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Abstract

The purpose of low-level benchmarks is to measure certain important characteristics of the target computer
system such as arithmetic and communication rates and overheads. They are synthetic in the sense that each is
designed to measure a particular architectural feature of the computer. In contrast to higher-level kernel and
application benchmarks, they solve no real problem and they don’t exhibit properties of real production codes
which scientific computer developers experiment daily with.

On the other hand real application codes can be very complex and can use multiple specific algorithms. It can be
very difficult or costly to port the code to a specific processor or to a new architecture.

Since HYDRO has been extracted from a real code (RAMSES [1]), it occurred to us that it will be a good
candidate for benchmarking purposes. HYDRO includes classical algorithms we can find in many applications
codes for Tier-0 systems.

It has been written in several versions including Fortran and C in order to experiment many new ways of
parallelism and to adapt it easily to new architectures that are emerging.

In this paper, we described the different versions of HYDRO we have developed using classical or new parallel
programming technics or paradigms. We also synthetized the lessons that could be learned from this work, the
difficulties that we have encountered in porting the application, the ease of use and the maturity of the new
parallel programming paradigms and the significant improvements in terms of performance that could be
obtained.
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1 Introduction

RAMSES [1] was developed in astrophysics’ division in CEA Saclay (France) by Romain Teyssier (CEA) to
study large scale structure and galaxy formation. It is written in FORTRAN with extensive use of the MPI
library. It is well known in the Computational Fluid Dynamics community and has proven to be scalable to tens
of thousands of processes.

HYDRO is a simplified version of RAMSES:

* The space domain is a rectangular two-dimensional splitting with a regular cartesian mesh (there is no
Adaptive Mesh Refinement),

* HYDRO solves compressible Euler equations of hydrodynamics,

* HYDRO is based on a finite volume numerical method using a second order Godunov scheme [2] for
Euler equations,

* aRiemann solver [3] computes numerical flux at the interface of two neighbouring computational cells.

e HYDRO code has about 1500 lines.

HYDRO is neither a small kernel nor a big software. It uses common algorithms representative of the ones found
in HPC. Hence, it seems to be a good candidate to fulfil the goals of this project:

* study and assess classical parallelization technics and more advanced programming frameworks related
to accelerators or ARM based machines,

* compare the performance and parallel scalability of a wide variety of architectures.

In order to cope with the wide varieties of approaches that we want to assess, two main branches of the code
have been developed:

1. The initial FORTRAN branch including OpenMP [5], MPI [4], hybrid MPI/OpenMP approaches [7],

2. A C branch to mainly facilitate the porting of the application on GPU platforms including CUDA,
OpenCL, HMPP programming frameworks and novel HPC languages including UPC [9,10].

All versions have been developed trying to keep up the following rules:
* the algorithms have not been modified,
* as much as we can, the code structure has been kept,

* the results have been validated by comparison with the sequential version.
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2 Algorithms

The two-dimensional Euler equations of hydrodynamics for an ideal gas expressing the conservation of mass,
momentum and energy can be written as:

9U+9 FlU)+ ayG(U)= 0
where:

U= ( p.pu, pv,E) is the vector of conservative variables,

u,v, E are respectively the density, the x- and y-velocities and the total energy,
M 279
p is the pressure with y=1.4(for [ at temperature 100°C) often used in

p=(r- 1)[E - %(uz + V2)] astrophysics simulation,
F and G are the flux vectors.

The two-dimensional Euler equations in conservative form are discretized in the finite volume framework as
follows:

n+l n At (Frz+]/2 n+l/2 ) At ( n+l/2 n+l/2 )
Uu‘ =Uw+E i+1/2,j_Fi—1/2,j +A_y G,',,mz_Gl,j-l/z M
where the flux functions are time and space averaged. In a cartesian grid, the elementary grid cell is simply a

square which the centre is (x=i, y=j) of sizes Ax,Ay .

In Table 1 we summarize the Godunov scheme with splitting direction technique.

L ) 0
initialize uold(:,:,:) // variable uold to store Ui,_

initialize n.. =0 // discrete time variable
step

while { <l‘mddo

if n.\'tep % n(mtput ==0 then

output () ; // dump fluid variables

Dt=cmpdt () ; // compute time step
if nmp%z ==0 then

Godunov (X,dt); Godunov (Y,dt); // update uold()
else
Godunov (Y,dt); Godunov(X,dt); // at t+dt
end if
end while

generate timing report

Table 1. Directional splitting Godunov scheme algorithm

In Table 2 we describe the pseudo-code of the routine implementing the equation (1) to update fluid cells
uold(:,:,:). At each time step, the Godunov routine is called twice, once in each direction (see Figure 1-2).



HYDRO

make_boundary(); // Apply boundary conditions to uold(:,:,:)

// ' Update on the first direction (idim=1), column by column
for j=1,ny do
* u(:,)=uold(:,j,:) // copy of one column of uold in the working buffer u

*  Compute primitive variables q(:,:) = ( P,U,Vv, p)

* Solve Riemann problem at current cell interfaces, i.e compute Godunov state

n

2 for horizontal interfaces from Godunov state

*  Compute incoming fluxes F' .

¢ Update uold(:,j,:) (see equation (1))
end for
// ' Update on the second direction (idim=2), row by row
for i=1,nx do

* u(:,)=uold(i,:,:) // copy of rows of uold in the working buffer u
* Compute primitive variables q(:,:) = (p,u, v,p)

* Solve Riemann problem at current cell interfaces, i.e compute Godunov state

n+l/2

*  Compute incoming fluxes (3, ,,, for vertical interfaces from Godunov state

¢ Update uold(i,:,:) (see equation (1))

end for

Table 2. Godunov routine, computation of updated values of uold(:,:,:) at t+dt
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Figure 1. Update of uold(:;:;:) along the second Figure 2. Update of uold(:;:) along the first
dimension (row by row) computation of fluxes at dimension (column by column), computation of
all horizontal interfaces. fluxes at all vertical interfaces.
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The Fortran Branch

3.1 Sequential version

The Fortran sequential version of the code is the reference version used to validate numerical results for any new
version of the code. All results presented in this paper are validated this way.

3.1.1 Structure
The code is written in Fortran90 and includes 5 files:
*  main.f90: implementation of algorithm in Table 1

* module hydro principal.f90 : implementation of algorithm of Table 2 and of the computation of the new
time step

* module hydro_utils.f90: implementation of Riemann solver
* module hydro I0.f90: implementation of read and write routines

* module hydro commun.f90 : parameters and constants

20 !

21 call read params

22 -

23 I 7

24 call init hydro

25 h

26 print *

27 print *,' Starting time integration, nx = ',nx,' ny = ',ny
28 print *

29

30 | Ma - )

31 do while (t < tend .and. nstep < nstepmax)
32

33 ! ]

4w if( on_output .and. MOD(nstep,noutput)==0)then
35 call output

36 end if

37

38 ! I —stej

39 if (MOD (nstep,2)==0)then

40 call cmpdt(dt)

41 if (nstep==0)dt=dt/2.

42 endif

43

14 !

15 w if (MOD (nstep,2)==0)then

16 call godunov(l,dt)

47 call godunov(2,dt)

18 w else

49 call godunov(2,dt)

50 call godunov(l,dt)

51 end if

52

8 nstep=nstep+l

54 t=t+dt

) write(*,'("step=",I6," t=",1lpel0.3," dt=",1pel0.3)"')nstep,t,dt
56

57 end do

Figure 3. main program in main.f90
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15 ! Update boundary conditions

134 call make boundary(idim)

135

136 ¥ if (idim==1)then

137 ! Allocate work space for 1D sweeps

138 call allocate work space(imin,imax,nx+1)

139 |

140 do j=jmin+2, jmax-2

141 ! Gather conservative variables

142 do i=imin,imax

143 u(i,ID)=uold(i,j,ID)

144 u(i,IU)=uold(i,j,IU)

145 u(i,Iv)=uold(i,j,IV)

146 u(i,IP)=uold(i,j,IP)

147 end do

148 if(nvar>4)then

155

156 | Convert to primitive variables

157 call constoprim(u,q,c)

158

159 ! Characteristic tracing

160 call trace(q,dq,c,gxm,gxp,dtdx)

161

162 do in = 1l,nvar

163 do i=l,nx+1

164 gleft (i,in)=gxm(i+1,in)

165 gright(i,in)=gxp(i+2,1in)

166 end do

167 end do

168

169 ! Solve Riemann problem at interfaces

170 call riemann(gleft,gright,ggdnv, &

171 rl,ul,pl,cl,wl,rr,ur,pr,cr,wr,ro,uo,po,co,wo, &
172 rstar,ustar,pstar,cstar,sgnm,spin,spout, &
173 ushock, frac,scr,delp,pold,ind, ind2)

174

175 ! Compute fluxes

176 call cmpflx(ggdnv,flux)

177

178 ! Update conservative variables

179 do i=imin+2,imax-2

180 uold(i,j,ID)=u(i,ID)+(flux(i-2,ID)-flux(i-1,ID))*dtdx
181 uold(i,j,IU)=u(i,IU)+(flux(i-2,IU0)-flux(i-1,IU0))*dtdx
182 uold(i,Jj,IV)=u(i,IV)+(flux(i-2,IV)-flux(i-1,1IV))*dtdx
183 uold(i,j,IP)=u(i,IP)+(flux(i-2,IP)-flux(i-1,IP))*dtdx
184 end do

185 if(nvar>4)then

192 end do

193

194 ! Deallocate work space

195 call deallocate work space

Figure 4. Godunov subroutine in module_hydro_principal.f90.
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3.1.2  Performance

The Figure 5 shows a profiling for the sequential version on an /BM SP-6 architecture with the tool gprof. The
data set used for this profiling is a square domain of size nx=ny=10000.

