Graphs are everywhere




(1] Graphs are everywhere

» Complex data structures
» Basics of graph theory

Learning on Graphs

» Graph embedding
» Transductive and inductive learning
» Tasks on graph learning

€) A few examples

» Taxonomy of methods
» Graph convolution

» Message passing

» Graph Transformer



Data structures: Ordered structures

Highly ordered data

Rebirth of Deep learning was thanks to pictures, text and speech recognition
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The answer to life, the universe everything is ...

Neighbourhood:




Data structures: Disordered structures

LIDAR Molecule Complex geometries

Q<1

Q,D:l

MAP220006

Neighbourhood:

Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Veli¢kovic,
Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges https://arxiv.org/abs/2104.13478



https://arxiv.org/abs/2104.13478

Data structures: Non spatial structures

AN,

Social network M M

lllustration from Liu, Yujia & Liang, Changyong & Chiclana, Francisco & Wu, Jian. (2020). A knowledge coverage-based trust propagation for
recommendation mechanism in social network group decision making. Applied Soft Computing. 101. 10.1016/j.as0c.2020.107005.



First definition

A graph is a set of interconnected entities



Graphs are everywhere

Social networks Molecules Capillary networks

[1] Erbertseder et al. (2012). A coupled discrete/continuum model for describing cancer-therapeutic transport in the lung. PLoS One, 7(3), €31966.

Particle physics

And many other fields:
biology, recommendation
systems, computer vision,
robotics, medical diagnosis,...

[2] Shlomi et al., “Graph neural networks in particle physics,” Mach. Learn.: Sci. Technol., vol. 2, no. 2, p. 021001, Jan. 2021, doi: 10.1088/2632-2153/abbf9a.

[3] Derrow-Pinion et al., “ETA Prediction with Graph Neural Networks in Google Maps,” in Proceedings of the 30th ACM International Conference on
Information & Knowledge Management New York, NY, USA, Oct. 2021, pp. 3767-3776. doi: 10.1145/3459637.3481916.



Vocabulary

Node = vertex

Graph



Vocabulary: Node / vertex

Persons Atoms Intersections Particles

In many other fields: an aminoacid in a protein (biology), a customer (recommendation
systems), an object in a picture (computer vision), brain regions on MRI (medical
diagnosis), joints (robotics),...



Vocabulary: Edge

Relationship Type of bond Vessel Decayed of

In many other fields: distance between residues (biology), connected customers
(recommendation systems), interaction between objects (computer vision), interaction
between brain regions (medical diagnosis), connection between joints (robotics),...



Vocabulary: Directed or undirected graph

A relationship (edge) can be symmetrical or not between nodes

Undirected graphs Directed graphs
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*Alterna2 http://www.alterna2.com, CC BY 2.0 <https://creativecommons.org/licenses/by/2.0>, via Wikimedia Commons



Vocabulary: Weight

Edges can carry information — edge weight




Graphs store information: Features

Graphs can store information on node, edge or globally (on graph)

Node Edge
Social network Name, age, job,... Is friend, follows, sibling,...
Molecule Atomic number,... Bond order,...
Citation Article,... Cited by,...
Particle physics Particle,... Decayed to,...
Motion capture Joints,... Is connected to,...
Natural language @ Group of words,... | Refers to,...

The feature can be a number, a concept, ...

Globally/Graph

Group of interest,...

Is a drug, energy,...

Research field,...
Experiment,...
Character,...

Paragraph,...



Formal definition

G = (V, E): a set of nodes and edges

Features
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Graph complexity
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The inner structure of a graph can vary a lot
The number of edges/nodes might vary a lot from one graph to another
One single graph can contain several thousands of nodes/edges

How do we quantify local or global structural patterns in a graph?



Graph complexity: Paths and cycles

A path is a sequence of edges connecting 2 nodes » graph density
A cycle is a path in which the first and last vertices are equal » graph redundancy

<— path

Undirected graph Directed graph



Graph complexity: Node proximity and centrality

Node centrality
« How many paths goes through the node

Node proximity measures

(connection strength between two nodes i and j)

« Shortest path (minimum number of edges going from i to j)

* « Heavier » path (maximum cumulated weight going from i to j)

« Probability to reach node j by performing a random walk starting
from node |

Node centrality

» Useful for node and edge prediction
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Graph representation

???



