ecosystem Moabile Blog Tutorials - Resources v GitHub
o
TorchDat:
TorchData
AP! Reference:
This library is part of the PyT project. PyTorch is an open source machine learning framework.

rehdata is 3 Beta library of common modular data loading primitives for easily constructing flexible and performant data

pipelines. And, there are a few features still in prototype stage.

1 As of July 2023, we have paused active development on TorchData and have paused new releases. We
have learnt a lot from building it and hearing from users, but also believe we need to re-evaluate the
technical design and approach given how much the industry has changed since we began the project.
During the rest of 2023 we will be re-evaluating our plans in this space. Please reach out if you
suggestions or comments (please use #1196 for feedback).

backwards compatibility
PyTorch Libraries

Prototype: These features are typically not available as part of binary distributions
like PyP1 or Conda, except sometimes behind run-time flags, and are at an early
stage for feedback and testing,

37

It is expected that the WebDataset format will be integrated into the PyTorch library via a new
class in construction: TorchData.

This new class should simplify the whole data pipeline, from reading to pre-processing
(DataLoader).

Unfortunately, development of this class has been paused since July 2023.

WebDataset - Perfomance test

I/O loop over the dataset
(calculation-free iterations)

start time = datetime.datetime.now ()

for i, (images, labels) in enumerate (loader):
print(f'{i} / {nb batches}', end="\r")

end time = datetime.datetime.now()
delta time = (end time it - start time it).total seconds ()

+ Execution on 1 GPU

On a Resnet50/Imagenetcomplete training, no advantage is seen in using the WebDataset
format.

| have reduced the test to a simple dataset path to isolate the 1/0 performance. This test is
executed on only 1 GPU.

38

WebDataset - Perfomance test

CIFAR 10 (50k images)
I/O loop over the dataset elapsed time - 1 epoch

(calculation-free iterations)

35 1 - o - —-—
| CIFAR10 ~ 50k images |
i
2 251
+ Sharding is necessary to benefit 2] N R
from parallel implementation i) -
. . 15 4
(DataLoader multi-processing).
—— 1 shard
io 4 -~ 2 shards
—— 4 shards »— -— =3 —

0 2 4+ 6 8 10
num workers

39

Test on CIFAR10.
Observe that the more shards there are, the more we generate parallelism.

Here we are using a small dataset to be able to rapidly generate WebDataset versions with a
higher or lower number of shards.

In reality, using WebDataset on such a small dataset deteriorates the I/O performances.

The next tests will be conducted on Imagenet.

WebDataset - Perfomance test

Imagenet
I/O loop over the dataset elapsed time - 10 iterations

(calculation-free iterations) 01 — eg

- webdataset

Imagenet ~ 1.3M images 7

128 shards ~10k images per shard (+labels) 60
1 shard (images + labels) ~ 6GB

delta time (s)

+ The more samples are needed per
batch, the more efficient is the
WebDataset format (fewer 1/Os).

0 200 400 600 800 1000
batch size

— more |/O generated ——> o

Test sur Imagenet.

In WebDataset format on128 shards, Imagenet weighs 826GB (versus 153GB for the jpeg
version).

When increasing the batch size, we increase the number of I/0O requests.

We see that with the WebDataset format, a decrease in the number of I/Os optimizes the code
speed.

WebDataset - Perfomance test

I/O loop over the dataset
(calculation-free iterations)

Imagenet ~ 1.3M images
128 shards ~10k images per shard (+labels)
1 shard (images + labels) ~ 2GB

+ The WebDataset format scales up.

delta time (s)

Imagenet
elapsed time - 1 epoch

8000

6000 1

4000

2000 1

 peg
-&- webdataset

num workers

We increase the number of workers to verify the scalability of the WebDataset version.

41

WebDataset - Perfomance test

A complete training over the Imagenet dataset (dlojz.py)

Original jpeg dataset WebDataset format
Elapsed time (41 epochs) 30min43s 29min56s
Test accuracy 72% 72%

42

On a complete Resnet50/Imagenet training, we have verified that using the WebDataset format
does not degrade the performances, either in time or in accuracy.

