Hands-on Introduction to Deep Learning
Artificial Neural Networks
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Objectives of this section:
e Understand the origin and development of neural networks
e Master the fundamental functioning of neural networks

Duration : % day

Document annex : TP1 Instructions

Aspects addressed :
e Definitions
e Applications
e Machine Learning
e Histoiry
e Context
e Mathematics
e Essentials
e Neurons

Deep
Learning

Machine

Learning
Artificial

Intelligence

@ \. Algorithms
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Artificial Intelligence (Al) :
e Systems capable of reproducing human actions or decisions
e Avery large field with many algorithm families
e Multiple levels of Al :
o Narrow : Specialised for one task
o General : Strong Al, replacing humans
o Super : Beyond human capacity

Machine Learning :

e Algorithms mainly based on statistical methods, often with an iterative

aspect from which comes the term « Learning »
e Dependency of large quantities of data
e Modifiable coding of the solution

Deep Learning :

o A group of models based on logical units called neurons and distributed in

layers

e The number of layers implies the « Deep » aspect of these models
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Q \\ Application fields

e Domain driven by successes in industry and research
e Wide variety of activity sectors

e Many different data types

e Datasets with different properties

o Different tasks to accomplish
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Reusable architectures/concepts between different domains due to:
o Similarities in data and problems

o Task similarities in different domains
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@ \\ Type of problems
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Partially labelled

Unlabelled

Supervised :
e Data labeling
e Make predictions in a pre-defined solution space
e Learn the characteristics which enable the prediction of labels
e The learned information must be useful for new unlabeled cases
e Difficulty : Creation of the dataset

Unsupervised :

e« Autonomous » learning which aims not to predict information but to
extract it by maximising certain criteria (Compression rate, Changing the
representation space, ...)

e Difficulty : Evaluating the model and determining which rule to use for
optimising

Semi-supervised :

e Using labeled and unlabeled data

e Objective : Reduce the quantity of data to label,
Improve performance

e Avoiding human bias by using more data and placing more importance on
the data than on the labels
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@ \. Algorithms

Examples :
e Supervised learning :
o Classification of dog and cat images. The model is trained on a
base of tagged images.
o Prediction of a dog's age from its health data. The model is
trained on the health data of dogs with unknown ages.
e  Unsupervised learning :
o Clustering of untagged images. The model is trained to maximise
a data separability criterion.
o Image compression
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@ \\ Algorithms

Types of data :

@ \. History of Deep Learning
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The beginning : 1940
e Computer learning : The Turing test
e Artificial neuron : W.Pitts and S. McCuloch
e Perceptron : Frank Rosenblatt

e Continuous
e Discrete

] e ADALINE : Summed single layer neural network
Learning tasks : . .
o Iterative learning
o Error calculated before activation which serves as the classifier.
The winter of Al : 1974 — 1980

e Inadequte when faced with non-linear problems as simple as XOR

e (Classification : Predict one or more discrete outputs (classes)

e Regression : Predict a continuous output in function of the input

e C(Clustering : Unsupervised non-parametric models, aiming to regroup
similar data
Dimensionality reduction: Reduce the number of data characteristics to
compress the information. Overcome the curse of dimensionality (a
learning risk).

e Lack of accomplishments and progress

In certain domains, the specialised tasks combine multiple elementary tasks.
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@ \. History of Deep Learning @ \. History of Deep Learning

Transition to multilayers, new activation functions, optimisers, ... each part is Revolutions :
incrementally improved. e Transition to shared load (convolutional networks)
Models increase in complexity and training becomes difficult. e Hardware

e Data

Second winter of Al : 1987- 1993
e Simultaneously: The SVMs are efficient, effective, mathematical. Numerous achievements in Deep Learning :
e Scientific benchmarks
e Industrial successes
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Success factors :
e Architectures and models developed : More and more complex due to
research, facilitated by libraries
e Enhanced performance due to GPUs after the end of Lisp machines
e Datain abundance to train models and new techniques to label them
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@ \. Frameworks and libraries @ \. Hardware

Various actors : CPU : Simple development for usage on CPUs
e Facebook GPU : Specialised for processing images/videos
e Google e Strong parallelisation
e Amazon e Requires code adaptation / CUDA |OpenCL compatible libraries
e Microsoft TPU : Very effective for vectorial computing
e Academic sector (universities, researchers, ...) e Optimised for TensorFlow and its operations, so low flexibility
e NVIDIA e Effective for large batches
e On-line communities FPGA : Increasingly efficient and usable
e Start-ups e Previously low flexibility : Configured for an application
o .. e Now pre-configured FPGA architectures and optimised for a type of
application and compatibility with popular frameworks
Software layers at different levels : e Availability in the cloud

e GPU integration (Cuda, OpenCL)
e Optimised APIs : Torch, Keras

e Libraries : Pytorch, Tensorflow Jean Zay : Supercomputer
e Wrappers : Pytorch Lightning e Accelerated nodes (GPU)
e Visualisation tools and profiling e High bandwidth

e Preprocessing nodes
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Data can be modelled by a linear expression
Characterise it : Find the weight and bias
Enables making linear predictions

Cost function : Measures the quality of the estimation and indicates to the
optimiser how to improve the model

Optimiser : Modifies the model with the objective of minimising the cost function
and improving the estimation

Convex problems : There is a direct solution
But there is also an alternative solution : Gradient descent

* XOR Problem

@ \. Non-linear problem?
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The exclusive-or (XOR) problem:
e Non-linear
e Butsimple

Linear classifier combination = one linear classifier

Requires breaking the neuron linearity :
e Activation function
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@ \. Logistic regression
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Break the model linearity : Apply a non-linear function
e Activation function

