Deep Learning Optimise - Jean Zay

Good Practice and State Of The Art

InsTITUT DU

\I°'C D¥EVELOPPEMENT ET DES
l WY RESSOURCES EN

INFORMATIQUE

SCIENTIFIQUE ‘@ @@@\

Fast.ai tips and engineering

fast.ai

“An Al speed test shows clever coders can still beat tech giants like Google
and Intel.” DAWNBench competition 2018

&Y OneCycle Ir scheduler - Opularizes the works of
+ Ir finder Leslie N. Smith

FastAi Rectangular Crop Thanks to Global Average Pooling
W—
VAR ~ %% %

o Test Rectangular
Validation Technique

50

100

150

200

250

Progressive image
resizing

https://forums.fast.ai/t/jupyter-notebook-explaining-the-4-papers-by-leslie-n-smith/47243

ML Perf - Reféerence pour le Supercomputing en IA

4
MLPerf

Fair and useful benchmarks for measuring training and inference
performance of ML hardware, software, and services.

e Hardware

Industry standard e Framework
e SOTA

ML Perf - Benchmarks

ol |1t

L |=

Speech Recognition
RNN-T

’_‘
L

Jm +

Biomedical Image Segmentation
UNet-3D

Training

NLP
BERT

r =1

8

L -

Object Detection (Light weight)
SSD

Recommender
DLRM

'®

L -

A1

Object Detection (Heavy weight)
Mask R-CNN

4
MLPerf

Reinforcement Learning
MiniGo

.l

Image Classification
ResNet-50 v1.5

ML Perf - Benchmarks 7
MLPerf

Industry-Standard Generative Al Training Benchmarks
MLPerf Training v3.1

.
S

=

=
PAV.N

GPT-3175B Stable Diffusion

Large Language Model Text-to-Image

r A
N/
i S it (I(J—_?
It L= :
L8N - - Cat
DLRMv2 BERT-Large RetinaNet Mask R-CNN 3D U-Net RNN-T ResNet-50v1.5
Recommendation NLP Object Detection, Object Detection, Biomedical Image Speech Recognition Image Classification

Lightweight Heavyweight Segmentation

ML Perf - Benchmarks

*
-+

Training HPC

Climate segmentation Cosmology parameter prediction
CosmoFlow

DeepCAM

S1s

Inference :
e Datacenter
e Edge
e Mobile
e Tiny

4
MLPerf

Quantum molecular modeling
DimNet++

ML Perf - Leadership 7

NVIDIA H100 GPU Extends Al Training Leadership M L Pe rf

Fastest and most versatile Al accelerator

Relative Performance - Per Accelerator

Higher is Better RE o RIENS
1.5X
1.0X T
33X 3sx
0.5X
0.0X X — — X X
ResNet-50 3D U-Net BERT-Large RetinaNet = Mask R-CNN RNN-T GPT-3 DLRM-DCNv2

v1l5
® Intel Xeon Platinum 8480+ Habana Gaudi2 m NVIDIA H100 Tensor Core GPU

ML Perf - Evolution

n w S 5] [} ~
x x x x x x

Speedup Normalized to First A100 Submission
X

0X

ResNet-50 v1.5: 8x NI
9 8x NVIDIA 2

az
2063, 8x NVIDIA

First NVIDIA A100 Tensor C

NVIDIA Al and H100 Deliver 6.7X in 2.5 Years

Full-stack innovation fuels continuous performance gains

4
MLPerf

MLPerf™ Training v2.1 Performance

o.7X

Higher performance with new H100 GPUs

Up to

wib b

MiniGo RNN-T RetinaNet 3D U-Net ResNet-50 DLRM Mask R- BERT

2.5X

Speedup on existing A100 GPUs with software

Up to

v15 CNN

WAI00 wm H100 (Preview)

421-209] |

NVIDIA

Training 2.0 w

irernents introduced in MLPerf™ here spplicable.

MLPerf™ name and logo are trac

fask R-CNN: 8x NVIDIA
0, 8x NVIDIA 2. T~

ML Perf - Scaling

4
MLPerf - A100 - Training v2.0 M L Pe rf

@ Image classification
@ Image segmentation (medical)
10° 4 @ Object detection, light-weight
@ Object detection, heavy-weight
@® Speech recognition
@ NLP
” @ Recommendation
()] 1 @& Reinforcement
% 2
2 | - &
= c
- =
5 £ 10 A3
s - L5
o 2 o O
© 3 P
S = [A -
o o 107 4 Vo o
e £
2
(o 10-1 4 T S
(o) . e, T
£ '
©
)
10—2 B

