

Hands-on Introduction to Deep Learning

Graphs are everywhere

IDRIS (CNRS) - Hands-on Introduction to Deep Learning - v.2.0

CNrs

Data structures: Euclid and Text

Highly ordered data

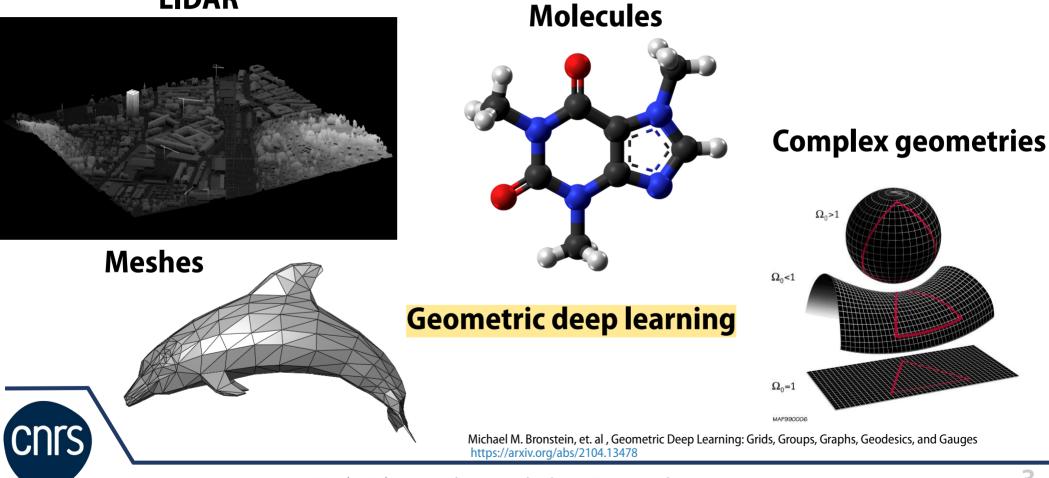
The answer to life, the universe and everything is ...

Rebirth of Deep learning was thanks to pictures, text and speech recognition

IDRIS (CNRS) - Hands-on Introduction to Deep Learning - v.2.0

Data structures: Data is not always euclidean

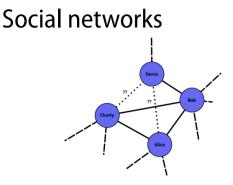
LIDAR



Graphs are everywhere

[1] A. Derrow-Pinion et al., "ETA Prediction with Graph Neural Networks in Google Maps," in Proceedings of the 30th ACM International Conference on Information & Knowledge Management New York, NY, USA, Oct. 2021, pp. 3767–3776. doi: 10.1145/3459637.3481916.

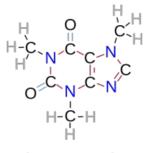
[2] J. Shlomi, P. Battaglia, and J.-R. Vlimant, "Graph neural networks in particle physics," Mach. Learn.: Sci. Technol., vol. 2, no. 2, p. 021001, Jan. 2021, doi: 10.1088/2632-2153/abbf9a.



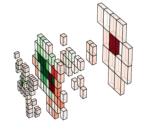
Directions recommendation

Chis

Molecules



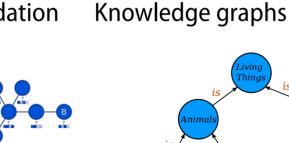
Particle physics



Many other fields

- Biology
- Recommendation systems
- Computer vision
- Medical diagnosis
- Robotics

...

