Hands-on Introduction to Deep Learning
Graph Neural Network (GNN)
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e Al success was mainly due to computer vision, speech

recognition, text completion...
* Highly structured data

i /\ B . 7~ O\
The answer to life, t

What about other problems ?
Chemistry, social science, physics, etc

he universe everything is ...

@\ Damn you Euclid
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facebook

——

@\ Entities and relationships: nodes/vertices and edges
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e Graphs can store information (features) on nodes,
edges, and globally

Globally Nodes Edges

Social Network Group of interest, ... Name, Age, Job, ... Is friend, follows,
family, ...

Molecule Is a drug, Energy, ... Atomic number, ... Bond order, ...
Citations Field, ... Article, ... Was cited, ...
Particle physics Experiment Particle Decayed to, ...
Motion capture Character Joints Is connected to, ...
Natural language Paragraph, ... Group of words, ... Refers to, ...

It can be a number, a concept, ...

@\ What is a graph ?



e Direction

——

@

A
Directed : Relationships are not symmetric 4] »E -B
— On twitter, you can follow someone but not be followed /ﬂ"
by this person 6|

— A paper is cited in another paper \

Undirected : Relationships are not symmetric
— 2 atoms share the same kind of bond

\ Graph properties
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e Connectivity on undirected graphs

All nodes are connected via a path = Connected Graph

If some nodes are not connected to other via a path, they are disconnected

@\ Graph properties
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e Connectivity on directed graphs

Weakly Connected Unilaterally Connected Strongly Connected
If you replace all directed edges by For each pair of node {u, v}, there is a For each pair of node {u, v}, there is a
undirected edges, the "undirected"  directed path directed path
graph is connected — u-v — u-v
O or and
— v—u — vou

——

@\ Graph properties
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e Cycles

If there is a path with which you can go
back to the starting node, there is a cycle

——

@\ Graph properties
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What tasks can we do with graphs ?

@ IDRIS (CNRS) - Hands-on Introduction to Deep Learning - v.2.0




——

* Labeling nodes in a graph

— Find topic of a research paper (CORA, etc)
— Find bots in a social network

* Give alabel to a new node

* Regression

@\ Tasks on graphs : Node prediction
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* Find relationships

— Contact map of aminoacids (Alphafold)
— Contact suggestion (social network)

— ETA for directions (regression)

— Relation between segment in pictures

@\ Tasks on graphs : Edge prediction
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* Predict properties of a graph

— Chemical properties (solubility, carcinogenic, possible
drug)
— Classification of the research field in an ego network

4

@\ Tasks on graphs : Graph prediction
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D \

How to represent graphs ?
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e Adjacency matrix

— N x N matrix with value # 0 when an edge exists
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\ How to represent a graph

For undirected graphs, the adjacency
matrix is symmetric

For undirected graphs, the
adjacency matrix is NOT symmetric
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* Problems with adjacency matrices

— The size grows as N x N = problems with storage
— The matrix is likely to be sparse
— N! permutations represent the same graph
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Difficult and inefficient to store and different representations
are not guaranteed to give the same results

@\ How to represent a graph
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Adjacency list

o n "
du ="
-

@

/ Nodes:

£
|

Edges:

Adjacency list:

[1.0, 1.0, 1.0, 1.0, 1.0,
1.0, 1.0, 1.0, 1.0]

[0.4,04,1.0,1.0,1.0,1.0,

1.0,1.0,04,1.0,1.0,1.0]

(5, 4],
[8, 1],
(4, 8], [4,3],
[3l 4]!
(1, 7], [1, 2],
2, 4], [2, 6],
[?’ 1] L]
[6’ 2]l
[, 2]]

\ Global: [1.0, 1.0]

——

\ How to represent a graph
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Learn on graphs
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 Just like for pictures we can learn from neighborhood with a
convolution operator

* A bit more complex since the number of neighbors is unlikely to be
constant
 We want the operator to be permutation invariant

@\ Graph convolution

IDRIS (CNRS) - Hands-on Introduction to Deep Learning - v.2.0

18



——

@

\ Graph convolution

* Several steps are needed to retrieve
information for distant nodes

* For large graphs — cutoff
* [tis possible to use a virtual node

connected to all other nodes. But in
practice it becomes intractable quickly
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* Features stored in nodes/edges/graphs
are not easily processable

 We transform the features into a vector
in the latent space (dimension is a

hyperparameter)
 The embedding have to be suited for the

task = Learnable

R N
%;) o0
Y 88
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 We have embeddings for each part of
the graph (possibly different vector
sizes)

 Each part can learn from the others with
a transformation

G

i Gn+1

; En j - \ En+1
Nn)K j \ N1

 The information is aggregated to form a

message that the node/edge will send
to others

. n0.=(fNNI'fENI'fGNI)
@\ Message passing : Share information
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Conclusions
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Several model architectures are available
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https://theaisummer.com/gnn-architectures/

 |tis possible to use Deep Learning on non-Euclidean data
structures. The field is called Geometric Deep Learning
https://geometricdeeplearning.com/

* Graph structures appear easily on many scientific problems

* GNN can be seen as a generalization of convolution

* We can aggregate features to form a message to be passed

* There are several models already available

* Alarge part of the problem is to find a good way to transform the
original data to fit NN architectures = Representation learning

@\ Conclusion


https://geometricdeeplearning.com/

Pytorch Geometric
Deep Graph Library

Graph Nets

Spektral
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