Les logiciels de chimie à l'IDRIS

Fabien Leydier 28 juin 2013

Objectifs de la présentation

- Donner une vision d'ensemble des logiciels de chimie
 - Nombreuses possibilités offertes par TOUS les logiciels
 - Utilisation par habitude...
 - Ici, pas de jugement subjectif!
- Comment bien (mieux ?) utiliser les logiciels de chimie
 - Ils sont TOUS parallèles (plus ou moins...)
 - Ils comportent souvent des options spécifiques (parfois « oubliées » car peu ou mal documentées...)
 - · La plupart donnent des informations sur la parallélisation ! (bien souvent négligées...)
- Calculer à l'IDRIS
 - Comprendre ce qui se passe sur les machines
 - · Construire un script de soumission adapté
- Présentation non exhaustive (malheureusement)
 - Mais quelques conseils pratiques!

Sommaire

- Présentation de l'IDRIS
- Présentation des comités thématiques
- Parallélisme : de la Machine à la Chimie
- Les logiciels de chimie à l'IDRIS
 - Description des possibilités (propriétés, utilisation, etc.)
 - Comment calculer à l'IDRIS
 - Utilisation des logiciels

Présentation de l'IDRIS

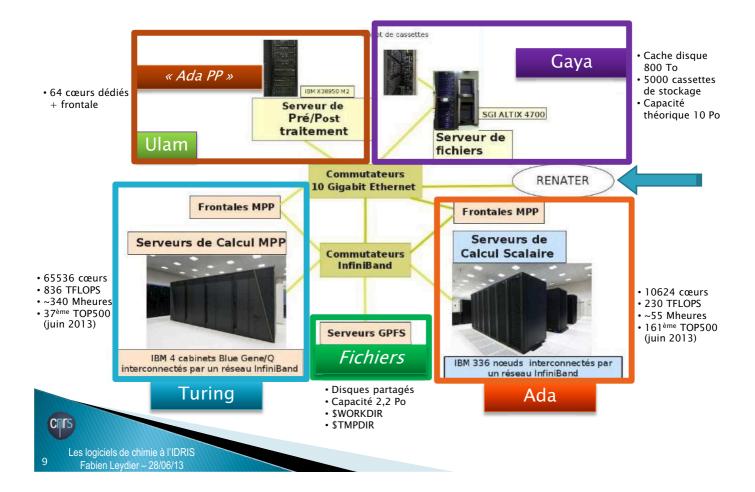
L'IDRIS en deux mots

- Institut de Développement et des Ressources en Informatique Scientifique
- Unité propre de service du CNRS (UPS 851), fondée fin 1993
- Centre de calcul équipé de supercalculateurs parmi les plus puissants du moment
 - Centre d'excellence dans le domaine du Calcul de Haute Performance (HPC)
 - Puissance pétaflopique depuis janvier 2013
 - Équipements financés par GENCI depuis 2012
 - · Grand Équipement National de Calcul Intensif
 - Coordonne la gestion et l'attribution des heures sur les machines

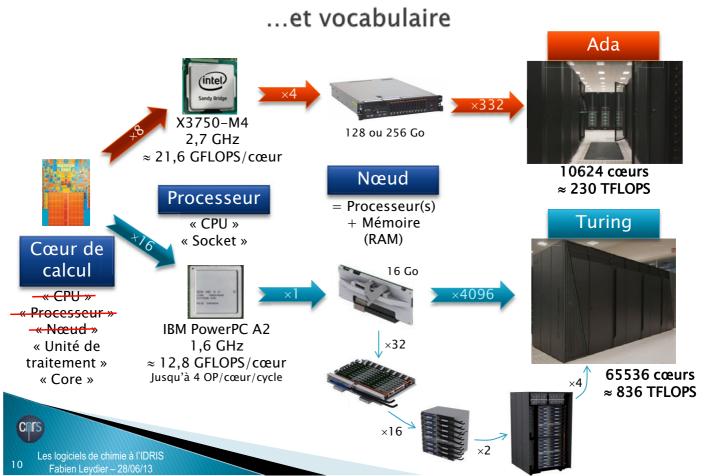
Calculer à l'IDRIS

Comment obtenir des heures de calcul?

- www.edari.fr
 - 2 sessions d'attribution par an (octobre avril)
 - · Constitution d'un dossier décrivant le projet scientifique
 - Analyse des demandes par les Comités thématiques
 - Demande au « fil de l'eau »
 - · Pour compléter la demande en cours d'année
 - Limitée à 10 % de l'allocation initiale
 - Accès préparatoire
 - Compte de test, en vue éventuellement d'une demande ultérieure
 - Allocation forfaitaire: 15000 heures sur Ada, 50000 heures sur Turing

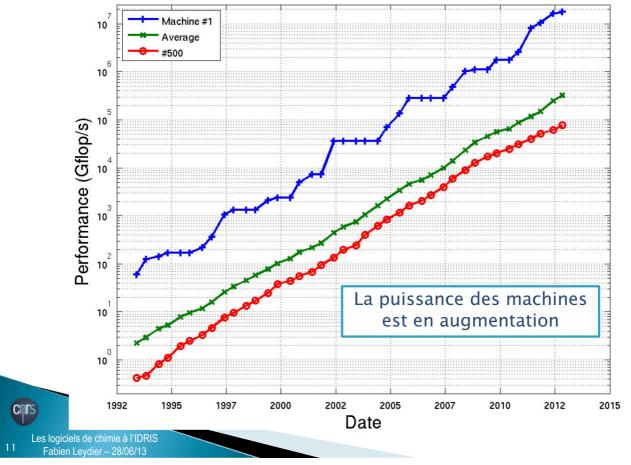

PRESENTATION DES CT

- Comités Thématiques liés à la chimie
 - CT 7 : Systèmes moléculaires organisés et biologie
 - · Yves-Henri Sanejouand
 - · yves-henri.sanejouand@univ-nantes.fr
 - CT 8 : Chimie quantique et modélisation moléculaire
 - Marie-Bernadette Lepetit
 - · marie-bernadette.lepetit@grenoble.cnrs.fr
 - CT 9 : Physique, chimie et propriétés des matériaux
 - Alain Pasturel
 - · alain.pasturel@grenoble.cnrs.fr

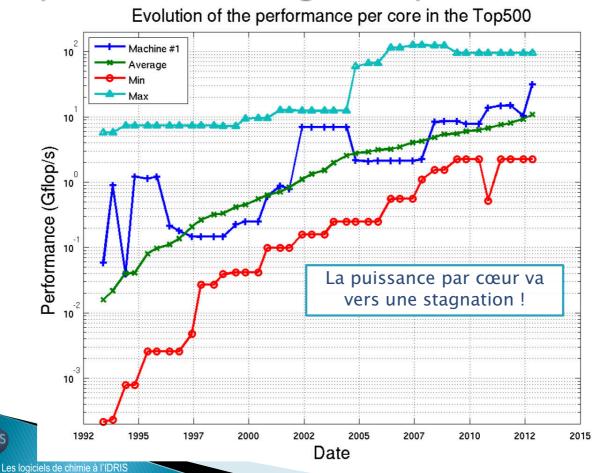


Le Parallélisme : De la Machine à la Chimie

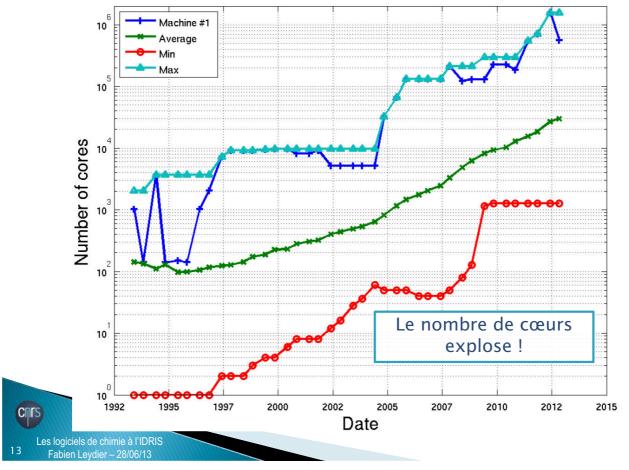
Machines de l'IDRIS



Architecture des machines de calcul...



