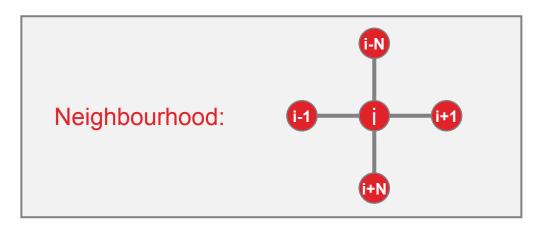
Graphs are everywhere

- 1 Graphs are everywhere
 - Complex data structures
 - Basics of graph theory
- Learning on Graphs
 - > Graph embedding
 - > Transductive and inductive learning
 - > Tasks on graph learning
- A few examples
 - > Taxonomy of methods
 - > Graph convolution
 - Message passing
 - > Graph Transformer

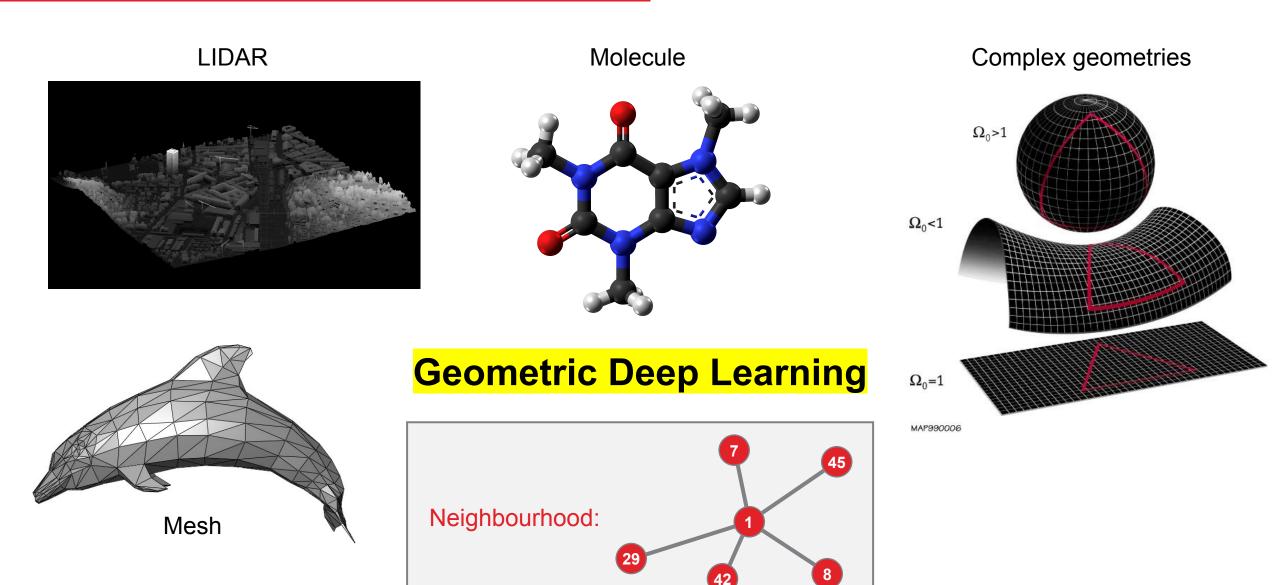
Data structures: Ordered structures

Highly ordered data

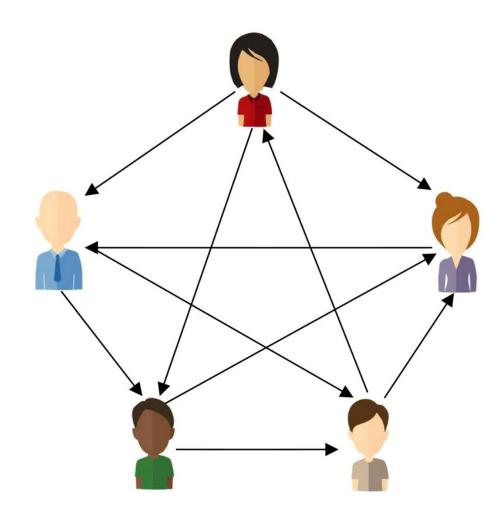
Rebirth of Deep learning was thanks to pictures, text and speech recognition



Data structures: Disordered structures

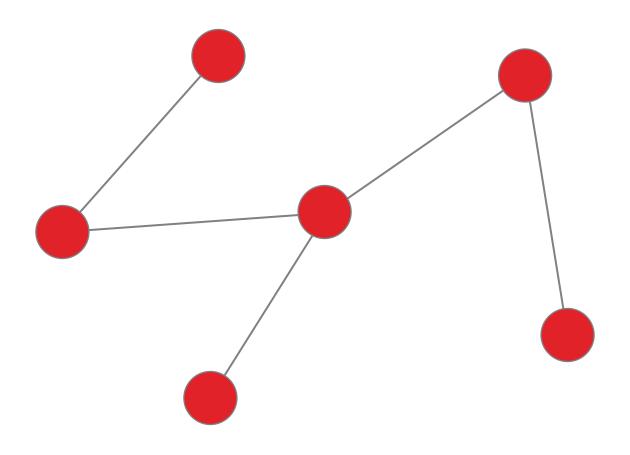


Data structures: Non spatial structures



Social network

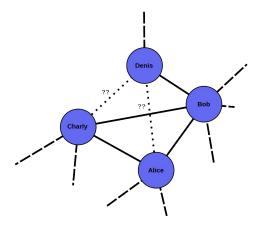
First definition



A graph is a set of interconnected entities

Graphs are everywhere

Social networks

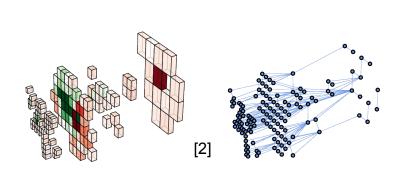


Molecules

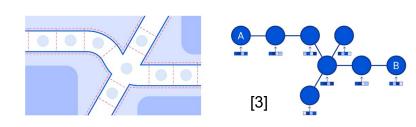
Capillary networks



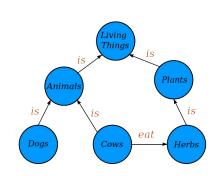
Particle physics



Itinerary recommendations



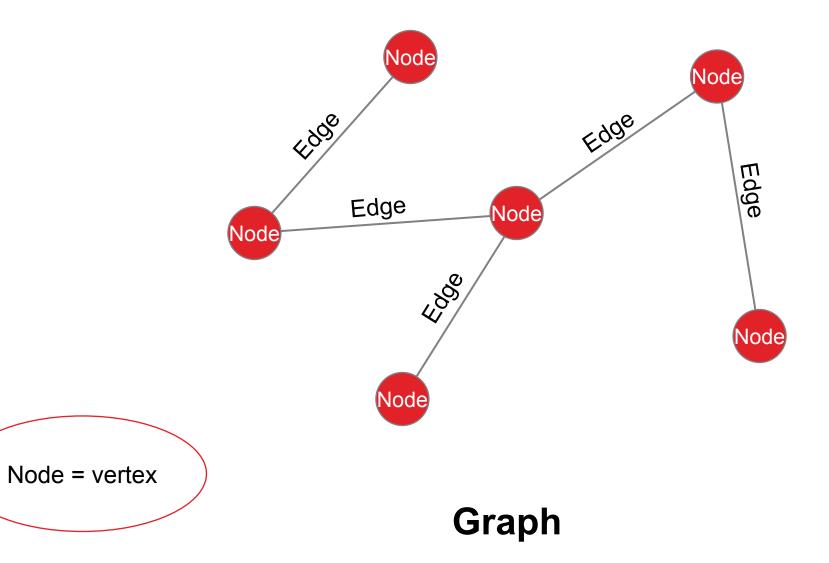
Knowledge graphs



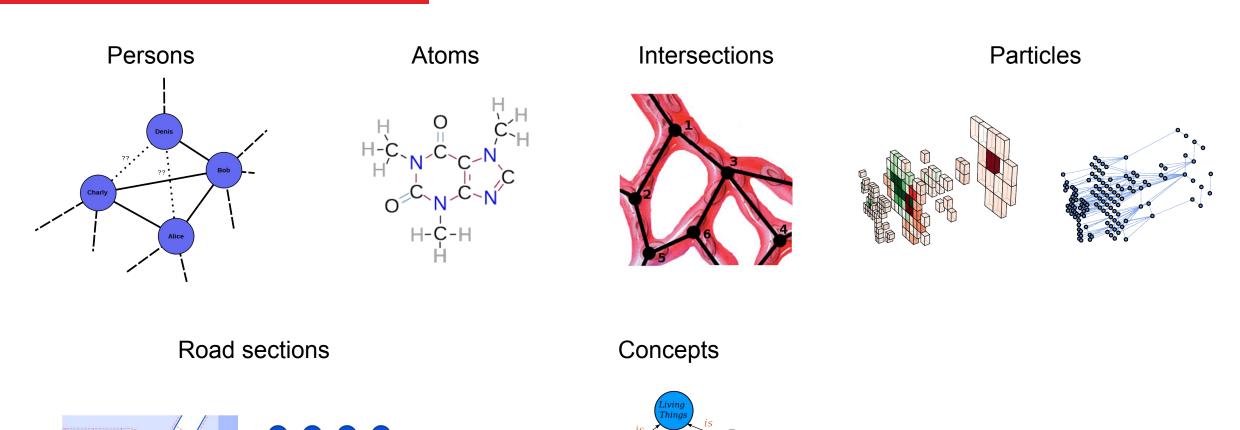
And many other fields: biology, recommendation systems, computer vision, robotics, medical diagnosis,...

