
ibm.com/redbooks

Front cover

IBM System Blue Gene
Solution: Blue Gene/P
Application Development

Carlos Sosa
Brant Knudson

Understand the Blue Gene/P
programming environment

Learn how to run and
debug MPI programs

Learn about Bridge and
Real-time APIs

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

International Technical Support Organization

IBM System Blue Gene Solution: Blue Gene/P
Application Development

September 2009

SG24-7287-03

© Copyright International Business Machines Corporation 2007, 2008, 2009. All rights reserved.
Note to U.S. Government Users Restricted Rights -- Use, duplication or disclosure restricted by GSA ADP Schedule
Contract with IBM Corp.

Fourth Edition (September 2009)

This edition applies to Version 1, Release 4, Modification 0 of IBM System Blue Gene/P Solution (product
number 5733-BGP).

Note: Before using this information and the product it supports, read the information in “Notices” on
page ix.

Contents

Notices . ix
Trademarks .x

Preface . xi
The team who wrote this book . xi
Become a published author . xiii
Comments welcome. xiii

Summary of changes .xv
September 2009, Fourth Edition .xv
December 2008, Third Edition . xvi
September 2008, Second Edition . xvii

Part 1. Blue Gene/P: System and environment overview . 1

Chapter 1. Hardware overview . 3
1.1 System architecture overview . 4

1.1.1 System buildup . 5
1.1.2 Compute and I/O nodes . 5
1.1.3 Blue Gene/P environment . 6

1.2 Differences between Blue Gene/L and Blue Gene/P hardware 7
1.3 Microprocessor . 8
1.4 Compute nodes. 9
1.5 I/O nodes. 10
1.6 Networks . 10
1.7 Blue Gene/P programs . 11
1.8 Blue Gene/P specifications . 12
1.9 Host system . 13

1.9.1 Service node . 13
1.9.2 Front end nodes . 13
1.9.3 Storage nodes. 13

1.10 Host system software . 14

Chapter 2. Software overview . 15
2.1 Blue Gene/P software at a glance. 16
2.2 Compute Node Kernel. 17

2.2.1 High-performance computing and High-Throughput Computing modes. 18
2.2.2 Threading support on Blue Gene/P . 18

2.3 Message Passing Interface on Blue Gene/P . 18
2.4 Memory considerations . 18

2.4.1 Memory leaks . 20
2.4.2 Memory management . 20
2.4.3 Uninitialized pointers . 20

2.5 Other considerations . 20
2.5.1 Input/output . 20
2.5.2 Linking. 21

2.6 Compilers overview. 21
2.6.1 Programming environment overview. 21
2.6.2 GNU Compiler Collection . 21
© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. iii

2.6.3 IBM XL compilers . 22
2.7 I/O node software . 22

2.7.1 I/O nodes kernel boot considerations . 22
2.7.2 I/O node file system services . 22
2.7.3 Socket services for the Compute Node Kernel . 23
2.7.4 I/O node daemons . 23
2.7.5 Control system . 23

2.8 Management software. 25
2.8.1 Midplane Management Control System . 25

Part 2. Kernel overview . 27

Chapter 3. Kernel functionality . 29
3.1 System software overview . 30
3.2 Compute Node Kernel. 30

3.2.1 Boot sequence of a Compute Node . 31
3.2.2 Common Node Services . 32

3.3 I/O node kernel . 32
3.3.1 Control and I/O daemon . 33

Chapter 4. Execution process modes . 37
4.1 Symmetrical Multiprocessing mode . 38
4.2 Virtual Node mode . 38
4.3 Dual mode. 39
4.4 Shared memory support . 40
4.5 Deciding which mode to use . 41
4.6 Specifying a mode. 41
4.7 Multiple application threads per core . 42

Chapter 5. Memory . 43
5.1 Memory overview . 44
5.2 Memory management . 45

5.2.1 L1 cache . 45
5.2.2 L2 cache . 46
5.2.3 L3 cache . 46
5.2.4 Double data RAM . 47

5.3 Memory protection . 47
5.4 Persistent memory . 49

Chapter 6. System calls . 51
6.1 Introduction to the Compute Node Kernel . 52
6.2 System calls . 52

6.2.1 Return codes. 52
6.2.2 Supported system calls . 53
6.2.3 Other system calls . 57

6.3 System programming interfaces . 57
6.4 Socket support . 58
6.5 Signal support . 59
6.6 Unsupported system calls . 60

Part 3. Applications environment . 63

Chapter 7. Parallel paradigms . 65
7.1 Programming model . 66
7.2 Blue Gene/P MPI implementation . 68
iv IBM Blue Gene/P Application Development

7.2.1 High-performance network for efficient parallel execution 69
7.2.2 Forcing MPI to allocate too much memory . 71
7.2.3 Not waiting for MPI_Test. 72
7.2.4 Flooding of messages. 72
7.2.5 Deadlock the system. 72
7.2.6 Violating MPI buffer ownership rules. 73
7.2.7 Buffer alignment sensitivity . 73

7.3 Blue Gene/P MPI extensions . 74
7.3.1 Blue Gene/P communicators . 75
7.3.2 Configuring MPI algorithms at run time. 77
7.3.3 Self Tuned Adaptive Routines for MPI . 79

7.4 MPI functions . 80
7.5 Compiling MPI programs on Blue Gene/P . 81
7.6 MPI communications performance . 83

7.6.1 MPI point-to-point . 84
7.6.2 MPI collective . 85

7.7 OpenMP . 89
7.7.1 OpenMP implementation for Blue Gene/P . 89
7.7.2 Selected OpenMP compiler directives . 89
7.7.3 Selected OpenMP compiler functions. 92
7.7.4 Performance . 92

Chapter 8. Developing applications with IBM XL compilers . 97
8.1 Compiler overview. 98
8.2 Compiling and linking applications on Blue Gene/P . 98
8.3 Default compiler options . 99
8.4 Unsupported options . 100
8.5 Support for pthreads and OpenMP . 100
8.6 Creation of libraries on Blue Gene/P. 101
8.7 XL runtime libraries . 104
8.8 Mathematical Acceleration Subsystem libraries . 104
8.9 Engineering and Scientific Subroutine Library libraries. 105
8.10 Configuring Blue Gene/P builds . 105
8.11 Python . 106
8.12 Tuning your code for Blue Gene/P . 107

8.12.1 Using the compiler optimization options . 107
8.12.2 Parallel Operations on the PowerPC 450 . 107
8.12.3 Using single-instruction multiple-data instructions in applications 109

8.13 Tips for optimizing applications . 111

Chapter 9. Running and debugging applications . 139
9.1 Running applications. 140

9.1.1 MMCS console . 140
9.1.2 mpirun . 141
9.1.3 submit . 141
9.1.4 IBM LoadLeveler . 142
9.1.5 Other scheduler products . 142

9.2 Debugging applications. 143
9.2.1 General debugging architecture . 143
9.2.2 GNU Project debugger . 143
9.2.3 Core Processor debugger . 149
9.2.4 Starting the Core Processor tool . 149
9.2.5 Attaching running applications . 150
 Contents v

9.2.6 Saving your information . 156
9.2.7 Debugging live I/O Node problems . 156
9.2.8 Debugging core files . 157
9.2.9 The addr2line utility . 159
9.2.10 Scalable Debug API . 161

Chapter 10. Checkpoint and restart support for applications 169
10.1 Checkpoint and restart . 170
10.2 Technical overview . 170

10.2.1 Input/output considerations. 171
10.2.2 Signal considerations . 171

10.3 Checkpoint API . 173
10.4 Directory and file-naming conventions . 175
10.5 Restart. 175

10.5.1 Determining the latest consistent global checkpoint . 175
10.5.2 Checkpoint and restart functionality . 176

Chapter 11. mpirun . 177
11.1 mpirun implementation on Blue Gene/P . 178

11.1.1 mpiexec. 179
11.1.2 mpikill . 180

11.2 mpirun setup . 181
11.2.1 User setup. 182
11.2.2 System administrator set up . 182

11.3 Invoking mpirun. 183
11.4 Environment variables. 187
11.5 Tool-launching interface . 188
11.6 Return codes. 188
11.7 Examples . 191
11.8 mpirun APIs. 199

Chapter 12. High-Throughput Computing (HTC) paradigm . 201
12.1 HTC design . 202
12.2 Booting a partition in HTC mode . 202
12.3 Running a job using submit . 202
12.4 Checking HTC mode. 205
12.5 submit API. 206
12.6 Altering the HTC partition user list . 206

Part 4. Job scheduler interfaces . 207

Chapter 13. Control system (Bridge) APIs . 209
13.1 API requirements . 210

13.1.1 Configuring environment variables . 210
13.1.2 General comments . 211

13.2 APIs. 212
13.2.1 API to the Midplane Management Control System . 212
13.2.2 Asynchronous APIs. 213
13.2.3 State sequence IDs. 213
13.2.4 Bridge APIs return codes . 213
13.2.5 Blue Gene/P hardware resource APIs . 214
13.2.6 Partition-related APIs . 215
13.2.7 Job-related APIs . 221
13.2.8 Field specifications for the rm_get_data() and rm_set_data() APIs 229
vi IBM Blue Gene/P Application Development

13.2.9 Object allocator APIs . 242
13.2.10 Object deallocator APIs . 243
13.2.11 Messaging APIs . 244

13.3 Small partition allocation . 245
13.3.1 Subdivided busy base partitions . 246

13.4 API examples . 246
13.4.1 Retrieving base partition information. 246
13.4.2 Retrieving node card information . 247
13.4.3 Defining a new small partition . 248
13.4.4 Querying a small partition . 248

Chapter 14. Real-time Notification APIs . 251
14.1 API support overview . 252

14.1.1 Requirements . 252
14.1.2 General comments . 253

14.2 Real-time Notification APIs . 254
14.3 Real-time callback functions . 255
14.4 Real-time elements . 268

14.4.1 Real-time element types . 268
14.4.2 Example . 271

14.5 Server-side filtering . 272
14.5.1 Pattern filter properties . 272
14.5.2 Filter properties . 273
14.5.3 Example . 279

14.6 Real-time Notification APIs status codes . 280
14.6.1 Status code specification . 281

14.7 Sample real-time application code . 284

Chapter 15. Dynamic Partition Allocator APIs . 295
15.1 Overview of API support . 296
15.2 Requirements . 296
15.3 API details . 297

15.3.1 APIs . 297
15.3.2 Return codes. 299
15.3.3 Configuring environment variables . 300

15.4 Sample program . 300

Part 5. Applications . 303

Chapter 16. Performance overview of engineering and scientific applications 305
16.1 Blue Gene/P system from an applications perspective. 306
16.2 Chemistry and life sciences applications . 307

16.2.1 Classical molecular mechanics and molecular dynamics applications 308
16.2.2 Molecular docking applications . 312
16.2.3 Electronic structure (Ab Initio) applications. 314
16.2.4 Bioinformatics applications . 314
16.2.5 Performance kernel benchmarks . 317
16.2.6 MPI point-to-point . 318
16.2.7 MPI collective benchmarks . 319

Part 6. Appendixes . 323

Appendix A. Blue Gene/P hardware-naming conventions . 325

Appendix B. Files on architectural features . 331
 Contents vii

Personality of Blue Gene/P . 332
Example of running personality on Blue Gene/P . 332

Appendix C. Header files and libraries . 335
Blue Gene/P applications. 336
Resource management APIs . 337

Appendix D. Environment variables . 339
Setting environment variables . 340
Blue Gene/P MPI environment variables . 340
Compute Node Kernel environment variables . 349

Appendix E. Porting applications . 353

Appendix F. Mapping . 355

Appendix G. htcpartition . 359

Appendix H. Use of GNU profiling tool on Blue Gene/P . 361
Profiling with the GNU toolchain . 362

Timer tick (machine instruction level) profiling . 362
Procedure-level profiling with timer tick information . 362
Full level of profiling . 362

Additional function in the Blue Gene/P gmon support . 362
Enabling and disabling profiling within your application . 363
Collecting the gmon data as a set of program counter values . 363
Enabling profile data for threads in Blue Gene/P . 363
Enhancements to gprof in the Blue Gene/P toolchain . 363

Using gprof to read gmon.sample.x files. 363
Using gprof to merge a large number of gmon.out.x files . 363

Appendix I. Statement of completion . 365

References . 367

Related publications . 371
IBM Redbooks . 371
Other publications . 371
Online resources . 373
How to get IBM Redbooks . 374
Help from IBM . 374

Index . 375
viii IBM Blue Gene/P Application Development

Notices

This information was developed for products and services offered in the U.S.A.

IBM might not offer the products, services, or features discussed in this document in other countries. Consult
your local IBM representative for information on the products and services currently available in your area. Any
reference to an IBM product, program, or service is not intended to state or imply that only that IBM product,
program, or service might be used. Any functionally equivalent product, program, or service that does not
infringe any IBM intellectual property right might be used instead. However, it is the user's responsibility to
evaluate and verify the operation of any non-IBM product, program, or service.

IBM might have patents or pending patent applications covering subject matter described in this document.
The furnishing of this document does not give you any license to these patents. You can send license
inquiries, in writing, to:
IBM Director of Licensing, IBM Corporation, North Castle Drive, Armonk, NY 10504-1785 U.S.A.

The following paragraph does not apply to the United Kingdom or any other country where such
provisions are inconsistent with local law: INTERNATIONAL BUSINESS MACHINES CORPORATION
PROVIDES THIS PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR
IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED WARRANTIES OF NON-INFRINGEMENT,
MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of
express or implied warranties in certain transactions, therefore, this statement might not apply to you.

This information could include technical inaccuracies or typographical errors. Changes are periodically made
to the information herein; these changes will be incorporated in new editions of the publication. IBM might
make improvements and/or changes in the product(s) and/or the program(s) described in this publication at
any time without notice.

Any references in this information to non-IBM Web sites are provided for convenience only and do not in any
manner serve as an endorsement of those Web sites. The materials at those Web sites are not part of the
materials for this IBM product and use of those Web sites is at your own risk.

IBM might use or distribute any of the information you supply in any way it believes appropriate without
incurring any obligation to you.

Information concerning non-IBM products was obtained from the suppliers of those products, their published
announcements or other publicly available sources. IBM has not tested those products and cannot confirm the
accuracy of performance, compatibility or any other claims related to non-IBM products. Questions on the
capabilities of non-IBM products should be addressed to the suppliers of those products.

This information contains examples of data and reports used in daily business operations. To illustrate them
as completely as possible, the examples include the names of individuals, companies, brands, and products.
All of these names are fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which illustrate programming
techniques on various operating platforms. You might copy, modify, and distribute these sample programs in
any form without payment to IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating platform for which the sample
programs are written. These examples have not been thoroughly tested under all conditions. IBM, therefore,
cannot guarantee or imply reliability, serviceability, or function of these programs.
© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. ix

Trademarks
IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of International Business Machines Corporation
in the United States, other countries, or both. These and other IBM trademarked terms are marked on their first occurrence
in this information with the appropriate symbol (® or ™), indicating US registered or common law trademarks owned by
IBM at the time this information was published. Such trademarks may also be registered or common law trademarks in
other countries. A current list of IBM trademarks is available on the Web at http://www.ibm.com/legal/copytrade.shtml

The following terms are trademarks of the International Business Machines Corporation in the United States,
other countries, or both:

AIX®
Blue Gene/L™
Blue Gene/P™
Blue Gene®
DB2 Universal Database™
DB2®
eServer™
General Parallel File System™
GPFS™
IBM®
LoadLeveler®
POWER™
POWER4™
POWER5™
POWER6™
PowerPC®
Redbooks®
Redbooks (logo) ®
System p®
Tivoli®

The following terms are trademarks of other companies:

Snapshot, and the NetApp logo are trademarks or registered trademarks of NetApp, Inc. in the U.S. and other
countries.

SUSE, the Novell logo, and the N logo are registered trademarks of Novell, Inc. in the United States and other
countries.

Java and all Java-based trademarks are trademarks of Sun Microsystems, Inc. in the United States, other
countries, or both.

Microsoft, Windows, Windows NT, and the Windows logo are trademarks of Microsoft Corporation in the
United States, other countries, or both.

Intel, Intel logo, Intel Inside logo, and Intel Centrino logo are trademarks or registered trademarks of Intel
Corporation or its subsidiaries in the United States, other countries, or both.

UNIX is a registered trademark of The Open Group in the United States and other countries.

Linux is a trademark of Linus Torvalds in the United States, other countries, or both.

Other company, product, or service names might be trademarks or service marks of others.
x IBM Blue Gene/P Application Development

http://www.ibm.com/legal/copytrade.shtml

Preface

This IBM® Redbooks® publication is one in a series of IBM books written specifically for the
IBM System Blue Gene/P Solution. The Blue Gene/P system is the second generation of a
massively parallel supercomputer from IBM in the IBM System Blue Gene Solution series. In
this book, we provide an overview of the application development environment for the Blue
Gene/P system. We intend to help programmers understand the requirements to develop
applications on this high-performance massively parallel supercomputer.

In this book, we explain instances where the Blue Gene/P system is unique in its
programming environment. We also attempt to look at the differences between the IBM
System Blue Gene/L Solution and the Blue Gene/P Solution. In this book, we do not delve
into great depth about the technologies that are commonly used in the supercomputing
industry, such as Message Passing Interface (MPI) and Open Multi-Processing (OpenMP),
nor do we try to teach parallel programming. References are provided in those instances for
you to find more information if necessary.

Prior to reading this book, you must have a strong background in high-performance
computing (HPC) programming. The high-level programming languages that we use
throughout this book are C/C++ and Fortran95. Previous experience using the Blue Gene/L
system can help you better understand some concepts in this book that we do not extensively
discuss. However, several IBM Redbooks publications about the Blue Gene/L system are
available for you to obtain general information about the Blue Gene/L system. We
recommend that you refer to “IBM Redbooks” on page 371 for a list of those publications.

The team who wrote this book
This book was produced in collaboration with the IBM Blue Gene developers at IBM
Rochester, Minnesota, and IBM Blue Gene® developers at the IBM T. J. Watson Center in
Yorktown Heights, N.Y. The information presented in this book is direct documentation of
many of the Blue Gene/P hardware and software features. This information was published by
the International Technical Support Organization, Rochester, Minnesota.

Carlos Sosa is a Senior Technical Staff Member in the Blue Gene Development Group of
IBM, where he has been the team lead of the Chemistry and Life Sciences high-performance
effort since 2006. For the past 18 years, he focused on scientific applications with emphasis
in Life Sciences, parallel programming, benchmarking, and performance tuning. He received
a Ph.D. degree in physical chemistry from Wayne State University and completed his
post-doctoral work at the Pacific Northwest National Laboratory. His areas of interest are
future IBM POWER™ architectures, Blue Gene, Cell Broadband, and cellular molecular
biology.

Brant Knudson is a Staff Software Engineer in the Advanced Systems SW Development
group of IBM in Rochester, Minnesota, where he has been a programmer on the Control
System team since 2003. Prior to working on Blue Gene, he worked on IBM Tivoli® Directory
Server.
© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. xi

We thank the following people and their teams for their contributions to this book:

� Tom Liebsch for being the lead source for hardware information
� Harold Rodakowski for software information
� Thomas M. Gooding for kernel information
� Michael Blocksome for parallel paradigms
� Michael T. Nelson and Lynn Boger for their help with the compiler
� Thomas A. Budnik for his assistance with APIs
� Paul Allen for his extensive contributions

We also thank the following people for their contributions to this project:

Gary Lakner
Gary Mullen-Schultz
ITSO, Rochester, MN

Dino Quintero
ITSO, Poughkeepsie, NY

Paul Allen
John Attinella
Mike Blocksome
Lynn Boger
Thomas A. Budnik
Ahmad Faraj
Thomas M. Gooding
Nicholas Goracke
Todd Inglet
Tom Liebsch
Mark Megerian
Sam Miller
Mike Mundy
Tom Musta
Mike Nelson
Jeff Parker
Ruth J. Poole
Joseph Ratterman
Richard Shok
Brian Smith
IBM Rochester

Philip Heidelberg
Sameer Kumar
Martin Ohmacht
James C. Sexton
Robert E. Walkup
Robert Wisniewski
IBM Watson Center

Mark Mendell
IBM Toronto

Ananthanaraya Sugavanam
Enci Zhong
IBM Poughkeepsie
xii IBM Blue Gene/P Application Development

Kirk Jordan
IBM Waltham

Jerrold Heyman
IBM Raleigh

Subba R. Bodda
IBM India

Become a published author
Join us for a two- to six-week residency program! Help write a book dealing with specific
products or solutions, while getting hands-on experience with leading-edge technologies. You
will have the opportunity to team with IBM technical professionals, Business Partners, and
Clients.

Your efforts will help increase product acceptance and customer satisfaction. As a bonus, you
will develop a network of contacts in IBM development labs, and increase your productivity
and marketability.

Find out more about the residency program, browse the residency index, and apply online at:

ibm.com/redbooks/residencies.html

Comments welcome
Your comments are important to us!

We want our books to be as helpful as possible. Send us your comments about this book or
other IBM Redbooks in one of the following ways:

� Use the online Contact us review Redbooks form found at:

ibm.com/redbooks

� Send your comments in an e-mail to:

redbooks@us.ibm.com

� Mail your comments to:

IBM Corporation, International Technical Support Organization
Dept. HYTD Mail Station P099
2455 South Road
Poughkeepsie, NY 12601-5400
 Preface xiii

http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/residencies.html
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/contacts.html

xiv IBM Blue Gene/P Application Development

Summary of changes

This section describes the technical changes made in this edition of the book and in previous
editions. This edition might also include minor corrections and editorial changes that are not
identified.

September 2009, Fourth Edition

Summary of Changes
for SG24-7287-03
for IBM Blue Gene/P Application Development
as created or updated on September 2009

This revision reflects the addition, deletion, or modification of new and changed information
described in the following sections.

New information
� The compute and I/O node daemon creates a /jobs directory, described in 3.3.1, “Control

and I/O daemon” on page 33.

� The Compute Node Kernel now supports multiple application threads per core, described
in Chapter 4, “Execution process modes” on page 37.

� Support for GOMP, described in 8.5, “Support for pthreads and OpenMP” on page 100.

� Package configuration can be forwarded to the Blue Gene/P compute nodes, described in
8.10, “Configuring Blue Gene/P builds” on page 105.

� mpirun displays APPLICATION RAS events with -verbose 2 or higher, described in
Chapter 11, “mpirun” on page 177.

� The Real-time APIs now support RAS events, described in Chapter 14, “Real-time
Notification APIs” on page 251.

� Environment variable for specifying the cores that generate binary core files, described in
Appendix D, “Environment variables” on page 339.

� Two new environment variables have been added that affect latency on broadcast and
allreduce, DCMF_SAFEBCAST and DCMF_SAFEALLREDUCE, see Appendix D,
“Environment variables” on page 339 for more information.

Modified information
� The prefix of several constants were changed from DCMF_ to MPIO_ in 7.3.2,

“Configuring MPI algorithms at run time” on page 77.

� The Python language version is now 2.6.

� The IBM XL compilers support the -qsigtrap compiler option, described in Chapter 8,
“Developing applications with IBM XL compilers” on page 97.

� Users can debug HTC applications using submit, described in 12.3, “Running a job using
submit” on page 202.
© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. xv

December 2008, Third Edition

Summary of Changes
for SG24-7287-02
for IBM Blue Gene/P Application Development
as created or updated on December 2008

This revision reflects the addition, deletion, or modification of new and changed information
described in the following sections.

New information
� The IBM Blue Gene/P™ hardware now supports compute nodes with 4 GB of DDR

memory.

� STAR-MPI API in “Buffer alignment sensitivity” on page 73.

� Per-site Message Passing Interface (MPI) configuration API in 7.3.2, “Configuring MPI
algorithms at run time” on page 77.

� Blue Gene/P MPI environment variables in “MPI functions” on page 80.

� Scalable Debug API in 9.2.10, “Scalable Debug API” on page 161.

� mpikill command-line utility in “mpikill” on page 180.

� mpirun -start_tool and -tool_args arguments in “Invoking mpirun” on page 183.

� Tool-launching interface in “Tool-launching interface” on page 188.

� In “Examples” on page 191, failing mpirun prints out reliability, availability, and
serviceability (RAS) events.

� job_started() function in “mpirun APIs” on page 199.

� Immediate High-Throughput Computing (HTC) partition user list modification in “Altering
the HTC partition user list” on page 206.

� Partition options modifications in section “Partition-related APIs” on page 215.

� RM_PartitionBootOptions specification in “Field specifications for the rm_get_data() and
rm_set_data() APIs” on page 229.

� Server-side filtering, notification of HTC events, and new job callbacks in Chapter 14,
“Real-time Notification APIs” on page 251.

Modified information
� In “mpiexec” on page 179, removing some limitations that are no longer present

� Use of Compute Node Kernel’s thread stack protection mechanism in more situations as
described in “Memory protection” on page 47

� Changes to Dynamic Partition Allocator APIs, described in Chapter 15, “Dynamic Partition
Allocator APIs” on page 295, in non-backwards compatible ways

� HTC partitions support for group permissions, as described in Appendix G, “htcpartition”
on page 359
xvi IBM Blue Gene/P Application Development

September 2008, Second Edition

Summary of Changes
for SG24-7287-01
for IBM Blue Gene/P Application Development
as created or updated on September 2008

This revision reflects the addition, deletion, or modification of new and changed information
described in the following sections.

New information
� High Throughput Computing in Chapter 12, “High-Throughput Computing (HTC)

paradigm” on page 201

� Documentation on htcpartition in Appendix G, “htcpartition” on page 359

Modified information
� The book was reorganized to include Part 4, “Job scheduler interfaces” on page 207. This

section contains the Blue Gene/P APIs. Updates to the API chapters for HTC are included.

� Appendix F, “Mapping” on page 355 is updated to reflect the predefined mapping for
mpirun.
 Summary of changes xvii

xviii IBM Blue Gene/P Application Development

Part 1 Blue Gene/P: System
and environment
overview

IBM Blue Gene/P is the next generation of massively parallel systems that IBM produced. It
follows in the tradition established by the IBM Blue Gene/L™ Solution in challenging our
thinking to take advantage of this innovative architecture. This next generation of
supercomputers follows the winning formula provided as part of the Blue Gene/L Solution,
that is, orders of magnitude in size and substantially more efficient in power consumption.

In this part, we present an overview of the two main topics of this book: hardware and
software environment. This part includes the following chapters:

� Chapter 1, “Hardware overview” on page 3
� Chapter 2, “Software overview” on page 15

Part 1
© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 1

2 IBM Blue Gene/P Application Development

Chapter 1. Hardware overview

In this chapter, we provide a brief overview of hardware. This chapter is intended for
programmers who are interested in learning about the Blue Gene/P system. In this chapter,
we provide an overview for programmers who are already familiar with the Blue Gene/L
system and who want to understand the differences between the Blue Gene/L and Blue
Gene/P systems.

It is important to understand where the Blue Gene/P system fits within the multiple systems
that are currently available in the market. To gain a historical perspective and a perspective
from an applications point-of-view, we recommend that you read the first chapter of the book
Unfolding the IBM eServer Blue Gene Solution, SG24-6686. Although this book is written for
the Blue Gene/L system, these concepts apply to the Blue Gene/P system.

In this chapter, we describe the Blue Gene/P architecture. We also provide an overview of the
machine with a brief description of some of the components. Specifically, we address the
following topics:

� System architecture overview
� Differences between Blue Gene/L and Blue Gene/P hardware
� Microprocessor
� Compute nodes
� I/O nodes
� Networks
� Blue Gene/P programs
� Blue Gene/P specifications
� Host system
� Host system software

1

© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 3

1.1 System architecture overview
The IBM System Blue Gene Solution is a revolutionary and important milestone for IBM in the
high-performance computing arena. The Blue Gene/L system was the fastest supercomputer
from the fall of 2004 until the fall of 2007 as noted by the TOP500 organization.1 Now IBM
introduces the Blue Gene/P system as the next generation of massively parallel
supercomputers, based on the same successful architecture that is in the Blue Gene/L
system.

The Blue Gene/P system includes the following key features and attributes, among others:

� Dense number of cores per rack: 4096 cores per rack

� IBM PowerPC®, Book E compliant, 32-bit microprocessor, 850 MHz

� Double-precision, dual pipe floating-point acceleration on each core

� 24-inch/42U server rack air cooled

� Low power per FLOP ratio on IBM Blue Gene/P compute application-specific integrated
circuit (ASIC), 1.8 watts per GFlop/sec. per SOC

� Includes memory controllers, caches, network controllers, and high-speed input/output
(I/O)

� Linux® kernel running on I/O Nodes

� Message Passing Interface (MPI)2 support between nodes via MPI library support

� Open Multi-Processing (OpenMP)3 application programming interface (API)

� Scalable control system based on external service node and front end node

� Standard IBM XL family of compilers support with XL C/C++, XLF, and GNU Compiler
Collection5

� Software support for IBM LoadLeveler®,6 IBM General Parallel File System™ (GPFS™),7
and Engineering and Scientific Subroutine Library (ESSL)8

Figure 1-1 on page 5 illustrates the Blue Gene/P system architecture. It provides an overview
of the multiple system components, from the microprocessor to the full system.

The system contains the following components:

Chip The Blue Gene/P base component is a quad-core chip (also referred
throughout this book as a node). The frequency of a single core is 850
MHz.

Compute card One chip is soldered to a small processor card, one per card, together
with memory (DRAM), to create a compute card (one node). The
amount of DRAM per card is 2 GB or 4 GB.

Node card The compute cards are plugged into a node card. There are two rows
of sixteen compute cards on the card (planar). From zero to two I/O
nodes per compute node card can be added to the node card.

Rack A rack holds a total of 32 node cards.

System A full petaFLOP system consists of 72 racks.
4 IBM Blue Gene/P Application Development

Figure 1-1 Blue Gene/P system overview from the microprocessor to the full system

1.1.1 System buildup

The number of cores in a system can be computed using the following equation:

Number of cores = (number of racks) x (number of node cards per rack) x (number of
compute cards per node card) x (number of cores per compute card)

This equation corresponds to cores and memory. However, I/O is carried out through the I/O
node that is connected externally via a 10 gigabit Ethernet network. This network
corresponds to the functional network. I/O Nodes are not considered in the previous equation.

Finally, the compute and I/O Nodes are connected externally (to the outside world) through
the following peripherals:

� One service node
� One or more front end nodes
� Global file system

1.1.2 Compute and I/O nodes

Nodes are made of one quad-core CPU with 2 GB or 4 GB of memory. These nodes do not
have a local file system. Therefore, they must route I/O operations to an external device. To
reach this external device (outside the environment), a compute node sends data to an I/O
node, which in turn, carries out the I/O requests.

The hardware for both types of nodes is virtually identical. The nodes differ only in the way
they are used, for example, extra RAM might be on the I/O Nodes, and the physical
connectors thus are different. A compute node runs a light, UNIX®-like proprietary kernel,
referred to as the Compute Node Kernel (CNK). The CNK ships all network-bound requests
to the I/O node.

Cabled
8x8x16

System
72 racks

Rack
32 node cards

Node Card
(32 chips 4x4x2)

32 compute, 0-2 IO cards

Compute Card
1 chip, 40
DRAMs

Chip
4 processors

13.6 GF/s
8 MB EDRAM

13.6 GF/s
2 or 4 GB DDR

435 GF/s
Up to 128 GB

14 TF/s
Up to 4 TB

1 PF/s
Up to 288 TB
Chapter 1. Hardware overview 5

The I/O node is connected to the external device through an Ethernet port to the 10 gigabit
functional network and can perform file I/O operations.In the next section, we provide an
overview of the Blue Gene environment, including all the components that fully populate the
system.

1.1.3 Blue Gene/P environment

The Blue Gene/P environment consists of all the components that form part of the full system.
Figure 1-2 illustrates the multiple components that form the Blue Gene/P environment. The
Blue Gene/P system consists of the following key components:

Service node This node provides control of the Blue Gene/P system.

Front end node This node provides access to the users to submit, compile, and build
applications.

Compute node This node runs applications. Users cannot log on to this node.

I/O node This node provides access to external devices, and all I/O requests
are routed through this node.

Functional network This network is used by all components of the Blue Gene/P system
except the compute node.

Control network This network is the service network for specific system control
functions between the service node and the I/O node.

In the remainder of this chapter, we describe these key components.

Figure 1-2 Blue Gene/P environment

Service Node

System
Console

Scheduler

DB2 MMCS

Frontend
Nodes

File
Servers

Collective Network Pset 1151

I/O Node 1151I/O Node 0 I/O Node 1151C-Node 0 I/O Node 1151C-Node 63

Collective Network Pset 0

.

.

.

.

.

.

.

.

Linux

fs client

ciod

CNK

MPI

app

CNK

MPI

app

torus

Functional
10 Gbps
Ethernet

Control
Gigabit

Ethernet

iCon+
Palomino

I2C

JTAG

I/O Node 1151C-Node 0 I/O Node 1151C-Node 63I/O Node 1151I/O Node 1151

Linux

fs client

ciod

CNK

MPI

app

CNK

MPI

app
6 IBM Blue Gene/P Application Development

1.2 Differences between Blue Gene/L and Blue Gene/P hardware

The Blue Gene/P solution is a highly scalable multi-node supercomputer. Table 1-1 on page 8
shows key differences between the Blue Gene/L and Blue Gene/P systems. Each node
consists of a single ASIC and forty 512 MB SDRAM-DDR2 memory chips. The nodes are
interconnected through six networks, one of which connects the nearest neighbors into a
three-dimensional (3D) torus or mesh. A system with 72 racks has a (x, y, z) 72 x 32 x 32 3D
torus. The ASIC that is powering the nodes is in IBM CU-08 (CMOS9SF) system-on-a-chip
technology and incorporates all of the compute and communication functionality needed by
the core Blue Gene/P system. It contains 8 MiB of high-bandwidth embedded DRAM that can
be accessed by the four cores in approximately 20 cycles for most L1 cache misses.

The scalable unit of Blue Gene/P packaging consists of 512 compute nodes on a
doubled-sided board, called a midplane, with dimensions of approximately 20 inches x
25 inches x 34 inches.

Each node operates at Voltage Drain Drain (VDD) = 1.1v, 1.2v, or 1.3v, Temp_junction <70C,
and a frequency of 850 MHz. Using an IBM PowerPC 450 processor and a single-instruction,
multiple-data (SIMD), double-precision floating-point multiply add unit (double floating-point
multiply add (FMA)), it can deliver four floating-point operations per cycle, or a theoretical
maximum of 7.12 teraFLOPS at peak performance for a single midplane. Two midplanes are
contained within a single cabinet.

A midplane set of processing nodes, from a minimum of 16 to a maximum of 128, can be
attached to a dedicated quad-processor I/O node for handling I/O communications to and
from the compute nodes. The I/O node is assembled using the same ASIC as a compute
node. Each compute node has a separate lightweight kernel, the CNK, which is designed for
high-performance scientific and engineering code. With help from the I/O node kernel, the
CNK provides Linux-like functionality to user applications. The I/O nodes run an embedded
Linux operating system that is extended to contain additional system software functionality to
handle communication with the external world and other services.

The I/O Nodes of the Blue Gene/P system are connected to an external 10 gigabit Ethernet
switch, as previously mentioned, which provides I/O connectivity to file servers of a
cluster-wide file system as illustrated in Figure 1-2 on page 6. The 10 gigabit Ethernet switch
connects the Blue Gene/P system to the front end node and other computing resources. The
front end node supports interactive logons, compiling, and overall system management.

MiB: 1 MiB = 220 bytes = 1,048,576 bytes = 1,024 kibibytes (a contraction of kilo binary
byte)

Note: A midplane is the smallest unit that supports the full 3D torus.
Chapter 1. Hardware overview 7

Table 1-1 compares selected features between the Blue Gene/L and Blue Gene/P systems.

Table 1-1 Feature comparison between the Blue Gene/L and Blue Gene/P systems

Appendix A, “Blue Gene/P hardware-naming conventions” on page 325 provides an overview
of how the Blue Gene/P hardware locations are assigned. Names are used consistently
throughout both the hardware and software chapters. Understanding the naming convention
is particularly useful when running applications on the Blue Gene/P system.

1.3 Microprocessor
The microprocessor is a PowerPC 450, Book E compliant, 32-bit microprocessor with a clock
speed of 850 MHz. The PowerPC 450 microprocessor, with double-precision floating-point
multiply add unit (double FMA), can deliver four floating-point operations per cycle with
3.4 GLOPS per core.

Feature Blue Gene/L Blue Gene/P

Node

Cores per node 2 4

Core clock speed 700 MHz 850 MHz

Cache coherency Software managed SMP

Private L1 cache 32 KB per core 32 KB per core

Private L2 cache 14 stream prefetching 14 stream prefetching

Shared L3 cache 4 MB 8 MB

Physical memory per node 512 MB-1 GB 2 GB or 4 GB

Main memory bandwidth 5.6 GBps 13.6 GBps

Peak performance 5.6 GFLOPS per node 13.6 GLOPS per node

Network topologies

Torus

Bandwidth 2.1 GBps 5.1 GBps

Hardware latency (nearest
neighbor)

200 ns (32-byte packet) and 1.6
μs (256-byte packet)

100 ns (32-byte packet) and
800 ns (256-byte packet)

Tree

Bandwidth 700 MBps 1.7 GBps

Hardware latency (round trip
worst case)

5.0 μs 3.0 μs

Full system

Peak performance 410 TFLOPS (72 racks) 1 PFLOPS (72 racks)

Power 1.7 MW (72 racks) 2.1 MW (72 racks)
8 IBM Blue Gene/P Application Development

1.4 Compute nodes
The compute node contains four PowerPC 450 processors with 2 GB or 4 GB of shared RAM
and run a lightweight kernel to execute user-mode applications only. Typically all four cores
are used for computation either in dual mode, virtual node mode, or symmetrical
multiprocessing. (Chapter 4, “Execution process modes” on page 371 covers these different
modes.) Data is moved to and from the I/O nodes over the global collective network.
Figure 1-3 illustrates the components of a compute node.

Compute nodes consist of the following components:

� Four 850 MHz PowerPC 450 cores
� Two GB or 4 GB RAM per node
� Six connections to the torus network at 3.4 Gbps per link
� Three connections to the global collective network at 6.8 Gbps per link
� Four connections to the global interrupt network
� One connection to the control network (JTAG)

Figure 1-3 Blue Gene/P ASIC

M
ultiplexing sw

itch
M

ultiplexing sw
itch

PPC 450
FPU

L1
Prefetching

L2
4MB

eDRAM
L3

DDR-2
Controller

PPC 450
FPU

L1 Prefetching
L2

PPC 450

FPU
L1

Prefetching
L2

4MB
eDRAM

L3

DDR-2
Controller

PPC 450
FPU

L1
Prefetching

L2

Torus Collective BarrierJTAG 10Gb
Ethernet

DMA

BlueGene/P node

Internal bus

6 directions *
4bits/cycle,
bidirectional

3 ports * 8
bits/cycle,

bidirectional

4 ports,
bidirectional

Control
Network

2*16B bus @
½ proc speed

To 10Gb
physical layer

16B/cycle read (each), 16B/cycle write (each)

Data read @ 8 B/cycle
Data write @ 8 B/cycle
Instruction @ 8 B/cycle

16B/cycle
DDR2 DRAM

bus

4 symmetric ports for
Tree, torus and global

barriers

DMA module allows
Remote direct
“put” & “get”

M
ultiplexing sw

itch
M

ultiplexing sw
itch

PPC 450
FPU

L1
Prefetching

L2
4MB

eDRAM
L3

DDR-2
Controller

PPC 450
FPU

L1 Prefetching
L2

PPC 450

FPU
L1

Prefetching
L2

4MB
eDRAM

L3

DDR-2
Controller

PPC 450
FPU

L1
Prefetching

L2

Torus Collective BarrierJTAG 10Gb
Ethernet

DMA

BlueGene/P node

Internal bus

6 directions *
4bits/cycle,
bidirectional

3 ports * 8
bits/cycle,

bidirectional

4 ports,
bidirectional

Control
Network

2*16B bus @
½ proc speed

To 10Gb
physical layer

16B/cycle read (each), 16B/cycle write (each)

Data read @ 8 B/cycle
Data write @ 8 B/cycle
Instruction @ 8 B/cycle

16B/cycle
DDR2 DRAM

bus

4 symmetric ports for
Tree, torus and global

barriers

DMA module allows
Remote direct
“put” & “get”
Chapter 1. Hardware overview 9

1.5 I/O nodes

I/O nodes run an embedded Linux kernel with minimal packages required to support a
Network File System (NFS) client and Ethernet network connections. They act as a gateway
for the compute nodes in their respective rack to the external world (see Figure 1-4). The I/O
Nodes present a subset of standard Linux operating interfaces to the user. The 10 gigabit
Ethernet interface of the I/O nodes is connected to the core Ethernet switch.

The node cards have the following components among others:

� Four 850 MHz PowerPC 450 cores
� Two GB or 4 GB DDR2 SDRAM
� One 10 gigabit Ethernet adapter connected to the 10 gigabit Ethernet network
� Three connections to the global collective network at 6.8 Gbps per link
� Four connections to the global interrupt network
� One connection to the control network (JTAG)

Figure 1-4 Blue Gene/P I/O node card

1.6 Networks

Five networks are used for various tasks on the Blue Gene/P system:

� Three-dimensional torus: point-to-point

The torus network is used for general-purpose, point-to-point message passing and
multicast operations to a selected “class” of nodes. The topology is a three-dimensional
torus constructed with point-to-point, serial links between routers embedded within the
Blue Gene/P ASICs. Therefore, each ASIC has six nearest-neighbor connections, some
of which can traverse relatively long cables. The target hardware bandwidth for each torus
link is 425 MBps in each direction of the link for a total of 5.1 GBps bidirectional bandwidth
per node. The three-dimensional torus network supports the following features:

– Interconnection of all compute nodes (73,728 for a 72-rack system)
– Virtual cut-through hardware routing
– 3.4 Gbps on all 12 node links (5.1 GBps per node)
– Communications backbone for computations
– 1.7/3.8 TBps bisection bandwidth, 67 TBps total bandwidth

Node Card

32 Compute
Nodes

Local DC-DC
regulators

(six required, eight
with redundancy)

Optional I/O card
(one of two possible)
with 10 Gb optical link
10 IBM Blue Gene/P Application Development

� Global collective: global operations

The global collective network is a high-bandwidth, one-to-all network used for collective
communication operations, such as broadcast and reductions, and to move process and
application data from the I/O Nodes to the compute nodes. Each Compute and I/O node
has three links to the global collective network at 850 MBps per direction for a total of
5.1 GBps bidirectional bandwidth per node. Latency on the global collective network is
less than 2 µs from the bottom to top of the collective, with an additional 2 µs latency to
broadcast to all. The global collective network supports the following features:

– One-to-all broadcast functionality
– Reduction operations functionality
– 6.8 Gbps of bandwidth per link; latency of network traversal 2 µs
– 62 TBps total binary network bandwidth
– Interconnects all compute and I/O Nodes (1088)

� Global interrupt: low latency barriers and interrupts

The global interrupt network is a separate set of wires based on asynchronous logic,
which forms another network that enables fast signaling of global interrupts and barriers
(global AND or OR). Round-trip latency to perform a global barrier over this network for a
72 K node partition is approximately 1.3 µs.

� 10 gigabit Ethernet: file I/O and host interface

The 10 gigabit Ethernet (optical) network consists of all I/O Nodes and discrete nodes that
are connected to a standard 10 gigabit Ethernet switch. The compute nodes are not
directly connected to this network. All traffic is passed from the compute node over the
global collective network to the I/O node and then onto the 10 gigabit Ethernet network.

� Control: boot, monitoring, and diagnostics

The control network consists of a JTAG interface to a 1 gigabit Ethernet interface with
direct access to shared SRAM in every Compute and I/O node. The control network is
used for system boot, debug, and monitoring. It enables the service node to provide
run-time non-invasive reliability, availability, and serviceability (RAS) support as well as
non-invasive access to performance counters.

1.7 Blue Gene/P programs

The Blue Gene/P software for the Blue Gene/P core rack includes the following programs:

� Compute Node Kernel (CNK)

MPI support for hardware implementation and abstract device interface, control system,
and system diagnostics.

� Compute Node services (CNS)

Provides an environment for execution of user processes. The services that are provided
are process creation and management, memory management, process debugging, and
RAS management.

� I/O node kernel and services

Provides file system access and sockets communication to applications executing in the
compute node.

� GNU Compiler Collection Toolchain Patches (Blue Gene/P changes to support GNU
Compiler Collection).
Chapter 1. Hardware overview 11

The system software that is provided with each Blue Gene/P core rack or racks includes the
following programs:

� IBM DB2® Universal Database™ Enterprise Server Edition: System administration and
management

� Compilers: XL C/C++ Advanced Edition for Linux with OpenMP support and XLF (Fortran)
Advanced Edition for Linux

1.8 Blue Gene/P specifications

Table 1-2 lists the features of the Blue Gene/P compute nodes and I/O nodes.

Table 1-2 Blue Gene/P node properties

Node properties

Node processors (compute and I/O) Quad 450 PowerPC

Processor frequency 850 MHz

Coherency Symmetrical multiprocessing

L1 Cache (private) 32 KB per core

L2 Cache (private) 14 stream prefetching

L3 Cache size (shared) 8 MB

Main store memory/node 2 GB or 4 GB

Main store memory bandwidth 16 GBps

Peak performance 13.6 GFLOPS (per node)

Torus network

Bandwidth 6 GBps

Hardware latency (nearest neighbor) 64 ns (32-byte packet), 512 ns (256-byte packet)

Hardware latency (worst case) 3 μs (64 hops)

Global collective network

Bandwidth 2 GBps

Hardware latency (round-trip worst case) 2.5 μs

System properties (for 73,728 compute nodes)

Peak performance 1 PFLOPS

Average/peak total power 1.8 MW/2.5 MW (25 kW/34 kW per rack)
12 IBM Blue Gene/P Application Development

1.9 Host system

In addition to the Blue Gene/P core racks, the host system shown in Figure 1-5 is required for
a complete Blue Gene/P system. There is generally one host rack for the core Ethernet
switch, service node, and front end node. It might also house the Hardware Management
Console (HMC) control node, monitor, keyboard, KVM switch, terminal server, and Ethernet
modules.

Figure 1-5 Blue Gene/P rack and host system

1.9.1 Service node

The service node performs many functions for the operation of the Blue Gene/P system,
including system boot, machine partitioning, system performance measurements, and system
health monitoring. The service node uses IBM DB2 as the data repository for system and
state information.

1.9.2 Front end nodes

The front end node provides interfaces for users to log on, compile their applications, and
submit their jobs to run from these nodes. They have direct connections to both the Blue
Gene/P internal VLAN and the public Ethernet networks.

1.9.3 Storage nodes

The storage nodes provide mass storage for the Blue Gene/P system. We recommend that
the storage nodes run IBM GPFS locally to provide a single unified file system name space to
the Blue Gene/P system. However the I/O nodes access the GPFS file system over standard
NFS mounts.

The storage rack generally contains the terminal server, storage nodes with RAM, gigabit
Ethernet adapters connected to the core Ethernet switch, and adapters connected to a hard
disk drive (HDD).

Blue Gene core rack
1024 Compute Nodes/rack

Up to 64 I/O Nodes/rack

Blue Gene program software
Compute Node Kernel

Host system
Service and Front End Nodes, storage system,

Ethernet switch, cabling, SLES10

System software
DB2, XLF/C compilers

Optional HPC software
LoadLeveler, GPFS, ESSL
Chapter 1. Hardware overview 13

1.10 Host system software

The operating system requires installation of SUSE® Linux Enterprise Server 10 (SLES10,
64 bit) on the service node and front end node.

The following software applications for high-performance computing are optionally available
for the Blue Gene/P system:

� Cluster System Management V1.5

� File system: GPFS for Linux Server with NFS Client

� Job Scheduler: LoadLeveler for Blue Gene/P

� Engineering and Scientific Subroutine Library

� Application development tools for Blue Gene/P, which include debugging environments,
application performance monitoring and tuning tools, and compilers.
14 IBM Blue Gene/P Application Development

Chapter 2. Software overview

In this chapter, we provide an overview of the software that runs on the Blue Gene/P system.
As shown in Chapter 1, “Hardware overview” on page 3, the Blue Gene/P environment
consists of compute and I/O nodes. It also has an external set of systems where users can
perform system administration and management, partition and job management, application
development, and debugging. In this heterogeneous environment, software must be able to
interact.

Specifically, we cover the following topics:

� IBM Blue Gene/P software at a glance
� Compute Node Kernel
� Message Passing Interface on Blue Gene/P
� Memory considerations
� Other considerations
� Compilers overview
� I/O node software
� Management software

2

© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 15

2.1 Blue Gene/P software at a glance

Blue Gene/P software includes the following key attributes among others:

� Full Linux kernel running on I/O nodes

� Proprietary kernel dedicated for the Compute Nodes

� Message Passing Interface (MPI)9 support between nodes through MPI library support

� Open Multi-Processing (OpenMP)10 application programming interface (API)

� Scalable control system based on an external Service Node and Front End Node

� Standard IBM XL family of compilers11 support with XLC/C++, XLF, and GNU Compiler
Collection12

� Software support that includes IBM LoadLeveler,13 IBM GPFS,14 and Engineering and
Scientific Subroutine Library (ESSL)15

From a software point of view, the Blue Gene/P system is comprised of the following
components:

� Compute nodes
� I/O nodes
� Front end nodes where users compile and submit jobs
� Control management network
� Service node, which provides capabilities to manage jobs running in the racks
� Hardware in the racks

The Front End Node consists of the interactive resources on which users log on to access the
Blue Gene/P system. Users edit and compile applications, create job control files, launch jobs
on the Blue Gene/P system, post-process output, and perform other interactive activities.

An Ethernet switch is the main communication path for applications that run on the Compute
Node to the external devices. This switch provides high-speed connectivity to the file system,
which is the main disk storage for the Blue Gene/P system. This switch also gives other
resources access to the files on the file system.

A control and management network provides system administrators with a separate
command and control path to the Blue Gene/P system. This private network is not available
to unprivileged users.

The software for the Blue Gene/P system consists of the following integrated software
subsystems:

� System administration and management
� Partition and job management
� Application development and debugging tools
� Compute Node Kernel (CNK) and services
� I/O node kernel and services

The five software subsystems are required in three hardware subsystems:

� Host complex (including Front End Node and Service Node)
� I/O node
� Compute node
16 IBM Blue Gene/P Application Development

Figure 2-1 illustrates these components.

Figure 2-1 Software stack overview

The software environment illustrated in Figure 2-1 relies on a series of header files and
libraries. A selected set is listed in Appendix C, “Header files and libraries” on page 335.

2.2 Compute Node Kernel

The Compute Node Kernel (CNK) provides an environment for executing user processes.
The CNK includes the following services:

� Process creation and management
� Memory management
� Process debugging
� Reliability, availability, and serviceability (RAS) management
� File I/O
� Network

The Compute Nodes on Blue Gene/P are implemented as quad cores on a single chip with
2 GB or 4 GB of dedicated physical memory in which applications run.

A process is executed on Blue Gene/P nodes in the following three main modes:

� Symmetrical Multiprocessing (SMP) node mode
� Virtual node (VN) mode
� Dual mode (DUAL)

User Data Management, Pre/Post Processing
DB, Visualization,
User Job Scripting,

User Job and Partition Management

High Level Control System
System Management, Block Management, Booting

RAS Collection, Diagnostics,
Job Control, File Systems

Libraries (ESSL, etc.)

Messaging (MPI,
Open MP, Other)

System Call Layer

Message Layer
(Compute &
I/O Node)

Diags ION
Linux

CN
LinuxLWK

Kernel Development Toolkit
Devices, Primitives, RAS,
Mailbox, Interrupt Services

Low Level Control System
Power On/Off, Discovery, Partitioning support,

Machine Controller API, Machine Server,
Diag APIs (standalone and integrated), RAS

Compute Node
Compute Node

Compute Node
Compute Node

Compute Node
Compute Node

Compute Node
Compute Node

I/O Node
I/O Node

Link Card
Link Card

Node Card
Node Card

Node Card

Service Card

Service Node
Service Node

Front End Node

File Systems

D
ev

ic
e

La
ye

r
A

pp
 L

ay
er

S
ys

te
m

 L
ay

er

User Data Management, Pre/Post Processing
DB, Visualization,
User Job Scripting,

User Job and Partition Management

High Level Control System
System Management, Block Management, Booting

RAS Collection, Diagnostics,
Job Control, File Systems

Libraries (ESSL, etc.)