Dual purpose :
e Break the linearity

e Obtain predictions restricted in a sub-space

Example :
e Sigmoid to generate a probability

Loss function : Cross-entropy for the classification

@ \. Activation functions

Sigmoid: a(x) = 1 Leaky ReL‘L”J max(0.1x, x)

(1+e~%)

T - 1
tanh: tanh(x) ’

"*} Parametric ReLU: max(ax, x)
Maxout max(w!x + by, wl'x + b,)

Rel.U: max(0, x) x ifx>0

ELU f(x) = {a(e" -1) ifx<0
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Problems to avoid :

Vanishing gradients
Exploding gradients
Neuron deaths

Mathematical characteristics :

Range

Smoothness

Monotone

Monotone derivative

Identity in O

Some are more complex and slower to calculate

Various activation functions :

Linear : Use for a simple regression

RelLU : Popular, effective, rapid. For very efficient CNNs. Specialises the
neurons. Can make some of them useless.

Softmax : Popular for multi-class classification.



@ \. 1 neuron

X1

The basic neuron is finally rather simple :

X : Input

f: Activation function
W : Weights (poids)

b : bias

What is complex :

The neuron architecture

The choice of hyperparameters

The optimiser

The selection of an appropriate cost function
Training the model

Obtaining the data necessary for the training

IDRIS (CNRS ) - Hands-on Introduction to Deep Learning - v

(Wo3x + bos

Input
Layer Hidden Layer Layer

@ \. Neural networks

IDRIS (CNRS) - Hands-on Introduction to Deep Learning - v.2.0 20

By assembling the neurons, we obtain a neural network :
e Input layer : The data determine the input dimension
e Hidden layer : To be defined according to the complexity of the problem
o Depth = Number of layers
o Width = Number of neurons per layer
e Output layer : The task determines the output dimension

Several questions arise :
e How to size the network?
o The computer
o Preliminary study of the data
o Comparison to similar problems
e How toinitialise the neuron weights ?
o Randomly
o From a distribution optimising the training
o From the weights previously calculated for a given problem
e How to choose the cost function ?
e How to optimise the weights ?



* Linear systems
* LU, QR, Cholesky, Jacobi, Gauss-Seidel, CG, PCG, ...
* Non-linear systems
* First order : Gradient Descent, SGD
* Second order : Newton, Gauss-Newton, LM, (L)BFGS
* Autres
* Genetic algorithms, Metropolis-Hastings, ...
* Complex and constrained solver : ADMM, Primal -Dual, ...

@ \. Optimization
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There are several other optimisation methods.

We do not systematically choose gradient descent when the problem is simple.

The choice of solver is determined by :
e The type of problem
e The available computing hardware
e Curiosity and scientific experimentation

@ \. Gradient descent

X
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Iterative solution I
e Gradient descent
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Gradient :

The direction of the largest function increase
Generalisation for functions with multiple variables from a function
derivative of a single variable

Why use the gradient descent ?

Some problems do not have a direct solution
The direct solution can be difficult to calculate

Low learning rate :

Many iterations to achieve a local minimum
No guarantee of achieving the optimal minimum

High learning rate :

Instability and possibility of no convergence
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@ \. Training a model

IDRIS (CNRS) - Hands-on Introduction to Deep Learning - v.2.0 23

Models optimised by gradient descent are used during two different processes :
o Inference
o Mode of normal functioning while using the model
e Training
o Mode of updating the model parameters at each iteration
o Slower
o Consumes more memory

Generic terms :
e Optimiser : Algorithm which updates parameters
e Loss function : Distance between the label and the prediction
e Cost function : Loss function on multiple data

* Regression loss
- Average absolute deviation : L(y,9,0) = %Z?b’i — ¥l
- Least squares method : L(y,9,0) = %Z?(yi —7)?

* Classification loss
- Cross-Entropy : E(y, 9,60) = —%Z? 2" v log y;;

@ \. Loss function

There is no perfect function for all situations.
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Criteria :
e Statistics linked to the database
e Quantity of values outside the norm (outliers)
e Results we are looking for :
o Regression
o Classification
o Number of outputs
o
e Several strategies are possible and combinable
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@ \. Regularization

Possibility of adding restrictions to the updating function to achieve various

effects :
[ ]
[ ]

L1 :LASSO L2 : Ridge

|0] 0?

IDRIS (CNRS) - Hands-on Introduction to Deep Learning - v.2.0

L1 (LASSO) : Focuses neuron attention on certain characteristics
L2 (Ridge) (weight decay) : Forces the use of all the information
ElasticNet : Combination of LASSO and Ridge
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@ \. Calculation graph and chain rule
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Calculation graph:
e Includes the nodes
e Includes the edges
e Oriented or not
e Organised in layers, in our case
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@ \. Backward pass
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Q \. Forward pass
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@ \. Gradient Flow
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This rule can be applied in a neural network.

Limitations :
e Requires having the activations of each neuron in memory

There are two types of functions in our implementations :
e Forward for the output calculation for a given data
e Backward for back-propagation of the error for weights
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@ \. Gradient Flow

X, Y, Z can be vectors.
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Need derivations of each element compared to each of the others :

e Jacobian matrix

What memory occupation ?
e Assuming X, Y, Z of size 4096
dim(J) = 4096*4096 = 16.78 MiB
If each variable is a float (4bytes) => 64 MB
Often the trainings are done by batch. Assuming 16,
o dim(J)=16*4096 * 16 * 4096 = 4295MiB =>16GB
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Complex data require complex models.
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Complex models imply an explosion of memory occupation in addition to
accentuated problems linked to the training (gradient problems).
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