

Graphs are everywhere

Hands-on Introduction to Deep Learning

2

Data structures: Euclid and Text

Rebirth of Deep learning was thanks to pictures, text and speech recognition

Highly ordered data

i i+1i-1

i+N

i-N

Neighborhood:

So far, we have worked with very regular data: images and language processing.

An image is a set of pixels spread out on a regular grid, and each pixel has 4 neighbors
(north, south, east, west).

Similarly, a text is a set of words that follow one another.

The first Deep Learning models were created to train neural networks on this type of
data.

3

Data structures: Data is not always euclidean
LIDAR Molecules

Meshes

Complex geometries

Michael M. Bronstein, Joan Bruna, Taco Cohen, Petar Veličković, Geometric Deep Learning: Grids, Groups, Graphs, Geodesics, and Gauges https://arxiv.org/abs/2104.13478

Geometric deep learning

1

457

29

42

8
Neighborhood:

The methods developed to process regular data (images or text) are not necessarily
applicable to all types of data.

Everywhere, we find data with a much more irregular structure, with in particular a
concept of non-generalizable neighborhood.

Examples:
● Object detection in a LIDAR scan (point cloud)

The point cloud is divided into overlapping voxels
1 entity = 1 voxel, information is averaged over the voxel
2 entities are linked if they have points in common (~neighborhood)

● Searching for the function of a molecule from its structure
1 entity = 1 atom
relation = 1 bond (which can be single, double, etc.)
Unstructured (free) meshes, locally refined

● We use the finite element/volume method, for example, discretizing the surface into
small elements (triangles here)

1 entity = intersection point between the vertices of the triangles
Relation = neighborhood

● Complex geometries
It is difficult to apply a CNN filter, for example, on this type of data.

The branch of Geometric Deep Learning attempts to apply methods initially created for
regular data (images, text) to more complex geometries.

Graph neural networks are part of this research branch.

https://arxiv.org/abs/2104.13478

4
Data as a set of interconnected entities

Graphs are everywhere

In an informal way, graphs define relationships between different entities.
We are going to give more details after.

5

Graphs are everywhere

Social networks Molecules

Directions recommendation Knowledge graphs

Alice

Bob

Charly

Denis

??

??

Particle physics

is

is

is

isis

eat

Living
Things

Plants

HerbsCowsDogs

Animals

[1] Erbertseder, K., Reichold, J., Flemisch, B., Jenny, P., & Helmig, R. (2012). A coupled discrete/continuum model for describing cancer-therapeutic transport in the lung. PLoS One, 7(3), e31966.
[2] J. Shlomi, P. Battaglia, and J.-R. Vlimant, “Graph neural networks in particle physics,” Mach. Learn.: Sci. Technol., vol. 2, no. 2, p. 021001, Jan. 2021, doi: 10.1088/2632-2153/abbf9a.
[3] A. Derrow-Pinion et al., “ETA Prediction with Graph Neural Networks in Google Maps,” in Proceedings of the 30th ACM International Conference on Information & Knowledge Management
New York, NY, USA, Oct. 2021, pp. 3767–3776. doi: 10.1145/3459637.3481916.

3

1

2

Capillary networks

Many other fields

– Biology

– Recommendation systems

– Computer vision

– Medical diagnosis

– Robotics

– ...

We find graphs in various application domains:

● Social networks (canonical example): profiles + friend/colleague/family relationships
● Molecules: atoms + bonds
● Capillary networks: intersections + vessels
● Particle physics (particle decay): final state linked to the original state
● In particle physics, particle decay is the spontaneous process of one unstable

subatomic particle transforming into multiple other particles.
● Route recommendations: road sections + travel time
● Knowledge bases (used by Google's search engine, for example): concepts +

semantic links.

6

Vocabulary

Ed
ge

Edge

Edge
Edge

Edge

Node

Node

Node
Node

Node
Node

Graph

On met en place du vocabulaire et des notions de base.

7

Persons Atoms

Road sections Concepts

Alice

Bob

Charly

Denis

??

??

Particles

is

is

is

isis

eat

Living
Things

Plants

HerbsCowsDogs

Animals

Intersections

Node/vertex Some example of nodes

Many other fields

– Biology: An aminoacid in a protein

– Recommendation systems: A customer

– Computer vision: An object in a picture

– Medical diagnosis: Brain region (MRI)

– Robotics: Joints

– ...

