
Objectives of this sequence :
•Learn how to approach sequential data
•Learn about RNNs and Transformers to solve sequential data tasks (and

more...)
Duration: 1h30m
Document annex : Demo code
Aspects addressed :

• Sequential data definition
• RNN definition
• RNN architectures
• Transformer architecture
• Attention mechanism
• Transformer types
• Transformers in computer vision

Sequential data are ordered sequences of objects with relationships between
these objects.
Many types of sequential data exist:

• Audio
• Text
• Video
• Physical quantities
• ...

It is also possible to approach problems where the data are not sequences (image
classification) in a sequential form (sequences of image patches).
Warning:
Using this type of data to train machine or deep learning models requires a
different pre-processing than with structured data. In particular, the generation
of training, validation and test sets with sequential data imposes a well thought-
out separation because the sequences cannot be mixed without constraint.



Stock market prices can be considered as sequential data because usually stocks
follow trends over time. This is also a time series.
Textual data are also considered as sequential data because these are words, but
also the position of these words in the text, which will give meaning to a
sentence.

A classic neuron, used in dense layers, can be transformed to take into account
the sequential aspect.
The output of a neuron is returned as input for the next iteration so we
implement a form of recurrence in the neuron.
The neuron, therefore, takes as input:

• An input data (x) at a time t
• The model output at time t-1



You can unfold the previous representation.
It is thus possible to form a recurrent layer.
The first cell takes as input:

• The first element of the sequence
• A null vector

The following cells have as input:
• The corresponding sequence data
• The output of the previous cell

Each cell has, therefore, two inputs which are:
• Concatenated
• Multiplied by the weights
• Passed to the activation function

In the case of “Vanilla” RNN, the activation function is a hyperbolic tangent.

As with classic neurons, it possible to use recurrent neurons to form hidden
layers.
Although the model is unfolded in the graphic, it is not possible to calculate the
outputs simultaneously because there is a time dependence.
Several techniques are available for the backpropagation. For example, it is
possible to backpropagate the gradients partially over part of the sequence by
defining an appropriate loss function.
Limits:

• Slow in training and inference
• Weak parallelization
• Vanishing or exploding gradients
• Short memory



Depending on the number of inputs and outputs, there are multiple uses:
• Multiple to single: Sentiment classification
• Single to Multiple: Image Annotation
• Multiple to multiple: Translation
• Multiple to Multiple: Series Prediction

There are different types of cells (neurons for vanilla RNN) with their advantages
and disadvantages.
LSTM (Long-Short Term Memory) has two outputs to simulate two memories: a
short-term memory and a long-term memory. It has several "gate" mechanisms
that allow several operations such as resetting the long-term memory (reset) if
it’s not relevant anymore.
GRU (Gated Recurrent Unit) offers several mechanisms similar to the LSTM (such
as the reset gate) but with a single output. It is less accurate (results) than the
LSTM but much more efficient (calculation, memory, etc.).



The Transformers which we are going to study can be applied to almost any field.
However, we will study the theory with Natural Language Processing examples.
To fully understand what follows, you must first understand how the semantics of
words is represented in NLP. Each word is represented by a vector which
mathematically represents the meaning of the word. The texts studied are
therefore sequences of vectors, thus a matrix.
Operations are possible on these vectors to make sense of them (see slide).

Transformers can be integrated into an AI system in the same way that we
integrate convolutional layers into these systems.
For convolutional models, we first preprocess the input (often an image) to make
it usable by convolutional layers. Then the input goes through the convolutional
layers to extract meaningful features (for a neural network). And finally, these
features go through a final dense layer (or several) to obtain the desired output
for the task.
For Transformers, it’s the same, except it’s not convolution layers that will extract
the features but the Transformer itself.



We can first see the architecture of Transformers as a series of "Transformer
Blocks".
These blocks take as input a matrix of the size defined by the vector input
sequence and the output is a matrix of the same size.