It appears clearly that the most intensive computing parts of the code corresponds to the two subroutines
GODUNOV (see algorithm in Table 2) and RIEMANN which computes Riemann solver. They represent
approximately 80% of the total consumed CPU time. This distribution with two hot spots allows anticipating
that it will greatly benefit from parallelization or porting to accelerated hardware, leading to improved
performance and good efficiency.

ngranularity: Each sample hit covers 4 bytes. Time: 473.43 seconds
% cumulative self self total
time seconds seconds calls ms/call ms/call name
42.0 198.96 198.96 80000 2.49 2.49 . hydro utils NMOD_riemann [4]
37.7 377.21 178.25 8 22281.25 57330.75 . hydro principal NMOD godunov [3]
5.8 404.45 27.24 80000 0.34 0.47 . hydro utils NMOD_trace [5]
4.9 427.46 23.01 80000 0.29 0.45 . hydro utils NMOD constoprim [6]
35 444.13 16.67 100000 0.17 0.17 . _hydro utils NMOD eos [7]
2.3 454.87 10.74 80000 0.13 0.13 . hydro utils NMOD_ slope [8]
885 461.92 7.05 80000 0.09 0.09 . hydro utils NMOD cmpflx [10]
165 468.85 6.93 2 3465.00 5132.00 . hydro principal NMOD cmpdt [9]
0.9 473.23 4.38 1 4380.00 4380.00 . hydro principal NMOD_init hydro [11]

Figure 5. Profiling of the sequential version of HYDRO on a square domain of size nx=ny=10000

We analyzed performance of the sequential version of HYDRO with the tool hpccount. Results are presented
below. We obtained 5.8 % of peak performance with 1.08 Gflop/s sustained and more than 57% of FMA
operations.

hpccount v3.2.1 (IHPCT v2.2.0) summary
#i#H##H#H Resource Usage Statistics #######

Total amount of time in user mode : 482.755073 seconds
Total amount of time in system mode :0.007216 seconds
Maximum resident set size : 3133640 Kbytes

#i#### End of Resource Statistics ####HH#H#H#
Execution time (wall clock time)  : 485.332292710897 seconds

PM_FPU 1FLOP (FPU executed one flop instruction ) 1 212234778018

PM_FPU FMA (FPU executed multiply-add instruction) ;151820496037

PM_FPU FSQRT FDIV (FPU executed FSQRT or FDIV instruction)  : 10402420664
PM_FPU FLOP (FPU executed 1FLOP, FMA, FSQRT or FDIV instruction) : 374457694719
PM_RUN _INST CMPL (Run instructions completed) : 999174066793
PM_RUN_CYC (Run cycles) 1 2272903363948

Utilization rate : 99.558 %

Instructions per run cycle : 0.440

Table 3. IBM hpccount tool
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3.2  OpenMP Fine-Grain version

3.2.1  Implementation

For the OpenMP Fine-Grain approach we use OpenMP directives to share the work between the threads,
especially on the level of parallel loops with the DO directives (e.g. looplevel parallelism with a unique parallel
region). It is the classical way to parallelize an application with OpenMP.

From the profiling of the sequential version of HYDRO, we identified that all the potential acceleration is related
to the parallelization of the two routines GODUNOV and RIEMANN. OpenMP philosophy is to share work at
the highest level of the code to minimize overhead and optimize performance. As RIEMANN is called from
GODUNOV, we created one parallel region at the main level containing the temporal loop and we shared work
among the threads at GODUNOV level. We can see in Figure 6 an extract of GODUNOV subroutine and how we
parallelize the algorithm contained in Table 2. The computation of the time step, routine CMPDT (Table 1) has
also been parallelized taking care to handle properly the reduction with the OpenMP clause !$OMP DO
REDUCTION in Figure 7.

Finally, the full parallelization of the code required only 6 OpenMP constructs for a total of 35 additional lines.
We dealt with the privatization of variables declared in modules with the appropriate OpenMP
THREADPRIVATE directive. No further restructuration of the code was needed.

3.2.2  Advantages

* The implementation is simple; the parallelization does not alter the code; one single version of the code
is to be managed for the sequential and parallel versions.

* An incremental approach of parallelization of the code is possible.

* If we use the OpenMP directives of work-sharing (TORKSHARE, DO, SECTION), then implicit
synchronizations managed by OpenMP greatly simplify the ease of programming (e.g. parallel loop
with reduction).

3.2.3  Disadvantages

* The additional costs due to work-sharing and the creation/management of threads can turn out to be
important, particularly when the granularity is small.

* The scalability of the code is limited and inferior to the one of the MPI version.

* The execution environment must be carefully tuned (e.g. memory affinity, bindings, ...) under penalty
of seeing a dramatic decrease of performance.
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127 ¥ subroutine godunov(idim,dt) -
128 use hydro commons

129 use hydro const

130 use hydro parameters

131 use hydro utils

132 use hydro work space

133 implicit none

134

135 ! Dummy arguments

136 integer (kind=prec int), intent(in) :: idim

137 real(kind=prec_regl), intent(in) :: dt

138 ! Local variables

139 integer (kind=prec_int) :: i,Jj,in

140 real (kind=prec_real) :: dtdx

141

142 ! constant

143 dtdx=dt/dx

144

145

146 | SOMP SINGLE

147 all make boundary(idim)

148 SOMP END STNGLE

149

150 if (idim==1)then

151

152 ! Allocate work space for 1D sweeps

153 call allocate work space(imin,imax,nx+1)

154

155 | SOMP DO SCHEDULE (RUNTIME)

156 b | do j=jmin+2, jmax-2

211 HSOMP—END—DG

212

213 ! Deallocate work space

214 call deallocate work space

215

216 else ~
283 v
< )< >

Figure 6. Subroutine GODUNOV - OpenMP Fine-Grain version

11



HYDRO

78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99

100 w

101

102 b |

110

111

112

113

114

115

116

117

118

119

120

121

122

123

12E

77 © subroutine cmpdt(dt)

use hydro commons
use hydro const

use hydro parameters
use hydro utils
implicit none

! Dummy arguments

real (kind=prec_real), intent(out) :: dt

! Local variables

integer (kind=prec_int) :: i,]

real (kind=prec real) :: cournox=0,cournoy=0,eken

real (kind=prec real), dimension(:,:), allocatable HEe|
real (kind=prec_real), dimension(:) , allocatable 11 e,C

! compute time step on grid interior
Cournox = zero

cournoy = zero

! SOMP BARRIER

allocate(qg(l:nx,1:IP),e(l:nx),c(l:nx))

/@MP DO REDUCTION (MAX:COUrnox,cournoy) \
do j=jmin+2, jmax-2

do i=l,nx

call eos(qg(l:nx,ID),e,q(l:nx,IP),c)

cournox=max(cournox,maxval (c(l:nx)+abs(g(l:nx,IU))))
cournoy=max (cournoy,maxval (c(l:nx)+abs(g(l:nx,IV))))

end do
SOMP END DO

deallocate(q,e,c)

| SOMP SINGLE
dt = courant_ factor*dx/max(cournox,cournoy,smallc)
| SOMP END SINGLE

124 end subroutine cmpdt

<L

Figure 7. Subroutine CMPDT - OpenMP Fine-Grain version

12
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3.3 OpenMP Coarse-Grain version

3.3.1  Implementation

The philosophy of this approach is similar to the one used for classical MPI domain decomposition. Each thread
works on its own sub-domain (SPMD) and the synchronizations is managed carefully so that the semantic of the
code is preserved. Given the initial grid (nx x ny points), we divide it into as many sub-domains as number of
threads and map one sub-domain to one thread. There is no overlapping on sub-domains and each sub-domain is
defined by both its lower boundary (iminloc) and upper boundary (imaxloc) on the first direction and by its
lower boundary (jminloc) and upper boundary (jmaxloc) on the second direction (see Figure 8 for an
example on a 10x10 grid with 6 threads).

This has been implemented in a sixth Fortran file omp domain decomposition.f90 and added to the Fortran

j

; 3 4 5 6 7 81910111213 14

3 Th 0 Th 2 Th 4

4 iminloc=3 iminloc=3 iminloc=3

5 imaxloc=7 imaxloc=7 imaxloc=7

6 jminloc=3 jminloc=6 jminloc=9

7 jmaxloc=5 jmaxloc=8 jmaxloc=12
| g Th 1 Th 3 Th 5

9 iminloc=8 iminloc=8 iminloc=8

10 imaxloc=12{ imaxloc=12 imaxloc=12

11 jminloc=3 jminloc=6 jminloc=9

12 jmaxloc=5 jmaxloc=8 jmaxloc=12

13

14

Figure 8 — OpenMP Coarse-Grain domain decomposition of a domain of size nx=ny=10 on 6 threads

package to compute the work distribution.

For the computation of the time step, we have to deal by hand with two reductions on shared variables cournox
and cournoy with the operator MAX. For this, we introduce two new private variables cournox loc and
cournoy_loc to compute local maximum values in parallel and then use an ATOMIC OpenMP construct to
update atomically the final results for the shared variables cournox and cournoy.

The most complex part of the parallelization is the update of uold from t to t+dt. It has to be managed very
carefully. In fact, if we want to preserve the semantic of the code (e.g. correctness of the parallel computed
results), then synchronizations have to be added so that no dependencies are broken. To cope with this problem,
we implement a software pipelining algorithm with low level synchronizations using the FLUSH OpenMP
directive (routine syn_x (resp. syn_y) to manage synchronization when updating the domain along the first
(resp. second) dimension). A complete description of this algorithm can be found in [3].

As for the Fine-Grain version, we define a unique parallel region at main level containing the temporal loop.
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Advantages

This approach minimizes work-sharing overhead, leading to improved performance and better cache
use.

On a shared memory node, we obtain a very good scalability comparable and even so often better than
the one obtained by parallelizing the code with MPI.

This is the best parallel version in terms of performance on an SMP node.

Disadvantages

We lose the advantages of OpenMP: it is a very intrusive approach. It is no longer possible to have one
and unique version of the code to manage.

The incremental approach of code parallelization is no longer possible.

The synchronizations (global or thread-level) are completely the programmer’s responsibility.
The work-sharing and the load balancing is also the programmer’s responsibility.

Finally, the implementation turns out to be at least as complex as a parallelization with MPI.

The execution environment must be carefully tuned (e.g. memory affinity, bindings, ...) under penalty
of seeing a dramatic decrease of performance.
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! Read run

call read params

L )

T pUNE FAKAI

Lo Lo L

paramecers

| Tnit lize hvdro grid

InictiallzZe

call init hydro

print *
print *,'HYDRO OMP2D_Sync - Execution with ',omp get num threads(),' threads’

print *,'On first dimension
print *,'On second dimension

',dims(1),"' thread(s)'
',dims(2),"' thread(s)'

print *

print *,'Starting time integration with nx = ',nx,' ny = ',ny

print *

[d?§11°°afe (dims) ] p | One thread works and the others wait

{90OMP BEND SINGLE 3
! Main time loop

do while (t < tend .and. nstep < nstepmax)

! Outrpnt recinlie

qutput .and. MOD(nstep,noutput)==0)then

if(MOD (nstep,2)==0)then
call cmpdt(dt)

| CAMD STNAT.E

s oUME Ol Lo
if(nstep==0)dt=dt/2.
| SOMP END SINGLE
endif
! Directional splitting

if(MOD (nstep,2)==0)then
call godunov(l,dt)
call godunov(Z,dt)
else
call godunov(2,dt)
call godunov(l,dt)
end if

nstep=nstep+.
t=t+dt
write(*,'("step=",I6," t=",1pel0.3," dt=",1pel0.3)')nstep,t,dt

| SOMP

txy
]

STNGLE

Figure 9. main program in OpenMP Coarse-Grain version




HYDRO

180 call make boundary(idim)

181

182  if (idim==1)then

183 ! Allocate work space for 1D sweeps

184 call allocate work space(iminloc-2,imaxloc+2)

185

igg - o :’l_ﬁrj}nifc’]mfi(zloilA~ variable Private subdomain

188 do i=fminloc-7,ImaxIloc+Z )

194 if(nvar>4)then

201

202 !