Le parallélisme : origine et problématique


Le parallélisme : origine et problématique

chrs

Le parallélisme : origine et problématique

Le parallélisme : origine et problématique

- Evolution des processeurs
 - La puissance par cœur évolue faiblement (plafonnement de la fréquence, etc.)
 Solution : augmenter le nombre de cœurs
- Mémoire
 - Augmentation rapide du nombre de cœurs
 - ⇒ La mémoire par cœur stagne, voire diminue
- Codes séquentiels (pas seulement la chimie...)
 - Il ne suffit plus d'attendre l'évolution de la puissance des cœurs pour calculer plus vite
 - Paralléliser un code séquentiel ?
 - · Non pensé pour le parallélisme à l'origine
 - Demande une réécriture en grande partie (voire complète)
 - Demande énormément de ressources (temps, compétences)
 - · Aucune garantie absolue sur les performances parallèles

Parallélisme dans la chimie quantique

Découpage du système	Fonction d'onde et densité e ⁻	Fonctions mathématiques
Multiples images (NEB,)Points k	 Coefficients de la base de projection (vecteurs d'onde, gaussiennes, etc.) 	Fonctions (FFT, etc.)Solveurs de valeurs propres
	Bandes, calcul de la densité	Manipulation de matrices

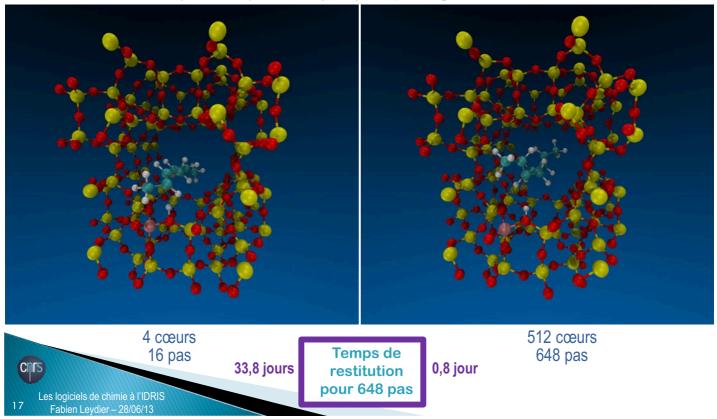
- Découpage du système
 - · Calcul d'éléments unitaires pour un calcul
 - Répartition des calculs unitaires en parallèle = très efficace
- Fonction d'onde
 - Cœur du calcul
 - Nombre de données à traiter parfois énorme
- Fonctions mathématiques
 - Reposent souvent sur des bibliothèques spécialisées
 - Génèrent beaucoup de communications (car beaucoup de données à traiter)

Les logiciels de chimie à l'IDRIS Fabien Leydier – 28/06/13

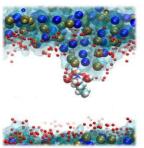
Parallélisme dans la chimie quantique

Découpage du système	Fonction d'onde et densité e ⁻	Fonctions mathématiques	
Multiples images (NEB,)Points k	Coefficients de la base de projection (vecteurs d'onde, gaussiennes, etc.)	Fonctions (FFT, etc.)Solveurs de valeurs propres	
	Bandes, calcul de la densité	Manipulation de matrices	

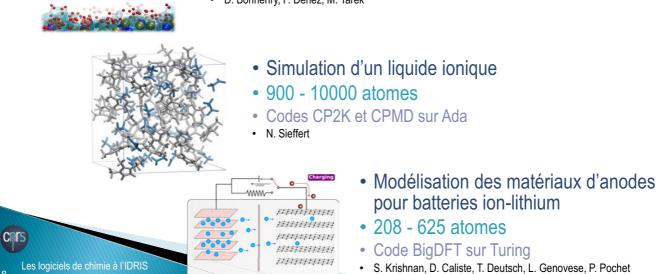
Complexité du parallélisme


- Parallélisme de plus en plus complexe à optimiser
 - Algorithmes de symétrie
 - · Réduction de la taille effective du système
 - But : aller vers des calculs de fonctions intrinsèquement parallèles

Que peut m'apporter le parallélisme?


Durée d'une simulation plus importante

H-MOR + 2,6-hexdiène (311 atomes), PBE, 30 Ry, Γ, dynamique BO @ 600K, Δt = 0,7 fs, 20h de calcul, CPMD



Que peut m'apporter le parallélisme?

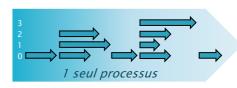
- Traitement d'un système de taille importante
 - Simulations « Grands challenges » réalisées à l'IDRIS



- Étude de transferts d'acides aminés au travers de membranes biologiques (lysines hydratées)
- 15000 atomes
- Code GROMACS sur Ada
- · D. Bonhenry, F. Dehez, M. Tarek

Que peut m'apporter le parallélisme?

Traitement d'un système de taille importante


- Capsule entière du virus VIH, assemblage de plus de 1300 protéines modélisées à l'échelle atomique
- 64,4 millions d'atomes
- Code NAMD, 128000 cœurs sur Blue Waters (National Center for Supercomputing Applications, Université de l'Illinois), Cray XE, 11,5 PFLOPS
- K. Schulten, J. R. Perilla, P. Zhang et al., Nature, 497, 2013, 643.
- Protéine de rubredoxine hydratée (B3LYP + base triple-ζ polarisée)
- 2825 atomes (26,7 nm³)
- Code CP2K, 8196 cœurs sur Jaguar (Oak Ridge National Laboratory), Cray XT5, 1,75 PFLOPS
- M. Guidon, J. Hutter, J. VandeVondele, J. Chem. Theory, Comput., 5, 2009, 3010.

Types de parallélisation

OpenMP

Les logiciels de chimie à l'IDRIS

- Open Multi-Processing: « multi-tâches »
 - · Mémoire partagée sur un nœud
 - Programme répartissant le calcul entre des threads (ou tâches, processus légers, etc.)
 - 1 thread : portion du calcul attribuée à 1 cœur
 - Chaque thread a accès à toute la mémoire allouée au programme
 - 1 seul processus lancé
 - Programmation voisine d'un code séquentiel
 - Un programme peut être « facilement » parallélisable
 - Voire même automatiquement (compilateurs)

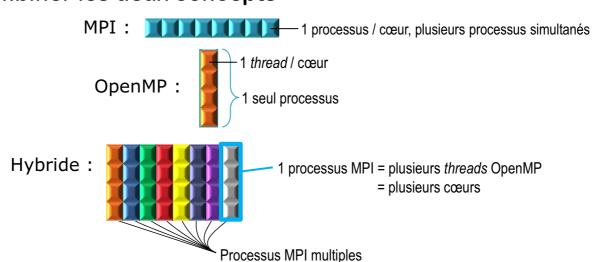
- · Programme exécutable en intra-nœud seulement
 - Echanges directement dans la mémoire du nœud
 - Extensibilité limitée au nombre de cœurs composant un nœud

Types de parallélisation

- MPI
 - Message-Passing Interface : « Passage de messages »
 - Echange d'informations entre des processus MPI (ou « tâches MPI »)
 - Plusieurs processus lancés simultanément
 - Processus MPI : code exécuté sur 1 cœur + mémoire associée
 - · Nécessite une programmation explicite, très spécifique
 - Chaque processus ne fait pas forcément le même calcul

Plusieurs processus en parallèle

- Programme exécutable en intra- et extra-nœud
 - Processus intra-nœud
 - · Echanges dans la mémoire du nœud
 - Processus extra-nœud
 - Echanges à travers un réseau très haute performance



Les logiciels de chimie à l'IDRIS Fabien Leydier – 28/06/13

Types de parallélisation

- Hybride MPI-OpenMP
 - Combiner les deux concepts

But : obtenir une parallélisation plus efficace, adaptée à l'architecture des machines

→ Avantage : extensibilité potentiellement accrue

→ Inconvénient : programmation hybride délicate

Les limites du parallélisme

Pourquoi limiter le nombre de cœurs ?

- · Lois d'Amdahl et de Gustavson-Barsis
 - L'extensibilité n'est pas infinie par définition
 - Les communications, c'est-à-dire les échanges de données, deviennent non négligeables devant le temps consacré aux calculs
 - Efficacité parallèle moindre
 - Le temps de restitution ne diminue pas de façon linéaire...et peut même augmenter!
- Une fois le système découpé en ses plus petits éléments, il n'y a plus rien à partager
 - Des cœurs n'ont aucune charge de calcul
- OpenMP limité au nombre de cœurs d'un nœud

Alors pourquoi en prendre plusieurs ?

- Temps de restitution diminué
- Calculer de plus gros systèmes

Les limites du parallélisme

Pourquoi ne pas augmenter la taille du système ?

- · Chemically irrelevant
 - · Parfois impossible sur un système moléculaire donné
 - Peu d'intérêt à obtenir n fois le même résultat
- Le temps de restitution sera plus important
 - · Avec plus de cœurs, la « facture » augmente d'autant plus
- · Certains algorithmes sont optimisés pour la symétrie
 - · Activer la symétrie revient (presque) à étudier le système initial
 - Désactiver la symétrie revient à ne pas utiliser ces fonctions d'optimisation

Alors pourquoi cette idée ?

- « Mieux » utiliser les ressources (loi de Gustavson-Barsis)
- Par exemple, sonder plus de configurations lors d'une dynamique

Conclusion

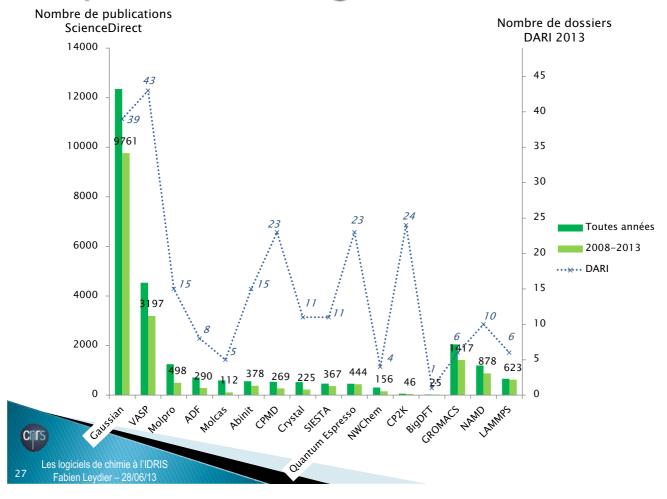
La parallélisation est essentielle aujourd'hui

