
Introduction Pratique au Deep

Learning

IDRIS (CNRS) - Introduction au Deep Learning -
v.1.1

Graph Neural Networks (GNN)

IDRIS (CNRS) - Introduction au Deep Learning -
v.1.1

Damn you Euclid

● AI success was mainly due to computer vision, speech
recognition, text completion ...
• Highly structured data

What about other problems?
Chemistry, social science, physics, etc

The breakthrough of machine learning methods and their
applications is mainly due to highly structured data. More precisely
pictures (every pixel has a fixed number of neighbors) and text
(either written or spoken).

Those data are said to be euclidean.

Is it possible to apply machine learning methods when the field do
not generate euclidean data?

We will give you an insight with this introduction to Neural
Networks applied to graphs.

IDRIS (CNRS) - Introduction au Deep Learning -
v.1.1

Entities and relationships: nodes/vertices and edges

Alice

Bob
Charly

Entities (usually called nodes) sharing relationships is what defines
a graph.

Relationships are modeled by a connection between 2 nodes
(called edge). One node can share edges with several others.

Numerous fields naturally use data that can be represented by
graphs. For example social networks or maps.

Other examples (maybe a bit less straightforward) include:

➔ Chemistry with atoms as nodes and bonds as edges

➔ Citations in research papers

IDRIS (CNRS) - Introduction au Deep Learning -
v.1.1

What is a graph?

● Graphs can store information (features) on nodes, edges
and globally

● It can be a number, a concept, ...

Globally Nodes Edges

Social Network Group of interest, ... Name, Age, Job, ... Is friend, follows,
family, ...

Molecule Is a drug, Energy, ... Atomic number, ... Bond order, ...

Citations Field, ... Article, ... Was cited, ...

Particle physics Experiment Particle Decayed to, ...

Motion capture Character Joints Is connected to, ...

Natural language Paragraph, ... Group of words, ... Refers to, ...

It is important to understand that graphs contains different kinds of
information that are being stored on different parts:

➔ Nodes

➔ Edges

➔ Globally

From now on we will call the pieces of information attributes.

Attributes can have different nature for example numbers or
abstract concepts.

If we use abstract concepts, it is necessary to transform them in
numbers. Otherwise it is not possible for computer to treat them.

IDRIS (CNRS) - Introduction au Deep Learning -
v.1.1

Graph properties

● Direction
• Directed: Relationships are not symmetric

● On twitter you can follow someone but not be followed by
this person

● A paper is cited in another paper

● ...

• Undirected: Relationships are symmetric

● 2 atoms share the same kind of bond

● ...

Direction is an important features of graphs.

A graph is directed when the edges/relationships between nodes
are not symmetrical.

As an example, on Twitter it is not necessary to be followed by a
person to follow her.

When the edges are symmetrical, the graph is undirected. It is the
case for molecules where the nature of the bond is identical
between the atoms sharing it.

IDRIS (CNRS) - Introduction au Deep Learning -
v.1.1

Graph properties

● Connectivity on undirected graphs
• All nodes are connected via a path→ Connected Graph

• If some nodes are not connected to other via a path they are disconnected

Connectivity is a feature of graphs telling if it is possible the follow
a path from one node to any other in the graph.

In the case of undirected graphs, it is quite easy to tell if they are
connected. If they are not you can spot several isolated graphs not
sharing any edge.

IDRIS (CNRS) - Introduction au Deep Learning -
v.1.1

Weakly Connected

If you replace all directed edges by
undirected ones, the “undirected”
graph is connected

Unilaterally Connected

For each pair of node {u,v} there is a
directed path:

● u→v

or

● v→u

Strongly Connected

For each pair of node {u,v} there is a
directed path:

● u→v

and

● v→u

Graph properties

● Connectivity on directed graphs

For directed graphs we have 3 possibilities :

➔ A graph is said to be weakly connected if when you symmetrize the
edges it is connected.

➔ A graph is said to be unilaterally connected if there is a path between 2
nodes (u and v):

➔ u→ v OR v→ u

➔ A graph is said to be strongly connected is there is a path:

➔ u→ v AND v→ u

IDRIS (CNRS) - Introduction au Deep Learning -
v.1.1

Graph properties

● Cycles
• If there is a path with which you can go back to the starting node there
is a cycle

If there is a path connecting a node to itself it is called a cycle.

IDRIS (CNRS) - Introduction au Deep Learning -
v.1.1

What tasks can we do with graphs ?

IDRIS (CNRS) - Introduction au Deep Learning -
v.1.1

Tasks on graphs: Node prediction

● Labeling nodes in a graph
• Find topic of a research paper (CORA, etc)

• Find bots in a social network

• …

● Give a label to a new node

● Regression
?

We can use Graph Neural Networks to make predictions on nodes.