100 - e N
GPU

Performance Tuning Guide () pyTorch

« Enable asynchronous data loading and augmentation

torch.utils.data.Dataloader
num workers > 0
pin memory=True

» Disable gradient calculation for validation or inference

with torch.no grad():
val outputs = model (val images)
val loss = criterion(val outputs, val labels)

» Use mixed precision and AMP
from torch.cuda.amp import autocast, GradScaler
with autocast():

» Use efficient data-parallel backend

torch.nn.parallel.DistributedDataParallel

https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html 10

https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html

Performance Tuning Guide () pyTorch

Disable bias for convolutions directly followed by a batch norm
nn.Conv2d(..., bias=False,)
Models available from torchvision already
implement this optimization.

Enable channels_last memory format for computer vision models

x = x.to(memory format=torch.channels last)

Disable debugging APls

anomaly detection: torch.autograd.detect anomaly or torch.autograd.set detect anomaly (True)
profiler related: torch.autograd.profiler.emit nvtx, torch.autograd.profiler.profile
autograd gradcheck: torch.autograd.gradcheck or torch.autograd.gradgradcheck

Create tensors directly on the target device
forehrand{sizer——cudaty

torch.rand(size, device='cuda')

https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html 11

https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html

Performance Tuning Guide () pyTorch

* Fuse pointwise operations
Pointwise operations (elementwise addition, multiplication, math functions - sin(), cos(), sigmoid() etc.) can be fused into a

single kernel to amortize memory access time and kernel launch time. PyTorch JIT can fuse kernels automatically.

@torch. jit.script
def fused gelu(x):
return x * 0.5 * (1.0 + torch.erf(x / 1.41421))

 Enable cuDNN auto-tuner
For convolutional networks

torch.backends.cudnn.benchmark = True

* Avoid unnecessary CPU-GPU synchronization

print (cuda tensor)
cuda_ tensor.item/()

memory copies: tensor.cuda (), cuda tensor.cpu() and equivalent tensor.to(device) calls
cuda tensor.nonzero ()
python control flow e.g. if (cuda tensor != 0).all()

https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html 12

https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html

Performance Tuning Guide (") pyTorch

« Load-balance workload in a distributed setting
The core idea is to distribute workload over all workers as uniformly as possible within each global batch. For example
Transformer solves imbalance by forming batches with approximately constant number of tokens (and variable number
of sequences in a batch), other models solve imbalance by bucketing samples with similar sequence length or even by
sorting dataset by sequence length.

» Preallocate memory in case of variable input length
For Speech Recognition or NLP, preexecute a forward and a backward pass with a generated batch of inputs with
maximum sequence length (either corresponding to max length in the training dataset or to some predefined
threshold). This step preallocates buffers of maximum size, which can be reused in subsequent training iterations.

« Match the order of layers in constructors and during the execution if using

DistributedDataParallel " (find_unused_parameters=True)
To maximize the amount of overlap, the order in model constructors should roughly match the order during the
execution. If the order doesn’t match, then all-reduce for the entire bucket waits for the gradient which is the last to

arrive.
With find_unused_parameters=False it's not necessary to reorder layers or parameters to achieve optimal

performance.

https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html 13

https://pytorch.org/tutorials/recipes/recipes/tuning_guide.html

Deep Learning Performance Documentation @p

NVIDIA

. . . o number of FLOPS o 2-(M:N-K) o M-N-K
Arithmetic Intensity = === byte accesses ~ 2. (M- K+N - K+M-N) ~ M- K+N-K+M-N
Arithmetic Intensity for a Fully-Connected Performance of NT GEMM with
Layer with 4096 Inputs and 4096 Outputs K = 4096, M = 2304
700 300 T- .
600 1
Z 29 | |
v 500] i i
|3 " 2001 ; i
E 4004 —e— Arithmetic Intensity %
-E —e— A100-SXM4-80GB FLOPS/B ratio > 150
g 300+ = : i :
%5 2001 |
< i
0 | | | 0 T r T
64 128 256 512 1024 1536 3072 4608 6144
Batch Size N

Wave Quantization effect

https://docs.nvidia.com/deeplearning/performance/index.html 14

https://docs.nvidia.com/deeplearning/performance/index.html

Linear/Fully-Connected Layers User's Guide @2

NVIDIA

The following quick start checklist provides specific tips for fully-
connected layers.

» Choose the batch size and the number of inputs and outputs to be
divisible by 4 (TF32) / 8 (FP16) / 16 (INT8) to run efficiently on
Tensor Cores. For best efficiency on A100, choose these
parameters to be divisible by 32 (TF32) / 64 (FP16) / 128 (INT8) .