Messaging (MPI,
Open MP, Other)

System Call Layer

Message Layer
(Compute &
I/O Node)

Diags ION
Linux

CN
LinuxLWK

Kernel Development Toolkit
Devices, Primitives, RAS,
Mailbox, Interrupt Services

Low Level Control System
Power On/Off, Discovery, Partitioning support,

Machine Controller API, Machine Server,
Diag APIs (standalone and integrated), RAS

Compute Node
Compute Node

Compute Node
Compute Node

Compute Node
Compute Node

Compute Node
Compute Node

Compute Node
Compute Node

Compute Node
Compute Node

Compute Node
Compute Node

Compute Node
Compute Node

I/O Node
I/O Node

I/O Node
I/O Node

Link Card
Link Card

Link Card
Link Card

Node Card
Node Card

Node Card

Node Card
Node Card

Node Card

Service Card

Service Node
Service Node

Front End Node

File SystemsService Node
Service Node

Service Node
Service Node

Front End Node

File Systems

D
ev

ic
e

La
ye

r
A

pp
 L

ay
er

S
ys

te
m

 L
ay

er
Chapter 2. Software overview 17

Application programmers see the Compute Node Kernel software as a Linux-like operating
system. This type of operating system is accomplished on the Blue Gene/P software stack by
providing a standard set of run-time libraries for C, C++, and Fortran95. To the extent that is
possible, the supported functions maintain open standard POSIX-compliant interfaces. We
discuss the Compute Node Kernel further in Part 2, “Kernel overview” on page 27.
Applications can access system calls that provide hardware or system features, as illustrated
by the examples in Appendix B, “Files on architectural features” on page 331.

2.2.1 High-performance computing and High-Throughput Computing modes

When discussing Blue Gene/P, we refer to the parallel paradigms that rely on the network for
communication, mainly through the Message-Passing Interface (MPI) as high-performance
computing (HPC). This topic is discussed in Chapter 7, “Parallel paradigms” on page 65.
Blue Gene/P also offers a paradigm where applications do not require communication
between tasks and each node is running a different instance of the application. We referred to
this paradigm as High-Throughput Computing (HTC). This topic is discussed in Chapter 12,
“High-Throughput Computing (HTC) paradigm” on page 201.

2.2.2 Threading support on Blue Gene/P

The threading implementation on the Blue Gene/P system supports OpenMP. The XL
OpenMP implementation provides a futex-compatible syscall interface, so that the Native
POSIX Thread Library (NPTL) pthreads implementation in glibc runs without modification.
These syscalls allow a limited number of threads and limited support for mmap(). The
Compute Node Kernel provides a thread for I/O handling in MPI.

2.3 Message Passing Interface on Blue Gene/P

The implementation of MPI on the Blue Gene/P system is the MPICH2 standard that was
developed by Argonne National Labs. For more information about MPICH2, see the Message
Passing Interface (MPI) standard Web site at:

http://www-unix.mcs.anl.gov/mpi/

A function of the MPI-2 standard that is not supported by Blue Gene/P is dynamic process
management (creating new MPI processes).16 However, the various thread modes are
supported.

2.4 Memory considerations
On the Blue Gene/P system, the entire physical memory of a Compute Node is either 2 GB or
4 GB. Of that space, some is allocated for the CNK itself. In addition, shared memory space
is also allocated to the user process at the time at which the process is created.

Important: The Compute Node Kernel supports a limited number of threads bound to CPU
cores. The thread limit depends on the mode of the job and the application thread depth as
described in detail in Chapter 4, “Execution process modes” on page 37.

Important: In C, C++, and Fortran, the malloc routine returns a NULL pointer when users
request more memory than the physical memory available. We recommend you always
check malloc() return values for validity.
18 IBM Blue Gene/P Application Development

http://www-unix.mcs.anl.gov/mpi/

The Compute Node Kernel keeps track of collisions of stack and heap as the heap is
expanded with a brk() syscall. The Blue Gene/P system includes stack guard pages.

The Compute Node Kernel and its private data are protected from read/write by the user
process or threads. The code space of the process is protected from writing by the process or
threads. Code and read-only data are shared between the processes in Virtual Node Mode
unlike in the Blue Gene/L system.

In general, give careful consideration to memory when writing applications for the Blue
Gene/P system. At the time this book was written, each node has 2 GB or 4 GB of physical
memory.

As previously mentioned, memory addressing is an important topic in regard to the Blue
Gene/P system. An application that stores data in memory falls into one of the following
classifications:

data Initialized static and common variables
bss Uninitialized static and common variables
heap Controlled allocatable arrays
stack Controlled automatic arrays and variables

You can use the Linux size command to gain an idea of the memory size of the program.
However, the size command does not provide any information about the run-time memory
usage of the application nor on the classification of the types of data. Figure 2-2 illustrates
memory addressing in HPC based on the different node modes that are available on the Blue
Gene/P system.

Figure 2-2 Memory addressing on the Blue Gene/P system as a function of the different node modes
Chapter 2. Software overview 19

2.4.1 Memory leaks
Given that no virtual paging exists on the Blue Gene/P system, any memory leaks in your
application can quickly consume available memory. When writing applications for the Blue
Gene/P system, you must be especially diligent that you release all memory that you allocate.
This situation is true on any machine. Most of the time, having an application running on
multiple architectures helps identify this type of problem.

2.4.2 Memory management
The Blue Gene/P computer implements a 32-bit memory model. It does not support a 64-bit
memory model, but provides large file support and 64-bit integers.

Two types of Blue Gene/P compute nodes are available: One provides 2 GB of memory per
compute node, and the other provides 4 GB of memory per compute node. In the case of the
2 GB compute nodes, if the memory requirement per MPI task is greater than 512 MB in
virtual node mode, greater than 1 GB in Dual mode, or greater than 2 GB in SMP mode, the
application cannot run on the Blue Gene/P system. In the case of the 4 GB compute nodes, if
the memory requirement per MPI task is greater than 1 GB in Virtual Node Mode, greater
than 2 GB in Dual mode, or greater than 4 GB in SMP mode, the application cannot run on
the Blue Gene/P system. The application works only if you take steps to reduce the memory
footprint.

In some cases, you can reduce the memory requirement by distributing data that was
replicated in the original code. In this case, additional communication might be needed. It
might also be possible to reduce the memory footprint by being more careful about memory
management in the application, such as by not defining arrays for the index that corresponds
to the number of nodes.

2.4.3 Uninitialized pointers

Blue Gene/P applications run in the same address space as the Compute Node Kernel and
the communications buffers. You can create a pointer that does not reference your own
application’s data, but rather references the area used for communications. The Compute
Node Kernel itself is well protected from rogue pointers.

2.5 Other considerations
It is important to understand that the operating system present on the Compute Node, the
Compute Node Kernel, is not a full-fledged version of Linux. Therefore, you must use care in
some areas, as explained in the following sections, when writing applications for the Blue
Gene/P system. For a full list of supported system calls, see Chapter 6, “System calls” on
page 51.

2.5.1 Input/output
I/O is an area where you must pay special attention in your application. The CNK does not
perform I/O. This is carried out by the I/O node.

File I/O
A limited set of file I/O is supported. Do not attempt to use asynchronous file I/O because it
results in run-time errors.
20 IBM Blue Gene/P Application Development

Standard input
Standard input (stdin) is supported on the Blue Gene/P system.

Sockets calls
Sockets are supported on the Blue Gene/P system. For additional information, see Chapter 6,
“System calls” on page 51.

2.5.2 Linking

Dynamic linking is not supported on the Blue Gene/L system. However, it is supported on the
Blue Gene/P system. You can now statically link all code into your application or use dynamic
linking.

2.6 Compilers overview

Read-only sections are supported in the Blue Gene/P system. However, this is not true of
read-only sections within dynamically located modules.

2.6.1 Programming environment overview

The diagram in Figure 2-3 provides a quick view into the software stack that supports the
execution of Blue Gene/P applications.

Figure 2-3 Software stack supporting the execution of Blue Gene/P applications

2.6.2 GNU Compiler Collection
The standard GNU Compiler Collection V4.1.2 for C, C++, and Fortran is supported on the
Blue Gene/P system. The current versions are:

� gcc 4.1.2
� binutils 2.17
� glibc 2.4

GLIBC

Compute Node Kernel

CIOD (runs on I/O Node)

GCC Libs

XL Libs

Application

GLIBC

Compute Node Kernel

CIOD (runs on I/O Node)

GCC Libs

XL Libs

Application
Chapter 2. Software overview 21

You can find the GNU Compiler Collection in the /bgsys/drivers/ppcfloor/gnu-linux/bin
directory. For more information, see Chapter 8, “Developing applications with IBM XL
compilers” on page 97.

2.6.3 IBM XL compilers
The following IBM XL compilers are supported for developing Blue Gene/P applications:

� XL C/C++ Advanced Edition V9.0 for Blue Gene/P
� XL Fortran Advanced Edition V11.1 for Blue Gene/P

See Chapter 8, “Developing applications with IBM XL compilers” on page 97, for more
compiler-related information.

2.7 I/O node software

The Blue Gene/P system is a massively parallel system with a large number of nodes.
Compute Nodes are reserved for computations, and I/O is carried out using the I/O nodes.
These nodes serve as links between the Compute Nodes and external devices. For instance,
applications running on Compute Nodes can access file servers and communicate with
processes in other machines.

The I/O node software and the Service Node software communicate to exchange various
data relating to machine configuration and workload. Communications use a key-based
authentication mechanism with keys using at least 256 bits.

The I/O node kernel is a standard Linux kernel and provides file system access and sockets
communication to applications that execute on the Compute Nodes.

2.7.1 I/O nodes kernel boot considerations

The I/O node kernel is designed to be booted as infrequently as possible due to the
numerous possible failures of mounting remote file systems. The bootstrap process involves
loading a ramdisk image and booting the Linux kernel. The ramdisk image is extracted to
provide the initial file system, which contains minimal commands to mount the file system on
the Service Node using the Network File System (NFS). The boot continues by running
startup scripts from the NFS and running customer-supplied startup scripts to perform
site-specific actions, such as logging configuration and mounting high-performance file
systems.

The Blue Gene/P system has considerably more content over the Blue Gene/L system in the
ramdisk image to reduce the load on the Service Node exported by the NFS as the I/O node
boot. Toolchain shared libraries and all of the basic Linux text and shell utilities are local to
the ramdisk. Packages, such as GPFS, and customer-provided scripts are NFS mounted for
administrative convenience.

2.7.2 I/O node file system services

The I/O node kernel supports an NFS client or GPFS client, which provides a file system
service to application processes that execute on its associated Compute Node. The NFSv3
and GPFS file systems supported as part of the Blue Gene/L system continue with the Blue
Gene/P system. As with the Blue Gene/L system, customers can still add their own parallel
file systems by modifying Linux on the I/O node as needed.
22 IBM Blue Gene/P Application Development

2.7.3 Socket services for the Compute Node Kernel

The I/O node includes a complete Internet Protocol (IP) stack, with TCP and UDP services. A
subset of these services is available to user processes running on the Compute Node that is
associated with an I/O node. Application processes communicate with processes running on
other systems using client-side sockets through standard socket permissions and network
connectivity. In addition, server-side sockets are available.

Note that the I/O node implements the sockets so that all the Compute Nodes within a
processor set (pset) behave as though the compute tasks are executing on the I/O node. In
particular, this means that the socket port number is a single address space within the pset
and they share the IP address of the I/O node.

2.7.4 I/O node daemons

The I/O node includes the following daemons:

� Control and I/O services daemons
� File system client daemons
� Syslog
� sshd
� ntpd on at least one I/O node

2.7.5 Control system

The control system retains the high-level components from the IBM Blue Gene/L system with
a considerable change in low-level components to accommodate the updated control
hardware in the Blue Gene/P system as well as to increase performance for the monitoring
system. The MMCS server and mcserver are now the processes that make up the control
system on the Blue Gene/P system:

� The Midplane Management Control System (MMCS, console and server) is similar to the
Blue Gene/L system in the way it handles commands, interacts with IBM DB2, boots
blocks, and runs jobs.

� mcServer is the process through which MMCS makes contact with the hardware
(replacing idoproxy of the Blue Gene/L system). mcServer handles all direct interaction
with the hardware. Low-level boot operations are now part of this process and not part of
MMCS.

� The standard mpirun command to launch jobs can be used from any Front End Node or
the Service Node. This command is often invoked automatically from a higher level
scheduler.

The components that reside on the Service Node contain the following functions:

� Bridge APIs

A scheduler that dynamically creates and controls blocks typically uses Bridge APIs. A
range of scheduler options includes ignoring these APIs and using mpirun on statically
created blocks to full dynamic creation of blocks with pass-through midplanes. The Blue
Gene/P system includes a new set of APIs that notifies the caller of any changes in real
time. Callers can register for various entities (entities are jobs, blocks, node cards,
midplanes, and switches) and only see the changes. Callers can also set filters so that
notifications occur for only specific jobs or blocks.
Chapter 2. Software overview 23

� ciodb

ciodb is now integrated as part of the MMCS server for the Blue Gene/P system, which is
different from the Blue Gene/L system. ciodb is responsible for launching jobs on already
booted blocks. Communication to ciodb occurs through the database and can be initiated
by either mpirun or the Bridge APIs.

� MMCS

The MMCS daemon is responsible for configuring and booting blocks. It can be controlled
either by a special console interface (similar to the Blue Gene/L system) or by the Bridge
APIs. The MMCS daemon also is responsible for relaying RAS information into the RAS
database.

� mcServer

The mcServer daemon has low-level control of the system, which includes a parallel
efficient environmental monitoring capability as well as a parallel efficient reset and code
load capability for configuring and booting blocks on the system. The diagnostics for the
Blue Gene/P system directly leverage this daemon for greatly improved diagnostic
performance over that of the Blue Gene/L system.

� bgpmaster

The bgpmaster daemon monitors the other daemons and restarts any failed components
automatically.

� Service actions

Service actions are a suite of administrative shell commands that are used to service
hardware. They are divided into device-specific actions with a “begin” and “end” action.
Typically the “begin” action powers down hardware so it can be removed from the system,
and the “end” action powers up the replacement hardware. The databases are updated
with these operations, and they coordinate automatically with the scheduling system as
well as the diagnostic system.

� Submit server daemon

The submit server deamon is the central resource manager for High-Throughput
Computing (HTC) partitions. When MMCS boots a partition in HTC mode, each partition
registers itself with the submit server deamon before going to initialized state. This
registration process includes several pieces of information, such as partition mode (SMP,
DUAL, VN), partition size, user who booted the partition, and the list of users who can run
on the partition. This information is maintained in a container and is used to match
resource requests from submit commands based on their job requirements.

� mpirund

The mpirund is a daemon process running on the service node whose purpose is to
handle connections from frontend mpirun processes, and fork backend mpirun processes.

� Real-time server

The Real-time Notification APIs are designed to eliminate the need for a resource
management system to constantly have to read in all of the machine state to detect
changes. The APIs allow the caller to be notified in real-time of state changes to jobs,
blocks, and hardware, such as base partitions, switches, and node cards. After a resource
management application has obtained an initial snapshot of the machine state using the
Bridge APIs, the Bridge APIs can then determine to be notified only of changes, and the
Real-time Notification APIs provides that mechanism.
24 IBM Blue Gene/P Application Development

2.8 Management software

The Blue Gene/P management software is based on a a set of databases that run on the
Service Node. The database software is DB2.

2.8.1 Midplane Management Control System

Both Blue Gene/P hardware and software are controlled and managed by the MMCS. The
Service Node, Front End Node, and the file servers are not under the control of the MMCS.
The MMCS currently consists of several functions that interact with a DB2 database running
on the Service Node.
Chapter 2. Software overview 25

26 IBM Blue Gene/P Application Development

Part 2 Kernel overview

The kernel provides the glue that makes all components in Blue Gene/P work together. In this
part, we provide an overview of the kernel functionality for applications developers. This part
is for those who require information about system-related calls and interaction with the kernel.

This part contains the following chapters:

� Chapter 3, “Kernel functionality” on page 29
� Chapter 4, “Execution process modes” on page 37
� Chapter 5, “Memory” on page 43
� Chapter 6, “System calls” on page 51

Part 2
© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 27

28 IBM Blue Gene/P Application Development

Chapter 3. Kernel functionality

In this chapter, we provide an overview of the functionality that is implemented as part of the
Compute Node Kernel and I/O node kernel. We discuss the following topics:

� System software overview
� Compute Node Kernel
� I/O node kernel

3

© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 29

3.1 System software overview

In general, the function of the kernel is to enable applications to run on a particular hardware
system. This enablement consists of providing such services as applications execution, file
I/O, memory allocation, and many others. In the case of the Blue Gene/P system, the system
software provides two kernels:

� Compute Node Kernel (CNK)
� I/O node kernel

3.2 Compute Node Kernel

The kernel that runs on the Compute Node is called the Compute Node Kernel (CNK) and is
IBM proprietary. It has a subset of the Linux system calls. The CNK is a flexible, lightweight
kernel for Blue Gene/P Compute Nodes that can support both diagnostic modes and user
applications.

The CNK is intended to be a Linux-like operating system, from the application point-of-view,
supporting a large subset of Linux compatible system calls. This subset is taken from the
subset used successfully on the Blue Gene/L system, which demonstrates good compatibility
and portability with Linux.

Now, as part of the Blue Gene/P system, the CNK supports threads and dynamic linking for
further compatibility with Linux. The CNK is tuned for the capabilities and performance of the
Blue Gene/P System. In Figure 3-1, you see the interaction between the application space
and the kernel space.

Figure 3-1 Compute Node Kernel overview
30 IBM Blue Gene/P Application Development

When running a user application, the CNK connects to the I/O node through the collective
network. This connection communicates to a process that is running on the I/O node called
the control and I/O daemon (CIOD). All function-shipped system calls are forwarded to the
CIOD process and executed on the I/O node.

At the user-application level, the Compute Node Kernel supports the following APIs among
others:

� Message Passing Interface (MPI)17 support between nodes using MPI library support

� Open Multi-Processing (OpenMP)18 API

� Standard IBM XL family of compilers support with XLC/C++, XLF, and GNU Compiler
Collection19

� Highly optimized mathematical libraries, such as IBM Engineering and Scientific
Subroutine Library (ESSL)20

� GNU Compiler Collection (GCC) C Library, or glibc, which is the C standard library and
interface of GCC for a provider library plugging into an other library (system programming
interfaces (SPIs))

CNK provides the following services:

� Torus direct memory access (DMA),21 which provides memory access for reading, writing,
or doing both independently of the processing unit

� Shared-memory access on a local node

� Hardware configuration

� Memory management

� MPI topology

� File I/O

� Sockets connection

� Signals

� Thread management

� Transport layer via collective network

3.2.1 Boot sequence of a Compute Node

The Blue Gene/P hardware is a stateless system. When power is initially applied, the
hardware must be externally initialized. Given the architectural and reliability improvements in
the Blue Gene/P design, reset of the Compute Nodes should be an infrequent event.

The following procedure explains how to boot a Compute Node as part of the main partition.
Independent reset of a single Compute Node and independent reset of a single I/O node are
different procedures.

The CNK must be loaded into memory after every reset of the Compute Node. To accomplish
this task, several steps must occur to prepare a CNK for running an application:

1. The control system loads a small bootloader into SRAM.

2. The control system loads the personality into SRAM. The personality is a data structure
that contains node-specific information, such as the X, Y, Z coordinates of the node.

Note: See Appendix B, “Files on architectural features” on page 331, for an example of
how to use a personality.
Chapter 3. Kernel functionality 31

3. The control system releases the Compute Node from reset.

4. The bootloader starts executing and initializes the hardware.

5. The bootloader communicates with the control system over the mailbox to load Common
Node Services and CNK images.

6. The bootloader then transfers control to the Common Node Services.

7. Common Node Services performs its set up and then transfers control to the CNK.

8. The Compute Node Kernel performs its set up and communicates to the CIOD.

At this point, the Compute Node Kernel submits the job to the CIOD.

3.2.2 Common Node Services

Common Node Services provide low-level services that are both specific to the Blue Gene/P
system and common to the Linux and the CNK. As such, these services provide a consistent
implementation across node types while insulating the kernels from the details of the control
system.

The common node services provide the same low-level hardware initialization and setup
interfaces to both Linux and the CNK.

The common node services provide the following services:

� Access to the SRAM mailbox for performing I/O operations over the service network to the
console

� Initialization of hardware for various networks

� Access to the personality

� Low-level services for RAS, including both event reporting and recovery handling

� Access to the IBM Blue Gene interrupt controller

3.3 I/O node kernel

The kernel of the I/O node, shown in Figure 3-2 on page 33, is referred to as the Mini-Control
Program (MCP). It is a port of the Linux kernel, which means it is GPL/LGPL licensed. It is
similar to the Blue Gene/L I/O node. The characteristics of the I/O node kernel on the Blue
Gene/P system are:

� Embedded Linux kernel:

– Linux Version 2.6.16
– Four-way symmetrical multiprocessing (SMP)
– Paging disabled (no swapping available)

� Ethernet:

– 10 gigabit Ethernet driver

– Large Maximum Transmission Unit (MTU) support, which allows Ethernet frames to be
increased from the default value of 1500 bytes to 9000 bytes

– TCP checksum offload engine support

– Availability of /proc files for configuring and gathering status
32 IBM Blue Gene/P Application Development

� File systems supported:

– Network File System (NFS)
– Parallel Virtual File System (PVFS)
– IBM General Parallel File System (GPFS)
– Lustre File System

� CIOD:

– Lightweight proxy between Compute Nodes and the outside world
– Debugger access into the Compute Nodes
– SMP support

Figure 3-2 I/O node kernel overview

3.3.1 Control and I/O daemon

The Control and I/O daemon, CIOD, is a user-mode daemon that runs on the I/O node and
provides a bridge between the compute nodes and the outside world. CIOD takes messages
from multiple input sources, processes each message, and returns a result. CIOD accepts
messages from three sources:

� MMCS sends messages using the CioStream and DataStream protocols on two socket
connections from the Service Node. MMCS sends messages to load and start a new job,
send standard input, and send a signal to a running job. CIOD sends messages to report
status and send standard output and standard error.

� Compute nodes send messages using the Cio protocol on the collective network. The
messages are for control, function shipping I/O, and debugging.

� An external tool, such as a debugger, sends messages using the CioDebug protocol on
pipes from another I/O node process.

Figure 3-3 on page 34 shows a high-level overview of CIOD.

BusyBox
and other
packages

ntpd
syslogd

etc
CIOD

Linux Kernel
Device
drivers

/proc
files

Common Node Services
Chapter 3. Kernel functionality 33

Figure 3-3 High-level overview of CIOD

CIOD threading architecture
CIOD reads from the collective network and places the message into the shared memory
dedicated to the sending node I/O proxy. Figure 3-4 on page 35 shows the threading
architecture of the CIOD.
34 IBM Blue Gene/P Application Development

Figure 3-4 CIOD threading architecture

Jobs directory
Before CIOD starts a job it creates a directory called /jobs/<jobId>, where <jobId> is the ID of
the job as assigned by MMCS. This directory can be accessed by jobs running on the
compute nodes that are connected to the I/O node. The directory for each job contains the
following entries:

� exe

A symlink to the executable.

� cmdline

A file with the list of arguments given to the program.

� environ

A file with the list of environment variables given to the program.

� wdir

A symlink to the initial working directory for the program.

� noderankmap

A file that contains the mapping of node location to MPI rank. This file is created only when
a tool daemon is started.

The /jobs directory is owned by root and has read and execute permission for everybody
(r-xr-xr-x), whereas the individual job directory is owned by the user that started the job and
has read and execute permission for everybody.

When the job completes, CIOD removes the /jobs/<jobId> directory.
Chapter 3. Kernel functionality 35

36 IBM Blue Gene/P Application Development

Chapter 4. Execution process modes

The Compute Nodes on IBM Blue Gene/P are implemented as four cores on a single chip
with 2 GB or 4 GB of dedicated physical memory in which applications run. A process
executes on Blue Gene/P in one of the following three modes:

� Symmetric multiprocessing (SMP) mode
� Virtual node mode (VN)
� Dual mode (DUAL)

In this chapter, we explore these modes in detail.

4

© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 37

4.1 Symmetrical Multiprocessing mode

In Symmetric Multiprocessing (SMP) mode each physical Compute Node executes a single
process per node with a default maximum of four threads. The Blue Gene/P system software
treats the four cores in a Compute Node symmetrically. This mode provides the maximum
memory per process.

Figure 4-1 shows the interaction of SMP mode between the application space and the kernel
space. The task or process can have up to four threads. Pthreads and OpenMP are
supported in this mode.

Figure 4-1 SMP Node mode

4.2 Virtual Node mode

In Virtual Node mode (VN mode) the kernel can run four separate processes on each
Compute Node. Node resources (primarily the memory and the torus network) are shared by
all processes on a node. In Figure 4-2 on page 39, VN mode is illustrated with four tasks per
node and one thread per process. Shared memory is available between processes.

In VN mode, an MPI application can use all of the cores in a node by quadrupling the number
of MPI tasks. The distinct MPI tasks that run on each of the four cores of a Compute Node
communicate with each other transparently through direct memory access (DMA) on the
node. DMA puts data that is destined for a physically different node on the torus, while it
locally copies data when it is destined for the same physical node.

Note: Shared memory is available only in HPC mode and not in HTC mode.
38 IBM Blue Gene/P Application Development

In VN mode, the four cores of a Compute Node act as different processes. Each has its own
rank in the message layer. The message layer supports VN mode by providing a correct torus
to rank mapping and first in, first out (FIFO) pinning. The hardware FIFOs are shared equally
between the processes. Torus coordinates are expressed by quadruplets instead of triplets.
In VN mode, communication between the four threads in a Compute Node occurs through
DMA local copies.

Figure 4-2 Virtual node mode

Each core executes one compute process. Processes that are allocated in the same
Compute Node share memory, which can be reserved at job launch. An application that
wants to run with four tasks per node can dedicate a large portion for shared memory, if the
tasks need to share global data. This data can be read/write, and data coherency is handled
in hardware.

The Blue Gene/P MPI implementation supports VN mode operations by sharing the systems
communications resources of a physical Compute Node between the four compute
processes that execute on that physical node. The low-level communications library of the
Blue Gene/P system, that is the message layer, virtualizes these communications resources
into logical units that each process can use independently.

4.3 Dual mode

In Dual mode (DUAL mode), each physical Compute Node executes two processes per node
with a default maximum of two threads per process. Each task in Dual mode gets half the
memory and cores so that it can run two threads per task.
Chapter 4. Execution process modes 39

Figure 4-3 shows two processes per node. Each process can have up to two threads.
OpenMP and pthreads are supported. Shared memory is available between processes.
Threads are pinned to a processor.

Figure 4-3 Dual mode

4.4 Shared memory support

Shared memory is supported in Dual mode and Virtual Node mode. Shared memory in SMP
mode is not necessary because each processor already has access to all of the node’s
memory.

Shared memory is allocated using standard Linux methods (shm_open() and mmap()).
However, because the CNK does not have virtual pages, the physical memory that backs the
shared memory must come out of a memory region that is dedicated for shared memory. This
memory region has its size fixed at job launch.

You can change the amount of memory to be set aside for this memory region at job launch.
Figure 4-4 on page 41 illustrates shared-memory allocation.

BG_SHAREDMEMPOOLSIZE: The BG_SHAREDMEMPOOLSIZE environment variable
specifies in MB the amount of memory to be allocated, which you can do using the mpirun
-env flag, for example, BG_SHAREDMEMPOOLSIZE=8 allocates 8 MB of shared memory
storage.
40 IBM Blue Gene/P Application Development

Figure 4-4 Shared-memory allocation

Figure 4-5 illustrates shared-memory deallocation.

Figure 4-5 shared-memory deallocation

The shm_open() and shm_unlink() routines access a pseudo-device, /dev/shm/filename,
which the kernel interprets. Because multiple processes can access or close the
shared-memory file, allocation and deallocation are tracked by a simple reference count;
therefore, the processes do not need to coordinate deallocation of the shared memory region.

4.5 Deciding which mode to use

The choice of the job mode largely depends on the type of application and the parallel
paradigm that was implemented for a particular application. The obvious case involves
applications where a hybrid paradigm between MPI and OpenMP or pthreads was
implemented. In this case, it is beneficial to use SMP mode. If you are writing single-threaded
applications, consider Virtual Node mode.

I/O-intensive tasks that require a relatively large amount of data interchange between
Compute Nodes benefit more by using Virtual Node mode. Those applications that are
primarily CPU bound do not have large working memory requirements and can take
advantage of more processors and run more efficiently in Virtual Node mode.

Finally, High-Throughput Computing (HTC) mode offers the possibility of running multiple
instances of an application that does not require communication between nodes. This mode
allows applications to run on single nodes and permits other users to share single nodes in
the same partition. See Chapter 12, “High-Throughput Computing (HTC) paradigm” on
page 201 for more information.

4.6 Specifying a mode

The default mode for mpirun is SMP. To specify Virtual Node mode or Dual mode, use the
following commands:

mpirun ... -mode VN ...
mpirun ... -mode DUAL ...

See Chapter 11, “mpirun” on page 177 for more information about the mpirun command.

fd = shm_open(SHM_FILE, O_RDWR, 0600);
ftruncate(fds[0], MAX_SHARED_SIZE);
shmptr1 = mmap(NULL, MAX_SHARED_SIZE, PROT_READ | PROT_WRITE, MAP_SHARED, fd,
0);

munmap(shmptrl, MAX_SHARED_SIZE);
close(fd)
shm_unlink(SHM_FILE);
Chapter 4. Execution process modes 41

In the case of the submit command, you use the following commands:

submit ... -mode VN ...
submit ... -mode DUAL ...

See Chapter 12, “High-Throughput Computing (HTC) paradigm” on page 201 for more
information about the submit command.

4.7 Multiple application threads per core

In the previous sections of this chapter we described the CNK as allowing applications a
single application thread per core. CNK can be configured to allow a job to have multiple
application threads per core. Support for multiple application threads per core is meant
primarily for an application that switches between programming models in phases, such as an
application where part of the program is written to use OpenMP and another part uses
pthreads. The application needs to use some method to put one set of threads to sleep and
wake the other set of threads when switching between programming models.

There are limitations that the developer must keep in mind regarding CNK support for multiple
application threads per core that do not apply when running on a full Linux kernel. The
number of application threads per core can be configured to be between one and three. If the
application attempts to create more threads than are allowed the creation attempt will fail.
When a thread is created, the CNK pins the thread to the core with the fewest threads on it. A
core does not automatically switch between threads on a timed basis. Switches occur either
through a sched_yield() system call, signal delivery, or futex wakeup.

The number of application threads per core is specified by the BG_APPTHREADDEPTH
environment variable. If this environment variable is not set, the number of application
threads per core is one. The allowed values for the environment variable are 1, 2, and 3.
Even if this environment variable is not set, the kernel puts the variable with the value in the
job’s environment so that an application can get the value. Changing the environment
variable after the job is running does not change the number of allowed application threads
per core.

You can use this feature in any node mode (SMP, DUAL, or VN) and any partition mode
(HPC or HTC).

To pass an environment variable to a Blue Gene/P job, the user of mpirun or submit can use
the -env option on the command line, for example, the following command sets the number of
application threads per core to be 3.

mpirun ... -env BG_APPTHREADDEPTH=3 ...

The ability to run multiple application threads per core is new in Blue Gene/P release
V1R4M0.
42 IBM Blue Gene/P Application Development

Chapter 5. Memory

In this chapter, we provide an overview of the memory subsystem and explain how it relates
to the Compute Node Kernel. This chapter includes the following topics:

� Memory overview
� Memory management
� Memory protection
� Persistent memory

5

© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 43

5.1 Memory overview

Similar to the Blue Gene/L system, Blue Gene/P nodes support virtual memory. Memory is
laid out as a single, flat, fixed-size virtual address space shared between the operating
system kernel and the application program.

The Blue Gene/P system is a distributed-memory supercomputer, which includes an on-chip
cache hierarchy, and memory is off-chip. It contains optimized on-chip symmetrical
multiprocessing (SMP) support for locking and communication between the four ASIC
processors.

The aggregate memory of the total machine is distributed in the style of a multi-computer, with
no hardware sharing between nodes. The total physical memory amount supported is either
2 GB or 4 GB per Compute Node, depending on the type of compute node that was installed.

The first level (L1) cache is contained within the IBM PowerPC 450 core (see Figure 1-3 on
page 9). The PowerPC 450 L1 cache is 64-way set associative.

The second level (L2R and L2W) caches, one dedicated per core, are 2 KB in size. They are
fully associative and coherent. They act as prefetch and write-back buffers for L1 data. The L2
cache line is 128 bytes in size. Each L2 cache has one connection toward the L1 instruction
cache running at full processor frequency. Each L2 cache also has two connections toward
the L1 data cache, one for the writes and one for the loads, each running at full processor
frequency. Read and write are 16 bytes wide.

The third level (L3) cache is 8-way set associative, 8 MB in size, with 128-byte lines. Both
banks can be accessed by all processor cores. The L3 cache has three write queues and
three read queues: one for each processor core and one for the 10 gigabit network. Ethernet
and direct memory access (DMA) share the L3 ports. Only one unit can use the port at a time.
The Compute Nodes use DMA, and the I/O Nodes use Ethernet. The last one is used on the
I/O Node and for torus network DMA on the compute networks. All the write queues go
across a four-line write buffer to access the eDRAM bank. Each of the two L3 banks
implements thirty 128-byte-wide write combining buffers, for a total of sixty 128-byte-wide
write combining buffers per chip.

Table 5-1 provides an overview of some of the features of different memory components.

Table 5-1 Memory system overview

Cache Total per
node

Size Replacement
policy

Associativity

L1 instruction 4 32 KB Round-Robin � 64-way set-associative
� 16 sets
� 32-byte line size

L1 data 4 32 KB Round-Robin � 64-way set-associative
� 16 sets
� 32-byte line size

L2 prefetch 4 14 x 256 bytes Round-Robin � Fully associative (15-way)
� 128-byte line size

L3 2 2 x 4 MB Least recently
used

� 8-way associative
� 2 bank interleaved
� 128-byte line size

Double data RAM
(DDR)

2 � Minimum 2 x 512 MB
� Maximum 4 GB

N/A � 128-byte line size
44 IBM Blue Gene/P Application Development

5.2 Memory management

You must give careful consideration to managing memory on the Blue Gene/P system. This is
particularly true in order to achieve optimal performance. The memory subsystem of Blue
Gene/P nodes has specific characteristics and limitations that the programmer should know
about.

5.2.1 L1 cache

On the Blue Gene/P system, the PowerPC 450 internal L1 cache does not have automatic
prefetching. Explicit cache touch instructions are supported. Although the L1 instruction
cache was designed with support for prefetches, it was disabled for efficiency reasons.

Figure 1-3 on page 9 shows the L1 caches in the PowerPC 450 architecture. The size of the
L1 cache line is 32 bytes. The L1 cache has two buses toward the L2 cache: one for the
stores and one for the loads. The buses are 128 bits in width and run at full processor
frequency. The theoretical limit is 16 bytes per cycle. However, 4.6 bytes is achieved on L1
load misses, and 5.6 bytes is achieved on all stores (write through). This value of 5.6 bytes is
achieved for the stores but not for the loads. The L1 cache has only a three-line fetch buffer.
Therefore, there are only three outstanding L1 cache line requests. The fourth one waits for
the first one to complete before it can be sent.

The L1 hit latency is four cycles for floating point and three cycles for integer. The L2 hit
latency is at about 12 cycles for floating point and 11 cycles for integer. The 4.6-byte
throughput limitation is a result of the limited number of line fill buffers, L2 hit latency, the
policy when a line fill buffer commits its data to L1, and the penalty of delayed load
confirmation when running fully recoverable.

Because only three outstanding L1 cache line load requests can occur at the same time, at
most three cache lines can be obtained every 18 cycles. The maximum memory bandwidth is
three times 32 bytes divided by 18 cycles, which yields 5.3 bytes per cycle, which written as
an equation looks like this:

(3 x 32 bytes) / 18 cycles = 5.3 bytes per cycle

Important:

� Avoid instructions when prefetching data in the L1 cache on the Blue Gene/P system.
Using the processor, you can concurrently fill in three L1 cache lines. Therefore, it is
mandatory to reduce the number of prefetching streams to three or less.

To optimize the floating-point units (FPUs) and feed the floating-point registers, you can
use the XL compiler directives or assembler instructions (dcbt) to prefetch data in the
L1 data cache. The applications that are specially tuned for IBM POWER4™ or
POWER5™ processors that take advantage of four or eight prefetching engines will
choke the memory subsystem of the Blue Gene/P processor.

� To take advantage of the single-instruction, multiple-data (SIMD) instructions, it is
essential to keep the data in the L1 cache as much as possible. Without an intensive
reuse of data from the L1 cache and the registers, because of the number of registers,
the memory subsystem is unable to feed the double FPU and provide two
multiply-addition operations per cycle.
Chapter 5. Memory 45

In the worst case, SIMD instructions can hurt the global performance of the application. For
that reason, we advise that you disable the SIMD instructions in the porting phase by
compiling with -qarch=450. Then recompile the code with -qarch=450d and analyze the
performance impact of the SIMD instructions. Perform the analysis with a data set and a
number of processors that is realistic in terms of memory usage.

5.2.2 L2 cache

The L2 cache is the hardware layer that provides the link between the embedded cores and
the Blue Gene/P devices, such as the 8 MB L3-eDRAM and the 32 KB SRAM. The 2 KB L2
cache line is 128 bytes in size. Each L2 cache is connected to one processor core.

The L2 design and architecture were created to provide optimal support for the PowerPC 450
cores for scientific applications. Thus, a logic for automatic sequential stream detection and
prefetching to the L2 added on the PowerPC 440 is still available on PowerPC 450. The logic
is optimized to perform best on sequential streams with increasing addresses. The L2 boosts
overall performance for almost any application and does not require any special software
provisions. It autonomously detects streams, issues the prefetch requests, and keeps the
prefetched data coherent.

You can achieve latency and bandwidth results close to the theoretical limits (4.6 bytes per
cycle) dictated by the PowerPC 450 core by doing careful programming. The L2 accelerates
memory accesses for one to seven sequential streams.

5.2.3 L3 cache

The L3 cache is 8 MB in size. The line size is 128 bytes. Both banks are directly accessed by
all processor cores and the 10 Gb network, only on the I/O Node, and are used in Compute
Nodes for torus DMA. There are three write queues and three read queues. The read queues
directly access both banks.

Each L3 cache implements two sets of write buffer entries. Into each of the two sets, one
32-byte data line can deposit a set per cycle from any queue. In addition, one entry can be
allocated for every cycle in each set. The write rate for random data is much higher in the
Blue Gene/P system than in the Blue Gene/L system. The L3 cache can theoretically
complete an aggregate of four write hits per chip every two cycles. However, banking
conflicts reduce this number in most cases.

Optimization tips:

� The optimization of the applications must be based on the 32 KB of the L1 cache.
� The benefits of the SIMD instructions can be canceled out if data does not fit in the L1

cache.

Optimization tip: Random access can divide the write sustained bandwidth of the L3
cache by a factor of three on Compute Nodes and more on I/O Nodes.
46 IBM Blue Gene/P Application Development

5.2.4 Double data RAM

The theoretical memory bandwidth on a Blue Gene/P node to transfer a 128-byte line from
the external DDR to the L3 cache is 16 cycles. Nevertheless, this bandwidth can only be
sustained with sequential access. Random access can reduce bandwidth significantly.

Table 5-2 illustrates latency and bandwidth estimates for the Blue Gene/P system.

Table 5-2 Latency and bandwidth estimates

5.3 Memory protection

The IBM PowerPC 450 processor has limited flexibility with regard to supported translation
look-aside buffer (TLB) sizes and alignments. There is also a small number of TLB slots per
processor. These limitations create situations where the dual goal of both static TLBs and
memory protection is difficult to achieve with access to the entire memory space. This
depends on the node’s memory configuration, process model, and size of the applications
sections.

On the Blue Gene/P system, the Compute Node Kernel (CNK) reads only sections from the
application. This prevents an application from accidentally corrupting its text (that is, its code)
section due to an errant memory write. Additionally, the CNK prevents an application from
corrupting the CNK text segments or any kernel data structures.

The CNK can protect the active thread’s stack using the data-address-compare debug
registers in the PowerPC 450 processor. You can use this mechanism for stack protection
without incurring TLB miss penalties. For the main thread, this protection is just above the
maximum mmap() address. For a spawned thread, this protection is at the lower bound of the
thread’s stack. This protection is not available when the debugger is used to set a hardware
watchpoint.

Latencya

a. This corresponds to integer load latency. Floating-point latency is one cycle higher.

Sustained bandwidth
(bytes per cycle)b, c

b. This is the maximum sustainable bandwidth for linear sequential access.
c. Random access bandwidth is dependent on the access width and overlap access, respectively.

Sequential access

L1 3 8

L2 11 4.6

L3 50 4.6

External DDR (single
processor)

104 40

External DDR (dual processor)

External DDR (triple processor)

External DDR (quad processor) 3.7
Chapter 5. Memory 47

The CNK is strict in terms of TLB setup, for example, the CNK does not create a 256 MB TLB
that covers only 128 MB of real memory. By precisely creating the TLB map, any user-level
page faults (also known as segfaults) are immediately caught.

In the default mode of operation of the Blue Gene/P system, which is SMP node mode, each
physical Compute Node executes a single task per node with a maximum of four threads. The
Blue Gene/P system software treats those four core threads in a Compute Node
symmetrically. Figure 5-1 illustrates how memory is accessed in SMP node mode. The user
space is divided into user space “read, execute” and user space “read/write, execute”. The
latter corresponds to global variables, stack, and heap. In this mode, the four threads have
access to the global variables, stack, and heap.

Figure 5-1 Memory access protection in SMP Node mode

Figure 5-2 shows how memory is accessed in Virtual Node Mode. In this mode, the four core
threads of a Compute Node act as different processes. The CNK reads only sections of an
application from local memory. No user access occurs between processes in the same node.
User space is divided into user-space “read, execute” and user-space “read/write, execute”.
The latter corresponds to global variables, stack, and heap. These two sections are designed
to avoid data corruption.

Figure 5-2 Memory access protections in Virtual Node Mode
48 IBM Blue Gene/P Application Development

Each task in Dual mode gets half the memory and cores so it can run two threads per task.
Figure 5-3 shows that no user access occurs between the two processes. Although a layer of
shared-memory per node and the user-space “read, execute” is common to the two tasks, the
two user-spaces “read/write, execute” are local to each process.

Figure 5-3 Memory access protections in Dual mode

5.4 Persistent memory

Persistent memory is process memory that retains its contents from job to job. To allocate
persistent memory, the environment variable BG_PERSISTMEMSIZE=X must be specified,
where X is the number of megabytes to be allocated for use as persistent memory. In order for
the persistent memory to be maintained across jobs, all job submissions must specify the
same value for BG_PERSISTMEMSIZE. The contents of persistent memory can be
re-initialized during job startup either by changing the value of BG_PERSISTMEMSIZE or by
specifying the environment variable BG_PERSISTMEMRESET=1. A new kernel function was
added to support persistent memory, the persist_open() function.
Chapter 5. Memory 49

50 IBM Blue Gene/P Application Development

Chapter 6. System calls

System calls provide an interface between an application and the kernel. In this chapter, we
provide information about the service points through which applications running on the
Compute Node request services from the Compute Node Kernel (CNK). This set of entry
points into the CNK is referred to as system calls (syscall). System calls on the Blue Gene/P
system have substantially changed from system calls on the Blue Gene/L system. In this
chapter, we describe system calls that are defined on the Blue Gene/P system.

We cover the following topics in this chapter:

� Compute Node Kernel
� Supported and unsupported system calls
� System programming interfaces
� Socket support
� Signal support

In general, the two types of system calls are:

� Local system calls
� Function-shipped system calls

Local system calls are handled by the CNK only and provide Blue Gene/P-specific
functionality. The following examples are of standard, local system calls:

� brk()
� mmap()
� clone()

Alternatively, function-shipped system calls are forwarded by the CNK over the collective
network to the control and I/O daemon (CIOD). The CIOD then executes those system calls
on the I/O Node and replies to the CNK with the resultant data. Examples of function-shipped
system calls are functions that manipulate files and socket calls.

6

© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 51

6.1 Introduction to the Compute Node Kernel
The role of the kernel on the Compute Node is to create an environment for the execution of a
user process that is “Linux-like.” It is not a full Linux kernel implementation, but rather
implements a subset of POSIX functionality.

The Compute Node Kernel (CNK) is a single-process operating system. It is designed to
provide the services needed by applications that are expected to run on the Blue Gene/P
system, but not services for all applications. The CNK is not intended to run system
administration functions from the Compute Node.

To achieve the best reliability, a small and simple kernel is a design goal. This enables a
simpler checkpoint function. See Chapter 10, “Checkpoint and restart support for
applications” on page 169.

6.2 System calls
The CNK system calls are divided into the following categories:

� File I/O
� Directory operations
� Time
� Process information
� Signals
� Miscellaneous
� Sockets
� Compute Node Kernel (CNK)

6.2.1 Return codes
As is true for return codes on a standard Linux system, a return code of zero from a system
call indicates success. A value of negative one (-1) indicates a failure. In this case, errno
contains further information about exactly what caused the problem.

Compute node application user: The Compute Node application never runs as the root
user. In fact, it runs as the same user (uid) and group (gid) under which the job was
submitted.
52 IBM Blue Gene/P Application Development

6.2.2 Supported system calls
Table 6-1 lists all the function prototypes for system calls by category that are supported on
the Blue Gene/P system.

Table 6-1 Supported system calls

Function prototype Category Header required Description and type

int access(const char *path, int
mode);

File I/O <unistd.h> Determines the accessibility of a file;
function-shipped to CIOD; mode: R_OK,
X_OK, F_OK; returns 0 if OK or -1 on
error.

int chmod(const char *path,
mode_t mode);

File I/O <sys/types.h>
<sys>/<stat.h>

Changes the access permissions on an
already open file; function-shipped to
CIOD; mode: S_ISUID, S_ISGID,
S_ISVTX, S_IRWXU, S_IRUSR,
S_IWUSR, S_IXUSR, S_IRWXG,
S_IRGRP, S_IWGRP, S_IXGRP,
S_IRWXO, S_IROTH, S_IWOTH, and
S_IXOTH; returns 0 if OK or -1 on error.

int chown(const char *path,
uid_t owner, gid_t group);

File I/O <sys/types.h>
<sys>/<stat.h>

Changes the owner and group of a file;
function-shipped to CIOD.

int close(int fd); File I/O <unistd.h> Closes a file descriptor; function-shipped
to CIOD; returns 0 if OK or -1 on error.

int dup(int fd); File I/O <unistd.h> Duplicates an open descriptor;
function-shipped to CIOD; returns new file
descriptor if OK or -1 on error.

int dup2(int fd, int fd2); File I/O <unistd.h> Duplicates an open descriptor;
function-shipped to CIOD; returns new file
descriptor if OK or -1 on error.

int fchmod(int fd, mode_t mode); File I/O <sys/types.h>
<sys>/<stat.h>

Changes the mode of a file;
function-shipped to CIOD; returns 0 if OK
or -1 on error.

int fchown(int fd, uid_t owner,
gid_t group);

File I/O <sys/types.h>
<unistd.h>

Changes the owner and group of a file;
function-shipped to CIOD; returns 0 if OK
or -1 on error.

int fcntl(int fd, int cmd, int
arg);

File I/O <sys/types.h>
<unistd.h>
<fcntl.h>

Manipulates a file descriptor;
function-shipped to CIOD; supported
commands are F_GETFL, F_DUPFD,
F_GETLK, F_SETLK, F_SETLKW,
F_GETLK64, F_SETLK64, and
F_SETLKW64.

int fstat(int fd, struct stat
*buf);

File I/O <sys/types.h>
<sys>/<stat.h>

Gets the file status; function-shipped to
CIOD; returns 0 if OK or -1 on error.

int stat64(const char *path,
struct stat64 *buf);

File I/O <sys/types.h>
<sys>/<stat.h>

Gets the file status.

int statfs(const char *path,
struct statfs *buf);

File I/O <sys/vfs.h> Gets file system statistics.

long fstatfs64 (unsigned int fd,
size_t sz, struct statfs64
*buf);

File I/O <sys/vfs.h> Gets file system statistics.
Chapter 6. System calls 53

int fsync(int fd); File I/O <unistd.h> Synchronizes changes to a file; returns 0
if OK or -1 on error.

int ftruncate(int fd, off_t
length);

File I/O <sys/types.h>
<unistd.h>

Truncates a file to a specified length;
returns 0 if OK or -1 on error.

int ftruncate64(int fildes,
off64_t length);

File I/O <unistd.h> Truncates a file to a specified length for
files larger than 2 GB; returns 0 if OK or
-1 on error.

int lchown(const char *path,
uid_t owner, gid_t group);

File I/O <sys/types.h>
<unistd.h>

Changes the owner and group of a
symbolic link; function-shipped to CIOD;
returns 0 if OK or -1 on error.

int link(const char
*existingpath, const char
*newpath);

File I/O <unistd.h> Links to a file; function-shipped to CIOD;
returns 0 if OK or -1 on error.

off_t lseek(int fd, off_t
offset, int whence);

File I/O <sys/types.h>
<unistd.h>

Moves the read/write file offset;
function-shipped to CIOD; returns 0 if OK
or -1 on error.

int _llseek(unsigned int fd,
unsigned long offset_high,
unsigned long offset_low, loff_t
*result, unsigned int whence);

File I/O <unistd.h>
<sys/types.h>
<linux/unistd.h>
<errno.h>

Moves the read/write file offset.

int lstat(const char *path,
struct stat *buf);

File I/O <sys/types.h>
<sys>/<stat.h>

Gets the symbolic link status;
function-shipped to CIOD; returns 0 if OK
or -1 on error.

int lstat64(const char *path,
struct stat64 *buf);

File I/O <sys/types.h>
<sys/stat.h>

Gets the symbolic link status; determines
the size of a file larger than 2 GB.

int open(const char *path, int
oflag, mode_t mode);

File I/O <sys/types.h>
<sys>/<stat.h>
<fcntl.h>

Opens a file; function-shipped to CIOD;
oflag: O_RDONLY, O_WRONLY,
O_RDWR, O_APPEND, O_CREAT,
O_EXCL, O_TRUNC, O_NOCTTY,
O_NONBLOCK, O_SYNC, mode:
S_IRWXU, S_IRUSR, S_IWUSR,
S_IXUSR, S_IRWXG, S_IRGRP,
S_IWGRP, S_IXGRP, S_IRWXO,
S_IROTH, S_IWOTH, and S_IXOTH;
returns file descriptor if OK or -1 on error.

ssize_t pread(int fd, void *buf,
size_t nbytes, off64_t offset);

File I/O <unistd.h> Reads from a file at offset;
function-shipped to CIOD; returns number
of bytes read if OK, 0 if end of file, or -1 on
error. Introduced in V1R3M0.

ssize_t pwrite(int fd, const
void *buf, size_t nbytes,
off64_t offset);

File I/O <unistd.h> Writes to a file at offset; function-shipped
to CIOD; returns number of bytes written if
OK or -1 on error. Introduced in V1R3M0.

ssize_t read(int fd, void *buf,
size_t nbytes);

File I/O <unistd.h> Reads from a file; function-shipped to
CIOD; returns number of bytes read if OK,
0 if end of file, or -1 on error.

int readlink(const char *path,
char *buf, int bufsize);

File I/O <unistd.h> Reads the contents of a symbolic link;
function-shipped to CIOD; returns number
of bytes read if OK or -1 on error.