- Architecture des machines
- Taille des simulations de plus en plus importante

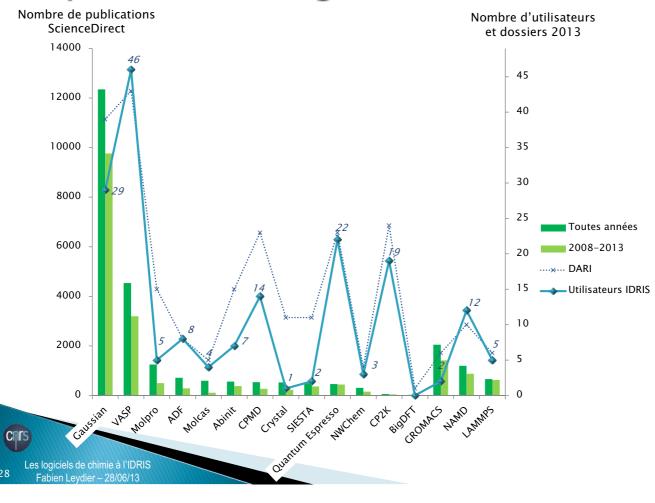
L'extensibilité est la clé pour les performances

- Dépend de la programmation du code en lui-même
- Dépend de la taille et de la complexité du système étudié
- Il faut parfois accepter un surcoût en heures
 - · Pour obtenir un résultat plus rapidement
 - Pour que son système tienne dans la mémoire de la machine

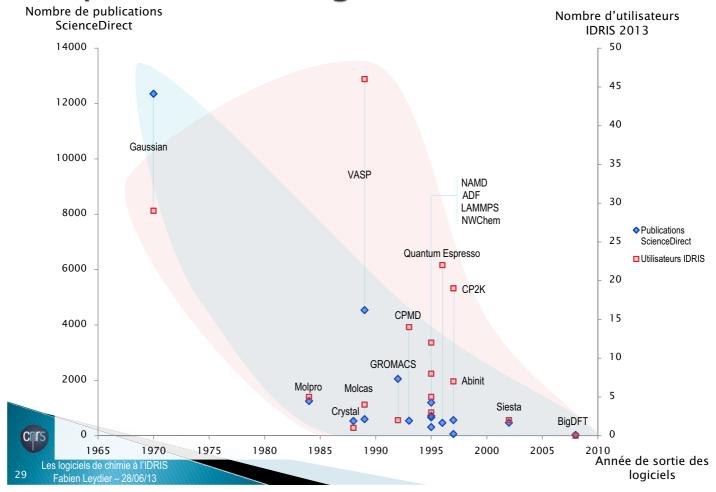
Les logiciels à l'IDRIS



ADF



16 logiciels disponibles


Popularité des logiciels

Popularité des logiciels

Popularité des logiciels

Utilisateurs, Licences, Prix

Fabien Leydier - 28/06/13

= Licence exigér									
Logicials	Nombre de	Nombre d	'utilisateurs	Prix	Type de licence à	Type de fichiers	Accès à		
Logiciels	dossiers	Ada	Turing	FIIX	l'IDRIS	fournis	l'idris		
Gaussian	39	29	-	28750\$ +575\$	Site / Version / 20 ans	Source	ACL		
VASP	43	46	-	1000€ / groupe	Maintenance / Version	Source	ACL		
Molpro	15	5	-	10000£	Site / Version	Source	Libre		
ADF	8	8	-	6400€	Site / Version / 1 an	Bin	Libre		
Molcas	5	4	-	50000SEK (5900€)	Site / Version / 1 an	Source	Libre		
Abinit	15	7	-	0	GNU GPL	Source	Libre		
CPMD	23	11	3	0	Site	Source	Libre		
Crystal	11	1	0	4800€	Site / Version	*.0	ACL		
SIESTA	11	2	-	0	Site	Source	ACL		
Quantum Espresso	23	20	2	0	GNU GPL	Source	Libre		
NWChem	4	3	-	0	ECL	Source	Libre		
CP2K	24	15	4	0	GNU GPL	Source	Libre		
BigDFT	1	-	-	0	GNU GPL	Source	Libre		
GROMACS	6	2	0	0	GNU GPL	Source	Libre		
NAMD	10	10	2	0	GNU GPL	Source	Libre		
LAMMPS	6	3	2	0	GNU GPL	Source	Libre		

Accès

■ = Libre ■ = A demander

Importance de l'installation

Sur un PC de laboratoire

- Environnement testé par les développeurs

- Installation « classique »
 - · Méthode d'installation livrée avec le logiciel conçue pour un environnement standard

Sur un supercalculateur

- Environnement spécifique
 - · Chemins des dossiers non standard, dossiers partagés, bibliothèques spécifiques, etc.
- Installation « non classique »
 - · Si prévue par les développeurs : installation facilitée, options de compilation à tester
 - Si non prévue : peut devenir laborieux, options de compilation à adapter et à tester

Exemple illustratif

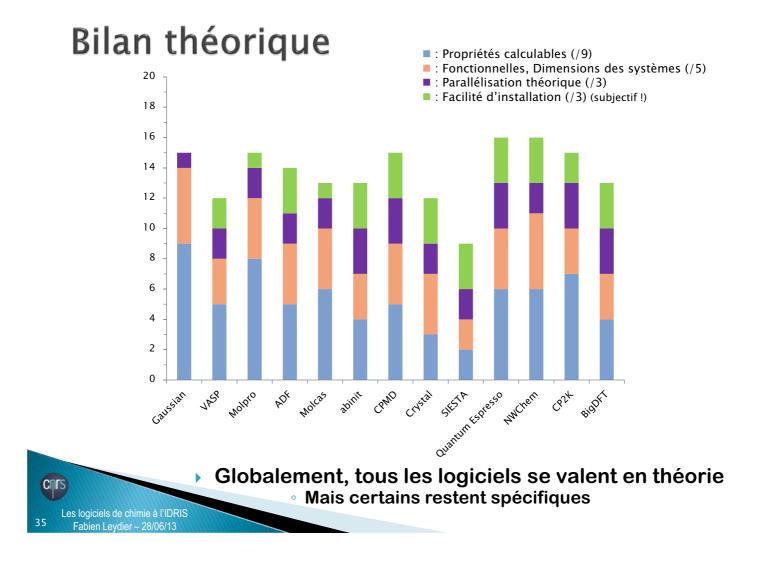
Quantum Espresso v5.0.1	Optimisations désactivées, bibliothèques internes	Options par défaut, bibliothèques internes	Optimisé, bibliothèques externes	Sur-optimisé, bibliothèques externes
Options de compilation	-00	-02	-O2, -xAVX, mkl	-O3, -xAVX, -parallel, mkl
Temps elapsed (MOR, PBE, Γ, 10 pas)	3 h 3 min	20 min 28 s	6 min 6 s	9 min 0 s

(32×8 cœurs)

Les logiciels de chimie à l'IDRIS Fabien Leydier – 28/06/13

Formalisme et parallélisation

■ = Installé à l'IDRIS ■ = Pas de GPU à l'IDRIS ➡ = En cours d'étude


Nombre			Forma	Type de parallélisation					
Logiciels	d'utilisateurs Ada Turing		Prix	Chimie Quantique (DFT,)	Système de particules (champs de forces, biochimie, etc)	OpenMP	МРІ	MPI + OpenMP	GPU
Gaussian	29	-	28750\$ +575\$	✓		***	**	***	9
VASP	46	-	1000€ / groupe	✓			✓		3
Molpro	5	-	10000£	✓			✓.		3
ADF	8	-	6400€	✓			✓		
Molcas	4	-	50000SEK (5900€)	✓			✓		
Abinit	7	-	0	✓		✓	✓	\$	✓
CPMD	11	3	0	✓		✓	✓	✓	\$
Crystal	1	0	4800€	✓			✓		
SIESTA	2	-	0	✓			✓		
Quantum Espresso	20	2	0	✓		✓	✓	✓	✓
NWChem	3	-	0	✓			✓		
CP2K	15	4	0	✓		✓	✓	✓	\$
BigDFT	-	-	0	✓		✓	✓	✓	✓
GROMACS	2	0	0		✓		✓		✓
NAMD	10	2	0		✓	✓	✓	\$	✓
LAMMPS	3	2	0		✓		✓		✓

Propriétés et spécificités - chimie quantique

Logiciel	Dimension des systèmes	Base de projection	Fonctionnelles	Nombre de possibilités
Gaussian	0, 1, 2, 3D	GTO	~46 (dont hybrides)	****
VASP	3D	PW	~11 (dont hybrides)	****
Abinit	3D	PW	25 (+ LibXC)	****
Quantum Espresso	3D	PW	~25 + hybrides	****
CPMD	0, 1, 2, 3D	PW	~19 (dont hybrides)	****
ADF	0, 1, 2, 3D	STO	~28 (dont hybrides)	****
Molpro	0D	GTO	~50 (dont hybrides)	***
CP2K	0, 1, 2, 3D	GTO+PW	~25 (+LibXC)	****
SIESTA	3D	NAO	~8	****
Molcas	0D	GTO	~33 (dont hybrides)	***
Crystal	0, 1, 2, 3D	GTO	~19 (dont hybrides)	****
NWChem	0, 1, 2, 3D	GTO	~82 (dont hybrides)	***
BigDFT	0, 1, 2, 3D	ondelettes	25 (+ LibXC)	****
Les logiciels de chimie à l'	IDRIS			Nombre Hybrides 3D fonctionnelles

Propriétés et spécificités - chimie quantique

-			•					
Logiciel	Vibrations	TDDFT	Dynamique	QM/MM	MP2	RMN	Etat de transition	Autres
Gaussian	+ Anharm.			ONIOM				Magnétisme, solvant, dichroïsme, UV/Vis
VASP								
Abinit								
Quantum Espresso								EPR, spectres X
CPMD								
ADF								UV/Vis, solvant, Mosbauer, spectres X, magnétisme, EPR
Molpro	+ Anharm.							MCSCF, transitions e-
CP2K								EPR
SIESTA								
Molcas								MCSCF, solvant
Crystal	+ Anharm.							
NWChem				ONIOM				solvant, MCSCF, transitions e-
BigDFT								XANES
Les logiciels d	de chimie à l'IDRIS							

Logiciels orientés biochimie et champs de force

- Paramètres critiques pour les performances
 - Un système typique est composé de milliers (voire millions !) de particules
 - · Décomposition du système étudié
 - · Répartition sur les cœurs de calcul
 - Implémentation de méthodes de calcul
 - · Particule Mesh Ewald, etc.

