
 
 

Objective of the section: 

• Understand the functioning of convolutional neural networks 

• Discover the origin of the performances of CNNs 

 

Duration: ½ day 

Document annex: PL2 folder 

 

Aspects addressed: 

• Convolution 

• Notion of filter 

• Padding 

• Pooling 

• Dilation 

• Architectures of CNNs 

• Residual connections (Resnet) 

• Inception module 

• Uses of CNNs 

 

 
Problem of "fully connected" networks: number of parameters 

Example: 5x5 RGB image (3 channels):  

per neuron of the first layer 5x5x3=75 connections (parameters) 

Image 1000*1000 RGB: per neuron of the first layer => 3*10^6 parameters 

 

With several neurons per layer and several layers => impractical 

                                     

                           

         
                                                             

                                     
                    

         
                                                             

                                     



 
 

Idea: use convolution 

 

Inspiration from signal processing 

Applying a filter to a signal can be used to emphasise or attenuate certain 

characteristics of the image. 

 

Convolution allows a filter to be applied to either temporal or spatial data. 

 

The filter is called a kernel. 

 
 

Convolution is also suitable for discrete data. 

 

It can also be used regardless of the number of dimensions of the data. 

 

Easily computable: it is a series of matrix products that can be parallelized. 

 

Allows weights to be pooled for multiple use. 

 

Some shortcomings:  

• Not robust to rotation 

• To intensity changes, ... 

• Axial symmetry (mirror inversion) 

• .... 

 

Fixes: 

• Normalisation of data 

• Data augmentation 

          
                                                             

                    
     
     

             
                                                             

       

      

     

      

      

    

     

    

   

    

     

 



 
 

Used extensively in computer vision, it allows an image to be filtered by a chosen 

kernel to : 

• highlight features such as edges 

• modify the image by applying a form of blur. 

 

As in image processing, the weight of these kernels can be chosen manually. 

 

We can also consider the weights of these kernels as parameters that we will try 

to optimise as in dense neural networks. 

 

Advantage: the weights of the neurons are shared. 

 

The neural network learns to use filters to identify the features useful for its task. 

 

 

 

 
 

Traditional (Machine Learning):  

• Specialised feature extractors 

• Feature exploitation: predictive architecture (SVM, Random Forest, ..., or 

dense neural networks) to be trained 

 

Deep Learning:  

• Features extraction: architecture to be trained 

• Feature exploitation: architecture to be trained 

 

 

 

 

             
                                                             

                
                                                             



 
 

As with dense neurons, we can chain convolutions and free ourselves from the 

need for human intervention to build the features the model needs. 

 

Example on images: 

The first convolution layers recognise simple shapes 

The next layers combine the simple shapes and detect patterns, structures. 

In a deep enough network, complete objects can be found in the last layers. 

The deeper the model, the more complex combinations of features it can build.  

 

Problem: Risk of overfitting 

As for dense network, there is a risk for the model to overfit the features learned 

to patterns in the dataset thus inducing the inability to extrapolate to new and 

different data. 

 
 

When applying a convolution, the kernel must have the same depth as the input.  

Example: an RGB image has a depth of 3, the kernel must also have this depth. 

 

Convolution of an input with a kernel generates an activation or feature map of 

depth 1. The output is so called because the output represents the areas in the 

image where the response is stronger or weaker (activation) relative to the filter 

(feature). 

 

The dimensions of the output are reduced compared to the input because of the 

number of possible positions for the filter: 32 - (5-1) = 28 possible positions here 

 

                
                                                             

             
                                                             

                     

  

  
 

          
  

  

 

 
 

  

         



 
 

It is possible to use several kernels at a given level. 

 

This allows several different features to be extracted at the same scale. 

 

Each kernel will generate an output of depth 1. 

 

With multiple kernels, we can stack the feature maps to form a new output with 

multiple features per location. 

 

It is the set of kernels applied to an input that we call a convolutional layer 

defined by: 

• The number of kernels 

• The     m         z ,       ,…  of the kernels 

 

 

 
 

When applying convolutions on the previous activation maps, the size of the 

desired output must be considered to choose the size of the following filters. 

 

By chaining convolutions this way, it is possible to obtain a representation of the 

input data as a feature vector. 

 

 

                        
                                                              

 

          
  

  

 

 

 
  

 
  

  

 

                   
                                                              

  

  

 

  

  
 

  

   

  

    

                                                          



 
 

Problems: 

• Input dimensions reduced rapidly 

• Centre pixels used several times 

• Corner pixels used only once 

• Creation of a bias towards the "centre" of the data 

 

Solution: Padding 

Extend the data with artificial elements. 

Benefits : 

• Prevents reduction in size 

• Uses 2 times more values on the edges 

• Uses 4 times more values in the corners 

 

Striding : 

This is the step of moving the kernel when calculating the convolution. 

Increasing this value forces the combination of spatially more distant features. 

 

 
 

Receptive field: 

The region that has an influence in the production of a feature. 

 

Influence of receptive field – an example: 

In semantic segmentation, the objective is to decide the class of each pixel. 