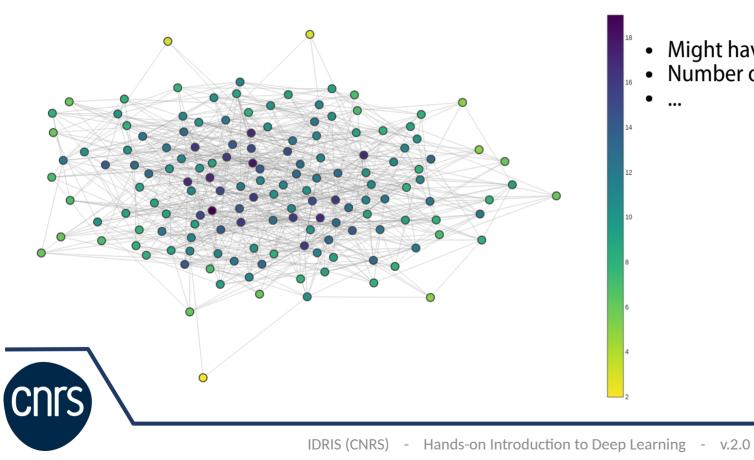


Cows

eat

Herbs

Complexity



- Might have several thousand nodes/edges Number of edges/nodes might vary a lot

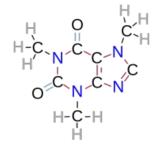
•••

Vocabulary: Node/Vertex

Some example of nodes

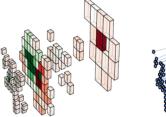


Atoms



A concept

Particles





Many other fields

...

- Biology : an aminoacid in a protein
- Recommendation systems : a customer
- Computer vision : an element in a picture
- Medical diagnosis : Brain region (MRI)
- Robotics : joints

IDRIS (CNRS) - Hands-on Introduction to Deep Learning - v.2.0

Cows

Plants

Herbs

eat

Vacabulary: Edges

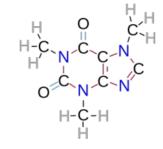
Some example of nodes

Relationship

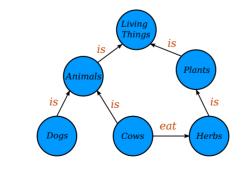
Time, connection

CNrs

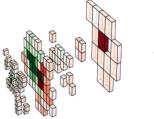
Type of bond



A statement



Decayed to





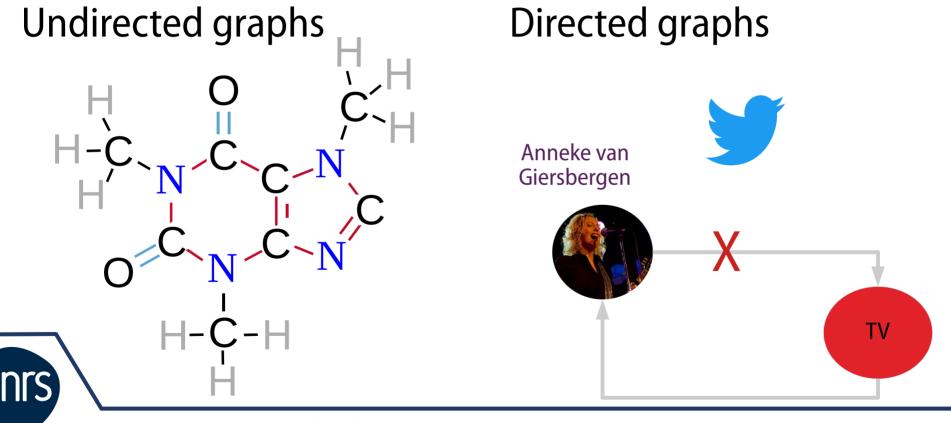
Many other fields

•••

- Biology : distance between residues
- Recommendation systems : connected customers
- Computer vision : an interaction between elements
- Medical diagnosis : interaction between brain regions (MRI)
- Robotics : connection between joints

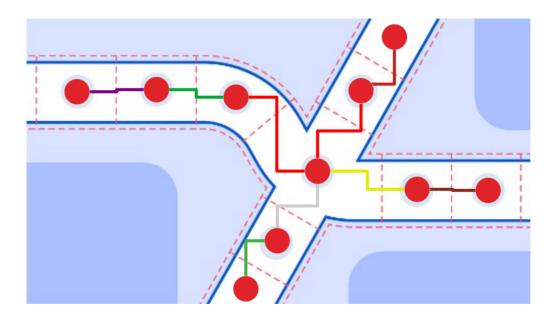
IDRIS (CNRS)