Graph representation

Random numbering of nodes



Graph representation

w,; if i1s connected toj

Adjacency matrix W;; ={ 0 otherwice
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Graph representation
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Adjacency list

1 2 3 4 5 6 7 8 9

ﬁdjacency list:

Cge weights:

[[1, 3],
[2, 3],
[3, 2], [3, 4],
[4, 3],
[5, 6], [5, 7],
[6, 3], [6, 8,
[7, 3],
[8’ 6],
[9, 6]]

[0.4,04,1.0,1.0,1.0,1.0,1.0
1.0, 0.4, 1.0, 1.0, 1.0]

N

4




Graph representation

« Edge weights are stored either directly in the adjacency matrix, or in an independent tensor.

Adjacency matrix ﬁdjacency list: [[1, 3], \

0.4

0.4 ,
B B 5. 6], [5, 7],
6. 3], [6, 8,
1.0 7. 51,
10

(=] o] ~ [=3] w = w N [

* Features on nodes and graphs will also be stored in independent tensors.

Node features: [4.1,4.2,6.4, 1.0, 1.0, 5.0, 1.7, 3.0, 5.0]

Graph feature: [8.0]




Graph representation

Adjacency matrix VS Adjacency list

ﬁdjacency list: [[1, 3], \

1 2. 5],

’ [3, 2], [3, 4],
3 . . [4! 3]’

\ ] 5, 61, [5, 7,

[6, 3], [6, 8],
| ™ 2
6 ’ y
, . . [9, 6]l

8 Edge weights: [0.4, 0.4, 1.0,

0 1.0, 1.0, 1.0,

1 2 3 4 5 6 717 8 9 1.0, 1.0, 0.4,

K 1.0, 1.0, 1.0] /
Storage space O(V?) — lot of space O(E) — less space

Storage efficiency Might be sparse Optimal

Cover the list until finding
the edge — O(E)

Finding i’s neighbours Read the i"" line — O(V)  Cover the whole list — O(E)

Does edge [i,j] exist? Check if W(i,j) #0 — O(1)

V = number of vertices
E = number of edges



Graph representation

 Useful matrices

Adjacency W Edge weights

Number of neighbours per node
(diagonal matrix)
D-W
(~ diffusion matrix)

Degree D

Laplacian L
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@) Graphs are everywhere

» Complex data structures
» Basics of graph theory

Learning on Graphs
» Graph embedding

» Transductive and inductive learning
» Tasks on graph learning

€) A few examples

» Taxonomy of methods
» Graph convolution

» Message passing

» Graph Transformer



Graph Embedding

We need to find a representation of the graph that is

processable
Classification / regression

Decoder

Update Adjacency Matrix

Node
feats

X

Latent
repr.

Z

Encoder

Adj.
matrix

W

Decoder




Graph Embedding: Representing nodes

Node Choose latent
Features space —> Hyperparameter
- dimension
Embedding
| D




Node Embedding: Representing features

Each node is represented in the latent space

Node
Features

Embedding

| )

Choose latent
space
dimension




Node embedding: right representation for task

Different tasks = different latent space
= Learnable

Example 1 : Nodes with similar Example 2 : Nodes close in graph
environment close in latent space close in latent space




Node embedding: Summary

« Features stored in nodes/edges/graphs are not

easily processed.
« We transform the features into a vector in the
latent space (Dimension is a hyperparameter).
 The embedding has to be suited for the task —

Learnable.




Transductive Learning

* You have ONE very large graph
« Training data are accessible during test
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Transductive Learning : Node labelling

* You have ONE very large graph
« Training data are accessible during test
* You cannot add nodes
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Transductive Learning : Edge finding

* You have ONE very large graph
« Training data are accessible during test
* You cannot add nodes
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=
Inference

 The model has access only to
a part of the graphs (train set)

« Adding new nodes is possible

* Generalization to new graphs
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Tasks on nodes: Labelling

Node clustering (example on CORA dataset)

U3 M BN BN BN I N @ 991 9:9:0:87 AR M M Y EX IE N (I M BN I OB IR

(b) Epoch 40 (c) Epoch 80 (d) Epoch 120

Cora dataset: McCallum, A. K.; Nigam, K.; Rennie, J.; Seymore, K. Automating the Construction of Internet Portals with
Machine Learning. Information Retrieval 2000, 3 (2), 127-163. .

Model: Mrabah, N.; Bouguessa, M.; Touati, M. F.; Ksantini, R. Rethinking Graph Auto-Encoder Models for Attributed Graph
Clustering (Extended Abstract). In 2023 IEEE 39th International Conference on Data Engineering (ICDE); 2023; pp
3891-3892. .