Function prototype Category Header required Description and type
54 IBM Blue Gene/P Application Development

ssize_t readv(int fd, const
struct iovec iov[], int iovcnt)

File I/O <sys/types.h>
<sys/uio.h>

Reads a vector, function-shipped to
CIOD; returns number of bytes read if OK
or -1 on error.

int rename(const char *oldname,
const char *newname);

File I/O <stdio.h> Renames a file; function-shipped to
CIOD; returns 0 if OK or -1 on error.

int stat(const char *path,
struct stat *buf);

File I/O <sys/types.h>
<sys/stat.h>

Gets the file status; function-shipped to
CIOD; returns 0 if OK or -1 on error.

int stat64(const char *path,
struct stat64 *buf);

File I/O <sys/types.h>
<sys/stat.h>

Gets the file status.

int statfs (char *path, struct
statfs *buf);

File I/O <sys/statfs.h> Gets file system statistics.

long statfs64 (const char *path,
size_t sz, struct statfs64
*buf);

File I/O <sys/statfs.h> Gets file system statistics.

int symlink(const char
*actualpath, const char
*sympath);

File I/O <unistd.h> Makes a symbolic link to a file;
function-shipped to CIOD; returns 0 if OK
or -1 on error.

int truncate(const char *path,
off_t length);

File I/O <sys/types.h>
<unistd.h>

Truncates a file to a specified length;
function-shipped to CIOD; returns 0 if OK
or -1 on error.

truncate64(const char *path,
off_t length);

File I/O <unistd.h>
<sys/types.h>

Truncates a file to a specified length.

mode_t umask(mode_t cmask); File I/O <sys/types.h>
<sys/stat.h>

Sets and gets the file mode creation
mask; function-shipped to CIOD; returns
the previous file mode creation mask.

int unlink(const char *path); File I/O <unistd.h> Removes a directory entry;
function-shipped to CIOD; returns 0 if OK
or -1 on error.

int utime(const char *path,
const struct utimbuf *times);

File I/O <sys/types.h>
<utime.h>

Sets file access and modification times;
function-shipped to CIOD; returns 0 if OK
or -1 on error.

ssize_t write(int fd, const void
*buff, size_t nbytes);

File I/O <unistd.h> Writes to a file; function-shipped to CIOD;
returns the number of bytes written if OK
or -1 on error.

ssize_t writev(int fd, const
struct iovec iov[], int
iovcntl);

File I/O <sys/types.h>
<sys/uio.h>

Writes a vector; function-shipped to
CIOD; returns the number of bytes written
if OK or -1 on error.

int chdir(const char *path); Directory <unistd.h> Changes the working directory;
function-shipped to CIOD; returns 0 if OK
or -1 on error.

char *getcwd(char *buf, size_t
size);

Directory <unistd.h> Gets the path name of the current working
directory; function-shipped to CIOD;
returns buf if OK or NULL on error.

int getdents(int fildes, char
**buf, unsigned nbyte);

Directory <sys/types.h> Gets the directory entries in a file system;
function-shipped to CIOD; returns 0 if OK
or -1 on error.

Function prototype Category Header required Description and type
Chapter 6. System calls 55

int getdents64(unsigned int fd,
struct dirent *dirp, unsigned
int count);

Directory <sys/dirent.h> Gets the directory entries in a file system.

int mkdir(const char *path,
mode_t mode);

Directory <sys/types.h>
<sys/stat.h>

Makes a directory; function-shipped to
CIOD; mode S_IRUSR, S_IWUSR,
S_IXUSR, S_IRGRP, S_IWGRP,
S_IXGRP, S_IROTH, S_IWOTH, and
S_IXOTH; returns 0 if OK or -1 on error.

int rmdir(const char *path); Directory <unistd.h> Removes a directory; returns 0 if OK or
-1 on error.

int getitimer(int which, struct
itimerval *value);

Time <sys/time.h> Gets the value of the interval timer; local
system call; returns 0 if OK or -1 on error.

int gettimeofday(struct timeval
*restrict tp, void *restrict
tzp);

Time <sys/time.h> Gets the date and time; local system call;
returns 0 if OK or NULL on error.

int setitimer(int which, const
struct itimerval *value, struct
itimerval *ovalue);

Time <sys/time.h> Sets the value of an interval timer; only the
following operations are supported:
� ITIMER_PROF
� ITIMER_REAL
Note: An application can only set one
active timer at a time.

time_t time(time_t *calptr); Time <time.h> Gets the time; local system call; returns
the value of time if OK or -1 on error.

gid_t getgid(void); Process
information

<unistd.h> Gets the real group ID.

pid_t getpid(void); Process
information

<unistd.h> Gets the process ID. The value is the MPI
rank of the node, meaning that 0 is a valid
value.

int getrlimit(int resource,
struct rlimit *rlp)

Process
information

<sys/resource.h> Gets information about resource limits.

int getrusage(int who, struct
rusage *r_usage);

Process
information

<sys/resource.h> Gets information about resource
utilization. All time reported is attributed to
the user application. so the reported
system time is always zero.

uid_t getuid(void); Process
information

<unistd.h> Gets the real user ID.

int setrlimit(int resource,
const struct rlimit *rlp);

Process
information

<sys/resource.h> Sets resource limits. Only RLIMIT_CORE
can be set.

clock_t times(struct tms *buf); Process
information

<sys/times.h> Gets the process times. All time reported
is attributed to the user application, so the
reported system time is always zero.

int brk(void
*end_data_segment);

Miscellaneous <unistd.h> Changes the data segment size.

void exit(int status) Miscellaneous <stdlib.h> Terminates a process.

int sched_yield(void); Miscellaneous <sched.h> Force the running thread to relinquish the
processor.

Function prototype Category Header required Description and type
56 IBM Blue Gene/P Application Development

6.2.3 Other system calls
Although many system calls are unsupported, you must be aware of the following
unsupported calls:

� The Blue Gene/P system does not support the use of the system() function. Therefore, for
example, you cannot use something, such as the system('chmod -w file') call.
Although, system() is not a system call, it uses fork() and exec() via glibc. Both fork() and
exec() are currently not implemented.

� The Blue Gene/P system does not provide the same support for gethostname() and
getlogin() as Linux provides.

� Calls to usleep() are not supported.

See 6.6, “Unsupported system calls” on page 60, for a complete list of unsupported system
calls.

6.3 System programming interfaces

Low-level access to IBM Blue Gene/P-specific interfaces, such as direct memory access
(DMA), is provided by the system programming interfaces (SPIs). These interfaces provide a
consistent interface for Linux and Compute Node Kernel-based applications to access the
hardware.

The following Blue Gene/P-specific interfaces are included in the SPI:

� Collective network
� Torus network
� Direct memory access
� Global interrupts
� Performance counters
� Lockbox

The following items are not included in the SPI:

� L2
� Snoop
� L3
� DDR hardware initialization
� serdes
� Environmental monitor

This hardware is set up by either the bootloader or Common Node Services. The L1
interfaces, such as TLB miss handlers, are typically extremely operating system specific, and
therefore an SPI is not defined. TOMAL and XEMAC are present in the Linux 10 Gb Ethernet
device driver (and therefore open source), but there are no plans for an explicit SPI.

int uname(struct utsname *buf); Miscellaneous <sys/utsname.h> Gets the name of the current system and
other information, for example, version
and release.

Function prototype Category Header required Description and type
Chapter 6. System calls 57

6.4 Socket support

The CNK provides socket support via the standard Linux socketcall() system call. The
socketcall() is a kernel entry point for the socket system calls. It determines which socket
function to call and points to a block that contains the actual parameters, which are passed
through to the appropriate call. The CNK function-ships the socketcall() parameters to the
CIOD, which then performs the requested operation. The CIOD is a user-level process that
controls and services applications in the Compute Node and interacts with the Midplane
Management Control System (MMCS).

This socket support allows the creation of both outbound and inbound socket connections
using standard Linux APIs, for example, an outbound socket can be created by calling
socket(), followed by connect(). An inbound socket can be created by calling socket() followed
by bind(), listen(), and accept().

Communication through the socket is provided via the glibc send(), recv(), and select()
function calls. These function calls invoke the socketcall() system call with different
parameters. Table 6-2 summarizes the list of Linux 2.4 socket system calls.

Table 6-2 Supported socket calls

Function prototype Category Header
required

Description and type

int accept(int sockfd, struct sockaddr
*addr, socklen_t *addrlen);

Sockets <sys/types.h>
<sys/socket.h>

Extracts the connection request on the
queue of pending connections; creates
a new connected socket; returns a file
descriptor if OK or -1 on error.

int bind(int sockfd, const struct
sockaddr *my_addr, socklen_t addrlen);

Sockets <sys/types.h>
<sys/socket.h>

Assigns a local address; returns 0 if OK
or -1 on error.

int connect(int socket, const struct
sockaddr *address, socklen_t
address_len);

Sockets <sys/types.h>
<sys/socket.h>

Connects a socket; returns 0 if OK or -1
on error.

int getpeername(int socket, struct
sockaddr *restrict address, socklen_t
*restrict address_len);

Sockets <sys/socket.h> Gets the name of the peer socket;
returns 0 if OK or -1 on error.

int getsockname(int socket, struct
sockaddr *restrict address, socklen_t
*restrict address_len);

Sockets <sys/socket.h> Retrieves the locally bound socket
name; stores the address in sockaddr;
and stores its length in the address_len
argument; returns 0 if OK or -1 on error.

int getsockopt(int s, int level, int
optname, void *optval, socklen_t
*optlen);

Sockets <sys/types.h>
<sys/socket.h>

Manipulates options that are associated
with a socket; returns 0 if OK or -1 on
error.

int listen(int sockfd, int backlog); Sockets <sys/socket.h> Accepts connections; returns 0 if OK or
-1 on error.

ssize_t recv(int s, void *buf, size_t
len, int flags);

Sockets <sys/types.h>
<sys/socket.h>

Receives a message only from a
connected socket; returns 0 if OK or -1
on error.

ssize_t recvfrom(int s, void *buf,
size_t len, int flags, struct sockaddr
*from, socklen_t *fromlen);

Sockets <sys/types.h>
<sys/socket.h>

Receives a message from a socket
regardless of whether it is connected;
returns 0 if OK or -1 on error.
58 IBM Blue Gene/P Application Development

6.5 Signal support

The Compute Node Kernel provides ANSI-C signal support via the standard Linux system
calls signal() and kill(). Additionally, signals can be delivered externally by using mpirun or for
HTC using submit. Table 6-3 summarizes the supported signals.

Table 6-3 Supported signals

ssize_t recvmsg(int s, struct msghdr
*msg, int flags);

Sockets <sys/types.h>
<sys/socket.h>

Receives a message from a socket
regardless of whether it is connected;
returns 0 if OK or -1 on error.

ssize_t send(int socket, const void
*buffer, size_t length, int flags);

Sockets <sys/types.h>
<sys/sockets.h>

Sends a message only to a connected
socket; returns 0 if OK or -1 on error.

ssize_t sendto(int socket, const void
*message, size_t length, int flags,
const struct sockaddr *dest_addr,
socklen_t dest_len);

Sockets <sys/types.h>
<sys/socket.h>

Sends a message on a socket; returns
0 if OK or -1 on error.

ssize_t sendmsg(int s, const struct
msghdr *msg, int flags);

Sockets <sys/types.h>
<sys/socket.h>

Sends a message on a socket; returns
0 if OK or -1 on error.

int setsockopt(int s, int level, int
optname, const void *optval, socklen_t
optlen);

Sockets <sys/types.h>
<sys/socket.h>

Manipulates options that are associated
with a socket; returns 0 if OK or -1 on
error.

int shutdown(int s, int how); Sockets <sys/socket.h> Causes all or part of a connection on the
socket to shut down; returns 0 if OK or
-1 on error.

int socket(int domain, int type, int
protocol);

Sockets <sys/types.h>
<sys/socket.h>

Opens a socket; returns a file descriptor
if OK or -1 on error.

int socketpair(int d, int type, int
protocol, int sv[2]);

Sockets <sys/types.h>
<sys/socket.h>

Creates an unnamed pair of connected
sockets; returns 0 if OK or -1 on error.

Function prototype Category Header
required

Description and type

Function prototype Category Header required Description and type

int kill(pid_t pid, int sig); Signals <sys/types.h>
<signal.h>

Sends a signal. A signal can be sent only
to the same process.

int sigaction(int signum, const
struct sigaction *act, struct
sigaction *oldact);

Signals <signal.h> Manages signals. The only flags
supported are SA_RESETHAND and
SA_NODEFER.

typedef void (*sighandler_t)(int)

sighandler_t signal(int signum,
sighandler_t handler);

Signals <signal.h> Manages signals.

typedef void (*sighandler_t)(int);

sighandler_t signal(int signum,
sighandler_t handler);

Signals <signal.h> Returns from a signal handler.
Chapter 6. System calls 59

6.6 Unsupported system calls

The role of the kernel on the Compute Node is to create an environment for the execution of a
user process that is “Linux like.” It is not a full Linux kernel implementation, but rather
implements a subset of the POSIX functionality. The following list indicates the system calls
that are not supported:

� acct � ioperm � removexattr

� adjtimex � iopl � rtas

� afs_syscall � ipc � rts_device_map

� bdflush � kexec_load � rts_dma

� break � lgetxattr � sched_get_priority_max

� capget � listxattr � sched_get_priority_min

� capset � llistxattr � sched_getaffinity

� chroot � lock � sched_getparam

� clock_getres � lookup_dcookie � sched_getscheduler

� clock_gettime � lremovexattr � sched_rr_get_interval

� clock_nanosleep � lsetxattr � sched_setaffinity

� clock_settime � mincore � sched_setparam

� create_module � mknod � sched_setscheduler

� delete_module � modify_lft � select

� epoll_create � mount � sendfile

� epoll_ctl � mpxmq_getsetattr � sendfile64

� epoll_wait � mq_notify � setdomainname

� execve � mq_open � setgroups

� fadvise64 � mq_timedreceive � sethostname

� fadvise64_64 � mq_timedsend � setpriority

� fchdir � mq_unlink � settimeofday

� fdatasync � multiplexer � setxattr

� fgetxattr � nfsservctl � stime

� flistxattr � nice � stty

� flock � oldfstat � swapcontext

� fork � oldlstat � swapoff

� fremovexattr � oldolduname � swapon

� fsetxattr � olduname � sync

� ftime � oldstat � sys_debug_setcontext

� get_kernel_syms � pciconfig_iobase � sysfs
60 IBM Blue Gene/P Application Development

You can find additional information about these system calls on the syscalls(2) - Linux man
page on the Web at:

http://linux.die.net/man/2/syscalls

� getgroups � pciconfig_read � syslog

� getpgrp � pciconfig_write � timer_create

� getpmsg � personality � timer_delete

� getppid � pipe � timer_getoverrun

� getpriority � pivot_root � timer_gettime

� gettid � prof � timer_settime

� getxattr � profil � tuxcall

� gtty � ptrace � umount

� idle � putpmsg � umount2

� init_module � query_module � uselib

� io_cancel � quotactl � ustat

� io_destroy � readahead � utimes

� io_getevents � readdir � vfork

� io_setup � reboot � vhangup

� io_submit � remap_file_pages � vm86
Chapter 6. System calls 61

http://linux.die.net/man/2/syscalls

62 IBM Blue Gene/P Application Development

Part 3 Applications
environment

In this part, we provide an overview of some of the software that forms part of the applications
environment. Throughout this book, we consider the applications environment as the
collection of programs that are required to develop applications.

This part includes the following chapters:

� Chapter 7, “Parallel paradigms” on page 65
� Chapter 8, “Developing applications with IBM XL compilers” on page 97
� Chapter 9, “Running and debugging applications” on page 139
� Chapter 10, “Checkpoint and restart support for applications” on page 169
� Chapter 11, “mpirun” on page 177
� Chapter 12, “High-Throughput Computing (HTC) paradigm” on page 201

Part 3
© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 63

64 IBM Blue Gene/P Application Development

Chapter 7. Parallel paradigms

In this chapter, we discuss the parallel paradigms that are offered on the Blue Gene/P
system. One such paradigm is the Message Passing Interface (MPI),22 for a
distributed-memory architecture, and OpenMP,23 for shared-memory architectures. We refer
to this paradigm as High-Performance Computing (HPC). Blue Gene/P also offers a
paradigm where applications do not require communication between tasks and each node is
running a different instance of the application. We refer to this paradigm as High-Throughput
Computing (HTC). This topic is discussed in Chapter 14.

In this chapter, we address the following topics:

� Programming model
� IBM Blue Gene/P MPI implementation
� Blue Gene/P MPI extensions
� MPI functions
� Compiling MPI programs on Blue Gene/P
� MPI communications performance
� OpenMP

7

© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 65

7.1 Programming model

The Blue Gene/P system has a distributed memory system and uses explicit message
passing to communicate between tasks that are running on different nodes. It also has
shared memory on each node; OpenMP and thread parallelism are supported as well.

MPI is the supported message-passing standard. It is the industry standard for message
passing. For further information about MPI, refer to the Message Passing Interface Forum
site on the Web at the following address:

http://www.mpi-forum.org/

The Blue Gene/P MPI implementation uses the Deep Computing Messaging Framework
(DCMF) as a low-level messaging interface. The Blue Gene/P DCMF implementation directly
accesses the Blue Gene/P hardware through the DMA SPI interface. The MPI, DCMF, and
SPI interfaces are public, supported interfaces on Blue Gene/P, and all can be used by an
application to perform communication operations. For further information about DCMF and
the DMA SPI, refer to the open source documentation at the following locations:

http://dcmf.anl-external.org/wiki
http://wiki.bg.anl-external.org/index.php/Base
http://wiki.bg.anl-external.org/index.php/Runtime

Other programming paradigms have been ported to Blue Gene/P using one or more of the
supported software interfaces as illustrated in Figure 7-1. The respective open source
communities provide support for using these alternative paradigms, as described in the rest
of this section.

Figure 7-1 Software stack

Berkeley
UPC

Application

DMA SPI

DCMF (C++)

MPICH2

DCMF Public API

dcmfd ADI

Global
Arrays

GASNet

Systems Programming Interface

Deep Computing
Messaging Framework

CCMI

Application Layer

Charm++D
M

A
 S

P
I A

pp
lic

at
io

ns
 (Q

C
D

)

D
C

M
F

Ap
pl

ic
at

io
ns

ARMCI Library Portability Layer

BG/P Network Hardware

IBM supported software

Externally supported software
66 IBM Blue Gene/P Application Development

http://www.mpi-forum.org/
http://dcmf.anl-external.org/wiki
http://wiki.bg.anl-external.org/index.php/Base
http://wiki.bg.anl-external.org/index.php/Runtime

Aggregate Remote Memory Copy Interface
Aggregate Remote Memory Copy Interface (ARMCI) is an open source project developed
and maintained by the Pacific Northwest National Laboratory. The purpose of the ARMCI
library is to provide general-purpose, efficient, and widely portable remote memory access
(RMA) operations (one-sided communication) optimized for contiguous and noncontiguous
(strided, scatter/gather, I/O vector) data transfers. To obtain further information about ARMCI,
refer to the following Web site:

http://www.emsl.pnl.gov/docs/parsoft/armci/

You also can obtain information about ARMCI by sending an e-mail to
hpctools@emsl.pnl.gov.

Global Arrays
The Global Arrays (GA) toolkit is an open source project developed and maintained by the
Pacific Northwest National Laboratory. The toolkit provides an efficient and portable
“shared-memory” programming interface for distributed-memory computers. Each process in
a MIMD parallel program can asynchronously access logical blocks of physically distributed
dense multidimensional arrays without need for explicit cooperation by other processes.
Unlike other shared-memory environments, the GA model exposes to the programmer the
non-uniform memory access (NUMA) characteristics of the high-performance computers and
acknowledges that access to a remote portion of the shared data is slower than access to the
local portion. The locality information for the shared data is available, and direct access to the
local portions of shared data is provided. For information about the GA toolkit, refer to the
following Web site:

http://www.emsl.pnl.gov/docs/global/

You also can obtain information about the GA toolkit by sending an e-mail to
hpctools@pnl.gov.

Charm++
Charm++ is an open source project developed and maintained by the Parallel Programming
Laboratory at the University of Illinois at Urbana-Champaign. Charm++ is an explicitly parallel
language based on C++ with a runtime library for supporting parallel computation called the
Charm kernel. It provides a clear separation between sequential and parallel objects. The
execution model of Charm++ is message driven, thus helping one write programs that are
latency tolerant. Charm++ supports dynamic load balancing while creating new work as well
as periodically, based on object migration. Several dynamic load balancing strategies are
provided. Charm++ supports both irregular as well as regular, data-parallel applications. It is
based on the Converse interoperable runtime system for parallel programming. You can
access information from the following Parallel Programming Laboratory Web site:

http://charm.cs.uiuc.edu/

You also can access information about the Parallel Programming Laboratory by sending an
e-mail to ppl@cs.uiuc.edu.

Berkeley Unified Parallel C
Berkeley UPC is an open source project developed and maintained by Lawrence Berkeley
National Laboratory and the University of California, Berkeley. UPC is an extension of the C
programming language designed for High-Performance Computing on large-scale parallel
machines.The language provides a uniform programming model for both shared and
distributed memory hardware. The programmer is presented with a single shared, partitioned
address space, where variables can be directly read and written by any processor, but each
variable is physically associated with a single processor. UPC uses a Single Program Multiple
Chapter 7. Parallel paradigms 67

http://charm.cs.uiuc.edu/
http://www.emsl.pnl.gov/docs/global/
http://www.emsl.pnl.gov/docs/parsoft/armci/

Data (SPMD) model of computation in which the amount of parallelism is fixed at program
startup time, typically with a single thread of execution per processor. You can access more
information at the following Web site:

http://upc.lbl.gov/

You also can access more information by sending an e-mail to upc-users@lbl.gov.

Global-Address Space Networking
Global-Address Space Networking (GASNet) is an open source project developed and
maintained by Lawrence Berkeley National Laboratory and the University of California,
Berkeley. GASNet is a language-independent, low-level networking layer that provides
network-independent, high-performance communication primitives tailored for implementing
parallel global address space SPMD languages, such as UPC, Titanium, and Co-Array
Fortran. The interface is primarily intended as a compilation target and for use by runtime
library writers (as opposed to users), and the primary goals are high-performance, interface
portability, and expressiveness. You can access more information at the following Web site:

http://gasnet.cs.berkeley.edu/

7.2 Blue Gene/P MPI implementation

The current MPI implementation on the Blue Gene/P system supports the MPI-2.1 standard.
The only exception is the process creation and management functions. The MPI-2.1 standard
is available from the following Web site:

http://www.mpi-forum.org/mpi2_1/index.htm

When starting applications on the Blue Gene/P system, you must consider that the
microkernel running on the Compute Nodes does not provide any mechanism for a command
interpreter or shell. Only the executables can be started. Shell scripts are not supported.
Therefore, if your application consists of a number of shell scripts that control its workflow, the
workflow must be adapted. If you start your application with the mpirun command, you cannot
start the main shell script with this command. Instead, you must run the scripts on the front
end node and only call mpirun at the innermost shell script level where the main application
binary is called.

The MPI implementation on the Blue Gene/P system is derived from the MPICH2
implementation of the Mathematics and Computer Science Division (MCS) at Argonne
National Laboratory. For additional information, refer to the following MPICH2 Web site:

http://www.mcs.anl.gov/research/projects/mpich2/

To support the Blue Gene/P hardware, the following additions and modifications have been
made to the MPICH2 software architecture:

� A Blue Gene/P driver has been added that implements the MPICH2 abstract device
interface (ADI).

� Optimized versions of the Cartesian functions exist (MPI_Dims_create(),
MPI_Cart_create(), MPI_Cart_map()).

� MPIX functions create hardware-specific MPI extensions.

From the application programmer’s view, the most important aspect of these changes is that
the collective operations can use different networks under different circumstances. In 7.2.1,
“High-performance network for efficient parallel execution” on page 69, we briefly summarize
the different networks on the Blue Gene/P system and network routing.
68 IBM Blue Gene/P Application Development

http://www-unix.mcs.anl.gov/mpi/mpich/
http://upc.lbl.gov/
http://upc.lbl.gov/
http://gasnet.cs.berkeley.edu/
http://www-unix.mcs.anl.gov/mpi/mpich/

In sections 7.2.2, “Forcing MPI to allocate too much memory” on page 71 through 7.2.7,
“Buffer alignment sensitivity” on page 73, we discuss several sample MPI codes to explain
some of the implementation-dependent behaviors of the MPI library. Section 7.3.3, “Self
Tuned Adaptive Routines for MPI” on page 79 discusses an automatic optimization technique
available on the Blue Gene/P MPI implementation.

7.2.1 High-performance network for efficient parallel execution

The Blue Gene/P system provides three different communication networks for hardware
acceleration for certain collective operations.

Global interrupt network
The global interrupt network connects all compute nodes and provides a low latency barrier
operation.

Collective network
The collective network connects all the Compute Nodes in the shape of a tree. Any node can
be the tree root. The MPI implementation uses the collective network, which is more efficient
than the torus network for collective communication on global communicators, such as
MPI_COMM_WORLD.

Point-to-point network
All MPI point-to-point and subcommunicator communication operations are carried out
through the torus network. The route from a sender to a receiver on a torus network has the
following two possible paths:

� Deterministic routing

Packets from a sender to a receiver go along the same path. One advantage of this path is
that the packet order is always maintained without additional logic. However, this
technique also creates network hot spots if several point-to-point communications occur at
the same time and their deterministic routes cross on some node.

� Adaptive routing

Different packets from the same sender to the same receiver can travel along different
paths. The exact route is determined at run time depending on the current load. This
technique generates a more balanced network load but introduces a latency penalty.

Selecting deterministic or adaptive routing depends on the protocol used for communication.
The Blue Gene/P MPI implementation supports three different protocols:

� MPI short protocol

The MPI short protocol is used for short messages (less than 224 bytes), which consist of
a single packet. These messages are always deterministically routed. The latency for
short messages is around 3.3 µs.

� MPI eager protocol

The MPI eager protocol is used for medium-sized messages. It sends a message to the
receiver without negotiating with the receiving side that the other end is ready to receive
the message. This protocol also uses deterministic routes for its packets.

� MPI rendezvous protocol

Large messages are sent using the MPI rendezvous protocol. In this case, an initial
connection between the two partners is established. Only after that connection is
established, does the receiver use direct memory access (DMA) to obtain the data from
the sender. This protocol uses adaptive routing and is optimized for maximum bandwidth.
Chapter 7. Parallel paradigms 69

By default, MPI send operations use the rendezvous protocol, instead of the eager
protocol, for messages larger than 1200 bytes. Naturally, the initial rendezvous handshake
increases the latency.

There are two types of rendezvous protocols: default and optimized. The optimized
rendezvous protocol generally has less latency than the default rendezvous protocol, but
does not wait for a receive to be posted first. Therefore, unexpected messages can be
received, consuming storage until the receives are issued. The default rendezvous
protocol waits for a receive to be posted first. Therefore, no unexpected messages will be
received. The optimized rendezvous protocol also avoids filling injection FIFOs which can
cause delays while larger FIFOs are allocated. In general, the optimized rendezvous
protocol should be used with smaller rendezvous messages, while the default rendezvous
protocol should be used for larger rendezvous messages. By default, the default
rendezvous protocol is used, and the optimized rendezvous protocol is disabled, since the
default protocol is guaranteed to not run out of memory with unexpected messages.
Enabling the optimized protocol for smaller rendezvous messages improves performance
in some applications. Enabling the optimized rendezvous protocol is done by setting
environment variables, as described below.

The Blue Gene/P MPI library supports a DCMF_EAGER environment variable (which can be
set using mpirun) to set the message size (in bytes) above which the rendezvous protocol
should be used. Consider the following guidelines:

� Decrease the rendezvous threshold if any of the following situations are true:

– Many short messages are overloading the network.
– Eager messages are creating artificial hot spots.
– The program is not latency-sensitive.

� Increase the rendezvous threshold if any of the following situations are true:

– Most communication is a nearest neighbor or at least close in Manhattan distance,
where this distance is the shortest number of hops between a pair of nodes.

– You mainly use relatively long messages.
– You need better latency on medium-sized messages.

The DCMF_OPTRZV environment variable specifies the number of bytes on the low end of
the rendezvous range where the optimized rendezvous protocol will be used. That is, the
optimized rendezvous protocol will be used if eager_limit <= message_size < (eager_limit
+ DCMF_OPTRZV), for example, if the eager limit (DCMF_EAGER) is 1200 (the default), and
DCMF_OPTRZV is 1000, the eager protocol will be used for message sizes less than 1200
bytes, the optimized rendezvous protocol will be used for message sizes 1200 - 2199 bytes,
and the default rendezvous protocol will be used for message sizes 2200 bytes or larger. The
default DCMF_OPTRZV value is 0, meaning that the optimized rendezvous protocol is not
used.

Several other environment variables can be used to customize MPI communications. Refer to
Appendix D, “Environment variables” on page 339 for descriptions of these environment
variables.

An efficient MPI application on Blue Gene/P observes the following guidelines:

� Overlap communication and computation using MPI_Irecv and MPI_Isend, which allow
DMA to work in the background.

DMA and the collective and GI networks: The collective and GI networks do not use
DMA. In this case, operations cannot be completed in the background.
70 IBM Blue Gene/P Application Development

� Avoid load imbalance.

This is important for all parallel systems. However, when scaling to the high numbers of
tasks that are possible on the Blue Gene/P system, it is important to pay close attention to
load balancing.

� Avoid buffered and synchronous sends; post receives in advance.

The MPI standard defines several specialized communication modes in addition to the
standard send function, MPI_Send(). Avoid the buffered send function, MPI_Bsend(),
because it causes the MPI library to perform additional memory copies. Using the
synchronous send function, MPI_Ssend(), is discouraged because it is a non-local
operation that incurs an increased latency compared to the standard send without saving
memory allocation.

� Avoid vector data and non-contiguous data types.

While the MPI-derived data types can elegantly describe the layout of complex data
structures, using these data types is generally detrimental to performance. Many MPI
implementations, including the Blue Gene/P MPI implementation, pack (that is,
memory-copy) such data objects before sending them. This packing of data objects is
contrary to the original purpose of MPI-derived data types, namely to avoid such memory
copies. Memory copies are particularly expensive on Blue Gene/P due to the relatively
slow processor clock compared to the fast network hardware capabilities. Avoiding
noncontiguous MPI data types, and memory copies in general, improves application
performance.

7.2.2 Forcing MPI to allocate too much memory

Forcing MPI to allocate too much memory is relatively easy to do with basic code, for
example, the snippets of legal MPI code shown in Example 7-1 and Example 7-2 run the risk
of forcing the MPI support to allocate too much memory, resulting in failure, because it forces
excessive buffering of messages.

Example 7-1 CPU1 MPI code that can cause excessive memory allocation

MPI_ISend(cpu2, tag1);
MPI_ISend(cpu2, tag2);
...
MPI_ISend(cpu2, tagn);

Example 7-2 CPU2 MPI code that can cause excessive memory allocation

MPI_Recv(cpu1, tagn);
MPI_Recv(cpu1, tagn-1);
...
MPI_Recv(cpu1, tag1);

Keep in mind the following points:

� The Blue Gene/P MPI rendezvous protocol does not allocate a temporary buffer to receive
unexpected messages. This proper buffer allocation prevents most problems by
drastically reducing the memory footprint of unexpected messages.

� The message queue is searched linearly to meet MPI matching requirements. If several
messages are on the queue, the search can take longer.
Chapter 7. Parallel paradigms 71

You can accomplish the same goal and avoid memory allocation issues by recoding as shown
in Example 7-3 and Example 7-4.

Example 7-3 CPU1 MPI code that can avoid excessive memory allocation

MPI_ISend(cpu2, tag1);
MPI_ISend(cpu2, tag2);
...
MPI_ISend(cpu2, tagn);

Example 7-4 CPU2 MPI code that can avoid excessive memory allocation

MPI_Recv(cpu1, tag1);
MPI_Recv(cpu1, tag2);
...
MPI_Recv(cpu1, tagn);

7.2.3 Not waiting for MPI_Test
According to the MPI standard, an application must either wait or continue testing until
MPI_Test returns true. Not doing so causes small memory leaks, which can accumulate over
time and cause a memory overrun. Example 7-5 shows the code and the problem.

Example 7-5 Potential memory overrun caused by not waiting for MPI_Test

req = MPI_Isend(...);
MPI_Test (req);
... do something else; forget about req ...

Remember to use MPI_Wait or loop until MPI_Test returns true.

7.2.4 Flooding of messages
The code shown in Example 7-6, while legal, floods the network with messages. It can cause
CPU 0 to run out of memory. Even though it can work, it is not scalable.

Example 7-6 Flood of messages resulting in a possible memory overrun

CPU 1 to n-1 code:
MPI_Send(cpu0);

CPU 0 code:
for (i=1; i<n; i++)
 MPI_Recv(cpu[i]);

7.2.5 Deadlock the system

The code shown in Example 7-7 is illegal according to the MPI standard. Each side does a
blocking send to its communication partner before posting a receive for the message coming
from the other partner.

Example 7-7 Deadlock code

TASK1 code:
MPI_Send(task2, tag1);
MPI_Recv(task2, tag2);
TASK2 code:
72 IBM Blue Gene/P Application Development

MPI_Send(task1, tag2);
MPI_Recv(task1, tag1);

In general, this code has a high probability of deadlocking the system. Obviously, you should
not program this way. Make sure that your code conforms to the MPI specification. You can
achieve this by either changing the order of sends and receives or by using non-blocking
communication calls.

While you should not rely on the run-time system to correctly handle nonconforming MPI
code, it is easier to debug such situations when you receive a run-time error message than to
try and detect a deadlock and trace it back to its root cause.

7.2.6 Violating MPI buffer ownership rules

A number of problems can arise when the send/receive buffers that participate in
asynchronous message-passing calls are accessed before it is legal to do so. All of the
following examples are illegal, and therefore, you must avoid them.

The most obvious case is when you write to a send buffer before the MPI_Wait() for that
request has completed as shown in Example 7-8.

Example 7-8 Write to a send buffer before MPI_Wait() has completed

req = MPI_Isend(buffer,&req);
buffer[0] = something;
MPI_Wait(req);

The code in Example 7-8 results in a race condition on any message-passing machine.
Depending on the run-time factors that are outside the application’s control, sometimes the
old buffer[0] is sent and sometimes the new value is sent.

In the last example in this thread, a receive buffer is read before MPI_Wait() because the
asynchronous receive request completed (see Example 7-9).

Example 7-9 Receive buffer before MPI_Wait() has completed

req = MPI_Irecv(buffer);
z = buffer[0];
MPI_Wait (req);

The code shown in Example 7-9 is also illegal. The contents of the receive buffer are not
guaranteed until after MPI_Wait() is called.

7.2.7 Buffer alignment sensitivity

It is important to note that the MPI implementation on the Blue Gene/P system is sensitive to
the alignment of the buffers that are being sent or received. Aligning buffers on 32-byte
boundaries can improve performance. If the buffers are at least 16-bytes aligned, the
messaging software can use internal math routines that are optimized for the double hummer
architecture. Additionally, the L1 cache and DMA are optimized on 32-byte boundaries.
Chapter 7. Parallel paradigms 73

For buffers that are dynamically allocated (via malloc()), the following techniques can be
used:

� Instead of using malloc(), use the following statement and specify 32 for the alignment
parameter:

int posix_memalign(void **memptr, size_t alignment, size_t size)

This statement returns a 32-byte aligned pointer to the allocated memory. You can use
free() to free the memory.

� Use malloc(), but request 32 bytes of more storage than required. Then round the returned
address up to a 32-byte boundary as shown in Example 7-10.

Example 7-10 Request 32 bytes more storage than required

buffer_ptr_original = malloc(size + 32);
buffer_ptr = (char*)(((unsigned)buffer_ptr_original + 32) &
0xFFFFFFE0);
.
.
.
/* Use buffer_ptr on MPI operations */
.
.
.
free(buffer_ptr_original);

For buffers that are declared in static (global) storage, use __attribute__((aligned(32))) on
the declaration as shown in Example 7-11.

Example 7-11 Buffers that are declared in static (global) storage

struct DataInfo
{
unsigned int iarray[256];
unsigned int count;
} data_info __attribute__ ((aligned (32)));
or
unsigned int data __attribute__ ((aligned (32)));
or
char data_array[512] __attribute__((aligned(32)));

For buffers that are declared in automatic (stack) storage, only up to a 16-byte alignment is
possible. Therefore, use dynamically allocated aligned static (global) storage instead.

7.3 Blue Gene/P MPI extensions

This section describes extensions to the MPI library available on Blue Gene/P. It includes the
following sections:

� Section 7.3.1, “Blue Gene/P communicators” on page 75 describes functions to create
communicators that reflect the unique aspects of the Blue Gene/P hardware.

� Section 7.3.2, “Configuring MPI algorithms at run time” on page 77 describes functions to
dynamically configure the algorithms used by the MPI collectives while the application is
running.
74 IBM Blue Gene/P Application Development

� 7.3.3, “Self Tuned Adaptive Routines for MPI” on page 79 describes a way to automatically
tune the collective routines used by an application.

7.3.1 Blue Gene/P communicators

Three new APIs make it easier to map nodes to specific hardware or processor set (pset)
configurations. Application developers can use these functions, as explained in the following
list, by including the mpix.h file:

� int MPIX_Cart_comm_create (MPI_Comm *cart_comm);

This function creates a four-dimensional (4D) Cartesian communicator that mimics the
exact hardware on which it is run. The X, Y, and Z dimensions match those of the partition
hardware, while the T dimension has cardinality 1 in symmetrical multiprocessing (SMP)
mode, cardinality 2 in Dual mode, and cardinality 4 in Virtual Node Mode. The
communicator wrap-around links match the true mesh or torus nature of the partition. In
addition, the coordinates of a node in the communicator match exactly its coordinates in
the partition. The communicator created by this function always contains the dimensions
and coordinates in TZYX order.

It is important to understand that this is a collective operation and it must be run on all
nodes. The function might be unable to complete successfully for several different
reasons, mostly likely when it is run on fewer nodes than the entire partition. It is important
to ensure that the return code is MPI_SUCCESS before continuing to use the returned
communicator.

� int MPIX_Pset_same_comm_create (MPI_Comm *pset_comm);

This function is a collective operation that creates a set of communicators (each node
seeing only one), where all nodes in a given communicator are part of the same pset (all
share the same I/O node), see Figure 7-2 on page 76.

The most common use for this function is to coordinate access to the outside world to
maximize the number of I/O Nodes, for example, node 0 in each of the communicators
can be arbitrarily used as the “master node” for the communicator, collecting information
from the other nodes for writing to disk.
Chapter 7. Parallel paradigms 75

Figure 7-2 MPIX_Pset_same_comm_create() creating communicators

� int MPIX_Pset_diff_comm_create (MPI_Comm *pset_comm);

This function is a collective operation that creates a set of communicators (each node
seeing only one), where no two nodes in a given communicator are part of the same pset
(all have different I/O Nodes), see Figure 7-3 on page 77. The most common use for this
function is to coordinate access to the outside world to maximize the number of I/O Nodes,
for example, an application that has an extremely high bandwidth per node requirement
can run both MPIX_Pset_same_comm_create() and MPIX_Pset_diff_comm_create().

Nodes without rank 0 in MPIX_Pset_same_comm_create() can sleep, leaving those with
rank 0 independent and parallel access to the functional Ethernet. Those nodes all belong
to the same communicator from MPIX_Pset_diff_comm_create(), allowing them to use
that communicator instead of MPI_COMM_WORLD for group communication or
coordination.

Application

Comm
1

Comm
2

Comm
3

Comm
4

1

2

3

4

5

6

7

8

Pset 4

1

2

3

4

5

6

7

8

Pset 3

1

2

3

4

5

6

7

8

Pset 2

1

2

3

4

5

6

7

8

Pset 1

Application

Comm
1

Comm
2

Comm
3

Comm
4

1

2

3

4

5

6

7

8

Pset 4

1

2

3

4

5

6

7

8

Pset 3

1

2

3

4

5

6

7

8

Pset 2

1

2

3

4

5

6

7

8

Pset 1
76 IBM Blue Gene/P Application Development

Figure 7-3 PMI_Pset_diff_comm_create() creating communicators

7.3.2 Configuring MPI algorithms at run time

The Blue Gene/P MPI implementation allows developers to enable or disable the algorithms
used by the collective operations at run time. Used properly, this feature can provide better
application performance.

A single collective operation might appear at different places in the code and have different
characteristics, for example, the message size, number of processes involved, and operation
can differ at one call site versus another call site for the same collective operation. The MPI
library cannot differentiate among the invocations of a given collective in terms of treatment,
that is, what algorithm to use to realize that instance of the collective operation. The library
might use the same algorithm to realize different collective operation call sites, which in some
cases cannot be efficient. It is desirable to give application developers some control over the
algorithm selection for a collective operation. One method of controlling the collective
operation is by manipulating the environment variables described in Appendix D,
“Environment variables” on page 339. The algorithm specified by the environment variables
can be applied to all instances of the pertinent communication operation, which might not
provide enough granularity to get maximum performance.

Support to enable algorithm selection per collective communication call site was added in
Blue Gene/P release V1R3M0.

The algorithms that are available to a communicator for collective operations are defined by
the values of properties of the communicator. Refer to the directory /bgsys/drivers/ppcfloor/

Comm
1

Comm
2

Comm
3

Comm
4

Comm
5

Comm
6

Comm
7

Comm
8

Pset 4Pset 3Pset 2Pset 1

8888

7777

6666

5555

4444

3333

2222

1111 Comm
1

Comm
2

Comm
3

Comm
4

Comm
5

Comm
6

Comm
7

Comm
8

Pset 4Pset 3Pset 2Pset 1

8888

7777

6666

5555

4444

3333

2222

1111
Chapter 7. Parallel paradigms 77

comm/include/mpido_properties.h for the definitions of the available properties. These
properties represent the collective communication algorithms. The value of a property can be
true or false. The initial values for the properties of a communicator depend on its size, shape,
and parent communicator. If a communicator is duplicated, the values of the properties of the
old communicator are copied to the new communicator.

Application developers get or set the value of a property of a communicator using the
following functions, which are declared in the mpix.h header file:

� int MPIX_Get_properties(MPI_Comm comm, int *prop_array);

� int MPIX_Get_property(MPI_Comm comm, int prop, int *result);

� int MPIX_Set_property(MPI_Comm comm, int prop, int value);

For these functions, comm is the communicator, and prop is the property from
mpido_properties.h. MPIX_Get_properties() retrieves the values for all of the properties of the
communicator. The size of prop_array must be at least MPIDO_MAX_NUM_BITS integers
(ints). If the call returns MPI_SUCCESS, each of the elements of prop_array are set to the
value of the property in the communicator at the offset given by the property number, for
example, after calling MPIX_Get_properties(), prop_array[MPIDO_USE_MPICH_ALLTOALL]
is set to 1 if the value of the MPIDO_USE_MPICH_ALLTOALL property is true for the
communicator or 0 if it is false.

MPIX_Get_property() is used to get the current value of a property for a communicator. If
MPIX_Get_property() returns success, result is set to 1 if the property is true or 0 if the
property is false.

The MPIX_Set_property() function sets the value of the property to true if value is 1 or false if
value is 0. This function is the only one that affects a property’s value for a communicator
once it is created.

The functions return the following values, indicating the result of the operation:

MPI_SUCCESS The property was successfully retrieved or set.
MPI_ERR_ARG The property is not valid.
MPI_ERR_COMM The communicator is not valid.

Example 7-12 illustrates through pseudocode the use of MPIX_Get_property() and
MPIX_Set_property() to specify different algorithms for a MPI_Alltoall() call site. Currently,
MPI_Alltoall() has two properties, the property MPIDO_USE_TORUS_ALLTOALL and the
property MPIDO_USE_MPICH_ALLTOALL. In the example, we first get the
MPIDO_USE_TORUS_ALLTOALL value to see if it is false. If it is, we set it to true so that the
algorithm can be used during the call to MPI_Alltoall(). Then we make sure that the
MPIDO_USE_MPICH_ALLTOALL property is false, which forces MPI_Alltoall() to use the
torus algorithm. We then reset the torus property so that MPI does not use the torus protocol
for subsequent invocations of MPI_Alltoall(). Note that if there were three algorithms X, Y, and
Z for the alltoall operation and the user wants to force the use of Z, the user is required to set
the properties for algorithms X and Y to false.

Example 7-12 Disabling the MPICH protocol on MPI_Alltoall

int main(int argc, char **argv)
{

Important: These functions give developers full control of the algorithm selection process,
which could lead to program crashes if the selection is done inappropriately.
78 IBM Blue Gene/P Application Development

…
MPIX_Get_property(comm, MPIDO_USE_TORUS_ALLTOALL, &result);
if (result == 0)

/* this causes the following MPI_Alltoall to use torus protocol */
MPIX_Set_property(comm, MPIDO_USE_TORUS_ALLTOALL, 1);

MPIX_Get_property(comm, MPIDO_USE_MPICH_ALLTOALL, &result);
if (result == 1)

/* turn off the mpich protocol */
MPIX_Set_property(comm, MPIDO_USE_MPICH_ALLTOALL, 0);

MPI_Alltoall(…);
/* this resets the MP_Alltoall algorithm selection to its previous state */
MPIX_Set_property(comm, MPIDO_USE_TORUS_ALLTOALL, 0);
…
…

}

7.3.3 Self Tuned Adaptive Routines for MPI

The Blue Gene/P MPI library as of the V1R3M0 release includes a collectives component
called the Self Tuned Adaptive Routines for MPI (STAR-MPI)24. STAR-MPI can be used to
improve application performance by dynamically choosing the best algorithm for the collective
operations the application invokes at each invocation point. Best results will be seen when the
application has code segments that call collective operations several times (more than 100
calls in a segment). Use of STAR-MPI requires no changes to the application. STAR-MPI can
be used when running an application by setting environment variables as described below.

Table 7-1 describes the environment variables that affect STAR-MPI. Refer to section 11,
“mpirun” on page 177 for information about setting environment variables for MPI programs.

Table 7-1 STAR-MPI environment variables

Note: Publishing results obtained from executing STAR-MPI requires the acknowledgment
and citation of the software and its owners. The full citation is given in 24.

Environment variable Usage

DCMF_STAR Enable STAR-MPI for tuning MPI collective operations.
STAR-MPI is disabled by default. Set to 1 to enable
STAR-MPI.

DCMF_STAR_THRESHOLD The message size above which STAR-MPI is used. If the
message size in the request is smaller than this value then
STAR-MPI will not be used. If set, the value must be an
integer greater than or equal to 0. If not set, the default value
of 2048 is used.

DCMF_STAR_VERBOSE Enable verbose output for STAR-MPI. If verbose output is
enabled, then output files with names of the form
“<executable>-star-rank<#>.log”, where <executable> is the
name of the executable and <#> is the rank of the task, will
be written to the current directory. Verbose output is disabled
by default. Set to 1 to enable verbose output. The application
must be compiled with debug symbols (the -g option) in order
for the verbose output to contain readable function names.
Chapter 7. Parallel paradigms 79

The STAR-MPI verbose output can be used to pre-tune the collectives for an application if an
application is called multiple times with similar inputs. The verbose output will show the
algorithm that STAR-MPI determined to be optimal for each MPI collective operation
invocation. The next time the application is run, the caller can indicate to the MPI library the
algorithm to use by setting the DCMF environment variables described in Appendix D,
“Environment variables” on page 339 or using the techniques described in 7.3.2, “Configuring
MPI algorithms at run time” on page 77. In this way, the application will avoid STAR-MPI’s
less-optimal tuning phase while getting the benefit of using the best algorithms on
subsequent runs.

7.4 MPI functions

MPI functions have been extensively documented in the literature. In this section, we provide
several useful references that provide a comprehensive description of the MPI functions.

Appendix A in Parallel Programming in C with MPI and OpenMP, by Michael J. Quinn,25
describes all the MPI functions as defined in the MPI-1 standard. This reference also provides
additional information and recommendations when to use each function.

In addition, you can find information about the MPI standard on the Message Passing
Interface (MPI) standard Web site at:

http://www.mcs.anl.gov/research/projects/mpi/

A comprehensive list of the MPI functions is available on the MPI Routines page at:

http://www.mcs.anl.gov/research/projects/mpi/www/www3/

DCMF_STAR_NUM_INVOCS The number of invocations that STAR-MPI uses to examine
performance of each communication algorithm. If set, the
value must be an integer greater than 0. If not set, the default
is 10.

DCMF_STAR_TRACEBACK_LEVEL The function call trace back level to the application.
STAR-MPI calculates the invocation point by looking at the
call stack. By default, STAR-MPI looks back 3 levels to find
where the application calls into the MPI routine. If the
application uses wrapper functions (for example, PMPI
wrappers) around MPI calls, then the user must set this
environment variable to a larger value equal to the number of
levels of function calls that are added by the wrappers. The
value must be an integer greater than or equal to 3.

DCMF_STAR_CHECK_CALLSITE Disable a sanity check that ensures that all ranks in the
application are involved in the same collective call site. If the
application is written in such a way that all ranks are not
involved in the same collective call site, then this sanity
checking must not be disabled. If the application is known to
always have all ranks involved in the same collective call,
then this environment variable can be set to 0 to disable the
sanity check and eliminate the overhead required to perform
the check.

Environment variable Usage
80 IBM Blue Gene/P Application Development

http://www-unix.mcs.anl.gov/mpi/
http://www-unix.mcs.anl.gov/mpi/www/www3/

The MPI Routines page includes MPI calls for C and Fortran. For more information, refer to
the following books about MPI and MPI-2:

� MPI: The Complete Reference, 2nd Edition, Volume 1, by Marc Snir, Steve Otto, Steven
Huss-Lederman, David Walker, and Jack Dongarra26

� MPI: The Complete Reference, Volume 2: The MPI-2 Extensions, by William Gropp,
Steven Huss-Lederman, Andrew Lumsdaine, Ewing Lusk, Bill Nitzberg, William Saphir,
and Marc Snir27

For general information about MPICH2, refer to the MPICH2 Web page at:

http://www.mcs.anl.gov/research/projects/mpich2/

Because teaching MPI is beyond the scope of this book, refer to the following Web page for
tutorials and extensive information about MPI:

http://www.mcs.anl.gov/research/projects/mpi/learning.html

7.5 Compiling MPI programs on Blue Gene/P

The Blue Gene/P software provides several scripts to compile and link MPI programs. These
scripts make building MPI programs easier by setting the include paths for the compiler and
linking in the libraries that implement MPICH2, the common BGP message layer interface
(DCMF), and the common BGP message layer interface for general collectives (CCMI) that
are required by Blue Gene/P MPI programs.

There are two versions of the libraries and the scripts, a default version and a fast version.
The default version of the libraries was built with the GNU Compiler Collection. The GNU
Compiler Collection compilers are used in the compiler scripts, such as mpicc. This version
also has most error checking enabled. The fast version of the libraries has most error
checking disabled. The libraries were built using the IBM XL C, C++, and Fortran compilers at
a high optimization level. The XL compilers are used in the compiler scripts, such as mpicc.
Applications compiled with these scripts tend to see lower message latency because of the
improved messaging performance. However, the lack of error checking in the fast libraries
means that incorrect code in applications or misbehaving hardware can cause incorrect
results that would be raised as errors if built with the default version.

The default scripts are in /bgsys/drivers/ppcfloor/comm/default/bin and the fast scripts are in
/bgsys/drivers/ppcfloor/comm/fast/bin. Scripts identical to the default scripts are in
/bgsys/drivers/ppcfloor/comm/bin for backwards compatibility with previous releases of the
Blue Gene/P software.

The following scripts are provided to compile and link MPI programs:

mpicc C compiler

mpicxx C++ compiler

mpif77 Fortran 77compiler

mpif90 Fortran 90 compiler

mpixlc IBM XL C compiler

mpixlc_r Thread-safe version of mpixlc

mpixlcxx IBM XL C++ compiler

mpixlcxx_r Thread-safe version of mpixlcxx

mpixlf2003 IBM XL Fortran 2003 compiler
Chapter 7. Parallel paradigms 81

http://www-unix.mcs.anl.gov/mpi/mpich/
http://www-unix.mcs.anl.gov/mpi/learning.html

mpixlf2003_r Thread-safe version of mpixlf2003

mpixlf77 IBM XL Fortran 77 compiler

mpixlf77_r Thread-safe version of mpixlf77

mpixlf90 IBM XL Fortran 90 compiler

mpixlf90_r Thread-safe version of mpixlf90

mpixlf95 IBM XL Fortran 95 compiler

mpixlf95_r Thread-safe version of mpixlf95

mpich2version Prints MPICH2 version information

The following environment variables can be set to override the compilers used by the scripts:

MPICH_CC C compiler

MPICH_CXX C++ compiler

MPICH_FC Fortran 77 compiler

The IBM XL Fortran 90 compiler is incompatible with the Fortran 90 MPI bindings in the
MPICH library built with GCC. Therefore, the default version of the mpixlf90 script cannot be
used with the Fortran 90 MPI bindings.

Example 7-13 shows how to use the mpixlf77 script in a makefile.

Example 7-13 Use of MPI script mpixlf77

XL = /bgsys/drivers/ppcfloor/comm/default/bin/mpixlf77

EXE = fhello
OBJ = hello.o
SRC = hello.f
FLAGS = -O3 -qarch=450 -qtune=450

$(EXE): $(OBJ)
 ${XL} $(FLAGS) -o $@ $^

$(OBJ): $(SRC)
 ${XL} $(FLAGS) -c $<

clean:
 $(RM) $(OBJ) $(EXE)

To build MPI programs for Blue Gene/P, the compilers can be invoked directly rather than
using the above scripts. When invoking the compilers directly you must explicitly include the
required MPI libraries. Example 7-14 shows a makefile that does not use the scripts.