- [1] Erbertseder et al. (2012). A coupled discrete/continuum model for describing cancer-therapeutic transport in the lung. PLoS One, 7(3), e31966.
- [2] Shlomi et al., "Graph neural networks in particle physics," Mach. Learn.: Sci. Technol., vol. 2, no. 2, p. 021001, Jan. 2021, doi: 10.1088/2632-2153/abbf9a.
- [3] Derrow-Pinion et al., "ETA Prediction with Graph Neural Networks in Google Maps," in Proceedings of the 30th ACM International Conference on Information & Knowledge Management New York, NY, USA, Oct. 2021, pp. 3767–3776. doi: 10.1145/3459637.3481916.

Vocabulary

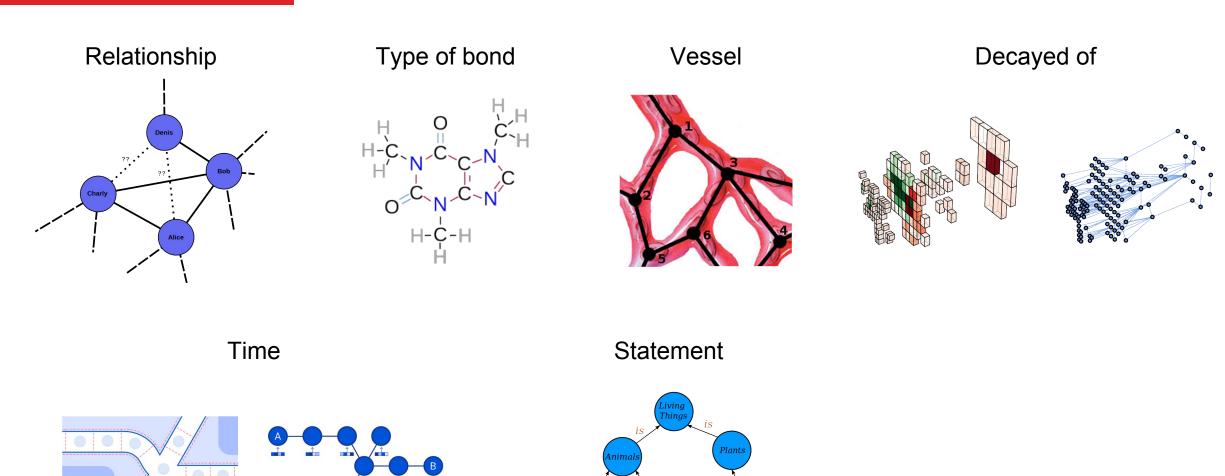


Vocabulary: Node / vertex



In many other fields: an aminoacid in a protein (biology), a customer (recommendation systems), an object in a picture (computer vision), brain regions on MRI (medical diagnosis), joints (robotics),...

Vocabulary: Edge

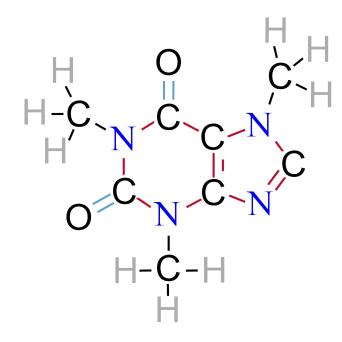


In many other fields: distance between residues (biology), connected customers (recommendation systems), interaction between objects (computer vision), interaction between brain regions (medical diagnosis), connection between joints (robotics),...

Vocabulary: Directed or undirected graph

A relationship (edge) can be symmetrical or not between nodes

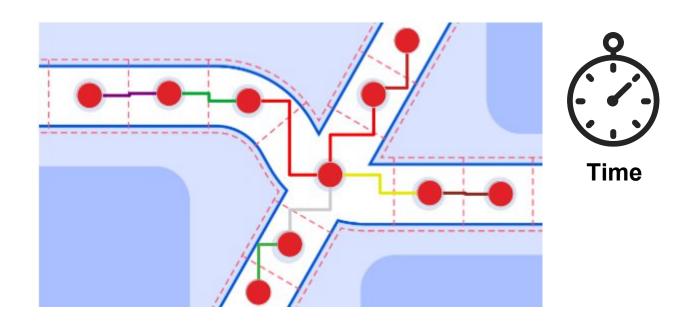
Undirected graphs



Directed graphs

Vocabulary: Weight

Edges can carry information → edge weight



Graphs store information: Features

Graphs can store information on node, edge or globally (on graph)

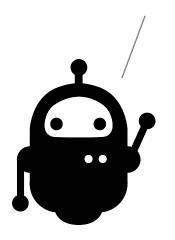
	Node	Edge	Globally/Graph
Social network	Name, age, job,	Is friend, follows, sibling,	Group of interest,
Molecule	Atomic number,	Bond order,	Is a drug, energy,
Citation	Article,	Cited by,	Research field,
Particle physics	Particle,	Decayed to,	Experiment,
Motion capture	Joints,	Is connected to,	Character,
Natural language	Group of words,	Refers to,	Paragraph,

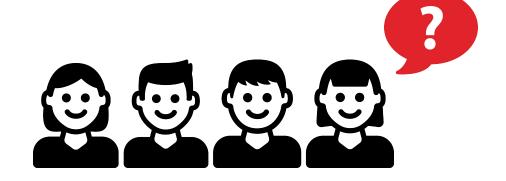
The feature can be a number, a concept, ...

Formal definition

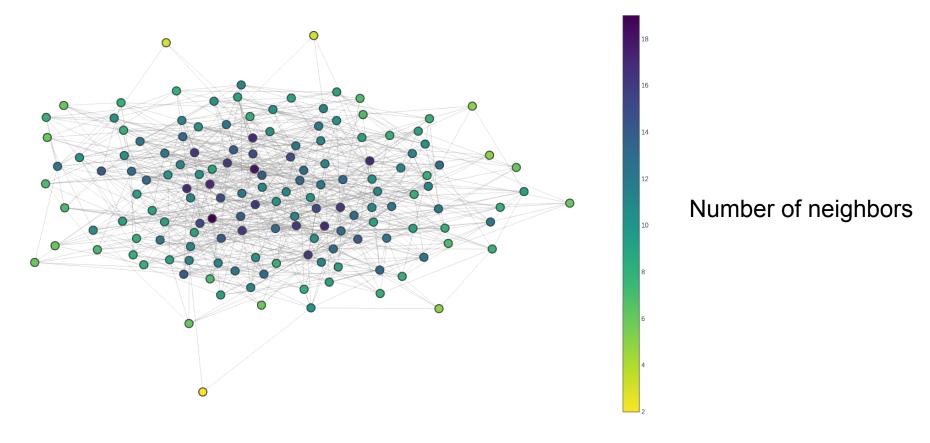
G = (V, E): a set of nodes and edges **Features** $\{y_i^V\}\{y_i^E\}\{y_i^G\}$ **Vertices Edges**

Any question?





Graph complexity



- The inner structure of a graph can vary a lot
- The number of edges/nodes might vary a lot from one graph to another
- One single graph can contain several thousands of nodes/edges
- ...

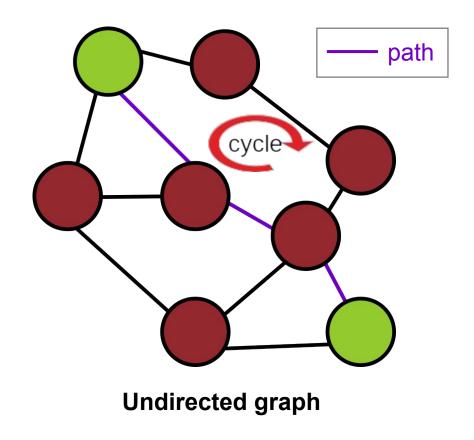
How do we quantify local or global structural patterns in a graph?

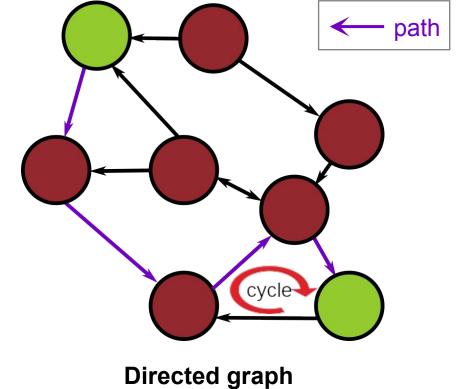
Graph complexity: Paths and cycles

A path is a sequence of edges connecting 2 nodes

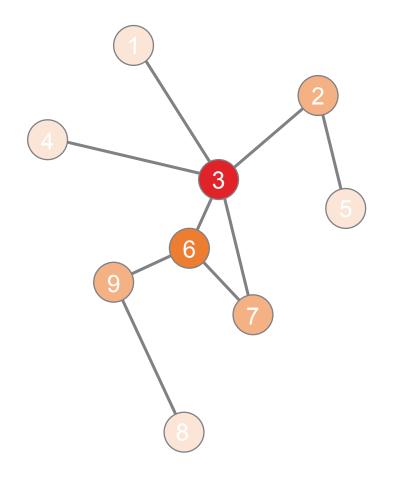
A **cycle** is a path in which the first and last vertices are equal

- graph density
- graph redundancy





Graph complexity: Node proximity and centrality



Node centrality

Node centrality

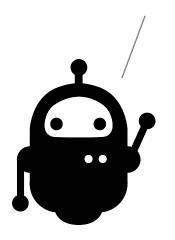
How many paths goes through the node

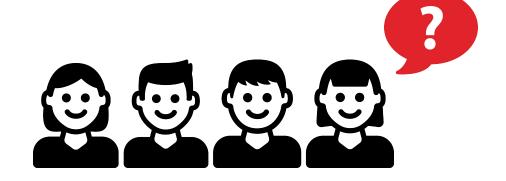
Node proximity measures (connection strength between two nodes i and j)

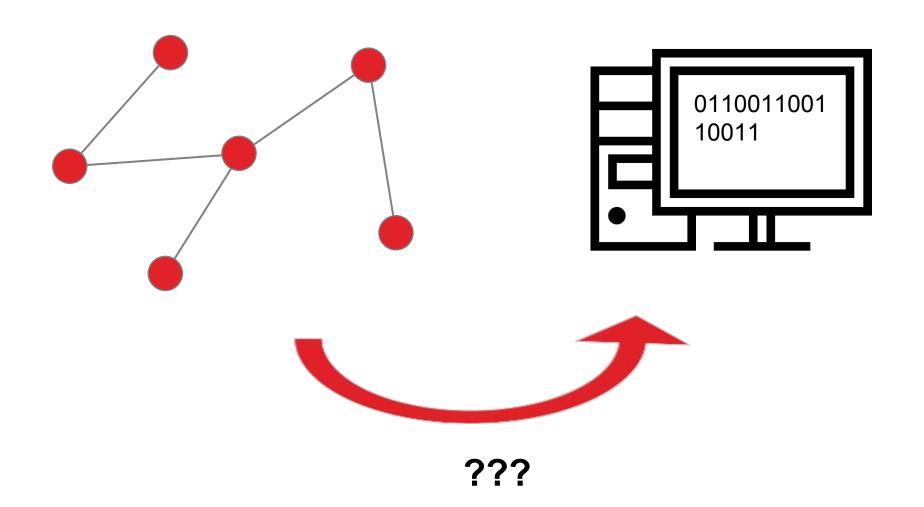
- Shortest path (minimum number of edges going from i to j)
- « Heavier » path (maximum cumulated weight going from i to j)
- Probability to reach node j by performing a random walk starting from node i
- ..