203 !

204 ! ur
205 ! pou 1

206 1 SOM. SH(tab_sync,u)

207 tab_sync(num_th)=j

208 I SOMP FLUSH(tab sync ]

209

210 ! Convert to primitive variables

211 call constoprim(u,q,c)

212

213 ! Characteristic tracing

214 call trace(q,dq,c,gxm,gxp,dtdx)

215

216 B do in = 1,nvar Manual flushs and synchronisations
222 A A
223 ! Solve Riemann problem at Iinterfaces

224 call riemann(gleft,gright,ggdnv, &

225 rl,ul,pl,cl,wl,rr,ur,pr,cr,wr,ro,uo,po,co,wo, &
226 rstar,ustar,pstar,cstar,sgnm,spin,spout, &
227 ushock, frac,scr,delp,pold, ind, ind2)

228

229 ! Compute fluxes

230 call cmpflx(ggdnv,flux)

231

232 ! MAJ ssi voisin lecture terminee

233 [call sync_x ]

234

235 do i=iminloc,imaxloc

241 if(nvar>4)then

248 end do

249 [ ! SOMP BARRIER ]

250

251 ! Deallocate work space

Figure 10. Godunov subroutine in OpenMP Coarse-Grain version
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3.4 MPI version

3.4.1  Implementation

The MPI version is based on 2D domain decomposition with ghost (or halo) cells. It uses derived MPI datatypes
and there is no computation/communication overlap. We added to the code a sixth file mpi module.£90
which contains MPI parameters and MPI specific routines. It acts like the additional file
omp_ domain decomposition.f90 in the OpenMP Coarse-Grain version.

The routine Godunov is very similar to the one of the OpenMP Coarse-Grain version, but with a local
numbering.

For sake of simplicity, we decided to introduce a new type of boundary condition to deal with the update of halo
cells of each subdomain at each time step. This new MPI boundary condition is implemented in the routine
make boundaries (see Table 2) using MPI SENDRECV for point-to-point neighbourhood communication
scheme (see Figure 11).

For the computation of the time step in routine CMPDT (see Table 1), we use the collective function
MPI ALLREDUCE to deal with the global reduction across MPI processes.

3.4.2  Advantages

* The MPI version is perfectly well-balanced and the communication scheme is nearly optimal as it
involves only neighborhood point-to-point communications (MPI SENDRECV) except for the time step
computation which involves a global reduction (MPI ALLREDUCE).

* As most of the work of the MPI implementation was to carefully define the topology, the domain
decomposition and the MPI derived type in module mpi module. £90, the core of the code remains
unchanged.

3.4.3  Disadvantages
* It is an intrusive approach, but changes are limited to a few well-defined parts of the code.

* We find the same disadvantages as those described in section 3.3.3.
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" subroutine make boundary(idim)

v

50 B
68

use hydro mpi

use hydro_ commons
use hydro const

use hydro parameters
implicit none

! Dummy arguments

integer (kind=prec int), intent(in) :: idim
! Local variables
integer (kind=prec_ int) :: ivar,i,i0,3j,3jo0
real (kind=prec real) :: sign

1S integer(kind;prec_int) 1 lijet

!l§ real(kind=prec_real) :: djet,ujet,pjet

if(idim==1)then

| ——-MPI—-!

! Send to east and receive from west

call MPI_ SENDRECV(uold(nx+1,3,1),1,bloc_diml,voisins(EAST),etiquette,
uold(l,3,1) ;1,bloc_diml,voisins(WEST) ,etiquette,
comm2d,MPI_STATUS IGNORE,code)

! Send to west and receive from east

call MPI_ SENDRECV(uold(3,3,1) ;l,bloc_diml,voisins(WEST) ,etiquette,
uold(nx+3,3,1),1,bloc diml,voisins(EAST) ,etiquette,
comm2d,MPI_STATUS_IGN6RE,code)

! -—-MPIT—-!

| Left boundary
if (boundary left>0) then

2

2

69 ! Right boundary

70 . if (boundary right>0) then

88

89 v else

90 | ——-MPI—-!

91 ! Send to south and receive from north

92 call MPI_ SENDRECV(uold(:3,3,1), 1,bloc_dim2,voisins(SOUTH),etiquette, &
93 uold(3,ny+3,1),1,bloc_dim2,voisins(NORTH) ,etiquette, &
94 comm2d,MPI_STATUS IGNORE,code)

95

96 ! Send to north and receive from south

97 call MPI_ SENDRECV(uold(3,ny+l,1),1,bloc_dim2,voisins(NORTH) ,etiquette, &
98 uold(3,1,1), 1,bloc dim2,voisins(SOUTH) ,etiquette, &
99 comm2d,MPI_STATUS_IGN6RE,code)

100 ! -—-MPIT—--!

< )< >

Figure 11. Subroutine make_boundary - MPI version
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3.5 Performance of OpenMP Fine-Grain, OpenMP Coarse-Grain and MPI version

We compare the performance and the parallel strong scaling scalability of the three versions of HYDRO:
OpenMP Fine-Grain version, OpenMP Coarse-Grain version and MPI version.

3.5.1  Target machine characteristics

The target machine is an IBM SP6 shared memory node with 32 cores per node.

3.5.2  Characteristics of used data sets

We use three data sets, of the same total size (i.e the same total number of points), but with different distributions
in the two directions x and y:

* elongated domain in the y direction: nx=1000, ny=100000 (see figure 12),
* square domain in the y direction:nx=ny=10000 (see figure 13),

* elongated domain in the x direction: nx=100000, ny=1000 (see figure 14),

T T
32[| ==@== Coarse-grain OpenMP : P
w=tt== Fine-grain OpenMP ’
== MP| : . ’,

= = = deal P

Speedup

_ I I 1 1 I I
12 4 8 16 24 32
Number of cores

Figure 12. Strong scaling test on an elongated domain in y direction: nx=1000 and ny=100000
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T T T
34.0833 | wm@== Coarse—grain OpenMP
w==tt== Fine-grain OpenMP
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- = = (deal

24
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-

Figure 13. Strong scaling test on a square domain: nx=ny=10000
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Figure 14. Strong scaling test on an elongated domain in x direction: nx=100000 and ny=1000
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Analysis of results

Although we work on domains of identical size, the obtained performance on one core vary from simple
to the triple. It comes from the good use or not of caches.

Whatever the data set and up to 4 cores, the three versions give more or less similar performance.
Beyond 4 cores, the OpenMP Fine-Grain version suffers from a problem of degraded scalability
compared to the MPI and OpenMP Coarse-Grain versions.

Accordingly, except for a limited number of cores, the OpenMP Fine-Grain version is always largely
dominated by the MPI or OpenMP Coarse-Grain versions, even if it is linearly scalable on a limited
way, up to 32 cores.

Up to 24 cores, the MPI and OpenMP Coarse-Grain versions have similar and perfect scalability,
sometimes even super-linear (i.e. better re-use of caches as the size of the local sub-domains decreases).

Beyond 24 cores, the MPI version seems to slow down, while the OpenMP Coarse-Grain version
continues to be perfectly scalable.

On 32 cores, it is always the OpenMP Coarse-Grain version that gives the best results.

It is important to say that the MPI version can still be optimized by implementing
computation/communication overlap, which could enable it to be scalable beyond 24 core.

Conclusions

The generalization of shared-memory machines as well as the increase of number of cores available
inside a node requires that we reconsider the way we parallelize applications.

Inside a node, if we look for the maximum performance, it is the OpenMP Coarse-Grain approach that
must be used. This requires a great investment and it is at least as much complicated to implement as an
MPI version. The debugging is particularly complex. This approach is reserved to specialists who
master skillfully the parallelism and its traps.

The simplicity of use and the rapidity of implementation of an OpenMP Fine-Grain version are its main
advantages. On the condition of well coding, performance according to the type of algorithm (especially
according to the granularity) can range from medium to relatively good. The debugging still remains
complex. This approach is destined to everyone.

MPI obtains good performance on a shared-memory node, but the OpenMP Coarse-Grain version
outclasses it in terms of scalability and performance. It can still however be optimized, for example by
implementing the overlapping of computation by communications. It stays anyway indispensable when
it is necessary to go beyond the use of a single node.
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3.6  Hybrid MPI/OpenMP version

3.6.1  Implementation

Starting from both a pure flat MPI and an OpenMP parallel version that are already available, we combine the
two approaches to create a hybrid MPI+OpenMP version of HYDRO. For reasons of portability and simplicity,
the MPI THREAD FUNNELED level of thread support is used. Porting the code to the MPI+OpenMP
paradigm turns out to be straightforward; the additional porting/coding effort being very limited compared to the
time needed to develop the pure MPI or the OpenMP versions. We used here a 2D domain decomposition for the
MPI level and a Coarse-Grain OpenMP parallelization. From our experience and as the OpenMP Coarse-Grain
version has been very intrusive and complex to implement, we decided to fuse the two versions by incorporating
MPI calls to the OpenMP version.

3.6.2  Characteristics of used data sets

We built two data sets, much bigger than those used so far in order to run the code on the PRACE Research
Infrastructure Tier-0 systems, in particular CURIE (TGCC, France) and JUGENE (JSC, Germany).

* A data set for strong scaling runs:
o Number of points of the domain: Nx*Ny=40000%40000=1.6%10""",
o Number of iterations: 4
o Memory used: 8Gb (90Mb/core on 4096 cores),
o Elapsed time on 4096 cores BG/P: about § seconds,
o Number of targeted cores: 4K, 8K, 16K, 32K

* A data set for weak scaling runs as provided in Table 4.