A relationship can be symmetrical or not between nodes



Vocabulary: Edges weight

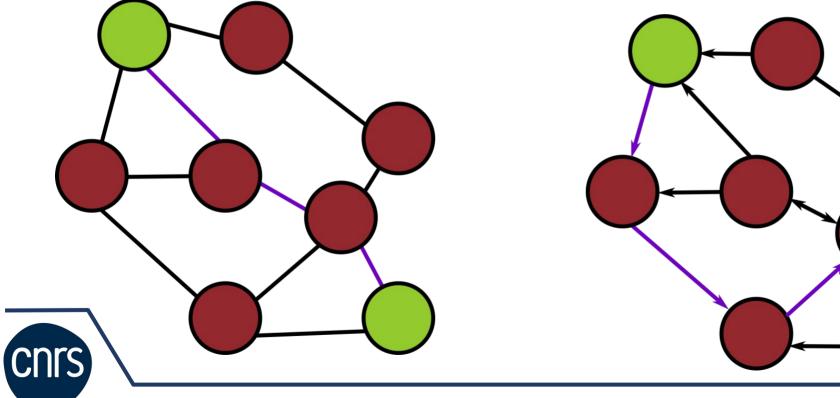
Edges can carry more information



Vocabulary: Paths

A path is a sequence of edges connecting 2 nodes

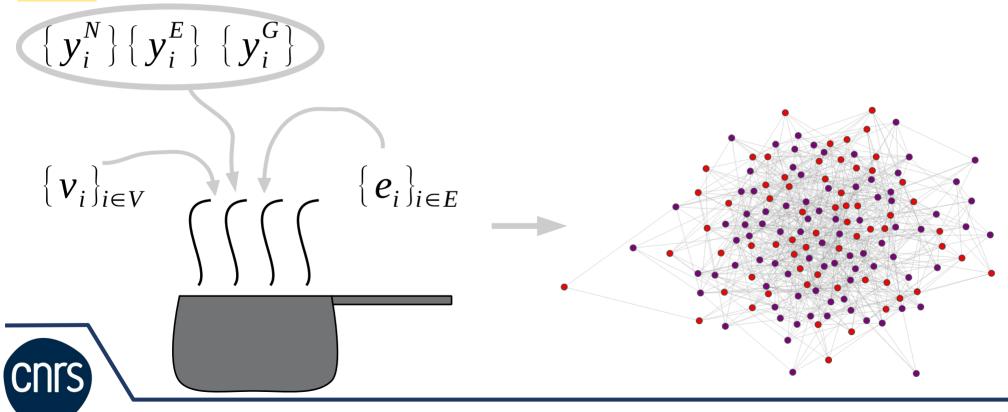
Undirected graph



Directed graph

Formal definition

Labels



Graphs store information: Labels

→ Graphs can store information (features) on nodes, edges and globally

	Globally	Nodes	Edges
Social Network	Group of interest,	Name, Age, Job,	Is friend, follows, family,
Molecule	Is a drug, Energy,	Atomic number,	Bond order,
Citations	Field,	Article,	Was cited,
Particle physics	Experiment	Particle	Decayed to,
Motion capture	Character	Joints	Is connected to,
Natural language	Paragraph,	Group of words,	Refers to,

→ It can be a number, a concept, ...