Example 7-14 Makefile with explicit reference to libraries and include files

BGP_FLOOR = /bgsys/drivers/ppcfloor
BGP_IDIRS = -I$(BGP_FLOOR)/arch/include -I$(BGP_FLOOR)/comm/include
BGP_LIBS = -L$(BGP_FLOOR)/comm/lib -lmpich.cnk \
-L$(BGP_FLOOR)/comm/lib -ldcmf.cnk -ldcmfcoll.cnk \

Note: When you invoke the previous scripts, if you do not set the optimization level using
-O, the default is set to no optimization (-O0).
82 IBM Blue Gene/P Application Development

-lpthread -lrt \
-L$(BGP_FLOOR)/runtime/SPI -lSPI.cna

XL = /opt/ibmcmp/xlf/bg/11.1/bin/bgxlf

EXE = fhello
OBJ = hello.o
SRC = hello.f
FLAGS = -O3 -qarch=450 -qtune=450 $(BGP_IDIRS)

$(EXE): $(OBJ)
 ${XL} $(FLAGS) -o $@ $^ $(BGP_LIBS)

$(OBJ): $(SRC)
 ${XL} $(FLAGS) -c $<

clean:
 $(RM) $(OBJ) $(EXE)

7.6 MPI communications performance

Communications performance is an important aspect when running parallel applications,
particularly, when running on a distributed memory system, such as the Blue Gene/P system.
On both the Blue Gene/L and Blue Gene/P systems, instead of implementing a single type of
network capable of transporting all required protocols, these two systems have separate
networks for different types of communications.

Usually the following measurements provide information about the network and can be used
to look at the parallel performance of applications:

Bandwidth The number of MB of data that can be sent from one node to another
node in one second

Latency The amount of time it takes for the first byte that is sent from one node
to reach its target node

The values for bandwidth and latency provide information about communication.

Here we illustrate two cases. The first case corresponds to a benchmark that involves a single
transfer. The second case corresponds to a collective as defined in the “Intel® MPI
Benchmarks” (see the URL that follows). “Intel MPI Benchmarks” was formerly known as
“Pallas MPI Benchmarks” (PMB-MPI1 for MPI1 standard functions only). Intel MPI
Benchmarks - MPI1 provides a set of elementary MPI benchmark kernels.

For more details, see the product documentation included in the package that you can
download from the following Intel Web page:

http://www.intel.com/cd/software/products/asmo-na/eng/219848.htm
Chapter 7. Parallel paradigms 83

http://www.intel.com/cd/software/products/asmo-na/eng/219848.htm

7.6.1 MPI point-to-point

In the Intel MPI Benchmarks, a single transfer corresponds to the PingPong and PingPing
benchmarks. We illustrate a comparison between the Blue Gene/L and Blue Gene/P systems
for the case of PingPong. This benchmark illustrates a single message that is transferred
between two MPI tasks, in our case, on two different nodes.

To run this benchmark, we used the Intel MPI Benchmark Suite Version 2.3, MPI-1 part. On
the Blue Gene/L system, the benchmark was run in coprocessor mode. (See Unfolding the
IBM eServer Blue Gene Solution, SG24-6686.) On the Blue Gene/P system, we used the
SMP Node mode. mpirun was invoked as shown in Example 7-15 and Example 7-16 for the
Blue Gene/L and Blue Gene/P systems respectively.

Example 7-15 mpirun on the Blue Gene/L system

mpirun -nofree -timeout 120 -verbose 1 -mode CO -env "BGL_APP_L1_WRITE_THROUGH=0
BGL_APP_L1_SWOA=0" -partition R000 -cwd /bglscratch/pallas -exe
/bglscratch/pallas/IMB-MPI1.4MB.perf.rts -args "-msglen 4194304.txt -npmin 512
PingPong" | tee IMB-MPI1.4MB.perf.PingPong.4194304.512.out) >>
run.IMB-MPI1.4MB.perf.PingPong.4194304.512.out 2>&1

Example 7-16 mpirun on the Blue Gene/P system

mpirun -nofree -timeout 300 -verbose 1 -np 512 -mode SMP -partition R01-M1 -cwd
/bgusr/BGTH_BGP/test512nDD2BGP/pallas/pall512DD2SMP/bgpdd2sys1-R01-M1 -exe
/bgusr/BGTH_BGP/test512nDD2BGP/pallas/pall512DD2SMP/bgpdd2sys1-R01-M1/IMB-MPI1.4MB
.perf.rts -args "-msglen 4194304.txt -npmin 512 PingPong" | tee
IMB-MPI1.4MB.perf.PingPong.4194304.512.out) >>
run.IMB-MPI1.4MB.perf.PingPong.4194304.512.out 2>&1

Figure 7-4 shows the bandwidth on the torus network as a function of the message size, for
one simultaneous pair of nearest neighbor communications. The protocol switch from short to
eager is visible in both cases, where the eager to rendezvous switch is most pronounced on
the Blue Gene/L system (see the asterisks (*)). This figure also shows the improved
performance on the Blue Gene/P system (see the diamonds).

Figure 7-4 Bandwidth versus message size

0
50

100
150
200
250
300
350
400

1 4 16 64 25
6

10
24

40
96

16
38

4
65

53
6

26
21

44

10
48

57
6

41
94

30
4

Message size in Bytes

B
an

dw
id

th
 in

 M
B

/s
84 IBM Blue Gene/P Application Development

7.6.2 MPI collective

In the Intel MPI Benchmarks, the collective benchmarks correspond to the Bcast, Allgather,
Allgatherv, Alltoall, Alltoallv, Reduce, Reduce_scatter, Allreduce, and Barrier benchmarks. We
illustrate a comparison between the Blue Gene/L and Blue Gene/P systems for the case of
Allreduce, which is a popular collective that is used in certain scientific applications. These
benchmarks measure the message-passing power of a system as well as the quality of the
implementation.

To run this benchmark, we used the Intel MPI Benchmark Suite Version 2.3, MPI-1 part. On
the Blue Gene/P system, the benchmark was run in coprocessor mode. On the Blue Gene/P
system, we used SMP Node mode. mpirun was invoked as shown in Example 7-17 and
Example 7-18 for the Blue Gene/L and Blue Gene/P systems, respectively.

Example 7-17 mpirun on the Blue Gene/L system

mpirun -nofree -timeout 120 -verbose 1 -mode CO -env "BGL_APP_L1_WRITE_THROUGH=0
BGL_APP_L1_SWOA=0" -partition R000 -cwd
/bglscratch/BGTH/testsmall512nodeBGL/pallas -exe
/bglscratch/BGTH/testsmall512nodeBGL/pallas/IMB-MPI1.4MB.perf.rts -args "-msglen
4194304.txt -npmin 512 Allreduce" | tee
IMB-MPI1.4MB.perf.Allreduce.4194304.512.out) >>
run.IMB-MPI1.4MB.perf.Allreduce.4194304.512.out 2>&1

Example 7-18 mpirun on the Blue Gene/P system

mpirun -nofree -timeout 300 -verbose 1 -np 512 -mode SMP -partition R01-M1 -cwd
/bgusr/BGTH_BGP/test512nDD2BGP/pallas/pall512DD2SMP/bgpdd2sys1-R01-M1 -exe
/bgusr/BGTH_BGP/test512nDD2BGP/pallas/pall512DD2SMP/bgpdd2sys1-R01-M1/IMB-MPI1.4MB
.perf.rts -args "-msglen 4194304.txt -npmin 512 Allreduce" | tee
IMB-MPI1.4MB.perf.Allreduce.4194304.512.out) >>
run.IMB-MPI1.4MB.perf.Allreduce.4194304.512.out 2>&1

Collective operations are more efficient on the Blue Gene/P system. You should try to use
collective operations instead of point-to-point communication wherever possible. The
overhead for point-to-point communications is much larger than for collectives. Unless all of
your point-to-point communication is purely to the nearest neighbor, it is difficult to avoid
network congestion on the torus network.

Alternatively, collective operations can use the barrier (global interrupt) network or the torus
network. If they run over the torus network, they can still be optimized by using specially
designed communication patterns that achieve optimum performance. Doing this manually
with point-to-point operations is possible in theory, but in general, the implementation in the
Blue Gene/P MPI library offers superior performance.

With point-to-point communication, the goal of reducing the point-to-point Manhattan
distances necessitates a good mapping of MPI tasks to the physical hardware. For
collectives, mapping is equally important because most collective implementations prefer
certain communicator shapes to achieve optimum performance. In general, collectives using
“rectangular” subcommunicators (with the ranks organized in lines, planes, or cubes) will out
perform “irregular” subcommunicators” (any communicator that is not rectangular). Refer to
Appendix F, “Mapping” on page 355, which illustrates the technique of mapping.
Chapter 7. Parallel paradigms 85

Similar to point-to-point communications, collective communications also work best if you do
not use complicated derived data types, and if your buffers are aligned to 16-byte boundaries.
While the MPI standard explicitly allows for MPI collective communications to take place at
the same time as point-to-point communications (on the same communicator), generally we
do not recommend this for performance reasons.

Table 7-2 summarizes the MPI collectives that have been optimized on the Blue Gene/P
system. All data values are for a 512-node partition running in SMP mode. Many collectives
make use of both the torus and collective networks as indicated in the table.

Table 7-2 MPI collectives optimized on the Blue Gene/P system

MPI routine Communicator Data type Network Latency Bandwidth

MPI_Barrier MPI_COMM_WORLD N/A Global Interrupts 1.25 μs N/A

Rectangular N/A Torus 10.96 μs N/A

All other
subcommunicators

N/A Torus 22.61 μs N/A

MPI_Bcast MPI_COMM_WORLD Byte Collective for
latency, torus for BW

3.61μs 2047 MBpsa

Rectangular Byte Torus 11.58 μs 2047 MBpsa

All other
subcommunicators

Byte Torus 15.36 μs 357 MBps

MPI_Allreduce MPI_COMM_WORLD Integer Collective for
latency, torus for BW

3.76 μs 780 MBpsa

Double Collective for
latency, torus for BW

5.51 μs 363 MBpsa

Rectangular Integer Torus 17.66 μs 261 MBpsa

Double Torus 17.54 μs 363 MBpsa

All other
subcommunicators

Integer Torus 38.06 μs 46 MBps

Double Torus 37.96 μs 49 MBps

MPI_Alltoallv All communicators Byte Torus 355 μsb ~97% of peak
torus bisection
bandwidth

MPI_Allgatherv MPI_COMM_WORLD Byte Collective for
latency, torus for BW

18.79 μsc 3.6x MPICHd

Rectangular Byte Torus 276.32 μsc 3.6x MPICHd

MPI_Gather MPI_COMM_WORLD Byte Collective for BW 10.77 μs 2.0x MPICHd

MPI_Scatter MPI_COMM_WORLD Byte Collective for BW 9.91 μs 4.2x MPICHa

MPI_Scatterv All Byte Torus for BW 167 μs 2.6x MPICHd

MPI_COMM_WORLD Byte Collective 20 μs 3.7x MPICHe

MPI_Reduce MPI_COMM_WORLD Integer Collective 3.82 μs 780 MBps

Double Torus 4.03 μs 304 MBps

Rectangular Integer Torus 17.27 μs 284 MBps
86 IBM Blue Gene/P Application Development

Figure 7-5 and Figure 7-6 on page 88 show a comparison between the IBM Blue Gene/L and
Blue Gene/P systems for the MPI_Allreduce() type of communication on integer data types
with the sum operation.

Figure 7-5 MPI_Allreduce() integer sum wall time performance on 512 nodes.

Figure 7-6 on page 88 shows MPI_Allreduce() integer sum bandwidth performance on 512
nodes.

Double Torus 17.32 μs 304 MBps

All other
subcommunicators

Integer Torus 8.43 μs 106 MBps

Double Torus 8.43 μs 113 MBps

a. Maximum bandwidth performance requires 16-byte aligned buffers.
b. A 1-byte alltoall is moving 512 bytes of data per node on a 512 node partition.
c. A 1-byte allgatherv is moving 512 bytes of data per node on a 512 node partition.
d. Calculating these bandwidths can be done in multiple ways so we simply compare the time for the optimized
routine to the time using the MPICH default point-to-point based algorithm.
e. This option is off by default and can be turned on with the DCMF_SCATTERV=B option. It requires that all
nodes have a valid sendcounts array, not just the root. Turning it on without valid sendcounts can lead to hangs
or unexpected results.

MPI routine Communicator Data type Network Latency Bandwidth
Chapter 7. Parallel paradigms 87

Figure 7-6 MPI_Allreduce() integer sum bandwidth performance on 512 nodes
88 IBM Blue Gene/P Application Development

7.7 OpenMP

The OpenMP API is supported on the Blue Gene/P system for shared-memory parallel
programming in C/C++ and Fortran. This API has been jointly defined by a group of hardware
and software vendors and has evolved as a standard for shared-memory parallel
programming.

OpenMP consists of a collection of compiler directives and a library of functions that can be
invoked within an OpenMP program. This combination provides a simple interface for
developing parallel programs on shared-memory architectures. In the case of the Blue
Gene/P system, it allows the user to exploit the SMP mode on each Compute Node.
Multi-threading is now enabled on the Blue Gene/P system. Using OpenMP, the user can
have access to data parallelism as well as functional parallelism.

For additional information, refer to the official OpenMP Web site at:

http://www.openmp.org/

7.7.1 OpenMP implementation for Blue Gene/P

The Blue Gene/P system supports shared-memory parallelism on single nodes. The XL
compilers support the following constructs:

� Full support for OpenMP 2.5 standard

� Support for the use of the same infrastructure as the OpenMP on IBM AIX® and Linux

� Interoperability with MPI:

– MPI at outer level, across the Compute Nodes
– OpenMP at the inner level, within a Compute Node

� Autoparallelization based on the same parallel execution framework

Enables autoparallelization as one of the loop optimizations

� Thread-safe version for each compiler:

– bgxlf_r
– bgxlc_r
– bgcc_r

� Use of the thread-safe compiler version with any threaded, OpenMP, or SMP application:

– -qsmp must be used on OpenMP or SMP applications.
– -qsmp by itself automatically parallelizes loops.
– -qsmp=omp parallelizes based on OpenMP directives in the code.
– Shared-memory model is on the Blue Gene/P system.

7.7.2 Selected OpenMP compiler directives

The latest set of OpenMP compiler directives is documented in the OpenMP ARB release
Version 2.5 specification. Version 2.5 combines Fortran and C/C++ specifications into a single
specification. It also fixes inconsistencies. We summarize some of the directives as follows:

parallel Directs the compiler for that section of the code to be executed in
parallel by multiple threads

for Directs the compiler to execute a for loop with independent iterations;
iterations can be executed by different threads in parallel

parallel for The syntax for parallel loops
Chapter 7. Parallel paradigms 89

http://www.openmp.org/

sections Directs the compiler of blocks of non-iterative code that can be
executed in parallel

parallel sections Syntax for parallel sections

critical Restricts the following section of the code to be executed by a single
thread at a time

single Directs the compiler to execute a section of the code by a single thread

Parallel operations are often expressed in C/C++ and Fortran95 programs as for loops as
shown in Example 7-19.

Example 7-19 for loops in Fortran and C

for (i = start; i < num; i += end)
{ array[i] = 1; m[i] = c;}

or

 integer i, n, sum
 sum = 0
 do 5 i = 1, n
 sum = sum + i
5 continue

The compiler can automatically locate and, where possible, parallelize all countable loops in
your program code in the following situations:

� There is no branching into or out of the loop.
� An increment expression is not within a critical section.
� A countable loop is automatically parallelized only if all of the following conditions are met:

– The order in which loop iterations start or end does not affect the results of the
program.

– The loop does not contain I/O operations.

– Floating-point reductions inside the loop are not affected by round-off error, unless the
-qnostrict option is in effect.

– The -qnostrict_induction compiler option is in effect.

– The -qsmp=auto compiler option is in effect.

– The compiler is invoked with a thread-safe compiler mode.

In the case of C/C++ programs, OpenMP is invoked via pragmas as shown in Example 7-20.

Example 7-20 pragma usage

#pragma omp parallel for
 for (i = start; i < num;i += end)
{ array[i] = 1; m[i] = c;}

Pragma: The word pragma is short for pragmatic information.28 Pragma is a way to
communicate information to the compiler:

#pragma omp <rest of pragma>
90 IBM Blue Gene/P Application Development

The for loop must not contain statements, such as the following examples, that allow the loop
to be exited prematurely:

� break
� return
� exit
� go to labels outside the loop

In a for loop, the master thread creates additional threads. The loop is executed by all
threads, where every thread has its own address space that contains all of the variables the
thread can access. Such variables might be:

� Static variables
� Dynamically allocated data structures in the heap
� Variables on the run-time stack

In addition, variables must be defined according to the type. Shared variables have the same
address in the execution context of every thread. It is important to understand that all threads
have access to shared variables. Alternatively, private variables have a different address in
the execution memory of every thread. A thread can access its own private variables, but it
cannot access the private variable of another thread.

Example 7-21 shows a simple Fortran95 example that illustrates the difference between
private and shared variables.

Example 7-21 Fortran example using the parallel do directive

program testmem
 integer n
 parameter (n=2)
 parameter (m=1)
 integer a(n), b(m)
!$OMP parallel do
 do i = 1, n
 a(i) = i
 enddo
 write(6,*)'Done: testmem'
 end

In Example 7-21, no variables are explicitly defined as either private or shared. In this case,
by default, the compiler assigns the variable that is used for the do-loop index as private. The
rest of the variables are shared. Figure 7-7 on page 92 illustrates both private and shared
variables as shown in Parallel Programming in C with MPI and OpenMP.29 In this figure, the
blue and yellow arrows indicate which variables are accessible by all the threads.

Pragma parallel: In the case of the parallel for pragma, variables are shared by default,
with exception of the loop index.
Chapter 7. Parallel paradigms 91

Figure 7-7 Memory layout for private and shared variables

7.7.3 Selected OpenMP compiler functions

The following functions are selected for the OpenMP compiler:

omp_get_num_procs Returns the number of processors

omp_get_num_threads Returns the number of threads in a particular parallel region

omp_get_thread_num Returns the thread identification number

omp_set_num_threads Allocates numbers of threads for a particular parallel region

7.7.4 Performance

To illustrate the effect of selected OpenMP compiler directives and the implications in terms of
performance of a particular do loop, we chose the π programs presented in Parallel Programming
in C with MPI and OpenMP30 and apply them to the Blue Gene/P system. These simple
examples illustrate how to use these directives and some of the implications in selecting a
particular directive over another directive. Example 7-22 shows a simple program to compute π.

Example 7-22 Sequential version of the pi.c program

int main(argc, argv)
int argc;
char *argv[];
{
 long n, i;
 double area, pi, x;
 n = 1000000000;
 area = 0.0;
 for (i = 0; i < n; i++) {
 x = (i+0.5)/n;
 area += 4.0 / (1.0 + x*x);
92 IBM Blue Gene/P Application Development

 }
 pi = area / n;
 printf ("Estimate of pi: %7.5f\n", pi);
}

The first way to parallelize this code is to include an OpenMP directive to parallelize the for
loop as shown in Example 7-23.

Example 7-23 Simple use of parallel for loop

#include <omp.h>

long long timebase(void);

int main(argc, argv)
int argc;
char *argv[];
{
 int num_threads;
 long n, i;
 double area, pi, x;
 long long time0, time1;
 double cycles, sec_per_cycle, factor;
 n = 1000000000;
 area = 0.0;
 time0 = timebase();
#pragma omp parallel for private(x)
 for (i = 0; i < n; i++) {
 x = (i+0.5)/n;
 area += 4.0 / (1.0 + x*x);
 }
 pi = area / n;
 printf ("Estimate of pi: %7.5f\n", pi);
 time1 = timebase();
 cycles = time1 - time0;
 factor = 1.0/850000000.0;
 sec_per_cycle = cycles * factor;
 printf("Total time %lf \n",sec_per_cycle, "Seconds \n");
}

Unfortunately this simple approach creates a race condition when computing the area. While
different threads compute and update the value of the area, other threads might be computing
and updating area as well, therefore producing the wrong results. This particular race
condition can be solved in two ways. One way is to use a critical pragma to ensure mutual
exclusion among the threads, and the other way is to use the reduction clause.

Example 7-24 illustrates use of the critical pragma.

Example 7-24 Usage of critical pragma

#include <omp.h>

long long timebase(void);

int main(argc, argv)
int argc;
Chapter 7. Parallel paradigms 93

char *argv[];
{
 int num_threads;
 long n, i;
 double area, pi, x;
 long long time0, time1;
 double cycles, sec_per_cycle, factor;
 n = 1000000000;
 area = 0.0;
 time0 = timebase();
#pragma omp parallel for private(x)
 for (i = 0; i < n; i++) {
 x = (i+0.5)/n;
#pragma omp critical
 area += 4.0 / (1.0 + x*x);
 }
 pi = area / n;
 printf ("Estimate of pi: %7.5f\n", pi);
 time1 = timebase();
 cycles = time1 - time0;
 factor = 1.0/850000000.0;
 sec_per_cycle = cycles * factor;
 printf("Total time %lf \n",sec_per_cycle, "Seconds \n");
}

Example 7-25 corresponds to the reduction clause.

Example 7-25 Usage of the reduction clause

#include <omp.h>

long long timebase(void);

int main(argc, argv)
int argc;
char *argv[];
{
 int num_threads;
 long n, i;
 double area, pi, x;
 long long time0, time1;
 double cycles, sec_per_cycle, factor;
 n = 1000000000;
 area = 0.0;
 time0 = timebase();
#pragma omp parallel for private(x) reduction(+: area)
 for (i = 0; i < n; i++) {
 x = (i+0.5)/n;
 area += 4.0 / (1.0 + x*x);
 }
 pi = area / n;
 printf ("Estimate of pi: %7.5f\n", pi);
 time1 = timebase();
 cycles = time1 - time0;
 factor = 1.0/850000000.0;
94 IBM Blue Gene/P Application Development

 sec_per_cycle = cycles * factor;
 printf("Total time %lf \n",sec_per_cycle, "Seconds \n");
}

To compile these two programs on the Blue Gene/P system, the makefile for pi_critical.c
shown in Example 7-26 can be used. A similar makefile can be used for the program
illustrated in Example 7-25 on page 94.

Example 7-26 Makefile for the pi_critical.c program

BGP_FLOOR = /bgsys/drivers/ppcfloor
BGP_IDIRS = -I$(BGP_FLOOR)/arch/include -I$(BGP_FLOOR)/comm/include
BGP_LIBS = -L$(BGP_FLOOR)/comm/lib -L$(BGP_FLOOR)/runtime/SPI -lmpich.cnk
-ldcmfcoll.cnk -ldcmf.cnk -lrt -lSPI.cna -lpthread

XL = /opt/ibmcmp/vac/bg/9.0/bin/bgxlc_r

EXE = pi_critical_bgp
OBJ = pi_critical.o
SRC = pi_critical.c
FLAGS = -O3 -qsmp=omp:noauto -qthreaded -qarch=450 -qtune=450
-I$(BGP_FLOOR)/comm/include
FLD = -O3 -qarch=450 -qtune=450

$(EXE): $(OBJ)
 ${XL} $(FLAGS) -o $(EXE) $(OBJ) timebase.o $(BGP_LIBS)
$(OBJ): $(SRC)
 ${XL} $(FLAGS) $(BGP_IDIRS) -c $(SRC)

clean:
 rm pi_critical.o pi_critical_bgp

Table 7-3 illustrates the performance improvement by using the reduction clause.

Table 7-3 Parallel performance using critical pragma versus reduction clause

Execution time in (seconds)

Threads Using critical pragma Using reduction clause

1

IBM POWER4 1.0 GHz 586.37 20.12

IBM POWER5 1.9 GHz 145.03 5.22

IBM POWER6™ 4.7 GHz 180.80 4.78

Blue Gene/P 560.08 12.80

2

POWER4 1.0 GHz 458.84 10.08

POWER5 1.9 GHz 374.10 2.70

POWER6 4.7 GHz 324.71 2.41

Blue Gene/P 602.62 6.42

4

Chapter 7. Parallel paradigms 95

For more in-depth information with additional examples, we recommend you read Parallel
Programming in C with MPI and OpenMP.31 In this section, we selected to illustrate only the
π program.

POWER4 1.0 GHz 552.54 5.09

POWER5 1.9 GHz 428.42 1.40

POWER6 4.7 GHz 374.51 1.28

Blue Gene/P 582.95 3.24

Execution time in (seconds)

Threads Using critical pragma Using reduction clause
96 IBM Blue Gene/P Application Development

Chapter 8. Developing applications with
IBM XL compilers

With the IBM XL family of optimizing compilers, you can develop C, C++, and Fortran
applications for the IBM Blue Gene/P system. This family comprises the following products,
which we refer to in this chapter as Blue Gene XL compilers:

� XL C/C++ Advanced Edition V9.0 for Blue Gene
� XL Fortran Advanced Edition V11.1 for Blue Gene

The information that we present in this chapter is specific to the IBM Blue Gene/P
supercomputer. It does not include general XL compiler information. For complete
documentation about these compilers, refer to the libraries at the following Web addresses:

� XL C/C++

http://www.ibm.com/software/awdtools/xlcpp/library/

� XL Fortran

http://www-306.ibm.com/software/awdtools/fortran/xlfortran/library/

In this chapter, we discuss specific considerations for developing, compiling, and optimizing
C/C++ and Fortran applications for the IBM Blue Gene/P PowerPC 450 processor and a
single-instruction multiple-data (SIMD), double-precision floating-point multiply add unit
(double floating-point multiply add (FMA). The following topics are discussed:

� Compiler overview
� Compiling and linking applications on Blue Gene/P
� Default compiler options
� Unsupported options
� Support for pthreads and OpenMP
� Creation of libraries on Blue Gene/P
� XL runtime libraries
� Mathematical Acceleration Subsystem libraries
� IBM Engineering Scientific Subroutine Library
� Configuring Blue Gene/P builds
� Python
� Tuning your code for Blue Gene/P

8

© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 97

http://www.ibm.com/software/awdtools/xlcpp/library/
http://www.ibm.com/software/awdtools/fortran/xlfortran/library/

� Tips for optimizing applications
� Identifying performance bottlenecks

Several documents cover part of the material presented in this chapter. In addition to the XL
family of compilers manuals that we reference throughout this chapter, we recommend that
you read the following documents:

� Unfolding the IBM eServer Blue Gene Solution, SG24-6686
� IBM System Blue Gene Solution: Application Development, SG24-7179

We also recommend that you read the article by Mark Mendell, “Exploiting the Dual Floating
Point Units in Blue Gene/L,” which provides detailed information about the SIMD functionality
in the XL family of compilers. You can find this article on the Web at:

http://www-1.ibm.com/support/docview.wss?uid=swg27007511

8.1 Compiler overview

The Blue Gene/P system uses the same XL family of compilers as the IBM Blue Gene/L
system. The Blue Gene/P system supports cross-compilation, and the compilers run on the
Front End Node. The compilers for the Blue Gene/P system have specific optimizations for its
architecture. In particular, the XL family of compilers generate code appropriate for the double
floating-point unit (FPU) of the Blue Gene/P system.

The Blue Gene/P system has compilers for the C, C++, and Fortran programming languages.
The compilers on the Blue Gene/P system take advantage of the double FPU available on the
Blue Gene/P system. They also incorporate code optimizations specific to the Blue Gene/P
instruction scheduling and memory hierarchy characteristics.

In addition to the XL family of compilers, the Blue Gene/P system supports a version of the
GNU compilers for C, C++, and Fortran. These compilers do not generate highly optimized
code for the Blue Gene/P system. In particular, they do not automatically generate code for
the double FPUs, and they do not support OpenMP.

Tools that are commonly associated with the GNU compilers (known as binutils) are
supported in the Blue Gene/P system. The same set of compilers and tools is used for both
Linux and the Blue Gene/P proprietary operating system. The Blue Gene/P system supports
the execution of Python-based user applications.

The GNU compiler toolchain also provides the dynamic linker, which is used both by Linux
and the Blue Gene/P proprietary operating system to support dynamic objects. The toolchain
is tuned to support both environments. The GNU “aux vector” technique is employed to pass
kernel-specific information to the C library when tuning must be specific to one of the kernels.

8.2 Compiling and linking applications on Blue Gene/P
In this section, we provide information about compiling and linking applications that run on the
Blue Gene/P system. For complete information about compiler and linker options, see the
following documents available on the Web:

� XL C/C++ Compiler Reference

http://www-306.ibm.com/software/awdtools/xlcpp/library/

� XL Fortran User Guide

http://www-306.ibm.com/software/awdtools/fortran/xlfortran/library/
98 IBM Blue Gene/P Application Development

http://www-1.ibm.com/support/docview.wss?uid=swg27007511
http://www-306.ibm.com/software/awdtools/xlcpp/library/
http://www-306.ibm.com/software/awdtools/fortran/xlfortran/library/

You can also find these documents in the following directories:

� /opt/ibmcmp/vacpp/bg/9.0/doc (C and C++)
� /opt/ibmcmp/xlf/bg/11.1/doc (Fortran)

The compilers are in the following directories:

� /opt/ibmcmp/vac/bg/9.0/bin
� /opt/ibmcmp/vacpp/bg/9.0/bin
� /opt/ibmcmp/xlf/bg/11.1/bin

The Blue Gene/P release includes the following differences for compiling and linking
applications:

� Blue Gene/P compiler wrapper names changed:

– blrts_ is replaced by bg.
– xlf 11.1, vacpp 9.0, and vac 9.0 on the Blue Gene/L system support both blrts_ and

bg.

� -qarch=450d/450 is for the Blue Gene/P system, and 440d/440 is for the Blue Gene/L
system.

8.3 Default compiler options
Compilations most commonly occur on the Front End Node. The resulting program can run
on the Blue Gene/P system without manually copying the executable to the Service Node.
See Chapter 9, “Running and debugging applications” on page 139, and Chapter 11,
“mpirun” on page 177, to learn how to run programs on the Blue Gene/P system.

The script or makefile that you use to invoke the compilers should have certain compiler
options. Specifically the architecture-specific options, which optimize processing for the Blue
Gene/P 450d processor architecture, should be set to the following defaults:

� -qarch=450

This option generates code for a single FPU only, but it can give correct results if invalid
code is generated by -qarch=450d. You can follow up with -qarch=450d when optimizing
performance via more aggressive compilation.

� -qtune=450

Optimizes object code for the 450 family of processors. Single FPU only.

� -qcache=level=1:type=i:size=32:line=32:assoc=64:cost=8

Specifies the L1 instruction cache configuration for the Blue Gene/P architecture to allow
greater optimization with options -O4 and -O5.

� -qcache=level=1:type=d:size=32:line=32:assoc=64:cost=8

Specifies the L1 data cache configuration for the Blue Gene/P architecture to allow greater
optimization with options -O4 and -O5.

� -qcache=level=2:type=c:size=4096:line=128:assoc=8:cost=40

Specifies the L2 (combined data and instruction) cache configuration for the Blue Gene/P
architecture to allow greater optimization with options -O4 and -O5.

� -qnoautoconfig

Allows code to be cross-compiled on other machines at optimization levels -O4 or -O5, by
preserving the Blue Gene/P architecture-specific options.
Chapter 8. Developing applications with IBM XL compilers 99

Scripts are already available that do much of this for you. They reside in the same bin
directory as the compiler binary (/opt/ibmcmp/xlf/bg/11.1/bin or /opt/ibmcmp/vacpp/bg/9.0/bin
or /opt/ibmcmp/vac/bg/9.0/bin). Table 8-1 lists the names.

Table 8-1 Scripts available in the bin directory for compiling and linking

8.4 Unsupported options
The following compiler options, although available for other IBM systems, are not supported
by the Blue Gene/P hardware; therefore, do not use them:

� -q64: The Blue Gene/P system uses a 32-bit architecture; you cannot compile in 64-bit
mode.

� -qaltivec: The 450 processor does not support VMX instructions or vector data types.

8.5 Support for pthreads and OpenMP

The Blue Gene/P system supports shared-memory parallelism on single nodes. The XL
compilers support the following constructs:

� Full support for the OpenMP 2.5 standard32

� Use of the same infrastructure as the OpenMP that is supported on IBM AIX and Linux

� Interoperability with MPI

– MPI at outer level, across the Compute Nodes
– OpenMP at the inner level, within a Compute Node

� Autoparallelization based on the same parallel execution framework

Enablement of autoparallelization as one of the loop optimizations

� All the thread-safe scripts of the compiler end in _r, as shown in the following examples:

– bgxlf_r
– bgxlc_r
– bgxlC_r
– bgcc_r

The thread-safe compiler version should be used with any threaded, OpenMP, or SMP
application.

Language Script name or names

C bgc89, bgc99, bgcc, bgxlc bgc89_r, bgc99_r bgcc_r, bgxlc_r

C++ bgxlc++, bgxlc++_r, bgxlC, bgxlC_r

Fortran bgf2003, bgf95, bgxlf2003, bgxlf90_r, bgxlf_r, bgf77, bgfort77, bgxlf2003_r, bgxlf95,
bgf90, bgxlf, bgxlf90, bgxlf95_r

Important: The double FPU does not generate exceptions. Therefore, the -qflttrap
option is invalid with the 450d processor. Instead you should reset the 450d processor to
-qarch=450.

Note: -qsigtrap is supported on Blue Gene/P release V1R4M0 and later.
100 IBM Blue Gene/P Application Development

� Usage of -qsmp OpenMP and pthreaded applications:

– -qsmp by itself automatically parallelizes loops.

– -qsmp=omp automatically parallelizes based on OpenMP directives in the code.

– -qsmp=omp:noauto should be used when parallelizing codes manually. It prevents the
compiler from trying to automatically parallelize loops.

OpenMP can be used with the GNU compiler but support for OpenMP requires a newer
compiler than is shipped with Blue Gene/P. Instructions to build the 4.3.2 GNU compiler with
GOMP are provided in /bgsys/drivers/ppcfloor/toolchain/README.toolchain.gomp, which is
shipped with the Blue Gene/P software.

8.6 Creation of libraries on Blue Gene/P

On Blue Gene/P three types of libraries can be created:

� Static libraries
� Shared libraries
� Dynamically loaded libraries

Static libraries are loaded into the program when the program is built. Static libraries are
embedded as part of the Blue Gene/P executable that resides on the Front End Node.
Example 8-1 illustrates how to create a static library on Blue Gene/P using the XL family of
compilers.

Example 8-1 Static library creation using the XL compiler

Compile with the XL compiler
/opt/ibmcmp/vac/bg/9.0/bin/bgxlc -c pi.c
/opt/ibmcmp/vac/bg/9.0/bin/bgxlc -c main.c
#
Create library
/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc-bgp-linux-ar rcs libpi.a pi.o
#
Create executable
/opt/ibmcmp/vac/bg/9.0/bin/bgxlc -o pi main.o -L. -lpi

Thread-safe libraries: Thread-safe libraries ensure that data access and updates are
synchronized between threads.

Note: -qsmp must be used only with thread-safe compiler mode invocations such as
xlc_r. These invocations ensure that the pthreads, xlsmp, and thread-safe versions of
all default run-time libraries are linked to the resulting executable. See the language
reference for more details about the -qsmp suboptions at:

http://publib.boulder.ibm.com/infocenter/comphelp/v8v101/index.jsp
Chapter 8. Developing applications with IBM XL compilers 101

http://publib.boulder.ibm.com/infocenter/comphelp/v8v101/index.jsp

Example 8-2 shows the same procedure using the GNU collection of compilers.

Example 8-2 Static library creation using the GNU compiler

Compile with the GNU compiler
/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc-bgp-linux-gcc -c pi.c
/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc-bgp-linux-gcc -c main.c
#
Create library
/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc-bgp-linux-ar rcs libpi.a pi.o
#
Create executable
/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc-bgp-linux-gcc -o pi main.o -L. -lpi

On the other hand, shared libraries are loaded at execution time and shared among different
executables.

Example 8-3 Shared library creation using the XL compiler

Use XL to create shared library
/opt/ibmcmp/vac/bg/9.0/bin/bgxlc -qpic -c libpi.c
/opt/ibmcmp/vac/bg/9.0/bin/bgxlc -qpic -c main.c
#
Create shared library
/opt/ibmcmp/vac/bg/9.0/bin/bgxlc -qmkshrobj -qnostaticlink -Wl,-soname, \

libpi.so.0 -o libpi.so.0.0 libpi.o
#
Set up the soname
ln -sf libpi.so.0.0 libpi.so.0
#
Create a linker name
ln -sf libpi.so.0 libpi.so
#
Create executable
/opt/ibmcmp/vac/bg/9.0/bin/bgxlc -o pi main.o -L. -lpi \

-qnostaticlink \
-qnostaticlink=libgcc

Note: -qnostaticlink, used with the C and C++ compilers, indicates to build a dynamic
binary, but by default the static libgcc.a is linked in. To indicate that the shared version of
libgcc should be linked in, also specify -qnostaticlink=libgcc, for example,
/opt/ibmcmp/vacpp/bg/9.0/bin/bgxlc -o hello hello.c -qnostaticlink -qnostaticlink=libgcc
102 IBM Blue Gene/P Application Development

Example 8-4 illustrates the same procedure with the GNU collection of compilers.

Example 8-4 Shared library creation using the GNU compiler

Compile with the GNU compiler
/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc-bgp-linux-gcc -fPIC -c libpi.c
/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc-bgp-linux-gcc -fPIC -c main.c
#
Create shared library
/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc-bgp-linux-gcc -shared \

-Wl,-soname,libpi.so.0 -o libpi.so.0.0 libpi.o -lc
#
Set up the soname
ln -sf libpi.so.0.0 libpi.so.0
#
Create a linker name
ln -sf libpi.so.0 libpi.so
#
Create executable
/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc-bgp-linux-gcc -o pi main.o -L. -lpi -dynamic

The command line option to the Blue Gene/P XL Fortran compiler to create a dynamic
executable is -Wl,-dy. The order of the -Wl,-dy is significant. It must come before any -L and -l
options, for example, to build a dynamic executable from the Fortran source file hello.f, run
/opt/ibmcmp/xlf/bg/11.1/bin/bgxlf -Wl,-dy -qpic -o hello hello.f. Example 8-5
illustrates creating a shared library using the XL Fortran compiler.

Example 8-5 Fortran shared library creation

Create the .o file with -qpic for position independent code.
/opt/ibmcmp/xlf/bg/11.1/bin/bgxlf90 -c foo.c -qpic

Create the shared library using ld from the BGP toolchain.
/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc-bgp-linux-ld -o libfoo.so foo.o -shared

Or, depending on which functions are called, you may need to link in more libraries.
/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc-bgp-linux-ld -o libfoo.so foo.o \

-shared -L/opt/ibmcmp/xlf/bg/11.1/bglib -L/opt/ibmcmp/xlsmp/bg/1.7/bglib -lxlf90 -lxlsmp

Create the executable. In this case -L. means search the current directory for libfoo.so.
/opt/ibmcmp/xlf/bg/11.1/bin/bgxlf90 -o main main.f90 -qpic -Wl,-dy -L. -lfoo
Chapter 8. Developing applications with IBM XL compilers 103

8.7 XL runtime libraries

The libraries listed in Table 8-2 are linked into your application automatically by the XL linker
when you create your application.

Table 8-2 XL static and dynamic libraries

8.8 Mathematical Acceleration Subsystem libraries

The MASS consists of libraries of tuned mathematical intrinsic functions that are available in
versions for the AIX and Linux machines, including the Blue Gene/P system. The MASS
libraries provide improved performance over the standard mathematical library routines, are
thread-safe, and support compilations in C, C++, and Fortran applications. For more
information about MASS, refer to the Mathematical Acceleration Subsystem Web page at:

http://www-306.ibm.com/software/awdtools/mass/index.html

MASS libraries: The exception to this statement is for the libmassv.a file (the
Mathematical Acceleration Subsystem (MASS) libraries). This file must be explicitly
specified on the linker command. See 8.8, “Mathematical Acceleration Subsystem
libraries” on page 104 for information about the MASS libraries.

File name Description

libibmc++.a,
libibmc++.so

IBM C++ library

libxlf90.a,
libxlf90.so

IBM XLF run-time library

libxlfmath.a,
libxlfmath.so

IBM XLF stubs for math routines in system library libm, for example, _sin() for
sin(), _cos() for cos(), and so on

libxlfpmt4.a,
libxlfpmt4.so

IBM XLF to be used with -qautobdl=dbl4 (promote floating-point objects that are
single precision)

libxlfpad.a,
libxlfpad.so

IBM XLF run-time routines to be used with -qautobdl=dblpad (promote
floating-point objects and pad other types if they can share storage with
promoted objects)

libxlfpmt8.a,
libxlfpmt8.so

IBM XLF run-time routines to be used with -qautobdl=dbl8 (promote
floating-point objects that are double precision)

libxlsmp.a,
libxlsmp.so

IBM XL SMP runtime library functions

libxl.a IBM low-level run-time library

libxlopt.a IBM XL optimized intrinsic library
� Vector intrinsic functions
� BLASS routines

libmass.a IBM XL MASS library: scalar intrinsic functions

libmassv.a IBM XL MASSV library: vector intrinsic functions

ibxlomp_ser.a IBM XL Open MP compatibility library
104 IBM Blue Gene/P Application Development

http://www-306.ibm.com/software/awdtools/mass/index.html

8.9 Engineering and Scientific Subroutine Library libraries

The Engineering and Scientific Subroutine Library (ESSL) for Linux on IBM POWER supports
the Blue Gene/P system. ESSL provides over 150 math subroutines that have been
specifically tuned for performance on the Blue Gene/P system. For more information about
ESSL, refer to the Engineering Scientific Subroutine Library and Parallel ESSL Web page at:

http://www.ibm.com/systems/p/software/essl.html

8.10 Configuring Blue Gene/P builds

When building an application in a cross-compile environment, such as Blue Gene/P, build
tools, such as configure and make, sometimes compile and execute small code snippets to
identify characteristics of the target platform as part of the build process. If these code
snippets are compiled with a cross-compiler and then executed on the build machine instead
of the target machine, the program might fail to execute or produce results that do not reflect
the target machine. When that happens, the configure fails or does not configure as
expected. To avoid this problem, the Blue Gene/P system provides a way to transparently run
Blue Gene/P executables on a Blue Gene/P partition when executed on a Blue Gene/P Front
End Node.

This feature was introduced in Blue Gene/P release V1R4M0.

Use of this feature requires some configuration by your Blue Gene/P administrator. The
documentation for configuring this feature is in the IBM System Blue Gene Solution: Blue
Gene/P System Administration which can be found at the following URL:
http://www.redbooks.ibm.com/abstracts/sg247417.html?Open

After the Blue Gene/P system is configured to support this feature, its operation is nearly
transparent to developers. Developers must ensure that the small programs that are built
during the configuration of the package are built using the Blue Gene/P compilers. Each
configuration script is unique so general instructions for how to force the compiler cannot be
provided, but the following example works for many packages:

$./configure CC=/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc-bgp-linux-gcc

The developer can verify that the system is set up and working properly by compiling a
program using the Blue Gene/P cross-compiler and then executing the program on the Front
End Node. Example 8-6 shows a sample program.

Example 8-6 Program to verify the Blue Gene/P loader configuration

#include <stdio.h>
#include <sys/utsname.h>

int main(int argc, char** argv)
{
 struct utsname uts;

 uname(&uts);
 printf("sizeof uts: %d\n", sizeof(uts));
 printf("sysname: %s\n", uts.sysname);

Important: When using IBM XL Fortran V11.1 for IBM System Blue Gene, customers must
use ESSL V4.4. If an attempt is made to install a wrong mix of ESSL and XLF, the rpm
installation fails with a dependency error message.
Chapter 8. Developing applications with IBM XL compilers 105

http://www.redbooks.ibm.com/abstracts/sg247417.html?Open
http://www.ibm.com/systems/p/software/essl.html
http://www.ibm.com/systems/p/software/essl.html

 printf("nodename: %s\n", uts.nodename);
 printf("release: %s\n", uts.release);
 printf("version: %s\n", uts.version);
 printf("machine: %s\n", uts.machine);
 if (strcmp(uts.sysname, "Linux") == 0) {
 printf("We are on Linux!\n");
 }
 else {
 printf("We are NOT on Linux!\n");
 }
 return 0;
}

To compile and run this program, run the following commands:

$ /bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc-bgp-linux-gcc -o test-uname
test-uname.c
$./test-uname

Code in the program loader on the Front End Node checks if the program was compiled for
Blue Gene/P, and then rather than execute the program it invokes submit with the same
program and arguments to run the program on the Blue Gene/P partition. In addition to
remote program execution, all input and output from the program is handled transparently,
including stdin, stdout, stderr, arguments, return codes, and signals.

You can set the HTC_SUBMIT_OPTS environment variable toset extra command-line
options for the submit command. In particular, setting HTC_SUBMIT_OPTS to “--trace 3” will
print out more tracing information that can be used to verify that the program is running on the
Blue Gene/P hardware instead of natively. We describe the arguments to the submit program
in 9.1.3, “submit” on page 141.

8.11 Python

Python is a dynamic, object-oriented programming language that can be used on Blue
Gene/P in addition to C, C++ and Fortran. Version 2.61 of the Python interpreter compiled for
Blue Gene/P is installed in /bgsys/drivers/ppcfloor/gnu-linux/bin. Example 8-7 illustrates how
to invoke a simple Python program.

Example 8-7 How to invoke Python on Blue Gene/P

$ mpirun -partition MYPARTITION /bgsys/drivers/ppcfloor/gnu-linux/bin/python
test_array.py

Additional information about Python can be found at the following web sites:

� Python official site at

http://www.python.org/

� Python Tutorial at

http://docs.python.org/tut/tut.html

1 In Blue Gene/P release V1R3M0, the Python version is 2.5.
106 IBM Blue Gene/P Application Development

http://www.python.org/
http://docs.python.org/tut/tut.html

� Python Library Reference at

http://docs.python.org/lib/lib.html

� pyMPI at

http://pympi.sourceforge.net/

8.12 Tuning your code for Blue Gene/P

In the sections that follow, we describe strategies that you can use to best exploit the SIMD
capabilities of the Blue Gene/P 450 processor and the XL compilers’ advanced instruction
scheduling.

8.12.1 Using the compiler optimization options

The -O3 compiler option provides a high level of optimization and automatically sets other
options that are especially useful on the Blue Gene/P system. The -qhot=simd option enables
SIMD vectorization of loops. It is enabled by default if you use -O4, -O5, or -qhot.

For more information about optimization options, see the following references:

� “Optimizing your applications” in the XL C/C++ Programming Guide, under Product
Documentation on the following Web page

http://www-306.ibm.com/software/awdtools/xlcpp/library/

� “Optimizing XL Fortran programs” in the XL Fortran User Guide, under Product
Documentation on the following Web page

http://www-306.ibm.com/software/awdtools/fortran/xlfortran/library/

8.12.2 Parallel Operations on the PowerPC 450

Similar to the Blue Gene/L system, floating-point instructions can operate simultaneously on
the primary and secondary registers. Figure 8-1 on page 108 illustrates these registers.
Chapter 8. Developing applications with IBM XL compilers 107

http://www-306.ibm.com/software/awdtools/fortran/xlfortran/library/
http://docs.python.org/lib/lib.html
http://pympi.sourceforge.net/
http://www-306.ibm.com/software/awdtools/xlcpp/library/

Figure 8-1 Blue Gene/P dual floating-point unit

The registers allow the PowerPC 450 processor to operate certain identical operations in
parallel. Load/store instructions can also be issued with a single instruction. For more detailed
information, see the white paper “Exploiting the Dual Floating Point Units in Blue Gene/L” on
the Web at:

http://www-01.ibm.com/support/docview.wss?uid=swg27007511

The IBM XL compilers leverage this functionality under the following conditions:

� Parallel instructions are issued for load/store instructions if the alignment and size are
aligned with natural alignment. This is 16 bytes for a pair of doubles, but only 8 bytes for a
pair of floats.

� The compiler can issue parallel instructions when the application vectors have stride-one
memory accesses. However, the compiler via IPA issues parallel instructions with
non-stride-one data in certain loops, if it can be shown to improve performance.

� -qhot=simd is the default with -qarch=450d.

� -O4 provides analysis at compile time with limited scope analysis and issuing parallel
instructions (SIMD).

� -O5 provides analysis for the entire program at link time to propagate alignment
information. You must compile and link with -O5 to obtain the full benefit.
108 IBM Blue Gene/P Application Development

http://www-1.ibm.com/support/docview.wss?uid=swg27007511

8.12.3 Using single-instruction multiple-data instructions in applications

On the Blue Gene/P system, normal PowerPC assembler instructions use the primary
floating-point pipe. To enable instructions in parallel, special assembly instructions must be
generated using the following compiler options:

-qarch=450d This flag in the compiler enables parallel instructions to use the
primary and secondary registers (SIMD instructions). See Figure 8-1
on page 108.

-qtune=450 This flag optimizes code for the IBM 450 microprocessors, as
previously mentioned.

-O2 and up This option in the compiler enables parallel instructions.

The XL compiler optimizer consists of two major parts:

� Toronto Portable Optimizer (TPO) for high-level inter-procedural optimization
� Toronto Optimizing Back End with Yorktown (TOBEY) for low-level back-end optimization

SIMD instructions occur in both optimizers. SIMD instruction generation in TOBEY is
activated by default for -O2 and up. SIMD generation in TPO is added when using -qhot, -O4,
or -O5. Specifically, the -qhot option adds SIMD generation, but options -O4 and -O5
automatically call -qhot. For more details, see the C, C++, and Fortran manuals on the Web
at the following addresses:

� XL C/C++

http://www.ibm.com/software/awdtools/xlcpp/library/

� XL Fortran

http://www-306.ibm.com/software/awdtools/fortran/xlfortran/library/

For some applications, the compiler generates more efficient code without the TPO SIMD
level. If you have statically allocated array, and a loop in the same routine, call TOBEY with
-qhot or -O4. Nevertheless, on top of SIMD generation from TOBEY, with -qhot, optimizations
are enabled that can alter the semantic of the code and on rare occasions can generate less
efficient code. Also, with -qhot=nosimd, you can suppress some of these optimizations.

To use the SIMD capabilities of the XL compilers:

1. Start to compile:

-O3 -qarch=450d -qtune=450

We recommend that you use -qarch=450d -qtune=450, in this order. The compiler only
generates SIMD instructions from -O2 and up.

2. Increase the optimization level, and call the high-level inter-procedural optimizer:

– -O5 (link time, whole-program analysis, and SIMD instruction)
– -O4 (compile time, limited scope analysis, and SIMD instructions)
– -O3 -qhot=simd (compile time, less optimization, and SIMD instructions)

3. Tune your program:

a. Check the SIMD instruction generation in the object code listing (-qsource -qlist).
b. Use compiler feedback (-qreport -qhot) to guide you.
Chapter 8. Developing applications with IBM XL compilers 109

http://www.ibm.com/software/awdtools/xlcpp/library/
http://www.ibm.com/software/awdtools/fortran/xlfortran/library/

c. Help the compiler with extra information (directives and pragmas):

• Enter the alignment information with directives and pragmas.
In C, enter:

__alignx

In Fortran, enter:

ALIGNX

• Tell the compiler that data accessed through pointers is disjoint.
In C, enter:

#pragma disjoint

• Use constant loop bound, #define, when possible.

• Use data flow instead of control flow.

• Use select instead of if/then/else. Use macros instead of calls.

• Tell the compiler not to generate SIMD instructions if it is not profitable (trip count
low).
In C, enter:

#pragma nosimd

In Fortran, enter the following line just before the loop:

!IBM* NOSIMD

– Many applications can require modifying algorithms. The previous bullet, which
explains how not to generate SIMD instructions, gives constructs that might help to
modify the code. Here are hints to use when modifying your code:

• Loops must be stride one accesses.

• For function calls in loop:

– Try to inline the calls.
– Loop with if statement.
– Use pointer and aliasing.
– Use integer operations.

• Assumed shape arrays in Fortran 90 can hurt enabling SIMD instructions.

– Generate compiler diagnostics to help you modify and understand how the compiler is
optimizing sections of your applications:

The -qreport compiler option generates a diagnostic report about SIMD instruction
generation. To analyze the generated code and the use of quadword loads and stores,
you must look at the pseudo assembler code within the object file listing. The
diagnostic report provides two types of information about SIMD generation:

• Information on success

(simdizable) [feature][version]

[feature] further characterizes the simdizable loop:

misalign (compile time store)
Refers to a simdizable loop with misaligned accesses.

shift (4 compile time)
Refers to a simdizable loop with 4 stream shift inserted. Shift
refers to the number of misaligned data references that were
found. It has a performance impact because these loops must
be loaded across, and then an extra select instruction must be
inserted.
110 IBM Blue Gene/P Application Development

priv Indicates that the compiler generated a private variable. priv
means a private variable was found. In general, it should have
no performance impact, but in practice it sometimes does.

reduct Indicates that a simdizable loop has a reduction construct.
reduct means that a reduction was found. It is simdized using
partial sums, which must be added at the end of the loop.

[version] further characterizes if and why versioned loops were created:

relative align Indicates the version for relative alignment. The compiler
generated a test and two versions.

trip count Versioned for a short run-time trip count.