Cores Nx * Ny Iterations Memory/core
(Mb)
4096 40000° 4 90
8192 56568> 4 90
16384 80000> 4 90
32768 131137 4 90

Table 4. Weak scaling data set
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3.6.3  Results of strong scaling runs

The gain in terms of performance or scalability by using a hybrid version is not obvious. In fact, as already
mentioned, the MPI version is perfectly well-balanced and the communication scheme is nearly optimal as it
involves only neighbourhood point-to-point communication except for the time step computation which involves
a global reduction.

T
—6— MPI speedup (VN mode)
= Hybride speedup (DUAL mode, 2 threads per MP| process)

Hybride speedup (SMP mode, 4 threads per MPI process) P
==== Perfect linear speedup v

4096 8192 16384 32768

Figure 15. Strong scaling tests on Blue Gene/P

* The strong scaling results presented here were run on the Blue Gene/P at Jiilich (Germany).

*  From small to moderate number of cores, the performance of pure MPI or MPI+OpenMP approaches
are very similar.

* Beyond 4096 cores, the pure MPI implementation begins to lose scalability, whereas the hybrid
approach keeps a near perfect scalability up to 16384 cores and even continues to scale up (non-
linearly) to 32768 cores.

*  On this strong scaling test, the scalability limit of the flat MPI version is 8192 cores, whereas the
scaling limit of the SMP hybrid version is 32768 cores. We find here the factor of four which
correspond to the number of cores of a BG/P node.

*  The best hybrid version (on 32768 cores) is 3.5 times faster than the best MPI version (on 8192 cores).
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14| —e— P! elapsed time, VN mode
" Hybrid elapsed time, DUAL mode
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Elapsed time (3.

0
4036 8192

Figure 16. Weak scaling tests on Blue Gene/P

*  The scalability of the MPI flat version shows its limits. It hardly scales up to 16384 cores, then the

elapsed time explodes beyond that.

* The DUAL hybrid version (2 threads per MPI process), but, even more, the SMP version (4 threads per

16384
Numher of cores

32768

MPI process) behaves well up to 32768 cores, with nearly constant elapsed time.

* In this weak scaling test, the scalability limit of the MPI flat version is 16384 cores. The limit of the

SMP version is not yet reached on 32768 cores.

e It is clear that with this type of parallelization method (i.e. domain decomposition), the scaling (here

over 16K cores) clearly requires the use of hybrid parallelization.
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Learning from experiences - Advantages

Hybrid parallel programming consists of mixing the MPI parallel paradigm with a threaded parallel
model in order to benefit from the advantages of both approaches.

Compared to a flat MPI approach, the hybrid parallel approach decreases the number of MPI processes
leading to the following consequences:

* Better scalability due to a reduction of both the number of MPI messages, and the number of
processes involved in collective communication (MPI ALLTOALL is not very scalable)

*  Better granularity at MPI level and better load balancing at the node level managed implicitly by
OpenMP using the shared memory

* Better adequacy to the architecture of modern supercomputers (interconnected shared-memory
nodes, NUMA machines...), where the use of HyperThreading (HT) or Simultaneous Multi
Threading (SMT) will play an even more important key role in the future in order to achieve
efficient performance

*  Memory savings

o The ghost or halo cells, introduced in order to simplify the programming of MPI codes using
domain decomposition, are no longer mandatory within the SMP node. Only the ghost cells
associated with the inter-node communications are mandatory.

o The memory footprint of system buffers associated with MPI is not negligible and increases
with the number of processes. For example, for an Infiniband network with 65000 MPI
processes, the memory footprint of system buffers reaches 300MB per process, almost 20TB in
total!

Removal of some algorithmic limitations (maximum decomposition in one direction for example)
which concretely limit the total number of MPI processes.

Enhancement of the efficiency of some algorithms: fewer bigger domains may mean a better
preconditioner if we drop the contributions of other domains.

Optimization of I/O.

o Fewer simultaneous accesses in I/O and larger average record size. This causes less load on the
meta-data servers with requests of more suitable size. The potential saving for a massively
parallel application can be significant.

o Fewer files to manage if we use an approach where the number of files is proportional to the
number of MPI processes (an approach not at all recommended in a context of massive
parallelism).

Learning from experiences — Disadvantages

Managing parallelism at two different levels is hard to implement and error prone. Thread synchronisation,
definition of variable status (SHARED or PRIVATE), race condition are common pitfalls to avoid.

Debugging is especially difficult as tools are not mature.

All the disadvantages listed previously for MPI and OpenMP are still valid.

Most advanced implementations of hybrid parallelism using the MPI THREAD MULTIPLE level of threads
support are totally inefficient on all tested architectures.
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program hydro_main ~
use hydro_commons
use hydro_parameters

8 use hydro_To

9 use hydro_mpi

10 use hydro_principal

use Ptim

use omp_parameters

use omp_domain_decomposition

implicit none

real(kind=prec_real) 1: dt

1—-MPI——1

! Initializatiomof MPIenvs

call MPI_JINIT_THREAD(MPI_THREAD FUNNELED, level mpi_provided,code) ]
! MPI timiag

call PTIM_start(LABEL="Hydro MPI-OpenMP")
1--MPI -1

! Read run parameters
call read params

! Initialize MPI domains and communicator
call init mpi

1SOMP PARALLEL
! Initialize OpenMP domains
call init omp

if (rang==0) then
1SOMP SINGLE
deallocate(dims)
1SOMP END SINGLE

! Initialize hydro grid
call init_hydro
Iprint *, "Fin init_hydro"

! Main time loop
do while (t < tend .and. nstep < nstepmax)

! Output results
if( on_output .and. MOD(nstep,noutput)==0)then
1SOMP SINGLE
call output
1SOMP END SINGLE
end if

! Compute new time-step
if (MOD(nstep, 2 )==0)then
call cmpdt(dt)
1SOMP SINGLE
if (nstep==0)dt=dt/2.
1SOMP END SINGLE
endif

! Directional splitting
if (MOD(nstep, 2)==0)then
call godunov(l,dt)
call godunov(2,dt)

else
call godunov(2,dt)
call godunov(l,dt)
end if

1SOMP SINGLE

nstep=nstep+l

t=t+dt

1SOMP END SINGLE

1=——MPI -}
if (rang==0 .and. num_th==0) write(*,'("step=",I6," t=",1pel0.3 " =",1pel0.3) ')nstep, t,dt
1—-MPI——1!

end do

Figure 17. Main program of the hybrid MPI/OpenMP version
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4 The C branch

When this work was started back in 2009, the only operational way to have a code that could be written in
CUDA, OpenCL or HMPP was using the C89 language. At that time CUDA couldn’t handle C++, OpenCL
relied (and relies) on C99 and the maturity of FORTRAN HMPP wasn’t good enough for a decent comparison.

Since those days, the landscape has evolved quite a bit for both CUDA and HMPP. Cuda is getting closer to a
full support of C++ (since the Fermi hardware is helping a lot), HMPP is now mature enough to cope with most
of the FORTRAN constructs alongside with C99.

For the aforementioned reasons, we did the port in C89 to start with. Then, from this base, we implemented a
CUDA version. It was then easy to do the OpenCL and HMPP ports. The move to C99 was the opportunity to
implement a variant of the initial algorithm and jump to the MPI world. Once the MPI version was implemented,
it was easy to back port both the new algorithm and the MPI communications in the CUDA version. The
following sections will follow this time track, trying to capture what has been learned at each step.

4.1 C89

This first port was done with the constraint of keeping as much as possible the structure and naming conventions
of the initial sequential FORTRAN code. The goal wasn’t to improve the numerical method but rather to
compare languages in as close forms as possible. The final result reflects quite faithfully the original. Yet some
important changes were required to prepare the next phase: the CUDA port.

4.1.1 2D Arrays

C89 is a very reliable but crude language. nD arrays are not available with respect to the FORTRAN habits. We
had to revert to using macros to implement 2D indexation. This leads to a rather cumbersome way of coding
which has the drawback of being difficult to debug.

#define IHVW (i, v) ((i) + (v) * Hnxyt)

r = gq[IHVW (i, ID)];

Table 5. Array indexing

The advantage of such a coding is that the FORTRAN indexing scheme can be kept, leading to a code looking
pretty much like the original. The drawback is to use a different macro for each type of array if we don’t want to
add extra parameters (the leading dimension of the array in bold in the snippet above). This introduces also the
constraint of a consistent naming of the variables holding dimensions. While highly desirable, former
experiments show that it is not always the case.

The FORTRAN 90 array syntax hides a lot of loops and even auxiliary memory usage. It is therefore required to
avoid this feature in favor of actual loops to ease the port to CUDA.
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4.1.2  Arguments to SUBROUTINEs

One of the drawbacks of C89 is that we can’t specify the array dimensions as easily as in FORTRAN. This
feature called Variable Length Array is available only in C99 (and not in C++ even). Therefore one can’t write
such a declaration in C89:

void foo(int n, double arr[n]) { /* my code */ };

Table 6. A VLA declaration in C99

This syntax is (unfortunately) invalid in C89.

To circumvent such a limitation we rely on both explicit dimensions in the argument list and on the #define
shown previously for the array indexing. One should note that checking of overflow is not available through this
method (a FORTRAN compiler is able to do it since dimensions are used, not pointers).

Void
trace (double *RESTRICT g, double *RESTRICT dg, double *RESTRICT c,
double *RESTRICT gxm, double *RESTRICT gxp,
const double dtdx, int n,
const int Hscheme, const int Hnvar, const int Hnxyt)
{ // local variables
/]
#define IHVW (i, v) ((i) + (v) * Hnxyt)
/]

Table 7. 2D Arrays

This section of code illustrates how we deal with array dimensions.
Whenever possible the usage of const and restrict is enforced to help the compiler.

Another pattern we used was to forbid global variables altogether. This rule was introduced to get prepared for
the CUDA port. It means that all arrays had to be passed as arguments to each function as illustrated above for
the trace () routine. Note that a FORTRAN USE has the same effect as using C global variables and thus
should be avoided for other usage than type declarations.

4.1.3 MODULE and USE

Since the original was clean FORTRAN 90, we had to imagine a form of reproducing the MODULE/USE
construct while sticking to the C habits. We had also to get prepared to the GPU port. The solution was first to
turn MODULE declarations in C structures, defined in “.h” files. Then we studied the code to isolate sections
where the structures are modified. In that case, pointers to the actual structure are used. Everywhere else, the
value of the structure is used to avoid side effects on pseudo global values.

