

Hands-on Introduction to Deep Learning

Graphs are everywhere

Data structures: Euclid and Text

Highly ordered data

Rebirth of Deep learning was thanks to pictures, text and speech recognition

Data structures: Data is not always euclidean

LIDAR

Molecules

Complex geometries

Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Veličković, Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges https://arxiv.org/abs/2104.13478

Graphs are everywhere

Data as a set of interconnected entities

Graphs are everywhere

[1] Erbertseder, K., Reichold, J., Flemisch, B., Jenny, P., & Helmig, R. (2012). A coupled discrete/continuum model for describing cancer-therapeutic transport in the lung. PLoS One, 7(3), e31966.
 [2] J. Shlomi, P. Battaglia, and J.-R. Vlimant, "Graph neural networks in particle physics," Mach. Learn.: Sci. Technol., vol. 2, no. 2, p. 021001, Jan. 2021, doi: 10.1088/2632-2153/abbf9a.
 [3] A. Derrow-Pinion et al., "ETA Prediction with Graph Neural Networks in Google Maps," in Proceedings of the 30th ACM International Conference on Information & Knowledge Management New York, NY, USA, Oct. 2021, pp. 3767–3776. doi: 10.1145/3459637.3481916.

Graph

Node/vertex

Some example of nodes

Some example of edges

Edge: orientation

A relationship can be symmetrical or not between nodes

Edge: weight

Edges can carry information → **edge weight**

Graphs store information: Features

Graphs can store information on **nodes**, **edges** and **globally**

	Globally	Nodes	Edges
Social Network	Group of interest,	Name, age, job,	Is friend, follows, family,
Molecule	Is a drug, energy,	Atomic number,	Bond order,
Citations	Field,	Article,	Was cited,
Particle physics	Experiment,	Particle,	Decayed to,
Motion capture	Character,	Joints,	Is connected to,
Natural language	Paragraph,	Group of words,	Refers to,

It can be a number, a concept, ...

Formal definition

Features

12

Graph: Complexity

Number of neighbors

- The inner structure of a graph can vary a lot
- The number of edges/nodes might vary a lot from one graph to another
- One single graph can contain several thousand of nodes/edges

• ...

Graph: Paths

A **path** is a sequence of edges connecting 2 nodes

Undirected graph cycle

Graph: Node proximity and centrality

Node centrality

Measure how many paths goes through the node

Node proximity

- 1st order: **w**_{i,j} between node i and j
- 2nd order: similarity of neighborhood structure
- Higher orders possible

Random numbering of nodes

Adjacency matrix $W_{(i,j)} = \begin{cases} w_{i,j} & \text{if there is an edge} \\ 0 & \text{if not} \end{cases}$

20

Adjacency list

- Scale $V^2 \rightarrow \text{lot of space}$
- Might be sparse
- Easy to find an edge

V = number of nodes/vertices E = number of edges

- Scale $E \rightarrow$ less space
- Might be difficult to find an edge

https://www.geeksforgeeks.org/comparison-between-adjacency-list-and-adjacency-matrix-representation-of-graph/

• Edge weights are stored either directly in the adjacency matrix, or in an independent tensor.

• Information (features) on nodes and graphs will also be stored in independent tensors.

Adjacency	W	Weight of edges
Degree	D	Diagonal matrix with number of edges for each node
Laplacian	L	D - W
Node Features	X	Information stored

9.2

9.3

Graphs are everywhere

- → Complex data structures
- → Basics of graph theory

Learning on Graphs

- Graph embedding
- Transductive and inductive learning
- Tasks on graph learning

A few examples

- → Taxonomy of methods
- → Graph convolution
- → Message passing
- → Graph Transformer

Graph embedding

• We need to find a representation of the graph that is processable

Graph embedding

- → Features stored in nodes/edges/graphs are not easily processed.
- We transform the features into a vector in the latent space (Dimension is a hyperparameter).
- → The embedding has to be suited for the task → Learnable.