• Information on failure

– In case of misalignment: misalign(...):

* Non-natural: non-naturally aligned accesses
* Run time: run-time alignment

– About the structure of the loop:

* Irregular loop structure (while-loop).
* Contains control flow: if/then/else.
* Contains function call: Function call bans SIMD instructions.
* Trip count too small.

– About dependences: dependence due to aliasing

– About array references:

* Access not stride one
* Memory accesses with unsupported alignment
* Contains run-time shift

– About pointer references: Non-normalized pointer accesses

8.13 Tips for optimizing applications
The following sections are an excerpt from IBM System Blue Gene Solution: Application
Development, SG24-7179, tailored to the Blue Gene/P system. They provide useful tips on
how to optimize certain constructs in your code.

Identifying performance bottlenecks
The first step in applications tuning requires identifying where the bottlenecks are located in
the entire application. If multiple locations are identified as potential bottlenecks, prioritization
is required. Figure 8-2 on page 112 illustrates the initial set of steps required to identify where
the bottle bottlenecks might be located.
Chapter 8. Developing applications with IBM XL compilers 111

Figure 8-2 Steps to identify performance bottlenecks

Proper I/O utilization tends to be a problem, and in many applications I/O optimization is
required. Identify if that is the case for your application. The IBM toolkit for Blue Gene/P
provides the Modular I/O (MIO) library that can be used for an applications-level I/O
performance improvement (See IBM System Blue Gene Solution: Performance Analysis
Tools, REDP-4256). Memory utilization on Blue Gene/P involves optimal utilization of the
memory hierarchy. This needs to be coordinated with the double floating-point unit to
leverage the execution of instructions in parallel. As part of the IBM toolkit Xprofiler helps
analyze applications by collecting data using the -pg compiler option to identify functions that
are most CPU intensive. gmon profiler also provides similar information. Appendix H, “Use of
GNU profiling tool on Blue Gene/P” on page 361 provides additional information about gmon.
The IBM toolkit provides the MPI profiler and a tracing library for MPI programs.

Structuring data in adjacent pairs
The Blue Gene/P 450d processor’s dual FPU includes special instructions for parallel
computations. The compiler tries to pair adjacent single-precision or double-precision
floating-point values to operate on them in parallel. Therefore, you can accelerate
computations by defining data objects that occupy adjacent memory blocks and are naturally
aligned. These include arrays or structures of floating-point values and complex data types.

Whether you use an array, a structure, or a complex scalar, the compiler searches for
sequential pairs of data for which it can generate parallel instructions, for example, using the
C code in Example 8-8 on page 113, each pair of elements in a structure can be operated on
in parallel.
112 IBM Blue Gene/P Application Development

Example 8-8 Adjacent paired data

struct quad {
double a, b, c, d;

};

struct quad x, y, z;

void foo()
{

z.a = x.a + y.a;
z.b = x.b + y.b;/* can load parallel (x.a,x.b), and (y.a, y.b), do parallel add, and

store parallel (z.a, z.b) */

z.c = x.c + y.c;
z.d = x.d + y.d;/* can load parallel (x.c,x.d), and (y.c, y.d), do parallel add, and

store parallel (z.c, z.d) */
}

The advantage of using complex types in arithmetic operations is that the compiler
automatically uses parallel add, subtract, and multiply instructions when complex types
appear as operands to addition, subtraction, and multiplication operators. Furthermore, the
data that you provide does not need to represent complex numbers. In fact, both elements are
represented internally as two real values. See “Complex type manipulation functions” on
page 121, for a description of the set of built-in functions that are available for the Blue
Gene/P system. These functions are especially designed to efficiently manipulate
complex-type data and include a function to convert non-complex data to complex types.

Using vectorizable basic blocks
The compiler schedules instructions most efficiently within extended basic blocks. Extended
basic blocks are code sequences that can contain conditional branches but have no entry
points other than the first instruction. Specifically, minimize the use of branching instructions
for:

� Handling special cases, such as the generation of not-a-number (NaN) values.

� C/C++ error handling that sets a value for errno.

To explicitly inform the compiler that none of your code will set errno, you can compile with
the -qignerrno compiler option (automatically set with -O3).

� C++ exception handlers.

To explicitly inform the compiler that none of your code will throw any exceptions, and
therefore, that no exception-handling code must be generated, you can compile with the
-qnoeh compiler option.

In addition, the optimal basic blocks remove dependencies between computations, so that the
compiler views each statement as entirely independent. You can construct a basic block as a
series of independent statements or as a loop that repeatedly computes the same basic block
with different arguments.

If you specify the -qhot=simd compilation option, along with a minimum optimization level of
-O2, the compiler can then vectorize these loops by applying various transformations, such as
unrolling and software pipelining. See “Removing possibilities for aliasing (C/C++)” on
page 114, for additional strategies for removing data dependencies.
Chapter 8. Developing applications with IBM XL compilers 113

Using inline functions
An inline function is expanded in any context in which it is called. This expansion avoids the
normal performance overhead associated with the branching for a function call, and it allows
functions to be included in basic blocks. The XL C/C++ and Fortran compilers provide several
options for inlining.

The following options instruct the compiler to automatically inline all functions it deems
appropriate:

� XL C/C++:

– -O through -O5
– -qipa

� XL Fortran:

– -O4 or -O5
– -qipa

With the following options, you can select or name functions to be inlined:

� XL C/C++ :

– -qinline
– -Q

� XL Fortran:

-Q

In C/C++, you can also use the standard inline function specifier or the
__attribute__(always_inline) extension in your code to mark a function for inlining.

For more information about the various compiler options for controlling function inlining, see
the following publications:

� “XL C/C++ Compiler Reference”

http://www-306.ibm.com/software/awdtools/xlcpp/library/

� “XL Fortran User Guide”

http://www-306.ibm.com/software/awdtools/fortran/xlfortran/library/

Also available from this Web address, the “XL C/C++ Language Reference” provides
information about the different variations of the inline keyword supported by XL C and
C++, as well as the inlining function attribute extensions.

Removing possibilities for aliasing (C/C++)
When you use pointers to access array data in C/C++, the compiler cannot assume that the
memory accessed by pointers is not altered by other pointers that refer to the same address,
for example, if two pointer input parameters share memory, the instruction to store the
second parameter can overwrite the memory read from the first load instruction, which means
that, after a store for a pointer variable, any load from a pointer must be reloaded. Consider
the code in Example 8-9.

Example 8-9 Sample code

int i = *p;
*q = 0;

Using inlining: Do not overuse inlining because of the limits on how much inlining can be
done. Mark the most important functions.
114 IBM Blue Gene/P Application Development

http://www-306.ibm.com/software/awdtools/xlcpp/library/
http://www-306.ibm.com/software/awdtools/fortran/xlfortran/library/

j = *p;

If *q aliases *p, then the value must be reloaded from memory. If *q does not alias *p, the old
value that is already loaded into i can be used.

To avoid the overhead of reloading values from memory every time they are referenced in the
code, and to allow the compiler to simply manipulate values that are already resident in
registers, you can use several strategies. One approach is to assign input array element
values to local variables and perform computations only on the local variables, as shown in
Example 8-10.

Example 8-10 Array parameters assigned to local variables

#include <math.h>
void reciprocal_roots (const double* x, double* f)
{

double x0 = x[0] ;
double x1 = x[1] ;
double r0 = 1.0/sqrt(x0) ;
double r1 = 1.0/sqrt(x1) ;
f[0] = r0 ;
f[1] = r1 ;

}

If you are certain that two references do not share the same memory address, another
approach is to use the #pragma disjoint directive. This directive asserts that two identifiers
do not share the same storage, within the scope of their use. Specifically, you can use
pragma to inform the compiler that two pointer variables do not point to the same memory
address. The directive in Example 8-11 indicates to the compiler that the pointers-to-arrays of
double x and f do not share memory.

Example 8-11 The #pragma disjoint directive

__inline void ten_reciprocal_roots (double* x, double* f)
{
#pragma disjoint (*x, *f)
int i;
 for (i=0; i < 10; i++)

f[i]= 1.0 / sqrt (x[i]);
}

Structure computations in batches
Floating-point operations are pipelined in the 450 processor, so that one floating-point
calculation is performed per cycle, with a latency of approximately five cycles. Therefore, to
keep the 450 processor’s floating-point units busy, organize floating-point computations to
perform step-wise operations in batches - for example, arrays of five elements and loops of
five iterations. For the 450d, which has two FPUs, use batches of ten, for example, with the
450d, at high optimization, the function in Example 8-12 on page 116 should perform ten
parallel reciprocal roots in about five cycles more than a single reciprocal root. This is
because the compiler performs two reciprocal roots in parallel and then uses the “empty”
cycles to run four more parallel reciprocal roots.

Important: The correct functioning of this directive requires that the two pointers be
disjoint. If they are not, the compiled program cannot run correctly.
Chapter 8. Developing applications with IBM XL compilers 115

Example 8-12 Function to calculate reciprocal roots for arrays of 10 elements

__inline void ten_reciprocal_roots (double* x, double* f)
{
#pragma disjoint (*x, *f)

 int i;
 for (i=0; i < 10; i++)

f[i]= 1.0 / sqrt (x[i]);
}

The definition in Example 8-13 shows “wrapping” the inlined, optimized
ten_reciprocal_roots function, in Example 8-12, inside a function that allows you to pass in
arrays of any number of elements. This function then passes the values in batches of ten to
the ten_reciprocal_roots function and calculates the remaining operations individually.

Example 8-13 Function to pass values in batches of ten

static void unaligned_reciprocal_roots (double* x, double* f, int n)
{
#pragma disjoint (*x, *f)
 while (n >= 10) {

ten_reciprocal_roots (x, f);
x += 10;
f += 10;

 }
 /* remainder */
 while (n > 0) {

*f = 1.0 / sqrt (*x);
f++, x++;

 }
}

Checking for data alignment
Floating-point data alignment requirements are based on the size of the data: Four-byte data
must be word aligned, 8-byte data must be double-word aligned, and 16-byte data must be
quad-word aligned. If data that is not properly aligned is accessed or modified, the hardware
generates an alignment exception. The user can determine how alignment exceptions are to
be handled by the setting of the environment variable BG_MAXALIGNEXP. If this variable is
not set, the kernel can handle up to 1000 alignment exceptions, and after this amount of time,
a SIGBUS signal is raised, the program ends, and generates a core file. The core file
provides information about the instruction address and stack trace where the alignment
exception occurred. Setting BG_MAXALIGNEXP=-1 indicates that all alignment exceptions
are to be handled. Setting BG_MAXALIGNEXP=0 indicates that no alignment exceptions are
to be handled. Because alignment exceptions can cause a severe performance penalty, this
technique can be used to find code that is taking alignment exceptions unexpectedly.

The compiler does not generate these parallel load and store instructions unless it is sure that
it is safe to do so. For non-pointer local and global variables, the compiler knows when this is
safe. To allow the compiler to generate these parallel loads and stores for accesses through
pointers, include code that tests for correct alignment and that gives the compiler hints.

To test for alignment, first create one version of a function that asserts the alignment of an
input variable at that point in the program flow. You can use the C/C++ __alignx built-in
function or the Fortran ALIGNX function to inform the compiler that the incoming data is
correctly aligned according to a specific byte boundary, so it can efficiently generate loads
and stores.
116 IBM Blue Gene/P Application Development

The function takes two arguments. The first argument is an integer constant that expresses
the number of alignment bytes (must be a positive power of two). The second argument is the
variable name, typically a pointer to a memory address.

Example 8-14 shows the C/C++ prototype for the function.

Example 8-14 C/C++ prototype

extern
#ifdef __cplusplus
"builtin"
#endif
void __alignx (int n, const void *addr)

Example 8-14, n is the number of bytes, for example, __alignx(16, y) specifies that the
address y is 16-byte aligned.

In Fortran95, the built-in subroutine is ALIGNX(K,M), where K is of type INTEGER(4), and M
is a variable of any type. When M is an integer pointer, the argument refers to the address of
the pointee.

Example 8-15 asserts that the variables x and f are aligned along 16-byte boundaries.

Example 8-15 Using the __alignx built-in function

#include <math.h>
#include <builtins.h>
__inline void aligned_ten_reciprocal_roots (double* x, double* f)
{
#pragma disjoint (*x, *f)
int i;
 __alignx (16, x);
 __alignx (16, f);
 for (i=0; i < 10; i++)

f[i]= 1.0 / sqrt (x[i]);
}

After you create a function to handle input variables that are correctly aligned, you then can
create a function that tests for alignment and then calls the appropriate function to perform
the calculations. The function in Example 8-16 checks to see whether the incoming values
are correctly aligned. Then it calls the “aligned” (Example 8-15) or “unaligned” (Example 8-12
on page 116) version of the function according to the result.

Example 8-16 Function to test for alignment

void reciprocal_roots (double *x, double *f, int n)
{
 /* are both x & f 16 byte aligned? */
 if (((((int) x) | ((int) f)) & 0xf) == 0) /* This could also be done as:

if (((int) x % 16 == 0) && ((int) f % 16) == 0) */
aligned_ten_reciprocal_roots (x, f, n);
else
ten_reciprocal_roots (x, f, n);

}

The __alignx function: The __alignx function does not perform any alignment. It merely
informs the compiler that the variables are aligned as specified. If the variables are not
aligned correctly, the program does not run properly.
Chapter 8. Developing applications with IBM XL compilers 117

The alignment test in Example 8-16 on page 117 provides an optimized method of testing for
16-byte alignment by performing a bit-wise OR on the two incoming addresses and testing
whether the lowest four bits are 0 (that is, 16-byte aligned).

Using XL built-in floating-point functions for Blue Gene/P
The XL C/C++ and Fortran95 compilers include a large set of built-in functions that are
optimized for the PowerPC architecture. For a full description of them, refer to the following
documents:

� Appendix B: “Built-In Functions” in XL C/C++ Compiler Reference

http://www-306.ibm.com/software/awdtools/xlcpp/library/

� “Intrinsic Procedures” in XL Fortran Language Reference

http://www-306.ibm.com/software/awdtools/fortran/xlfortran/library/

On the Blue Gene/P system, the XL compilers provide a set of built-in functions that are
specifically optimized for the PowerPC 450d dual FPU. These built-in functions provide an
almost one-to-one correspondence with the dual floating-point instruction set.

All of the C/C++ and Fortran built-in functions operate on complex data types, which have an
underlying representation of a two-element array, in which the real part represents the
primary element and the imaginary part represents the second element. The input data that
you provide does not need to represent complex numbers. In fact, both elements are
represented internally as two real values. None of the built-in functions performs complex
arithmetic. A set of built-in functions designed to efficiently manipulate complex-type variables
is also available.

The Blue Gene/P built-in functions perform several types of operations, as explained in the
following paragraphs.

Parallel operations perform SIMD computations on the primary and secondary elements of
one or more input operands. They store the results in the corresponding elements of the
output. As an example, Figure 8-3 illustrates how a parallel-multiply operation is performed.

Figure 8-3 Parallel operations

Cross operations perform SIMD computations on the opposite primary and secondary
elements of one or more input operands. They store the results in the corresponding
elements in the output. As an example, Figure 8-4 on page 119 illustrates how a
cross-multiply operation is performed.

Primary element Secondary element

Primary element Secondary element

Input
operand a

Input
operand b

Output Primary element Secondary element
118 IBM Blue Gene/P Application Development

http://www-306.ibm.com/software/awdtools/xlcpp/library/
http://www-306.ibm.com/software/awdtools/fortran/xlfortran/library/

Figure 8-4 Cross-multiply operations

Copy-primary operations perform SIMD computation between the corresponding primary
and secondary elements of two input operands, where the primary element of the first
operand is replicated to the secondary element. As an example, Figure 8-5 illustrates how a
cross-primary-multiply operation is performed.

Figure 8-5 Copy-primary multiply operations

Primary element Secondary element

Secondary element Primary element

Input
operand b

Output

Primary element Secondary element
Input
operand a

Primary element Secondary element

Primary element Secondary element

Input
operand b

Output

Primary element Secondary element
Input
operand a
Chapter 8. Developing applications with IBM XL compilers 119

Copy-secondary operations perform SIMD computation between the corresponding primary
and secondary elements of two input operands, where the secondary element of the first
operand is replicated to the primary element. As an example, Figure 8-6 illustrates how a
cross-secondary multiply operation is performed.

Figure 8-6 Copy-secondary multiply operations

In cross-copy operations, the compiler crosses either the primary or secondary element of the first
operand, so that copy-primary and copy-secondary operations can be used interchangeably to
achieve the same result. The operation is performed on the total value of the first operand. As an
example, Figure 8-7 illustrates the result of a cross-copy multiply operation.

Figure 8-7 Cross-copy multiply operations

In the following paragraphs, we describe the available built-in functions by category. For each
function, the C/C++ prototype is provided. In C, you do not need to include a header file to
obtain the prototypes. The compiler includes them automatically. In C++, you must include the
header file builtins.h.

Fortran does not use prototypes for built-in functions. Therefore, the interfaces for the
Fortran95 functions are provided in textual form. The function names omit the double
underscore (__) in Fortran95.

All of the built-in functions, with the exception of the complex type manipulation functions,
require compilation under -qarch=450d. This is the default setting on the Blue Gene/P system.

Primary element Secondary element

Primary element Secondary element

Input
operand b

Output

Primary element Secondary element
Input
operand a

Primary element Secondary element

Primary element Secondary element

Input
operand b

Output

Primary element + Secondary element
Input
operand a
120 IBM Blue Gene/P Application Development

To help clarify the English description of each function, the following notation is used:

element(variable)

Here element represents one of primary or secondary, and variable represents input variable
a, b, or c, and the output variable result, for example, consider the following formula:

primary(result) = primary(a) + primary(b)

This formula indicates that the primary element of input variable a is added to the primary
element of input variable b and stored in the primary element of the result.

To optimize your calls to the Blue Gene/P built-in functions, follow the guidelines that we
provide in 8.12, “Tuning your code for Blue Gene/P” on page 107. Using the alignx built-in
function (described in “Checking for data alignment” on page 116) and specifying the
disjoint pragma (described in “Removing possibilities for aliasing (C/C++)” on page 114) are
recommended for code that calls any of the built-in functions.

Complex type manipulation functions
Complex type manipulation functions, listed in Table 8-3, are useful for efficiently manipulating
complex data types. Using these functions, you can automatically convert real floating-point
data to complex types and extract the real (primary) and imaginary (secondary) parts of
complex values.

Table 8-3 Complex type manipulation functions

Function Convert dual reals to complex (single-precision): __cmplxf

Purpose Converts two single-precision real values to a single complex value. The real a is
converted to the primary element of the return value, and the real b is converted to
the secondary element of the return value.

Formula primary(result) =a
secondary(result) = b

C/C++
prototype

float _Complex __cmplxf (float a, float b);

Fortran
descriptions

CMPLXF(A,B)
where A is of type REAL(4)
where B is of type REAL(4)
result is of type COMPLEX(4)

Function Convert dual reals to complex (double-precision): __cmplx

Purpose Converts two double-precision real values to a single complex value. The real a is
converted to the primary element of the return value, and the real b is converted to
the secondary element of the return value.

Formula primary(result) =a
secondary(result) = b

C/C++
prototype

double _Complex __cmplx (double a, double b);
long double _Complex __cmplxl (long double a, long double b);a

Fortran
descriptions

CMPLX(A,B)
where A is of type REAL(8)
where B is of type REAL(8)
result is of type COMPLEX(8)
Chapter 8. Developing applications with IBM XL compilers 121

Function Extract real part of complex (single-precision): __crealf

Purpose Extracts the primary part of a single-precision complex value a, and returns the result
as a single real value.

Formula result =primary(a)

C/C++
prototype

float __crealf (float _Complex a);

Fortran
descriptions

CREALF(A)
where A is of type COMPLEX(4)
result is of type REAL(4)

Function Extract real part of complex (double-precision): __creal, __creall

Purpose Extracts the primary part of a double-precision complex value a, and returns the
result as a single real value.

Formula result =primary(a)

C/C++
prototype

double __creal (double _Complex a);
long double __creall (long double _Complex a);a

Fortran
descriptions

CREAL(A)
where A is of type COMPLEX(8)
result is of type REAL(8)
CREALL(A)
where A is of type COMPLEX(16)
result is of type REAL(16)

Function Extract imaginary part of complex (single-precision): __cimagf

Purpose Extracts the secondary part of a single-precision complex value a, and returns the
result as a single real value.

Formula result =secondary(a)

C/C++
prototype

float __cimagf (float _Complex a);

Fortran
descriptions

CIMAGF(A)
where A is of type COMPLEX(4)
result is of type REAL(4)

Function Extract imaginary part of complex (double-precision): __cimag, __cimagl

Purpose Extracts the imaginary part of a double-precision complex value a, and returns the
result as a single real value.

Formula result =secondary(a)

C/C++
prototype

double __cimag (double _Complex a);
long double __cimagl (long double _Complex a);a

Fortran
descriptions

CIMAG(A)
where A is of type COMPLEX(8)
result is of type REAL(8)
CIMAGL(A)
where A is of type COMPLEX(16)
result is of type REAL(16)

a. 128-bit C/C++ long double types are not supported on Blue Gene/L. Long doubles are treated
as regular double-precision longs.
122 IBM Blue Gene/P Application Development

Load and store functions
Table 8-4 lists and explains the various parallel load and store functions that are available.

Table 8-4 Load and store functions

Function Parallel load (single-precision): __lfps

Purpose Loads parallel single-precision values from the address of a, and converts the results
to double-precision. The first word in address(a) is loaded into the primary element of
the return value. The next word, at location address(a)+4, is loaded into the secondary
element of the return value.

Formula primary(result) = a[0]
secondary(result) = a[1]

C/C++
prototype

double _Complex __lfps (float * a);

Fortran
description

LOADFP(A)
where A is of type REAL(4)
result is of type COMPLEX(8)

Function Cross load (single-precision): __lfxs

Purpose Loads single-precision values that have been converted to double-precision, from the
address of a. The first word in address(a) is loaded into the secondary element of the
return value. The next word, at location address(a)+4, is loaded into the primary
element of the return value.

Formula primary(result) = a[1]
secondary(result) = a[0]

C/C++
prototype

double _Complex __lfxs (float * a);

Fortran
description

LOADFX(A)
where A is of type REAL(4)
result is of type COMPLEX(8)

Function Parallel load: __lfpd

Purpose Loads parallel values from the address of a. The first word in address(a) is loaded into
the primary element of the return value. The next word, at location address(a)+8, is
loaded into the secondary element of the return value.

Formula primary(result) = a[0]
secondary(result) = a[1]

C/C++
prototype

double _Complex __lfpd(double* a);

Fortran
description

LOADFP(A)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Cross load: __lfxd

Purpose Loads values from the address of a. The first word in address(a) is loaded into the
secondary element of the return value. The next word, at location address(a)+8, is
loaded into the primary element of the return value.

Formula primary(result) = a[1]
secondary(result) = a[0]
Chapter 8. Developing applications with IBM XL compilers 123

C/C++
prototype

double _Complex __lfxd (double * a);

Fortran
description

LOADFX(A)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Parallel store (single-precision): __stfps

Purpose Stores in parallel double-precision values that have been converted to
single-precision, into address(b). The primary element of a is converted to
single-precision and stored as the first word in address(b). The secondary element of
a is converted to single-precision and stored as the next word at location
address(b)+4.

Formula b[0] = primary(a)
b[1]= secondary(a)

C/C++
prototype

void __stfps (float * b, double _Complex a);

Fortran
description

STOREFP(B, A)
where B is of type REAL(4)
A is of type COMPLEX(8)
result is none

Function Cross store (single-precision): __stfxs

Purpose Stores double-precision values that have been converted to single-precision, into
address(b). The secondary element of a is converted to single-precision and stored as
the first word in address(b). The primary element of a is converted to single-precision
and stored as the next word at location address(b)+4.

Formula b[0] = secondary(a)
b[1] = primary(a)

C/C++
prototype

void __stfxs (float * b, double _Complex a);

Fortran
description

STOREFX(B, A)
where B is of type REAL(4)
A is of type COMPLEX(8)
result is none

Function Parallel store: __stfpd

Purpose Stores in parallel values into address(b). The primary element of a is stored as the first
double word in address(b). The secondary element of a is stored as the next double
word at location address(b)+8.

Formula b[0] = primary(a)
b[1] = secondary(a)

C/C++
prototype

void __stfpd (double * b, double _Complex a);

Fortran
description

STOREFP(B, A)
where B is of type REAL(8)
A is of type COMPLEX(8)
result is none
124 IBM Blue Gene/P Application Development

Move functions
Table 8-5 lists and explains the parallel move functions that are available.

Table 8-5 Move functions

Function Cross store: __stfxd

Purpose Stores values into address(b). The secondary element of a is stored as the first double
word in address(b). The primary element of a is stored as the next double word at
location address(b)+8.

Formula b[0] = secondary(a)
b[1] = primary(a)

C/C++
prototype

void __stfxd (double * b, double _Complex a);

Fortran
description

STOREFP(B, A)
where B is of type REAL(8)
A is of type COMPLEX(8)
result is none

Function Parallel store as integer: __stfpiw

Purpose Stores in parallel floating-point double-precision values into b as integer words. The
lower-order 32 bits of the primary element of a are stored as the first integer word in
address(b). The lower-order 32 bits of the secondary element of a are stored as the
next integer word at location address(b)+4. This function is typically preceded by a call
to the __fpctiw or __fpctiwz built-in functions, described in “Unary functions” on
page 126, which perform parallel conversion of dual floating-point values to integers.

Formula b[0] = primary(a)
b[1] = secondary(a)

C/C++
prototype

void __stfpiw (int * b, double _Complex a);

Fortran
description

STOREFP(B, A)
where B is of type INTEGER(4)
A is of type COMPLEX(8)
result is none

Function Cross move: __fxmr

Purpose Swaps the values of the primary and secondary elements of operand a.

Formula primary(result) = secondary(a)
secondary(result) = primary(a)

C/C++
prototype

double _Complex __fxmr (double _Complex a);

Fortran
description

FXMR(A)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)
Chapter 8. Developing applications with IBM XL compilers 125

Arithmetic functions
In the following sections, we describe all the arithmetic built-in functions, categorized by their
number of operands.

Unary functions
Unary functions, listed in Table 8-6, operate on a single input operand.

Table 8-6 Unary functions

Function Parallel convert to integer: __fpctiw

Purpose Converts in parallel the primary and secondary elements of operand a to 32-bit
integers using the current rounding mode.
After a call to this function, use the __stfpiw function to store the converted integers in
parallel, as explained in “Load and store functions” on page 123.

Formula primary(result) = primary(a)
secondary(result) = secondary(a)

C/C++
prototype

double _Complex __fpctiw (double _Complex a);

Fortran
purpose

FPCTIW(A)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel convert to integer and round to zero: __fpctiwz

Purpose Converts in parallel the primary and secondary elements of operand a to 32-bit
integers and rounds the results to zero.
After a call to this function, use the __stfpiw function to store the converted integers in
parallel, as explained in “Load and store functions” on page 123.

Formula primary(result) = primary(a)
secondary(result) = secondary(a)

C/C++
prototype

double _Complex __fpctiwz(double _Complex a);

Fortran
description

FPCTIWZ(A)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel round double-precision to single-precision: __fprsp

Purpose Rounds in parallel the primary and secondary elements of double-precision operand a
to single precision.

Formula primary(result) = primary(a)
secondary(result) = secondary(a)

C/C++
prototype

double _Complex __fprsp (double _Complex a);

Fortran
description

FPRSP(A)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel reciprocal estimate: __fpre

Purpose Calculates in parallel double-precision estimates of the reciprocal of the primary and
secondary elements of operand a.
126 IBM Blue Gene/P Application Development

Formula primary(result) = primary(a)
secondary(result) = secondary(a)

C/C++
prototype

double _Complex __fpre(double _Complex a);

Fortran
description

FPRE(A)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel reciprocal square root: __fprsqrte

Purpose Calculates in parallel double-precision estimates of the reciprocals of the square roots
of the primary and secondary elements of operand a.

Formula primary(result) = primary(a)
secondary(result) = secondary(a)

C/C++
prototype

double _Complex __fprsqrte (double _Complex a);

Fortran
description

FPRSQRTE(A)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel negate: __fpneg

Purpose Calculates in parallel the negative values of the primary and secondary elements of
operand a.

Formula primary(result) = primary(a)
secondary(result) = secondary(a)

C/C++
prototype

double _Complex __fpneg (double _Complex a);

Fortran
description

FPNEG(A)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel absolute: __fpabs

Purpose Calculates in parallel the absolute values of the primary and secondary elements of
operand a.

Formula primary(result) = primary(a)
secondary(result) = secondary(a)

C/C++
prototype

double _Complex __fpabs (double _Complex a);

Fortran
description

FPABS(A)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel negate absolute: __fpnabs

Purpose Calculates in parallel the negative absolute values of the primary and secondary
elements of operand a.

Formula primary(result) = primary(a)
secondary(result) = secondary(a)

C/C++
prototype

double _Complex __fpnabs (double _Complex a);
Chapter 8. Developing applications with IBM XL compilers 127

Binary functions
Binary functions, listed in Table 8-7, operate on two input operands.

Table 8-7 Binary functions

Fortran
description

FPNABS(A)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel add: __fpadd

Purpose Adds in parallel the primary and secondary elements of operands a and b.

Formula primary(result) = primary(a) + primary(b)
secondary(result) = secondary(a) + secondary(b)

C/C++
prototype

double _Complex __fpadd (double _Complex a, double _Complex b);

Fortran
description

FPADD(A,B)
where A is of type COMPLEX(8)
where B is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel subtract: __fpsub

Purpose Subtracts in parallel the primary and secondary elements of operand b from the
corresponding primary and secondary elements of operand a.

Formula primary(result) = primary(a) - primary(b)
secondary(result) = secondary(a) - secondary(b)

C/C++
prototype

double _Complex __fpsub (double _Complex a, double _Complex b);

Fortran
description

FPSUB(A,B)
where A is of type COMPLEX(8)
where B is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel multiply: __fpmul

Purpose Multiplies in parallel the values of primary and secondary elements of operands a
and b.

Formula primary(result) = primary(a) × primary(b)
secondary(result) = secondary(a) × secondary(b)

C/C++
prototype

double _Complex __fpmul (double _Complex a, double _Complex b);

Fortran
description

FPMUL(A,B)
where A is of type COMPLEX(8)
where B is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Cross multiply: __fxmul

Purpose The product of the secondary element of a and the primary element of b is stored as
the primary element of the return value. The product of the primary element of a and
the secondary element of b is stored as the secondary element of the return value.

Formula primary(result) = secondary(a) x primary(b)
secondary(result) = primary(a) × secondary(b)
128 IBM Blue Gene/P Application Development

Multiply-add functions
Multiply-add functions take three input operands, multiply the first two, and add or subtract the
third. Table 8-8 lists these functions.

Table 8-8 Multiply-add functions

C/C++
prototype

double _Complex __fxmul (double _Complex a, double _Complex b);

Fortran
description

FXMUL(A,B)
where A is of type COMPLEX(8)
where B is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Cross copy multiply: _fxpmul, __fxsmul

Purpose Both of these functions can be used to achieve the same result. The product of a and
the primary element of b is stored as the primary element of the return value. The
product of a and the secondary element of b is stored as the secondary element of the
return value.

Formula primary(result) = a x primary(b)
secondary(result) = a x secondary(b)

C/C++
prototype

double _Complex __fxpmul (double _Complex b, double a);
double _Complex __fxsmul (double _Complex b, double a);

Fortran
description

FXPMUL(B,A) or FXSMUL(B,A)
where B is of type COMPLEX(8)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel multiply-add: __fpmadd

Purpose The sum of the product of the primary elements of a and b, added to the primary
element of c, is stored as the primary element of the return value. The sum of the
product of the secondary elements of a and b, added to the secondary element of c,
is stored as the secondary element of the return value.

Formula primary(result) = primary(a) × primary(b) + primary(c)
secondary(result) = secondary(a) × secondary(b) + secondary(c)

C/C++
prototype

double _Complex __fpmadd (double _Complex c, double _Complex b, double
_Complex a);

Fortran
description

FPMADD(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel negative multiply-add: __fpnmadd

Purpose The sum of the product of the primary elements of a and b, added to the primary
element of c, is negated and stored as the primary element of the return value. The
sum of the product of the secondary elements of a and b, added to the secondary
element of c, is negated and stored as the secondary element of the return value.

Formula primary(result) = -(primary(a) × primary(b) + primary(c))
secondary(result) = -(secondary(a) × secondary(b) + secondary(c))

C/C++
prototype

double _Complex __fpnmadd (double _Complex c, double _Complex b, double
_Complex a);
Chapter 8. Developing applications with IBM XL compilers 129

Fortran
description

FPNMADD(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel multiply-subtract: __fpmsub

Purpose The difference of the primary element of c, subtracted from the product of the primary
elements of a and b, is stored as the primary element of the return value. The
difference of the secondary element of c, subtracted from the product of the secondary
elements of a and b, is stored as the secondary element of the return value.

Formula primary(result) = primary(a) × primary(b) - primary(c)
secondary(result) = secondary(a) × secondary(b) - secondary(c)

C/C++
prototype

double _Complex __fpmsub (double _Complex c, double _Complex b, double
_Complex a);

Fortran
description

FPMSUB(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Parallel negative multiply-subtract: __fpnmsub

Purpose The difference of the primary element of c, subtracted from the product of the primary
elements of a and b, is negated and stored as the primary element of the return value.
The difference of the secondary element of c, subtracted from the product of the
secondary elements of a and b, is negated and stored as the secondary element of
the return value.

Formula primary(result) = -(primary(a) × primary(b) - primary(c))
secondary(result) = -(secondary(a) × secondary(b) - secondary(c))

C/C++
prototype

double _Complex __fpnmsub (double _Complex c, double _Complex b, double
_Complex a);

Fortran
description

FPNMSUB(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Cross multiply-add: __fxmadd

Purpose The sum of the product of the primary element of a and the secondary element of b,
added to the primary element of c, is stored as the primary element of the return value.
The sum of the product of the secondary element of a and the primary b, added to the
secondary element of c, is stored as the secondary element of the return value.

Formula primary(result) = primary(a) × secondary(b) + primary(c)
secondary(result) = secondary(a) × primary(b) + secondary(c)

C/C++
prototype

double _Complex __fxmadd (double _Complex c, double _Complex b, double
_Complex a);

Fortran
description

FXMADD(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)
130 IBM Blue Gene/P Application Development

Function Cross negative multiply-add: __fxnmadd

Purpose The sum of the product of the primary element of a and the secondary element of b,
added to the primary element of c, is negated and stored as the primary element of
the return value. The sum of the product of the secondary element of a and the primary
element of b, added to the secondary element of c, is negated and stored as the
secondary element of the return value.

Formula primary(result) = -(primary(a) × secondary(b) + primary(c))
secondary(result) = -(secondary(a) × primary(b) + secondary(c))

C/C++
prototype

double _Complex __fxnmadd (double _Complex c, double _Complex b, double
_Complex a);

Fortran
description

FXNMADD(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Cross multiply-subtract: __fxmsub

Purpose The difference of the primary element of c, subtracted from the product of the primary
element of a and the secondary element of b, is stored as the primary element of the
return secondary element of a, and the primary element of b is stored as the
secondary element of the return value.

Formula primary(result) = primary(a) × secondary(b) - primary(c)
secondary(result) = secondary(a) × primary(b) - secondary(c)

C/C++
prototype

double _Complex __fxmsub (double _Complex c, double _Complex b, double
_Complex a);

Fortran
description

FXMSUB(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Cross negative multiply-subtract: __fxnmsub

Purpose The difference of the primary element of c, subtracted from the product of the primary
element of a and the secondary element of b, is negated and stored as the primary
element of the return value. The difference of the secondary element of c, subtracted
from the product of the secondary element of a and the primary element of b, is
negated and stored as the secondary element of the return value.

Formula primary(result) = -(primary(a) × secondary(b) - primary(c))
secondary(result) = -(secondary(a) × primary(b) - secondary(c))

C/C++
prototype

double _Complex __fxnmsub (double _Complex c, double _Complex b, double
_Complex a);

Fortran
description

FXNMSUB(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type COMPLEX(8)
result is of type COMPLEX(8)

Function Cross copy multiply-add: __fxcpmadd, __fxcsmadd
Chapter 8. Developing applications with IBM XL compilers 131

Purpose Both of these functions can be used to achieve the same result. The sum of the
product of a and the primary element of b, added to the primary element of c, is stored
as the primary element of the return value. The sum of the product of a and the
secondary element of b, added to the secondary element of c, is stored as the
secondary element of the return value.

Formula primary(result) = a x primary(b) + primary(c)
secondary(result) = a x secondary(b) + secondary(c)

C/C++
prototype

double _Complex __fxcpmadd (double _Complex c, double _Complex b, double a);
double _Complex __fxcsmadd (double _Complex c, double _Complex b, double a);

Fortran
description

FXCPMADD(C,B,A) or FXCSMADD(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Cross copy negative multiply-add: __fxcpnmadd, __fxcsnmadd

Purpose Both of these functions can be used to achieve the same result. The difference of the
primary element of c, subtracted from the product of a and the primary element of b,
is negated and stored as the primary element of the return value. The difference of the
secondary element of c, subtracted from the product of a and the secondary element
of b, is negated and stored as the secondary element of the return value.

Formula primary(result) = -(a x primary(b) + primary(c))
secondary(result) = -(a x secondary(b) + secondary(c))

C/C++
prototype

double _Complex __fxcpnmadd (double _Complex c, double _Complex b, double a);
double _Complex __fxcsnmadd (double _Complex c, double _Complex b, double a);

Fortran
description

FXCPNMADD(C,B,A) or FXCSNMADD(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Cross copy multiply-subtract: __fxcpmsub, __fxcsmsub

Purpose Both of these functions can be used to achieve the same result. The difference of the
primary element of c, subtracted from the product of a and the primary element of b,
is stored as the primary element of the return value. The difference of the secondary
element of c, subtracted from the product of a and the secondary element of b, is
stored as the secondary element of the return value.

Formula primary(result) = a x primary(b) - primary(c)
secondary(result) = a x secondary(b) - secondary(c)

C/C++
prototype

double _Complex __fxcpmsub (double _Complex c, double _Complex b, double a);
double _Complex __fxcsmsub (double _Complex c, double _Complex b, double a);

Fortran
description

FXCPMSUB(C,B,A) or FXCSMSUB(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Cross copy negative multiply-subtract: __fxcpnmsub, __fxcsnmsub
132 IBM Blue Gene/P Application Development

Purpose Both of these functions can be used to achieve the same result. The difference of the
primary element of c, subtracted from the product of a and the primary element of b,
is negated and stored as the primary element of the return value. The difference of the
secondary element of c, subtracted from the product of a and the secondary element
of b, is negated and stored as the secondary element of the return value.

Formula primary(result) = -(a x primary(b) - primary(c))
secondary(result) = -(a x secondary(b) - secondary(c))

C/C++
prototype

double _Complex __fxcpnmsub (double _Complex c, double _Complex b, double a);
double _Complex __fxcsnmsub (double _Complex c, double _Complex b, double a);

Fortran
description

FXCPNMSUB(C,B,A) or FXCSNMSUB(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Cross copy sub-primary multiply-add: __fxcpnpma, __fxcsnpma

Purpose Both of these functions can be used to achieve the same result. The difference of the
primary element of c, subtracted from the product of a and the primary element of b,
is negated and stored as the primary element of the return value. The sum of the
product of a and the secondary element of b, added to the secondary element of c, is
stored as the secondary element of the return value.

Formula primary(result) = -(a x primary(b) - primary(c))
secondary(result) = a x secondary(b) + secondary(c)

C/C++
prototype

double _Complex __fxcpnpma (double _Complex c, double _Complex b, double a);
double _Complex __fxcsnpma (double _Complex c, double _Complex b, double a);

Fortran
description

FXCPNPMA(C,B,A) or FXCSNPMA(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Cross copy sub-secondary multiply-add: __fxcpnsma, __fxcsnsma

Purpose Both of these functions can be used to achieve the same result. The sum of the
product of a and the primary element of b, added to the primary element of c, is stored
as the primary element of the return value. The difference of the secondary element
of c, subtracted from the product of a and the secondary element of b, is negated and
stored as the secondary element of the return value.

Formula primary(result) = a x primary(b) + primary(c))
secondary(result) = -(a x secondary(b) - secondary(c))

C/C++
prototype

double _Complex __fxcpnsma (double _Complex c, double _Complex b, double a);
double _Complex __fxcsnsma (double _Complex c, double _Complex b, double a);

Fortran
description

FXCPNSMA(C,B,A) or FXCSNSMA(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Cross mixed multiply-add: __fxcxma
Chapter 8. Developing applications with IBM XL compilers 133

Purpose The sum of the product of a and the secondary element of b, added to the primary
element of c, is stored as the primary element of the return value. The sum of the
product of a and the primary element of b, added to the secondary element of c, is
stored as the secondary element of the return value.

Formula primary(result) = a x secondary(b) + primary(c)
secondary(result) = a x primary(b) +secondary(c)

C/C++
prototype

double _Complex __fxcxma (double _Complex c, double _Complex b, double a);

Fortran
description

FXCXMA(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Cross mixed negative multiply-subtract: __fxcxnms

Purpose The difference of the primary element of c, subtracted from the product of a and the
secondary element of b, is negated and stored as the primary element of the return
value. The difference of the secondary element of c, subtracted from the product of a
and the primary element of b, is negated and stored as the primary secondary of the
return value.

Formula primary(result) = -(a × secondary(b) - primary(c))
secondary(result) = -(a × primary(b) - secondary(c))

C/C++
prototype

double _Complex __fxcxnms (double _Complex c, double _Complex b, double a);

Fortran
description

FXCXNMS(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Cross mixed sub-primary multiply-add: __fxcxnpma

Purpose The difference of the primary element of c, subtracted from the product of a and the
secondary element of b, is stored as the primary element of the return value. The sum
of the product of a and the primary element of b, added to the secondary element of
c, is stored as the secondary element of the return value.

Formula primary(result) = -(a × secondary(b) - primary(c))
secondary(result) = a × primary(b) + secondary(c)

C/C++
prototype

double _Complex __fxcxnpma (double _Complex c, double _Complex b, double a);

Fortran
description

FXCXNPMA(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Cross mixed sub-secondary multiply-add: __fxcxnsma

Purpose The sum of the product of a and the secondary element of b, added to the primary
element of c, is stored as the primary element of the return value. The difference of the
secondary element of c, subtracted from the product of a and the primary element of
b, is stored as the secondary element of the return value.
134 IBM Blue Gene/P Application Development

Select functions
Table 8-9 lists and explains the parallel select functions that are available.

Table 8-9 Select functions

Examples of built-in functions usage
Using the following definitions, you can create a custom parallel add function that uses the
parallel load and add built-in functions to add two double floating-point values in parallel and
return the result as a complex number. See Example 8-17 for C/C++ and Example 8-18 on
page 136 for Fortran.

Example 8-17 Using built-in functions in C/C++

double _Complex padd(double *x, double *y)
{
double _Complex a,b,c;
/* note possibility of alignment trap if (((unsigned int) x) % 32) >= 17) */

a = __lfpd(x); //load x[0] to the primary part of a, x[1] to the secondary part of a
b = __lfpd(y); //load y[0] to primary part of b, y[1] to the secondary part of b
c = __fpadd(a,b); // the primary part of c = x[0] + y[0]

 /* the secondary part of c = x[1] + y[1] */
return c;

/* alternately: */

Formula primary(result) = a x secondary(b) + primary(c))
secondary(result) = -(a x primary(b) - secondary(c))

C/C++
prototype

double _Complex __fxcxnsma (double _Complex c, double _Complex b, double a);

Fortran
description

FXCXNSMA(C,B,A)
where C is of type COMPLEX(8)
where B is of type COMPLEX(8)
where A is of type REAL(8)
result is of type COMPLEX(8)

Function Parallel select: __fpsel

Purpose The value of the primary element of a is compared to zero. If its value is equal to or
greater than zero, the primary element of c is stored in the primary element of the
return value. Otherwise, the primary element of b is stored in the primary element of
the return value. The value of the secondary element of a is compared to zero. If its
value is equal to or greater than zero, the secondary element of c is stored in the
secondary element of the return value. Otherwise, the secondary element of b is
stored in the secondary element of the return value.

Formula primary(result) = if primary(a) then primary(c); else primary(b)
secondary(result) = if secondary(a) then primary(c); else secondary(b)

C/C++
prototype

double _Complex __fpsel (double _Complex a, double _Complex b, double _Complex
c);

Fortran
description

FPSEL(A,B,C)
where A is of type COMPLEX(8)
where B is of type COMPLEX(8)
where C is of type COMPLEX(8)
result is of type COMPLEX(8)

0≥
0≥
Chapter 8. Developing applications with IBM XL compilers 135

return __fpadd(__lfpd(x), __lfpd(y)); /* same code generated with optimization
enabled */
}

Example 8-18 Using built-in functions in Fortran

FUNCTION PADD (X, Y)
 COMPLEX(8) PADD
 REAL(8) X, Y
 COMPLEX(8) A, B, C

 A = LOADFP(X)
 B = LOADFP(Y)
 PADD = FPADD(A,B)

 RETURN
 END

Example 8-19 provides a sample of double-precision square matrix-matrix multiplication. This
version uses 6x4 outer loop unrolling.

Example 8-19 Double-precision square matrix multiply example

subroutine dsqmm(a, b, c, n)
!
!# (C) Copyright IBM Corp. 2006 All Rights Reserved.
!# Rochester, MN
!
 implicit none
 integer i, j, k, n
 integer ii, jj, kk
 integer istop, jstop, kstop
 integer, parameter :: nb = 36 ! blocking factor
 complex(8) zero
 complex(8) a00, a01
 complex(8) a20, a21
 complex(8) b0, b1, b2, b3, b4, b5
 complex(8) c00, c01, c02, c03, c04, c05
 complex(8) c20, c21, c22, c23, c24, c25
 real(8) a(n,n), b(n,n), c(n,n)

 zero = (0.0d0, 0.0d0)

 !--
 ! Double-precision square matrix-matrix multiplication.
 !--
 ! This version uses 6x4 outer loop unrolling.
 ! The cleanup loops have been left out, so the results
 ! are correct for dimensions that are multiples of the
 ! two unrolling factors: 6 and 4.
 !--

 do jj = 1, n, nb

 if ((jj + nb - 1) .lt. n) then
 jstop = (jj + nb - 1)
 else
 jstop = n
 endif
136 IBM Blue Gene/P Application Development

 do ii = 1, n, nb

 if ((ii + nb - 1) .lt. n) then
 istop = (ii + nb - 1)
 else
 istop = n
 endif

 !---------------------------------
 ! initialize a block of c to zero
 !---------------------------------
 do j = jj, jstop - 5, 6
 do i = ii, istop - 1, 2
 call storefp(c(i,j) , zero)
 call storefp(c(i,j+1), zero)
 call storefp(c(i,j+2), zero)
 call storefp(c(i,j+3), zero)
 call storefp(c(i,j+4), zero)
 call storefp(c(i,j+5), zero)
 end do
 end do

 !--
 ! multiply block by block with 6x4 outer loop un-rolling
 !--
 do kk = 1, n, nb
 if ((kk + nb - 1) .lt. n) then
 kstop = (kk + nb - 1)
 else
 kstop = n
 endif

 do j = jj, jstop - 5, 6
 do i = ii, istop - 3, 4

 c00 = loadfp(c(i,j))
 c01 = loadfp(c(i,j+1))
 c02 = loadfp(c(i,j+2))
 c03 = loadfp(c(i,j+3))
 c04 = loadfp(c(i,j+4))
 c05 = loadfp(c(i,j+5))

 c20 = loadfp(c(i+2,j))
 c21 = loadfp(c(i+2,j+1))
 c22 = loadfp(c(i+2,j+2))
 c23 = loadfp(c(i+2,j+3))
 c24 = loadfp(c(i+2,j+4))
 c25 = loadfp(c(i+2,j+5))

 a00 = loadfp(a(i,kk))
 a20 = loadfp(a(i+2,kk))
 a01 = loadfp(a(i,kk+1))
 a21 = loadfp(a(i+2,kk+1))

 do k = kk, kstop - 1, 2
 b0 = loadfp(b(k,j))
 b1 = loadfp(b(k,j+1))
 b2 = loadfp(b(k,j+2))
 b3 = loadfp(b(k,j+3))
Chapter 8. Developing applications with IBM XL compilers 137

 b4 = loadfp(b(k,j+4))
 b5 = loadfp(b(k,j+5))
 c00 = fxcpmadd(c00, a00, real(b0))
 c01 = fxcpmadd(c01, a00, real(b1))
 c02 = fxcpmadd(c02, a00, real(b2))
 c03 = fxcpmadd(c03, a00, real(b3))
 c04 = fxcpmadd(c04, a00, real(b4))
 c05 = fxcpmadd(c05, a00, real(b5))
 c20 = fxcpmadd(c20, a20, real(b0))
 c21 = fxcpmadd(c21, a20, real(b1))
 c22 = fxcpmadd(c22, a20, real(b2))
 c23 = fxcpmadd(c23, a20, real(b3))
 c24 = fxcpmadd(c24, a20, real(b4))
 c25 = fxcpmadd(c25, a20, real(b5))
 a00 = loadfp(a(i,k+2))
 a20 = loadfp(a(i+2,k+2))
 c00 = fxcpmadd(c00, a01, imag(b0))
 c01 = fxcpmadd(c01, a01, imag(b1))
 c02 = fxcpmadd(c02, a01, imag(b2))
 c03 = fxcpmadd(c03, a01, imag(b3))
 c04 = fxcpmadd(c04, a01, imag(b4))
 c05 = fxcpmadd(c05, a01, imag(b5))
 c20 = fxcpmadd(c20, a21, imag(b0))
 c21 = fxcpmadd(c21, a21, imag(b1))
 c22 = fxcpmadd(c22, a21, imag(b2))
 c23 = fxcpmadd(c23, a21, imag(b3))
 c24 = fxcpmadd(c24, a21, imag(b4))
 c25 = fxcpmadd(c25, a21, imag(b5))
 a01 = loadfp(a(i,k+3))
 a21 = loadfp(a(i+2,k+3))
 end do

 call storefp(c(i ,j), c00)
 call storefp(c(i ,j+1), c01)
 call storefp(c(i ,j+2), c02)
 call storefp(c(i ,j+3), c03)
 call storefp(c(i ,j+4), c04)
 call storefp(c(i ,j+5), c05)

 call storefp(c(i+2,j), c20)
 call storefp(c(i+2,j+1), c21)
 call storefp(c(i+2,j+2), c22)
 call storefp(c(i+2,j+3), c23)
 call storefp(c(i+2,j+4), c24)
 call storefp(c(i+2,j+5), c25)

 end do
 end do

 end do !kk

 end do !ii

 end do !jj

end
138 IBM Blue Gene/P Application Development

Chapter 9. Running and debugging
applications

In this chapter, we explain how to run and debug applications on the IBM Blue Gene/P
system. These types of tools are essential for application developers. Although we do not
cover all of the existing tools, we provide an overview of some of the currently available tools.

We cover the following topics:

� Running applications
� Debugging applications

9

© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 139

9.1 Running applications
Blue Gene/P applications can be run in several ways. We briefly discuss each method and
provide references for more detailed documentation.

9.1.1 MMCS console
It is possible to run applications directly from the MMCS console. The main drawback to using
this approach is that it requires users to have direct access to the Service Node, which is
undesirable from a security perspective.

When using the MMCS console, it is necessary to first manually select and allocate a block. A
block in this case refers to a partition or set of nodes to run the job. (See Appendix A, “Blue
Gene/P hardware-naming conventions” on page 325, for more information.) At this point, it is
possible to run Blue Gene/P applications. The set of commands in Example 9-1 from the
MMCS console window show how to accomplish this. The names can be site specific, but the
example illustrates the procedure.

To start the console session, use the sequence of commands shown in Example 9-1 on the
Service Node.