Furthermore, we decided that none of the structures could be used directly in subroutines but the main one.
Therefore structure members should always be passed as arguments (either by value or pointer depending on the
usage). A pure computation routine will access only to members, prohibiting any change in the main structure.
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typedef struct hydroparam {
int prt;
// time control
double t, tend;
int nstep, nstepmax;
int noutput;
double dtoutput;
// dimensions
int imin, imax, jmin, jmax, nx, ny, nxt, nyt, nxyt;
// physics
int nvar;
double dx;
double gamma;
double courant factor;
double smallc, smallr;
// numerical scheme
int niter riemann;
int iorder;
double slope type;
int scheme;
int boundary right, boundary left, boundary down, boundary up;
} hydroparam t;

hydroparam t H;

int main(int argc, char **argv) {
//
hydro init (&H, &Hv);
//

}

Table 8. Module transformation

This snippet of code illustrates how a MODULE has been transformed in a structure (hydroparam_t) and
initialized (by address).

if ((H.nstep % 2) == 0) {
hydro godunov (1, dt, H, &Hv, &Hw, &Hvw);
} else {

hydro godunov (2, dt, H, &Hv, &Hw, &Hvw);
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Table 9.Upper level usage of the structure

Here we show how the previous structure (H) is used as a read only variable (by value) preventing any further
modification (upper level of call).

trace(q, dg, ¢, gxm, gxp, dtdx, Hdimsize, H.scheme, H.nvar, H.nxyt);

Table 10. Lower level usage of the structure

Deeper inside the code, we don’t pass the whole structure but only the relevant fields to simplify the signature of
the function and limit side effects.

4.1.4  Lessons learned

*  The architecture of the code should not include computations. The latter must be encapsulated in lower-
level functions

* In a FORTRAN code, MODULE/USE should be used only at the upper levels of the architecture.
Everything else should be arguments.

* Dimensions should always be explicit (FORTRAN77 type declaration)
*  FORTRANY0 array syntax hides a lot of parallelism (and pitfalls). Prefer explicit loops.

* Dynamic memory allocation should be done at the highest level possible and be forbidden in a
computational routine.

With these modifications, it was pretty straightforward to move from FORTRAN to C.
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4.2 CUDA 1D

Once the C89 code was running, meaning that it gave the very same results as the FORTRAN version, we started
to port it to CUDA. To achieve this, we had to study the array usage, adapt some algorithms of the code and
move subroutines to CUDA. We describe each step in the following subsections.

4.2.1  Array Usage

Since we had made explicit array usage through arguments, it was easy to track the real usage of every single
array. We were able to sort them as temporaries needed only on the GPU or fundamental arrays which needed to
be copied back to the CPU, depending on the global algorithm of the code. This process was very useful to limit
the data movements from/to the GPU as well as to create all the corresponding buffers in one shot on the GPU
(cuAllocOnDevice ()).

Note that if we had been able to stick to FORTRAN, the usage of FORTRAN90’s INTENT would have helped
us significantly by clearly stating the purpose of each array, if specified as an argument. Otherwise, using only
the USE clause couldn’t give us such an important piece of information.

To make sure of which address space we are using, a coding pattern has been used of adding a DEV extension to
variable names representing a buffer on the GPU. Doing so, we avoided a common CUDA bug where pointers
get mixed up leading to crashes.

cuTrace (qgDEV, dgDEV, cDEV, gxmDEV, gxpDEV, dtdx, H.nxt, H.scheme, H.nvar,
H.nxyt);

Table 11. Naming convention

A call to “trace” using the CUDA implementation. Note that the function name has been changed to allow for
the cohabitation of the original C89 implementation and the CUDA port.
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4.2.2  Algorithm change

The main difficulty was located in the Riemann () routine. In this function, the original code was using a set of
indexes and arrays to process only the elements which haven’t converged.

end do
! Newton-Raphson iterations to find pstar at the required accuracy
do iter = 1,niter riemann
do i=1,n
wwl=sqrt (cl(ind (i) ) * (one+gamma6* (pold (i)-pl (ind(i)))/pl(ind(i))))
! computations skipped here!
end do
n_ new=0
do i=1,n
if (uo(i)>1.d-06) then
n_new=n_new+l
ind2 (n_new)=ind (1)
po (n_new)=pold(i)
end 1if
end do
j=n_new
do i=1,n
if (uo(i)<=1.d-06) then
n_new=n_new+l
ind2 (n_new)=ind (1)
Po (n_new)=pold(i)
end if
end do
ind (l:n)=ind2(1l:n)
pold(l:n)=po (1:n)
n=j
end do
do i=1,nface
pstar(ind (i) )=pold (i)
end do

Table 12.The original FORTRAN code
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One can note that the usage of the array ind and ind2 makes it difficult to parallelize this algorithm on a GPU
in an SIMT fashion.

To get prepared for the CUDA version, we had to simplify this algorithm. The first step was to replace the
indexing mechanism with a simpler flag stating whether the algorithm has converged for the given element or
not.

// Newton-Raphson iterations to find pstar at the required accuracy
for (iter = 0; iter < Hniter riemann; iter++) {
double precision = 1l.e-6;
for (i = 0; i < nface; i++) {
if (ind[i] == 1) {
// computations skipped here!
uo[i] = DABS(delp[i] / (pold[i] + smallpp));
if (uo[i] <= precision) {

ind[i] = O; // don’t consider this cell anymore

} // iter riemann
for (i = 0; i < nface; i++) {

pstar[i] = pold[i];
}

Table 13. A simpler version of the same algorithm

This simple transformation allows us to exhibit a first version of parallelism where the
for (i = 0; i < nface; 1i++)

can be implemented on the GPU since all iterations are independent. A second transformation can be
immediately envisioned: permute the two for loops to avoid launching the inner kernel Hniter riemann
times. Then, ind should not be an array anymore but could be a register. This transformation fits well with the
loop fusion described in the next section.

4.2.3 CUDA subroutines

Whenever a code has to be implemented in CUDA, the problem of indexation arises. We chose to always use a
1D index scheme. It allows us to use helper functions to prepare the computational grid as well as to find the
element on which a kernel is working. Henceforth we can have an implementation pattern which is applied to all
the computational functions.

SetBlockDims (((ijmax - 1) - (ijmin + 1)), THREADSSZs, block, grid);

LooplKcuTrace <<< grid, block >>> (g, dgq, ¢, gxm, gxp, dtdx, Hnxyt, ijmin,
ijmax, zeror, zerol, project);

CheckErr ("LooplKcuTrace") ;

cudaThreadSynchronize () ;
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Table 14.Pattern of CUDA porting

Here we illustrate the implementation pattern of a function ported to CUDA. The grid is always computed using
SetBlockDims () then the kernel is called and the code waits for its completion.

The easiest targets for CUDA parallelism are the loops. An automated tool (such as HMPP) would transform
each single loop into a kernel. It means that the overhead of kernel calls would become important for a large
number of loops. Furthermore, having numerous small loops doesn’t promote high compute intensity (defined as
the ratio of floating point operation by memory access). Experiments show that a compute intensity of 2 is the
lowest value to benefit from a GPU. To increase the compute intensity within a loop as well as reduce the
number of kernels, one has to do loop fusion (or merge) manually. This transformation has been very useful in
the riemann () function where most of the code has been put into a single loop over the faces. This was fully
compatible and made possible by the transformation of the algorithm described earlier. As a result, Riemann is
implemented in a single kernel as shown in the next figure.

__global__ void LooplKcuRiemann () ({
long tid = idx1dl () ;
long 1 = idxld();
if (i >= K.narray) return;
/]
for (iter = 0; iter < K.Hniter riemann; iter++) {
double precision = 1l.e-6;
/]
indi = uoS > precision;
if (!indi)
break;
}
/]
if (K.sgnm[i] == 1) {

K.ggdnv[IHVW (i, IV)] = K.gleft[IHVW(i, IV)];

}

Table 15. The kernel implementing Riemann
Most of the computations have been stripped out for the sake of clarity. idx1dl and idx1d are helper
functions that map CUDA indexing to our problem’s index.

The final difficulty, while porting the code to CUDA, was to implement an efficient reduction which appears in
the evaluation of the next time step (compute deltat ()). The problem of the reduction, while not fully
parallel, is well described in the literature which offers us easy to use implementations.

When all those transformations were achieved, we were able to run an implementation taking advantage of the
compute power of a GPU.

4.2.4  Lessons learned
* Use INTENT in a FORTRAN code to ease a GPU port.

*  Make use of a clear naming convention to help focusing on the different address spaces.

34




HYDRO

Simplify algorithm to maximize parallelism.
Compute instead of store intermediate values.
Use a simple indexing pattern (preferably ID) whenever possible.

Minimize data movements by a careful analysis of the array usage.

35



HYDRO

4.3 OpenCL

4.3.1  Implementation

Having done the CUDA port, moving to other implementations was a straightforward process. All the analysis
was done, the constraints understood. It was just a problem of moving the code to yet another language with its
idiosyncrasies.

The case of OpenCL can be decomposed into two sub problems: porting the kernel to the OpenCL language and
calling the kernels plus operate the data movements.

Moving a kernel from CUDA to OpenCL can almost be done automatically. With a set of clever macros and
helper functions, one can easily produce a single source code which can be used either with CUDA or OpenCL.
It took us a couple of hours to convert all the kernels to pure OpenCL.

The real difficulty is to call the kernels. While CUDA has been nicely integrated into the C language, OpenCL
relies on an API which is rather verbose and cumbersome to use. To ease the burden of OpenCL programming,
we developed a set of comfort functions allowing for an almost CUDA looking implementation (the ocltools.h
and ocltools.h files).

OCLSETARG12 (ker [LooplKcuTrace], g, dgq, c¢, dgxm, gxp, dtdx, Hnxyt, ijmin,
ijmax, zeror, zerol, project);

oclLaunchKernel (ker[LooplKcuTrace], cqueue, ((ijmax - 1) - (ijmin + 1)),
THREADSSZ) ;

Table 16. OCLxx pseudo library. OCLSETARGxx is a macro used to pass xx arguments to the kernel (the first parameter).

Using the OCLxx macros and helper function allows us to produce a code as compact as the CUDA version
while hiding the complexity of OpenCL. Here we illustrate setting the arguments of the kernel and the compact
way to launch it for a given problem size ((ijmax - 1) - (ijmin + 1)) for a given number of threads
(THREADSS?Z).

Moving to OpenCL proved itself to be a rather easy task. Most of the troubles we faced were due to immature
implementations, OpenCL being a rather fragile environment for most vendors.

4.3.2  Lessons learned
*  Helper functions hide unnecessary complexity.

*  OpenCL is very close to CUDA and brings portability but not yet performance.
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44 HMPP

4.4.1  Implementation

The previous remark for OpenCL still holds for HMPP (see [2]). Here the task was lighter since we have to use
only the C89 source as a starting point. To transform routines in “codelets” (the HMPP notion of a kernel), we
only have to add pragma directives.