Conclusion

Storage Disks Interconnection Network CPU workers
Omnipath

:....:é

L

1. 1/O performance 2. Shared Bandwidth 3. Decoder performance

» Disk spaces: WORK / DSDIR or SCRATCH
» Data format: binary or compressed
» Dataset format: alternative format like WebDataset

Appendix A — HuggingFace Datasets

Hugging Face Hub ™

dataset = load dataset ("dataset name"), getany of these datasets ready to use in a dataloader for
training/evaluating a ML model (Numpy/Pandas/PyTorch/TensorFlow/JAX) - from remote access or from

local copy.

Two types of dataset objects: Dataset or lterableDataset .
+ lterableDataset is ideal for big datasets (think hundreds of GBs!)
+ Dataset is great for everything else.

General : Audio : Vision :

* In-memory data (dictionary, * Local Files Dictionary * Local Files Dictionary
Pandas DataFrames, generator) + AudioFolder + ImageFolder

+ CSV * AudioFolder with metadata * WebDataset

+ JSON

+ Parguet :

+ Ammow Text: .Tabglg\r/ files

+ SQL + Text Files list

WebDataset « TextFolder + Pandas DataFrames

https://huggingface.co/docs/datasets/index

+ Databases (SQLite, PostgreSQL)

43

Appendix B — ESPRI-IA Use Case

STORAGE FORMATS

Sébastien Gardoll
May - 2023

Context : Large Training Scientific Dataset

NetCDF (network Common Data Form) is a file format for storing multidimensional
scientific data (variables) such as temperature, humidity, pressure, wind speed,
and direction. sompeean pecigration latiude longiude

Xarray is a library for working with [~
domain-agnostic data-structures,
labeled arrays, NetCDF, Zarr, ...

Test:

Storage format : Numpy, HDF5, WebDataset, Zarr W’ _ W arl'

Zarr is a high-level storage format
Dataset-level abstraction with indexing

BuosC

High-performance Compressor : BLOSC + LZ4

Slide: https://espri.ipsl.friwp-content/uploads/2023/12/storage_formats.pdf BLOSC is a meta-Compressor

video: https://www youtube com/watch?v=w8TJcBf87zw

Appendix B — ESPRI-IA Use Case

STORAGE FORMATS

Sébastien Gardoll
May - 2023

Conclusion:

with BLOSC + LZ4, loading (I/0 + com + decoding)
compressed data is faster than loading uncompressed data!
Recommended for WebDataset and Zarr!

For Short Dataset:
Numpy/Pickle is the best suitable storage format !!

For Long Dataset:
* Map style: Zarr > HDF5
» lterable: WebDataset > Zarr = HDF5

Slide: https://espri.ipslfriwp-content/uploads/2023/12/storage formats. pdf

video: https://www youtube comiwatch?v=w8TJcBi87zw

Annex — Attempt at Standardization

O PyTorch GetStarted Ecosystem Mobile Blog Tutorials v Resources v GitHub

+ TorchData? -

TorchData
TorchData

2B Bufarnnca:

1 As of July 2023, we have paused active development on TorchData and have paused new releases. We
have learnt a lot from building it and hearing from users, but also believe we need to re-evaluate the
technical design and approach given how much the industry has changed since we began the project.
During the rest of 2023 we will be re-evaluating our plans in this space. Please reach out if you
suggestions or comments (please use #1196 for feedback).

« MLCommons/Croissant

Croissant € is a high-level format for machine learning datasets that combines metadata, resource file
descriptions, data structure, and default ML semantics into a single file; it works with existing datasets to
make them easier to find, use, and support with tools.

Croissant builds on schema.org, and its Dataset vocabulary, a widely used format to represent datasets on the
Web, and make them searchable. \ 1_“1_

Croissant is currently under development by the community. s‘“ﬁe