Having a larger receptive helps to add the context around each pixel for the 

model to take a decision. 

 

To increase the receptive field, multiple actions can be taken as changing the size 

of the kernel, using pooling, using dilated convolution. 

 

Dilated convolution: A technique that expands the kernel  by inserting holes 

between its consecutive elements. 

 

Benefits: 

Allows to extend the size of the receptive field  

Without increasing the number of parameters 

 

It is extensively used in concepts as spatial pyramid. 

       
                                                              

       

         

        

       

        

        

       

               
               
           
           
              

                 
                                                              

     

     



 
 

A variety of characteristics are desired. But we also want to limit the amount of 

information by limiting redundancy. 

 

To achieve this, a pooling step is applied which allows the input to be sub-

sampled and the number of features to be reduced. 

 

Two popular methods: 

• Max pooling: Feature reduction by selecting the one with the highest 

response locally. 

• Mean pooling: Feature aggregation by locally averaging the features. 

 

 

 

 

 

 

 

 

 

 
 

Convolutions (followed by an activation function) and pooling can be combined to 

obtain features representing the input data. 

 

It is common to aim at obtaining a vector which is then used with a few dense 

layers (usually between 1 and 4 layers) to perform the desired predictive task. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

       
                                                              

           

    

    

    

    

  

  

           
             
          

       

     

           
             
          

                                   
                                                              

                           



 
 

Just as for the fully connected layers, it is necessary to break to generate non-

linearity by applying an activation function. 

 

For CNNs, it is typically the Relu function which is used. 

 

 

 

 

 

 

 

 

 

 

 

 

 
 

It is this basic sequence that allows the construction of a CNN including the LeNet 

model. Today, the most recent models integrate other techniques to improve 

performance and training. 

 

One of the interests of CNNs: A form of explicability 

 

It is possible to visualise the activation maps or kernels to see which features are 

learned and which areas of the image have the strongest activations. 

 

The implementation of models is nowadays facilitated using libraries as Pytorch 

or Tensorflow. They allow to define a model architecture and forward pass. The 

backward pass is then generated using automatic differentiation. 
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For convolutions, the backward pass is facilitated by the fact that we can still 

apply the chain rule and determinate that the gradient of the output can also be 

obtained by doing a convolution. 

 

 

 

 

 

 
 

Limitations:  

The more layers one uses, the more difficult the training is, as can be seen on the 

graph, the training for a complex network converges to less efficient parameters 

 

Explanation:  

A layer is built from the previous layer, accumulated errors from successive layers 

can create undesirable effects 

Gradient explosion:  

• Error in the gradients 

• Less efficient network 

• Accumulation of errors and very high gradients  

• Difficulties in finding the right relations between complex features 

 

Disappearance of gradients:  

• Sigmoids have low derivative values. 

• During backpropagation, this effect is multiplied by the gradients, which 

stops the training of certain neurons. 

 

                         
                                                              

                                                   
            

                                                              

                                                                   



 
 

Classic CNN: Each layer only takes as input the output of the previous layer 

 

Idea: create a shortcut to keep the value of the previous layer in the output 

 

Biological inspiration: we find neurons whose connections "jump" over 

intermediate neurons in the cerebral cortex 

 

We obtain a so-called residual architecture; we no longer conceive of a layer as a 

function that gives F(x) where x is the result of the previous level 

We consider a layer that gives x + F(x) 

 

Dual purpose: 

• Combining features of different levels 

• Learning aid with “expressway” for backpropagation of gradients 

 

 
 

This method significantly improves learning performance and maintains a 

consistent progression when increasing the depth of the model. 

 

 

 

 

 

 

 

 

 

      
                                                              

                                                                   
      

                                                              

                                                                   



 
 

Problem: The kernels have a size that induces a bias towards the desired feature 

size.  

 

How to reduce this effect? 

• By using multiple kernel sizes.   

 

How to use several kernel sizes?  

• Use convolutions with a kernel 1x1 which standardizes the size of the 

outputs  

• Concatenate the outputs once they are the same size 

 
 

The GoogLeNet architecture uses the inception module. 

This architecture has shown impressive performance demonstrating the 

usefulness of this type of feature combination while reducing memory occupancy 

and training times compared to traditional models such as VGG. 

 

T                   ,                      m        “     ”: final outputs from 

which a loss will be calculated. This way, the gradients are more easily 

retropropagated. 

 

 

 

 

 

               
                                                              

                                                            

         
                                                              

                                                            



 
 

The use of CNNs is not limited to image classification. 

 

CNNs can be used for a wide variety of tasks: 

• Semantic segmentation 

• Object detection 

• Encoders - Decoders (compression, decompression of information) 

• Transformation of data 

• … 

 

For this, it is necessary to think about the task to achieve (dimensions of the 

inputs, outputs, kernels, layers, etc). 

 

The use of CNNs is not limited to images. Convolution is not specific to the size of 

images and can very well be used for vectors for example and various type of 

data. 

 

 

           
                                                              

                                                                                 
                                                                    