Decoder

Tasks on nodes: Labelling

Latent

Node labelling (eg. bot detection on social networks) repr.
Z

Example: Huang, H.; Tian, H.; Zheng, X.; Zhang, X.; Zeng, D. D.; Wang, F.-Y. CGNN: A Compatibility-Aware Graph Neural
Network for Social Media Bot Detection. I[EEE Transactions on Computational Social Systems 2024, 11 (5), 6528-6543. .



Tasks on nodes: Regression

Decoder

Latent

Node regression repr.
(eg. predicting weather with GraphCast)

GraphCast

==

Example: Lam, R.; Sanchez-Gonzalez, A.; Willson, M.; Wirnsberger, P.; Fortunato, M.; Alet, F.; Ravuri, S.; Ewalds, T.; Eaton-
Rosen, Z.; Hu, W.; Merose, A.; Hoyer, S.; Holland, G.; Vinyals, O.; Stott, J.; Pritzel, A.; Mohamed, S.; Battaglia, P. Learning
Skillful Medium-Range Global Weather Forecasting. Science 2023. .



Tasks on edges

Find relationship between objects o
(eg. scene graph generation) Helmet Z

Decoder
Wears Wears
0 man azqu

 Build the graph with
semantic segmentation
* Find the relation

T A
between elements ”;:&
; 5

o
%

: -
-

Convolutional
models

CNN

Example : Zhu, G.; Zhang, L.; Jiang, Y.; Dang, Y.; Hou, H.; Shen, P.; Feng, M.; Zhao, X.; Miao, Q.; Shah, S. A. A.; Bennamoun,
M. Scene Graph Generation: A Comprehensive Survey. arXiv June 22, 2022. .



Tasks on edges

Latent

Edge prediction/regression repr.

(eg. movie recommendation) °° Z
hu:l Decoder

« Transductive learning
« Bipartite graph
(2 different kinds of nodes)

©
« Try to find the weight of an g
edge _)\;L
e
X5
wr

Example :
Zhang, M.; Chen, Y. Inductive Matrix Completion Based on Graph Neural Networks. arXiv February 16, 2020.



Graph classification
(eg. carcinogen / drug)

Tasks on graphs
Decoder
Latent
repr.

Carcinogens Drug

Example : Wang, C.; Kumar, G. A.; Rajapakse, J. C. Drug Discovery and Mechanism Prediction with Explainable Graph Neural
Networks. Sci Rep 2025, 15 (1), 179. .



Tasks on graphs

Graph regression

(eg. crystal structure stability with GNoME)

* Predict stability from
structure
 Generate new structures

* Active learning

Example: Merchant, A.; Batzner, S.; Schoenholz, S. S.; Aykol, M.; Cheon, G.; Cubuk, E. D. Scaling Deep Learning for
Materials Discovery. Nature 2023, 624 (7990), 80-85. .
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Graphs are everywhere

» Complex data structures
» Basics of graph theory

Learning on Graphs

» Graph embedding
» Transductive and inductive learning
» Tasks on graph learning

A few examples

» Taxonomy of methods
» Graph convolution

» Message passing

» Graph Transformer




Taxonomy of methods Legend s —

r 1 LLE (Roweis. 200()
Shallow embeddmgs] = ey

L

Auto—encoders] Non-Euelidean | [Poincaré (Nickel. 2017)
u . : = Section 4.1.% Lorentz {Nickel.l 201¢)
There are many different flavors of e ) Praduct (G 20

Matrix GF (Ahmed. 201:)

m et h o d S fo r I earn i n g on g ra p h S :Graph neural networks] B

Section 4.1.7. HOPE (Ou. 201¢)

-

Skip-gram DeepWalk | Perozzi. 2014 )
Section 4.1.¢ node2vec |Grover. 201€)
WYS (Abu-el-haiia. 2018

LINE | Tang, 201%)

HARP (Chen. 201¢)

Unsupervised

=1
‘;((:'lion J_ ENC(W;0F) Autoencoders SDNE | Wang. 201¢€)
T Section 4. DNGR (Cao. 201t)

X#1 J—[ENC(H: X; 0F)

Message passing

Section 4.0}

GAE (Kinf. 201¢)
Graphite (Grover, 201¢)
DGI { Velickovié. 201¢)

Graph
("Node ( ) Embedding X =1 HEexce®) LaplacianH LP (Zhu. 'znuz.']]

feats Decoder 9 Section 5.1 LS ( Zhou. 200<)
\L) Latent \_ _J

repr.