CNrs

Node proximity and centrality

3,2

Measure of the structure of a graph

W_{1,2}

W_{1,5}

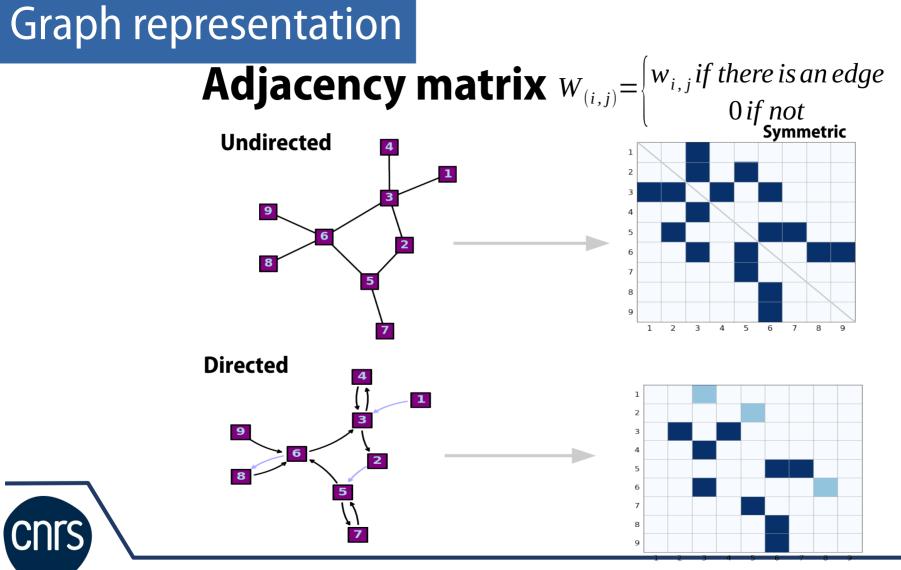
6

CNIS

- Node proximity
 1st order: w_{i,j} between node i and j
 - 2nd order: similarity of neighborhood structure
 - Higher orders possible

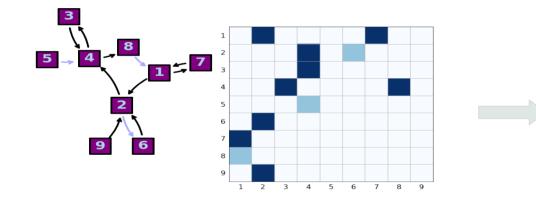
Node centrality

• Measure how many paths goes through the node



Graph representation

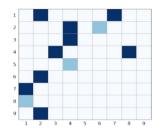
Adjacency list



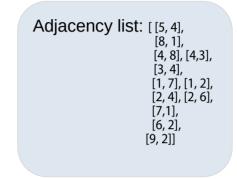
Nodes: [1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0] Edges: [0.4, 0.4, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 1.0, 0.4, 1.0, 1.0, 1.0] Adjacency list: [[5, 4], [8, 1], [4, 8], [4,3], [3, 4], [1, 7], [1, 2], [2, 4], [2, 6], [7,1], [6, 2], [9, 2]] Global: [1.0, 1.0]

IDRIS (CNRS) - Hands-on Introduction to Deep Learning - v.2.0

Graph representation



- Scale V**2 \rightarrow lot of space
- Sparse
- N ! permutations to represent the same graph
- Easy to find an edge



- Scale $E \rightarrow$ less space
- Might be difficult to find an edge

V = number of nodes/vertices E = number of edges

https://www.geeksforgeeks.org/comparison-between-adjacency-list-and-adjacency-matrix-representation-of-graph/

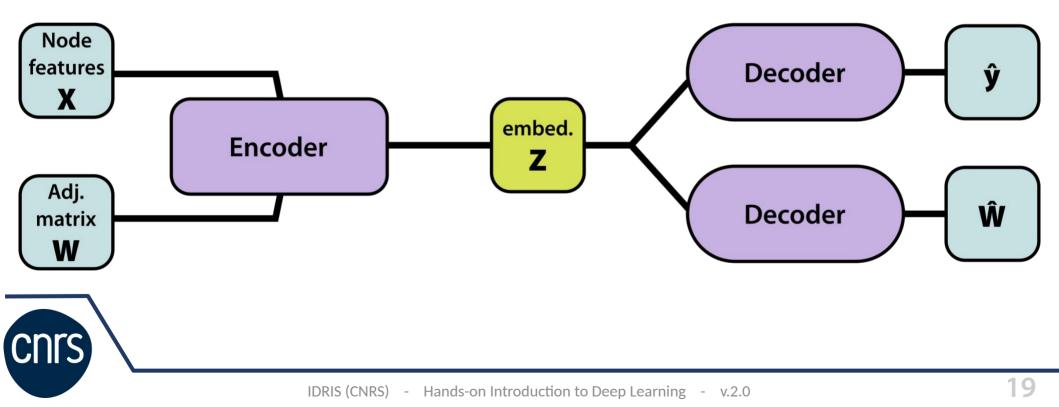
Adjacency	W	Weight of edges
Degree	D	Diagonal matrix with number of edges for each node
Laplacian	L	D - W
Node Features	X	Information stored

