
Objectives of this sequence :
 Become aware of the generic difficulties linked to training a model.
 Establish a methodology to follow during dataset and model

development.
Duration: ½ day
Document annex : TP2 dossier
Aspects addressed :

 Model evaluation
 Data preprocessing
 Data management
 Optimizer
 Regularization
 Hyperparameters
 Transfer learning

To obtain an efficient Deep Learning model, it is necessary to have :
 Data
 An architecture to train

Each of these elements can be the cause of a poor performance for intrinsic or
extrinsic reasons.



There are multiple challenges in training a model, the most well-known being the
bias-variance dilemma.
1. Bias-variance dilemma : Compromise appearing during the optimization

of a model. The more the model represents complex relations, the more
it risks representing the learning data noise. On the other hand, if it is not
complex enough, it cannot correctly represent the relations of the
observed phenomena.

Simple model :
 Difficulty in learning the data noise
 Incapable of representing the data with precision
 Underfitting: sub-optimal performance, the determined boundaries could

be better
Complex model :

 Permits representing the relations between more complex data
 Risk of representing the data noise => overfitting

Several tools exist for characterizing the qualities and flaws of a model.
It is necessary to split the database into training and testing datasets. Observing
the cost function variance or the evaluation function on the database training and
testing sets is a good measure of the bias-variance dilemma.
Objective : Have a good test performance
Underfitting : Mediocre performance on both datasets
Overfitting : Performance is good in training, poor in test



The choice of evaluation metrics is especially important when used on new data
to avoid a disappointing performance.
The metrics should permit evaluating :

 The model for a given task.
 A solution without bias.
 Having distance properties allows this.

There is a great variety of generic metrics depending on the type of problem
(regression, classification, …) and data.
The metrics do not all have the same goal :

 Evaluate the model’s global performance.
 Show the biases.
 Evaluate the model's confidence in its predictions.
 …

Example of a poor metric choice: The case of an automatic diagnostic system.
The database which is at our disposal contains more data from healthy patients
than from ill patients : 1% from ill patients.
Choosing Accuracy (a very common metric in ML) for this case would be an error.
Indeed, this is a poor system because it would diagnosis everyone as healthy with
a 1% accuracy which is a very good score.
Therefore, we must turn to other metrics.



Precision and Recall give evaluations which correspond a little better with the
objective of the system (for a classification task).
Precision is a good metric if we prefer avoiding False Positives even if it means
missing some True Positives. Ex. : A doctor who, above all, does not want to
diagnosis a patient as ill when the patient is not ill.
A coefficient based on precision and recall (the F score) provides a metric which
unites both of them.

The ‘’ROC curve’’ is another alternative to Accuracy and Precision/Recall.
With this, we can evaluate the model visually.
In addition, we can visually determine which probability threshold is the most
appropriate for our data.



There are a multitude of other metrics which are adapted to different cases.
RMSE or MAE for regression tasks.
IoU (Intersection over Union) is very suitable for object detection in computer
vision. It compares the real and predicted zones of the
objects to be detected.
The GLUE benchmark is a test suite which we use on language models to evaluate
their linguistic competences (grammar tests, sentiment detection, ...). Despite the
number of tests realized, this evaluation metric is still considered to be poor.

Curse of Dimensionality
Refers to the growth of the space when the number of features increases causing
the data to become sparser in this space.
Problems :

 Loss of the meaning of distance because of the equidistance between the
data which can occur for different reasons.

 Requires more data for a better representativeness of the space.
 Requires more neurons in the network (explosion of the memory

occupation).
Objectives :

 Avoid the curse of dimensionality.
 Reduce the data and their memory occupation.
 Decrease the training time.



Diverse strategies for feature selection.
Strategy of supervised selection:

 Wrapping
 Explores the space of possible features
 Evaluates each subset by executing a model
 Costly in terms of calculations
 Risk of over-fitting to the model

 Filtering
 A search approach similar to the wrapping method
 Evaluation in relation to a simple and predefined criterion
 Comparatively inexpensive in calculations

 Embedding
 Selection by the model and determined during the training
 Intermediary calculation cost

In this example of a system predicting the risk of diabetes, we can quickly see that
we don't need all of the personal features to make the prediction.



Data preprocessing for feature identification :
 Differentiating the data while reducing their complexity
 Improving the model performance for a given task
 Non-redundant
 Robust in face of various changes in data capturing methods
 Facilitating human interpretation

Methods :
 General : Preserving the maximum information according to a statistical

criterion
 Principal component analysis
 Independent component analysis
 …

 Specialized : Using human understanding of the data to define specific
transformations

 Histogram o f gradients for images
 Frequency decomposition for sound
 Less and less popular, we let models independently determine

the features

Principal component analysis (PCA) is a good example of data feature
identification.
In fact, it enables reducing the dataset dimensions through projecting the data on
the space which retains the most variance.



Here is an example where PCA works well. We see that the projection of data on
the axis which « keeps » the most variance enables dimension reduction while
leaving enough data relationships so that the model can learn to classify them.

Here is an example where PCA does not work well. The dimensions were reduced
but it is no longer possible to determine the relationships between data in order
to classify them.