Exemples de noeuds dans différents domaines d’application :
● Les réseaux sociaux : profils
● Les molécules : atomes
● Réseaux capillaires : intersections
● La physique des particules : état de la particule
● Les recommandations d’itinéraire : section de route
● Les bases de connaissance : concepts

8

Relationship Type of bond

Time Statement

Alice

Bob

Charly

Denis

??

??

Decayed to

is

is

is

isis

eat

Living
Things

Plants

HerbsCowsDogs

Animals

Vessel

Edge Some example of edges

Many other fields

– Biology: Distance between residues

– Recommendation systems: Connected
customers

– Computer vision: Interaction between objects

– Medical diagnosis: Interaction between brain
region (MRI)

– Robotics: connection between joints

– ...

Examples of edges in various application domains:

● Social networks: relationships: friend/colleague, family
● Molecules: bonds (single, double, etc.)
● Capillary networks: vessels
● Particle physics: "decays into"
● Route recommendations: travel time
● Knowledge bases: semantic link

9

Edge: orientation

A relationship can be symmetrical or not between nodes

Undirected graphs Directed graphs

NC
O

O

H

H

H C H
H

C

C
C

C
C

C
N

N N

H

Alterna2 http://www.alterna2.com, CC BY 2.0 <https://creativecommons.org/licenses/by/2.0>, via Wikimedia Commons

TV

X

Anneke van
Giersbergen

In a graph, edges can be oriented or non-oriented. This means that the relationship that
connects two nodes can be reciprocal (bidirectional) or not (unidirectional).

If the concept of orientation exists on the edges, we refer to a directed graph.

Example of an undirected graph: a molecule. If the carbon atom is bonded to a hydrogen
atom, the reverse is also true.

Example of a directed graph: social networks like Twitter. TV follows the Dutch singer
Anneke van Giersbergen on Twitter, but the reverse is not true :(

We will see later that the concept of orientation affects how we numerically represent a
graph.

10

Edge: weight

Edges can carry information → edge weight

Edges can carry quantitative information. In this case, we refer to the weight of the edge.

For example: travel time between two road segments.

11

Graphs store information: Features

Graphs can store information on nodes, edges and globally

It can be a number, a concept, ...

Globally Nodes Edges
Social Network Group of interest,... Name, age, job,... Is friend, follows, family,...

Molecule Is a drug, energy,... Atomic number,... Bond order,...

Citations Field,... Article,... Was cited,...

Particle physics Experiment,... Particle,... Decayed to,...

Motion capture Character,... Joints,... Is connected to,...

Natural language Paragraph,... Group of words,... Refers to,...

Information (quantitative or qualitative) can be stored at several levels in a graph:
● At the level of the entire graph
● At the level of a node
● At the level of an edge

We refer to these as features.

It is on this type of information that our model will be able to learn.

Features can be carried by the input data of the model and/or serve as labels during
evaluation.

12

Formal definition

G = (V, E): a set of nodes and edges

{v i}i∈V {ei }i∈E

{ y i
V } { y i

E } { y i
G }

Features

Now we have all the elements to build a graph.

We're cooking up the basics: a graph is nodes, edges, and features (on nodes, edges,
and/or the graph).

Question break

14

Graph: Complexity

● The inner structure of a graph can vary a lot
● The number of edges/nodes might vary a lot from one graph to another
● One single graph can contain several thousand of nodes/edges
● ...

Number of neighbors

Graphs are complex structures.

The nodes of a single graph can have an extremely variable number of neighbors (see
figure, number of neighbors ranging from 2 to 18).

In the same database, two graphs can have very different structures (for example, a
database of molecules will contain simple molecules with 2 atoms, up to complex
molecules with several dozen atoms).

Some graphs can contain millions of nodes and edges (social networks).

Working with graphs can be a challenge both from a numerical point of view (enormous
tensors to manipulate), but also for finding patterns during learning (variability of
structures)..

15

Graph: Paths

Undirected graph Directed graph

A path is a sequence of edges connecting 2 nodes

cycle

There are concepts that help measure certain structural characteristics of a graph, locally
or globally. We'll see a few of them, but there are many others (graph theory).

Characterizing the structure of a graph will be important later to verify that a model learns
correctly, without distorting the structure of the graph on which it learns, for example.

A path is a set of edges that connect two nodes together. There can be multiple paths
between two nodes.

On a directed graph, the path between two nodes tends to lengthen. It may not even
exist.

We speak of a cycle when there is a path connecting a node to itself without passing
twice through the same edge.