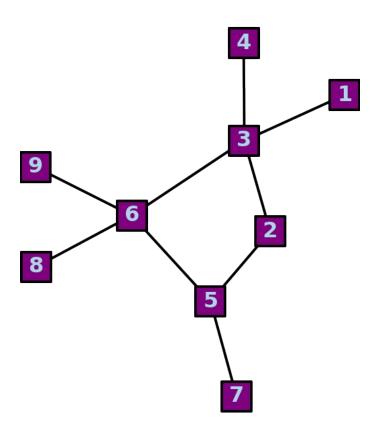
Useful for node and edge prediction

Any question?



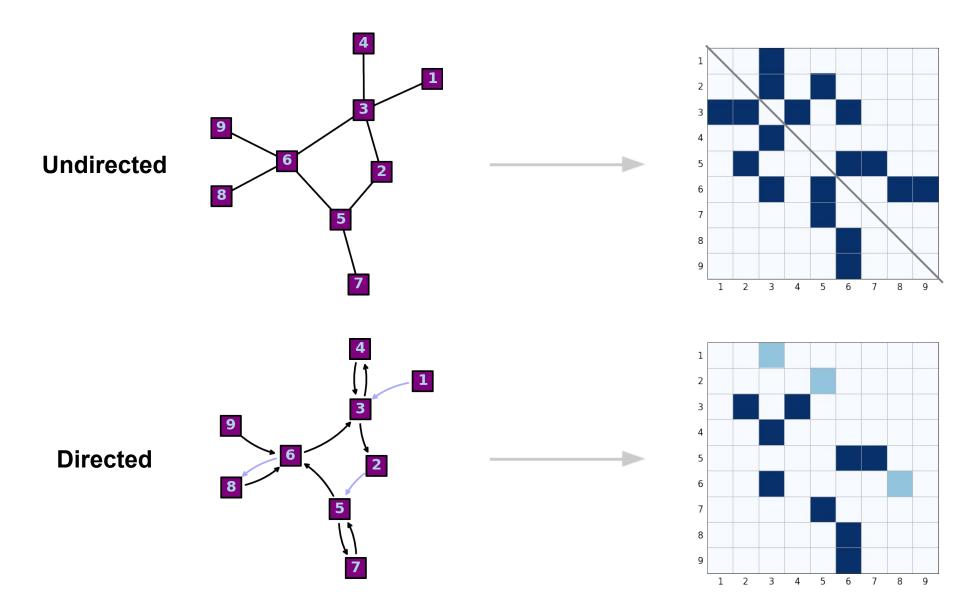






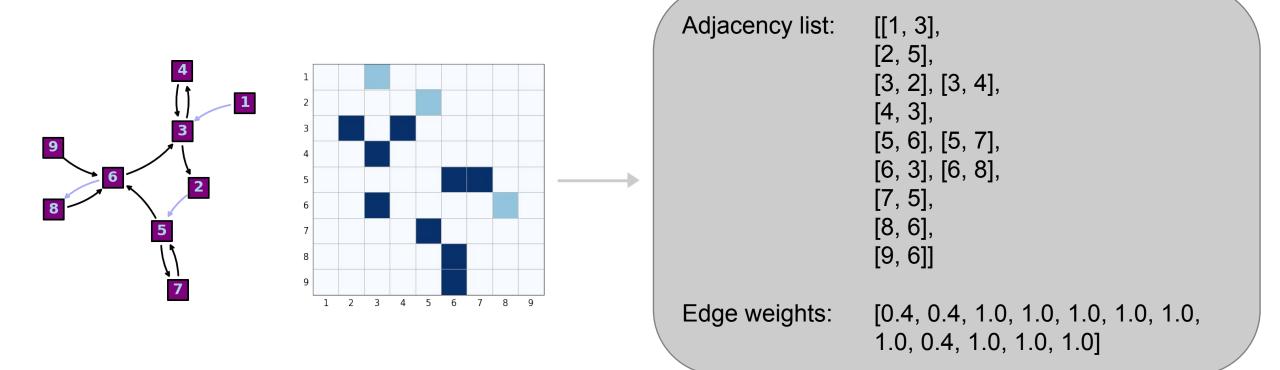
Random numbering of nodes

Adjacency matrix
$$W_{i,j} = \begin{cases} w_{i,j} & \text{if } i \text{ is connected to } j \\ 0 & \text{otherwise} \end{cases}$$

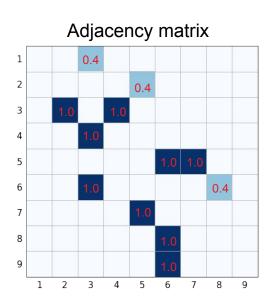


Symmetric

Adjacency list



• Edge weights are stored either directly in the adjacency matrix, or in an independent tensor.



Features on nodes and graphs will also be stored in independent tensors.

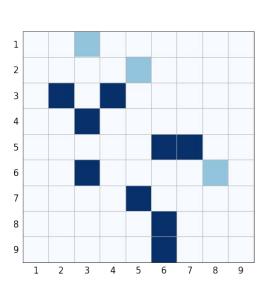
Node features: [4.1, 4.2, 6.4, 1.0, 1.0, 5.0, 1.7, 3.0, 5.0]

Graph feature: [8.0]

Adjacency matrix

VS

Adjacency list



Storage space	$O(V^2) \rightarrow lot of space$	O(E) → less space
Storage efficiency	Might be sparse	Optimal
Does edge [i,j] exist?	Check if W(i,j) \neq 0 \rightarrow O(1)	Cover the list until finding the edge → O(E)
Finding i's neighbours	Read the i th line \rightarrow O(V)	Cover the whole list \rightarrow O(E)

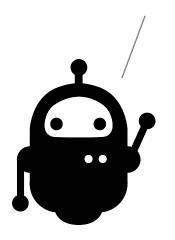
V = number of vertices

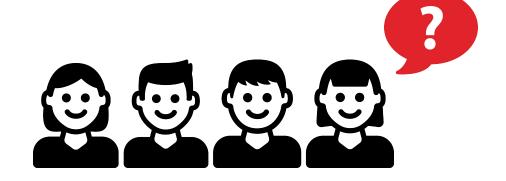
E = number of edges

Useful matrices

Adjacency	W	Edge weights
Degree	D	Number of neighbours per node (diagonal matrix)
Laplacian	L	D - W (~ diffusion matrix)

Any question?

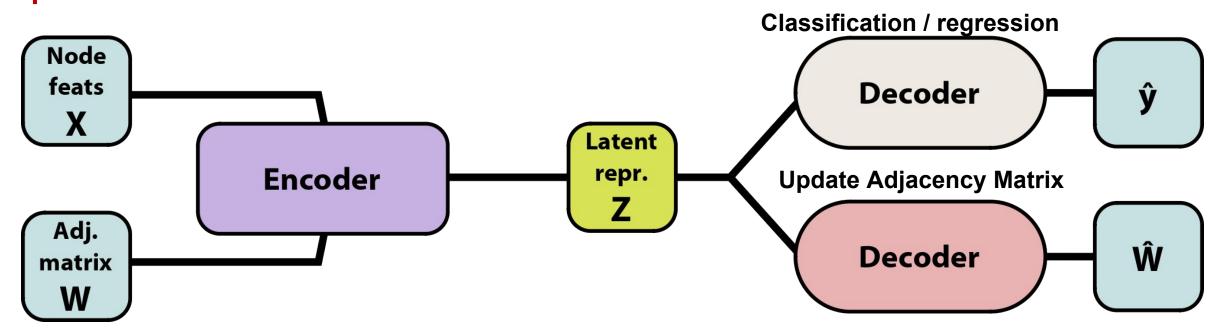




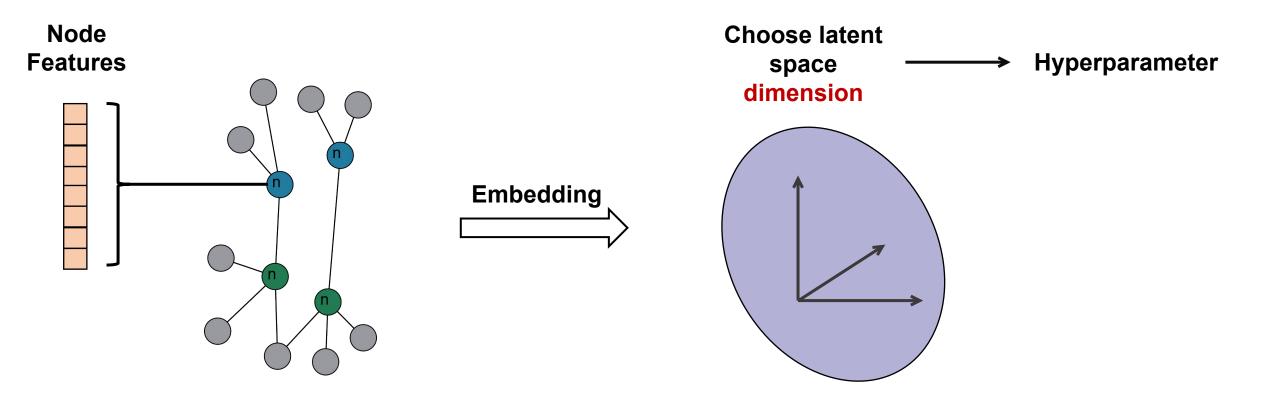
- Graphs are everywhere
 - > Complex data structures
 - Basics of graph theory
- 2 Learning on Graphs
 - Graph embedding
 - > Transductive and inductive learning
 - Tasks on graph learning
- A few examples
 - > Taxonomy of methods
 - > Graph convolution
 - Message passing
 - > Graph Transformer