The Transformer Blocks consist of two main parts: a Multi-Head Attention and an
MLP (Feed Forward Layer) block.
The Attention is the most important part of the Transformer because this is what
makes the model a Transformer. It takes a matrix as input and usually outputs a
matrix of the same size. We will see a little later what happens inside.
The MLP part is simply composed of a few dense layers of classical neural
networks.



The “Transformer Block” is more complex than what we have previously seen. It
has some operations that can make training more stable and efficient. It all
depends on the version.

The goal of the Attention mechanism is to transform each vector of the sequence
so that it contains the information of all the vectors by mixing them with a certain
weighting.
If we take the example of NLP, initially each vector contains the information of
the word it represents. But after applying Attention to the sequence, each vector
will have the information of the whole text (with a weighting that follows a
certain logic).



Transformation of each vector is done by multiplying the matrix that represents
the sequence by the Attention matrix.
The Attention matrix contains the weights which will be used to weight each
vector for their transformation. For each sequence, an Attention matrix is
computed in a Transformer during the training and inference.

Here we can see that the first vector of the sequence will turn into a weighted
sum of the whole sequence.



We will now see the complete process of the Attention mechanism.
The first part consists of doing three linear transformations, in parallel, to each
vector of the sequence in order to obtain 3 new matrices (K, Q, V) which still
represent each word of the text but in a different embedding space.
This transformation is important for what follows because it is what will allow a
coherent calculation of the Attention matrix.
These are the three neural networks of the linear transformation that are trained
during gradient descent.

The Attention matrix is calculated from the matrix Q and K. We must multiply the
matrix Q with the transpose of the matrix K to get it.
Multiplying the two matrices makes it possible to obtain the dot product of all the
vectors of each sequence (Mi,j = Qi,:.K:,j).
The weights of the Attention mechanism will, therefore, be a function of the
angular distance of each of the row vectors of Q with the column vectors of KT.
This is why we also speak of dot product Attention when it comes to the
Attention mechanism of the Transformers.
After the matrix multiplication, we apply a softmax function to each row of the
Attention matrix in order to obtain weights between 0 and 1.



As soon as we have obtained the Attention matrix, we can multiply it by the V
matrix, as we have seen previously (intuition of Attention).

We will take a very simplified example to understand the theory of Attention. Let
us consider the phrase "The big dog" which is represented in a 2-dimensional
space.
The vectors are quite distant from each other because their meanings are also
distant.



The linear transformations will bring the vectors representing “big” and “dog”
closer together so that the weights of the Attention matrix linking them are larger
than the others.

We see that the preceding transformation made it possible to obtain stronger
links between “big” and “dog”. After applying Attention, their respective vectors
will have more information from each other and less information from “The”.



We finally apply the attention calculated previously to the matrix V. In most Transformers, it is not single Attention that is applied but Multi-Head
Attention.
The principle is very similar to classical Attention, the difference being that we will
slice the matrices Q, K and V into n parts (also called head) and reproduce the
calculations of classical Attention n times (in parallel).



The advantage of Multi-Head Attention is that we will produce several Attention
matrices which makes it possible to have several links between the different
elements of the text.

After applying all calculations to the different heads, the results of each head are
concatenated in order to obtain a matrix of the same dimension as that of the
input.



There are several variants of the Transformer, the best known being the auto-
regressive model.
The only difference between this model and the one we saw previously (Auto-
encoding) is that we will apply unidirectional Attention rather than bidirectional.
The advantage of this Attention is that the model is forced to use the preceding
elements for the Attention calculation. This means that the model will be better
in some tasks (such as generation).

Another variant of Transformers is the encoder-decoder. (Although this was the
first Transformer, it is a little less popular than the two versions we looked at
previously).
It combines the two previously seen versions and can be very effective in multi-
tasking.



We can apply what we have seen previously to other fields. The Vision
Transformer is a good example of the application of Attention to computer vision.
The principle is simple: We slice the image into patches (part of an image) and we
flatten each patch into a vector and this will give us a sequence of vectors.
This vector sequence is then treated as the vector sequence in NLP.