Transductive learning

The model has access to the complete graph It is not possible to add new nodes Node labeling

Transductive learning

The model has access to the complete graph It is not possible to add new nodes Find new edges

Inductive learning

- The model has access only to a part of the graph (train set)
- Adding new nodes is possible
- Generalization to new graphs

Tasks on nodes

- Labeling nodes in a graph \rightarrow (clustering)
 - → Find topic of a research paper (CORA, etc)
 - → Find bots in a social network
 - \rightarrow . . .
- Labeling new nodes \rightarrow
- Perform regression \rightarrow

Tasks on edges

→ Find relationships

 \rightarrow

...

- → Contact map of aminoacids (Alphafold)
- Contact suggestion (social network)
- → ETA for directions (regression)
- Relationships between segments in pictures

G. Zhu et al., "Scene Graph Generation: A Comprehensive Survey." arXiv, Jun. 22, 2022. doi: 10.48550/arXiv.2201.00443.

33

Tasks on graphs

- Predict properties of graphs
 - Chemical properties (solubility, carcinogenic, possible drug)
 - Classification of the research field in an ego network

Graphs are everywhere

- → Complex data structures
- → Basics of graph theory

9.3

Learning on Graphs

- → Graph embedding
- Transductive and inductive learning
- → Tasks on graph learning

A few examples

- Taxonomy of methods
- Graph convolution
- Message passing
- Graph Transformer

Graph convolution

→ Just like for images we can learn from neighborhood with a convolution.

- → A bit more complex since the number of neighbors is unlikely to be constant.
- → We want the operator to be permutation invariant.

Graph convolution

- → Several steps are needed to retrieve information for distant nodes.
- \rightarrow For large graphs \rightarrow a **cutoff**
- It is possible to use a virtual node connected to all other nodes. But in practice this becomes quickly intractable.

Message passing

- → We have embeddings for each part of the graph (possibly different vector sizes).
- → Each part can learn from the others via a transformation.

→ Information is aggregated to form a message that the node/edge will send to others.

Alphafold transformer

Supplementary Figure 7 | Triangular self-attention around starting node. Dimensions: r: residues, c: channels, h: heads

Generation of novel crystal structures

GraphCast

Graph Transformer Network

Resources

Libraries

- → Pytorch Geometric
- → Deep Graph Library
- → Graph Nets
- → Spektral
- → ..

→ https://logconference.org/
→ https://ogb.stanford.edu/

Tutorials

- https://antoniolonga.github.io/Pytorch __geometric_tutorials/
- https://docs.dgl.ai/tutorials/blitz

References

- → Books
 - Deep Learning on Graphs (Jiliang Tang and Yao Ma)
 - Introduction to Graph Neural Networks (Introduction to Graph Neural Networks)
- → Websites
 - → https://distill.pub/2021/gnn-intro/
 - https://neptune.ai/blog/graph-neural-network-and-some-of-gnn-applications
 - https://venturebeat.com/2021/10/13/what-are-graph-neural-networks-gnn/
 - https://theaisummer.com/graph-convolutional-networks/
 - → https://towardsdatascience.com/node-embeddings-for-beginners-554ab1625d98
- → Articles

• Chami, S. Abu-El-Haija, and B. Perozzi, "Machine Learning on Graphs: A Model and Comprehensive Taxonomy".

- Zhou, Jie, et al. "Graph neural networks: A review of methods and applications." AI Open 1 (2020): 57-81.
- Scarselli, Franco, et al. "The graph neural network model." IEEE transactions on neural networks 20.1 (2008): 61-80.
- Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).
- Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. "Deepwalk: Online learning of social representations." Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. 2014.
- Shlomi, Jonathan, Peter Battaglia, and Jean-Roch Vlimant. "Graph neural networks in particle physics." Machine Learning: Science and Technology 2.2 (2020): 021001.
- Duong, Chi Thang, et al. "On node features for graph neural networks." arXiv preprint arXiv:1911.08795 (2019).
- Dwivedi, Bresson "A Generalization of Transformer Networks to Graphs" 2020, https://arxiv.org/abs/2012.09699
- G. Zhu et al., "Scene Graph Generation: A Comprehensive Survey." arXiv, Jun. 22, 2022. doi: 10.48550/arXiv.2201.00443
- Merchant, A., Batzner, S., Schoenholz, S.S. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023). https://doi.org/10.1038/s41586-023-06735-9
- Remi Lam et al. Learning skillful medium-range global weather forecasting. Science 382, 1416-1421 (2023). DOI: 10.1126/science. adi 2336