Graph Embedding

We need to find a representation of the graph that is processable

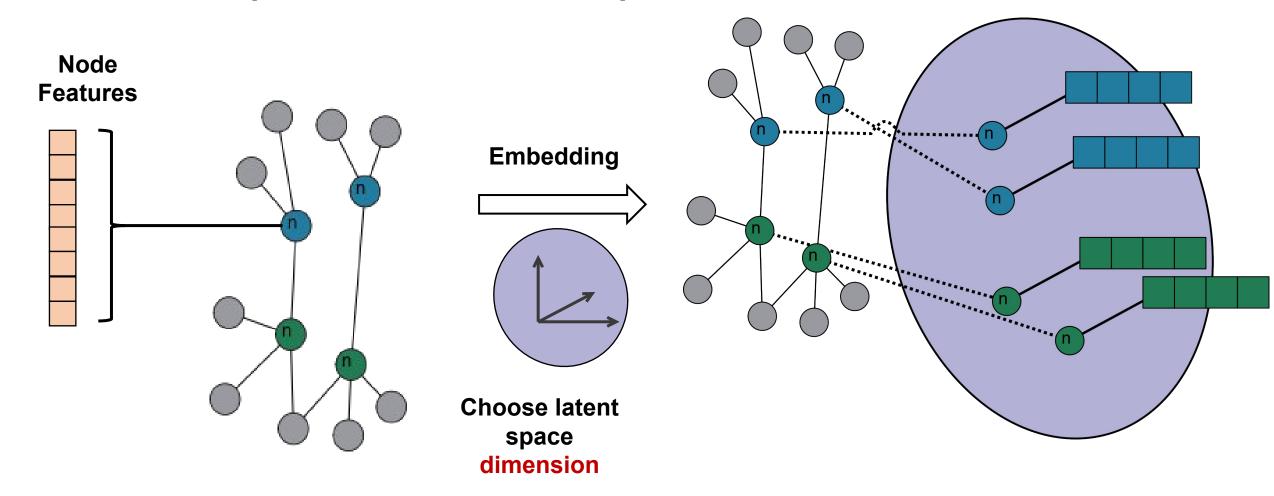


Graph Embedding: Representing nodes



Node Embedding: Representing features

Each node is represented in the latent space

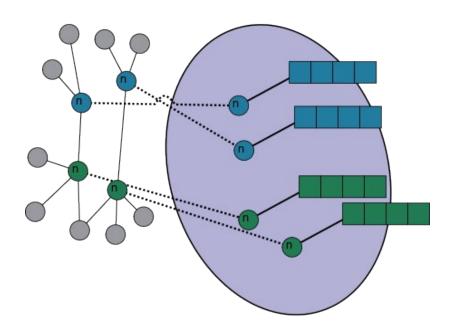


Node embedding: right representation for task

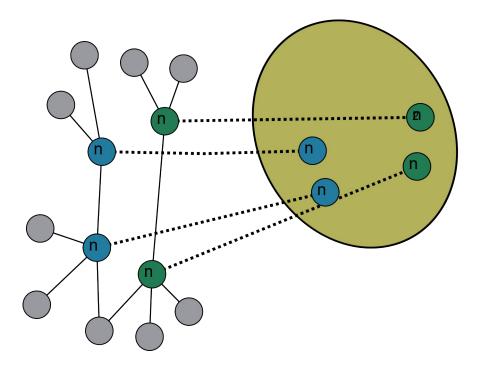
Different tasks = different latent space

⇒ Learnable

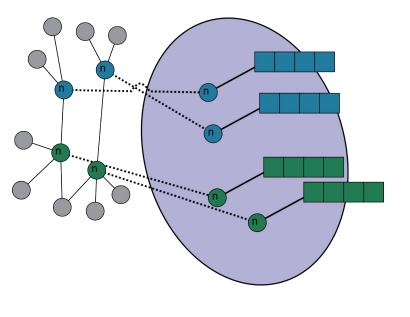
Example 1 : Nodes with similar environment close in latent space



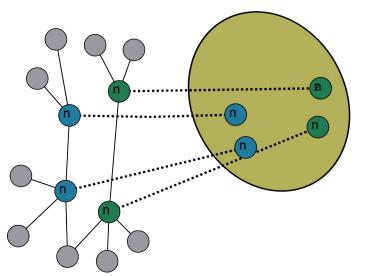
Example 2 : Nodes close in graph close in latent space

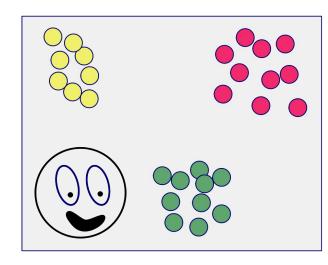


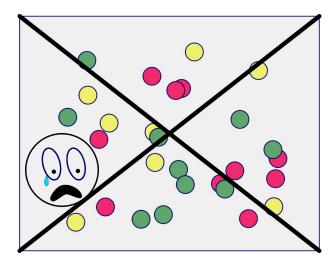
Node embedding: Summary



- Features stored in nodes/edges/graphs are not easily processed.
- We transform the features into a vector in the latent space (Dimension is a hyperparameter).
- The embedding has to be suited for the task → Learnable.

