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Fast.ai tips and engineering

fast.ai

“An Al speed test shows clever coders can still beat tech giants like Google
and Intel.” DAWNBench competition 2018
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https://forums.fast.ai/t/jupyter-notebook-explaining-the-4-papers-by-leslie-n-smith/47243

ML Perf - Reféerence pour le Supercomputing en IA

4
MLPerf

Fair and useful benchmarks for measuring training and inference
performance of ML hardware, software, and services.
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ML Perf - Benchmarks
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Reinforcement Learning
MiniGo
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Image Classification
ResNet-50 v1.5




ML Perf - Benchmarks 7
MLPerf

Industry-Standard Generative Al Training Benchmarks
MLPerf Training v3.1
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ML Perf - Benchmarks
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Training HPC

Climate segmentation Cosmology parameter prediction
CosmoFlow

DeepCAM

S1s

Inference :
e Datacenter
e Edge
e Mobile
e Tiny
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Quantum molecular modeling
DimNet++



ML Perf - Leadership 7

NVIDIA H100 GPU Extends Al Training Leadership M L Pe rf

Fastest and most versatile Al accelerator

Relative Performance - Per Accelerator
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® Intel Xeon Platinum 8480+ Habana Gaudi2 m NVIDIA H100 Tensor Core GPU



ML Perf - Evolution
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NVIDIA Al and H100 Deliver 6.7X in 2.5 Years

Full-stack innovation fuels continuous performance gains
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MLPerf™ Training v2.1 Performance

o.7X

Higher performance with new H100 GPUs
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MiniGo RNN-T  RetinaNet 3D U-Net ResNet-50 DLRM Mask R- BERT
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Speedup on existing A100 GPUs with software
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ML Perf - Scaling

4
MLPerf - A100 - Training v2.0 M L Pe rf

@ Image classification
@ Image segmentation (medical)
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Performance Tuning Guide () pyTorch

« Enable asynchronous data loading and augmentation

torch.utils.data.Dataloader
num workers > 0
pin memory=True

» Disable gradient calculation for validation or inference

with torch.no grad():
val outputs = model (val images)
val loss = criterion(val outputs, val labels)

» Use mixed precision and AMP
from torch.cuda.amp import autocast, GradScaler
with autocast():

» Use efficient data-parallel backend

torch.nn.parallel.DistributedDataParallel

https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html 10



https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html

Performance Tuning Guide () pyTorch

Disable bias for convolutions directly followed by a batch norm
nn.Conv2d(..., bias=False, ....)
Models available from torchvision already
implement this optimization.

Enable channels_last memory format for computer vision models

x = x.to(memory format=torch.channels last)

Disable debugging APls

anomaly detection: torch.autograd.detect anomaly or torch.autograd.set detect anomaly (True)
profiler related: torch.autograd.profiler.emit nvtx, torch.autograd.profiler.profile
autograd gradcheck: torch.autograd.gradcheck or torch.autograd.gradgradcheck

Create tensors directly on the target device
forehrand{sizer——cudaty

torch.rand(size, device='cuda')

https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html 11
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Performance Tuning Guide () pyTorch

* Fuse pointwise operations
Pointwise operations (elementwise addition, multiplication, math functions - sin(), cos(), sigmoid() etc.) can be fused into a

single kernel to amortize memory access time and kernel launch time. PyTorch JIT can fuse kernels automatically.

@torch. jit.script
def fused gelu(x):
return x * 0.5 * (1.0 + torch.erf(x / 1.41421))

 Enable cuDNN auto-tuner
For convolutional networks

torch.backends.cudnn.benchmark = True

* Avoid unnecessary CPU-GPU synchronization

print (cuda tensor)
cuda_ tensor.item/()

memory copies: tensor.cuda (), cuda tensor.cpu() and equivalent tensor.to(device) calls
cuda tensor.nonzero ()
python control flow e.g. if (cuda tensor != 0).all()

https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html 12
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Performance Tuning Guide (") pyTorch

« Load-balance workload in a distributed setting
The core idea is to distribute workload over all workers as uniformly as possible within each global batch. For example
Transformer solves imbalance by forming batches with approximately constant number of tokens (and variable number
of sequences in a batch), other models solve imbalance by bucketing samples with similar sequence length or even by
sorting dataset by sequence length.

» Preallocate memory in case of variable input length
For Speech Recognition or NLP, preexecute a forward and a backward pass with a generated batch of inputs with
maximum sequence length (either corresponding to max length in the training dataset or to some predefined
threshold). This step preallocates buffers of maximum size, which can be reused in subsequent training iterations.