#pragma hmpp <HGgodunov> Hslope codelet, &
#pragma hmpp <HGgodunov> args[0-1].size = { (Hnxyt + 2) * Hnvar}, &
#pragma hmpp <HGgodunov> args[dq].io = inout, &
#pragma hmpp <HGgodunov> args[2-5].const=true
void
slope (double *RESTRICT g, double *RESTRICT dg, int n,
const int Hnvar, const int Hnxyt, const double Hslope type)
{
/]
#define IHVW (i, v) ((i) + (v) * Hnxyt)

#pragma hmppcg gridify(nbv, i)

for (nbv = 0; nbv < Hnvar; nbv++) {
for (i = ijmin + 1; i < ijmax - 1; i++) {
/]
}
}
} // slope

Table 17. HMPP version of the slope() routine

The ONLY modification to the source was to introduce the #pragma directives.

At this stage only a couple of hours were needed to move from a CPU version to a full functioning GPU enabled
code. But performances are not there yet. We need to use the data analysis done for CUDA and/or OpenCL to
inform HMPP about what needs to be transferred or not and at which point. This is done through the usage of
advancedload and noupdate=true directives as illustrated below. This phase is the most time consuming
one because it should be done incrementally to verify that the code is not broken doing so.

The following piece of code illustrates the final stage where every variable has been moved to the GPU in
advance of the computation and where every routine operates only on GPU arrays.
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Void hydro godunov (int idimStart, double dt, const hydroparam t H,
hydrovar t * Hv, hydrowork t * Hw,

hydrovarwork t * Hvw)

{7/ .
for (idimIndex = 0; idimIndex < 2; idimIndex++) {
int idim = (idimStart-1 + idimIndex) % 2 + 1;
if (!H.nstep && idim == 1) {

#pragma hmpp <HGgodunov> allocate

#pragma hmpp <HGgodunov> Hriemann advancedload, args[4-10] /* Buffers and
constant Values */

#pragma hmpp <HGgodunov> Hgleftright advancedload,
args [Hnx;Hny;Hnxyt;Hnvar] /* Constant Scalars */

#pragma hmpp <HGgodunov> Htrace advancedload, args[Hscheme;n;dtdx]
#pragma hmpp <HGgodunov> Hslope advancedload, args[Hslope type;n]

#pragma hmpp <HGgodunov> HequationOfState advancedload,
args|[imin;imax;Hsmallc;Hgamma]

#pragma hmpp <HGgodunov> Hconstoprim advancedload, args[n;Hsmallr]
#pragma hmpp <HGgodunov> Hcmpflx advancedload, args[narray;Hgamma]
#pragma hmpp <HGgodunov> HgatherConservativeVars advancedload, args[4-11]
#pragma hmpp <HGgodunov> HupdateConservativeVars advancedload, args[6-13]
#pragma hmpp <HGgodunov> HgatherConservativeVars advancedload, args[uold]
}
#pragma hmpp <HGgodunov> Hgleftright advancedload, args[idim]
#pragma hmpp <HGgodunov> Htrace advancedload, args[dtdx]
for (j = Hmin; J < Hmax; j++) {

#pragma hmpp <HGgodunov> HgatherConservativeVars callsite, args[4-
11] .noupdate=true, args[u;uold] .noupdate=true,
args[idim] .advancedload=true

gatherConservativeVars (idim, j, uold, u, H.imin, H.imax, H.Jjmin,
H.jmax, H.nvar, H.nxt, H.nyt, H.nxyt);
#pragma hmpp <HGgodunov> HDmemset callsite, args[0-2].noupdate=true
Dmemset (dg, 0, (H.nxyt+2) * H.nvar);
// Convert to primitive variables

#pragma hmpp <HGgodunov> Hconstoprim callsite, args[3-6].noupdate=true,
args[e;qg;u] .noupdate=true

constoprim(u, q, e, Hdimsize, H.nxyt, H.nvar, H.smallr);

/.

Table 18. HMPP main driver
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This code is an extract of the main driver of the code using HMPP directives to pilot efficiently data movements.
We first allocate the variables on the GPU then compute using them, stating that they are already available on
the GPU thus avoiding unnecessary data transfers.

The code could be further improved by moving the “#pragma hmpp <HGgodunov> allocate” outside
of the hydro godunov () and put the full main loop in the hydro_godunov.c file. It would also help to have
compute deltat () ported to HMPP which hasn’t been done in this prototype (it is left as an exercise to the
reader).

4.4.2  Lessons learned

* The reorganization and analysis done for CUDA/OpenCL is exactly the same for a HMPP port (and
potentially for OpenACC).

¢ [terate carefully on the data movement optimization and accept performance losses until all unused
transfers are removed.
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4.5 C99

4.5.1  Implementation

The only difference between the C89 and C99 which is of interest for us is its ability to handle nicely
multidimensional arrays. With some word processing we were to have a real C99 implementation. Doing so we
lost the FORTRAN style indexing having to permute indexes (q(Hnxyt, Hnvar) becomes q[Hnvar][Hnxyt]).

It turned out that, while interesting by itself, this version is useless for further evolutions since C++ is not
compatible with this syntax, our goal being producing a full C++ implementation!

Void slope(const int n, const int Hnvar, const int Hnxyt,
const double Hslope type, double q[Hnvar] [Hnxyt],
double dg[Hnvar] [Hnxyt]) {

int nbv, i, ijmin, ijmax;

/]
for (nbv = 0; nbv < Hnvar; nbv++) {
for (i = ijmin + 1; i < ijmax - 1; i++) {
/]
dglnbv] [i] = dsgn * (double) MIN(dlim, DABS (dcen));
}
}
} // slope

Table 19. Our slope routine written using C99

The real advantage of this version is that, while sticking to C, it is much more readable than the C89 version. The
impact of the new C11 standard has still to be evaluated in this context.

4.5.2  Lessons learned

e IfCis the only language possible, prefer C99 to C89.
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4.6 C99 MPI 2D

The C99 version was the opportunity to introduce two new functionalities: a domain decomposition using MPI
and a 2D sweep of the domain. This work was done so that it would be easy to back-port it to CUDA and/or
other implementations.

4.6.1  MPI implementation

The only impact of the MPI port was to adapt the boundary conditions processed in routine make boundary().
This is a fairly straightforward change done using Isend and Irecv. Instead of using the MPI functions to describe
the boundaries layout in memory (as it is done in the FORTAN code), we implemented our own packing routines
so that they could be easily adapted to a GPU kernel since data movement from/to the GPU are done only on
continuous regions of memory.

We also chose to implement a k-D tree decomposition instead of a simpler one as used in the FORTRAN
versions. This has some impacts: the code can only use a power of 2 processors and the topology of the MPI
processes doesn’t match easily to the domain numbering. This might produce artefacts performance wise (not
measured as of today). A more regular decomposition is an option for a future version. If introduced as an
option, this second scheme could be compared to the k-D tree to see the influence of the underlying network and
task placement.

Figure 18. A k-D tree decomposition for 16 MPI process.

4.6.2 2D sweep implementation

The original algorithm uses the well known alternate directions scheme. This algorithm processes each line of
the domain in a first phase then all the columns in a second phase. The processing phase deals with each X of the
line (resp. each Y of the column). Therefore we have a loop over Y which includes a loop over X (resp. a loop
over X including a loop over Y).

A simple transformation could be to enlarge the computed domain. Now, we process a band of line (resp. a band
of column) instead of a single line (resp. column). This transformation will increase the number of elements
processed during each iteration of the external loop and decrease the number of iterations needed to process the
whole domain. With increasing cache sizes, this could yield to a faster code.

The code has now a parameter telling the size of the band to use. -1 means use the full domain height (resp.
width).

4.6.3  Lessons learned

* Increasing the workload of a computational subroutine will increase the GPU saturation.
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4.7 CUDA MPI 2D

4.7.1  Implementation

During all the experiments done with the first CUDA implementation, we noticed that the speedup was
increasing with the size of the processed domain. To be of interest, the CUDA version had to process a very
large domain both in X and Y. This was due to the fact that the kernels were operating only on a single line
(resp. column). Unless we’re computing a very large domain (above 5000x5000), there is no chance to saturate
the hardware with a single line (or column) of elements. Using the 2D sweep implemented for the C99 version,
back-ported to CUDA, allowed us to increase dramatically the load on the GPU at the expense of local memory.

Smaller domains fitting in the GPU memory can now be processed in a single step for both directions. For larger
domains, the proper bandwidth has to be evaluated. This evaluation has not been automated yet. Using this
feature, we can measure effective speedups sooner than what was available with the initial version.

Finally, the coupling with MPI reuses what has been implemented for the C99 version. Since we have the
packing routines which can easily be transformed into kernels, the exchange of boundaries from one GPU to the
other has one additional step compared to the CPU version: copy the result of the packing (resp. unpacking)
kernel from the GPU to the CPU on sending side (resp. from the CPU to the GPU on the receive side).
Otherwise, the code remains unchanged.

4.7.2  Lessons learned

* A GPU shows potential only if saturated. Favor a limited number of kernels working on larger datasets
rather than iterate on kernel operating on smaller domains.

*  Pack/unpack MPI buffers manually so that it can be easily ported to a GPU.
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4.8 UPC version

4.8.1  Language presentation

UPC (Unified Parallel C [9,10]) is an extension of ISO C that provides access to a shared partitioned address
space, where variables may be directly used by any processor, but each variable is associated with a single
thread. The number of threads is fixed during computation.

UPC adds a new type qualifier (shared) in order to specify that a variable is shared between all the others UPC
threads, without this qualifier variables keep private status.

int result;

static shared int counter;

Table 20. The shared keyword

Shared variables cannot have automatic storage duration, because remote access of a variable would not be
possible. The shared address space is logically partitioned, and each shared variable has affinity to only one of
the threads. This enables programmers to co-locate data and processing, thus exploiting data locality for
improved performance.

static shared int array[300];

Table 21. shared array

UPC identifier THREADS give the total number of threads, MYTHREAD give the thread number (value between 0
and THREADS-1).

By default, the partitioning uses the round-robin algorithm, array[0] has affinity to thread 0, array[1] has
affinity to thread 1 and so on, after one round we wrap around giving array [THREADS] to thread O,
array [THREADS+1] to thread 1, and so on. Since in many cases, this default behavior is not optimal, the
array distribution can be altered by specifying a block size in the declaration.

static shared[BLOCKSIZE] int array[300];

Table 22. shared array with block size

So now the elements from array[0] to array [BLOCKSIZE-1] have affinity to thread 0, the elements from
array[BLOCKSIZE] to array[2*BLOCKSIZE-1] have affinity to thread 1, and so on.