It can be either:

➔ Classification: we try to find a missing label for a node.

➔ Regression: we try to find a real value for a node attribute. For example,

we can try to estimate the age of a social network user.

IDRIS (CNRS) - Introduction au Deep Learning -
v.1.1

Tasks on graphs:
Edge prediction

● Find relationships
• Contact map of aminoacids (Alphafold)

• Contact suggestion (social network)

• ETA for directions (regression)

• Relation between segment in pictures

• ...

?

?

We can train neural networks to make prediction on edges. As for nodes we
can perform:

➔ Classification

➔ Regression

An interesting application is to find relationship between parts of a pictures.
The definition of the parts can be done by a semantic segmentation method
done by another network beforehand.

IDRIS (CNRS) - Introduction au Deep Learning -
v.1.1

Tasks on graphs: Graph prediction

● Predict property of a graph
• Chemical properties (solubility, carcinogenic, possible
drug)

• Classification of the research field in an ego network

• ...

As for nodes and edges we can perform classification and regression on the
global attributes of graphs.

For example, we can find some chemical properties for molecules
(carcinogenic, possible drug, …).

IDRIS (CNRS) - Introduction au Deep Learning -
v.1.1

How to represent graphs?

IDRIS (CNRS) - Introduction au Deep Learning -
v.1.1

How to represent a graph

● Adjacency matrix
• NxNmatrix with value ≠ 0 when an edge exists

For undirected graphs the adjacency
matrix is symmetric

For directed graphs the adjacency
matrix is NOT symmetric

The most straightforward way to represent a graph on a computer is to use
its adjacency matrix.

For a N nodes graph, we have a NxN adjacency matrix. It contains non-zero
elements where an edge exists between 2 nodes.

For undirected graph, the adjacency matrix is symmetrical.

IDRIS (CNRS) - Introduction au Deep Learning -
v.1.1

How to represent a graph

● Problems with adjacency matrices
• The size grows as N x N→ Problem with storage

• The matrix is likely to be sparse

• N! permutations represent the same graph

Difficult and inefficient to store and different representations
are not guaranteed to give the same results!

Several problems make the adjacency matrix difficult to use in practice:

➔ The size increases quadratically with the number of nodes. The memory
space needed raises quite fast.

➔ The sparsity of the matrix is likely to be high i.e. the number of non-zero
values quite small.

➔ If we number arbitrarily the nodes there are N! permutations representing
the same graph. It is a problem since there is no guaranty that the
neural network will return the same results for all permutations.

IDRIS (CNRS) - Introduction au Deep Learning -
v.1.1

How to represent a graph

● Adjacency list

[[5, 4],[[5, 4],
[8, 1],[8, 1],
[4, 8], [4,3],[4, 8], [4,3],
[3, 4],[3, 4],
[1, 7], [1, 2],[1, 7], [1, 2],
[2, 4], [2, 6],[2, 4], [2, 6],
[7,1],[7,1],
[6, 2],[6, 2],
[9, 2]][9, 2]]

Adjacency list:

[0.4, 0.4, 1.0, 1.0, 1.0, 1.0,[0.4, 0.4, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 0.4, 1.0, 1.0, 1.0]1.0, 1.0, 0.4, 1.0, 1.0, 1.0]

Edges:

[1.0, 1.0, 1.0, 1.0, 1.0,[1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0]1.0, 1.0, 1.0, 1.0]

Nodes:

Global: [1.0, 1.0][1.0, 1.0]

Most GNN libraries choose to represent graphs with an adjacency list.

It is a list of pairs of nodes sharing an edge.

The size of the list is proportional to the number of edges in the graph.

At the end we store several lists:

➔ Attributes on nodes

➔ Attributes on edges

➔ Global attributes

➔ The adjacency matrix

In the general case the attributes are vectors and not scalars as in the
example.

IDRIS (CNRS) - Introduction au Deep Learning -
v.1.1

Learn on graphs

IDRIS (CNRS) - Introduction au Deep Learning -
v.1.1

Graph Convolution

● Just like for pictures we can learn from neighborhood with a
convolution operator

● A bit more complex since the number of neighbors is unlikely
to be constant

● We want the operator to be permutation invariant

To learn on a graph we want to gather information from the edges and
nodes environment.

The neighbors attributes help to understand which role the node/edge has
on the graph. So we want to retrieve information from neighbors.

It is quite similar to what you have already seen with CNNs. It is possible to
consider GNN as a generalization of CNN on non-euclidean structures.

For pictures the number of neighbors for each pixel is known (8). On graph
this number is variable.

A convolution step gets the information for directly connected neighbors. We
want the convolution operator to be permutation invariant.

IDRIS (CNRS) - Introduction au Deep Learning -
v.1.1

Graph Convolution

● Several steps are needed to retrieve
information for distant nodes

● For large graphs→ cutoff

● It is possible to use a virtual node
connected to all other nodes. But in
practice it becomes intractable
quickly.