Retour d'expériences

Logiciel	Conservation de l'énergie	Champs de force	Pas de temps	Performances	Autre
NAMD	Très bon	Implémentation très rigoureuse	Nombreuses possibilités	Bonne extensibilité, équilibrage de charge automatique	
GROMACS	Moins rigoureux	Portage de certains champs avec concessions sur la précision		Extensibilité moindre, équilibrage de charge automatique	Performance des calculs PME à étudier au préalable de l'étude, mécanisme pratique de restart
LAMMPS		Grande variété de champs de force disponible	Nombreuses possibilités		Plus lent que les autres logiciels pour les systèmes biologiques (facteur 2 à 6)

Conclusion

- Tous les logiciels de chimie sont parallèles...
 - · ...mais à des degrés différents
 - Les logiciels gratuits sont les plus parallèles !
 - · Ce sont surtout les plus récents
- Tous ne permettent pas les mêmes types de calculs
 - Théories implémentées
 - Propriétés « exclusives »

Comment calculer à l'IDRIS

Comment calculer à l'IDRIS

- Les espaces disques
- · Le système de classe
- · Le script de soumission
 - Script mono- et multi-étapes
- · Commandes de bilan/comptabilité
- Documentation plus détaillée disponible sur le site de l'IDRIS (www.idris.fr)

Les espaces disques

2 types de machines

- Serveur de fichiers GPFS
 - Espace disque des machines de calcul
 - Découpé en 3 sections pour chaque login du projet
 - \$HOME : petit espace, sauvegardé tous les jours
 - \$WORKDIR : espace de travail, pas de sauvegarde
 - \$TMPDIR : espace temporaire, effacé après chaque calcul
- Machine d'archivage (Gaya)
 - Stockage sur cartouches magnétiques
 - Archivage à long terme

Demande d'espace

- Lors de la constitution du dossier DARI
- https://extranet.idris.fr/
 - · Demande par machine
 - Volume + inodes pour chaque machine de calcul et pour Gaya

Les espaces disques

- Serveur de fichier GPFS
 - \$HOME
 - Modèles de scripts, exécutables, etc.
 - \$WORKDIR : fichiers d'entrée et de sortie des calculs
 - On peut y lancer des calculs
 - Visibilité directe pendant l'exécution
 - 1 dossier pour 1 calcul permet de mieux s'y retrouver
 - Soumis à quota
 - · Faire le ménage en fin de calcul
 - Performances identiques au \$TMPDIR

\$TMPDIR : espace temporaire par calcul

- Utile si les fichiers générés sont très (très) volumineux
- Supprimé en fin de calcul
 - · Pas de ménage à faire en fin de calcul
 - · Attention à prévoir la recopie sur \$WORKDIR!
- Conservé entre les étapes d'un job multi-étapes
 - · Utile pour être sûr de recopier ses fichiers en fin de calcul
 - · Limite de temps, plantage, etc.
- Pas de visibilité directe si N_{cœurs} ≤ 32 sans job multi-étapes
 - Sinon, chemin à récupérer pendant l'exécution (echo \$TMPDIR)

Les espaces disques

- Machine d'archivage (Gaya)
 - Stockage sur cartouches magnétiques
 - · Conserver des résultats à long terme
 - Réutilisés localement pour des calculs ultérieurs
 - Fichiers trop volumineux pour le \$WORKDIR
 - Sauvegarde sélective de résultats du \$WORKDIR
 - Accès « lent » : pas adapté aux transferts répétitifs
 - · Pas de copie systématique
 - Accès aux fichiers
 - Pas d'accès direct pour un calcul
 - Copier les fichiers avant ou après l'exécution du calcul (ou manuellement), via les commandes spécifiques :
 - mfput : écrire sur Gaya
 - mfget : copie de Gaya vers le répertoire courant
 - · Durée de vie des fichiers
 - 1 an par défaut
 - Allongement via la commande mfret une fois par an
 - · Email envoyé avant expiration des fichiers

Les espaces disques

- \$WORKDIR partagé entre Ada et Turing
- Commandes pratiques
 - Quotas
 - Sur chaque machine :
 - quota_u : quota pour le \$HOME
 - quota_u -w : quota pour le \$WORKDIR (rappel : pas de quota sur \$TMPDIR)
 - Rappel : espace utilisé par un répertoire
 - du -sh nom_du_répertoire

Le système de classes

Répartition des jobs par LoadLeveler

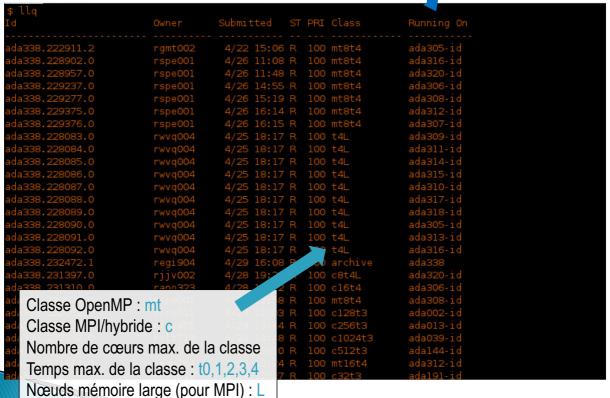
- Type de job (séquentiel, OpenMP, MPI/hybride)
- Nombre de cœurs ou nœuds de calcul
- Mémoire
- Temps d'exécution

Sur Ada

- Temps maximum par job : 100 h ≤ 32 cœurs, 20 h ≤ 2048 cœurs
- Jobs OpenMP et grosse mémoire sur des nœuds dédiés (38 nœuds)

Sur Turing

- Temps maximum par *job* : 20 h (jusqu'à toute la machine, 4096 nœuds)
- Réservation minimale aujourd'hui : 64 nœuds (= 1024 cœurs)
- Commande : news class


Le système de classes

Commandes

- Ilsubmit script : lancer son script de soumission
- Ilcancel numéro_du_job : annuler l'exécution
- Ilq: pour voir toute la file d'attente
- IIq -u login : pour voir sa propre file d'attente
 - Pour personnaliser l'affichage : man llq (llq –f %...)
- IIq –I numéro_du_job : TOUTES les informations connues sur le job (temps, dossiers, etc.)

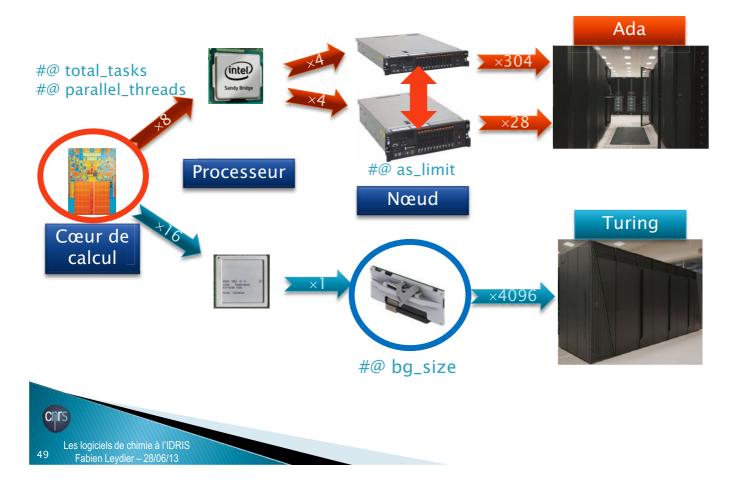
Le système de classes

exemple

Le script de soumission

Les logiciels de chimie à l'IDRIS

Directives LoadLeveler


- Commencent par #@
 - #@, # @, # #@, # # @, @, #
- Se terminent par « #@ queue »
- o Obligatoires / Fortement conseillées :
 - #@ job_name
 - #@ job_type
 - #@ total_tasks et/ou parallel_threads

Nœud maître

d'exécution

- #@ bg_size (pour Turing)
- #@ wall_clock_limit
- #@ output
- #@ error
- Optionnelles :
 - #@ notify_user : envoi de mails
 - #@ notification : type de mail
 - #@ class : pour les classes spéciales
 - #@ as_limit : demande mémoire par processus
 - ATTENTION! Ada ≠ Vargas: data_limit et stack_limit ne vous donneront pas votre demande, et risquent de la limiter
 - Documentation : http://www.idris.fr/ada/ada-doc-ibm-intel.html