» Especially when ones are small, choosing the batch size and the Input)
number of inputs and outputs to be divisible by at least 64 and Neurons (O XN
ideally 256 can streamline tiling and reduce overhead.

* Larger values for batch size and the number of inputs and outputs
improve parallelization and efficiency.

* As a rough guideline, choose batch sizes and neuron counts
greater than 128 to avoid being limited by memory bandwidth.

Output
Neurons

https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html 15

https://docs.nvidia.com/deeplearning/performance/dl-performance-fully-connected/index.html

Convolutional Layers User's Guide @2

The following quick start checklist provides specific tips for NVIDIA
convolutional layers.
* Choose the number of input and output channels to be divisible

by 8 (for FP16) or 4 (for TF32) to run efficiently on Tensor

Cores. For the first convolutional layer in most CNNs with 3-

channel images, padding to 4 channels is sufficient if a stride of

2 is used. Cﬂ
» Choose parameters to be divisible by at least 64 and ideally 256 C .- .y

to enable efficient tiling and reduce overhead. x |n 2 ﬂ
* Larger values for size-related parameters can improve K

para"el ization) Inp:\t/Tensor RC@ Outpctljt Tensor
* When the size of the input is the same in each iteration, s
autotuning is an efficient method to ensure the selection of the Filters

ideal algorithm for each convolution in the network.
torch.backends.cudnn.benchmark = True.

* Choose tensor layouts in memory to avoid transposing input and
output data. We recommend using the NHWC format where
possible.

https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html 16

https://docs.nvidia.com/deeplearning/performance/dl-performance-convolutional/index.html

Recurrent Layers User's Guide @2

The following quick start checklist provides specific tips for recurrent layers. NVIDIA

* Recurrent operations can be parallelized. We recommend using
NVIDIA® cuDNN implementations, which do this automatically.

* When using the standard implementation, minibatch size and hidden

Outputs

sizes should be: 0000
* Divisible by 8 (for FP16) or 4 (for TF32) to run efficiently on Tensor
Cores. Activations Hidden Size
- Divisible by at least 64 and ideally 256 to improve tiling efficiency.|Q @ @ & , -
* Greater than 128 (minibatch size) or 256 (hidden sizes) to be Na\ere OO O O
limited by computation rate rather than memory bandwidth. \ Recurrent Units
* When using the persistent implementation (available for FP16 data L I
only): cecmac Inputs
- Hidden sizes should be divisible by 32 to run efficiently on Tensor M
Cores. Better tiling efficiency may be achieved by larger multiples Weights (W)

of 2, up to 256. W

* Minibatch size should be divisible by 8 to run efficiently on Tensor
Cores...
+ Try increasing parameters for better efficiency.

Input Slze

https://docs.nvidia.com/deeplearning/performance/dl-performance-recurrent/index.html 17

https://docs.nvidia.com/deeplearning/performance/dl-performance-recurrent/index.html

Memory-Limited Layers User's Guide @2
NVIDIA

The following quick start checklist provides specific tips for layers whose performance is
limited by memory accesses (Batch Normalization, Activations, Pooling, ...).

» Explore the available implementations of each layer in the NVIDIA cuDNN API Reference
or your framework. Often the best way to improve performance is to choose a more
efficient implementation.

* Be aware of the number of memory accesses required for each layer. Performance of a
memory-bound calculation is simply based on the number of inputs, outputs, and weights
that need to be loaded and/or stored per pass. We don’t have recommended parameter
tweaks for these layers.

* Be aware of the impact of each layer on the overall training step performance. Memory-
bound layers are most likely to take a significant amount of time in small networks where
there are no large and computation-heavy layers to dominate performance.

https://docs.nvidia.com/deeplearning/performance/dl-performance-memory-limited/index.html 18

https://docs.nvidia.com/deeplearning/performance/dl-performance-memory-limited/index.html

Memory-Limited Layers Example

|
[lgl-v?[]lllﬁﬂjﬂJj

Normal convolution

Depth-wise separable convolution

MobileNet
EfficientNet

VAN

Decreasing of

Arithmetic Intensity.

GPU unadapted !!

19

Hugging Face

* Transformers * Diffusers
' . Hub * Datasets * Gradio
* Hub Python Library * Huggingface.js * Transformers.js

|
The Al community .
building the future. ..

Build, train and deploy state of the art models powered by

Tokenizers * Evaluate * Tasks
the reference open source in machine learning.
* Datasets-server Simulate * Amazon SageMaker
C) star 104,839
* timm » Safetensors

* AutoTrain