Now that we have the information from direct neighbors we may want to go
further on the paths. To do so we can repeat several convolution steps. x
steps allow to reach the xth neighbors.

It is difficult to get information on all the graph when the number of nodes is
high. Usually we can assume that only the closest neighbors have very
useful information so we stop the convolution steps after a number of steps
that is an hyperparameter to define.

Another solution is to have a virtual node connected to all other which pass
information more rapidly. Still the size of the graph can be a problem.

IDRIS (CNRS) - Introduction au Deep Learning -
v.1.1

Compress information: Embeddings

● Features stored in nodes/edges/graphs are not easily
processable.

● We transform the features into a vector in the latent
space (Dimension is an hyperparameter)

● The embedding have to be suited for the task→ Learnable

n1

n2

n3

n4

n1

n3

n2

n4

n1

n2

n3

n4
n1

n3

n2

n4

Unlike pixels, graph attributes can be numerous. We want the most efficient
representation of the attributes for the learning task we are performing.

It is possible to define a vector space (latent space) whose dimension is a
hyperparameter to set.

The dimension has to be correctly choosen so that the network can learn
efficiently:

➔ If too small we face an underfitting problem

➔ If too large we can overfit

IDRIS (CNRS) - Introduction au Deep Learning -
v.1.1

● We have embeddings for each part of
the graph (possibly different vector size)

● Each part can learn from the others with
a transformation

● Information is aggregated to form a
message that the node/edge will send to
other

Message Passing: Share information

Edge embedding Node embedding

X =

Learnable
transformation

Nn

En

Gn

Nn

Gn

En+1

Nn+1

Gn+1

n0

n0
'
= fNN fEN fGN(, ,

We introduce the concept of Message Passing for GNNs. Here the idea is
to aggregate vectors to give a better representation.

A latent space can be defined for nodes, edges and globally. The dimension
of those spaces do not have to be identical.

We can gather information from all parts of the graph to get a better picture
of the environment. This can help with the learning task. However since the
dimensions might not be the same, we need to define a (learnable)
transformation from one part to another (eg. edge latent space → node
latent space).

Once the messages are aggregated we can send a global message to the
neighbors.

IDRIS (CNRS) - Introduction au Deep Learning -
v.1.1

Conclusions

IDRIS (CNRS) - Introduction au Deep Learning -
v.1.1

Models

https://theaisummer.com/gnn-architectures/

Several model architectures are available

IDRIS (CNRS) - Introduction au Deep Learning -
v.1.1

Conclusion

● It is possible to use Deep Learning on non-Euclidean data structures.
The field is called Geometric Deep Learning
https://geometricdeeplearning.com/

● Graph structures appear easily on many scientific problems

● GNN can be seen as a generalization of convolution

● We can aggregate features to form a message to be passed

● There are several models already available

● A large part of the problem is to find a good way to transform the
original data to fit NN architectures→ Representation learning

IDRIS (CNRS) - Introduction au Deep Learning -
v.1.1

Available libraries

● Pytorch Geometric

● Deep Graph Library

● Graph Nets

● Spektral

● ...

IDRIS (CNRS) - Introduction au Deep Learning -
v.1.1

References

● Books

• Deep Learning on Graphs (Jiliang Tang and Yao Ma)

• Introduction to Graph Neural Networks (Introduction to Graph Neural Networks)

● Websites

• https://distill.pub/2021/gnn-intro/

• https://neptune.ai/blog/graph-neural-network-and-some-of-gnn-applications

• https://venturebeat.com/2021/10/13/what-are-graph-neural-networks-gnn/

• https://theaisummer.com/graph-convolutional-networks/

• https://towardsdatascience.com/node-embeddings-for-beginners-554ab1625d98

● Articles
● Zhou, Jie, et al. "Graph neural networks: A review of methods and applications." AI Open 1 (2020): 57-81.

● Scarselli, Franco, et al. "The graph neural network model." IEEE transactions on neural networks 20.1 (2008): 61-80.

● Kipf, Thomas N., and Max Welling. "Semi-supervised classification with graph convolutional networks." arXiv preprint arXiv:1609.02907 (2016).

● Perozzi, Bryan, Rami Al-Rfou, and Steven Skiena. "Deepwalk: Online learning of social representations." Proceedings of the 20th ACM SIGKDD
international conference on Knowledge discovery and data mining. 2014.

● Shlomi, Jonathan, Peter Battaglia, and Jean-Roch Vlimant. "Graph neural networks in particle physics." Machine Learning: Science and
Technology 2.2 (2020): 021001.

● Duong, Chi Thang, et al. "On node features for graph neural networks." arXiv preprint arXiv:1911.08795 (2019).