« Match the order of layers in constructors and during the execution if using

DistributedDataParallel " (find_unused_parameters=True)
To maximize the amount of overlap, the order in model constructors should roughly match the order during the
execution. If the order doesn’t match, then all-reduce for the entire bucket waits for the gradient which is the last to

arrive.
With find_unused_parameters=False it's not necessary to reorder layers or parameters to achieve optimal

performance.

https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html 13
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Deep Learning Performance Documentation @p

NVIDIA
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https://docs.nvidia.com/deeplearning/performance/index.html 14
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Linear/Fully-Connected Layers User's Guide @2

NVIDIA

The following quick start checklist provides specific tips for fully-
connected layers.

» Choose the batch size and the number of inputs and outputs to be
divisible by 4 (TF32) / 8 (FP16) / 16 (INT8) to run efficiently on
Tensor Cores. For best efficiency on A100, choose these
parameters to be divisible by 32 (TF32) / 64 (FP16) / 128 (INT8) .

» Especially when ones are small, choosing the batch size and the Input )
number of inputs and outputs to be divisible by at least 64 and Neurons (O XN
ideally 256 can streamline tiling and reduce overhead.

* Larger values for batch size and the number of inputs and outputs
improve parallelization and efficiency.

* As a rough guideline, choose batch sizes and neuron counts
greater than 128 to avoid being limited by memory bandwidth.

Output
Neurons

https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html 15
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Convolutional Layers User's Guide @2

The following quick start checklist provides specific tips for NVIDIA
convolutional layers.
* Choose the number of input and output channels to be divisible

by 8 (for FP16) or 4 (for TF32) to run efficiently on Tensor

Cores. For the first convolutional layer in most CNNs with 3-

channel images, padding to 4 channels is sufficient if a stride of

2 is used. Cﬂ
» Choose parameters to be divisible by at least 64 and ideally 256 C .- .y

to enable efficient tiling and reduce overhead. x |n 2 ﬂ
* Larger values for size-related parameters can improve K

para"el ization ) Inp:\t/Tensor RC@ Outpctljt Tensor
* When the size of the input is the same in each iteration, s
autotuning is an efficient method to ensure the selection of the Filters

ideal algorithm for each convolution in the network.
torch.backends.cudnn.benchmark = True.

* Choose tensor layouts in memory to avoid transposing input and
output data. We recommend using the NHWC format where
possible.

https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html 16
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Recurrent Layers User's Guide @2

The following quick start checklist provides specific tips for recurrent layers. NVIDIA

* Recurrent operations can be parallelized. We recommend using
NVIDIA® cuDNN implementations, which do this automatically.

* When using the standard implementation, minibatch size and hidden

Outputs

sizes should be: 0000
* Divisible by 8 (for FP16) or 4 (for TF32) to run efficiently on Tensor
Cores. Activations Hidden Size
- Divisible by at least 64 and ideally 256 to improve tiling efficiency.|Q @ @ & , -
* Greater than 128 (minibatch size) or 256 (hidden sizes) to be Na\ere OO O O
limited by computation rate rather than memory bandwidth. \ Recurrent Units
* When using the persistent implementation (available for FP16 data L I
only): cecmac Inputs
- Hidden sizes should be divisible by 32 to run efficiently on Tensor M
Cores. Better tiling efficiency may be achieved by larger multiples Weights (W)

of 2, up to 256. W

* Minibatch size should be divisible by 8 to run efficiently on Tensor
Cores...
+ Try increasing parameters for better efficiency.

Input Slze

https://docs.nvidia.com/deeplearning/performance/dl-performance-recurrent/index.html 17
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Memory-Limited Layers User's Guide @2
NVIDIA

The following quick start checklist provides specific tips for layers whose performance is
limited by memory accesses (Batch Normalization, Activations, Pooling, ...).

» Explore the available implementations of each layer in the NVIDIA cuDNN API Reference
or your framework. Often the best way to improve performance is to choose a more
efficient implementation.

* Be aware of the number of memory accesses required for each layer. Performance of a
memory-bound calculation is simply based on the number of inputs, outputs, and weights
that need to be loaded and/or stored per pass. We don’t have recommended parameter
tweaks for these layers.

* Be aware of the impact of each layer on the overall training step performance. Memory-
bound layers are most likely to take a significant amount of time in small networks where
there are no large and computation-heavy layers to dominate performance.

https://docs.nvidia.com/deeplearning/performance/dl-performance-memory-limited/index.html 18
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Memory-Limited Layers Example
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Hugging Face

* Transformers * Diffusers
' . Hub * Datasets * Gradio
* Hub Python Library * Huggingface.js * Transformers.js

|
The Al community .
building the future. ..

Build, train and deploy state of the art models powered by

Tokenizers * Evaluate * Tasks
the reference open source in machine learning.
* Datasets-server Simulate * Amazon SageMaker
C) star 104,839
* timm » Safetensors

* AutoTrain