The notion of paths and cycles can be used to characterize the structure of a graph
locally or at the scale of a graph.

This can, for example, be used to define a "redundancy rate" of the network, useful in
application cases such as the study of blood circulation in capillary networks
(predicting the impact of an aneurysm rupture).

16

Graph: Node proximity and centrality

Node centrality
Measure how many paths goes through the node

Node proximity
● 1st order: wi,j between node i and j
● 2nd order: similarity of neighborhood structure
● Higher orders possible

The centrality of a node measures the number of paths that pass through this node. We
are then able to identify the nodes that play a major role in the structure of the graph.

We can also measure the influence of one node on another through the concept of
proximity:

● The first-order proximity between two nodes is the weight of the edge that connects
them.

● The second-order proximity between two nodes measures the similarity of their
neighborhoods (the more neighbors they share, the higher this measure is).

● There are higher-order proximities that can take into account the entire set of possible
paths between two nodes.

● The higher the order of proximity, the more global the measure becomes (at the scale
of the graph) and the calculation becomes more complex..

Question break

18

Graph representation

?

1000110110

How to represent a graph numerically?

19

Graph representation

Random numbering of nodes

The nodes of the graph are numbered arbitrarily. Even if there may be a natural way to
number them, which can be preferred.

We note that the representation of a graph is not unique.

A graph is an object that is invariant under permutation of node numbers.

The operations used when manipulating a graph must be invariant under permutation
(i.e. must not depend on the order of node numbering).

20

Graph representation

Undirected

Directed

Symmetric

Adjacency matrix W (i , j)={wi , j if there is an edge0 if not

To describe the connectivity of the graph, we can use an adjacency matrix.

We construct a matrix W of size VxV, with w(i,j) non-zero if nodes i and j are connected.
Zero otherwise.

If i and j are connected, the value of w(i,j) is equal to the weight of the edge (equal to 1 if
the edge has no weight).

For an undirected graph, W is symmetric. This is not the case for a directed graph.

21

Graph representation

Adjacency list: [[5, 4],
 [8, 1],
 [4, 8], [4,3],
 [3, 4],
 [1, 7], [1, 2],
 [2, 4], [2, 6],
 [7,1],
 [6, 2],
 [9, 2]]

Edges: [0.4, 0.4, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 0.4, 1.0, 1.0, 1.0]

Adjacency list

Another way to describe the connectivity of a graph is to define an adjacency list.

We list the edges in a list of 2x1 tensors containing the node numbers of the endpoints.

The edge weights are stored in a separate tensor.

22

Graph representation

● Scale V2 lot of space→
● Might be sparse
● Easy to find an edge

● Scale E less space→
● Might be difficult to find an edge

V = number of nodes/vertices
E = number of edges

https://www.geeksforgeeks.org/comparison-between-adjacency-list-and-adjacency-matrix-representation-of-graph/

Adjacency list: [[5, 4],
 [8, 1],
 [4, 8], [4,3],
 [3, 4],
 [1, 7], [1, 2],
 [2, 4], [2, 6],
 [7,1],
 [6, 2],
 [9, 2]]

Edges: [0.4, 0.4, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0,
 0.4, 1.0, 1.0, 1.0]

Avantages et inconvénients des deux types de représentation.

La matrice d’adjacence prend beaucoup de place en mémoire (VxV). Si elle est creuse,
c’est du gâchis.

La liste d’adjacence prend moins de mémoire, à moins que le graphe soit très connecté :
liste + features (V x 2 x nb_neighbors + V). Dans ce cas, elle peut prendre plus de
mémoire que la matrice.

Il est plus facile de retrouver les voisins d’un noeud avec la matrice plutôt qu’avec la liste.
Dans un cas, on connait directement l’adresse mémoire de la ligne de la matrice
correspondant au noeud qui nous intéresse, dans l’autre il faut parcourir toute la liste.

Le choix de travailler avec la matrice ou la liste n’est pas toujours de notre ressort. C’est
en général les librairies qui décident.

23

Graph representation

● Edge weights are stored either directly in the adjacency matrix, or in an independent tensor.

1.0
1.2

8.03.7
4.0

1.0 3.0
1.05.0

1.0
7.0

4.2

Adjacency matrix Adjacency list: [[5, 4],
 [8, 1],
 [4, 8], [4,3],
 [3, 4],
 [1, 7], [1, 2],
 [2, 4], [2, 6],
 [7,1],
 [6, 2],
 [9, 2]]

Edges: [0.4, 1.4, 2.4, 9.0, 1.0, 5.0, 1.7, 3.0,
 0.4, 1.3, 7.0, 6.2]

● Information (features) on nodes and graphs will also be stored in independent tensors.