Ce que je réserve pour mon calcul

Le script de soumission

Classes spéciales

- Classe archive
 - Transferts de fichiers Gaya (mfput, mfget), « manipulation » de fichiers (cp, cat, >, ...)
 - #@ class = archive
 - · Non facturée, calculs interdits
- Classe compilation
 - Exécution séquentielle, 20 h max
 - #@ class = compil
- · Classe pré/post traitement
 - · Traitement des données
 - # @ requirements = (Feature == "prepost")
 - Non facturée, calculs interdits, durée très limitée

Le script de soumission : OpenMP

Ada

- #@ job_type = serial
- Réservation des cœurs
 - #@ parallel_threads = N_{ceurs}
 - Décompte du temps (« facturation »)
 - ≤ 32 cœurs : t × N_{cœurs}
- Réservation de la mémoire
 - Par défaut (pas de directive)
 - 7,0 Go × N_{cœurs} pour le programme
 - · Utilisation des nœuds « large mémoire »
 - #@ as_limit = Mem
 - Au maximum: 7,0 × N_{creurs} pour le programme (ex:#@ as_limit = 28.0GB pour 4 threads)
 - Directive non nécessaire : le maximum est déjà attribué par défaut

Le script de soumission : OpenMP

Turing

- Pas impossible, mais...
 - C'est utilisable a priori
 - D'après le découpage, 1 nœud = 16 cœurs + 16 Go de mémoire
 - Le programme s'exécute en intra-nœud : jusqu'à 64 threads
 - Réservation minimale
 - #@ bg_size ≥ 64 ... nœuds
 - Le programme ne va s'exécuter que sur 1 nœud : 63 nœuds « perdus »!
 - Performances
 - Processeurs
 - Turing: 1 nœud ≈ 204.1 GFLOPS
 - Ada: 1 nœud ≈ 691,2 GFLOPS
 - Mémoire
 - Turing: 16 Go/nœud → 256 Mo—1 Go/cœur
 - Ada: 128—256 Go/nœud → 4—8 Go/cœur
- En OpenMP, Turing n'est pas adapté par rapport à Ada

Le script de soumission : MPI

Ada

- #@ job_type = parallel
- Réservation des cœurs
 - #@ total_tasks = N_{cœurs}
 - · Décompte du temps (« facturation »)
 - ≤ 32 cœurs : t × N_{cœurs}
 - > 32 cœurs : t × N_{nœuds} × 32 (ex : 33 cœurs demandés = 64 cœurs décomptés !)
- Réservation de la mémoire
 - Par défaut (pas de directive)
 - 3,5 Go/cœur = 3,5 Go/processus MPI
 - #@ as_limit = Mem
 - Utilisation des nœuds « larges mémoire » : max 32 cœurs
 - 7,0 Go/cœur = 7,0 Go/processus MPI

Le script de soumission : MPI

Turing

- #@ job_type = BLUEGENE
- Réservation des nœuds
 - #@ bg_size = N_{nœuds}
 - $N_{nceuds} \ge 64$ (\Rightarrow 1024 cœurs = de 64 à 4096 processus MPI!)
 - Réservation par puissance de 2 (64, 128, 256, ..., 4096)
 - Décompte du temps (« facturation »)
 - $t \times N_{noeuds} \times 16$
- Répartition MPI
 - --np N_{MPI}: nombre total de processus MPI (jusqu'à 4 par cœur)
- Réservation de la mémoire
 - Selon l'agencement des processus (--ranks-per-node=)
 - Minimum : 64 processus/nœud \rightarrow 256 Mo/processus MPI
 - Maximum : 1 processus/nœud \rightarrow 16 Go/processus MPI

Le script de soumission : Hybride

Ada

• #@ job_type = parallel

Elément de base : processus MPI

Réservation des cœurs

- #@ total_tasks = $N_{processus MPI}$
- #@ parallel_thread = N_{threads/processus}
- $N_{cœurs} = N_{processus MPI} \times N_{threads/processus}$
- · Décompte du temps (« facturation »)
 - ≤ 32 cœurs : t × N_{cœurs}
 - > 32 cœurs : t × N_{nœuds} × 32 (ex : 33 cœurs demandés = 64 cœurs décomptés !)

Réservation de la mémoire

- Par défaut (pas de directive)
 - 3,5 Go/cœur = 3,5 Go × $N_{threads/processus}$ /processus MPI
- #@ as limit = Mem
 - Au maximum: 7,0 × N_{cœurs} /processus MPI (ex:#@ as_limit = 28,0GB pour 4 threads/processus MPI)
 Limité à 32 cœurs (N_{cœurs} au total)

Les logiciels de chimie à l'IDRIS Fabien Leydier – 28/06/13

Le script de soumission : Hybride

Turing

- #@ job_type = BLUEGENE
- Réservation des nœuds
 - #@ bg_size = N_{nœuds}
 - $N_{nceuds} \ge 64 \ (\Rightarrow 1024 \text{ cœurs} = \text{de } 64 \text{ à } 4096 \text{ processus MPI}!)$
 - Réservation par puissance de 2 (64, 128, 256, ..., 4096)
 - Décompte du temps (« facturation »)
 - t × N_{nœuds} × 16
- Répartition MPI
 - --np N_{MPI}: nombre total de processus MPI

Réservation de la mémoire

- Selon l'agencement des processus (--ranks-per-node=)
 - Minimum: 64 processus/nœud → 256 Mo/processus MPI
 - Maximum: 1 processus/nœud → 16 Go/processus MPI

Répartition OpenMP

- --envs "OMP_NUM_THREADS=N_{OMP}": nombre de threads par processus MPI
- Bilan de répartition
 - Bg_size × ranks-per-node = np
 - Ranks-per-node × OMP_NUM_THREADS ≤ 64
 - Pas de mémoire supplémentaire apportée par des threads OpenMP, contrairement à Ada

Le script de soumission

```
#@ job_name =
#@ job_type =
#@ output =
#@ error =
#@ total_tasks =
#@ parallel_threads =
#@ wall_clock_limit =
#@ queue
module load chimie
set -x
poe chimie.exe input.in > out
```

Lignes de commandes

- Programme Modules
 - Charge l'environnement du logiciel (paths. correctifs, variables d'environnement)
 - Commandes:
 - module load logiciel[/version]
 - module avail [logiciel]
 - module display logiciel[/version]
 - module unload logiciel[/version]
 - module switch logiciel logiciel/version
- set -x
 - Donne le retour des commandes passées
 - Très utile en cas de problème
 - Peut être verbeux (module, etc.)
 - A placer après module par exemple

Le script de soumission

#@ job_name = #@ job_type = #@ output = #@ error = #@ total_tasks = #@ parallel_threads = #@ wall_clock_limit = #@ queue module load chimie set -x poe chimie.exe input.in > out

Les logiciels de chimie à l'IDRIS

Lignes de commandes

- Lancement de l'exécutable
 - OpenMP : lancement direct
 - Ex: g09 input
 - MPI et hybride : lancement avec poe
 - Ex : poe MPPCrystal
 - Pour certains logiciels : « < input »
 - Ex: poe pw.x < input
 - Sur Turing : lancement avec runjob
- Redirection de la sortie standard (écran)
 - Par défaut : tout est copié dans le fichier indiqué par #@ output
 - Indiguer « > fichier » en fin de ligne d'exécutable pour découpler sortie du programme et sortie du job
 - Conseil: #@ output et #@ error vers un même fichier, et « > fichier » pour une sortie du calcul indépendante

Le script de soumission

Exemple Gaussian sur Ada avec \$TMPDIR

```
#@ job_name = moncalculGaussian
#@ job_type = serial
#@ output = $(job_name).$(jobid)
#@ error = $(job_name).$(jobid)
#@ parallel_threads = 32
#@ wall_clock_limit = 100:00:00
#@ queue
module load gaussian/g09_C01
set -x
cd $TMPDIR
cp $LOADL_STEP_INITDIR/input.in .
cp $LOADL_STEP_INITDIR/input.chk .
g09 input.in > output
rm *.chk
mkdir $LOADL_STEP_INITDIR/resultat
cp * $LOADL_STEP_INITDIR/resultat
```

Exemple VASP sur Ada avec \$WORKDIR

```
#@ job_name = moncalculVASP
#@ job_type = parallel
#@ output = $(job_name).$(jobid)
#@ error = $(job_name).$(jobid)
#@ total_tasks = 128
#@ wall_clock_limit = 20:00:00
#@ queue
module load vasp
set -x
poe vasp
```

```
Les logiciels de chimie à l'IDRIS
Fabien Leydier – 28/06/13
```

Le script de soumission

Exemple CPMD sur Turing avec \$WORKDIR

```
#@ job_name = moncalculCPMD
#@ job_type = BLUEGENE
#@ output = $(job_name).$(jobid)
#@ error = $(job_name).$(jobid)
#@ bg_size = 512
#@ wall_clock_limit = 20:00:00
#@ queue

module load cpmd

set -x

runjob --ranks-per-node 4 --envs "OMP_NUM_THREADS=16" --np 2048 : $CPMD_EXEDIR/cpmd.x ./input > out
```

Script multi-étapes

```
# @ error = $(output)
    #===== Directives pour étape 1 ======
   #@ step_name = calcul
#@ job_type = serial
#@ parallel_threads = 8
#@ wall_clock_limit = 20:00:00
    # @ queue
     ======= Directives pour étape 2 =======
    # @ step_name = copie
   # @ dependency = (calcul >= 0)
# @ class = archive
   #@queue
   case ${LOADL_STEP_NAME} in
    set -ex
module load gaussian
cd $TMPDIR
cp ${LOADL_STEP_INITDIR}/*.
   g09 input > resultat
    #== Etape 2 ==========
   copie)
   set -ex
cd $TMPDIR
   mkdir ${LOADL_STEP_INITDIR}/Output
cp * ${LOADL_STEP_INITDIR}/Output
   esac
Les logiciels de chimie à l'IDRIS
```