Access to shared variables can be done with pointers, there are four UPC pointer types:
*  private pointers pointing to private space,
*  private pointers pointing to shared space,
* shared pointers pointing to shared space,
* and shared pointers to private space.

The last one must be avoided because it points on a space only accessible by one thread.

int *p; /* private pointers to private space */
shared [BLOCKSIZE] int *p; /* private pointers to shared space */

shared [BLOCKSIZE] int * shared p; /* shared pointers to shared space */

Table 23. UPC pointer types
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The UPC construct upc_forall is a workload sharing iteration statement that looks like the C for loop
statement.

upc forall (expressionl; expression2; expression3; affinity)

Table 24. upc_forall syntax

The first three arguments of the upc forall statement are similar to that of the C for statement
(initialization, test and update phase). The fourth argument determines which thread executes a given iteration.
The expression must be the same between all threads and can be an integer or a pointer to shared. When affinity
is an integer, all iterations for which the value affinity module THREADS matches the thread number, will be
executed by that thread. When affinity is a pointer to shared, a thread executes the iteration if the object pointed
by it has affinity to that thread.

Dynamic memory allocation of the shared space can be done in UPC. There are three functions. The first one
upc_all alloc is acollective function:

shared void *upc all alloc(size t nblocks, size t nbytes);

Table 25. upc_alloc_syntax

It's similar to a static declaration:

shared[nbytes] char[nblocks*nbytes];

Table 26. static declaration

upc_global alloc is similar to upc_all alloc except that it is not a collective function. If called by
multiple threads, all threads that make the call get different allocations.

shared void * upc global alloc(size t nblocks, size t nbytes);

Table 27. upc_global_alloc syntax

And upc_alloc allocates a shared storage with affinity to the calling thread.

shared void * upc alloc(size t nbytes);

Table 28. upc_alloc syntax
upc_free can be used to freeing such allocated spaces.

4.8.2  Heat conduction equation

In order to understand how to do domain decomposition in HYDRO, we first study a simpler example:
a 2D-Stencil code.

4.8.2.1 Algorithm

tab[i][j] = ( tab[i-1][jl+tab[i+1][j]l+tabli] [j-1]1+tabl[i] [j+1] )/4

Table 29. Heat conduction equation algorithm
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30 31 32 33 34
25 0 0 0 29
20 0 0 0 24
15 0 0 0 19
10 0 0 0 14
5 0 0 0 9
0 1 2 3 4

Table 30. Domain with boundary values for nx=7, ny=5

The boundary conditions are fixed to the 1D-index: (j+ny*1).

We iterate until the maximum difference between two iterations is less than a fixed value. In the end of all
iterations all values must be near their 1D-indexes.

30 31 32 33 34
25 26 27 28 29
20 21 22 23 24
15 16 17 18 19
10 11 12 13 14
5 6 7 8 9
0 1 2 3 4

Table 31. Final values in the domain nx=7, ny=5

We use a 3D array, the first dimension provides a way to keep values at iteration t and iteration t-1, the second
dimension has a size of nx*ny The kernel of computation is:

for (itercol=1; itercol<nx-1; itercol++) {
for (iterrow=l; iterrow<ny-1; iterrow++) {
int offset = itercol*ny+iterrow;
domain[t] [offset] =
(domain[tmun] [offset-ny] +
domain[tmun] [offset+ny] +
domain[tmun] [offset-1] +
domain[tmun] [offset+1] )/4;
diff = fabs(domain[t] [offset] -
domain[tmun] [offset]);
diffmax = MAX (diffmax,diff); } }

Table 32. Heat equation main code

4.8.2.2  First implementation with BLOCKSIZE

The main trouble with UPC is that BLOCKSIZE is required to be known at compile time. So we have to use a
round-robin distribution that has poor performance using less effectively the cache system. Another drawback to
distributions in UPC is that they are one-dimensional. A 2D-block distribution is not possible.

In the first method, we accept these constraints and use a BLOCKSIZE fixed during compilation time.
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#define BLOCKSIZE 30
shared [BLOCKSIZE] double** domain;
domain=(shared [BLOCKSIZE] double **)
malloc (2*sizeof (shared[BLOCKSIZE] double*));
domain[0] = upc _all alloc(l+ (nx*ny)/BLOCKSIZE,BLOCKSIZE*sizeof (double));
upc_all alloc(l+ (nx*ny)/BLOCKSIZE,BLOCKSIZE*sizeof (double));

domain[1]

Table 33. Domain construction

for (itercol=1; itercol<nx-1; itercol++) {
upc_forall (iterrow=1;
iterrow<ny-1;
iterrow++;
& (domain[0] [itercol*ny+iterrow])) {
domain[t] [itercol*ny+iterrow] =
( domain[tmun] [ (itercol-1) *ny+titerrow] +
domain[tmun] [ (itercol+l) *ny+iterrow] +
domain[tmun] [itercol*ny+iterrow-1] +
domain[tmun] [itercol*ny+iterrow+l] ) /4;
diff = fabs(domain[t][itercol*ny+iterrow] -
domain[tmun] [itercol*ny+titerrow]) ;
ldiffmax = MAX (ldiffmax,diff); } }

Table 34. Main loop

The interest of this version is to offer few changes to the code, but with a poor distribution in terms of
performance (usage of cache).

B meado B Thread 1] Thread 2] Thread 3

Figure 19. Domain distribution on 4 threads
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4.8.2.3  Second implementation

If we want a more appropriate distribution, we will allocate only one block on each thread. We compute the
blocksize (Inx*ny) from the problem size (nx*ny). As each block has the same local size, there could be a risk
that the last thread has less elements due to rounding.

domain = (shared double **) malloc(2*sizeof (shared double*));
domain[0] = upc_all alloc(THREADS, lnx*ny*sizeof (double));
domain[l] = upc_all alloc(THREADS, lnx*ny*sizeof (double));

Table 35. Domain construction

It looks like the following declaration:

shared[1lnx*ny] double domain[2] [lnx*ny*THREADS];

Table 36. Domain construction

The trouble here is that the blocksize qualifier of a pointer is a part of the type. 1nx and ny must be constants
known at compile time. So we cannot use domain as shared[lnx*ny] double** object type,
therefore we cannot longer use UPC pointer arithmetic. We have to access elements by calling a function, which
computes the thread affinity and the offset.

Here is the function getValue which returns a pointer on tab2d [1] [j]taking into account the blocksize bx.

shared[] double* getValue (shared double* tab2d,
size t i, size t 3J,
size t bx, size t ny) {
int thrd, offset;
thrd = i/bx;
offset = j+ny* (i%bx) ;
return & (((shared[] double *) (tab2d+thrd)) [offset]);
}

Table 37. function getValue

Unfortunately the kernel becomes a lot less readable:

upc_forall (itercol=1l; itercol<nx-1; itercol++; itercol%lnx) {
for (iterrow=1l; iterrow<ny-1; iterrow++) {
*getValue (domain[t],itercol, iterrow, 1nx,ny) =
( *getValue (domain[tmun],itercol-1,iterrow, lnx,ny
*getValue (domain[tmun],itercol+l,iterrow, lnx,ny
*getValue (domain[tmun],itercol,iterrow-1, lnx,ny
*getValue (domain[tmun], itercol,iterrow+1l,1nx,ny) )/4;
diff = fabs(*getValue(domain[t],itercol,iterrow,lnx,ny) -
*getValue (domain[tmun],itercol,iterrow, lnx,ny));
ldiffmax = MAX (ldiffmax,diff);

+ o+ +

}

Table 38. Main loop with new declaration
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4.8.2.4  Third implementation

If we want a more balanced distribution, we have to imitate what we are doing with MPI: each thread allocates
his domain in the shared area and writes the location in a shared array of pointer. Each thread computes the local
bound x in [1dx, 1fx], and allocates the local domain:

Shared

domain[t][0] domain[t][1] domain[t][2] domain[t][3]

Private

Thread 0 Thread 1 Thread 2 Thread 3

Figure 20. Domain distribution on 4 threads

shared[] double* shared domain[2] [THREADS];
domain[0] [MYTHREAD] = upc _alloc( (lfx-1dx)*ny*sizeof (double));
domain[1] [MYTHREAD] = upc alloc( (lfx-1dx)*ny*sizeof (double));

Table 39. Domain construction

With this structure we have the same problem as mentioned in section 0: in order to access an element we must
use a function getValue:

shared[] double* getValue (shared[] double* shared tab2d[THREADS],
size t i, size t j,size t nx, size t ny) {
int thrd,offset;
thrd = ((i+1)*THREADS-1) /nx;
offset = j+ny*(i - ((int) (thrd*( (double) nx ))/THREADS)) ;
return & (tab2d[thrd] [offset]);
}

Table 40. addressing function getValue
The computation kernel is the same as described in Table 38.

4.8.2.5 Cost of pointer to shared

The three methods have poor performance in comparison with the C version, this is mainly due to the use of a
pointer to shared variable instead of the C pointer arithmetic. On our Power 7 P755 with Berkeley UPC the use
of pointer-to-shared is twenty times slower than the use of a C regular pointer.

There is a way to cast a pointer-to-share in a regular pointer: when the thread has an affinity with the pointed
area, we can then use pointer arithmetic but we must do bound checking. In fact in this case we have to do
something that looks like what we do with MPI, separate the local domain into an inner and a boundary domain
and do the computation with C regular pointer in the inner domain. Unlike MPI, UPC doesn’t have high level
data layout: MPI Datatype, MPI Communicators to group the threads ...

4.8.3  Hydro UPC

For the UPC version of HYDRO, we want to do the least possible changes to the code, so we use the first
method described in section 4.8.2.2.
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The modifications are in four areas, the declaration of the domain, the initialization of the domain, the
computation of the delta time and the Godunov function.

4.8.3.1 Declaration of the domain

The local domain is in the structure hydrovar t:

// Hydrovar holds the whole 2D problem for all variables
typedef struct hydrovar ({

double *uold; // nxt, nyt, nvar allocated as (nxt * nyt), nvar
} hydrovar t; // l:nvar

Table 41. Structure hydrovar_t in C

For the UPC version, we fixed the BLOCKSIZE value to 1024 and added a shared array for the computation of
delta time (dt).