Learning on Graphs

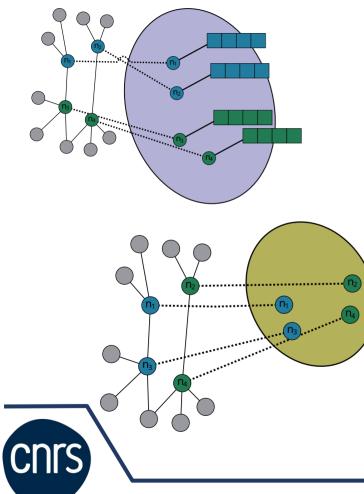
IDRIS (CNRS) - Hands-on Introduction to Deep Learning - v.2.0

Graph embedding

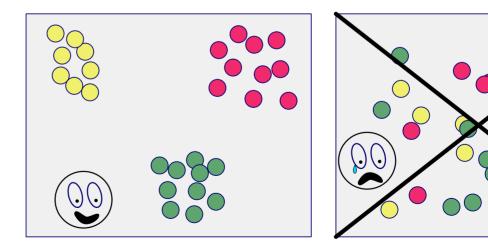
• We need to find a representation of the graph that is processable



Graph embedding

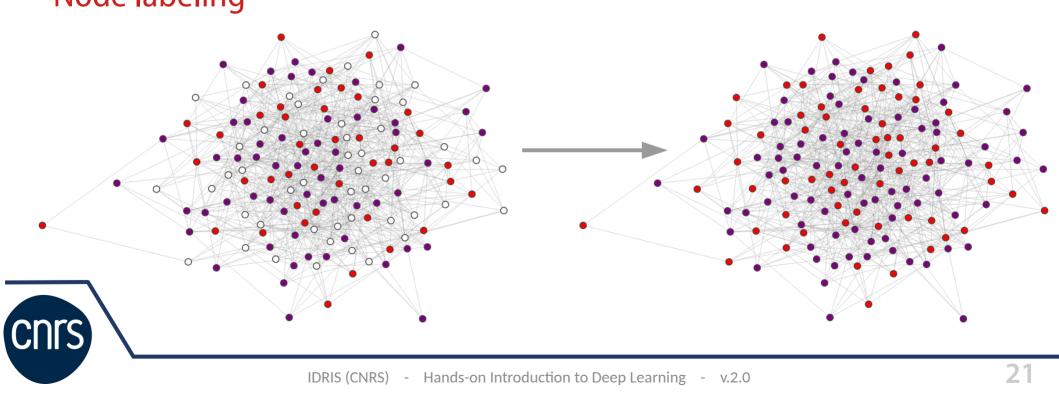


- → Features stored in nodes/edges/graphs are not easily processed.
- → We transform the features into a vector in the latent space (Dimension is a hyperparameter).
- → The embedding has to be suited for the task → Learnable.



Transductive learning

The model has access to the complete graph It is not possible to add new nodes Node labeling