- Permet de lancer l'équivalent de plusieurs scripts à la suite
 - Utilisation du TMPDIR (rémanent)
 - Sauver les résultats obtenus après la limite de temps de l'étape calcul
 - Dépendance entre les étapes
- S'écrit comme des scripts « éclatés »
- Lignes en # : commentaires

Script multi-étapes

```
# @ job_name = multi-steps-calcul
# @ output = $(job_name).$(step_name).$(jobid)
# @ error = $(output)
#===== Directives pour étape 1 ======
# @ step_name = calcul
# @ job_type = serial
# @ parallel_threads = 8
# @ wall_clock_limit = 20:00:00
# @ queue
      ====== Directives pour étape 2 =======
# @ step_name = copie
# @ dependency = (calcul >= 0)
# @ class = archive
# @ queue
case ${LOADL_STEP_NAME} in
#== Etape 1 =========
calcul)
module load gaussian
cd $TMPDIR
cp ${LOADL_STEP_INITDIR}/*.
g09 input > resultat
copie)
set -ex
cd $TMPDIR
mkdir ${LOADL_STEP_INITDIR}/Output
    ${LOADL_STEP_INITDIR}/Output
```

- Découpé en deux parties
 - Directives LoadLeveler
 - Commandes
 - Encadrées par des commandes obligatoires : case et esac

Fabien Leydier - 28/06/13

Script multi-étapes

```
#======== Directives globales ======
#@job_name = multi-steps-calcul
#@output = $(job_name).$(step_name).$(jobid)
#@error = $(output)
     #====== Directives pour étape 1 ======
    #@ step_name = calcul
#@ job_type = serial
#@ parallel_threads = 8
#@ wall_clock_limit = 20:00:00
     # @ queue
       ======= Directives pour étape 2 =======
     # @ step_name = copie
     # @ dependency = (calcul >= 0)
# @ class = archive
     # @ queue
     case ${LOADL_STEP_NAME} in
     #== Etape 1 ==========
    set -ex
module load gaussian
cd $TMPDIR
cp ${LOADL_STEP_INITDIR}/*.
     g09 input > resultat
     copie)
    set -ex
cd $TMPDIR
mkdir ${LOADL_STEP_INITDIR}/Output
cp * ${LOADL_STEP_INITDIR}/Output
     esac
Les logiciels de chimie à l'IDRIS
   Fabien Leydier - 28/06/13
```

1er paragraphe

- Directives communes à toutes les étapes
- Chaque étape possède une sortie distincte

Script multi-étapes

1^{re} étape : Lancement du calcul

- #@ step_name
 - Doit correspondre dans les directives et les commandes
 - Eviter les caractères spéciaux (-#@ : non acceptés)
- set –ex
 - Donne l'écho des commandes
 - En cas d'erreur sur l'une des commandes, l'ensemble de l'étape est considérée comme erronée
 - A placer en tête de l'étape
- Les directives se terminent par « #@ queue »
- Les commandes se terminent par « ;; »

Chrs

Script multi-étapes

```
#======== Directives globales ======
#@job_name = multi-steps-calcul
#@output = $(job_name).$(step_name).$(jobid)
#@error = $(output)
      #===== Directives pour étape 1 =====
      #@ step_name = calcul
#@ job_type = serial
#@ parallel_threads = 8
#@ wall_clock_limit = 20:00:00
      #@ queue
                         ==== Directives pour étape 2 ======
      # @ step_name = copie
# @ dependency = (calcul >= 0)
# @ class = archive
      # @ queue
      case ${LOADL_STEP_NAME} in
      #== Etape 1 ======
calcul)
      set -ex
module load gaussian
cd $TMPDIR
cp ${LOADL_STEP_INITDIR}/* .
g09 input > resultat
      #== Etape 2 ==
      copie)
      set -ex
cd $TMPDIR
mkdir ${LOADL_STEP_INITDIR}/Output
cp * ${LOADL_STEP_INITDIR}/Output
      esac
Les logiciels de chimie à l'IDRIS
    Fabien Leydier - 28/06/13
```

- 2e étape : Copie des résultats
 - #@ dependency
 - Gère la condition de lancement de l'étape 2
 - Utilise le code de retour dans la condition
 - == 0 : si l'étape 1 s'est bien déroulée
 - > 0 : si l'étape 1 a eu un problème
 - >= 0 : peu importe l'état de l'étape 1
 - L'ordre d'exécution est à gérer soimême

Script multi-étapes : exemple TMPDIR

```
# @ job_name = multi-steps-vasp
# @ output = $(job_name).$(step_name).$(jobid)
# @ error = $(output)
# @ step_name = copy
                              dépendances
# @ class = archive
#@queue
# @ step_name = vasp
# @ dependency = (copy == 0)
# @ job_type = parallel
# @ total_tasks = 128
# @ wall_clock_limit = 10:00:00
# @ queue
# @ step_name = fin
# @ dependency = (copy == 0) \&\& (vasp >= 0)
# @ class = archive
# @ queue
```

```
case ${LOADL_STEP_NAME} in

copy )
set -ex
cd $TMPDIR
cp ${LOADL_STEP_INITDIR}/INCAR .
cp ${LOADL_STEP_INITDIR}/POSCAR .
cp ${LOADL_STEP_INITDIR}/POTCAR .
cp ${LOADL_STEP_INITDIR}/KPOINTS .
cp ${LOADL_STEP_INITDIR}/WAVCAR .
;;

vasp )
set -ex
module load vasp
cd $TMPDIR
echo "calcul lancé" > etat
poe vasp
;;

fin )
set -ex
cd $TMPDIR
rm WAVECAR
rm CHG*
cp * ${LOADL_STEP_INITDIR}
cd ${LOADL_STEP_INITDIR}
echo "job terminé" > etat
;;

esac
```

Script multi-étapes : exemple WORKDIR

```
#@job_name = multi-steps-vasp
# @ output = $(job_name).$(step_name).$(jobid)
# @ error = $(output)
                           dépendances
# @ step_name = copy
# @ class = archive
#@queue
# @ step_name = vasp
# @ dependency = (copy == 0)
# @ job_type = parallel
# @ total_tasks = 128
# @ wall_clock_limit = 10:00:00
#@queue
# @ step_name = fin
# @ dependency = (copy == 0) \&\& (vasp >= 0)
# @ class = archive
#@ queue
```

```
case ${LOADL_STEP_NAME} in

copy )
set -ex
mfget WAVECAR.calcul_01-06-13 WAVCAR
;;

vasp )
set -ex
module load vasp
poe vasp
;;

fin )
set -ex
mfput WAVCAR WAVCAR.calcul-28-06-13
;;

esac
```


Script multi-étapes : remarques

- Ne pas lancer plus d'une étape de calcul par job
 - Monopolisation des ressources en court-circuitant la file d'attente
 - Utiliser plus de cœurs pour diminuer le temps de restitution
 - Utiliser des jobs en cascade :

```
# @ job_name = multi-steps-vasp1
# @ output = S(job_name).S(step_name).S(jobid)
# @ error = S(output)
# @ step_name = vasp
# @ job_type = parallel
# otal_tasks = 128
# @ wall_clock_limit = 20:00:00
# @ queue
# @ step_name = copy
# @ dependency = (vasp >= 0)
# @ job_type = archive
# @ queue
# @ step_name = submit
# @ dependency = (vasp > 0)&&(copy == 0)
# @ job_type = serial
# @ queue

case ${LOADL_STEP_NAME} in

vasp )
set -ex
module load vasp
cd STMPDIR
cp ${LOADL_STEP_INITDIR}/INCAR.
cp ${LOADL_STEP_INITDIR}/POSCAR.
cp $
```

```
# @ job_name = multi-steps-vasp2
# @ output = $(job_name).$(step_name).$(jobid)
# @ error = $(output)
# @ step_name = vasp
# @ job_type = parallel
# @ total_tasks = 128
# @ wall_clock_limit = 20:00:00
# @ queue

# @ step_name = copy
# @ dependency = (vasp >= 0)
# @ job_type = archive
# @ queue

case ${LOADL_STEP_NAME} in

vasp)
set = ex
module load vasp
cd $TMPDIR
cd $TMPDIR
cd $(LOADL_STEP_INITDIR)/INCAR .
cp ${LOADL_STEP_INITDIR}/POSCAR POSCAR.0
cp ${LOADL_STEP_INITDIR}/POTCAR .
cp ${LOADL_STEP_INITDIR}/POTCAR .
cp ${LOADL_STEP_INITDIR}/POTCAR .
cp ${LOADL_STEP_INITDIR}/POTCAR .
cp ${LOADL_STEP_INITDIR}/VOTCAR .
cp ${LOADL_STEP_INITDIR}/WOINTS .
cp ${LOADL_STEP_INITDIR}/WAYECAR .
cp ${LOADL_STEP_INITDIR}/WAYECAR .
cp ${LOADL_STEP_INITDIR}/WAYECAR .
cp ${LOADL_STEP_INITDIR}/CHG* .
poe vasp

copy)
set = ex
cd ${LOADL_STEP_INITDIR}
mv OUTCAR OUTCAR.1
mv OSZICAR OSZICAR.1
mv SZACAR OSZICAR.1
cd $TMPDIR
cp * ${LOADL_STEP_INITDIR}
cp * ${LOADL_STEP_INITDIR
```