Feature transformation makes the data more ‘’digestible’’ for the model.
In fact, it can improve training stability and also reduce task complexity if the
transformation is appropriate.

Transforming the dataset coordinates into polar coordinates enables training a
less complex model.



Avoid biases linked to :
 Imbalances in each data instance
 Imbalances in the database

Consequences :
 Creates bias in the model
 Slows down training
 High memory occupation

Example of problem :
Binary classification where 95% of the data are positive. The model could simply
learn to predict everything in a positive way.
To counter these effects, several types of actions are possible :

 Integrating weighting coefficients in the evaluation metrics
 Directly correcting the data imbalance by creating synthetic data
 Filtering out part of the data

Strategies :
 Duplicate the data or use them frequently during the training
 Generate interpolated data between the existing data
 Generate data by applying transformations to them

Finding the right data augmentation strategies is rather complex.
It requires knowledge of the data to know which transformation is realistic ; also
of the model to know which transformations can be beneficial to it and which
transformations would be useless. In fact, some feature identifiers or models are
naturally robust when facing certain transformations.
Data augmentation is often an effective solution for decreasing model bias and
variance.
Disadvantages :

 Adds a preprocessing time which can be substantial
 Increases the training duration



It is possible to have too many data or too many data in one class.
This can impair model performance or could unnecessarily increase training time.
Sampling strategies can :

 Be based on random samples.
 Seek to preserve the data which is most difficult to identify.
 Delete the data which is too ambiguous, or the outliers.
 Filter out the data which is too similar.

All of the cited augmentation and reduction techniques can be combined in order
to diversify the data and improve the dataset while controlling its size.

What is achieved during the training of a neural network is the minimization of a
cost function in the space of the model parameters. This illustration is an example
of such a function for a model with only two parameters.
Since the cost function reflects the difference between the predicted data and the
labels, the smaller the result of this function, the better the prediction. We
therefore look for the global minimum of this function.
In practice, we cannot calculate the cost function for all points in space but only
locally in the state where the network is. We can therefore never be sure if the
minimum we are in is a global or a local minimum. We hence consider that the
network is trained if it’s in a good minimum of the cost function.
We characterize the quality of the network with other metrics (accuracy, MAE ...).



The first thing to respect is separating the database into at least two parts:
 The train set : for training the model
 The test set : for evaluating the quality of the model

This separation allows determining if there is overfitting and thus if the model
generalizes correctly. It is this separation of the data set that is the origin of the
two curves in the figure. Be careful, depending on how the model is built, there
could be a data leak from the test set to the training set.
To find the correct hyper-parameters, it is useful to separate the train set into a
smaller train set and a validation set. This way hyper-parameters can be adapted
according to the score of the model on the validation test. The final score is the
one on the test set.
When the quantity of data is reduced and to avoid again overfitting the model for
certain hyper-parameters, more complex strategies can be implemented for the
selection of the validation base, such as the K-fold cross validation illustrated on
the right.

We train a model so that its weights (parameters) are learned automatically.
However, hyper-parameters must be defined before the training and they have a
great impact on it. Two models that are identical and and trained on the same
data can give very different results depending on the parameters defined for the
training.
Choosing the hyper-parameters is very complex. Today, the most popular method
is to tweak them manually because of the compute cost of automated methods.
We tend to use them at the end of a project in order to obtain the best possible
model performance.
In the next slides, the learning rate, regularization and optimizer are presented.



The learning rate, in particular, strongly influences the convergence of the model.
The learning rate defines the extent to which the calculated gradient will change
the weights. With a large learning rate, each weights update will greatly change
the model.
We can see here the effects of different learning rates on network training.

Learning rates :
• Small

o Makes the model converge slowly towards a solution.
o Can cause the model to converge towards a mediocre solution.

• Large
o Can prevent the model from converging towards a solution.

It is possible to use a variable learning rate with a « warm-up » phase during
which it starts rather low and increases quickly to a maximum learning rate. This
step assures starting in the right direction before drastically changing the network
weights. The learning rate then decreases at each epoch. This procedure enables
converging rapidly towards a correct solution and then, to follow it with
optimizing this solution.



Here is the weights updating equation without regularization. Weights are
updated at each step by removing a part of their gradients on the cost function.
For example , if the model gives a bad prediction , the weights that were the most
activated are reduced.
Sometimes, during the training , the model identifies certain data features that
are really useful for giving good predictions on the dataset. It will then give great
importance to these features , even to relying only on these to make its
prediction.
This behavior could be something desired (if the objective is to find the most
important features) ,or not (if we want to avoid overfitting, for example).
When weights become very large, it is problematic for another reason : exploding
gradients. In fact, the gradient regarding the cost function is proportional to the
weight amplitude. We encounter the same problems as if the learning rate was
set too large(the network changes a lot with each update and it diverges).
The purpose of regulation is, therefore, to limit the divergence of certain weights
of the network.