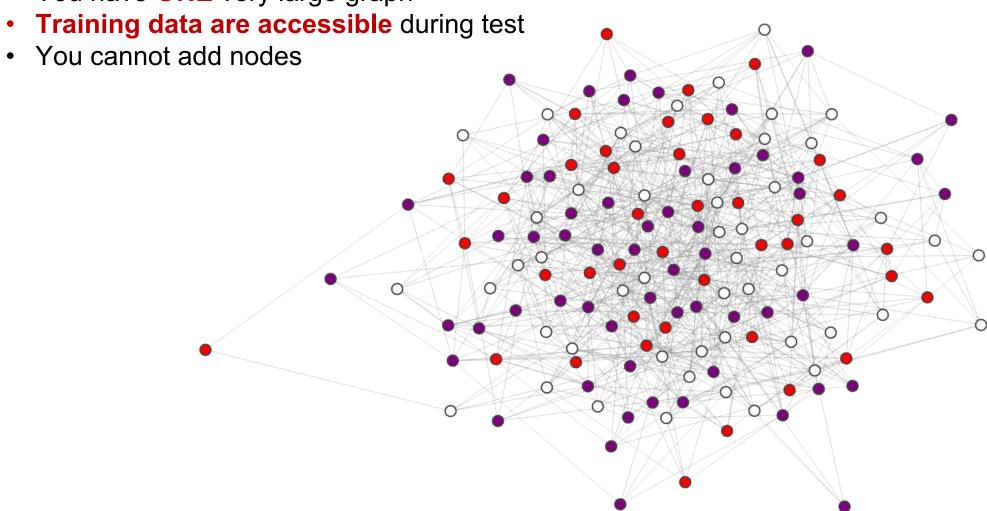




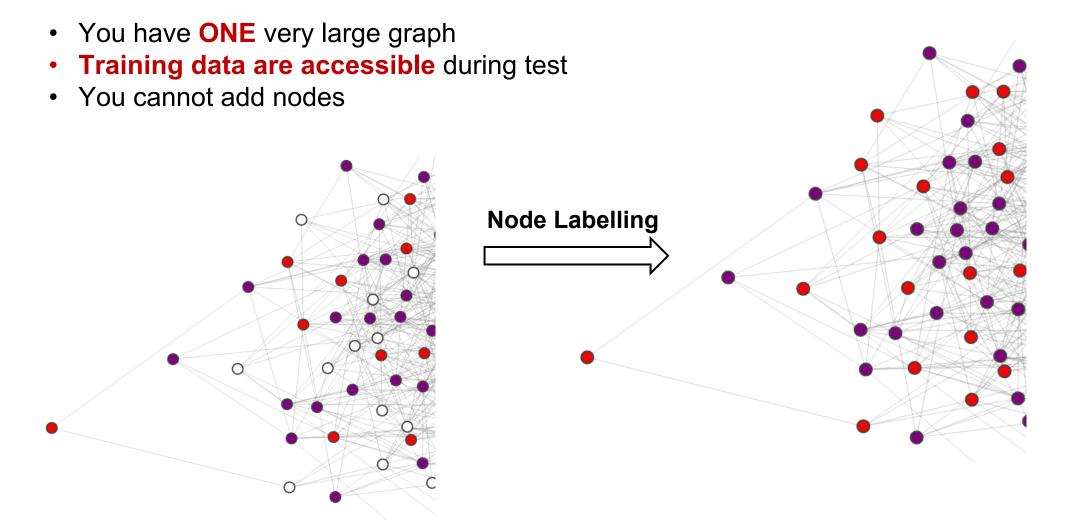


Transductive Learning

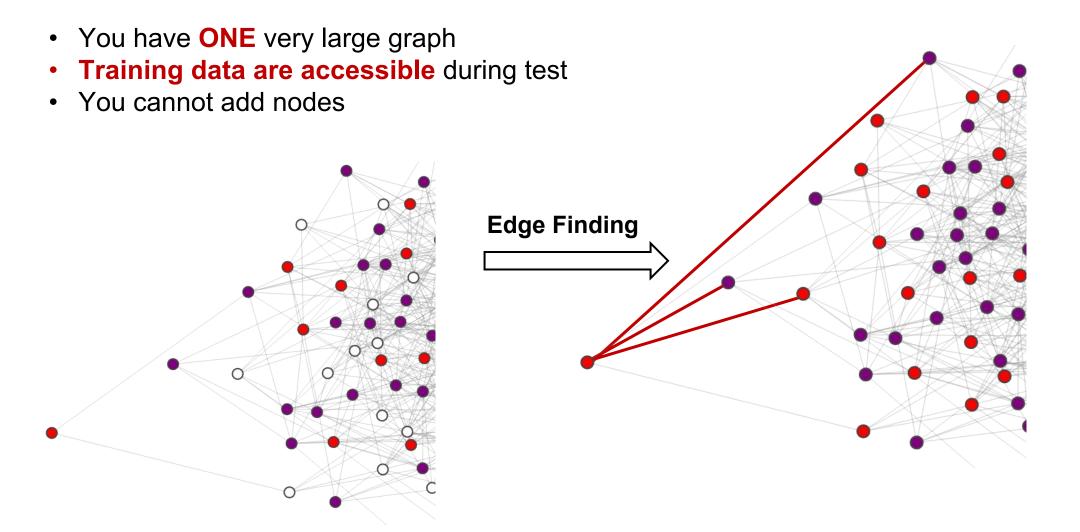
You have ONE very large graph



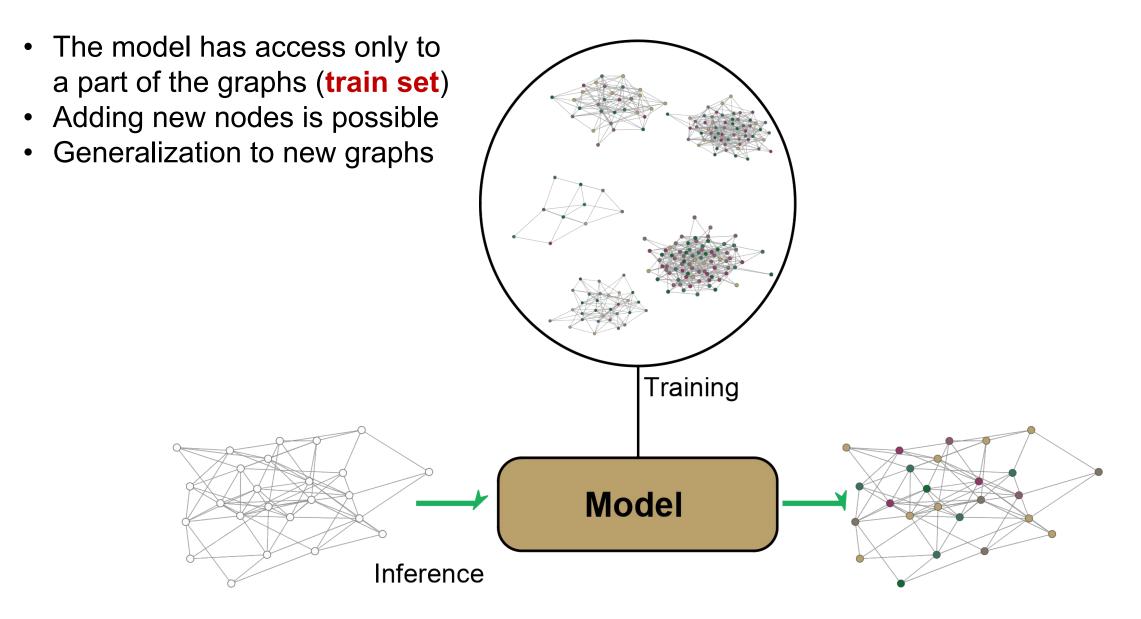
Transductive Learning: Node labelling



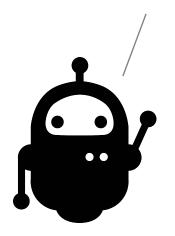
Transductive Learning: Edge finding

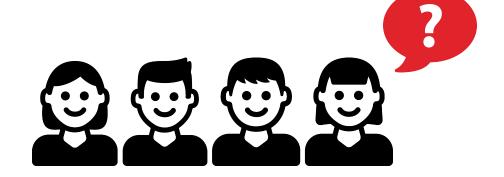


Inductive Learning



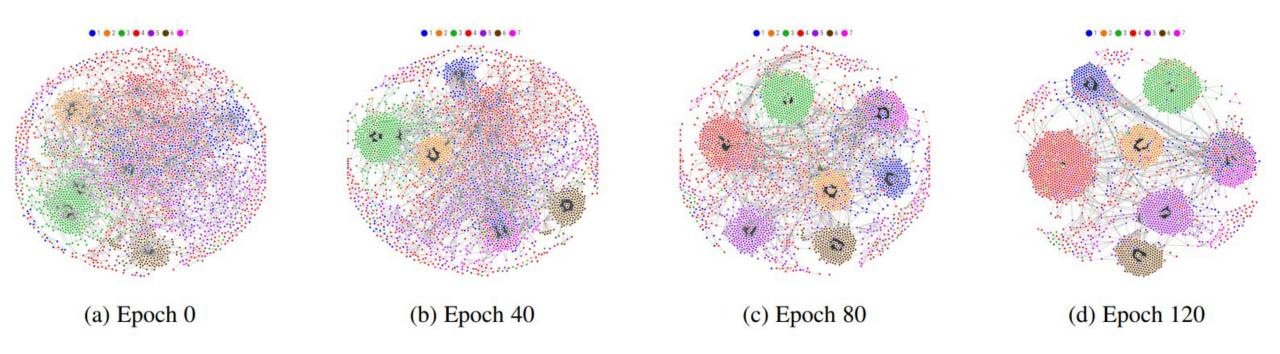
Any question?





Tasks on nodes: Labelling

Node clustering (example on CORA dataset)

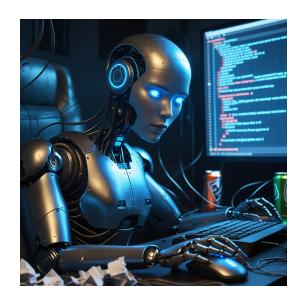


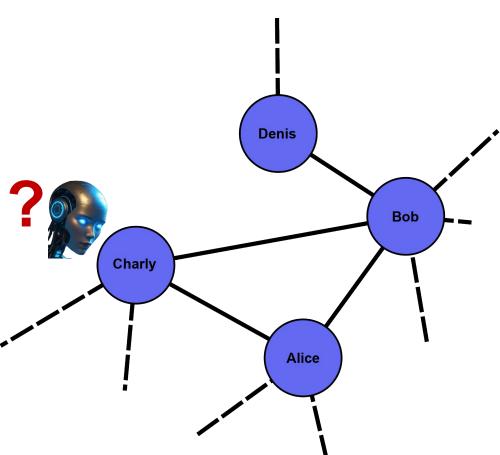
Cora dataset: McCallum, A. K.; Nigam, K.; Rennie, J.; Seymore, K. Automating the Construction of Internet Portals with Machine Learning. *Information Retrieval* **2000**, *3* (2), 127–163.

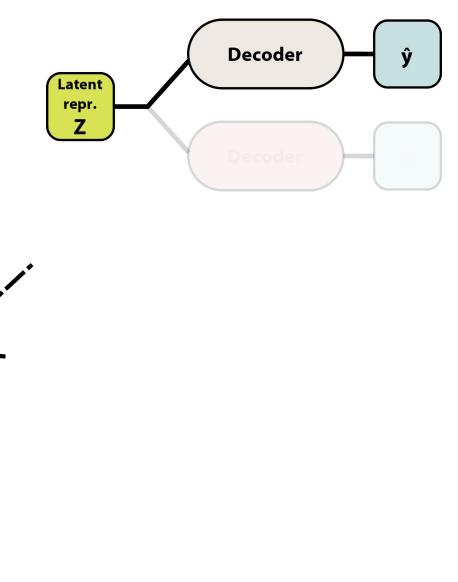
Model: Mrabah, N.; Bouguessa, M.; Touati, M. F.; Ksantini, R. Rethinking Graph Auto-Encoder Models for Attributed Graph Clustering (Extended Abstract). In *2023 IEEE 39th International Conference on Data Engineering (ICDE)*; 2023; pp 3891–3892.