Nodes: [4.1, 4.2, 6.4, 1.0, 1.0, 5.0, 1.7,
 3.0, 5.0]

Graph: [8.0]

In addition to the edge weights, we need to store the information carried by the nodes
and graphs.

This information must be numerical. No problem if it's quantitative, we'll need to build a
mapping table <int, string> (or embedding table) if it's qualitative.

Note: An entity (node, edge or graph) can carry one or several features. We can then use
multidimensional tensors (tensors of tensors), of size N_entities x N_features.

24

Useful Matrices

Adjacency W Weight of edges

Degree D Diagonal matrix with number
of edges for each node

Laplacian L D - W

Node Features X Information stored

The adjacency matrix is constructed from the edge weights.

We can build more complex matrices by incorporating node characteristics.

These matrices are used in different information propagation models in the graph. For
example, the Laplacian matrix will be used to describe a type of information
propagation similar to "heat diffusion".

Question break

Learning on Graphs
➔ Graph embedding
➔ Transductive and inductive learning
➔ Tasks on graph learning

Graphs are everywhere
➔ Complex data structures
➔ Basics of graph theory

A few examples
➔ Taxonomy of methods
➔ Graph convolution
➔ Message passing
➔ Graph Transformer

9.1

9.2

9.3

Roadmap

27

Graph embedding

● We need to find a representation of the graph that is processable

On this slide we present the general shape of the architecture of a model that will be able
to learn on graphs.

The first part is en encoder that takes as input the node features (we can also give
edges, and graph features).

The encoder creates a dense representation of the information given. This is called an
embedding.

Then we use this embedding as an input for a decoder that will either be trained to give
some properties or a new adjacency matrix.

28

Graph embedding
 Features stored in nodes/edges/graphs are not

easily processed.

 We transform the features into a vector in
the latent space (Dimension is a
hyperparameter).

 The embedding has to be suited for the task →
Learnable.

n1

n2

n3

n4

n1

n3

n2

n4

n1

n2

n3
n4

n1

n3

n2

n4

Now a few words on embeddings.

An embedding is a dense representation of the features of the graph. The size of the
vector is an hyperarameter of the model that have to be tuned.

The idea of training a model, is to get the best representation possible to solve our
problem.

In the first case, we want the nodes that have a similar environment to be close in the
embedding space.

The second example is more suited for problems for which the proximity of the nodes are
important.

29

Transductive learning
The model has access to the complete graph

It is not possible to add new nodes

Node labeling

In transductive learning, the problem is restricted to one (usually large) graph.
Everything is learned on this graph.

The specificity is that during the training, the nodes (or edges) of the test set are seen by
the network.

There are some limitations, as the impossibility to integrate new nodes during the
training.

If we take social network, it can be used to :
 - Label nodes (find bots in a network)
 - Find new edges (give new propositions for contacts)

30

Transductive learning
The model has access to the complete graph

It is not possible to add new nodes

Find new edges

In transductive learning, the problem is restricted to one (usually large) graph.
Everything is learned on this graph.

The specificity is that during the training, the nodes (or edges) of the test set are seen by
the network.

There are some limitations, as the impossibility to integrate new nodes during the
training.

If we take social network, it can be used to :
 - Label nodes (find bots in a network)
 - Find new edges (give new propositions for contacts)

31

Inductive learning
● The model has access only to a part of the graph (train set)
● Adding new nodes is possible
● Generalization to new

graphs

Inductive learning is closer that what we have already seen during the training.

We have a training set with a lot of graphs from which the model learns it parameters.
Then this model is used for inference.

It is possible to have graphs with different sizes and the model will be able (hopefully) to
generalize on new graphs.

32

Tasks on nodes

?

 Labeling nodes in a graph
(clustering)

 Find topic of a research paper
(CORA, etc)

 Find bots in a social network
 …

 Labeling new nodes
 Perform regression

33

Tasks on edges

?

?

 Find relationships
 Contact map of aminoacids (Alphafold)
 Contact suggestion (social network)
 ETA for directions (regression)
 Relationships between segments in pictures
 ...