// Hydrovar holds the whole 2D problem for all variables
#define BLOCKSIZE 1024
typedef struct hydrovar ({
// nxt, nyt, nvar allocated as (nxt * nyt), nvar
shared [BLOCKSIZE] double *uold;
shared double * dt;
} hydrovar t; // l:nvar

Table 42. Structure hydrovar_t in UPC

4.8.3.2  Initialization of the domain

So the allocation of the domain changes a little:

// allocate uold for each conservative variable
Hv->uold = (double *) calloc(H->nvar * H->nxt * H->nyt, sizeof (double));

Table 43. Dynamic allocation of the domain in C

becomes

// allocate uold for each conservative variable
sizetot = H->nvar * H->nxt * H->nyt;

nbblock = ((sizetot % BLOCKSIZE) == 0 ) ?
sizetot/BLOCKSIZE : l+sizetot/BLOCKSIZE;
Hv->uold = (shared[BLOCKSIZE] double *)
upc_all alloc(nbblock, BLOCKSIZE*sizeof (double));
Hv->dt = (shared double *) upc_all alloc(THREADS,sizeof (shared double));

Table 44. Dynamic allocation of the domain in UPC

4.8.3.3  Computation of delta time

The original version is here:
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for (j = H.jmin + Extralayer; Jj < H.jmax - Extralayer; j++) {
ComputeQEforRow (j, Hv->uold, Hvw->g, Hw->e, H.smallr, H.nx, H.nxt,
H.nyt, H.nxyt);
equation of state(&Hvw->g[IHvw(0, ID)], Hw->e,
&Hvw->q[IHvw (0, IP)], Hw->c, 0, H.nx, H.smallc,
H.gamma) ;
courantOnXY (&cournox, &cournoy, H.nx, H.nxyt, Hw->c, Hvw->q);
}
Free (Hvw->q) ;
Free (Hw->e) ;
Free (Hw->c) ;
*dt = H.courant factor * H.dx / MAX(cournox, MAX (cournoy, H.smallc));

Table 45. Compute_deltat function in C

The UPC version is:

upc_forall (j = H.jmin + Extralayer; j < H.jmax - ExtralLayer; j++; Jj) {
ComputeQEforRow (j, Hv->uold, Hvw->qg, Hw->e,
H.smallr, H.nx, H.nxt, H.nyt, H.nxyt);
equation of state (&Hvw->g[IHvw (0, ID)], Hw->e,
&Hvw->q[IHvw (0, IP)], Hw->c, 0, H.nx, H.smallc,
H.gamma) ;
courantOnXY (&cournox, &cournoy, H.nx, H.nxyt, Hw->c, Hvw->q);
}
Free (Hvw->q) ;
Free (Hw->e) ;
Free (Hw->c) ;
// Reduce min sur dt
Hv->dt [MYTHREAD] = H.courant factor * H.dx
/ MAX (cournox, MAX (cournoy, H.smallc));
upc all reduceD(dt, Hv->dt, UPC MIN, THREADS, 1, NULL, O0);

Table 46. Compute_deltat function in UPC

Since using affinity for distribution of iterations needs a lot of change, we use the thread number for distribution.
We lack here the load balancing facilities of OpenMP (SCHEDULE)
4.8.3.4  Godunov function

The boundary conditions update (make boundary.c) is done with taking into account the affinity of the loops
like this:

for (j = H.jmin + Extralayer; Jj < H.jmax - Extralayer; j++) {
Hv->uold[IHv (i, j, ivar)] = Hv->uold[IHv(iO, Jj, divar)] * sign;

Table 47. make _boundary C function

becomes:
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upc_forall (j = H.jmin + Extralayer;
jJ < H.jmax - Extralayer;
J++;
& (Hv->uold[IHv (i, J, ivar)])) {
Hv->uold[IHv (i, j, ivar)] = Hv->uold[IHv(iO, Jj, ivar)] * sign;

Table 48. make_boundary UPC function

In Godunov computation, like in the computation of delta time we use the thread number for distribution of the
lines like:

if (idim == 1) {
for (j = H.jmin + Extralayer; Jj < H.jmax - Extralayer; j++) {

Table 49. hydro_godunov C function

becomes:

if (idim == 1) {
upc_forall(j = H.jmin + Extralayer; Jj < H.jmax - Extralayer; Jj++; J) {

Table 50. hydro_godunov UPC function

4.8.3.5 Comments on the changes made in the code

The modifications are light, around 50 lines modified, mainly because of adding the shared attribute in
declaration and definition functions, 20 lines are added to the major part in the initialization phase. We spent
roughly 15 days experimenting with the different options to do the domain decomposition in order to evaluate
benefits and drawbacks of each.

4.8.3.6 Performance
The characteristics of used data sets:
*  Number of points of the domain: Nx*Ny=10000°=1%10°,
*  Number of iterations: 10
*  Total memory used: 3Gb
We ran the test cases on two platforms. The characteristics of the target machines are:
* an IBM P755 (IDRIS, France), 32 cores per node, 128 Gb/node, Berkeley UPC compiler,
¢ the Tier-0 system CRAY XE6 HERMIT (HLRS, Germany), 16 cores per node, 32Gb/node, Cray UPC

compiler.
C UPC
Mono 1 thread 2 threads 4 threads 8 threads 16 threads 32 threads
Elapsed 1112 1722 868 440 321 217 131
time (s)
Speedup 1 0.7 1.3 2.5 3.5 5.1 8.5

Table 51. UPC HYDRO performance on IBM P77
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C UPC
Mono 1 thread 2 threads 4 threads 8 threads 16 threads 32 threads
Elapsed 2287 2669 1948 1140 644 360 200
time (s)
Speedup 1 0.9 1.2 2 3.6 6.4 11.4

Table 52. UPC HYDRO performance on CRAY XE6

In the Godunov computation, HYDRO uses a working buffer for reading values in the shared domain, so all
computation are not done with pointer-to-shared. This explains that the sequential UPC version has poorer
performance than the C sequential version. As mentioned for the heat conduction equation, the use of pointer-to-
shared is twenty times slower than the use of a C regular pointer (see 4.8.2.5).

4.8.3.7 Lessons learned

UPC provides a way to quickly add a global view of memory. It simplifies writing a parallel shared memory
version of an ordinary C code. But in order to achieve performance, there are some disadvantages:

* BLOCKSIZE is required to be known at compile time, making it hard to have a better cache use.

*  The distribution is one dimensional making a 2D-block distribution impossible without using a shared
array of pointers to local arrays.

* There is no equivalent to MPI datatype, communicators or OpenMP Schedule constructions.

* In order to achieve performance, we sometimes have to use the same decomposition that we develop in
MPI (halo).

*  The compilers are currently in experimental phase (at very variable levels of maturity).

¢ The UPC runtime needs also to mature to offer faster than MPI performance (using efficient one-sided
communications).

* Data race must be avoided using synchronization (barrier, locks, ...).
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To make a film of the results, we need to have an output file which can be interpreted by a visualization
software. We chose paraview, an open-source software, which can read files from a parallel simulations and

which can also run in parallel.

The tree structure of the post-processing files is as follows:

Root Level 1 Level Level 3 Comment
level 2
Hydro.pvd The VTK description of this
simulation pointing to all the .pvtr
files
Dep/ The main container for the post-
processing files
outnum/100 The upper part of the output number
outnum The 2 lower digit of the output
% 100/

number

Hydro rank outnum.vtr

One file per MPI process

Hydro outnum.pvtr

One VTK description of this output
in time, pointing to all the .vtr files
of this directory

Table 53. Directory structure of the post-processing files

We made this structure for the following reasons:

1. To be able to visualize only one output time by loading only a single .pvtr file.

2. To have the means of producing a film from all output dumps by loading the .pvd file.
3. To have the capacity to saturate the file system by writing many (one per process) files simultaneously. This
is especially important for Prace prototype owners who want to exercise the I/O part of their machine with a

load that mimics real codes.

4. To be able to test the file system in read mode through a parallel software.
5. To create a full tree to test the metadata part of the file system.

Since all VTK processing is located in a single source file, it is therefore easy to adapt the structure of the output
tree if one wants to test the behavior of a file system having many entries (i.e. all .vtr files in the same directory).
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4.10 Test cases

4.10.1 Centred explosion

Initial condition at T=0 step=40901 6.64003e+02, 2.03086¢-02 [0333]

step=63853 1.33002e+03, 4.96073¢e-02 [0666] step=74349 2.00008e+03, 9.77731e-02 [1001]

Figure 21 : Centred explosion at different time.

These pictures show the evolution of the simulation for a 600x600 domain. The initial point is a tiny red dot on
the first image (not visible). The iteration number, the physical time, the time step and the number of the frame
are reported. They should not vary with the port or optimizations of the program.

4.10.2 Timing Results

To compare the different versions, we use a 9000x9000 domain with no VTK output to avoid the I/O time which
introduces timings variations according to the load of the machine.

We compute 10 iterations and report the total elapsed time for a single CPU or a single GPU.

9000x9000 | C99 2D B=1 | C99 2D B=20 | CUDA 2D B=1 | CUDA 2D B=20 | HMPP CUDA | OpenCL
Westmere-EP 701.724s 729.978s N/A N/A N/A N/A
C2050 N/A N/A 117.936s 55.150s 175.746s 269.865s
Speedup 1 0.96 5.95 12.72 3.99 2.60

Table 54. Comparison of the different implementations

B=1 means 1 line (column) at a time, B=20 means a band of 20 lines (columns) at a time. B=20 was chosen
because at higher values the speedup wasn’t much improved. On the other hand, it shows that 2D coding could
have a negative effect on the CPU version (here true blocking should be experimented).

If we select a 900x900 domain, it shows that loading the GPU is important to amortize the cost of data transfer
on the PCI-Express.
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900x900 C99 2D B=1 | C99 2D B=20 | CUDA 2D B=1 | CUDA 2D B=900
Westmere-EP 5.907s 5.951s N/A N/A

C2050 N/A N/A 7.332s 1.066s
Speedup 1 0.99 0.81 5.54

Table 55. Influence of the load on the GPU

This small example illustrates that codes should be adapted to cope with small problems sizes if one wants to
have performance improvements for all cases.

5 Conclusions

This document is a description of the work achieved on the HYDRO code. This code includes classical
algorithms we can find in real production code. It is neither a big software nor a small kernel. That’s why we
have explored and implemented in a reasonable time new high performance programming techniques to
parallelize the code. We learned many lessons concerning:

* the way to implement the different parallelization techniques,
* the maturity of the compilers or the libraries we used,
* the performance we can obtain, the scalability of the code.

Theses lessons can be very fruitful for programmers who have to parallelize high performance applications and
we think they have the potential to facilitate significant improvements in real applications performance. Many
more versions should come in the future.
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