Fabien Leydier – 28/06/13

Commandes de bilan/comptabilité

Commande jar

- · Edite un bilan de ses jobs par période
 - Par défaut, édite le bilan sur le mois en cours
 - jar -d numéro_de_mois : choix du mois
 - jar -e date-date : choix d'une période
 - Données du bilan :
 - noms et numéros des jobs
 - nombre de cœurs
 - temps elapsed et CPU (s)
 - efficacité : rapport (temps CPU) / (temps elapsed × N_{cœurs})
 - Donne une information sur l'efficacité parallèle de chaque job

Récapitulatif des heures consommées

- Commande cpt
 - par login, pour tout le groupe
 - % de l'attribution restant
- Extranet de l'IDRIS
 - https://extranet.idris.fr/

Les logiciels de chimie à l'IDRIS Fabien Leydier – 28/06/13

Utilisation des logiciels : Aspects pratiques, parallélisme et performances

Gaussian

Fichier d'entrée Gaussian

- %NProcShared=N_{coeurs}
 - Si %NProcShared > N_{cœurs}: message: « Inconsistency in NProc: NTCur= 32 but real number of threads= 4», ou lancement d'un nombre supérieur de threads (performances fortement dégradées, plantage)
 - Si %NProcShared < N_{creurs}: on se limite nous-mêmes, et facture = t × N_{creurs}
 - %NProc est obsolète

```
%NProcShared=32
Will use up to 32 processors via shared memory.
```

• Exemples de sorties si %NProcShared n'est pas adapté au calcul :

```
PrsmSu: requested number of processors reduced to: 10 ShMem 1 Linda.

CalDSu: requested number of processors reduced to: 28 ShMem 1 Linda.

GetIJB would need an additional 45990731 words of memory to use all 32 processors.

DoSDTr: NPSUse= 13

JobTyp=1 Pass 1: I= 1 to 5 NPSUse= 1 ParTrn=F ParDer=F DoDerP=T.

⇒ difficile d'évaluer le nombre de cœurs maximum sans tester avec son système
```

- ∘ %Mem=## GB
 - · Attribution dynamique de la mémoire pour le calcul
 - Par défaut : 256 MB !
 - La valeur de #@ as_limit est trop élevée, mettre environ (as_limit 1.0 GB * (N_{creurs} + 1))

cnrs

- #P fonctionnelle type_de_calcul etc.
 - Donne des informations supplémentaires en sortie (entrée dans les Links, convergence des cycles SCF, etc.)

Les logiciels de chimie à l'IDRIS Fabien Leydier – 28/06/13

VASP

- Aucune commande spéciale pour lancer en parallèle
- Obtenir de meilleures performances
 - Fichier INCAR

```
    Mots-clés à préciser
    LPLANE = .TRUE.
    NPAR = valeur optimale
    LSCALU = .FALSE.
    NSIM = 4
    [KPAR = valeur souhaitée] → version 5.3.3
```

· Valeurs testées, à consulter sur notre site web

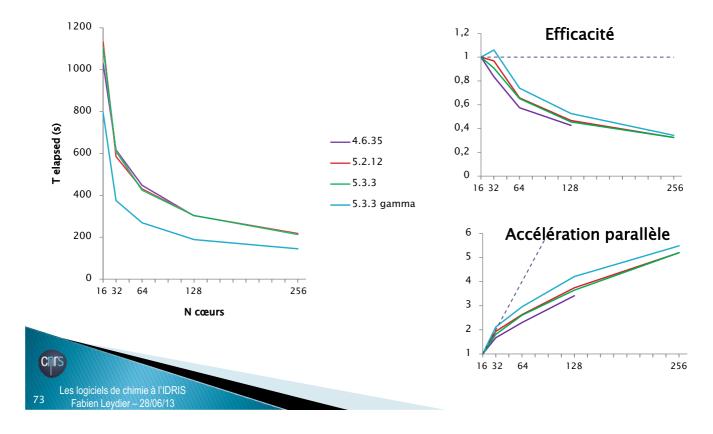
Exemple: H-MOR, 298 atomes, PBE, 400eV, Γ, 2 pas, version 5.3.3, 64 cœurs:

```
• NPAR=1 : t_{elapsed} = 812 \text{ s}

• NPAR=8 : t_{elapsed} = 477 \text{ s}

• NPAR=64 : t_{elapsed} = 425 \text{ s}

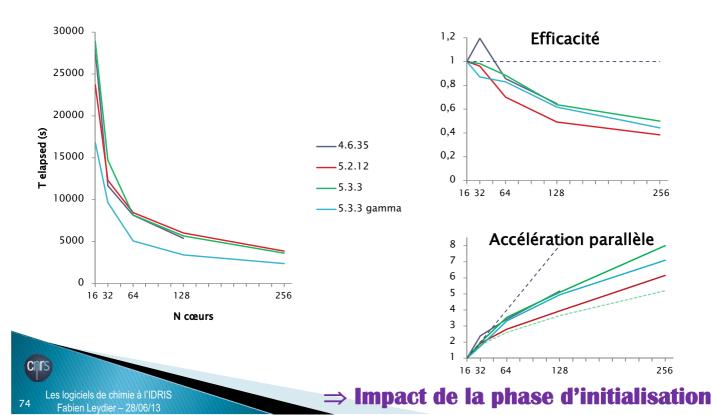
• Version gamma : t_{elapsed} = 269 \text{ s}


(NPAR=4)
```

- Messages d'erreur typiques
 - " internal ERROR RSPHER:running out of buffer "
 - NPAR trop faible
 - Le calcul reste en machine ! o contrôler son bon déroulement au tout début
 - · Messages de WARNING en début de fichier OUTCAR
 - NPAR n'obéit <u>pas</u> à une règle précise (testé)
 - · Pour la parallélisation sur les points k, vérifier les résultats car toujours en développement

VASP

Performances


Exemple: H-MOR, 298 atomes, PBE, 400 eV, Γ, avec/sans dispersion, 2 pas

VASP

Performances

· Exemple: H-MOR, 298 atomes, PBE, 400 eV, Γ, avec/sans dispersion, 100 pas

Crystal

Versions du programme (MPI)

- PCrystal
 - Version dite « à mémoire répliquée » : toutes les matrices sont copiées pour chaque processus
 - Génère toutes les données sur le disque
 - · Critique pour les performances, tous les fichiers sont lus/écrits en même temps
 - Si N_{MPI} élevé, le file system peut même être saturé (surtout sur Turing)
 - ⇒ Pour les systèmes de petite/moyenne taille uniquement, surtout si beaucoup de symétrie

MPPCrystal

- · Version dite « à mémoire distribuée » : les matrices sont réparties sur les processus
- Beaucoup moins d'accès disque que PCrystal
 - Mais plus de communications MPI
- · Certaines propriétés ne sont pas accessibles (IR notamment)
- ⇒ Pour les systèmes de taille importante uniquement

Crystal

Fichiers d'entrée Pcrystal

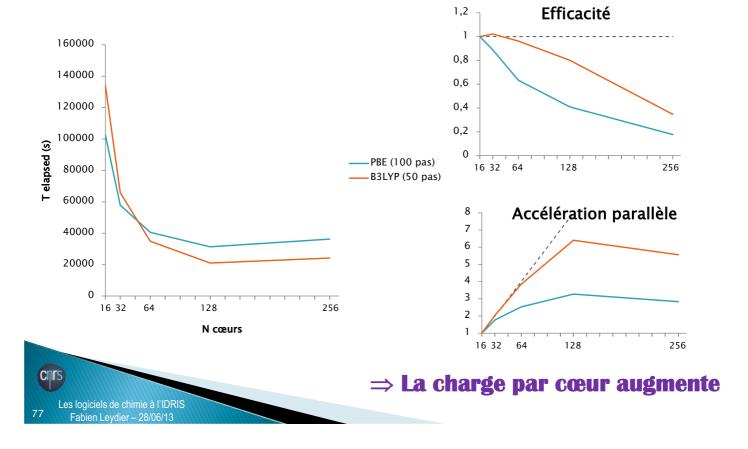
- Noms des fichiers imposés
 - « INPUT » pour le fichier principal
 - fort.## pour les fichiers écrits/lus (fonction d'onde, etc.)
 - · Consulter le manuel pour la description de tous les numéros de fichiers
- Pas de commandes spéciales pour la parallélisation
- Messages d'information sur les tampons mémoire :

```
WARNING **** GENBUF **** COULOMB BIPO BUFFER TOO SMALL – TO AVOID I/O SET BIPOSIZE = 17315175 WARNING **** EXCBUF **** EXCH. BIPO BUFFER TOO SMALL – TO AVOID I/O SET EXCHSIZE = 7652340
```

- Tampons trop petits ⇒ génère encore plus d'accès disque!
 - Indiquer les valeurs dans le fichier principal (BIPOSIZE J 17400000 J EXCHSIZE J 7652340 J)