Tasks on nodes: Labelling

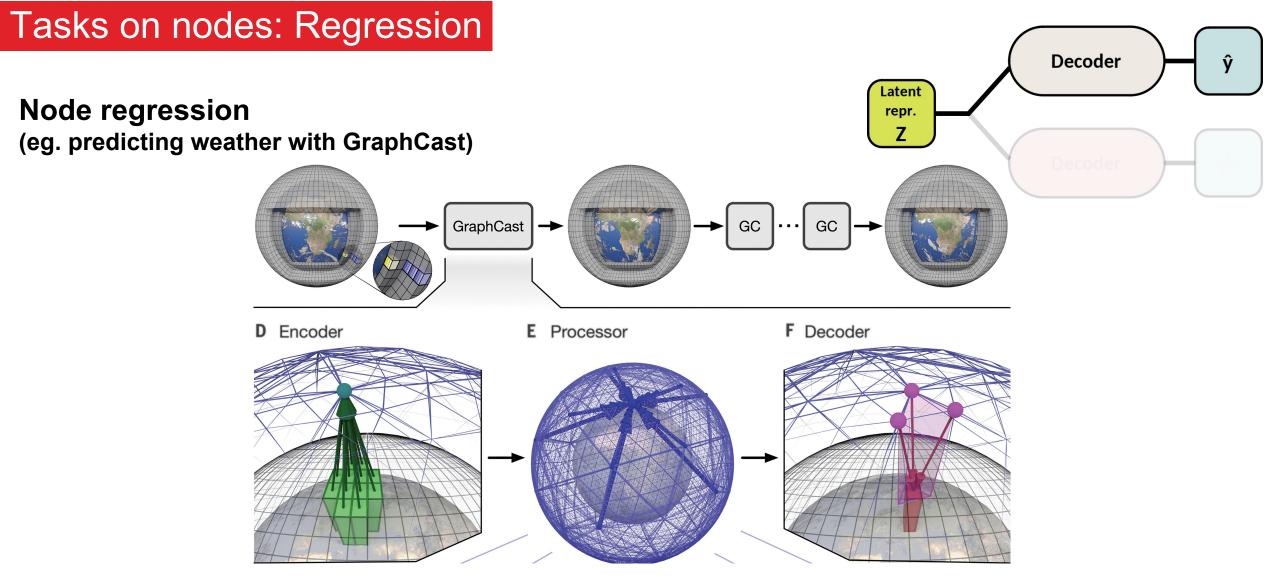
Node labelling (eg. bot detection on social networks)







Example: Huang, H.; Tian, H.; Zheng, X.; Zhang, X.; Zeng, D. D.; Wang, F.-Y. CGNN: A Compatibility-Aware Graph Neural Network for Social Media Bot Detection. *IEEE Transactions on Computational Social Systems* **2024**, *11* (5), 6528–6543.

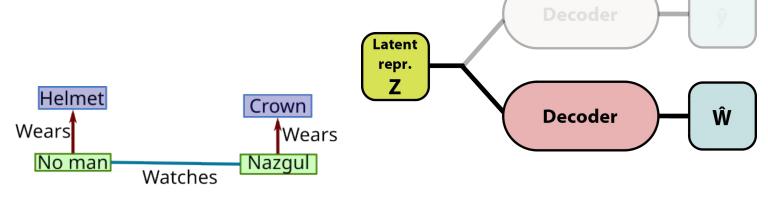


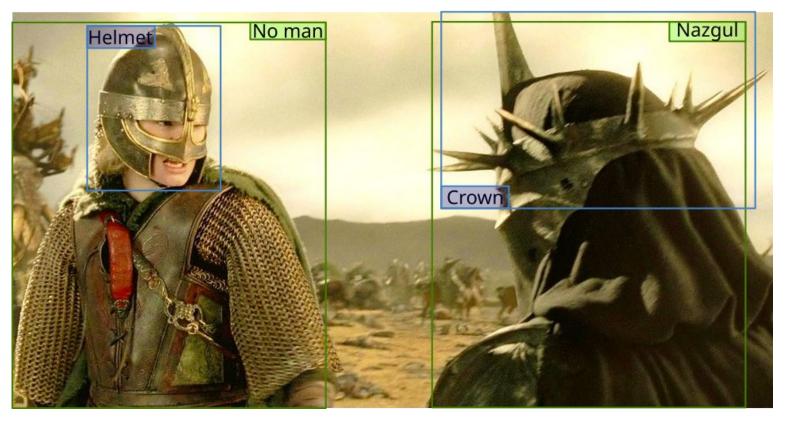
Example: Lam, R.; Sanchez-Gonzalez, A.; Willson, M.; Wirnsberger, P.; Fortunato, M.; Alet, F.; Ravuri, S.; Ewalds, T.; Eaton-Rosen, Z.; Hu, W.; Merose, A.; Hoyer, S.; Holland, G.; Vinyals, O.; Stott, J.; Pritzel, A.; Mohamed, S.; Battaglia, P. Learning Skillful Medium-Range Global Weather Forecasting. *Science* **2023**.

Tasks on edges

Find relationship between objects (eg. scene graph generation)

- Build the graph with semantic segmentation
- Find the relation between elements

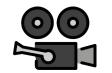


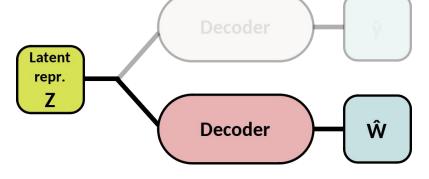


Example: Zhu, G.; Zhang, L.; Jiang, Y.; Dang, Y.; Hou, H.; Shen, P.; Feng, M.; Zhao, X.; Miao, Q.; Shah, S. A. A.; Bennamoun, M. Scene Graph Generation: A Comprehensive Survey. arXiv June 22, 2022.

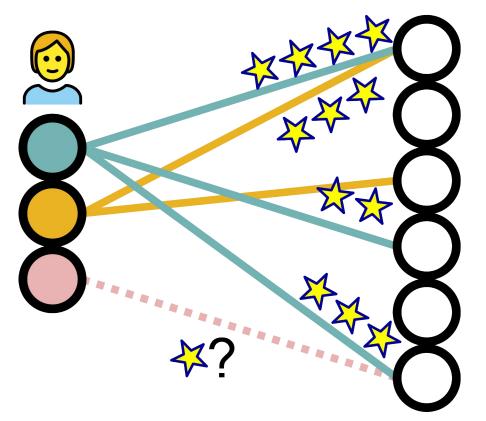
Tasks on edges

Edge prediction/regression (eg. movie recommendation)





- Transductive learning
- Bipartite graph
 (2 different kinds of nodes)
- Try to find the weight of an edge

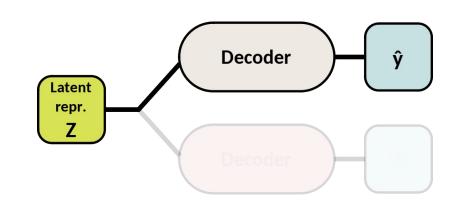


Example:

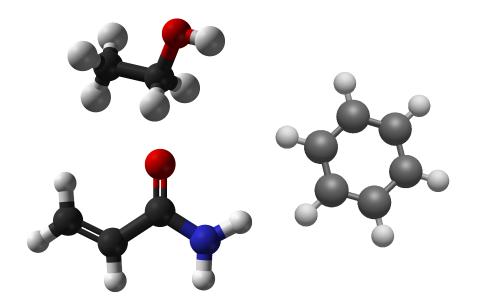
Zhang, M.; Chen, Y. Inductive Matrix Completion Based on Graph Neural Networks. arXiv February 16, 2020.

Tasks on graphs

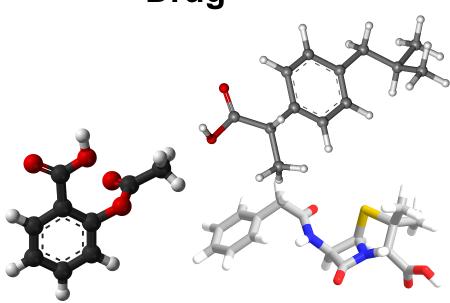
Graph classification (eg. carcinogen / drug)



Carcinogens



Drug

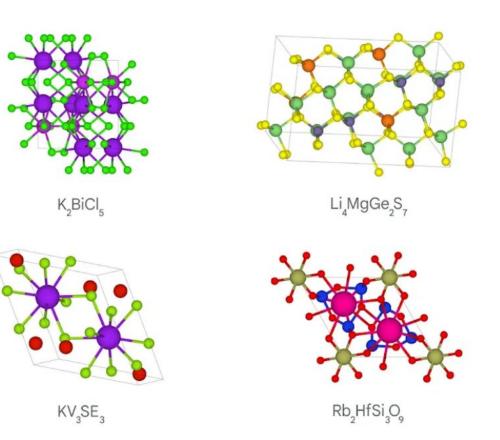


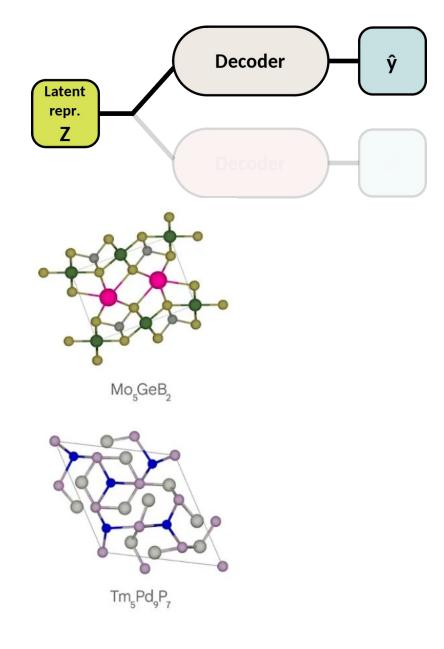
Example: Wang, C.; Kumar, G. A.; Rajapakse, J. C. Drug Discovery and Mechanism Prediction with Explainable Graph Neural Networks. *Sci Rep* **2025**, *15* (1), 179.

Tasks on graphs

Graph regression (eg. crystal structure stability with GNoME)

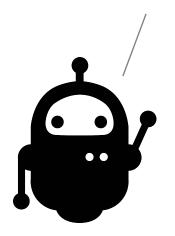
- Predict stability from structure
- Generate new structures
- Active learning

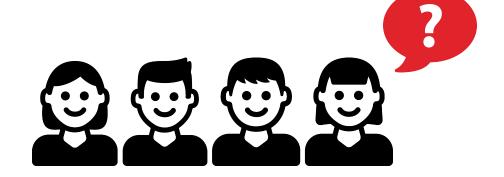




Example: Merchant, A.; Batzner, S.; Schoenholz, S. S.; Aykol, M.; Cheon, G.; Cubuk, E. D. Scaling Deep Learning for Materials Discovery. *Nature* **2023**, *624* (7990), 80–85.