G. Zhu et al., “Scene Graph Generation: A Comprehensive Survey.” arXiv, Jun. 22, 2022. doi: 10.48550/arXiv.2201.00443.

34

 Predict properties of graphs
 Chemical properties (solubility, carcinogenic,

possible drug)
 Classification of the research field in an ego

network
 ...

Tasks on graphs

Ego

Alter

Created by misirlou
from the Noun Project

Created by adindarfrom the Noun Project

Question break

A few examples
➔ Taxonomy of methods
➔ Graph convolution
➔ Message passing
➔ Graph Transformer

Learning on Graphs
➔ Graph embedding
➔ Transductive and inductive learning
➔ Tasks on graph learning

Graphs are everywhere
➔ Complex data structures
➔ Basics of graph theory

9.1

9.2

9.3

Roadmap

37

Taxonomy of methods

I. Chami, S. Abu-El-Haija, and B. Perozzi, “Machine Learning on Graphs: A Model and Comprehensive
Taxonomy”.

Chami and collaborators have written an interesting review of the different kinds of
methods being used for learning on graph.

Depending on the task you are doing, you need to find the correct methodology.

38

 Just like for images we can learn from neighborhood with a convolution.

 A bit more complex since the number of neighbors is unlikely to be
constant.

 We want the operator to be permutation invariant.

Graph convolution

Step nStep n Step n+1

In a similar way as for pictures, we can define a convolution for graph.
The main difference is due to the fact that we do not have a rigid structure and we have

to find the neighbors. It is done by using the adjacency matrix which holds this
information.

The value of the node is updated with the values of the neighbors with an operator that is
permutation invariant.

We can choose for example the sum operator.

At one step all the nodes get their values updated.

39

Graph convolution

 Several steps are needed to
retrieve information for distant
nodes.

 For large graphs → a cutoff
 It is possible to use a virtual

node connected to all other
nodes. But in practice this
becomes quickly intractable.

To get information of other nodes than the neighbors, we can make several steps of
convolution.

Each additional convolution will get information for neighbors that are one step further in
the path.

An hyperparameter to choose is the number of convolution to perform. When this number
increases, the calculation becomes more and more heavy. We can choose a cutoff.

Increasing the number of convolution step can lead to a problem of information dilution.
We get a lot of information from the closest neighbors but this decreases with the
distance in the path,

To overcome this problem, it is possible to use a virtual node which is connected to all
other node and serves as a shortcut to get the information. We still need to be careful
because the cost increases with the size of the graph.

40

Message passing
 We have embeddings for each part of

the graph (possibly different vector
sizes).

 Each part can learn from the others via a
transformation.

 Information is aggregated to form a
message that the node/edge will send to
others.

Edge embedding Node embedding

X =

Learnable
transformation

Nn

En

Gn

Nn

Gn

En+1

Nn+1

Gn+1

n0

n0
'
= fNN fEN fGN(, ,

Here we present an algorithm useful for passing information from different elements of
the graphs (nodes, graph and edges).

We presented the node embedding in a precedent part of the course. This is a way to
condense the information on the node.

Here we want to get information from edges and the graph. As for the nodes we need to
have the information encoded in a dense vector.

The embedding size for the edges and for the graph are also hyperparameter and do not
have to be equal to the node embedding size.

At the end the value of the node will have the size of the embedding space of the nodes.
It is necessary to define a transformation for the other parts so that they are
compatible with the nodes.

To do so we define a matrix with learnable values that will transform an, for instance,
edge information to something that can be understood by the nodes.

Once we have all the transformations done, the message (or value) of the node that will
be sent to the other nodes is an aggregation of all the vectors.

It is possible to share information between all the parts of the graph by defining a correct
transformation.

41

Alphafold transformer

J. Jumper et al., Highly accurate protein structure prediction with AlphaFold, Nature, vol. 596, no. 7873, Art. no. 7873, Aug. 2021, doi: 10.1038/s41586-021-03819-2.

An example of use of graph in Alphafold.
It is a model to find the structure of proteins for the

sequence of aminoacids.

https://doi.org/10.1038/s41586-021-03819-2

42

GNoME

Merchant, A., Batzner, S., Schoenholz, S.S. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023). https://doi.org/10.1038/s41586-023-06735-9

Generation of novel crystal structures

.

43

GraphCast

 Remi Lam et al. Learning skillful medium-range global weather forecasting.Science382,1416-1421(2023).DOI:10.1126/science.adi2336

Prediction of the weather
with temporal graphs

.