Fichiers d'entrée MPPCrystal

- Noms de fichiers identiques à PCrystal
- Fichier principal
 - Ajouter la commande « MPP »
 - · Sinon lance une version approchée de Pcrystal
- Messages d'information sur la parallélisation (points k) :


```
WARNING **** MPP **** ALL K POINTS DONE BY ALL PROCESSORS
INFORMATION **** MPP **** This is because either:
INFORMATION **** MPP **** a) There are many k point relative to the number of processors or
INFORMATION **** MPP **** b) Each k point would have to run on a prime number of processors
```

- chrs
- · Pas assez de cœurs ou problème de répartition des points k
- Information sur les tampons mémoire identiques à Pcrystal

Crystal

Performances

Exemple: H-MOR, 298 atomes, Γ, MPPCrystal

Quantum Espresso

Aucune commande spéciale pour lancer en parallèle

Aspect performances

- · Options de l'exécutable pw.x, gérant l'affectation des cœurs
 - -nimage n : décompose en n images le système (état de transition, etc.).
 - -ndiag n : diagonalisation des matrices Hamiltoniennes (la valeur au carré ne doit pas dépasser le nombre de cœurs).
 - -npool n : partage des points k sur les cœurs (pour le point gamma, laisser par défaut ou mettre 1).
 - –ntg n : groupe pour les calculs de FFT.
 - Par défaut : toutes ces valeurs valent 1.
- Version 4.3+ : valeurs censées s'adapter (mais à tester), mais informations sur la parallélisation moins détaillées

Quantum Espresso

Aspect performances

Exemples de sorties, version 4.2 : MOR (144 atomes), PBE, 30 Ry, pur MPI

64 cœurs: 46 min (49h CPU) 16 cœurs : 128 cœurs: 52 min! (111h CPU) planes cols G Proc/ planes cols columns G 64 cœurs: Pool (dense grid) (smooth grid) (wavefct grid) 5 Déséquilibrage 612Des cœurs ne de charge participent pas 798 directement au calcul! 50 12783 423391 50 12783 423391

⇒ Solution : utiliser des *threads* OpenMP


50 12783

50 12783

Temps de restitution en ~40 pas • 16 cœurs: 77 min (21h CPU)

50 cœurs : 42 min (45h CPU)

Exemple de sortie, Version 4.3+ : informations sur le parallélisme moins détaillées

CPMD

Aucune commande spéciale pour lancer en parallèle

- Répartition des cœurs automatique pour le calcul de la fonction d'onde
 - Extensibilité fortement dépendante du système étudié

Aspect performances

- Fichier d'entrée
 - **MEMORY BIG**
 - Sur Ada : permet de stocker des facteurs de structure du cutoff de la densité en mémoire (évite de les recalculer à chaque besoin)
 - · Sur Turing : attention à la mémoire disponible
 - TASKGROUPS↓ n
 - · Globalement, partage des cœurs pour traiter les bandes en parallèle
 - · Améliore l'extensibilité lors de l'utilisation de beaucoup de tâches MPI

Ondes planes

- · Même problématique que Quantum Espresso
 - Utiliser des threads OpenMP pour améliorer l'extensibilité

Abinit

Aucune commande spéciale pour lancer en parallèle

- Par défaut : parallélisation sur les points k
 - Pour obtenir les performances les meilleures, $N_{\text{coeurs}} \propto \text{nb}$ points k

mpi_setup1: WARNING -

Your number of k-points (60) will not distribute correctly

with the current number of processors (32).

You will leave some empty.

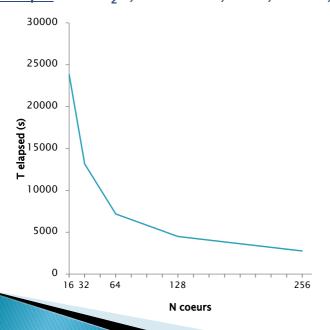
ACTION: you can reduce number of processors to 30 without losing speed.

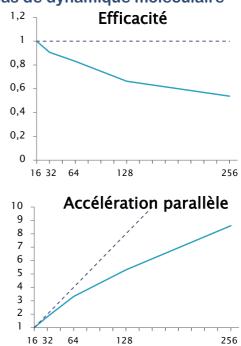
Obtenir de meilleures performances

- Parallélisation « KGB »
 - Points k (K), vecteurs d'onde (G) et bandes (B)
 - Mot-clé: paral_kgb
 - Non automatique : il faut déterminer le nombre de cœurs attribués pour chaque type
 - · Abinit peut tester des configurations :
 - 1°) Lancer le calcul sur 1 cœur, avec paral_kgb = -N_{cœur}, sans autre option (très rapide, même réalisable en amont sur sa machine)
 - 2°) Récupérer la meilleure configuration dans le fichier de sortie
 - 3°) Lancer le calcul avec la meilleure configuration : npkpt, npband, npfft

CP2K

CITS


Les logiciels de chimie à l'IDRIS


Aucune commande spéciale pour lancer en parallèle

- Aucun contrôle sur la répartition pour la plupart des calculs (automatique)
- Pas d'information donnée sur la répartition effective

Performances

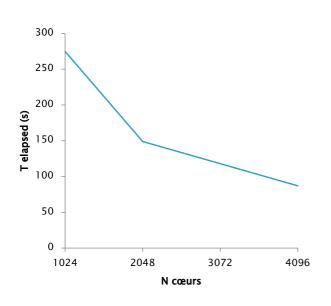
• Exemple: 512 H₂O, base DZVP, Pade, 280 eV, 50 pas de dynamique moléculaire

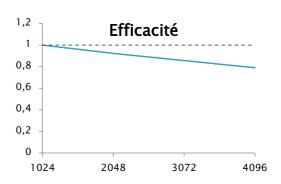
Molcas

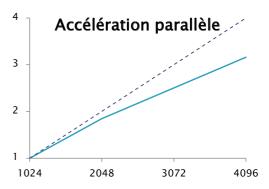
Aucune commande spéciale pour lancer en parallèle

- Attention : ne pas lancer avec poe
 - · L'exécutable molcas est en réalité un script
 - poe a déjà été intégré à l'environnement par défaut

Aspect performances

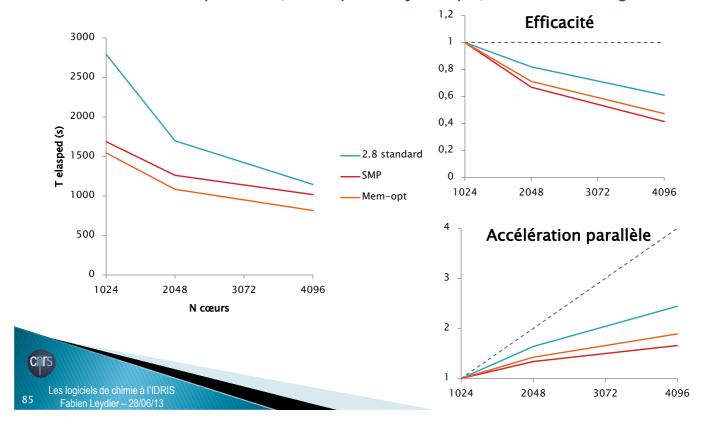

- Se référer à la commande jar pour l'efficacité
- Faire des tests d'extensibilité




BigDFT

Performances

○ Exemple : 512 H₂O, PBE, formalisme ondelettes, benchmark Turing



NAMD

Performances

<u>Exemple</u>: Canal bactérien (récepteur nicotinique humain) + propofol lié au canal,
 600000 particules, 50000 pas de dynamique, benchmark Turing

Aspect pratique : le « restart »

Logiciel	Fonction d'onde	Géométrie	Vibrations	Dynamique	Etat de transition	RMN	Autre	Type de restart ■ = Prévu par le logiciel ■ = Non prévu mais faisabl
Gaussian								= Non prévu
VASP								
Abinit								
Quantum Espresso								
CPMD							TDDFT	
ADF								
Molpro							Intégrales	
CP2K								
SIESTA								
Molcas							Intégrales	
Crystal								
NWChem								
BigDFT								

Aspect pratique : le « restart »

2 types de « restart »

- Mots-clés dans le fichier d'entrée
 - Nécessite d'éditer le fichier d'entrée pour continuer le calcul (ou créer un fichier dédié)
 - · Syntaxe à respecter
 - Cascade de jobs peu pratique

Fichiers de sortie à donner en entrée

- Nécessite de connaître le nom des fichiers concernés (voir au besoin les manuels)
- Utile lorsque le « restart » n'est pas implémenté (ex : dynamique, optimisation de géométrie)
- Cascade de jobs facile à mettre en place (si aucun traitement autre que le nom des fichiers)
- Parfois les deux types sont nécessaires

Bilan de la journée

Calculer de la chimie avec du parallélisme

- · C'est possible et même « obligatoire » dans un centre national !
- Demande d'utiliser au mieux les logiciels
 - · Utiliser les options adaptées
 - Elles ne sont pas déterminées automagiquement par les logiciels
 - · Etudier les manuels, tutoriaux, etc.
- Impératif : adapter les besoins logiciels et matériels à son étude
 - · Migrer vers les solutions actuelles, les plus parallèles
 - Requiert un temps d'adaptation, qui sera forcément payant sur du plus long terme
 - Eviter les systèmes trop « petits »
- En cas de problème et/ou de mauvaises performances, ne pas hésiter à demander les conseils de l'Assistance IDRIS!

Remerciements

- Noël Jakse
- Marie-Bernadette Lepetit
- Alain Pasturel
- Yves-Henri Sanejouand
- Marc Baaden
- Benoist Laurent
- Jean-Marie Teuler
- Denis Girou
- Membres de l'IDRIS