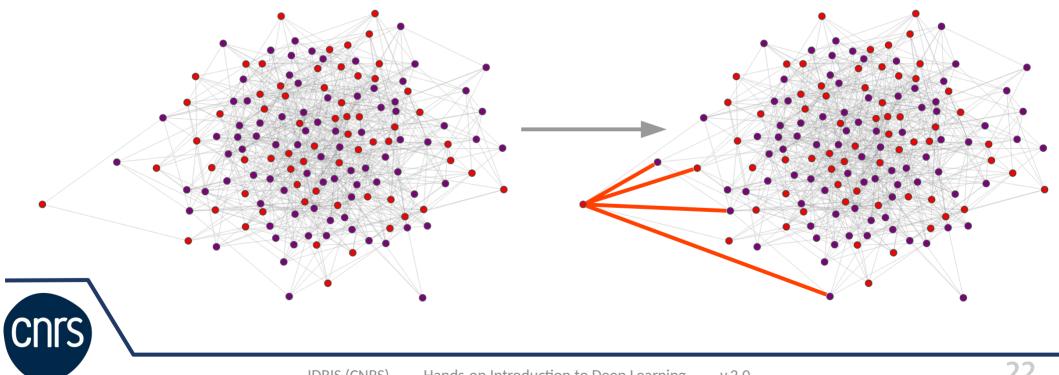


Transductive learning

The model has access to the complete graph

It is not possible to add new nodes

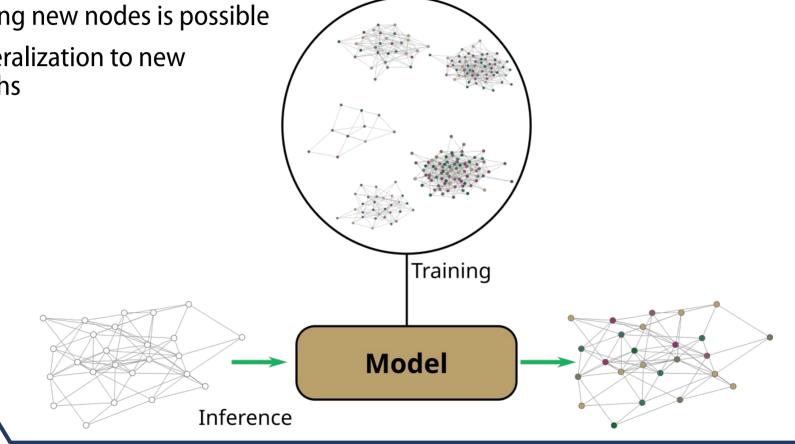
Find new edges



Inductive learning

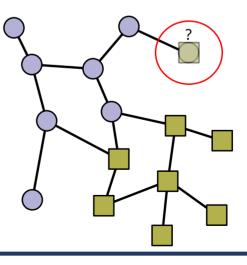
- The model has access only to a part of the graph (train set)
- Adding new nodes is possible
- Generalization to new graphs

(CNrs)



Tasks on nodes

- → Labeling nodes in a graph (clustering)
 - → Find topic of a research paper (CORA, etc)
 - Find bots in a social network
 - → ...
- → Labeling new nodes
- → Perform regression



Tasks on edges

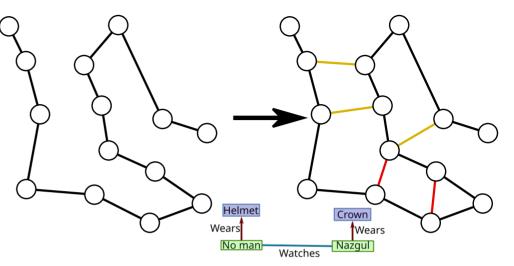
→ Find relationships

 \rightarrow

CNrs

...

- → Contact map of aminoacids (Alphafold)
- Contact suggestion (social network)
- → ETA for directions (regression)
- Relationships between segments in pictures



Scene Graph Generation https://cs.stanford.edu/~danfei/scene-graph/

Tasks on graphs

- Predict properties of graphs
 - Chemical properties (solubility, carcinogenic, possible drug)
 - Classification of the research field in an ego network

→ ...

CNrs

A few examples

IDRIS (CNRS) - Hands-on Introduction to Deep Learning - v.2.0

Taxonomy of methods

embed.

Ζ

Node

features

Χ

Adj.