44

Graph Transformer Network

Dwivedi, Bresson A Generalization of Transformer Networks to Graphs 2020, https://arxiv.org/abs/2012.09699

It is possible to add attention to our graph models.

Question break

46

Resources

 Pytorch Geometric
 Deep Graph Library
 Graph Nets
 Spektral
 ...

Libraries
 https://logconference.org/
 https://ogb.stanford.edu/

 https://antoniolonga.github.io/Pytorch
_geometric_tutorials/

 https://docs.dgl.ai/tutorials/blitz

 Pytorch Geometric
 Deep Graph Library
 Graph Nets
 Spektral
 ...

Tutorials

https://logconference.org/
https://ogb.stanford.edu/
https://antoniolonga.github.io/Pytorch_geometric_tutorials/
https://antoniolonga.github.io/Pytorch_geometric_tutorials/
https://docs.dgl.ai/tutorials/blitz

47

References
 Books

 Deep Learning on Graphs (Jiliang Tang and Yao Ma)
 Introduction to Graph Neural Networks (Introduction to Graph Neural Networks)

 Websites
 https://distill.pub/2021/gnn-intro/
 https://neptune.ai/blog/graph-neural-network-and-some-of-gnn-applications
 https://venturebeat.com/2021/10/13/what-are-graph-neural-networks-gnn/
 https://theaisummer.com/graph-convolutional-networks/
 https://towardsdatascience.com/node-embeddings-for-beginners-554ab1625d98

 Articles
● Chami, S. Abu-El-Haija, and B. Perozzi, “Machine Learning on Graphs: A Model and Comprehensive Taxonomy”.
● Zhou, Jie, et al. "Graph neural networks: A review of methods and applications." AI Open 1 (2020): 57-81.
● Scarselli, Franco, et al. "The graph neural network model." IEEE transactions on neural networks 20.1 (2008): 61-80.
● Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).
● Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. "Deepwalk: Online learning of social representations." Proceedings of the 20th ACM SIGKDD

international conference on Knowledge discovery and data mining. 2014.
● Shlomi, Jonathan, Peter Battaglia, and Jean-Roch Vlimant. "Graph neural networks in particle physics." Machine Learning: Science and Technology 2.2

(2020): 021001.
● Duong, Chi Thang, et al. "On node features for graph neural networks." arXiv preprint arXiv:1911.08795 (2019).
● Dwivedi, Bresson "A Generalization of Transformer Networks to Graphs" 2020, https://arxiv.org/abs/2012.09699
● G. Zhu et al., “Scene Graph Generation: A Comprehensive Survey.” arXiv, Jun. 22, 2022. doi: 10.48550/arXiv.2201.00443
● Merchant, A., Batzner, S., Schoenholz, S.S. et al. Scaling deep learning for materials discovery. Nature 624, 80–85 (2023).

https://doi.org/10.1038/s41586-023-06735-9
● Remi Lam et al. Learning skillful medium-range global weather forecasting.Science382,1416-1421(2023).DOI:10.1126/science.adi2336

https://distill.pub/2021/gnn-intro/
https://neptune.ai/blog/graph-neural-network-and-some-of-gnn-applications
https://venturebeat.com/2021/10/13/what-are-graph-neural-networks-gnn/
https://theaisummer.com/graph-convolutional-networks/
https://towardsdatascience.com/node-embeddings-for-beginners-554ab1625d98
https://arxiv.org/abs/2012.09699
https://doi.org/10.1038/s41586-023-06735-9

	Graphs are everywhere
	Ordered data
	Less ordered data
	Graphs: informal definition
	Graphs: some examples
	Graphs: formal definition
	Examples of nodes
	Examples of edges
	Edge orientation
	Edge weight
	Features on node, edge and graph
	Cooking a graph
	Question break#1
	Graph complexity
	Graph: paths
	Graph: Node proximity and centrality
	Question break#2
	Graph: Numerical representation
	Graph: Node numbering
	Adjacency matrix
	Adjacency List
	Adjacency list
	Features storage
	Useful matrices
	Question break#3
	Slide 26
	LoG: embedding
	LoG: embedding example
	LoG: Transductive Learning
	LoG: Transductive learning 2
	LoG: Inductive Learning
	LoG: Tasks on nodes
	Slide 33
	Slide 34
	Question Break tasks
	Slide 36
	Taxonomy
	Graph Convolution
	Graph Convolution 2
	Message Passing
	Alphafold Transformer
	Slide 42
	Slide 43
	Graph Transformer
	Question break examples
	Resources web
	References