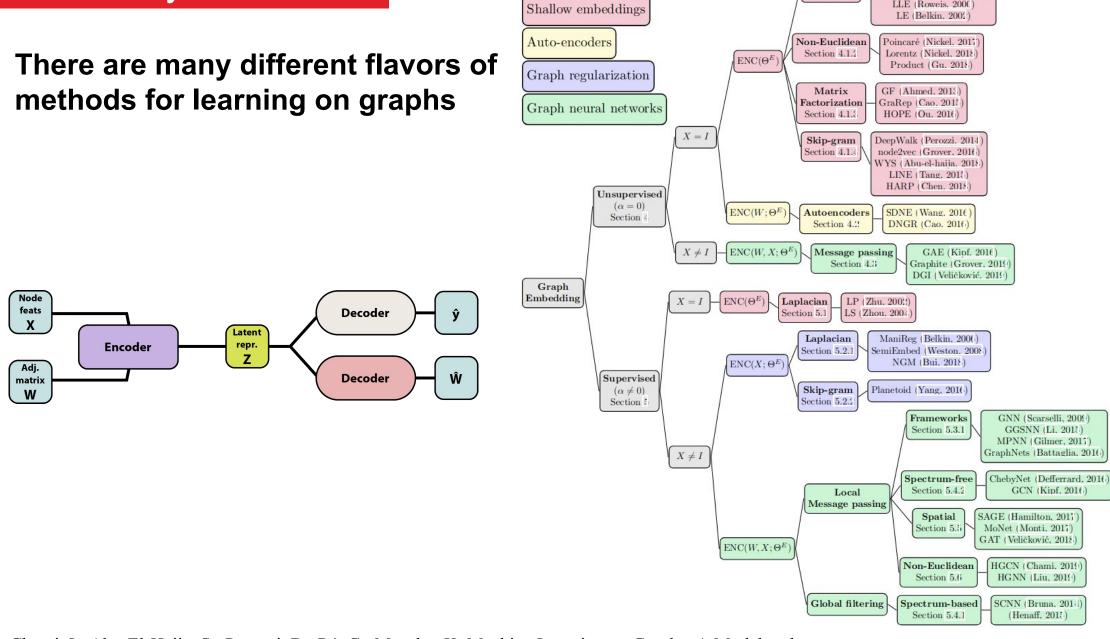
Any question?





- Graphs are everywhere
 - > Complex data structures
 - > Basics of graph theory
- Learning on Graphs
 - > Graph embedding
 - > Transductive and inductive learning
 - > Tasks on graph learning
- 3 A few examples
 - > Taxonomy of methods
 - Graph convolution
 - Message passing
 - Graph Transformer

Taxonomy of methods



Legend

Laplacian

Section 4.1.1

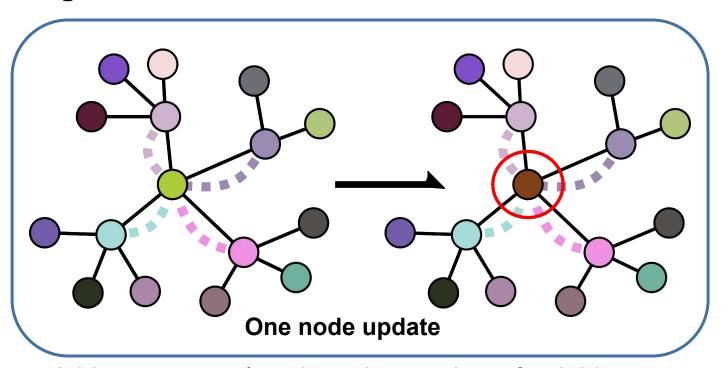
MDS (Kruskal, 1964) IsoMAP (Tenenbaum, 2000)

LLE (Roweis, 2000)

Chami, I.; Abu-El-Haija, S.; Perozzi, B.; Ré, C.; Murphy, K. Machine Learning on Graphs: A Model and Comprehensive Taxonomy. J. Mach. Learn. Res. 2022, 23 (1), 89:3840-89:3903.

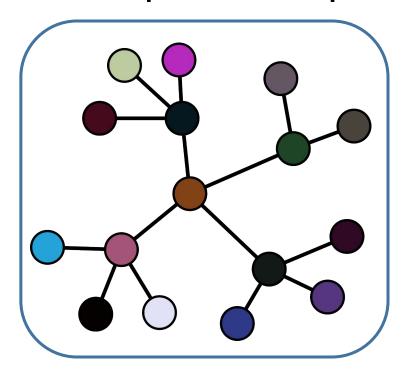
Graph Convolution

Just like for images we can learn from neighbourhood with a convolution



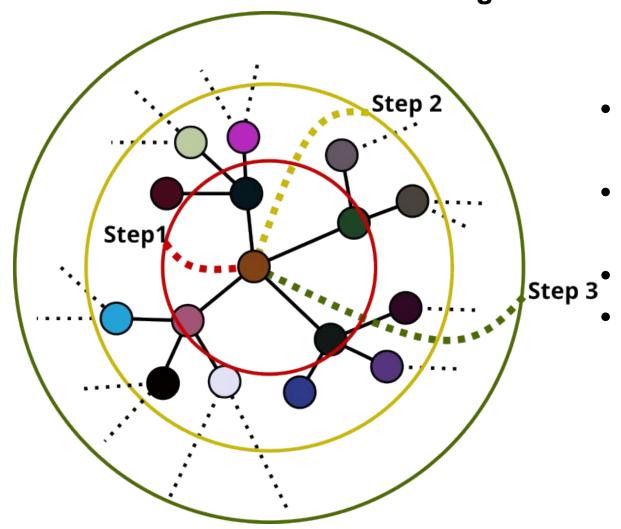
- A bit more complex since the number of neighbours is unlikely to be constant
- We want the operator to be permutation invariant
- One step = information from direct neighbours
- We use adjacency matrix

Full convolution:
All nodes representation updated



Graph Convolution

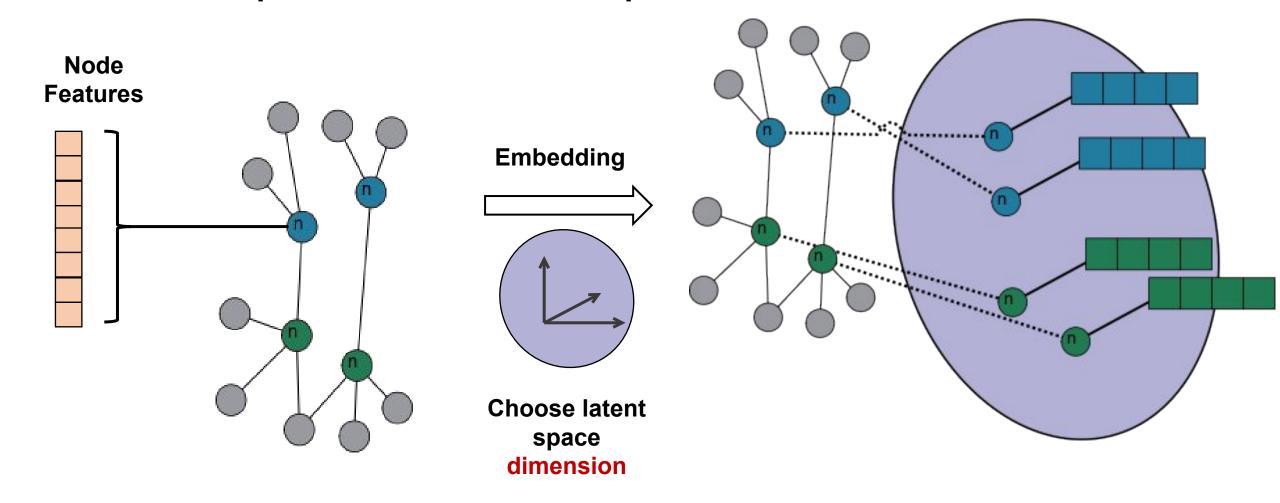
Get information from further neighbours: Add Conv. Layers



- Several layers are needed to retrieve information for distant nodes
- Each layer brings information from nodes further on a path
- For large graphs → a cutoff
- It is possible to use a **virtual node** connected to all other nodes. But in practice this becomes quickly intractable.

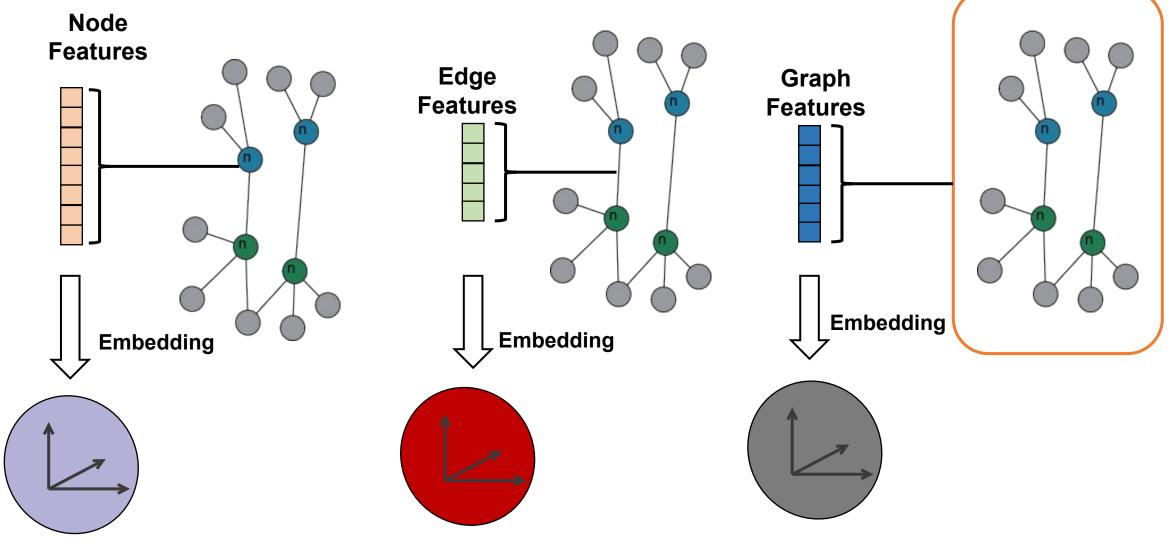
Node Embedding: Representing features (reminder)