Example 9-1 Starting the console session

cd /bgsys/drivers/ppcfloor/bin
source ~bgpsysdb/sqllib/db2profile
mmcs_db_console --bgpadmingroup p/bluegene/bgpall
connecting to mmcs_server
connected to mmcs_server
connected to DB2
mmcs$list_blocks
OK
N00_64_1 B manojd (1) connected
N02_32_1 I walkup (0) connected
N04_32_1 B manojd (1) connected
N05_32_1 B manojd (1) connected
N06_32_1 I sameer77(1) connected
N07_32_1 I gdozsa (1) connected
N08_64_1 I vezolle (1) connected
N12_32_1 I vezolle (0) connected
mmcs$ allocate N14_32_1
OK
mmcs$ list_blocks
OK
N00_64_1 B manojd (1) connected
N02_32_1 I walkup (0) connected
N04_32_1 B manojd (1) connected
N05_32_1 B manojd (1) connected
N06_32_1 I sameer77(1) connected
N07_32_1 I gdozsa (1) connected
N08_64_1 I vezolle (1) connected
N12_32_1 I vezolle (0) connected
N14_32_1 I cpsosa (1) connected
mmcs$ submitjob N14_32_1 /bgusr/cpsosa/hello/c/omp_hello_bgp /bgusr/cpsosa/hello/c
OK
jobId=14008
mmcs$ free N14_32_1
140 IBM Blue Gene/P Application Development

OK
mmcs$ quit
OK
mmcs_db_console is terminating, please wait...
mmcs_db_console: closing database connection
mmcs_db_console: closed database connection
mmcs_db_console: closing console port
mmcs_db_console: closed console port

For more information about using the MMCS console, see IBM System Blue Gene Solution:
Blue Gene/P System Administration, SG24-7417.

9.1.2 mpirun
In the absence of a scheduling application, we recommend that you use mpirun to run
Blue Gene/P applications on statically allocated partitions. Users can access this application
from the Front End Node, which provides better security protection than using the MMCS
console. For more complete information about using mpirun, see Chapter 11, “mpirun” on
page 177.

With mpirun, you can select and allocate a block and run a Message Passing Interface (MPI)
application, all in one step as shown in Example 9-2.

Example 9-2 Using mpirun

cpsosa@descartes:/bgusr/cpsosa/red/pi/c> csh
descartes pi/c> set MPIRUN="/bgsys/drivers/ppcfloor/bin/mpirun"
descartes pi/c> set MPIOPT="-np 1"
descartes pi/c> set MODE="-mode SMP"
descartes pi/c> set PARTITION="-partition N14_32_1"
descartes pi/c> set WDIR="-cwd /bgusr/cpsosa/red/pi/c"
descartes pi/c> set EXE="-exe /bgusr/cpsosa/red/pi/c/pi_critical_bgp"
descartes pi/c> $MPIRUN $PARTITION $MPIOPT $MODE $WDIR $EXE -env "OMP_NUM_THREADS=1"
Estimate of pi: 3.14159
Total time 560.055988

All output in this example is sent to the display. To specify that you want this information sent
to a file, you must add the following line, for example, to the end of the mpirun command:

>/bgusr/cpsosa/red/pi/c/pi_critical.stdout 2>/bgusr/cpsosa/red/pi/c/pi_critical.stderr

This line sends standard output to the pi_critical.stdout file and standard error to the
pi_critical.stderr file. Both files are in the /bgusr/cpsosa/red/pi/c directory.

9.1.3 submit

In HTC mode you must use the submit command, which is analogous to mpirun because its
purpose is to act as a shadow of the job. It transparently forwards stdin, and receives stdout
and stderr. More detailed usage information is available in Chapter 12, “High-Throughput
Computing (HTC) paradigm” on page 201.
Chapter 9. Running and debugging applications 141

9.1.4 IBM LoadLeveler
At present, LoadLeveler support for the Blue Gene/P system is provided via a programming
request for price quotation (PRPQ). The IBM Tivoli Workload Scheduler LoadLeveler product
is intended to manage both serial and parallel jobs over a cluster of servers. This distributed
environment consists of a pool of machines or servers, often referred to as a LoadLeveler
cluster. Machines in the pool can be of several types: desktop workstations available for batch
jobs (usually when not in use by their owner), dedicated servers, and parallel machines.

LoadLeveler allocates machine resources in the cluster to run jobs. The scheduling of jobs
depends on the availability of resources within the cluster and various rules, which can be
defined by the LoadLeveler administrator. A user submits a job using a job command file. The
LoadLeveler scheduler attempts to find resources within the cluster to satisfy the
requirements of the job. LoadLeveler maximizes the efficiency of the cluster by maximizing
the utilization of resources, while at the same time minimizing the job turnaround time
experienced by users.

LoadLeveler provides a rich set of functions for job scheduling and cluster resource
management. Some of the tasks that LoadLeveler can perform include:

� Choosing the next job to run.

� Examining the job requirements.

� Collecting available resources in the cluster.

� Choosing the “best” machines for the job.

� Dispatching the job to the selected machine.

� Controlling running jobs.

� Creating reservations and scheduling jobs to run in the reservations.

� Job preemption to enable high-priority jobs to run immediately.

� Fair share scheduling to automatically balance resources among users or groups of users.

� Co-scheduling to enable several jobs to be scheduled to run at the same time.

� Multi-cluster support to allow several LoadLeveler clusters to work together to run user
jobs.

The LoadLeveler documentation contains information for setting up and using LoadLeveler
with Blue Gene/P. The documentation is available online at:

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp

9.1.5 Other scheduler products
You can use custom scheduling applications to run applications on the Blue Gene/P system.
You write custom “glue” code between the scheduler and the Blue Gene/P system by using
the Bridge APIs, which are described in Chapter 13, “Control system (Bridge) APIs” on
page 209, and Chapter 14, “Real-time Notification APIs” on page 251.
142 IBM Blue Gene/P Application Development

http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp

9.2 Debugging applications
In this section, we discuss the debuggers that are supported by the Blue Gene/P system.

9.2.1 General debugging architecture
Four pieces of code are involved when debugging applications on the Blue Gene/P system:

� The Compute Node Kernel, which provides the low-level primitives that are necessary to
debug an application

� The control and I/O daemon (CIOD) running on the I/O Nodes, which provides control and
communications to Compute Nodes

� A “debug server” running on the I/O Nodes, which is vendor-supplied code that interfaces
with the CIOD

� A debug client running on a Front End Node, which is where the user does their work
interactively

A debugger must interface to the Compute Node through an API implemented in CIOD to
debug an application running on a Compute Node. This debug code is started on the I/O
Nodes by the control system and can interface with other software, such as a GUI or
command-line utility on a Front End Node. The code running on the I/O Nodes using the API
in CIOD is referred to as a debug server. It is provided by the debugger vendor for use with
the Blue Gene/P system. Many possible debug servers are possible.

A debug client is a piece of code that runs on a Front End Node that the user interacts with
directly. It makes remote requests to the debug server running on the I/O Nodes, which in
turn passes the request through CIOD and eventually to the Compute Node. The debug client
and debug server usually communicate using TCP/IP.

9.2.2 GNU Project debugger
The GNU Project debugger (GDB) is the primary debugger of the GNU project. You can learn
more about GDB on the Web at the following address:

http://www.gnu.org/software/gdb/gdb.html

A great amount of documentation is available about the GDB. Because we do not discuss
how to use it in this book, refer to the following Web site for details:

http://www.gnu.org/software/gdb/documentation/

Support has been added to the Blue Gene/P system for which the GDB can work with
applications that run on Compute Nodes. IBM provides a simple debug server called
gdbserver. Each running instance of GDB is associated with one, and only one, Compute
Node. If you must debug an MPI application that runs on multiple Compute Nodes, and you
must, for example, view variables that are associated with more than one instance of the
application, you run multiple instances of GDB.

Most people use GDB to debug local processes that run on the same machine on which they
are running GDB. With GDB, you also have the ability to debug remotely via a GDB server on
the remote machine. GDB on the Blue Gene/L system is used in this mode. We refer to GDB
as the GDB client, although most users recognize it as GDB used in a slightly different
manner.
Chapter 9. Running and debugging applications 143

http://www.gnu.org/software/gdb/gdb.html
http://www.gnu.org/software/gdb/documentation/

Limitations
Gdbserver implements the minimum number of primitives required by the GDB remote
protocol specification. As such, advanced features that might be available in other
implementations are not available in this implementation. However, sufficient features are
implemented to make it a useful tool. This implementation has some of the following
limitations:

� Each instance of a GDB client can connect to and debug one Compute Node. To debug
multiple Compute Nodes at the same time, you must run multiple GDB clients at the same
time. Although you might need multiple GDB clients for multiple Compute Nodes, one
gdbserver on each I/O Node is all that is required. The Blue Gene/P control system
manages that part.

� IBM does not ship a GDB client with the Blue Gene/P system. The user can use an
existing GDB client to connect to the IBM-supplied gdbserver. Most functions do work, but
standard GDB clients are not aware of the full “double hummer” floating-point register set
that Blue Gene/L provides. The GDB clients that come with SUSE Linux Enterprise Server
(SLES) 10 for IBM PowerPC are known to work.

� To debug an application, the debug server must be started and running before you attempt
to debug. Using an option on the mpirun or submit command, you can get the debug
server running before your application does. If you do not use this option and you must
debug your application, you do not have a mechanism to start the debug server and thus
have no way to debug your application.

� Gdbserver is not aware of user-specified MPI topologies. You still can debug your
application, but the connection information given to you by mpirun for each MPI rank can
be incorrect.

Prerequisite software
The GDB should have been installed during the installation procedure. You can verify the
installation by seeing whether the /bgsys/drivers/ppcfloor/gnu-linux/bin/gdb file exists on your
Front End Node.

The rest of the software support required for GDB should be installed as part of the control
programs.

Preparing your program
The MPI, OpenMP, MPI-OpenMP, or CNK program that you want to debug must be compiled
in a manner that allows for debugging information (symbol tables, ties to source, and so on) to
be included in the executable. In addition, do not use compiler optimization because it makes
it difficult, if not impossible, to tie object code back to source, for example, when compiling a
program written in Fortran that you want to debug, compile the application using an invocation
similar to one shown in Example 9-3.

Example 9-3 Makefile used for building the program with debugging flags

BGP_FLOOR = /bgsys/drivers/ppcfloor
BGP_IDIRS = -I$(BGP_FLOOR)/arch/include -I$(BGP_FLOOR)/comm/include
BGP_LIBS = -L$(BGP_FLOOR)/comm/lib -lmpich.cnk -L$(BGP_FLOOR)/comm/lib -ldcmfcoll.cnk
-ldcmf.cnk -lpthread -lrt -L$(BGP_FLOOR)/runtime/SPI -lSPI.cna

XL = /opt/ibmcmp/xlf/bg/11.1/bin/bgxlf90

EXE = example_9_4_bgp
OBJ = example_9_4.o
SRC = example_9_4.f
144 IBM Blue Gene/P Application Development

FLAGS = -g -O0 -qarch=450 -qtune=450 -I$(BGP_FLOOR)/comm/include

$(EXE): $(OBJ)
 ${XL} $(FLAGS) -o $(EXE) $(OBJ) $(BGP_LIBS)
$(OBJ): $(SRC)
 ${XL} $(FLAGS) $(BGP_IDIRS) -c $(SRC)

clean:
 rm *.o example_9_4_bgp

cpsosa@descartes:/bgusr/cpsosa/red/debug> make

/opt/ibmcmp/xlf/bg/11.1/bin/bgxlf90 -g -O0 -qarch=450 -qtune=450
-I/bgsys/drivers/ppcfloor/comm/include -I/bgsys/drivers/ppcfloor/arch/include
-I/bgsys/drivers/ppcfloor/comm/include -c example_9_4.f
** nooffset === End of Compilation 1 ===
1501-510 Compilation successful for file example_9_4.f.
/opt/ibmcmp/xlf/bg/11.1/bin/bgxlf90 -g -O0 -qarch=450 -qtune=450
-I/bgsys/drivers/ppcfloor/comm/include -o example_9_4_bgp example_9_4.o
-L/bgsys/drivers/ppcfloor/comm/lib -lmpich.cnk -L/bgsys/drivers/ppcfloor/comm/lib -ldcmfcoll.cnk
-ldcmf.cnk -lpthread -lrt -L/bgsys/drivers/ppcfloor/runtime/SPI -lSPI.cna

The -g switch tells the compiler to include debug information. The -O0 (the letter capital “O”
followed by a zero) switch tells it to disable optimization.

For more information about the IBM XL compilers for the Blue Gene/P system, see Chapter 8,
“Developing applications with IBM XL compilers” on page 97.

Debugging
Follow the steps in this section to start debugging your application. In this example, the MPI
program’s name is example_9_4_bgp as illustrated in Example 9-4 on page 146 (source code
not shown), and the source code file is example_9_4.f. The partition (block) used is called
N14_32_1.

An extra parameter (-start_gdbserver...) is passed in on the mpirun or submit command. In
this example the application uses MPI so mpirun is used, but the process for submit is the
same. The extra option changes the way mpirun loads and executes your code. Here is a
brief summary of the changes:

1. The code is loaded onto the Compute Nodes (in our example, the executable is
example_9_4_bgp), but it does not start running immediately.

2. The control system starts the specified debug server (gdbserver) on all of the I/O Nodes in
the partition that is running your job, which in our example is N14_32_1.

3. The mpirun command pauses, so that you get a chance to connect GDB clients to the
Compute Nodes that you are going to debug.

4. When you are finished connecting GDB clients to Compute Nodes, you press Enter to
signal the mpirun command, and then the application starts running on the Compute
Nodes.

Important: Make sure that the text file that contains the source for your program is located
in the same directory as the program itself and has the same file name (different
extension).
Chapter 9. Running and debugging applications 145

During the pause in step 3, you have an opportunity to connect the GDB clients to the
Compute Nodes before the application runs, which is desirable if you must start the
application under debugger control. This step is optional. If you do not connect before the
application starts running on the Compute Nodes, you can still connect later because the
debugger server was started on the I/O Nodes.

To start debugging your application:

1. Open two separate console shells.

2. Go to the first shell window:

a. Change to the directory (cd) that contains your program executable. In our example,
the directory is /bgusr/cpsosa/red/debug.

b. Start your application using mpirun with a command similar to the one shown in
Example 9-4. You should see messages in the console, similar to those shown in
Example 9-4.

Example 9-4 Messages in the console

set MPIRUN="/bgsys/drivers/ppcfloor/bin/mpirun"
set MPIOPT="-np 1"
set MODE="-mode SMP"
set PARTITION="-partition N14_32_1"
set WDIR="-cwd /bgusr/cpsosa/red/debug"
set EXE="-exe /bgusr/cpsosa/red/debug/example_9_4_bgp"
#
$MPIRUN $PARTITION $MPIOPT $MODE $WDIR $EXE -env "OMP_NUM_THREADS=4" -start_gdbserver
/sbin.rd/gdbserver -verbose 1
#
echo "That's all folks!!"

descartes red/debug> set EXE="-exe /bgusr/cpsosa/red/debug/example_9_4_bgp"
descartes red/debug> $MPIRUN $PARTITION $MPIOPT $MODE $WDIR $EXE -env "OMP_NUM_THREADS=4"
-start_gdbserver /bgsys/drivers/ppcfloor/ramdisk/sbin/gdbserver -verbose 1
<Sep 15 10:14:58.642369> FE_MPI (Info) : Invoking mpirun backend
<Sep 15 10:14:05.741121> BRIDGE (Info) : rm_set_serial() - The machine serial number (alias) is
BGP
<Sep 15 10:15:00.461655> FE_MPI (Info) : Preparing partition
<Sep 15 10:14:05.821585> BE_MPI (Info) : Examining specified partition
<Sep 15 10:14:10.085997> BE_MPI (Info) : Checking partition N14_32_1 initial state ...
<Sep 15 10:14:10.086041> BE_MPI (Info) : Partition N14_32_1 initial state = READY ('I')
<Sep 15 10:14:10.086059> BE_MPI (Info) : Checking partition owner...
<Sep 15 10:14:10.086087> BE_MPI (Info) : partition N14_32_1 owner is 'cpsosa'
<Sep 15 10:14:10.088375> BE_MPI (Info) : Partition owner matches the current user
<Sep 15 10:14:10.088470> BE_MPI (Info) : Done preparing partition
<Sep 15 10:15:04.804078> FE_MPI (Info) : Adding job
<Sep 15 10:14:10.127380> BE_MPI (Info) : Adding job to database...
<Sep 15 10:15:06.104035> FE_MPI (Info) : Job added with the following id: 14035
<Sep 15 10:15:06.104096> FE_MPI (Info) : Loading Blue Gene job
<Sep 15 10:14:11.426987> BE_MPI (Info) : Loading job 14035 ...
<Sep 15 10:14:11.450495> BE_MPI (Info) : Job load command successful
<Sep 15 10:14:11.450525> BE_MPI (Info) : Waiting for job 14035 to get to Loaded/Running state
...
<Sep 15 10:14:16.458474> BE_MPI (Info) : Job 14035 switched to state LOADED
<Sep 15 10:14:21.467401> BE_MPI (Info) : Job loaded successfully
<Sep 15 10:15:16.179023> FE_MPI (Info) : Starting debugger setup for job 14035
146 IBM Blue Gene/P Application Development

<Sep 15 10:15:16.179090> FE_MPI (Info) : Setting debug info in the block record
<Sep 15 10:14:21.502593> BE_MPI (Info) : Setting debugger executable and arguments in block
description
<Sep 15 10:14:21.523480> BE_MPI (Info) : Debug info set successfully
<Sep 15 10:15:16.246415> FE_MPI (Info) : Query job 14035 to find MPI ranks for compute nodes
<Sep 15 10:15:16.246445> FE_MPI (Info) : Getting process table information for the debugger
<Sep 15 10:14:22.661841> BE_MPI (Info) : Query job completed - proctable is filled in
<Sep 15 10:15:17.386617> FE_MPI (Info) : Starting debugger servers on I/O nodes for job 14035
<Sep 15 10:15:17.386663> FE_MPI (Info) : Attaching debugger to a new job.
<Sep 15 10:14:22.721982> BE_MPI (Info) : Debugger servers are now spawning
<Sep 15 10:15:17.446486> FE_MPI (Info) : Notifying debugger that servers have been spawned.

Make your connections to the compute nodes now - press [Enter] when you
are ready to run the app. To see the IP connection information for a
specific compute node, enter its MPI rank and press [Enter]. To see
all of the compute nodes, type 'dump_proctable'.

>
<Sep 15 10:17:20.754179> FE_MPI (Info) : Debug setup is complete
<Sep 15 10:17:20.754291> FE_MPI (Info) : Waiting for Blue Gene job to get to Loaded state
<Sep 15 10:16:26.118529> BE_MPI (Info) : Waiting for job 14035 to get to Loaded/Running state
...
<Sep 15 10:16:31.128079> BE_MPI (Info) : Job loaded successfully
<Sep 15 10:17:25.806882> FE_MPI (Info) : Beginning job 14035
<Sep 15 10:16:31.129878> BE_MPI (Info) : Beginning job 14035 ...
<Sep 15 10:16:31.152525> BE_MPI (Info) : Job begin command successful
<Sep 15 10:17:25.871476> FE_MPI (Info) : Waiting for job to terminate
<Sep 15 10:16:31.231304> BE_MPI (Info) : IO - Threads initialized
<Sep 15 10:27:31.301600> BE_MPI (Info) : I/O output runner thread terminated
<Sep 15 10:27:31.301639> BE_MPI (Info) : I/O input runner thread terminated
<Sep 15 10:27:31.355816> BE_MPI (Info) : Job 14035 switched to state TERMINATED ('T')
<Sep 15 10:27:31.355848> BE_MPI (Info) : Job successfully terminated - TERMINATED ('T')
<Sep 15 10:28:26.113983> FE_MPI (Info) : Job terminated normally
<Sep 15 10:28:26.114057> FE_MPI (Info) : exit status = (0)
<Sep 15 10:27:31.435578> BE_MPI (Info) : Starting cleanup sequence
<Sep 15 10:27:31.435615> BE_MPI (Info) : cleanupDatabase() - job already terminated / hasn't
been added
<Sep 15 10:27:31.469474> BE_MPI (Info) : cleanupDatabase() - Partition was supplied with READY
('I') initial state
<Sep 15 10:27:31.469504> BE_MPI (Info) : cleanupDatabase() - No need to destroy the partition
<Sep 15 10:28:26.483855> FE_MPI (Info) : == FE completed ==
<Sep 15 10:28:26.483921> FE_MPI (Info) : == Exit status: 0 ==

c. Find the IP address and port of the Compute Node that you want to debug. You can do
this using either of the following ways:

• Enter the rank of the program instance that you want to debug and press Enter.
• Dump the address or port of each node by typing dump_proctable and press Enter.

See Example 9-5.

Example 9-5 Finding the IP address and port of the Compute Node for debugging

> 2
MPI Rank 2: Connect to 172.30.255.85:7302
> 4
MPI Rank 4: Connect to 172.30.255.85:7304
Chapter 9. Running and debugging applications 147

>
or
> dump_proctable
MPI Rank 0: Connect to 172.24.101.128:7310
>

3. From the second shell, complete the following steps:

a. Change to the directory (cd) that contains your program executable.

b. Type the following command, using the name of your own executable instead of
example_9_4_bgp:

/bgsys/drivers/ppcfloor/gnu-linux/bin/gdb example_9_4_bgp

c. Enter the following command, using the address of the Compute Node that you want to
debug and determined in step 2:

target remote ipaddr:port

You are now debugging the specified application on the configured Compute Node.

4. Set one or more breakpoints (using the GDB break command). Press Enter from the first
shell to continue that application.

If successful, your breakpoint should eventually be reached in the second shell, and you
can use standard GDB commands to continue.

Debugging dynamically linked applications
When debugging dynamically linked applications, the GDB client provides variables that can
assist in getting the correct debugging symbols loaded when your application is running on
the compute node. The two variables in the GDB client are solib-search-path and
solib-absolute-prefix. Setting solib-search-path to the directories containing the shared
libraries that your application uses causes GDB to load the symbols from the libraries found in
the path or if not found in the path, take them from the default location. The
solib-absolute-prefix variable is used to specify a prefix that can be put in front of each of the
entries specified in the path variable.

The .gdbinit file in your home directory is read automatically when GDB starts, making it a
useful place to set up these variables. Example 9-6 shows a sample .gdbinit file that causes
the dynamic symbols to be loaded from the libraries in the Blue Gene/P install directories.

Example 9-6 Sample .gdbinit file

The following 2 lines are a single line in the .gdbinit file
set solib-search-path
/bgsys/drivers/ppcfloor/gnu-linux/lib:/bgsys/drivers/ppcfloor/gnu-linux/powerpc-bgp-linux/lib

set solib-absolute-prefix /none
148 IBM Blue Gene/P Application Development

The GDB info shared command can be used to display where GDB found dynamic libraries
when debugging a dynamically linked application. Example 9-7 shows sample output using
the GDB info shared command with the sample .gdbinit file from Example 9-6 on page 148.

Example 9-7 Sample GDB info shared output

Program received signal SIGINT, Interrupt.
0x010024f0 in _start ()
(gdb) info shared
From To Syms Read Shared Object Library
0x006022f0 0x0061a370 Yes /bgsys/drivers/DRV200_2008-080512P-GNU10/ppc/gnu-linux/powerpc-bgp-linux/lib/ld.so.1
0x81830780 0x81930730 Yes /bgsys/drivers/DRV200_2008-080512P-GNU10/ppc/gnu-linux/lib/libpython2.5.so.1.0
0x81a36850 0x81a437d0 Yes /bgsys/drivers/DRV200_2008-080512P-GNU10/ppc/gnu-linux/powerpc-bgp-linux/lib/libpthread.so.0
0x81b36da0 0x81b38300 Yes /bgsys/drivers/DRV200_2008-080512P-GNU10/ppc/gnu-linux/powerpc-bgp-linux/lib/libdl.so.2
0x81c38c00 0x81c39ac0 Yes /bgsys/drivers/DRV200_2008-080512P-GNU10/ppc/gnu-linux/powerpc-bgp-linux/lib/libutil.so.1
0x81d47e10 0x81d95fd0 Yes /bgsys/drivers/DRV200_2008-080512P-GNU10/ppc/gnu-linux/powerpc-bgp-linux/lib/libm.so.6
0x81e5d6d0 0x81f5e8d0 Yes /bgsys/drivers/DRV200_2008-080512P-GNU10/ppc/gnu-linux/powerpc-bgp-linux/lib/libc.so.6

9.2.3 Core Processor debugger

Core Processor is a basic tool that can help you debug your application. This tool is
discussed in detail in IBM System Blue Gene Solution: Blue Gene/P System Administration,
SG24-7417. In the following sections, we briefly describe how to use it to debug applications.

9.2.4 Starting the Core Processor tool

To start the Core Processor tool:

1. Export DISPLAY and make sure it works.

2. Type coreprocessor.pl to specify the Core Processor tool. You might need to specify the
full path.

3. From the GUI window that opens, click OK. The Perl script is invoked automatically.
Chapter 9. Running and debugging applications 149

Figure 9-1 shows how the Core Processor tool GUI looks after the Perl script is invoked. The
Core Processor windows do not provide any initial information. You must explicitly select a
task that is provided via the GUI.

Figure 9-1 Core Processor initial window

9.2.5 Attaching running applications

To do a live debug on Compute Nodes:

1. Start the Core Processor GUI as explained in the previous section.

2. Select File → Attach To Block.
150 IBM Blue Gene/P Application Development

3. In the Attach Coreprocessor window (see Figure 9-2), supply the following information:

– Session Name: You can run more than one session at a time, so use this option to
distinguish between multiple sessions.

– Block name.

– CNK binary (with path): To see both your application and the Compute Node Kernel in
the stack, specify your application binary and the Compute Node Kernel image
separated by a colon (:) as shown in the following example:

/bgsys/drivers/ppcfloor/cnk/bgp_kernel.cn:/bguser/bgpuser/hello_mpi_loop.rts

– User name or owner of the Midplane Management Control System (MMCS) block.

– Port: TCP port on which the MMCS server is listening for console connections, which is
probably 32031.

– Host name or TCP/IP address for the MMCS server: Typically it is localhost or the
Service Node’s TCP/IP address.

Click the Attach button.

Figure 9-2 Core Processor attach window
Chapter 9. Running and debugging applications 151

4. At this point, you have not yet affected the state of the processors. Choose Select
Grouping Mode → Processor Status.

Notice the text in the upper-left pane (Figure 9-3). The Core Processor tool posts the
status ?RUN? because it does not yet know the state of the processors. (2048) is the
number of nodes in the block that are in that state. The number in parentheses always
indicates the number of nodes that share the attribute displayed on the line, which is the
processor state in this case.

Figure 9-3 Processor status

5. Back at the main window (refer to Figure 9-1 on page 150), click the Select Grouping
Mode button.

6. Choose one of the Stack Traceback options. The Core Processor tool halts all the
Compute Node processor cores and displays the requested information. Choose each of
the options on that menu in turn so that you can see the variety of data formats available.
152 IBM Blue Gene/P Application Development

Stack Traceback (condensed)
In the condensed version of Stack Traceback, data from all nodes is captured. The unique
instruction addresses per stack frame are grouped and displayed. However, the last stack
frame is grouped based on the function name, not the IAR. This is normally the most useful
mode for debug (Figure 9-4).

Figure 9-4 Stack Traceback (condensed)
Chapter 9. Running and debugging applications 153

Stack Traceback (detailed)
In Stack Traceback (detailed), data from all nodes is captured (Figure 9-5). The unique
instruction addresses per stack frame are grouped and displayed. The IAR at each stack
frame is also displayed.

Figure 9-5 Stack Traceback (detailed)
154 IBM Blue Gene/P Application Development

Stack Traceback (survey)
Stack Traceback (survey) is a quick but potentially inaccurate mode. IARs are initially
captured, and stack data is collected for each node from a group of nodes that contain the
same IAR. The stack data fetched for that one node is then applied to all nodes with the same
IAR. Figure 9-6 shows an example of the survey mode.

Figure 9-6 Stack Traceback (survey)

Refer to the following points to help you use the tool more effectively:

� The number at the far left, before the colon, indicates the depth within the stack.

� The number in parentheses at the end of each line indicates the number of nodes that
share the same stack frame.

� If you click any line in the stack dump, the pane on the right (labeled Common nodes)
shows the list of nodes that share that stack frame. See Figure 9-7 on page 156.

� When you click one of the stack frames and then select Control → Run, the action is
performed for all nodes that share that stack frame. A new Processor Status summary is
displayed. If you again chose a Stack Traceback option, the running processors are halted
and the stacks are refetched.

� You can hold down the Shift key and click several stack frames if you want to control all
procedures that are at a range of stack frames.

� From the Filter menu option, you can select Group Selection → Create Filter to add a
filter with the name that you specify in the Filter pull-down. When the box for your filter is
highlighted, only the data for those processors is displayed in the upper-left window. You
can create several filters if you want.

� Set Group Mode to Ungrouped or Ungrouped with Traceback to control one processor at a
time.
Chapter 9. Running and debugging applications 155

Figure 9-7 Stack Traceback Common nodes

9.2.6 Saving your information

To save the current contents of Traceback information about the upper-left pane, select
File → Save Traceback to a file of your choice.

To gain more complete data, select File → Take Snapshot™. Notice that you then have two
sessions to choose from on the Sessions menu. The original session is (MMCS), and the
second one is (SNAP). The snapshot is exactly what the name implies, a picture of the debug
session at a particular point. Notice that you cannot start or stop the processors from the
snapshot session. You can choose File → Save Snapshot to save the snapshot to a file. If
you are sending data to IBM for debug, Save Snapshot is a better choice than Save
Traceback because the snapshot includes objdump data.

If you choose File → Quit and processors are halted, you are given an option to restart them
before quitting.

9.2.7 Debugging live I/O Node problems

It is possible to debug I/O Nodes as well as Compute Nodes, but you normally want to avoid
doing so. Collecting data causes the processor to be stopped, and stopping the I/O Node
processors can cause problems with your file system. In addition, the Compute Nodes are not
able to communicate with the I/O Nodes. If you want to debug an I/O Node, you must specify
the I/O Node binary when you select File → Attach to block the window, and choose Filter →
Debug I/O Nodes.
156 IBM Blue Gene/P Application Development

9.2.8 Debugging core files

To work with core files, select File → Load Core. In the window, specify the following
information:

� The location of the Compute Node Kernel binary or binaries

� The core files location

� The lowest and highest-numbered core files that you want to work with (The default is all
available core files.)

Click the Load Cores button when you have specified the information.

The same Grouping Modes are available for core file debug as for live debug. Figure 9-8
shows an output example of the Condensed Stack Traceback options from a core file.
Condensed mode is the easiest format to work with.

Figure 9-8 Core file condensed stack trace
Chapter 9. Running and debugging applications 157

Figure 9-9 shows the detailed version of the same trace.

Figure 9-9 Core file detailed stack trace

The Survey option is less useful for core files because speed is not such a concern.
158 IBM Blue Gene/P Application Development

When you select a stack frame in the Traceback output (Figure 9-10), two additional pieces of
information are displayed. The core files that share that stack frame are displayed in the
Common nodes pane. The Location field under the Traceback pane displays the location of
that function and the line number represented by the stack frame. If you select one of the core
files in the Common nodes pane, the contents of that core file are displayed in the bottom
pane.

Figure 9-10 Core file Common nodes

9.2.9 The addr2line utility

The addr2line utility is a standard Linux program. You can find additional information about
this utility in any Linux manual as well as at the following Web site:

http://www.linuxcommand.org/man_pages/addr2line1.html

The addr2line utility translates an address into file names and line numbers. Using an
address and an executable, this utility uses the debugging information in the executable to
provide information about the file name and line number. To take advantage of this utility,
compile your program with the -g option. On the Blue Gene/P system, the core file is a plain
text file that you can view with the vi editor.

You can the use the Linux addr2line command on the Front End Node and enter the address
found in the core file and the -g executable. Then the utility points you to the source line
where the problem occurred.

Example 9-8 on page 160 shows a core file and how to use the addr2line utility to identify
potential problems in the code. In this particular case, the program was not compiled with the
-g flag option because this was a production run. However, notice in Example 9-8 on
page 160 that addr2line points to malloc(). This can be a hint that perhaps the amount of
memory is insufficient to run this particular calculation, or some other problems might be
related to the usage of malloc() in the code.
Chapter 9. Running and debugging applications 159

http://www.linuxcommand.org/man_pages/addr2line1.html

Example 9-8 Using addr2line to identify potential problems in your code

vi core.0 and select the addresses between +++STACK and ---STACK and use them as input for
addr2line
+++STACK
0x01342cb8
0x0134653c
0x0106e5f8
0x010841ec
0x0103946c
0x010af40c
0x010b5e44
0x01004fa0
0x010027cc
0x0100c028
0x0100133c
0x013227ec
0x01322a4c
0xfffffffc
---STACK

Run addr2line with your executable
$addr2line -e a.out
0x01342cb8
0x0134653c
0x0106e5f8
0x010841ec
0x0103946c
0x010af40c
0x010b5e44
0x01004fa0
0x010027cc
0x0100c028
0x0100133c
0x013227ec
0x01322a4c
0xfffffffc/bglhome/usr6/bgbuild/DRV360_2007-070906P-SLES10-DD2-GNU10/ppc/bgp/gnu/glibc-2.4/mallo
c/malloc.c:3377
/bglhome/usr6/bgbuild/DRV360_2007-070906P-SLES10-DD2-GNU10/ppc/bgp/gnu/glibc-2.4/malloc/malloc.c
:3525
modify.cpp:0
??:0
??:0
??:0
??:0
main.cpp:0
main.cpp:0
main.cpp:0
??:0
../csu/libc-start.c:231
../sysdeps/unix/sysv/linux/powerpc/libc-start.c:127
160 IBM Blue Gene/P Application Development

9.2.10 Scalable Debug API

In this section we describe the Scalable Debug API. This API provides the capability of
examining a job running on the compute nodes. APIs are available to attach to a running job
and extract the current stack information for that job. The API also enables the user to select
specific nodes of interest and to export information that a debugger or other tool could use to
further analyze a job.

The Scalable Debug API enables the user to interface with the compute nodes from the Front
End Node. When the API is initialized, a process is started on the Front End Node. The
process on the Front End Node uses the mpirun framework to launch a process on the
service node. This back-end process uses the Bridge APIs to launch a debug tool. The tool
runs on the I/O Nodes and communicates with CIOD using the CioDebuggerProtocol. The
tool pauses the compute nodes that are associated with the I/O Node and gathers the stack
information of each task to be sent back to the Front End Node. The raw data then is available
to the application using the Scalable Debug API to determine which nodes might be of
interest for further analysis.

An application using the Scalable Debug APIs completes these steps:

1. Call the initialization function to set up the API
2. Attach to a job being run by the current user
3. Get the extracted stack data and proctable information for the job
4. Add or remove any nodes that require further analysis
5. Export the node list to the specified file
6. Detach from the job

The rest of this section covers the following topics:

� API requirements
� API specification
� Example code

API requirements
The following requirements are for writing programs using the Scalable Debug API:

� Currently, SUSE Linux Enterprise Server (SLES) 10 for PowerPC is the only supported
platform.

� C and C++ are supported with the GNU gcc V4.1.2 level compilers. For more information
and downloads, refer to the following Web address:

http://gcc.gnu.org/

� Required include files are installed in /bgsys/drivers/ppcfloor/tools/ScalableDebug/include
and /bgsys/drivers/ppcfloor/include. See Appendix C, “Header files and libraries” on
page 335 for additional information about include files. The include file for the Scalable
Debug API is ScalableDebug.h.

� The Scalable Debug API supports applications that use dynamic linking using shared
objects. The required library file is
/bgsys/drivers/ppcfloor/tools/ScalableDebug/lib/libscalabledebug.so for 32-bit, or
/bgsys/drivers/ppcfloor/tools/ScalableDebug/lib64/libscalabledebug.so for 64-bit.

The include files and shared objects are installed with the standard system installation
procedure. They are contained in the bgpbase.rpm file.
Chapter 9. Running and debugging applications 161

http://gcc.gnu.org/
http://gcc.gnu.org/

API specification
This section describes the functions, return codes, and data structures that make up the
Scalable Debug API.

Functions
This section describes the functions in the Scalable Debug API.

The functions return a status code that indicates success or failure, along with the reason for
the failure. An exit value of SDBG_NO_ERROR or 0 (zero) indicates that the function was
successful, while a non-zero return code indicates failure.

These functions are not thread safe. They must be called only from a single thread.

The following functions are in the Scalable Debug API:

� int SDBG_Init();

This initialization function must be called before any other functions in the Scalable Debug
API.

This function returns the following values:

– SDBG_NO_ERROR
– SDBG_FORK_FE_ERROR
– SDBG_EXEC_FE_ERROR
– SDBG_CONNECT_FE_ERROR

� int SDBG_AttachJob(unsigned int jobId);

Attach to a running job. jobId is the database job identifier from MMCS. This function fails
if the user calling the function is not the user that started the job.

This function returns the following values:

– SDBG_NO_ERROR
– SDBG_INIT_NOT_CALLED
– SDBG_CONNECT_FE_ERROR
– SDBG_TIMEOUT_ERROR
– SDBG_JOB_NOT_RUNNING
– SDBG_JOB_HTC
– SDBG_JOB_USER_DIFF
– SDBG_TOOL_SETUP_FAIL
– SDBG_TOOL_LAUNCH_FAIL
– SDBG_PROC_TABLE

� int SDBG_DetachJob();

Detach from a running job.

This function returns the following values:

– SDBG_NO_ERROR
– SDBG_CONNECT_FE_ERROR

� int SDBG_GetStackData(uint32_t *numMsgs, SDBG_StackMsg_t **stackMsgPtr);

Get the stack data for the job. numMsgs is set to the number of stack data messages put in
stackMsgPtr. When the application is finished using the stack data, it must free the stack
data using SDBG_FreeStackData() to prevent a memory leak.

This function returns the following values:

– SDBG_NO_ERROR
– SDBG_NO_MEMORY
162 IBM Blue Gene/P Application Development

� int SDBG_FreeStackData(uint32_t numMsgs, SDBG_StackMsg_t *stackMsgPtr);

Free the stack data allocated by the library. numMsgs and stackMsgPtr are the values set
by SDBG_GetStackData().

– This function returns the following value:

SDBG_NO_ERROR

� int SDBG_GetProcTable(uint32_t *numTableEntries, MPIR_PROCDESC **procTablePtr);

Get the proc table data for job. numTableEntries is set to the number of proc table entries
put in procTablePtr. When the application is finished using the proc table, it must free the
proc table using SDBG_FreeProcTable() to prevent a memory leak.

This function returns the following values:

– SDBG_NO_ERROR
– SDBG_NO_MEMORY

� int SDBG_FreeProcTable(uint32_t numTableEntries, MPIR_PROCDESC *procTablePtr);

Free the proc table data allocated by the library.

This function returns the following value:

SDBG_NO_ERROR

� int SDBG_AddNode(unsigned int rank);

Add a node to subset attach list.

This function returns the following values:

– SDBG_NO_ERROR
– SDBG_RANK_NOT_FOUND

� int SDBG_RemoveNode(unsigned int rank);

Remove a node from subset attach list.

This function returns the following values:

– SDBG_NO_ERROR
– SDBG_RANK_NOT_FOUND

� int SDBG_ExportNodeList(const char *exportFile);

Export node list to the specified file, or to standard output. If exportFile is NULL, the node
list is printed to standard output.

This function returns the following values:

– SDBG_NO_ERROR
– SDBG_FILE_ERROR

� int SDBG_ClearNodeList();

Clear node list of all nodes.

This function returns the following value:

SDBG_NO_ERROR

Return codes
This section summarizes the following return codes used by the Scalable Debug API:

� SDBG_NO_ERROR: No error.

� SDBG_TIMEOUT_ERROR: Timeout communicating with front-end process.

� SDBG_JOBID_NOT_FOUND: Job ID passed not found.
Chapter 9. Running and debugging applications 163

� SDBG_JOB_NOT_RUNNING: Job not running

� SDBG_JOB_HTC: HTC Jobs not supported.

� SDBG_JOB_USER_DIFF: User ID running job different than API user.

� SDBG_TOOL_SETUP_FAIL: Tool setup in database failed.

� SDBG_TOOL_LAUNCH_FAIL: Tool launch on IO Node failed.

� SDBG_PROC_TABLE: Unable to get proc table information.

� SDBG_FILE_ERROR: Error opening Export file passed in.

� SDBG_RANK_NOT_FOUND: Rank not found in proc table.

� SDBG_FORK_FE_ERROR: Unable to fork front-end process.

� SDBG_EXEC_FE_ERROR: Unable to exec front-end process.

� SDBG_CONNECT_FE_ERROR: Unable to connect to front-end process.

� SDBG_INIT_NOT_CALLED: SDBG_Init not called successfully.

� SDBG_NO_MEMORY: No memory available to return data.

Structures
This section describes the structures defined by the Scalable Debug API.

The SDBG_StackMsg_t structure contains the data returned when getting stack data. The
following fields are in the structure:

� uint32_t node;

Node or pid.

� uint32_t rank;

Rank as defined in proctable.

� uint32_t threadId;

Thread ID for this node.

� uint32_t linkReg;

Current link register.

� uint32_t iar;

Current instruction register.

� uint32_t currentFrame;

Current stack frame (R1).

� uint32_t numStackFrames;

Number of stack frames in stackFramesPtr.

� SDBG_StackFrame_t *stackFramesPtr;

Pointer to array of stack frames. This structure is NULL if there is no stack data.
164 IBM Blue Gene/P Application Development

The SDBG_StackFrame_t structure contains the saved frame address and saved link register
when looking at stack data. The following fields are in the structure:

� uint32_t frameAddr;

Stack frame address.

� uint32_t savedLR;

Saved link register for this stack frame address.

Environment variable
One environment variable affects the operation of the Scalable Debug API. If the
MPIRUN_CONFIG_FILE environment variable is set, its value is used as the mpirun
configuration file name. The mpirun configuration file contains the shared secret needed for
the API to authenticate with the mpirun daemon on the service node. If not specified, the
mpirun configuration file is located by looking for these files in order: /etc/mpirun.cfg or
<release-dir>/bin/mpirun.cfg (where <release-dir> is the Blue Gene/P system software
directory, for example, /bgsys/drivers/V1R2M0_200_2008-080513P/ppc).

Example code
Example 9-9 illustrates use of the Scalable Debug API.

Example 9-9 Sample code using the Scalable Debug API

#include <stdio.h>
#include <stdlib.h>
#include <errno.h>
#include <ScalableDebug.h>
#include <unistd.h>
#include <attach_bg.h>

void printStackData(unsigned int numMsgs, SDBG_StackMsg_t *stackMsgPtr);
void printProcTable(unsigned int numEntries, MPIR_PROCDESC *procTablePtr);

int main(int argc, char **argv)
{
 setbuf(stdout, NULL); setbuf(stderr, NULL);

 if (argc != 2)
 {
 printf("Invoke passing jobid to attach to\n");
 return(1);
 }

 int jobId = atoi(argv[1]);

 printf("MAIN: Calling SDBG_Init\n");

 int rc = SDBG_Init(NULL);

 printf("MAIN: Back from SDBG_Init, rc=%d\n", rc);

 printf("MAIN: Calling SDBG_AttachJob with jobid=%i\n", jobId);

 rc = SDBG_AttachJob(jobId);
Chapter 9. Running and debugging applications 165

 printf("MAIN: Back from SDBG_AttachJob, rc=%d\n", rc);

 printf("MAIN: Calling SDBG_GetProcTable\n");

 MPIR_PROCDESC *procTablePtr;
 unsigned int numEntries;
 rc = SDBG_GetProcTable(&numEntries, &procTablePtr);

 printf("MAIN: Back from SDBG_GetProcTable, numEntries=%u, rc=%d\n", numEntries, rc);

 if (rc == 0)
 {
 printProcTable(numEntries, procTablePtr);
 }

 printf("MAIN: Calling SDBG_GetStackData\n");
 unsigned int numStackMsgs;
 SDBG_StackMsg_t *stackMsgPtr; // Pointer for stack message buffer data
 rc = SDBG_GetStackData(&numStackMsgs, &stackMsgPtr);

 printf("MAIN: Back from SDBG_GetStackData, numStackMsgs=%u, rc=%d\n", numStackMsgs, rc);

 if (rc == 0)
 {
 printStackData(numStackMsgs, stackMsgPtr);
 }

 printf("MAIN: Calling SDBG_AddNode with rank=2\n");

 rc = SDBG_AddNode(2);

 printf("MAIN: Back from SDBG_AddNode, rc=%d\n", rc);

 printf("MAIN: Calling SDBG_ExportNodeList after adding node 2\n");

 rc = SDBG_ExportNodeList(NULL);

 printf("MAIN: Back from SDBG_ExportNodeList, rc=%d\n", rc);

 printf("MAIN: Calling SDBG_RemoveNode with rank=2\n");

 rc = SDBG_RemoveNode(2);

 printf("MAIN: Back from SDBG_RemoveNode, rc=%d\n", rc);

 printf("MAIN: Calling SDBG_ExportNodeList after remove of node 2\n");

 rc = SDBG_ExportNodeList(NULL);

 printf("MAIN: Back from SDBG_ExportNodeList, rc=%d\n", rc);

 printf("MAIN: Calling SDBG_DetachJob\n");

 rc = SDBG_DetachJob();
166 IBM Blue Gene/P Application Development

 printf("MAIN: Back from SDBG_DetachJob, rc=%d\n", rc);

 printf("MAIN: Freeing storage allocated by libary\n");

 rc = SDBG_FreeStackData(numStackMsgs, stackMsgPtr);

 printf("MAIN: Back from SDBG_FreeStackData, rc=%d\n", rc);

 rc = SDBG_FreeProcTable(numEntries, procTablePtr);

 printf("MAIN: Back from SDBG_FreeProcTable, rc=%d\n", rc);

 return 0;

}

void printProcTable(unsigned int numEntries, MPIR_PROCDESC *procTablePtr)
{
 unsigned int i = 0;

 for (i = 0; i < numEntries; i++)
 {
 printf("rank=%u, HostName=%s, Exe=%s, pid=%d\n",
 i, procTablePtr[i].host_name, procTablePtr[i].executable_name,
 procTablePtr[i].pid);

 }

}

void printStackData(unsigned int numMsgs, SDBG_StackMsg_t *stackMsgPtr)
{
 SDBG_StackMsg_t *msgPtr = stackMsgPtr;
 unsigned int i = 0;

 for (i = 0; i < numMsgs; i++)
 {
 printf("Stack Data node=%u, rank=%u, threadid=%u, numFrames=%u ",
 msgPtr->node, msgPtr->rank, msgPtr->threadId, msgPtr->numStackFrames);

 if (msgPtr->numStackFrames)
 {
 printf(", first saved frame addr=0x%08x, first saved LR=0x%08x",
 msgPtr->stackFramesPtr->frameAddr, msgPtr->stackFramesPtr->savedLR);
 }
 printf("\n");
 msgPtr++;
 }

}

Chapter 9. Running and debugging applications 167

168 IBM Blue Gene/P Application Development

Chapter 10. Checkpoint and restart support
for applications

In this chapter, we provide details about the checkpoint and restart support provided by the
IBM Blue Gene/P system. The contents of this chapter reflect the information presented in
IBM System Blue Gene Solution: Application Development, SG24-7179 but have been
updated for the Blue Gene/P system.

Scientific and engineering applications tend to consume most of the compute cycles on
high-performance computers. This is certainly the case on the Blue Gene/P system. Many of
the simulations run for extended periods of time and checkpoint and restart capabilities are
critical for fault recovery.

Checkpoint and restart capabilities are critical for fault recovery. If an application is running for
a long period of time, you do not want it to fail after consuming many hours of compute cycles,
losing all the calculations made up until the failure. By using checkpoint and restart, you can
restart the application at the last checkpoint position, losing a much smaller slice of
processing time. In addition, checkpoint and restart are helpful in cases where the given
access to a Blue Gene/P system is in relatively small increments of time and you know that
your application run will take longer than your allotted amount of processing time. With
checkpoint and restart capabilities, you can execute your application in fragmented periods of
time rather than an extended interval of time.

We discuss the following topics in this chapter:

� Checkpoint and restart
� Technical overview
� Checkpoint API
� Directory and file-naming conventions
� Restart

10
© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 169

10.1 Checkpoint and restart
Checkpoint and restart are among the primary techniques for fault recovery. A special
user-level checkpoint library has been developed for Blue Gene/P applications. Using this
library, application programs can take a checkpoint of their program state at the appropriate
stages. Then the program can be restarted later from the last successful checkpoint.

10.2 Technical overview
The checkpoint library is a user-level library that provides support for user-initiated
checkpoints in parallel applications. The current implementation requires application
developers to insert calls manually to checkpoint library functions at proper places in the
application code. However, the restart is transparent to the application and requires only the
user or system to set specific environment variables while launching the application.

The application is expected to make a call to the BGCheckpointInit() function at the beginning
of the program, to initialize the checkpoint-related data structures and to carry out an
automated restart when required. The application can then make calls to the BGCheckpoint()
function to store a snapshot of the program state in stable storage (files on a disk). The
current model assumes that when an application must take a checkpoint, all of the following
points are true:

� All processes of the application make a call to the BGCheckpoint() function.

� When a process makes a call to BGCheckpoint(), no outstanding messages are in the
network or buffers. That is, the recv that corresponds to all the send calls has occurred.

� After a process has made a call to BGCheckpoint(), other processes do not send
messages to the process until their checkpoint is complete. Typically, applications are
expected to place calls to BGCheckpoint() immediately after a barrier operation, such as
MPI_Barrier(), or after a collective operation, such as MPI_Allreduce(), when no
outstanding messages are in the Message Passing Interface (MPI) buffers and the
network.

BGCheckpoint() can be called multiple times. Successive checkpoints are identified and
distinguished by a checkpoint sequence number. A program state that corresponds to
different checkpoints is stored in separate files. It is possible to safely delete the old
checkpoint files after a newer checkpoint is complete.

The data that corresponds to the checkpoints is stored in a user-specified directory. A
separate checkpoint file is made for each process. This checkpoint file contains header
information and a dump of the process’s memory, including its data and stack segments, but
excluding its text segment and read-only data. It also contains information that pertains to the
input/output (I/O) state of the application, including open files and the current file positions.

For restart, the same job is launched again with the environment variables
BG_CHKPTRESTARTSEQNO and BG_CHKPTDIRPATH set to the appropriate values. The
BGCheckpointInit() function checks for these environment variables and, if specified, restarts
the application from the desired checkpoint.
170 IBM Blue Gene/P Application Development

10.2.1 Input/output considerations
All the external I/O calls made from a program are shipped to the corresponding I/O Node
using a function-shipping procedure implemented in the Compute Node Kernel.

The checkpoint library intercepts calls to the following main file I/O functions:

� open()
� close()
� read()
� write()
� lseek()

The function name open() is a weak alias that maps to the _libc_open function. The
checkpoint library intercepts this call and provides its own implementation of open() that
internally uses the _libc_open function.

The library maintains a file state table that stores the file name, current file position, and the
mode of all the files that are currently open. The table also maintains a translation that
translates the file descriptors used by the Compute Node Kernel to another set of file
descriptors to be used by the application. While taking a checkpoint, the file state table is also
stored in the checkpoint file. Upon a restart, these tables are read. Also the corresponding
files are opened in the required mode, and the file pointers are positioned at the desired
locations as given in the checkpoint file.

The current design assumes that the programs either always read the file or write the files
sequentially. A read followed by an overlapping write, or a write followed by an overlapping
read, is not supported.

10.2.2 Signal considerations
Applications can register handlers for signals using the signal() function call. The checkpoint
library intercepts calls to signal() and installs its own signal handler instead. It also updates a
signal-state table that stores the address of the signal handler function (sighandler)
registered for each signal (signum). When a signal is raised, the checkpoint signal handler
calls the appropriate application handler given in the signal-state table.

While taking checkpoints, the signal-state table is also stored in the checkpoint file in its
signal-state section. At the time of restart, the signal-state table is read, and the checkpoint
signal handler is installed for all the signals listed in the signal-state table. The checkpoint
handler calls the required application handlers when needed.

Signals during checkpoint
The application can potentially receive signals while the checkpoint is in progress. If the
application signal handlers are called while a checkpoint is in progress, it can change the
state of the memory being checkpointed. This can make the checkpoint inconsistent.
Therefore, the signals arriving while a checkpoint is under progress must be handled
carefully.

For certain signals, such as SIGKILL and SIGSTOP, the action is fixed, and the application
terminates without much choice. The signals without any registered handler are simply
ignored. For signals with installed handlers, the two choices are as follows:

� Deliver the signal immediately.
� Postpone the signal delivery until the checkpoint is complete.
Chapter 10. Checkpoint and restart support for applications 171

All signals are classified into one of these two categories as shown in Table 10-1. If the signal
must be delivered immediately, the memory state of the application might change, making the
current checkpoint file inconsistent. Therefore, the current checkpoint must be aborted. The
checkpoint routine periodically checks if a signal has been delivered since the current
checkpoint began. In case a signal has been delivered, it aborts the current checkpoint and
returns to the application.

For signals that are to be postponed, the checkpoint handler simply saves the signal
information in a pending signal list. When the checkpoint is complete, the library calls
application handlers for all the signals in the pending signal list. If more than one signal of the
same type is raised while the checkpoint is in progress, the checkpoint library ensures that
the handler registered by the application is called at least once. However, it does not
guarantee in-order-delivery of signals.