This is the function which updates weights with regularization.
We see here that regularization is applied at the same time as weights updating
through a regularization function added to the cost function. The strength of this
regularization is modulated by the regularization rate.
The regularization methods mentioned are presented below.
For the L1 and L2 regularization (seen in Hands-on Practice 1) :

 L1-LASSO (Absolute value of the weights) : Focuses the attention of the
neurons on certain features.

 L2 (Ridge) (weight decay) : Forces using all the information.
 ElasticNet : Combines LASSO and Ridge.



Another type of regularization is called max-norm regularization.
The idea is to prevent certain weights from becoming too large (to avoid
overfitting and possible exploding gradients).
This implementation is really basic since the weights are automatically returned
below a threshold value for each neuron layer. The weights are updated with the
displayed formula.
This regularization is carried out immediately after the classic weights updating
with a gradient.

The training can also be constrained or monitored with the cost function.
The PINNs (Physics-Informed Neural Networks) are a good example. These
networks aim to resolve partial differential equations.
In this case, the computation of the cost function is done in two parts : The first
part is the classic function which computes the difference between the prediction
and the label. The second part reflects the respect of the constraints of the
solution and/or of their partial derivatives. In this way, the calculated gradient
takes into account the constraints imposed from the PDE (initial conditions,
boundary conditions, ...).
Be careful, if the cost function depends on several terms, this can make the
training of the network more complex.



Here is an example of a classic PDE solution : heat diffusion on a 1D axis.
The time is from left to right, and the x axis from top to bottom. The colors are
proportional to the temperature, from blue (cold) to white (hot).
The limitations of this PDE are the initial conditions (heat distribution for t=0) and
the boundary conditions (equality in x=1 and x=-1).
We can see that the network has found an optimal solution.
This kind of network is applied to cases where the PDE is ill-posed and for those
which are very resource-consuming for their numerical resolutions.

Dropout is a technique which consists of randomly deactivating certain neurons
during the training. At each epoch, we randomly change the neurons which are
deactivated.
By inference, all the neurons are reactivated.
The goal is to force the learning of different features. This can permit stimulating
certain neurons more strongly by forcing them to contribute for a larger part of
the solution. In this way, we can reduce overfitting by forcing diversification of
the model.
To obtain a similar result without the dropout, it is possible to randomly hide part
of the entry data (this is less effective than the dropout) .



Let’s get how dropout works through an example of image classification.
For the task of automatic person recognition, a face is a particular feature : It is
easy to detect and assures us of the presence of a person. However, relying only
on this feature would be problematic for detecting people who are not facing the
camera or who are only partially included in the image.
However, the network itself builds the features it needs for identifying a person.
As long as the person is identified, the network is free to rely on the features it
wants (we do not have explicit control over this process). For instance, in a
classification task of dogs and wolfs, researchers discovered that to predict a wolf,
the network only detects if there is snow in the picture. A dog photographed in
the snow is also classified as a wolf.
Dropout consists of randomly deactivating some neurons during the training. In
doing this, the parts of the network in charge of detecting faces or hands are
sometimes deactivated. The network then needs to rely on other features such as
arms, tee-shirts or other relevant human identifiers .

It is the optimizer which updates the model parameters. It integrates the
regularizations during the weights updating.
Some optimizers can also update the hyper-parameters and compensate for
negative effects of the learning rate.
Problematic cases for cost function minimization are when saddle points are
encountered (where the cost function is minimum along only one dimension). At
the saddle point, the gradient becomes zero although we are not in a local
minimum. Certain optimizers treat this problem more or less effectively (see
illustration).



A popular solution is adding an inertia to accelerate the model convergence when
it’s stable but slow. This is momentum.
Using momentum permits a good convergence of the model when the gradient is
strong in one direction and weak in another (see illustration).
In the bottom figure, the zig-zags have disappeared and the result obtained for
the same number of iterations is better.
Another advantage of this technique is that the network won’t be stuck in a state
where there is a weak local minimum. In the right-hand picture, the gradient of
the second point is null. Without momentum the network cannot change
between iterations and will stay in the same state without being able to learn
more.

Transfer Learning is a technique which consists of using a model trained for a
given task and training it to do a similar task.
The goal is to transfer a part of the learned features , hoping that these will be
meaningful for the new task.
This mean s that the training of such a model is shorter and requires fewer data.
This is a popular technique in machine learning because acquiring new data can
be costly.
This method is also very efficient with neural networks due to the way they work.
The first layers learn generic features while the last layers learn specialized
features. In the field of image processing, the first layers tend to detect simple
geometric shapes and the last layers tend to detect more complex shapes
(generally depends on the task).
Two approaches are available for transfer learning :

 Freeze the weights of the first layers and train the last ones.
 Train the whole network but share the weights which were already

trained.



Finally, as networks are estimators, it is possible to use ensemble learning
methods to optimize the prediction more powerfully or to make it more robust.
Bagging is a technique which consists of using multiple models for the same task
by combining all their predictions.
The goal is to compensate for the variance that only one estimator can have.
For this, we divide the database into different independent subsets in order to
train the different models. We can then apply a strategy for combining the
predictions (majority prediction, prediction averaging).
This is a popular method for simple estimators such as decision trees to create a
random forest.