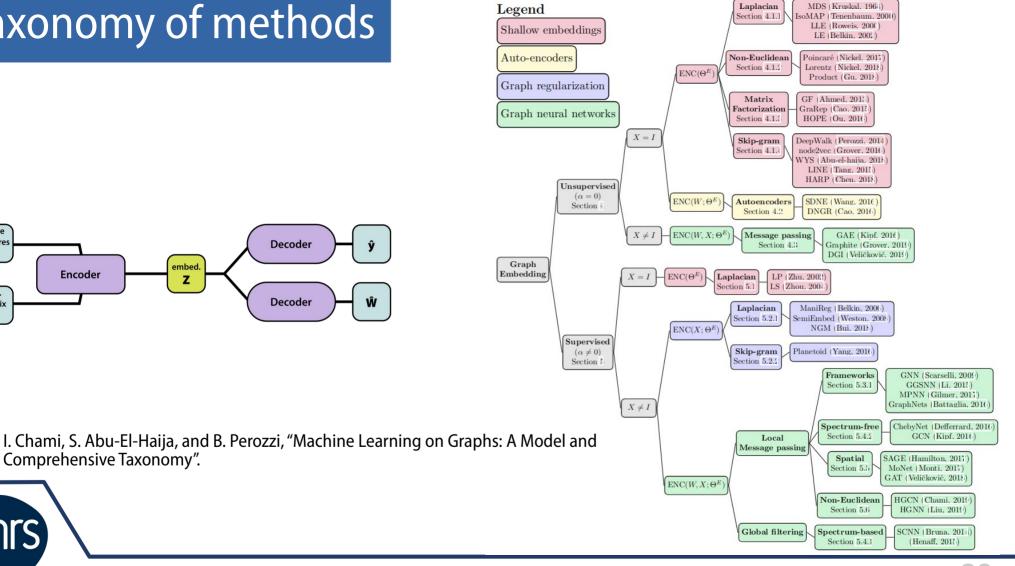
matrix

W

CNrs

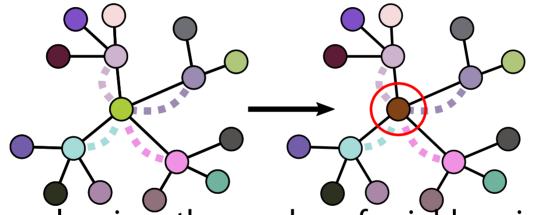
Encoder

Comprehensive Taxonomy".



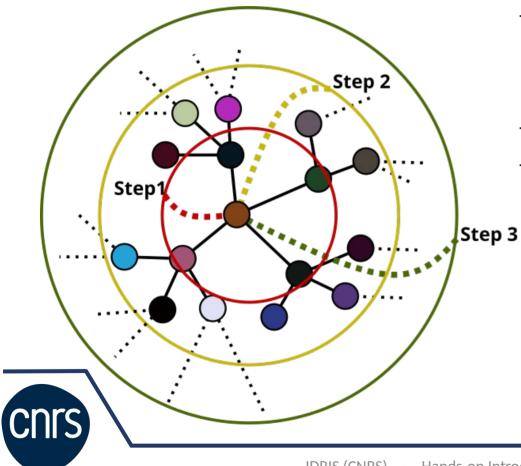
Graph convolution

→ Just like for images we can learn from neighborhood with a convolution operator.



- → A bit more complex since the number of neighbors is unlikely to be constant.
- \rightarrow We want the operator to be permutation invariant.

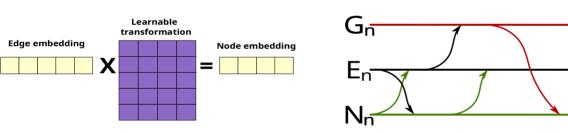
Graph convolution



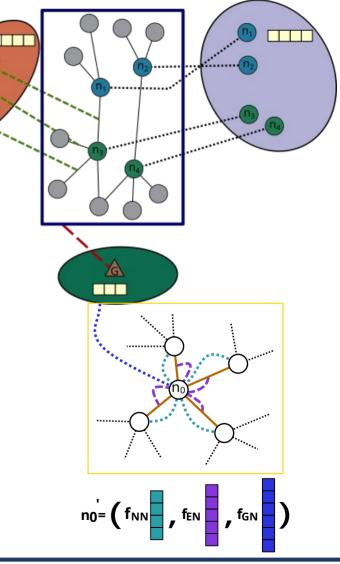
- → Several steps are needed to retrieve information for distant nodes.
- → For large graphs → a **cutoff**
- It is possible to use a virtual node connected to all other nodes. But in practice this becomes quickly intractable.

Message passing

- → We have embeddings for each part of the graph (possibly different vector sizes).
- → Each part can learn from the others via a transformation.



→ Information is aggregated to form a message that the node/edge will send to others.