Laplacian ManiReg | Belkin, 200%)
Section 5.2.1 SemiEmbed {Weston. 2008 )

Adj. ) - () ENC(X: OF) NGM (Bui. 201¢)

matrix Decoder W Supervised

(a #0) Skip-gram Planetoid (Yang, 201¢ -]]
L ~ 7 Section f Section 5.2.%
Frameworks GNN (Searselli, 200¢)
Section 5.3.1 GGSNN (Li. 2018
MPNN | Gilmer, 2017)
X£1 GraphNets (Battaglia. 201€)

Spectrum-free ChebyNet |Defferrard, 201¢)
Loeal / Section 5.4.% GCN (Kinf. 201¢)
Message passing

Spatial SAGE (Hamilton, 2017)
Section 5.0 MoNet (Monti. 2017)
GAT (Velickovié, 201¢)

ENC(W, X;0F)

Non-Euclidean | | HGCN (Chami. 201%)
Section 5.0 HGNN (Liu, 201¢)

Global filtering Spectrum—based]_[SCNN { Bruna, 2014, ]I

Section 5.4.1 (Henaff, 2015

Chami, I.; Abu-El-Haija, S.; Perozzi, B.; R¢, C.; Murphy, K. Machine Learning on Graphs: A Model and
Comprehensive Taxonomy. J. Mach. Learn. Res. 2022, 23 (1), 89:3840-89:3903.



Graph Convolution

Just like for images we can learn from Full convolution:
neighbourhood with a convolution All nodes representation updated

\ One node update /

A bit more complex since the number of neighbours
is unlikely to be constant

« We want the operator to be permutation invariant

* One step = information from direct neighbours

« We use adjacency matrix




Graph Convolution

Get information from further neighbours: Add Conv. Layers

Several layers are needed to retrieve
iInformation for distant nodes

Each layer brings information from nodes
further on a path

For large graphs — a cutoff

It is possible to use a virtual node
connected to all other nodes. But in
practice this becomes quickly intractable.




Node Embedding: Representing features (reminder)

Each node is represented in the latent space

Node
Features

Embedding

| )

Choose latent
space
dimension




Edge and Graph embedding

Graphs store information everywhere !

Node
Features

l Embedding

Edge Graph
Featﬂ res Features

] Embedding
Embedding

Even more hyperparameters!




Message passing

We can share information between all parts of the graph

.G G
.E E-

LN, N

Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E. Neural Message Passing for Quantum Chemistry. arXiv June
12,2017..




Message passing: transform

We can share information between all parts of the graph

G j \ G
 We need a transformation to exchange E =1
since vectors are not of the same size x j \

N N

 The transformation is learnable

Learnable
transformation

Edge embedding

LT X

Node embedding

Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E. Neural Message Passing for Quantum Chemistry. arXiv June
12,2017..



Message passing: build the message

« We build the message by

aggregation of the latent

representations

* The aggregation has to be
invariant by permutation
of the nodes

Gilmer, J.; Schoenholz, S. S.; Riley, P. F.; Vinyals, O.; Dahl, G. E. Neural Message Passing for Quantum Chemistry. arXiv June

12,2017. .
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Alphafold transformer

Alphafold uses a kind of adjacency matrix in the evoformer block

A\ j
|central edges (r, ‘h‘C)’“

Pair representation Corresponding edges Te— >t odes o )
{r.r.c) in a graph e Cra
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= dot-product attention 5
input row (r.c ) affinities o ' weights 5 |__updates (r.c)
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— = z 3 =
i 5 |
] y %) v - .
- ight ed
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Supplementary Figure 7 | Triangular self-attention around starting node. Dimensions: r: residues, c: chan-

nels, h: heads

Jumper, J.; Evans, R.; Pritzel, A.; Green, T.; Figurnov, M.; Ronneberger, O.; Tunyasuvunakool, K.; Bates, R.; Zidek, A.; Potapenko, A.; Bridgland, A.; Meyer, C.; Kohl, S. A. A.;
Ballard, A. J.; Cowie, A.; Romera-Paredes, B.; Nikolov, S.; Jain, R.; Adler, J.; Back, T.; Petersen, S.; Reiman, D.; Clancy, E.; Zielinski, M.; Steinegger, M.; Pacholska, M.;
Berghammer, T.; Bodenstein, S.; Silver, D.; Vinyals, O.; Senior, A. W.; Kavukcuoglu, K.; Kohli, P.; Hassabis, D. Highly Accurate Protein Structure Prediction with AlphaFold.

Nature 2021, 596 (7873), 583-589. .



Graph Transformer Network
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All You Need» : Laplacian EigVees as |
RNN, Transformers Graph Transformer Layer @ ' SREp Iansfonmot Lawor

Positional Encoding with edge features

Dwivedi, V. P.; Bresson, X. A Generalization of Transformer Networks to Graphs. arXiv January 24, 2021. .