Each node is represented in the latent space



Edge and Graph embedding

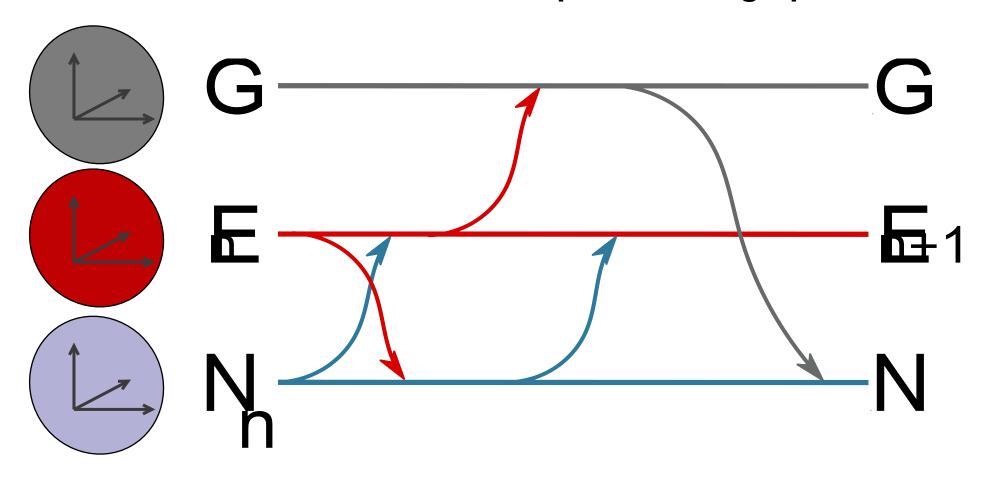
Graphs store information everywhere!



Even more hyperparameters!

Message passing

We can share information between all parts of the graph

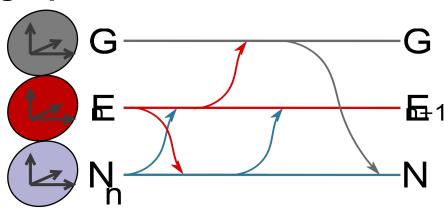


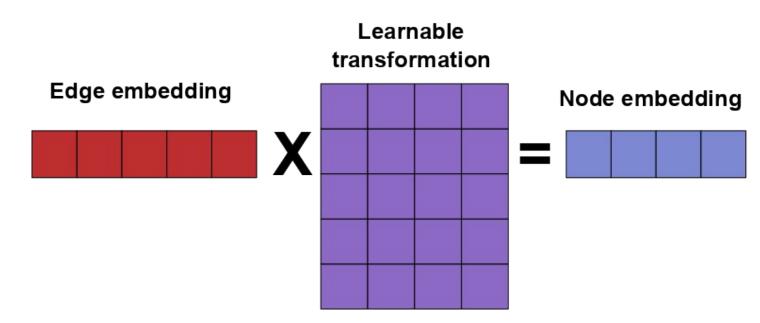
Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E. Neural Message Passing for Quantum Chemistry. arXiv June 12, 2017. .

Message passing: transform

We can share information between all parts of the graph

- We need a transformation to exchange since vectors are not of the same size
- The transformation is learnable

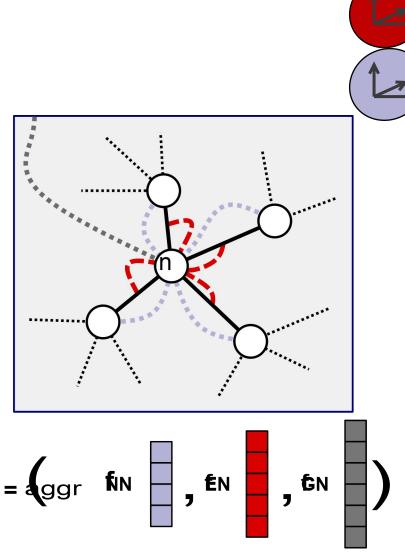




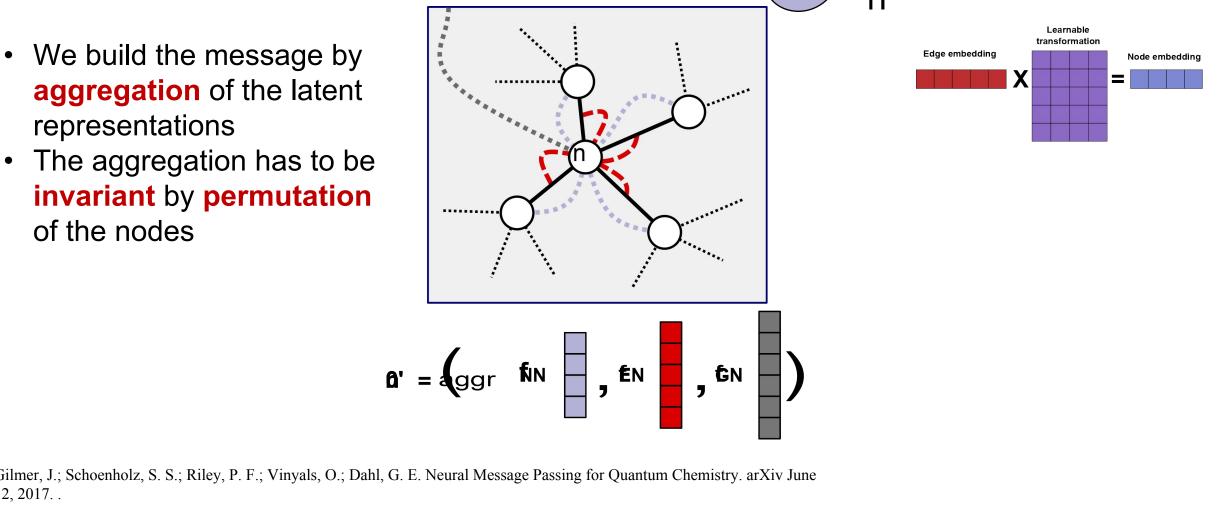
Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E. Neural Message Passing for Quantum Chemistry. arXiv June 12, 2017. .

Message passing: build the message

- representations



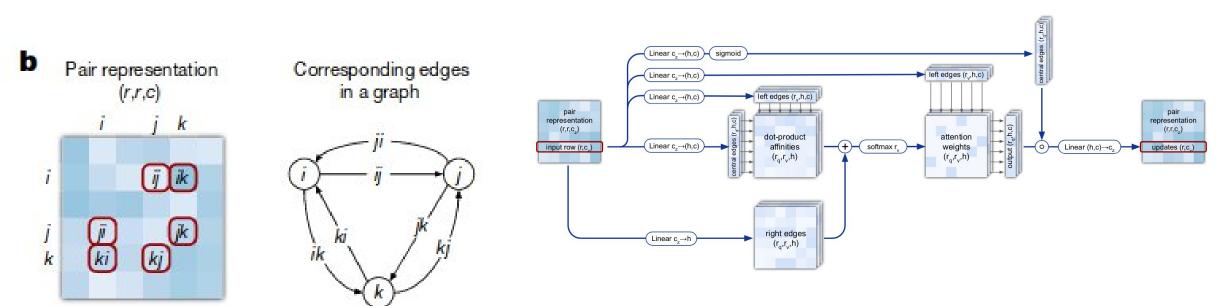
Б-1



Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E. Neural Message Passing for Quantum Chemistry. arXiv June 12, 2017. .

Alphafold transformer

Alphafold uses a kind of adjacency matrix in the evoformer block



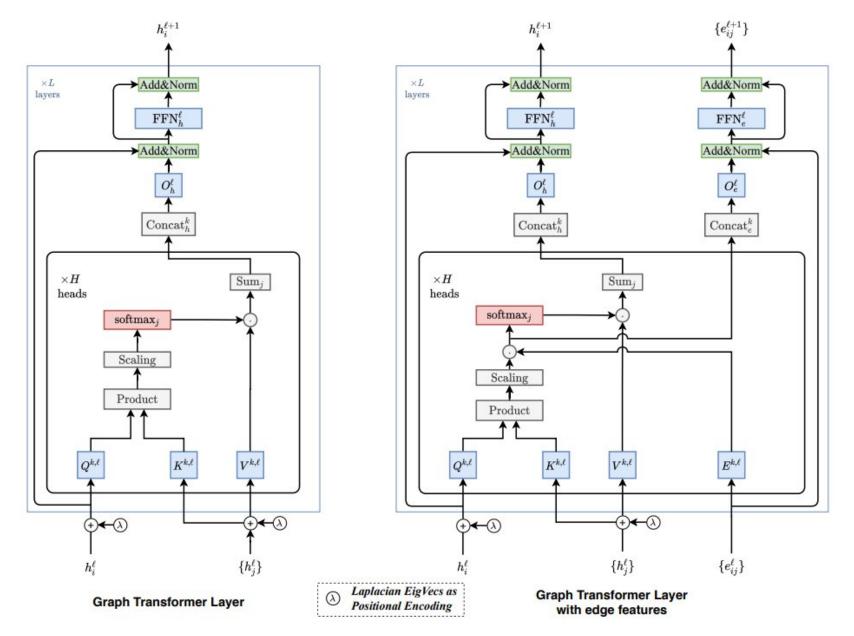
Supplementary Figure 7 | Triangular self-attention around starting node. Dimensions: r: residues, c: channels, h: heads

Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Žídek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.; Ballard, A. J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.; Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly Accurate Protein Structure Prediction with AlphaFold. *Nature* **2021**, *596* (7873), 583–589.

Graph Transformer Network

«Attention is All You Need»

RNN, Transformers



Dwivedi, V. P.; Bresson, X. A Generalization of Transformer Networks to Graphs. arXiv January 24, 2021. .