Table 10-1 Action taken on signal

Signal name Signal type Action to be taken

SIGINT Critical Deliver

SIGXCPU Critical Deliver

SIGILL Critical Deliver

SIGABRT/SIGIOT Critical Deliver

SIGBUS Critical Deliver

SIGFPE Critical Deliver

SIGSTP Critical Deliver

SIGSEGV Critical Deliver

SIGPIPE Critical Deliver

SIGSTP Critical Deliver

SIGSTKFLT Critical Deliver

SIGTERM Critical Deliver

SIGHUP Non-critical Postpone

SIGALRM Non-critical Postpone

SIGUSR1 Non-critical Postpone

SIGUSR2 Non-critical Postpone

SIGTSTP Non-critical Postpone

SIGVTALRM Non-critical Postpone

SIGPROF Non-critical Postpone

SIGPOLL/SIGIO Non-critical Postpone

SIGSYS/SIGUNUSED Non-critical Postpone

SIGTRAP Non-critical Postpone
172 IBM Blue Gene/P Application Development

Signals during restart
The pending signal list is not stored in the checkpoint file. Therefore, if an application is
restarted from a checkpoint, the handlers for pending signals received during the checkpoint
are not called. If some signals are raised while the restart is in progress, they are ignored.
The checkpoint signal handlers are installed only after the memory state, I/O state, and
signal-state table have been restored. This ensures that, when the application signal handlers
are called, they see a consistent memory and I/O state.

10.3 Checkpoint API
The checkpoint interface consists of the following items:

� A set of library functions used by the application developer to checkpoint enable the
application

� A set of conventions used to name and store the checkpoint files

� A set of environment variables used to communicate with the application

This section describes each of these components in detail.

To ensure minimal overhead, the basic interface has been kept fairly simple. Ideally, a
programmer must call only two functions, one at the time of initialization and the other at the
places where the application must be checkpointed. Restart is done transparently using the
environment variable BG_CHKPTRESTARTSEQNO specified at the time of job launch. Alternatively,
an explicit restart API is also provided to the programmer to manually restart the application
from a specified checkpoint. The remainder of this section describes in detail the functions
that make up the checkpoint API.

void BGCheckpointInit(char * ckptDirPath)
BGCheckpointInit() is a mandatory function that must be invoked at the beginning of the
program. You use this function to initialize the data structures of the checkpoint library. In
addition, you use this function for transparent restart of the application program.

The ckptDirPath parameter specifies the location of checkpoint files. If ckptDirPath is NULL,
then the default checkpoint file location is assumed as explained in 10.4, “Directory and
file-naming conventions” on page 175.

int BGCheckpoint()
BGCheckpoint() takes a snapshot of the program state at the instant at which it is called. All
the processes of the application must make a call to BGCheckpoint() to take a consistent
global checkpoint.

When a process makes a call to BGCheckpoint(), no outstanding messages should be in the
network or buffers. That is, the recv that corresponds to all the send calls should have
occurred. In addition, after a process has made a call to BGCheckpoint(), other processes
must not send messages to the process until their call to BGCheckpoint() is complete.
Typically, applications are expected to place calls to BGCheckpoint() immediately after a
barrier operation, such as MPI_Barrier(), or after a collective operation, such as
MPI_Allreduce(), when no outstanding message is in the MPI buffers and the network.

Note: Blue Gene/P supplied checkpoint and restart APIs are not supported for HTC
applications.
Chapter 10. Checkpoint and restart support for applications 173

The state that corresponds to each application process is stored in a separate file. The
location of checkpoint files is specified by ckptDirPath in the call to BGCheckpointInit(). If
ckptDirPath is NULL, then the checkpoint file location is decided by the storage rules
mentioned in 10.4, “Directory and file-naming conventions” on page 175.

void BGCheckpointRestart(int restartSqNo)
BGCheckpointRestart() restarts the application from the checkpoint given by the argument
restartSqNo. The directory where the checkpoint files are searched is specified by
ckptDirPath in the call to BGCheckpointInit(). If ckptDirPath is NULL, then the checkpoint
file location is decided by the storage rules provided in 10.4, “Directory and file-naming
conventions” on page 175.

An application developer does not need to explicitly invoke this function. BGCheckpointInit()
automatically invokes this function whenever an application is restarted. The environment
variable BG_CHKPTRESTARTSEQNO is set to an appropriate value. If the restartSqNo, the
environment variable BG_CHKPTRESTARTSEQNO, is zero, then the system picks up the most
recent consistent checkpoint files. However, the function is available for use if the developer
chooses to call it explicitly. The developer must know the implications of using this function.

int BGCheckpointExcludeRegion(void *addr, size_t len)
BGCheckpointExcludeRegion() marks the specified region (addr to addr + len - 1) to be
excluded from the program state, while a checkpoint is being taken. The state that
corresponds to this region is not saved in the checkpoint file. Therefore, after restart the
corresponding memory region in the application is not overwritten. You can use this facility to
protect critical data that should not be restored at the time of restart such as personality and
checkpoint data structures. An application programmer can also use this call to exclude a
scratch data structure that does not have to be saved at checkpoint time.

int BGAtCheckpoint((void *) function(void *arg), void *arg)
BGAtCheckpoint() registers the functions to be called just before taking the checkpoint. You
can use this function to take some action at the time of checkpoint, for example, you can call
this function to close all the communication states open at the time of checkpoint. The
functions registered are called in the reverse order of their registration. The argument arg is
passed to the function that is being called.

int BGAtRestart((void *) function (void *arg), void *arg)
BGAtRestart() registers the functions to be called during restart after the program state has
been restored, but before jumping to the appropriate position in the application code. The
functions that are registered are called in the reverse order of their registration. You can use
this function to resume or re-initialize functions or data structures at the time of restart, for
example, in the symmetrical multiprocessing node mode (SMP Node mode), the SMP must
be re-initialized at the time of restart. The argument arg is passed to the function that is being
called.

int BGAtContinue((void *) function (void *arg), void *arg)
BGAtContinue() registers the functions to be called when continuing after a checkpoint. You
can use this function to re-initialize or resume some functions or data structures that were
closed or stopped at the time of checkpoint. The functions that are registered are called in the
reverse order of their registration. The argument arg is passed to the function that is being
called.
174 IBM Blue Gene/P Application Development

10.4 Directory and file-naming conventions
By default, all the checkpoint files are stored, or retrieved during restart, in the directory
specified by ckptDirPath in the initial call to BGCheckpointInit(). If ckptDirPath is not
specified (or is NULL), the directory is picked from the environment variable BG_CHKPTDIRPATH.
This environment variable can be set by the job control system at the time of job launch to
specify the default location of the checkpoint files. If this variable is not set, the Blue Gene/P
system looks for a $(HOME)/checkpoint directory. Finally, if this directory is also not available,
$(HOME) is used to store all checkpoint files.

The checkpoint files are automatically created and named with the following convention:

<ckptDirPath>/ckpt.<xxx-yyy-zzz>.<seqNo>

Note the following explanation:

<ckptDirPath> Name of the executable, for example, sweep3d or mg.W.2

<xxx-yyy-zzz> Three-dimensional torus coordinates of the process

<seqNo> The checkpoint sequence number

The checkpoint sequence number starts at one and is incremented after every successful
checkpoint.

10.5 Restart
A transparent restart mechanism is provided through the use of the BGCheckpointInit()
function and the BG_CHKPTRESTARTSEQNO environment variable. Upon startup, an application is
expected to make a call to BGCheckpointInit(). The BGCheckpointInit() function initializes the
checkpoint library data structures.

Moreover the BGCheckpointInit() function checks for the environment variable
BG_CHKPTRESTARTSEQNO. If the variable is not set, a job launch is assumed, and the function
returns normally. In case the environment variable is set to zero, the individual processes
restart from their individual latest consistent global checkpoint. If the variable is set to a
positive integer, the application is started from the specified checkpoint sequence number.

10.5.1 Determining the latest consistent global checkpoint
Existence of a checkpoint file does not guarantee consistency of the checkpoint. An
application might have crashed before completely writing the program state to the file. We
have avoided this by adding a checkpoint write complete flag in the header of the checkpoint
file. As soon as the checkpoint file is opened for writing, this flag is set to zero and written to
the checkpoint file. When complete checkpoint data is written to the file, the flag is set to one
indicating the consistency of the checkpoint data. The job launch subsystem can use this flag
to verify the consistency of checkpoint files and delete inconsistent checkpoint files.

During a checkpoint, some of the processes can crash, while others might complete. This can
create consistent checkpoint files for some processes and inconsistent or non-existent
checkpoint files for other processes. The latest consistent global checkpoint is determined by
the latest checkpoint for which all the processes have consistent checkpoint files.
Chapter 10. Checkpoint and restart support for applications 175

It is the responsibility of the job launch subsystem to make sure that BG_CHKPTRESTARTSEQNO
corresponds to a consistent global checkpoint. In case BG_CHKPTRESTARTSEQNO is set to zero,
the job launch subsystem must make sure that files with the highest checkpoint sequence
number correspond to a consistent global checkpoint. The behavior of the checkpoint library
is undefined if BG_CHKPTRESTARTSEQNO does not correspond to a global consistent checkpoint.

10.5.2 Checkpoint and restart functionality
It is often desirable to enable or disable the checkpoint functionality at the time of job launch.
Application developers are not required to provide two versions of their programs: one with
checkpoint enabled and another with checkpoint disabled. We have used environment
variables to transparently enable and disable the checkpoint and restart functionality.

The checkpoint library calls check for the environment variable BG_CHKPTENABLED. The
checkpoint functionality is invoked only if this environment variable is set to a value of 1.
Table 10-2 summarizes the checkpoint-related function calls.

Table 10-2 Checkpoint and restart APIs

Table 10-3 summarizes the environment variables.

Table 10-3 Checkpoint and restart environment variables

The following environment variable settings are the most common:

� BG_CHKPTENABLED=1
� BG_CHKPTDIRPATH= checkpoint directory
� BG_CHKPTRESTARTSEQNO=0

A combination of BG_CHKPTENABLED and BG_CHKPTRESTARTSEQNO (as in Table 10-3)
automatically signifies that after restart, further checkpoints are taken. A developer can
restart an application but disable further checkpoints by simply unsetting (removing
altogether) the BG_CHKPTENABLED variable.

Function name Usage

BGCheckpointInit(char
*ckptDirPath);

Sets the checkpoint directory to ckptDirPath. Initializes the
checkpoint library data structures. Carries out restart if environment
variable BG_CHKPTRESTARTSEQNO is set.

BGCheckpoint(); Takes a checkpoint. Stores the program state in the checkpoint
directory.

BGCheckpointRestart(int
rstartSqNo);

Carries out an explicit restart from the specified sequence number.

BGCheckpointExcludeRegion
(void *addr, size_t len);

Excludes the specified region from the checkpoint state.

Environment variables Usage

BG_CHKPTENABLED Is set (to 1) if checkpoints are desired; otherwise, it is not specified.

BG_CHKPTDIRPATH Default path to keep checkpoint files.

BG_CHKPTRESTARTSEQNO Set to a desired checkpoint sequence number from where a user
wants the application to restart. If set to zero, each process restarts
from its individual latest consistent checkpoint. This option must not
be specified, if no restart is desired.
176 IBM Blue Gene/P Application Development

Chapter 11. mpirun

mpirun is a software utility for launching, monitoring, and controlling programs (applications)
that run on the BlueGene/ P system. mpirun on the Blue Gene/P system serves the same
function as on the Blue Gene/L system.

The name mpirun comes from Message Passing Interface (MPI) because its primary use is
to launch parallel jobs. mpirun can be used as a standalone program by providing parameters
either directly through a command line or from environmental variable arguments, or indirectly
through the framework of a scheduler that submits the job on the user’s behalf. In the former
case, mpirun can be invoked as a shell command. It allows you to interact with the running job
through the job’s standard input, standard output, and standard error. The mpirun software
utility acts as a shadow of the actual IBM Blue Gene/P job by monitoring its status and
providing access to standard input, output, and errors. After the job terminates, mpirun
terminates as well. If the user wants to prematurely end the job before it terminates, mpirun
provides a mechanism to do so explicitly or through a timeout period.

The mpirun software utility provides the capability to debug the job. In this chapter, we
describe the standalone interactive use of mpirun. We also provide a brief overview of mpirun
on the Blue Gene/P system. In addition, we define a list of APIs that allow interaction with the
mpirun program. These APIs are used by applications, such as external resource managers,
that want to programmatically invoke jobs using mpirun.

We address the following topics in this chapter and provide examples:

� mpirun implementation on IBM Blue Gene/P
� mpirun setup
� Invoking mpirun
� Environment variables
� Tool-launching interface
� Return codes
� mpirun APIs

11
© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 177

11.1 mpirun implementation on Blue Gene/P

The mpirun software utility accepts a rich set of parameters, following the philosophy of the
Blue Gene/L system, that describe its behavior prior to submitting the application for
execution on the Compute Nodes and during execution of the application. These parameters
can be divided into three groups. The first group identifies resources that are required to run
the application. The second group identifies the application (binary) to execute and the
environment settings for that particular run or executable. The third group identifies the level
of verbosity that mpirun prints to STDOUT or STDERR.

Although mpirun kept all of the functionality that is available on the Blue Gene/L system, its
implementation on the Blue Gene/P system differs in the following ways:

� The rsh/ssh mechanism was eliminated for starting the back end process due to security
concerns of allowing users access to the Service Node. In the Blue Gene/P system, this is
replaced with a daemon process that runs on the Service Node whose purpose is to
handle connections from front-end mpirun processes and fork back-end mpirun
processes, as illustrated in Figure 11-1.

Figure 11-1 mpirun interacting with the rest of the control system on the Blue Gene/P system

� After mpirun_be is forked, the sequence of events for booting partitions, starting jobs, and
collecting stdout/stderr is similar to the use of mpirun on the Blue Gene/L system.

� The freepartition program was integrated as an option in mpirun for the Blue Gene/P
system. Example 11-1 shows how the free option is now used as part of mpirun on the
Blue Gene/P system.

Example 11-1 mpirun example with -free option

$ mpirun -partition N01_32_1 -free wait -verbose 1
<Jul 06 15:10:48.401421> FE_MPI (Info) : Invoking free partition
<Jul 06 15:10:48.414677> FE_MPI (Info) : freePartition() - connected to mpirun server at spinoza
<Jul 06 15:10:48.414768> FE_MPI (Info) : freePartition() - sent free partition request
<Jul 06 15:11:19.202335> FE_MPI (Info) : freePartition() - partition N01_32_1 was freed successfully
<Jul 06 15:11:19.202746> FE_MPI (Info) : == FE completed ==
<Jul 06 15:11:19.202790> FE_MPI (Info) : == Exit status: 0 ==

� Also new in mpirun for the Blue Gene/P system is the support for multiple program,
multiple data (MPMD)33 style jobs where a different executable, arguments, environment,
and current working directory can be supplied for a single job on a processor set (pset)
178 IBM Blue Gene/P Application Development

basis, for example, with this capability, a user can run four different executables on a
partition with four psets.

This capability is handled by a new tool called mpiexec, which is not to be confused with
the mpiexec style of submitting a Single Program Multiple Data (SPMD) parallel MPI job.

11.1.1 mpiexec

mpiexec is the method for launching and interacting with parallel Multiple Program Multiple
Data (MPMD) jobs on Blue Gene/P. It is very similar to mpirun with the only exception being
that the arguments supported by mpiexec are slightly different.

Unsupported parameters
The parameters listed in Table 11-1 are supported by mipirun but not supported by mpiexec
because they do not apply to MPMD.

Table 11-1 Unsupported parameters

New parameters
The only parameter that mpiexec supports that is not supported by mpirun is the -configfile
argument. See “mipexec example” on page 180 for sample usage.

-configfile MPIRUN_MPMD_CONFIGFILE

The MPMD configuration file must end with a newline character.

Limitations
Due to some underlying designs in the Blue Gene/P software stack, when using MPMD, the
following limitations are applicable:

� A pset is the smallest granularity for each executable, though one executable can span
multiple psets.

� You must use every compute node of each pset; specifically different -np values are not
supported.

� The job mode (SMP, DUAL, or VNM) must be uniform across all psets.

Parameter Environment variables

-exe MPIRUN_CWD MPIRUN_WDIR

-env MPIRUN_ENV

-exp_env MPIRUN_EXP_ENV

-env_all MPIRUN_EXP_ENV_ALL

-mapfile MPIRUN_ARGS

-args MPIRUN_ARGS
Chapter 11. mpirun 179

mipexec example
Example 11-2 illustrates running /bin/hostname on a single 32-node pset, helloworld.sh on
another 32-node pset and goodbyeworld.sh on two 32-node psets. The partition bar consists
of 128 nodes, with 4 I/O nodes.

Example 11-2 mpiexec example

$ mpiexec -partition bar : -n 32 -wdir /bgusr/hello /bin/hostname : -n 32 -wdir
/bgusr/goodbye /bglhome/helloworld.sh : -n 64 -wdir /bgusr/samjmill/temp
/bglhome/goodbyeworld.sh

11.1.2 mpikill

The mpikill command sends a signal to an MPI job running on the compute nodes. A signal
can cause a job to terminate or an application might catch and handle signals to affect its
behavior.

The format of the mpikill command is:

mpikill [options] <pid> | --job <jobId>

The job to receive the signal can be specified by either the PID of the mpirun process or the
job database ID. The PID can be used only if the mpirun process is on the same system that
mpikill is run on. By default, the signal sent to the job is KILL. Only the user that the job is
running as can signal a job using mpikill. Table 11-2 lists the options that can be used with
the mpikill command.

Table 11-2 mpikill command options

The mpikill command was introduced in Blue Gene/P release V1R3M0.

Option Description

-s <signal> or -SIGNAL The signal to send to the job. The signal can be a signal name, such as
TERM, or a signal number, such as 15. The default signal is KILL.

-h or --help Displays help text.

--hostname <hostname> Specifies the Service Node to use. The default is the value of the
MMCS_SERVER_IP environment variable, if that environment variable is
set, or 127.0.0.1.

--port <port> Specifies the listening port of mpirund. The default is 9874.

--trace <0-7> Tracing level. The default is 0.

--config <filename> mpirun configuration file, which contains the shared secret needed for
mpikill to authenticate with the mpirun daemon on the service node. If not
specified, the mpirun configuration file is located by looking for these files
in order: /etc/mpirun.cfg or <release-dir>/bin/mpirun.cfg (where
<release-dir> is the Blue Gene/P system software directory, for example,
/bgsys/drivers/V1R2M0_200_2008-080513P/ppc).
180 IBM Blue Gene/P Application Development

Example 11-3 illustrates signaling a job running on the same front end node by providing the
PID of the mpirun process.

Example 11-3 Use mpikill to signal a job using the PID of mpirun

Start a mpirun job in shell 1:

1$ mpirun -partition MYPARTITION sleeper.bg

In shell 2, use ps to get the PID of the mpirun process and use mpikill to signal the job with
SIGINT. In this case, the PID was 21630:

2$ mpikill -INT 21630

The job receives the signal and exits, causing the following output from mpirun in shell 1:

<Jul 06 15:12:10.792041> BE_MPI (ERROR): The error message in the job record is as
follows:
<Jul 06 15:12:10.792136> BE_MPI (ERROR): "killed with signal 2"

Example 11-4 illustrates signaling a job running on a different front end node by providing the
job database ID.

Example 11-4 Use mpikill to signal a job using the job ID

Start a mpirun job on FEN 1, using the verbose output to display the job ID. In this case the
job ID is 21203:
FEN1$ mpirun -partition MYPARTITION -verbose 1 sleeper.bg
... -- verbose output
<Jul 06 15:18:10.547452> FE_MPI (Info) : Job added with the following id: 21203
... -- verbose output

On FEN 2, use mpikill to signal the job with SIGINT:
FEN2$ mpikill -INT --job 21203

The job receives the signal and exits, causing the following output from mpirun in shell 1:
... -- verbose output
<Jul 06 15:19:06.745821> BE_MPI (ERROR): The error message in the job record is as
follows:
<Jul 06 15:19:06.745856> BE_MPI (ERROR): "killed with signal 2"
<Jul 06 15:19:07.106672> FE_MPI (Info) : == FE completed ==
<Jul 06 15:19:07.106731> FE_MPI (Info) : == Exit status: 130 ==

11.2 mpirun setup
mpirun does not require set up from a user point-of-view. However, on the Service Node,
mpirun requires slightly more set up for a system administrator. We classified the setup of
mpirun as the following types:

� User setup
� System administrator setup
Chapter 11. mpirun 181

11.2.1 User setup

Some set up changed for Blue Gene/P as compared to mpirun for the Blue Gene/L system.
The following changes are among those for user setup:

� It is not required to set up .rhosts or ssh-agent.

� It is not required to set up .bashrc, .tcshrc, or .profile to include BRIDGE_CONFIG_FILE or
DB_PROPERTY environment variables.

� The freepartition program is now an option in mpirun.

� The -backend option is no longer available.

Due to the removal of the ssh/rsh mechanism to start a back end mpirun process, users no
longer are required to create an .rhosts file in their home directory for mpirun to work properly.

11.2.2 System administrator set up

System administrators can change the following configuration files for the mpirun daemon
(mpirund):

db.properties Contains information about the IBM DB2 database

bridge.config Contains locations of the default I/O Node and Compute Node images
when allocating partitions

mpirun.cfg Contains the shared secret that is used for challenge authentication
between mpirun and mpirund

Database properties and Bridge configuration files
The location of the database properties and bridge configuration files can be changed by
passing the appropriate arguments to bgpmaster when starting mpirund. The mpirun daemon
then passes these locations to each mpirun_be it forks. Example 11-5 shows a sample Bridge
configuration file.

Example 11-5 Sample Bridge configuration file

BGP_MACHINE_SN BGP
BGP_MLOADER_IMAGE /bgsys/drivers/ppcfloor/boot/uloader
BGP_CNLOAD_IMAGE
/bgsys/drivers/ppcfloor/boot/cns,/bgsys/drivers/ppcfloor/boot/cnk
BGP_IOLOAD_IMAGE
/bgsys/drivers/ppcfloor/boot/cns,/bgsys/drivers/ppcfloor/boot/linux,/bgsys/drivers
/ppcfloor/boot/ramdisk
BGP_LINUX_MLOADER_IMAGE /bgsys/drivers/ppcfloor/boot/uloader
BGP_LINUX_CNLOAD_IMAGE
/bgsys/drivers/ppcfloor/boot/cns,/bgsys/drivers/ppcfloor/boot/linux,/bgsys/drivers
/ppcfloor/boot/ramdisk
BGP_LINUX_IOLOAD_IMAGE
/bgsys/drivers/ppcfloor/boot/cns,/bgsys/drivers/ppcfloor/boot/linux,/bgsys/drivers
/ppcfloor/boot/ramdisk
BGP_BOOT_OPTIONS
BGP_DEFAULT_CWD $PWD
BGP_ENFORCE_DRAIN
182 IBM Blue Gene/P Application Development

BGP_DEFAULT_CWD is used for mpirun jobs when a user does not give the -cwd argument or one
of its environment variables. You can change this value to something more site specific, such
as /bgp/users, /gpfs/, and so on. The special keyword $PWD is expanded to the user’s
current working directory from where the user executed mpirun.

Challenge protocol
The challenge protocol, which is used to authenticate the mpirun front end when connecting
to the mpirun daemon on the Service Node, is a challenge/response protocol. It uses a
shared secret to create a hash of a random number, thereby verifying that the mpirun front
end has access to the secret.

To protect the secret, the challenge protocol is stored in a configuration file that is accessible
only to the bgpadmin user on the Service Node and to a special mpirun user on the front end
nodes. The front end mpirun binary has its setuid flag enabled so that it can change its uid to
match the mpirun user and read the configuration file to access the secret.

11.3 Invoking mpirun

The first method of using mpirun is to specify the parameters explicitly, as shown in the
following example:

mpirun [options]

Here is a practical example of using mpirun:

mpirun -partition R00-M0 -mode VN -cwd /bgusr/tmp -exe a.out --args “--timeout 50”

Alternatively, you can use the mpiexec style where the executable and arguments are implicit,
as shown in the following example (see 11.1.1, “mpiexec” on page 179):

mpirun [options] binary [arg1 arg2 ... argn]

Here is a practical example of using the mpiexec style of executable and arguments:

mpirun -partition R00-M0 -mode VN -cwd /bgusr/tmp a.out --timeout 50

Standard input and output
Output generated to standard output or standard error by the MPI processes on the Blue
Gene/P compute nodes, such as through printf, is transparently redirected by the mpirun
process on the front end node. When different ranks print output, the output of all ranks is
aggregated. mpirun can also be instructed to prepend each line of output with the source MPI
rank using the -label option, as described in Table 11-5 on page 186.

Any input to the program from standard input goes only to the MPI process at rank 0.
Programs should only request input from rank 0 because requesting input from other ranks
fails.

Specifying parameters
You can specify most parameters for the mpirun program in the following different ways:

� Command-line arguments
� Environment variables
� Scheduler interface plug-in

In general, users normally use the command-line arguments and the environment variables.
Certain schedulers use the scheduler interface plug-in to restrict or enable mpirun features
Chapter 11. mpirun 183

according to their environment, for example, the scheduler might have a policy where
interactive job submission with mpirun can be allowed only during certain hours of the day.

Command-line arguments
The mpirun arguments consist of the following categories:

� Job control
� Block control
� Output
� Other

Job control arguments
Table 11-3 lists the job control arguments to miprun.

Table 11-3 Job control arguments

Block control options
mpirun can also allocate partitions and create new partitions if necessary. Use the following
general rules for block control:

� If mpirun is told to use a pre-existing partition and it is already booted, mpirun uses it as is
without trying to boot it again.

� If mpirun creates a partition or is told to use a pre-existing partition that is not already
allocated, mpirun allocates the partition.

� If mpirun allocates a partition, it deallocates the partition when it is done.

Arguments Description

-args "program args" Passes “program args” to the BlueGene job on the Compute Nodes.

-env "ENVVAR=value" Sets an environment variable in the environment of the job on the
Compute Nodes.

-exp_env <ENVVAR> Exports an environment variable in the current environment of mpirun
to the job on the Compute Nodes.

-env_all Exports all environment variables in the current environment of
mpirun to the job on the Compute Nodes.

-np <n> Creates exactly n MPI ranks for the job. Aliases are -nodes and -n.

-mode <SMP or DUAL or VN> Specifies the mode in which the job will run. Choices are SMP (1 rank,
4 threads), DUAL (2 ranks, 2 threads each), or Virtual Node Mode
(4 ranks, 1 thread each).

-exe <executable> Specifies the full path to the executable to run on the Compute Nodes.
The path is specified as seen by the I/O and Compute Nodes.

-cwd <path> Specifies the full path to use as the current working directory on the
Compute Nodes. The path is specified as seen by the I/O and
Compute Nodes.

-mapfile <mapfile> Specifies an alternative MPI topology. The mapfile path must be fully
qualified as seen by the I/O and Compute Nodes.a

a. For additional information about mapping, see Appendix F, “Mapping” on page 355.

-timeout <n> Timeout after n seconds. mpirun monitors the job and terminates it if
the job runs longer than the time specified. The default is never to
timeout.
184 IBM Blue Gene/P Application Development

Table 11-4 summarizes the options that modify this behavior.

Table 11-4 Block control options

Output options
The output options in Table 11-5 on page 186 control information that is sent to STDIN,
STDOUT, and STDERR.

Arguments Description

-partition <block> Specifies a predefined block to use.

-nofree If mpirun booted the block, it does not deallocate the block when the job
is done. This is useful for when you want to run a string of jobs
back-to-back on a block but do not want mpirun to boot and deallocate
the block each time (which happens if you had not booted the block first
using the console.) When your string of jobs is finally done, use the
freepartition command to deallocate the block.

-free <wait|nowait> Frees the partition specified with -partition. No job is run. The wait
parameter does not return control until the partition has changed state
to free. The nowait parameter returns control immediately after
submitting the free partition request.

-noallocate This option is more interesting for job schedulers. It tells mpirun not to
use a block that is not already booted.

-shape <XxYxZ> Specifies a hardware configuration to use. The dimensions are in the
Compute Nodes. If hardware matching is found, a new partition is
created and booted. Implies that -partition is not specified.

-psets_per_bp <n> Specifies the I/O Node to Compute Node ratio. The default is to use the
best possible ratio of I/O Nodes to Compute Nodes. Specifying a higher
number of I/O Nodes than what is available results in an error.

-connect <MESH|TORUS> Specifies a mesh or a torus when mpirun creates new partitions.

-reboot Reboots all the Compute Nodes of an already booted partition that is
specified with -partition before running the job. If the partition is in any
other state, this is an error.

-boot_options <options> Specifies boot options to use when booting a freshly created partition.
Chapter 11. mpirun 185

Table 11-5 Output options

Other options
Table 11-6 lists other options. These options provide general information about selected
software and hardware features.

Table 11-6 Other options

Arguments Description

-verbose [0-4] Sets the verbosity level. The default is 0, which means that mpirun does
not output any status or diagnostic messages unless a severe error
occurs. If you are curious about what is happening, try levels 1 or 2. All
mpirun generated status and error messages appear on STDERR.

-label Use this option to have mpirun label the source of each line of output. The
source is the MPI rank, and STDERR or STDOUT from which the output
originated.

-enable_tty_reporting By default, mpirun tells the control system and the C run time on the
Compute Nodes that STDIN, STDOUT, and STDERR are tied to TTY type
devices. While semantically correct for the Blue Gene system, this
prevents blocked I/O to these file descriptors, which can slow down
operations. If you use this option, mpirun senses whether these file
descriptors are tied to TTYs and reports the results accurately to the
control system.

-strace <all|none|n> Use this argument to enable a syscall trace on all Compute Nodes, no
Compute Nodes, or a specific Compute Node (identified by MPI rank). The
extra output from the syscall trace appears on STDERR. The default is
none.

Arguments Description

-h Displays help text.

-version Displays mpirun version information.

-host <host_name> Specifies the Service Node to use.

-port <port> Specifies the listening port of mpirund.

-start_gdbserver <path_to_gdbserver> Loads the job in such a way as to enable GDB
debugging, either right from the first instruction or later
on while the job is running. Either this option or
-start_tool can be used, but not both.

-start_tool <path> Specifies the tool to launch on the I/O nodes with the
job. Either this option or -start_gdbserver can be used,
but not both.

-tool_args "program args" Specifies the arguments to the tool started on the I/O
nodes with the job.

-config <path> mpirun configuration file, which contains the shared
secret needed for mpirun to authenticate with the
mpirun daemon on the service node. If not specified, the
mpirun configuration file is located by looking for these
files in order: /etc/mpirun.cfg or
<release-dir>/bin/mpirun.cfg (where <release-dir> is the
Blue Gene/P system software directory, for example,
/bgsys/drivers/V1R2M0_200_2008-080513P/ppc).
186 IBM Blue Gene/P Application Development

11.4 Environment variables

An alternative way to control mpirun execution is to use environment variables. Most
command-line options for mpirun can be specified using an environment variable. The
variables are useful for options that are used in production runs. If you do need to alter the
option, you can modify it on the command line to override the environment variable.
Table 11-7 summarizes all the environmental variables. The variables must be defined before
execution of mpirun starts.

Table 11-7 Environmental variables

-nw Reports mpirun-generated return code instead of an
application-generated return code. Useful only for
debugging mpirun.

-only_test_protocol Simulates a job without using any hardware or talking to
the control system. It is useful for making sure that
mpirun can start mpirun_be correctly.

Arguments Description

Arguments Environment variables

-partition MPIRUN_PARTITION

-nodes MPIRUN_NODES MPIRUN_N MPIRUN_NP

-mode MPIRUN_MODE

-exe MPIRUN_EXE

-cwd MPIRUN_CWD MPIRUN_WDIR

-host MMCS_SERVER_IP MPIRUN_SERVER_HOSTNAME

-port MPIRUN_SERVER_PORT

-env MPIRUN_ENV

-exp_env MPIRUN_EXP_ENV

-env_all MPIRUN_EXP_ENV_ALL

-mapfile MPIRUN_MAPFILE

-args MPIRUN_ARGS

-timeout MPIRUN_TIMEOUT

-start_gdbserver MPIRUN_START_GDBSERVER

-label MPIRUN_LABEL

-nw MPIRUN_NW

-nofree MPIRUN_NOFREE

-noallocate MPIRUN_NOALLOCATE

-reboot MPIRUN_REBOOT

-boot_options MPIRUN_BOOT_OPTIONS MPIRUN_KERNEL_OPTIONS
Chapter 11. mpirun 187

11.5 Tool-launching interface

A tool-launching interface is available through mpirun that enables users to start an additional
program that runs on the I/O nodes in addition to the job running on the compute nodes. This
second program, for example, might provide an alternative debugging interface.

The tool is started when the user specifies the -start_tool option when invoking mpirun.
Command-line parameters can be specified for the tool using the -tool_args option. The tool
runs with the identity of the user running the job, and the initial current working directory is the
directory specified for the job.

The following example shows the use of the -start_tool and -tool_args mpirun options:

mpirun -partition <xx> -exe <path> -start_tool <path> -tool_args <args>

Environment variables available to the tool include those from the CIOD environment and the
environment variables specified for the job. The tool can communicate with CIOD using the
CioDebugger protocol.

When the job running on the compute nodes ends, the tool running on the I/O nodes is sent a
SIGTERM signal. If the tool fails to end before the timeout interval, the tool is forcibly
terminated. The default timeout interval is 10 seconds.

The tool-launching interface was added in Blue Gene/P release V1R3M0.

11.6 Return codes

If mpirun fails for any reason, such as a bug, boot failure, or job failure, it returns a return code
to your shell if you supply the -nw argument. If you omit the -nw argument, it returns the job’s
return code if it is present in the job table. Table 11-8 lists the possible error codes.

Table 11-8 Return codes

-verbose MPIRUN_VERBOSE

-only_test_protocol MPIRUN_ONLY_TEST_PROTOCOL

-shape MPIRUN_SHAPE

-psets_per_bp MPIRUN_PSETS_PER_BP

-connect MPIRUN_CONNECTION

-enable_tty_reporting MPIRUN_ENABLE_TTY_REPORTING

-config MPIRUN_CONFIG_FILE

Arguments Environment variables

Return code Description

0 OK; successful

10 Communication error

11 Version handshake failed

12 Front-end initialization failed
188 IBM Blue Gene/P Application Development

13 Failed to execute back-end mpirun on Service Node

14 Back-end initialization failed

15 Failed to locate db.properties file

16 Failed to get the machine serial number (bridge configuration file not found?)

17 Execution interrupted by message from the front end

18 Failed to prepare the partition

19 Failed to initialize allocator

20 Partition name already exists

21 No free space left to allocate partition for this job

22 Failed to allocate partition

23 Failed to allocate a partition; job has illegal requirements

24 Specified partition does not exist

25 Failed to get a partition state

26 Specified partition is in an incompatible state

27 Specified partition is not ready

28 Failed to get a partition owner

29 Failed to set a partition owner

30 Failed while checking to see if the partition is busy

31 Partition is occupied by another job

32 Failed while checking to see if the user is in the partition’s user list

33 A user does not have permission to run the job on the specified partition

34 Failed while examining the specified partition

35 Failed while setting kernel options; the rm_modify_partition() API failed

36 Kernel options were specified but the partition is not in a FREE state

37 Failed to boot the partition

38 Failed to reboot the partition

39 Failed to get the number of psets in the partition

40 Failed to create MPMD configuration file on the Service Node

41 Found a zero-length line while writing to the MPMD configuration file

42 Failed to write a line to the MPMD configuration file

43 Failed to validate the MPMD configuration file

44 Failed to add the new job to the database

45 Failed to get an ID for the new job

46 Failed to start the job

Return code Description
Chapter 11. mpirun 189

13 Failed to execute back-end mpirun on Service Node

14 Back-end initialization failed

15 Failed to locate db.properties file

16 Failed to get the machine serial number (bridge configuration file not found?)

17 Execution interrupted by message from the front end

18 Failed to prepare the partition

19 Failed to initialize allocator

20 Partition name already exists

21 No free space left to allocate partition for this job

22 Failed to allocate partition

23 Failed to allocate a partition; job has illegal requirements

24 Specified partition does not exist

25 Failed to get a partition state

26 Specified partition is in an incompatible state

27 Specified partition is not ready

28 Failed to get a partition owner

29 Failed to set a partition owner

30 Failed while checking to see if the partition is busy

31 Partition is occupied by another job

32 Failed while checking to see if the user is in the partition’s user list

33 A user does not have permission to run the job on the specified partition

34 Failed while examining the specified partition

35 Failed while setting kernel options; the rm_modify_partition() API failed

36 Kernel options were specified but the partition is not in a FREE state

37 Failed to boot the partition

38 Failed to reboot the partition

39 Failed to get the number of psets in the partition

40 Failed to create MPMD configuration file on the Service Node

41 Found a zero-length line while writing to the MPMD configuration file

42 Failed to write a line to the MPMD configuration file

43 Failed to validate the MPMD configuration file

44 Failed to add the new job to the database

45 Failed to get an ID for the new job

46 Failed to start the job

Return code Description
190 IBM Blue Gene/P Application Development

11.7 Examples

In this section, we present various examples of mpirun commands.

Display information
Example 11-6 shows how to display information using the -h flag.

Example 11-6 Invoking mpirun -h or -help to list all the options available

$ mpirun -h
Usage:
 mpirun [options]

47 An error occurred while mpirun was waiting for the job to terminate

48 Job timed out

49 The job was moved to the history table before it terminated

50 Job execution failed; job switched to an error state

51 Job execution interrupted; job queued

52 Failed to get a job exit status

53 Failed to get a job error text

54 Executable path for the debugger server is not specified

55 Failed to set debug information; unable to attach the debugger

56 Failed to get proctable; unable to attach the debugger

57 Failed while attaching to the job; unable to attach the debugger

58 Failed debugging job; unable to attach the debugger

59 Failed to begin a job

60 Failed to load a job

61 Failed to wait for job to load

62 Failed to clean up a job, partition, or both

63 Failed to cancel a job

64 Failed to destroy a partition

65 Failed to remove a partition

66 Failed to reset boot options; the rm_modify_partition() API failed

67 One or more threads died

68 Unexpected message

69 Failed to dequeue control message

70 Out of memory

71 Execution interrupted by signal

Return code Description
Chapter 11. mpirun 191

 or
 mpirun [options] binary [arg1 arg2 ... argn]

Options:
 -h Provides this extended help information; can also use -help
 -version Display version information
 -partition <partition_id> ID of the partition to run the job on
 -np <compute_nodes> The number of Compute Nodes to use for the job
 -mode <SMP|DUAL|VN> Execution mode, either SMP, DUAL, or Virtual Node Mode; the

default is SMP
 -exe <binary> Full path to the binary to execute
 -cwd <path> Current working directory of the job, as seen by the

Compute Nodes; can also use -wdir
 -host <service_node_host> Host name of the Service Node
 -port <service_node_port> Port of the mpirun server on the Service Node
 -env <env=val> Environment variable that should be set
 -exp_env <env vars> Environment variable in the current environment to export
 -env_all Export all current enviorment variables to the job environment
 -mapfile <mapfile|mapping> mapfile contains a user specified MPI topology;
 mapping is a permutation of XYZT
 -args <"<arguments>"> Arguments to pass to the job; must be enclosed in double

quotation marks
 -timeout <seconds> The limit of the job execution time
 -start_gdbserver <path> Start gdbserver for the job; must specify the path to gdbserver
 -label Add labels (STDOUT, STDERR, and MPI rank) to the job output
 -nw Return mpirun job cycle status instead of the job exit status
 -nofree Do not deallocate the partition if mpirun allocated it
 -free <wait|nowait> Free the partition specified by -partition; no job will be run
 -noallocate Do not allocate the partition; the job will only start
 if the partition was already INITIALIZED or CONFIGURING
 -reboot Reboot all Compute Nodes of the specified partition before
 running the job; the partition must be INIIALIZED prior
 to rebooting
 -backend Use a specified mpirun backend binary on the Service Node
 -boot_options <options> Low-level options used when booting a partition
 -verbose <0|1|2|3|4> Verbosity level, default is 0
 -trace <0-7> Trace level; output is sent to a file in the current working
 directory; default level is 0
 -only_test_protocol Test the mpirun frontend to backend communication;
 no job will be run
 -strace <all|none|n> Enable syscall trace for all, none, or node with MPI rank n
 -shape <XxYxZ> Shape of job in XxYxZ format; if not specified, you must use
 -partition or -np
 -psets_per_bp <n> Number of psets per base partition required in the partition
 -connect <TORUS|MESH> Compute Node connections; default is MESH
 -enable_tty_reporting Correctly report tty status to the control system
 -config <path> Specify mpirun config file path

Creating a partition dynamically
In Example 11-7 on page 193, a user requests a number (-np) of Compute Nodes desired for
the job. The allocator API searches the machine for free resources and boots the temporary
192 IBM Blue Gene/P Application Development

partition if enough resources are found. Upon job completion, mpirun deallocates the partition
if the user has not specified -nofree.

Example 11-7 Dynamic allocation

$ mpirun -np 16 -exe /bin/hostname -verbose 1
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3

Using -psets_per_bp
Example 11-8 illustrates the usage of -psets_per_bp. The number of psets per base partition
is defined in the db.properties file. The value can be overridden with the -psets_per_bp
option.

Example 11-8 psets_per_bp

$ mpirun -psets_per_bp 16 -shape 4x4x2 -exe /bin/hostname
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
Chapter 11. mpirun 193

dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3
dd2sys1fen3

Using a predefined partition and -np
Example 11-9 shows a simple script to invoke mpirun.

Example 11-9 csh script to invoke mpirun

$./run.pallas >& pallas_july06_2007_bgp.out
where the script run.pallas is:
#!/bin/csh
set MPIRUN="mpirun"
set MPIOPT="-np 32"
set MODE="-mode VN"
set PARTITION="-partition N01_32_1"
set WDIR="-cwd /bgusr/cpsosa/pallas"
set EXE="-exe /bgusr/cpsosa/pallas/PMB-MPI1"
#
$MPIRUN $PARTITION $MPIOPT $MODE $WDIR $EXE
#
echo "That's all folks!!"

Using environment variables
Example 11-10 shows use of -env to define environment variables.

Example 11-10 Use of -env

$ mpirun -partition N00_32_1 -np 32 -mode SMP -cwd /bgusr/cpsosa -exe a.out -env
“OMP_NUM_THREADS=4”

Using stdin from a terminal
In Example 11-11, the user types the user’s name bgp user in response to the job’s stdout.
After a while, the job is terminated when the user presses Ctrl+C to send mpirun a SIGINT.

Example 11-11 Usage of STDIN from a terminal

$ mpirun -partition R00-M0-N00 -verbose 0 -exe /BGPhome/stdin.sh -np 1
What's your name?
bgp user
hello bgp user
What's your name?
<Aug 11 15:33:44.021105> FE_MPI (WARN) : SignalHandler() -
<Aug 11 15:33:44.021173> FE_MPI (WARN) : SignalHandler() -
!--!
<Aug 11 15:33:44.021201> FE_MPI (WARN) : SignalHandler() - ! mpirun is now taking all the
necessary actions !
<Aug 11 15:33:44.021217> FE_MPI (WARN) : SignalHandler() - ! to terminate the job and to free
the resources !
194 IBM Blue Gene/P Application Development

<Aug 11 15:33:44.021233> FE_MPI (WARN) : SignalHandler() - ! occupied by this job. This might
take a while... !
<Aug 11 15:33:44.021261> FE_MPI (WARN) : SignalHandler() -
!--!
<Aug 11 15:33:44.021276> FE_MPI (WARN) : SignalHandler() -
<Aug 11 15:33:44.050365> BE_MPI (WARN) : Received a message from frontend
<Aug 11 15:33:44.050465> BE_MPI (WARN) : Execution of the current command interrupted
<Aug 11 15:33:59.532817> FE_MPI (ERROR): Failure list:
<Aug 11 15:33:59.532899> FE_MPI (ERROR): - 1. Execution interrupted by signal (failure #71)
dd2sys1fen3:~/bgp/control/mpirun/new>

Using stdin from a file or pipe
Example 11-12 illustrates the use of stdin from a file or pipe.

Example 11-12 Usage of stdin from a file or pipe

$ cat ~/stdin.cc
#include <iostream>

using namespace std;

int main() {
 unsigned int lineno = 0;
 while (cin.good()) {
 string line;
 getline(cin, line);
 if (!line.empty()) {
 cout << "line " << ++lineno << ": " << line << endl;
 }
 }
}
$ cat stdin.txt
Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Quisque id orci. Ut eleifend dui a erat varius
facilisis. Aliquam felis. Ut tincidunt, velit in pulvinar imperdiet, sem sapien sagittis neque, vitae bibendum
sapien erat vitae risus. Aenean suscipit. Aliquam molestie orci nec magna. Aliquam non enim. Integer dictum
magna quis orci. Praesent eget libero sed erat ultrices ullamcorper. Donec sodales hendrerit velit. Fusce
mattis. Suspendisse blandit ornare arcu. Pellentesque venenatis.

$ cat stdin.txt | mpirun -partition R00-M0-N00 -verbose 0 -exe /BGPhome/stdin_test -np 1
line 1: Lorem ipsum dolor sit amet, consectetuer adipiscing elit. Quisque id orci. Ut eleifend dui a erat varius
line 2: facilisis. Aliquam felis. Ut tincidunt, velit in pulvinar imperdiet, sem sapien sagittis neque, vitae bibendum
line 3: sapien erat vitae risus. Aenean suscipit. Aliquam molestie orci nec magna. Aliquam non enim. Integer dictum
line 4: magna quis orci. Praesent eget libero sed erat ultrices ullamcorper. Donec sodales hendrerit velit. Fusce
line 5: mattis. Suspendisse blandit ornare arcu. Pellentesque venenatis.

Using the tee utility
To send stdout, stderr, or both to a file in addition to your terminal, use the tee utility. Give tee
the -i argument, so that it ignores any signals that are sent, such as Ctrl+C, to terminate a
job prematurely. See Example 11-13.

Example 11-13 Using tee

$ mpirun -partition R00-M0-N00 -verbose 1 -exe /BGPhome/datespinner.sh -np 1 | tee
-i datespinner.out
<Aug 12 10:27:10.997374> FE_MPI (Info) : Invoking mpirun backend
<Aug 12 10:27:11.155416> BRIDGE (Info) : rm_set_serial() - The machine serial
number (alias) is BGP
<Aug 12 10:27:11.194557> FE_MPI (Info) : Preparing partition
<Aug 12 10:27:11.234550> BE_MPI (Info) : Examining specified partition
Chapter 11. mpirun 195

<Aug 12 10:27:11.823425> BE_MPI (Info) : Checking partition R00-M0-N00 initial
state ...
<Aug 12 10:27:11.823499> BE_MPI (Info) : Partition R00-M0-N00 initial state =
READY ('I')
<Aug 12 10:27:11.823516> BE_MPI (Info) : Checking partition owner...
<Aug 12 10:27:11.823532> BE_MPI (Info) : partition R00-M0-N00 owner is 'userX'
<Aug 12 10:27:11.824744> BE_MPI (Info) : Partition owner matches the current user
<Aug 12 10:27:11.824870> BE_MPI (Info) : Done preparing partition
<Aug 12 10:27:11.864539> FE_MPI (Info) : Adding job
<Aug 12 10:27:11.864876> BE_MPI (Info) : No CWD specified ('-cwd' option)
<Aug 12 10:27:11.864903> BE_MPI (Info) : - it will be set to
'/BGPhome/usr3/bgp/control/mpirun/new'
<Aug 12 10:27:11.865046> BE_MPI (Info) : Adding job to database...
<Aug 12 10:27:11.944540> FE_MPI (Info) : Job added with the following id: 15
<Aug 12 10:27:11.944593> FE_MPI (Info) : Starting job 15
<Aug 12 10:27:12.004492> FE_MPI (Info) : Waiting for job to terminate
<Aug 12 10:27:12.816792> BE_MPI (Info) : IO - Threads initialized
Sun Aug 12 10:27:13 CDT 2007
Sun Aug 12 10:27:18 CDT 2007
Sun Aug 12 10:27:23 CDT 2007
Sun Aug 12 10:27:28 CDT 2007
Sun Aug 12 10:27:33 CDT 2007
Sun Aug 12 10:27:38 CDT 2007
Sun Aug 12 10:27:43 CDT 2007
Sun Aug 12 10:27:48 CDT 2007
Sun Aug 12 10:27:53 CDT 2007
Sun Aug 12 10:27:58 CDT 2007
Sun Aug 12 10:28:03 CDT 2007
Sun Aug 12 10:28:08 CDT 2007
<Aug 12 10:28:11.159680> FE_MPI (Info) : SignalHandler() -
<Aug 12 10:28:11.159737> FE_MPI (Info) : SignalHandler() - ! Received signal
SIGINT
<Aug 12 10:28:11.159760> FE_MPI (WARN) : SignalHandler() -
<Aug 12 10:28:11.159773> FE_MPI (WARN) : SignalHandler() -
!--!
<Aug 12 10:28:11.159788> FE_MPI (WARN) : SignalHandler() - ! mpirun is now taking
all the necessary actions !
<Aug 12 10:28:11.159801> FE_MPI (WARN) : SignalHandler() - ! to terminate the job
and to free the resources !
<Aug 12 10:28:11.159815> FE_MPI (WARN) : SignalHandler() - ! occupied by this job.
This might take a while... !
<Aug 12 10:28:11.159829> FE_MPI (WARN) : SignalHandler() -
!--!
<Aug 12 10:28:11.159842> FE_MPI (WARN) : SignalHandler() -
<Aug 12 10:28:11.201498> FE_MPI (Info) : Termination requested while waiting for
backend response
<Aug 12 10:28:11.201534> FE_MPI (Info) : Starting cleanup sequence
<Aug 12 10:28:11.201794> BE_MPI (WARN) : Received a message from frontend
<Aug 12 10:28:11.201863> BE_MPI (WARN) : Execution of the current command
interrupted
<Aug 12 10:28:11.201942> BE_MPI (Info) : Starting cleanup sequence
<Aug 12 10:28:11.201986> BE_MPI (Info) : cancel_job() - Cancelling job 15
<Aug 12 10:28:11.204567> BE_MPI (Info) : cancel_job() - Job 15 state is RUNNING
('R')
196 IBM Blue Gene/P Application Development

<Aug 12 10:28:11.230352> BE_MPI (Info) : cancel_job() - Job 15 state is DYING
('D'). Waiting...
<Aug 12 10:28:16.249665> BE_MPI (Info) : cancel_job() - Job 15 has been moved to
the history table
<Aug 12 10:28:16.255793> BE_MPI (Info) : cleanupDatabase() - Partition was
supplied with READY ('I') initial state
<Aug 12 10:28:16.255996> BE_MPI (Info) : cleanupDatabase() - No need to destroy
the partition
<Aug 12 10:28:16.591667> FE_MPI (ERROR): Failure list:
<Aug 12 10:28:16.591708> FE_MPI (ERROR): - 1. Execution interrupted by signal
(failure #71)
<Aug 12 10:28:16.591722> FE_MPI (Info) : == FE completed ==
<Aug 12 10:28:16.591736> FE_MPI (Info) : == Exit status: 1 ==
dd2sys1fen3:~/bgp/control/mpirun/new> cat datespinner.out
Sun Aug 12 10:28:49 CDT 2007
Sun Aug 12 10:28:54 CDT 2007
Sun Aug 12 10:28:59 CDT 2007
Sun Aug 12 10:29:04 CDT 2007
Sun Aug 12 10:29:09 CDT 2007
Sun Aug 12 10:29:14 CDT 2007
Sun Aug 12 10:29:19 CDT 2007

Error when requesting more nodes than the partition size
Example 11-14 shows a case where the user specified a value for -np larger than the number
provided in the partition.

Example 11-14 Error due to requesting an -np value greater than the partition size

$ mpirun -partition R00-M0-N00 -verbose 0 -exe /bin/hostname -np 55
<Aug 11 15:28:46.797523> BE_MPI (ERROR): Job execution failed
<Aug 11 15:28:46.797634> BE_MPI (ERROR): Job 8 is in state ERROR ('E')
<Aug 11 15:28:46.842559> FE_MPI (ERROR): Job execution failed (error code - 50)
<Aug 11 15:28:46.842738> FE_MPI (ERROR): - Job execution failed - job switched to an error
state
<Aug 11 15:28:46.851840> BE_MPI (ERROR): The error message in the job record is as follows:
<Aug 11 15:28:46.851900> BE_MPI (ERROR): "BG_SIZE of 55 is greater than block 'R00-M0-N00'
size of 32"

Job encounters RAS event
When a job encounters a system error after starting, such as bad hardware or a kernel error,
a RAS event might be generated that describes the problem. RAS events are logged in the
RAS database, which can be viewed by the system administrator using the Blue Gene
Navigator. When a job running under mpirun ends with a non-zero exit status, mpirun checks
the RAS database for events related to the job and, if any RAS events were generated, prints
out the number of events found and the last RAS event for the job. The information in the
RAS event might enable users to correct their application without having to request help from
the system administrator. This feature was added in Blue Gene/P release V1R3M0.