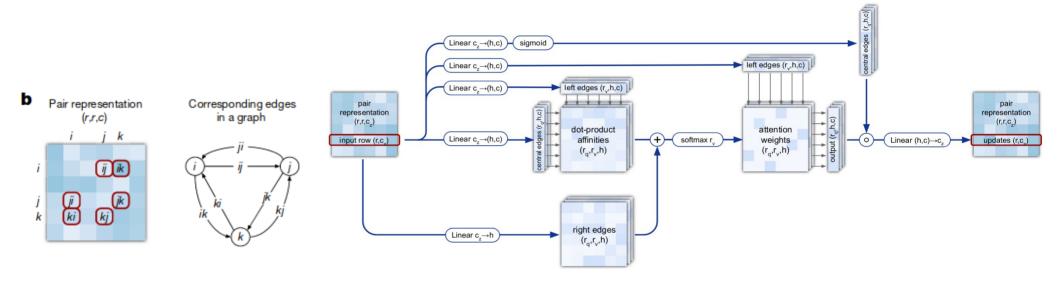
 G_{n+1}

 E_{n+1}

 N_{n+1}

Alphafold transformer

(CNrs)

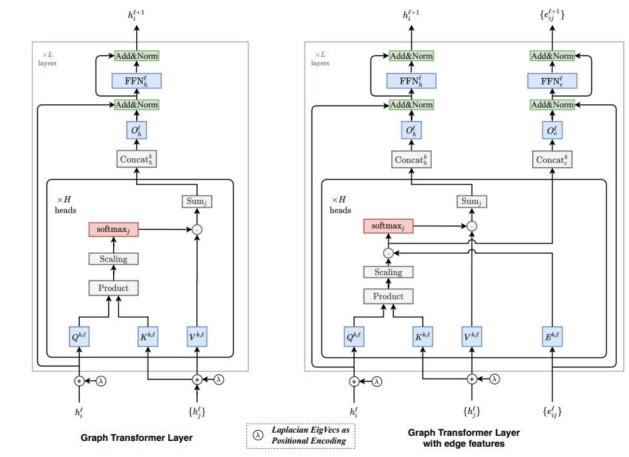


Supplementary Figure 7 | Triangular self-attention around starting node. Dimensions: r: residues, c: channels, h: heads

J. Jumper et al., Highly accurate protein structure prediction with AlphaFold, Nature, vol. 596, no. 7873, Art. no. 7873, Aug. 2021, doi: 10.1038/s41586-021-03819-2.

Graph Transformer Network

CNrS



Dwivedi, Bresson A Generalization of Transformer Networks to Graphs 2020, https://arxiv.org/abs/2012.09699

Resources

Libraries

- > Pytorch Geometric
- → Deep Graph Library
- → Graph Nets
- → Spektral
- → ...

→ https://logconference.org/
→ https://ogb.stanford.edu/

Tutorials

- https://antoniolonga.github.io/Pytorch __geometric_tutorials/
- https://docs.dgl.ai/tutorials/blitz

References

- → Books
 - Deep Learning on Graphs (Jiliang Tang and Yao Ma)
 - Introduction to Graph Neural Networks (Introduction to Graph Neural Networks)
- → Websites
 - https://distill.pub/2021/gnn-intro/
 - https://neptune.ai/blog/graph-neural-network-and-some-of-gnn-applications
 - https://venturebeat.com/2021/10/13/what-are-graph-neural-networks-gnn/
 - https://theaisummer.com/graph-convolutional-networks/
 - https://towardsdatascience.com/node-embeddings-for-beginners-554ab1625d98
- → Articles
- Chami, S. Abu-El-Haija, and B. Perozzi, "Machine Learning on Graphs: A Model and Comprehensive Taxonomy".
- Zhou, Jie, et al. "Graph neural networks: A review of methods and applications." Al Open 1 (2020): 57-81.
- Scarselli, Franco, et al. "The graph neural network model." IEEE transactions on neural networks 20.1 (2008): 61-80.
- Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).
- Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. "Deepwalk: Online learning of social representations." Proceedings of the 20th ACM SIGKDD international conference on Knowledge discovery and data mining. 2014.
- Shlomi, Jonathan, Peter Battaglia, and Jean-Roch Vlimant. "Graph neural networks in particle physics." Machine Learning: Science and Technology 2.2 (2020): 021001.
- Duong, Chi Thang, et al. "On node features for graph neural networks." arXiv preprint arXiv:1911.08795 (2019).
- Dwivedi, Bresson "A Generalization of Transformer Networks to Graphs" 2020, https://arxiv.org/abs/2012.09699