RAS events that do not cause the application to fail but are useful for application developer
consideration can also be generated when a job runs. The information in these RAS events
can be especially useful during application development to expose problems that can cause
an application to run slowly. mpirun will display these “APPLICATION” RAS events when the
-verbose command line option is set to 2 or greater and the job ends with an exit status of
zero. Additionally, when -verbose 2 or greater is specified mpirun automatically sets the
Chapter 11. mpirun 197

DCMF_DMA_VERBOSE=1 environment variable for the job. Refer to this environment
variable in Appendix D, “Environment variables” on page 339 for more information. This
environment variable causes the job to generate RAS events should the appropriate
conditions arise in the DMA controller which is then displayed by mpirun when the job ends.
This enhancement was added in Blue Gene/P release V1R4M0.

In Example 11-15, the job failed because it used a BG_SHAREDMEMPOOLSIZE of 3000
rather than 30 as intended. The invalid value for BG_SHAREDMEMPOOLSIZE caused the
kernel to generate a RAS event, which is displayed by mpirun.

Example 11-15 mpirun prints out RAS event information

$ mpirun -partition MYPARTITION -mode dual -env "BG_SHAREDMEMPOOLSIZE=3000" -exe /bin/hostname
<Aug 11 14:34:34.266226> BE_MPI (ERROR): print_job_errtext() - Job 2109409 had 2 RAS events
<Aug 11 14:34:34.266308> BE_MPI (ERROR): print_job_errtext() - last event: KERN_1D0A
Insufficient memory to start application. Shared size=-1149239296 Persistent size=0 Text
start=0x01000000 Text size=2097152 Data start=0x01200000 Data size=1048576 Static TLB slots
used for each process in this node=0 0 0 0
<Aug 11 14:34:34.266319> BE_MPI (ERROR): print_job_errtext() - Check the Navigator's job history
for complete details

Killing a hung job or a running job
mpirun has the capability to kill the job and free your partition if it was booted by mpirun. To kill
your job, we recommend that you send mpirun a SIGINT (kill -2) while the job is running or
hung. We recommend that you do not use SIGKILL because subsequent jobs might
experience problems.

Be aware that using SIGINT is somewhat time consuming depending on the state of the job.
Therefore, do not expect it to return control instantaneously. Alternatively, if you do not want
to wait, try sending mpirun three SIGINTs in succession. In this case, it immediately returns
control to your shell. However, as the warning messages indicate, your job, partition, or both
might be left in a bad state. Ensure that they are cleaned up correctly before you attempt to
use them again. Example 11-16 illustrates this procedure.

Example 11-16 Proper way to kill hung or running jobs

From window 2: (open another window to kill a job)
ps -ef | grep cpsosa

cpsosa 23393 23379 0 13:21 pts/13 00:00:00 /bgsys/drivers/ppcfloor/bin/mpirun -partition
N04_32_1 -np 32 -mode VN -cwd /bgusr/cpsosa/red/pallas -exe /bgusr/cpsosa/red/pallas/PMB-MPI1

From window 1: (where the job is running)
.
. ! Output generated by the program
.
32768 1000 95.49 95.49 95.49 654.50
 65536 640 183.20 183.20 183.20 682.31
<Oct 18 13:22:10.804667> FE_MPI (WARN) : SignalHandler() -
<Oct 18 13:22:10.804743> FE_MPI (WARN) : SignalHandler() -
!--!
<Oct 18 13:22:10.804769> FE_MPI (WARN) : SignalHandler() - ! mpirun is now taking all the
necessary actions !
<Oct 18 13:22:10.804794> FE_MPI (WARN) : SignalHandler() - ! to terminate the job and to free
the resources !
198 IBM Blue Gene/P Application Development

<Oct 18 13:22:10.804818> FE_MPI (WARN) : SignalHandler() - ! occupied by this job. This might
take a while... !
<Oct 18 13:22:10.804841> FE_MPI (WARN) : SignalHandler() -
!--!
<Oct 18 13:22:10.804865> FE_MPI (WARN) : SignalHandler() -
 131072 320 357.97 357.97 357.97 698.38
<Oct 18 13:21:10.936378> BE_MPI (WARN) : Received a message from frontend
<Oct 18 13:21:10.936449> BE_MPI (WARN) : Execution of the current command interrupted
<Oct 18 13:21:16.140631> BE_MPI (ERROR): The error message in the job record is as follows:
<Oct 18 13:21:16.140678> BE_MPI (ERROR): "killed with signal 9"
<Oct 18 13:22:16.320232> FE_MPI (ERROR): Failure list:
<Oct 18 13:22:16.320406> FE_MPI (ERROR): - 1. Execution interrupted by signal (failure #71)

11.8 mpirun APIs

When writing programs to the mpirun APIs, you must consider these requirements:

� Currently, SUSE Linux Enterprise Server (SLES) 10 for PowerPC is the only supported
platform.

� C and C++ are supported with the GNU gcc V4.1.2-level compilers. For more information
and downloads, refer to the following Web address:

http://gcc.gnu.org/

� The include file is include/sched_api.h.

� Only support for both 64-bit dynamic libraries is provided, and the 64-bit dynamic library
file called by mpirun must be called libsched_if.so.

mpirun can retrieve run-time information directly from the scheduler without using
command-line parameters or environment variables. Each time mpirun is invoked, it attempts
to load a shared library called libsched_if.so. mpirun looks for this library in a set of directories
as described by the dlopen() API manual pages.

If the plug-in library is found and successfully loaded, mpirun calls the get_parameters()
function within that library to retrieve information from the scheduler. The get_parameters()
function returns the information in a data structure of type sched_params. This data structure
contains a set of fields that describe the partition that the scheduler has allocated the job to
run. Each field corresponds to one of the command-line parameters or environment
variables.

mpirun complements the information that is retrieved by get_parameters() with values from its
command-line parameters and environment variables. It gives precedence to the information
that is retrieved by get_parameters() first, then to its command-line parameters, and finally to
the environment variables, for example, if the number of processors retrieved by
get_parameters() is 256, the -np command-line parameter is set to 512, and the environment
variable MPIRUN_NP is set to 448, mpirun runs the job on 256 Compute Nodes.

If mpirun is invoked with the -verbose parameter with a value greater than 0, it displays
information that describes the loading of the dynamically loaded library. The message
Scheduler interface library loaded indicates that mpirun found the library, loaded it, and is
using it.
Chapter 11. mpirun 199

http://gcc.gnu.org/

The implementation of the libsched_if.so library is scheduling-system specific. In general, this
library should use the scheduler’s APIs to retrieve the required information and convert it to
the sched_params data type for mpirun to use. The only requirement is that the library
interface conform to the definitions in the sched_api.h header file distributed with the mpirun
binaries. This interface can be modified with future releases of mpirun.

The mpirun plug-in interface also requires the implementer provide an mpirun_done() or
mpirun_done_enhanced() function. This function is called by mpirun just before it exits. It is
used to signal the plug-in implementer that mpirun is terminating.

You can find more information about the library implementation and data structures in the
sched_api.h header file.

The following APIs are supported for mpirun:

� int get_parameters(sched_params_t* params)

This function is used to provide input parameters to mpirun from your application. If a
value of 1 (failure) is returned on the get_parameters() call, then mpirun proceeds to
terminate. Some external resource managers use this technique to prevent standalone
mpirun from being used. If the plug-in provider wants mpirun processing to continue, then
they must return a 0 (success) value on the get_parameters() call.

� void job_started(sched_info_t* info)

This function is called by mpirun when the job starts. It can be used to get information,
such as the job’s database ID, about the job that mpirun started. This optional plug-in
interface does not have to be included as part of the libsched_if.so shared library. This
function was introduced in Blue Gene/P release V1R3M0.

� void mpirun_done(int res)

This function is called by mpirun just before it calls the exit() function. It can be used to
signal the scheduler that mpirun is terminating.

� void mpirun_done_enhanced(sched_result_t* res)

This function is called by mpirun just before it calls the exit() function. It can be used to
signal the scheduler that mpirun is terminating. This enhanced version of the original
mpirun_done() callback is intended to convey information about boot failures to a resource
scheduler. This optional plug-in interface does not have to be included as part of the
libsched_if.so shared library.
200 IBM Blue Gene/P Application Development

Chapter 12. High-Throughput Computing
(HTC) paradigm

In Chapter 7, “Parallel paradigms” on page 65, we described the High-Performance
Computing (HPC) paradigms. Applications that run in an HPC environment make use of the
network to share data among MPI tasks. In other words, the MPI tasks are tightly coupled.

In this chapter we describe a paradigm that complements the HPC environment. This mode
of running applications emphasizes IBM Blue Gene/P capacity. An application runs loosely
coupled; that is, multiple instances of the applications do not require data communication.
The concept of High-Throughput Computing (HTC) has been defined by Condor and others
(see the following URL):

http://www.cs.wisc.edu/condor/htc.html

In this chapter we cover the implementation of HTC as part of Blue Gene/P functionality. We
provide an overview of how HTC is implemented and how applications can take advantage of
it. We cover the following topics:

� HTC design
� Booting a partition in HTC mode
� Running a job using submit
� Checking HTC mode
� submit API
� Altering the HTC partition user list

For a more detailed description of HTC, and how it is integrated into the control system of
Blue Gene/P, see IBM System Blue Gene Solution: Blue Gene/P System Administration,
SG24-7417.

12
© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 201

http://www.cs.wisc.edu/condor/htc.html

12.1 HTC design

HTC focuses on pushing a large number of relatively short jobs through the control system.
Such a design is significantly different from the traditional HPC focus of Blue Gene/P where a
single job runs the same executable on each node in the partition. In HTC mode, each
compute node can run one, two, or four different jobs depending on the mode (SMP and
Linux-SMP, DUAL, or virtual node mode) the partition was booted in. Each job can run under
a different user name, with separate stdin, stdout, and stderr. The executables are compiled in
the same way that HPC executables are compiled for Blue Gene/P, but they cannot use MPI.
Because each node can run a different executable, and jobs start and stop independently of
each other, it does not make sense to use MPI in this mode.

12.2 Booting a partition in HTC mode

When booting an HTC partition, you need to specify the job mode at boot time, either SMP,
DUAL, VN, or Linux-SMP mode. Specifying the job mode at boot time is different from regular
MPI partitions where you can specify the mode at the run time of the job. The following
methods can be used to boot a partition in HTC mode:

htcpartition The htcpartition utility can be executed on a front end node or the
service node. For more information, see Appendix G, “htcpartition” on
page 359.

mmcs_db_console A system administrator can boot a partition in HTC mode using the
mmcs_db_console; see IBM System Blue Gene Solution: Blue
Gene/P System Administration, SG24-7417.

Bridge APIs A resource scheduler can boot a partition in HTC mode using the
Bridge APIs. For more information, see Chapter 13, “Control system
(Bridge) APIs” on page 209.

12.3 Running a job using submit

The interface to run an HTC job is the Blue Gene/P submit command. It is similar to mpirun in
the sense that it acts as a shadow of the job running on the compute node. It transparently
forwards stdin, stdout, stderr, signals, and terminates when the job is complete. However,
mpirun can boot either predefined partitions or dynamic partitions based on size and shape
requirements of a job. submit performs neither of these tasks; it requires a partition to already
be booted in HTC mode prior to submitting the job. Other differences are less noticeable to
users, such as the lack of a hybrid front end and back end design, or Bridge APIs calls in
submit that are present in mpirun. The arguments supported by submit are also somewhat
different than mpirun. Many of the mpirun arguments are not applicable when running an HTC
job compared to a large parallel job.

The syntax for the submit command is as follows:

./submit [options] or

./submit [options] binary [arg1 arg2... argn]
202 IBM Blue Gene/P Application Development

Table 12-1 contains the available options for the submit command.

Table 12-1 Options available for the submit command

Environment variables
Some arguments have a corresponding environment variable. If both an environment variable
and an argument are given, precedence is given to the argument:

� --pool SUBMIT_POOL
� --cwd SUBMIT_CWD
� --port SUBMIT_PORT

Job options (and syntax) Description

-exe <exe> Executable to run.

-args “arg1 arg2 ... argn” Arguments must be enclosed in double quotes.

-env <env=value> Used to add an environment variable for the job.

-exp_env <env> Used to export an environment variable to the
job’s environment.

-env_all Adds all current environment variables to the
job’s environment.

-cwd <cwd> Sets the current working directory for the job.

-timeout <seconds> Number of seconds to wait for before the job is
killed.

-strace Run job under system call tracing.

-start_gdbserver <path> Run the job under a debugger. The default
system configuration provides GDB server in
/sbin.rd/gdbserver.

Resource options

-mode <SMP or DUAL or VN or LINUX_SMP> Job mode. The default mode is SMP.

-location <Rxx-Mx-Nxx-Jxx-Cxx> Compute core location (regular expressions are
supported).

-pool <id> Compute node pool ID.

General options

-port <port> Listen port of the submit mux (default = 10246).

-trace <0 - 7> Tracing level (default = 0).

-enable_tty_reporting Disable the default line buffering of stdin, stdout,
and stderr when input (stdin) or output
(stdout/stderr) is not a tty.

-raise If a job dies with a signal, submit raises this
signal.
Chapter 12. High-Throughput Computing (HTC) paradigm 203

Using submit
This section provides selected examples on how to invoke the command and how to use the
location and pool arguments.

location argument
The --location argument requests a specific compute core location to run the job; the syntax is
in the form of RXX-MX-NXX-JXX-CXX. The rack numbers (RXX) can range between R00 and
RFF. The midplane numbers (MX) can range between M0 (bottom) and M1 (top). The node
card numbers (NXX) can range between N00-N15. The compute card numbers (JXX) can
range between J04 and J35. Note that J00 and J01 are I/O nodes, and J02 and J03 are
unused. The compute core numbers (CXX) can range between C00 and C03. Note that C00
is valid for SMP, DUAL, and VN mode. Core C01 is valid only for VN mode. Core 02 is valid for
VN and DUAL modes. Core 03 is valid only for VN mode.

The --location argument is combined with your user ID and --mode argument to find an
available location to run the job. If any of these parameters do not match the list of what is
available, the job is not started and an error message is returned. See Example 12-1.

It is also possible to omit a portion of the location. If the core is omitted (for example,
--location R00-M0-N14-J09), one of the cores in the compute node is chosen. If the compute
card is omitted (for example, --location R00-M0-N14), a core on a compute node on the node
card is chosen.

Example 12-1 Requesting specific location

$ submit --cwd /bgusr/tests --location R00-M0-N14-J09-C00 --mode vn --exe hello
hello world

If the location you request is busy (job already running), you see an error message (like that
shown in Example 12-2).

Example 12-2 Job already running

$ submit --cwd /bgusr/tests --exe hello --location R00-M0-N14-J09-C00 --mode vn
May 07 15:05:43 (U) [4398046675584] (submit.cc:1237:cleanup) failed to add job: location
R00-M0-N14-J09-C00 is not available

If the location you request was booted in a mode different than the --mode argument you give,
you see an error message (Example 12-3).

Example 12-3 Node mode conflict

$ submit --cwd /bgusr/tests --exe hello --location R00-M0-N14-J09-C00 --mode SMP
May 07 15:06:50 (U) [4398046675584] (submit.cc:1237:cleanup) failed to add
job: location R00-M0-N14-J09-C00 mode (VN) is incompatible with requested mode
(SMP)

Similarly, if your user ID does not have permission to run on the location requested, you see
an error message (Example 12-4).

Example 12-4 Permission problem

$ whoami
bgpadmin
$ submit --cwd /bgusr/tests --exe hello --location R00-M0-N14-J09-C00 --mode vn
204 IBM Blue Gene/P Application Development

May 07 15:13:28 (U) [4398046675888] (submit.cc:1237:cleanup) failed to add
job: user bgpadmin is not allowed to run at location R00-M0-N14-J09-C00

pool argument
A pool is a collection of compute nodes and is represented by an ID just as a partition is. A
pool consists of one or more partitions. By default, each partition’s pool ID is its partition ID.
Outside the framework of a job scheduler, this should always be the case. Thus,
Example 12-5 shows how to run a job on any available compute node in partition
CHEMISTRY.

Example 12-5 Pool argument

$ submit --pool CHEMISTRY--exe hello_world
May 07 16:28:59 (U) [4398046675888] (submit.cc:1237:cleanup) failed to add
job: could not find available location matching resource request

If no compute nodes are available, an error message is displayed as shown in Example 12-5.

12.4 Checking HTC mode

An application can check whether the node it is running on was booted in HTC mode using
the personality information. Example 12-6 illustrates how to use the personality to inquire
about the HTC mode.

Example 12-6 Checking whether a node was booted in HTC mode

#include <unistd.h>
#include <common/bgp_personality.h>
#include <common/bgp_personality_inlines.h>
#include <spi/kernel_interface.h>

int
main()
{
 // get our personality
 _BGP_Personality_t pers;
 if (Kernel_GetPersonality(&pers, sizeof(pers)) == -1) {
 fprintf(stderr, "could not get personality\n");
 exit(EXIT_FAILURE);
 }

 // check HTC mode
 if (pers.Kernel_Config.NodeConfig & _BGP_PERS_ENABLE_HighThroughput) {
 // do something HTC specific
 } else {
 // do something else
 }
}

Chapter 12. High-Throughput Computing (HTC) paradigm 205

12.5 submit API

When writing programs to the submit APIs, you must consider these requirements:

� Currently, SUSE Linux Enterprise Server (SLES) 10 for PowerPC is the only supported
platform.

� C and C++ are supported with the GNU gcc 4.1.2 level compilers. For more information
and downloads, refer to the following web address:

http://gcc.gnu.org

� The include file is include/submit_api.h.

� Only 64-bit dynamic libraries are supported.

submit can retrieve and provide run-time information directly from the scheduler without using
command-line parameters or environmental variables. Each time submit is invoked, it
attempts to load a dynamically loaded library called libsubmit_if.so. submit looks for this
library in a series of directories as described by the dlopen() manual page. If the plug-in
library is found and successfully loaded, submit invokes the following three methods:

� int get_parameters(htc_sched_params *params);

This function is used to provide input parameters to submit from an external scheduler. A
non-zero return code is fatal and causes submit to immediately exit without running a job.

� void submit_info(const htc_sched_info* result);

This function is called by submit when the job is started. The htc_sched_info structure
contains details about the job being started (pool, job ID, compute node location, partition,
and so on). If the job never starts for whatever reason, this function is not called.

� void submit_done(const htc_sched_result *results);

This function is called by submit just before it calls the exit() function. It can be used to
signal the scheduler that submit is terminating. The htc_sched_result structure contains
job metadata (pool, job ID, compute node location, return code, and so on). The job ID is 0
if the job did not run.

The return code information in the job metadata provides additional details about the submit
request.

12.6 Altering the HTC partition user list

A HTC partition user list defines the set of users and groups that are enabled to submit jobs to
the partition. A resource scheduler typically controls which users can run a job on a partition
by manipulating the user list through the rm_add_part_user() Bridge APIs described in
Chapter 13, “Control system (Bridge) APIs” on page 209.

Beginning in Blue Gene/P release V1R3M0, changes to a HTC partition user list after the
partition is booted take effect immediately. As a result, resource schedulers do not have to
free a partition to change the user list.
206 IBM Blue Gene/P Application Development

http://gcc.gnu.org

Part 4 Job scheduler
interfaces

In this part, we provide information about the job scheduler APIs:

� Chapter 13, “Control system (Bridge) APIs” on page 209
� Chapter 14, “Real-time Notification APIs” on page 251
� Chapter 15, “Dynamic Partition Allocator APIs” on page 295

Part 4
© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 207

208 IBM Blue Gene/P Application Development

Chapter 13. Control system (Bridge) APIs

In this chapter, we define a list of APIs into the Midplane Management Control System
(MMCS) that can be used by a job management system. The mpirun program that ships with
the Blue Gene/P software is an application that uses these APIs to manage partitions, jobs,
and other similar aspects of the Blue Gene/P system. You can use these APIs to write
applications to manage Blue Gene/P partitions and control Blue Gene/P job execution, as
well as other similar administrative tasks.

In this chapter, we present an overview of the support provided by the APIs and discuss the
following topics:

� API requirements
� APIs
� Small partition allocation
� API examples

13
© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 209

13.1 API requirements

The several requirements for writing programs to the Bridge APIs are as follows:

� Currently, SUSE Linux Enterprise Server (SLES) 10 for PowerPC is the only supported
platform.

� C and C++ are supported with the GNU gcc 4.1.2 level compilers. For more information
and downloads, refer to the following Web address:

http://gcc.gnu.org/

� All required include files are installed in the /bgsys/drivers/ppcfloor/include directory. See
Appendix C, “Header files and libraries” on page 335 for additional information about
include files. The include file for the Bridge APIs is rm_api.h.

� The Bridge APIs support 64-bit applications that use dynamic linking using shared objects.
The required library files are installed in the /bgsys/drivers/ppcfloor/lib64 directory.

The shared object for linking to the Bridge APIs is libbgpbridge.so. The libbgpbridge.so
library has dependencies on other libraries that are included with the Blue Gene/P
software, including:

– libbgpconfig.so
– libbgpdb.so
– libsaymessage.so
– libtableapi.so

These files are installed with the standard system installation procedure. They are
contained in the bgpbase.rpm file.

The requirements for writing programs to the Bridge APIs are explained in the following
sections.

13.1.1 Configuring environment variables

Table 13-1 provides information about the environment variables that are used to control the
Bridge APIs.

Table 13-1 Environment variables that control the Bridge APIs

For more information about the db.properties and bridge.config files, see IBM System Blue
Gene Solution: Blue Gene/P System Administration, SG24-7417.

Environment variable Required Description

DB_PROPERTY Yes This variable must be set to the path of the db.properties file
with database connection information. For default installation,
the path to this file is /bgsys/local/etc/db.properties.

BRIDGE_CONFIG Yes This variable must be set to the path of the bridge.config file
that contains the Bridge APIs configuration values. For a
default installation, the path to this file is
/bgsys/local/etc/bridge.config.

BRIDGE_DUMP_XML No When set to any value, this variable causes the Bridge APIs
to dump in-memory XML streams to files in /tmp for
debugging. When this variable is not set, the Bridge APIs do
not dump in-memory XML streams.
210 IBM Blue Gene/P Application Development

http://gcc.gnu.org/
http://gcc.gnu.org/

13.1.2 General comments
All the APIs have general considerations that apply to all calls. In the following list, we
highlight the common features:

� All the API calls return a status_t indicating either success or an error code.

� The get APIs that retrieve a compound structure include accessory functions to retrieve
relevant nested data.

� The get calls allocate new memory for the structure to be retrieved and return a pointer to
the allocated memory in the corresponding argument.

� To add information to MMCS, use new functions as well as rm_set_data(). The new
functions allocate memory for new data structures, and the rm_set_data() API is used to
fill these structures.

� For each get and new function, a corresponding free function frees the memory allocated
by these functions. For instance, rm_get_BG(rm_BG_t **bg) is complemented by
rm_free_BG(rm_BG_t *bg).

� The caller is responsible for matching the calls to the get and new allocators to the
corresponding free deallocators. Memory leaks result if this is not done.

Memory allocation and deallocation
Some API calls result in memory being allocated on behalf of the user. The user must call the
corresponding free function to avoid memory leaks, which can cause the process to run out
of memory.

For the rm_get_data() API, see 13.2.8, “Field specifications for the rm_get_data() and
rm_set_data() APIs” on page 229 for a complete list of the fields that require calls to free
memory.

Avoiding invalid pointers
Some APIs return a pointer to an offset in a data structure, or object, that was previously
allocated (based on element in rm_get_data()) - for example, the rm_get_data() API call uses
the RM_PartListNextPart specification. In this example, element is a partition list, and it
returns a pointer to the first or next partition in the list. If the caller of the API frees the memory
of the partition list (element) and data is pointing to a subset of that freed memory, the data
pointer is invalid. The caller must make sure that no further calls are made against a data
structure returned from an rm_get_data() call after it is freed.

First and next calls
Before a next call can be made against a data structure returned from an rm_get_data() call,
the first call must have been made. Failure to do so results in an invalid pointer, either
pointing at nothing or at invalid data.

Example 13-1 shows correct usage of the first and next API calls. Notice how memory is freed
after the list is consumed.

Example 13-1 Correct usage of first and next API calls

status_t stat;
int list_size = 0;
rm_partition_list_t * bgp_part_list = NULL;
rm_partition_t * bgp_part = NULL;

// Get all information on existing partitions
stat = rm_get_partitions_info(PARTITION_ALL_FLAG, &bgp_part_list);
Chapter 13. Control system (Bridge) APIs 211

if (stat != STATUS_OK) {
// Do some error handling here...
return;

}

// How much data (# of partitions) did we get back?
rm_get_data(bgp_part_list, RM_PartListSize, &list_size);

for (int i = 0; i < list_size; i++) {
// If this is the first time through, use RM_PartListFirstPart
if (i == 0){

rm_get_data(bgp_part_list, RM_PartListFirstPart, &bgp_part);
}
// Otherwise, use RM_PartListNextPart
else {

rm_get_data(bgp_part_list, RM_PartListNextPart, &bgp_part);
}

}

// Make sure we free the memory when finished
stat = rm_free_partition_list(bgp_part_list);
if (stat != STATUS_OK) {

// Do some error handling here...
return;

}

13.2 APIs
In the following sections, we provide details about the APIs.

13.2.1 API to the Midplane Management Control System
The Bridge APIs contain an rm_get_BG() function to retrieve current configuration and status
information about all the physical components of the Blue Gene/P system from the MMCS
database. The Bridge APIs also include functions that add, remove, or modify information
about transient entities, such as jobs and partitions.

The rm_get_BG() function returns all the necessary information to define new partitions in the
system. The information is represented by three lists: a list of base partitions (BPs), a list of
wires, and a list of switches. This representation does not contain redundant data. In general,
it allows manipulation of the retrieved data into any desired format. The information is
retrieved using a structure called rm_BG_t. It includes the three lists that are accessed using
iteration functions and the various configuration parameters, for example, the size of a base
partition in Compute Nodes.

All the data retrieved by using the get functions can be accessed using rm_get_data() with
one of the specifications listed in 13.2.8, “Field specifications for the rm_get_data() and
rm_set_data() APIs” on page 229. Additional get functions can retrieve information about the
partitions and job entities.

The rm_add_partition() and rm_add_job() functions add and modify data in the MMCS. The
memory for the data structures is allocated by the new functions and updated using the
rm_set_data() function. The specifications that can be set using the rm_set_data() function
are shown in 13.2.8, “Field specifications for the rm_get_data() and rm_set_data() APIs” on
page 229.
212 IBM Blue Gene/P Application Development

13.2.2 Asynchronous APIs

Some APIs that operate on partitions or jobs are documented as being asynchronous.
Asynchronous means that control returns to your application before the operation requested
is complete.

Before you perform additional operations on the partition or job, make sure that it is in a valid
state by using the rm_get_partition_info() or rm_get_job() APIs to check the current state of
the partition or job.

13.2.3 State sequence IDs

For most Blue Gene/P objects that have a state field, a corresponding sequence ID field
exists for the state value. MMCS guarantees that whenever the state field changes for a given
object, the associated sequence ID is incremented.

The sequence ID fields can be used to determine which state value is more recent. A state
value with a higher corresponding sequence ID is the more recent value. This comparison
can be helpful for applications that retrieve state information from multiple sources such as
the Bridge APIs and the real-time APIs.

The function to increment sequence IDs only occurs if the real-time APIs are configured for
the system. For information about configuring the real-time APIs, see IBM System Blue Gene
Solution: Blue Gene/P System Administration, SG24-7417.

13.2.4 Bridge APIs return codes

When a failure occurs, an API invocation returns an error code. You can use the error code to
take corrective actions within your application. In addition, a failure always generates a log
message, which provides more information for the possible cause of the problem and an
optional corrective action. These log messages are used for debugging and programmed
recovery of failures.

The design aims at striking a balance between the number of error codes detected and the
different error paths per return code. Thus, some errors have specific return codes, while
others have more generic ones. The Bridge APIs have the following return codes:

� STATUS_OK: The invocation completed successfully.

� PARTITION_NOT_FOUND: The required partition specified by the ID cannot be found in
the control system.

� JOB_NOT_FOUND: The required job specified by the ID cannot be found in the control
system.

� BP_NOT_FOUND: One or more of the base partitions in the rm_partition_t structure do
not exist.

� SWITCH_NOT_FOUND: One or more of the switches in the rm_partition_t structure do
not exist.

� JOB_ALREADY_DEFINED: A job with the same name already exists.

� PARTITION_ALREADY_DEFINED: A partition already exists with the ID specified.

� CONNECTION_ERROR: The connection with the control system has failed or could not
be established.

� INVALID_INPUT: The input to the API invocation is invalid, which is due to missing
required data, illegal data, and so on.
Chapter 13. Control system (Bridge) APIs 213

� INCOMPATIBLE_STATE: The state of the partition or job prohibits the specific action.
See Figure 13-1 on page 221, Figure 13-2 on page 226, Figure 13-3 on page 227, and
Figure 13-4 on page 228 for state diagrams.

� INCONSISTENT_DATA: The data retrieved from the control system is not valid.

� INTERNAL_ERROR: Such errors do not belong to any of the previously listed categories,
such as a memory allocation problem or failures during the manipulation of internal XML
streams.

13.2.5 Blue Gene/P hardware resource APIs

In this section, we describe the APIs that are used to manage the hardware resources in the
Blue Gene/P system:

� status_t rm_get_BG(rm_BG_t **BG);

This function retrieves a snapshot of the Blue Gene/P machine, held in the rm_BG_t data
structure.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INCONSISTENT_DATA

• List of base partitions is empty.
• Wire list is empty, and the number of base partitions is greater than one.
• Switch list is empty, and the number of base partitions is greater than one.

– INTERNAL_ERROR

� status_t rm_get_data(rm_element_t *rme, enum RMSpecification spec, void *
result);

This function returns the content of the requested field from a valid rm_element_t (Blue
Gene/P object, base partition object, wire object, switch object, and so on). The
specifications that are available when using rm_get_data() are listed in 13.2.8, “Field
specifications for the rm_get_data() and rm_set_data() APIs” on page 229, and are
grouped by the object type that is being accessed.

The following return codes are possible:

– STATUS_OK
– INVALID_INPUT

• The specification spec is unknown.
• The specification spec is illegal (per the “rme” element).

– INTERNAL_ERROR

� status_t rm_get_nodecards(rm_bp_id_t bpid, rm_nodecard_list_t **nc_list);

This function returns all node cards in the specified base partition.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INCONSISTENT_DATA

The base partition was not found.

– INTERNAL_ERROR
214 IBM Blue Gene/P Application Development

� status_t rm_get_serial(rm_serial_t *serial);

This function gets the machine serial number that was set previously by rm_set_serial().

The following return codes are possible:

– STATUS_OK
– INTERNAL_ERROR

� status_t rm_set_data(rm_element_t *rme, enum RMSpecification spec, void *
result);

This function sets the value of the requested field in the rm_element_t (Blue Gene/P
object, base partition object, wire object, switch object, and so on). The specifications,
which are available when using rm_set_data(), are listed in 13.2.8, “Field specifications for
the rm_get_data() and rm_set_data() APIs” on page 229, and are grouped by the object
type that is being accessed.

The following return codes are possible:

– STATUS_OK
– INVALID_INPUT

• The specification spec is unknown.
• The specification spec is illegal (per the rme element).

– INTERNAL_ERROR

� status_t rm_set_serial(rm_serial_t serial);

This function sets the machine serial number to be used in all the API calls following this
call. The database can contain more than one machine. Therefore, it is necessary to
specify which machine to work with.

The following return codes are possible:

– STATUS_OK
– INVALID_INPUT

• The machine serial number serial is NULL.
• The machine serial number is too long.

13.2.6 Partition-related APIs

In this section, we describe the APIs used to create and manage partitions in the Blue
Gene/P system:

� status_t rm_add_partition(rm_partition_t* p);

This function adds a partition record to the database. The partition structure includes an
ID field that is filled by the resource manager.

The following return codes are possible:

– STATUS_OK

– CONNECTION_ERROR

– INVALID_INPUT: The data in the rm_partition_t structure is invalid:

• No base partition nor switch list is supplied.
• Base partition or switches do not construct a legal partition.
• No boot images or boot image name is too long.
• No user or user name is too long.

– BP_NOT_FOUND:

One or more of the base partitions in the rm_partition_t structure does not exist.
Chapter 13. Control system (Bridge) APIs 215

– SWITCH_NOT_FOUND:

One or more of the switches in the rm_partition_t structure does not exist.

– INTERNAL_ERROR

� status_t rm_add_part_user (pm_partition_id_t partition_id, const char *user);

This function adds a new user to the partition. If a partition is in “free” state any user can
add users. If the partition is in any other state only the partition's owner can add users.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INVALID_INPUT:

• partition_id is NULL or the length exceeds the limitations of the control system.
• user is NULL or the length exceeds the limitations of the control system.
• user is already defined as the partition’s user.

– INTERNAL_ERROR

� status_t rm_assign_job(pm_partition_id_t partition_id, db_job_id_t jid);

This function assigns a job to a partition. A job can be created and simultaneously
assigned to a partition by calling rm_add_job() with a partition ID. If a job is created and
not assigned to a specific partition, it can be assigned later by calling rm_assign_job().

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INVALID_INPUT

partition_id is NULL or the length exceeds control system limitations:

– PARTITION_NOT_FOUND
– JOB_NOT_FOUND
– INCOMPATIBLE_STATE

The current state of the partition is not RM_PARTITION_READY (“initialized”), the
partition and job owners do not match, or the partition is in HTC mode.

– INTERNAL_ERROR

� status_t pm_create_partition(pm_partition_id_t partition_id);

This function allocates the necessary hardware for a partition, boots the partition, and
updates the resulting status in the MMCS database.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INVALID_INPUT

partition_id is NULL or the length exceeds control system limitations.

Note: rm_assign_job() is not supported for HTC jobs.

Note: This API is asynchronous. Control returns to your application before the
operation requested is complete.
216 IBM Blue Gene/P Application Development

– PARTITION_NOT_FOUND
– INCOMPATIBLE_STATE

The current state of the partition prohibits its creation. See Figure 13-1 on page 221.

– INTERNAL_ERROR

� status_t pm_destroy_partition(pm_partition_id_t partition_id);

This function shuts down a currently booted partition and updates the database
accordingly.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INVALID_INPUT

partition_id is NULL or the length exceeds the limitations of the control system.

– PARTITION_NOT_FOUND
– INCOMPATIBLE_STATE

The state of the partition prohibits its destruction. See Figure 13-1 on page 221.

– INTERNAL_ERROR

� status_t rm_get_partition(pm_partition_id_t partition_id, rm_partition_t **p);

This function retrieves a partition, according to its ID.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INVALID_INPUT

partition_id is NULL or the length exceeds the limitations of the control system.

– PARTITION_NOT_FOUND
– INCONSISTENT_DATA

The base partition or switch list of the partition is empty.

– INTERNAL_ERROR

� status_t rm_get_partitions(rm_partition_state_t_flag_t flag,
rm_partition_list_t **part_list);

This function is useful for status reports and diagnostics. It returns a list of partitions
whose current state matches the flag. The possible flags are contained in the rm_api.h
include file and listed in Table 13-2 on page 218. You can use OR on these values to
create a flag for including partitions with different states.

Note: This API is asynchronous. Control returns to your application before the
operation requested is complete.
Chapter 13. Control system (Bridge) APIs 217

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INCONSISTENT_DATA

At least one of the partitions has an empty base partition list.

– INTERNAL_ERROR

� status_t rm_get_partitions_info(rm_partition_state_t_flag_t flag,
rm_partition_list_t ** part_list);

This function is useful for status reports and diagnostics. It returns a list of partitions
whose current state matches the flag. This function returns the partition information
without their base partitions, switches, and node cards.

The possible flags are contained in the rm_api.h include file and are listed in Table 13-2.
You can use OR on these values to create a flag for including partitions with different
states.

Table 13-2 Flags for partition states

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INCONSISTENT_DATA

At least one of the partitions has an empty base partition list.

– INTERNAL_ERROR

� status_t rm_modify_partition(pm_partition_id_t partition_id, enum rm_modify_op
modify_option, const void *value);

This function makes it possible to change a set of fields in an already existing partition.
The fields that can be modified are owner, description, options, boot options, HTC pool,
and the partition boot images. The modify_option parameter identifies the field to be
modified. To change the HTC pool, the partition must be in the RM_PARTITION_READY
(“initialized”) state. The other modifiable fields require the partition to be in the
RM_PARTITION_FREE (“free”) state.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INVALID_INPUT

• partition_id is NULL, or the length exceeds the limitations of the control system.
• The value for the modify_option parameter is not valid.

Flag Value

PARTITION_FREE_FLAG 0x01

PARTITION_CONFIGURING_FLAG 0x02

PARTITION_READY_FLAG 0x04

PARTITION_DEALLOCATING_FLAG 0x10

PARTITION_ERROR_FLAG 0x20

PARTITION_REBOOTING_FLAG 0x40

PARTITION_ALL_FLAG 0xFF
218 IBM Blue Gene/P Application Development

– PARTITION_NOT_FOUND
– INCOMPATIBLE_STATE

The partition’s current state forbids its modification. See Figure 13-1 on page 221.

– INTERNAL_ERROR

� status_t pm_reboot_partition(pm_partition_id_t partition_id);

This function sends a request to reboot a partition and update the resulting status in the
database.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INVALID_INPUT

• partition_id is NULL, or the length exceeds the limitations of the control system.
• This API is not supported for HTC partitions.

– PARTITION_NOT_FOUND
– INCOMPATIBLE_STATE

The partition’s current state forbids it to be rebooted. See Figure 13-1 on page 221.

– INTERNAL_ERROR

� status_t rm_release_partition(pm_partition_id_t partition_id);

This function is the opposite of rm_assign_job() because it releases the partition from all
jobs. Only jobs that are in an RM_JOB_IDLE state have their partition reference removed.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INVALID_INPUT

partition_id is NULL, or the length exceeds the limitations of the control system
(configuration parameter).

– PARTITION_NOT_FOUND
– INCOMPATIBLE_STATE

The current state of one or more jobs assigned to the partition prevents this release.
See Figure 13-1 on page 221 and Figure 13-2 on page 226.

– INTERNAL_ERROR

� status_t rm_remove_partition(pm_partition_id_t partition_id);

This function removes the specified partition record from MMCS.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INVALID_INPUT

partition_id is NULL, or the length exceeds the limitations of the control system
(configuration parameter).

Note: This API is asynchronous. Control returns to your application before the
operation requested is complete.
Chapter 13. Control system (Bridge) APIs 219

– PARTITION_NOT_FOUND
– INCOMPATIBLE_STATE

The partition’s current state forbids its removal. See Figure 13-1 on page 221 and
Figure 13-2 on page 226.

– INTERNAL_ERROR

� status_t rm_remove_part_user(pm_partition_id_t partition_id, const char *user);

This function removes a user from a partition. Removing a user from a partition can be
done only by the partition owner. A user can be removed from a partition that is in any
state. Once a HTC partition is booted, this API can still be used, but the submit server
daemon running on the service node ignores any removed users. Those removed users
are still allowed to run jobs on the partition.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INVALID_INPUT

• partition_id is NULL, or the length exceeds the limitations of the control system
(configuration parameter).

• user is NULL, or the length exceeds the limitations of the control system.
• user is already defined as the partition’s user.
• Current user is not the partition owner.

– INTERNAL_ERROR

� status_t rm_set_part_owner(pm_partition_id_t partition_id, const char *user);

This function sets the new owner of the partition. Changing the partition’s owner can be
done only to a partition in the RM_PARTITION_FREE state.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INVALID_INPUT

• partition_id is NULL, or the length exceeds the limitations of the control system
(configuration parameter).

• owner is NULL, or the length exceeds the limitations of the control system.

– INTERNAL_ERROR

� status_t rm_get_htc_pool(pm_pool_id_t pid, rm_partition_list_t **p)

This function is useful for status reports and diagnostics. It returns a list of partitions
whose HTC pool id matches the parameter.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INCONSISTENT_DATA

At least one of the partitions has an empty base partition list.

– INTERNAL_ERROR
220 IBM Blue Gene/P Application Development

State transition diagram for partitions
Figure 13-1 illustrates the states that a partition goes through during its life cycle. For HTC
partitions RM_PARTITION_REBOOTING is not a possible state.

Figure 13-1 Partition state diagram

13.2.7 Job-related APIs

In this section, we describe the APIs to create and manage jobs in the Blue Gene system:

� status_t rm_add_job(rm_job_t *job);

This function adds a job record to the database. The job structure includes an ID field that
will be filled by the resource manager.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INVALID_INPUT:

• Data in the rm_job_t structure is invalid.
• There is no job name, or a job name is too long.
• There is no user, or the user name is too long.
• There is no executable, or the executable name is too long.
• The output or error file name is too long.

State changed by API call

State changed by MMCS

rm_remove_partition()

RM_PARTITION_DEALLOCATING
pm_destroy_partition()

RM_PARTITION_REBOOTING

pm_reboot_partition()

RM_PARTITION_READY

pm_destroy_partition()

RM_PARTITION_ERROR

RM_PARTITION_CONFIGURING
pm_create_partition()

RM_PARTITION_FREE

rm_add_partition()

Note: rm_add_job() is not supported for HTC jobs.
Chapter 13. Control system (Bridge) APIs 221

– JOB_ALREADY_DEFINED

A job with the same name already exists.

– INTERNAL_ERROR

� status_t jm_attach_job(db_job_id_t jid);

This function initiates the spawn of debug servers to a job in the RM_JOB_LOADED state.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– JOB_NOT_FOUND
– INCOMPATIBLE_STATE

The job’s state prevents it from being attached. See Figure 13-2 on page 226.

– INTERNAL_ERROR

� status_t jm_begin_job(db_job_id_t jid);

This function begins a job that is already loaded.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– JOB_NOT_FOUND
– INCOMPATIBLE_STATE

The job’s state prevents it from beginning. See Figure 13-2 on page 226.

– INTERNAL_ERROR

� status_t jm_cancel_job(db_job_id_t jid);

This function sends a request to cancel the job identified by the jid parameter.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– JOB_NOT_FOUND
– INCOMPATIBLE_STATE

The job’s state prevents it from being canceled. See Figure 13-2 on page 226.

– INTERNAL_ERROR

Note: jm_attach_job() is not supported for HTC jobs.

Note: jm_begin_job() is not supported for HTC jobs.

Note: This API is asynchronous. Control returns to your application before the
operation requested is complete.
222 IBM Blue Gene/P Application Development

� status_t jm_debug_job(db_job_id_t jid);

This function initiates the spawn of debug servers to a job in the RM_JOB_RUNNING state.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– JOB_NOT_FOUND
– INCOMPATIBLE_STATE

The job’s state prevents it from being debugged. See Figure 13-2 on page 226.

– INTERNAL_ERROR

� status_t rm_get_job(db_job_id_t jid, rm_job_t **job);

This function retrieves the specified job object.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– JOB_NOT_FOUND
– INTERNAL_ERROR

� status_t rm_get_jobs(rm_job_state_flag_t flag, rm_job_list_t **job_list);

This function returns a list of jobs whose current state matches the flag.

The possible flags are contained in the rm_api.h include file and are listed in Table 13-3.
You can use OR on these values to create a flag for including jobs with different states.

Table 13-3 Flags for job states

Note: jm_debug_job() is not supported for HTC.

Flag Value

JOB_IDLE_FLAG 0x001

JOB_STARTING_FLAG 0x002

JOB_RUNNING_FLAG 0x004

JOB_TERMINATED_FLAG 0x008

JOB_ERROR_FLAG 0x010

JOB_DYING_FLAG 0x020

JOB_DEBUG_FLAG 0x040

JOB_LOAD_FLAG 0x080

JOB_LOADED_FLAG 0x100

JOB_BEGIN_FLAG 0x200

JOB_ATTACH_FLAG 0x400

JOB_KILLED_FLAG 0x800
Chapter 13. Control system (Bridge) APIs 223

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INTERNAL_ERROR

� status_t jm_load_job(db_job_id_t jid);

This function sets the job state to LOAD.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– JOB_NOT_FOUND
– INCOMPATIBLE_STATE

The job’s state prevents it from being loaded. See Figure 13-2 on page 226.

– INTERNAL_ERROR

� status_t rm_query_job(db_job_id_t db_job_id, MPIR_PROCDESC **proc_table, int *
proc_table_size);

This function fills the proc_table with information about the specified job.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– JOB_NOT_FOUND
– INTERNAL_ERROR

� status_t rm_remove_job(db_job_id_t jid);

This function removes the specified job record from MMCS.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– JOB_NOT_FOUND
– INCOMPATIBLE_STATE

The job’s state prevents its removal. See Figure 13-2 on page 226.

Note: jm_load_job() is not supported for HTC jobs.

Note: rm_query_job() is not supported for HTC jobs.

Note: rm_remove_job() is not supported for HTC jobs.
224 IBM Blue Gene/P Application Development

– INTERNAL_ERROR

� status_t jm_signal_job(db_job_id_t jid, rm_signal_t signal);

This function sends a request to signal the job identified by the jid parameter.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– JOB_NOT_FOUND
– INCOMPATIBLE_STATE

The job’s state prevents it from being signaled.

– INTERNAL_ERROR

� status_t jm_start_job(db_job_id_t jid);

This function starts the job identified by the jid parameter. Note that the partition
information is referenced from the job record in MMCS.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– JOB_NOT_FOUND
– INCOMPATIBLE_STATE

The job’s state prevents its execution. See Figure 13-2 on page 226.

– INTERNAL_ERROR

� status_t rm_get_filtered_jobs(rm_job_filter_t query_parms, rm_job_list_t **job_list);

This function returns a list of jobs whose attributes or states (or both) that match the fields
specified in the filter provided in the rm_job_filter object.

The following return codes are possible:

– STATUS_OK
– CONNECTION_ERROR
– INTERNAL_ERROR

Note: This API is asynchronous. Control returns to your application before the
operation requested is complete.

Note: jm_start_job() is not supported for HTC jobs.

Note: This API is asynchronous. Control returns to your application before the
operation requested is complete.
Chapter 13. Control system (Bridge) APIs 225

State transition diagrams for jobs
Figure 13-2 illustrates the states that a job goes through during its life cycle. It also illustrates
the order of API calls for creating, running, and canceling a job.

Figure 13-2 Job state diagram for running a Blue Gene/P job

State changed by API call

State changed by MMCS

RM_JOB_DYING

jm_cancel_job()

RM_JOB_TERMINATED

RM_JOB_RUNNING

jm_start_job()

RM_JOB_ERRORRM_JOB_STARTING

jm_start_job()

RM_JOB_IDLE

rm_add_job()
226 IBM Blue Gene/P Application Development

Figure 13-3 illustrates the main states that a job goes through when debugging a new job.

Figure 13-3 Job state diagram for debugging a running job

State changed by API call

State changed by MMCS

RM_JOB_DYING

jm_cancel_job()

jm_cancel_job()

RM_JOB_TERMINATED

RM_JOB_RUNNING

RM_JOB_BEGIN

jm_begin_job()RM_JOB_ATTACH

jm_attach_job()

RM_JOB_LOADED

jm_load_job()

RM_JOB_ERRORRM_JOB_LOAD

jm_load_job()

RM_JOB_IDLE

rm_add_job()
Chapter 13. Control system (Bridge) APIs 227

Figure 13-4 illustrates the states a job goes through when debugging an already running job.

Figure 13-4 Job state diagram for debugging a new job

State changed by API call

State changed by MMCS

RM_JOB_DYING

jm_cancel_job()

jm_cancel_job()

RM_JOB_TERMINATED

RM_JOB_RUNNING

RM_JOB_BEGIN

jm_begin_job()RM_JOB_ATTACH

jm_attach_job()

RM_JOB_LOADED

jm_load_job()

RM_JOB_ERRORRM_JOB_LOAD

jm_load_job()

RM_JOB_IDLE

rm_add_job()
228 IBM Blue Gene/P Application Development

Figure 13-5 illustrates the states that a job goes through during its life cycle in HTC mode. It
also illustrates that the submit command is required.

Figure 13-5 Job state diagram for HTC mode

13.2.8 Field specifications for the rm_get_data() and rm_set_data() APIs

In this section, we describe all the field specifications that can be used to get and set fields
from various objects using the rm_get_data() and rm_set_data() APIs.

Blue Gene object
The Blue Gene object (rm_BG_t) represents the Blue Gene/P system. You can use this object
to retrieve information and status for other components in the system, such as base
partitions, node cards, I/O nodes, switches, wires, and port (see Table 13-4 on page 230).
The Blue Gene object is retrieved by calling the rm_get_BG() API.
Chapter 13. Control system (Bridge) APIs 229

Table 13-4 Values retrieved from a Blue Gene object using rm_get_data()

Base partition object
The base partition object (rm_BP_t) represents one base partition in the Blue Gene system.
The base partition object is retrieved from the Blue Gene object using either the RM_FirstBP
or RM_NextBP specification. See Table 13-5.

Table 13-5 Values retrieved from a base partition object using rm_get_data()

Description Specification Argument type Notes

Size of a base partition (in Compute
Nodes) in each dimension

RM_BPsize rm_size3D_t *

Size of the machine in base partition units RM_Msize rm_size3D_t *

Number of base partitions in the machine RM_BPNum int *

First base partition in the list RM_FirstBP rm_BP_t **

Next base partition in the list RM_NextBP rm_BP_t **

Number of switches in the machine RM_SwitchNum int *

First switch in the list RM_FirstSwitch rm_switch_t **

Next switch in the list RM_NextSwitch rm_switch_t **

Number of wires in the machine RM_WireNum int *

First wire in the list RM_FirstWire rm_wire_t **

Next wire in the list RM_NextWire rm_wire_t **

Description Specification Argument type Notes

Base partition identifier RM_BPID rm_bp_id_t * free required

Base partition state RM_BPState rm_BP_state_t *

Sequence ID for the base
partition state

RM_BPStateSeqID rm_sequence_id_t *

Location of the base partition
in the 3D machine

RM_BPLoc rm_location_t *

Identifier of the partition
assocated with the base
partition

RM_BPPartID pm_partition_id_t * free required.
If no partition is
associated, NULL
is returned.

State of the partition
assocated with the base
partition

RM_BPPartState rm_partition_state_t *
230 IBM Blue Gene/P Application Development

Table 13-6 shows the values that are set in the base partition object using rm_set_data().

Table 13-6 Values set in a base partition object using rm_set_data()

Node card list object
The node card list object (rm_nodecard_list_t) contains a list of node card objects. The node
card list object is retrieved by calling the rm_get_nodecards() API for a given base partition.
See Table 13-7.

Table 13-7 Values retrieved from a node card list object using rm_get_data()

Node card object
The node card object (rm_nodecard_t) represents a node card within a base partition. The
node card object is retrieved from the node card list object using the RM_NodeCardListFirst
and RM_NodeCardListNext specifications. See Table 13-8 on page 232.

Sequence ID for the state of
the partition assocated with
the base partition

RM_BPStateSeqID rm_sequence_id_t *

Flag indicating whether this
base partition is being used by
a small partition (smaller than
a base partition)

RM_BPSDB int * 0=No
1=Yes

Flag indicating whether this
base partition is being divided
into one or more small
partitions

RM_BPSD int * 0=No
1=Yes

Compute node memory size
for the base partition

RM_BPComputeNodeMemory rm_BP_computenode_memory_t *

Number of available node
cards

RM_BPAvailableNodeCards int *

Number of available I/O nodes RM_BPNumberIONodes int *

Description Specification Argument type Notes

Description Specification Argument type Notes

Base partition identifier RM_BPID rm_bp_id_t free required

Description Specification Argument type Notes

Number of node cards in the list RM_NodeCardListSize int *

First node card in the list RM_NodeCardListFirst rm_nodecard_t **

Next node card in the list RM_NodeCardListNext rm_nodecard_t **
Chapter 13. Control system (Bridge) APIs 231

Table 13-8 Values retrieved from a node card object using rm_get_data()

Table 13-9 shows the values that are set in a node card object when using rm_set_data().

Table 13-9 Values set in a node card object using rm_set_data()

Description Specification Argument type Notes

Node card identifier RM_NodeCardID rm_nodecard_id_t * free required;
possible values:
N00..N15

The quadrant of the base partition
where this node card is installed

RM_NodeCardQuarter rm_quarter_t *

Node card state RM_NodeCardState rm_nodecard_state_t *

Sequence ID for the node card state RM_NodeCardStateSeqID rm_sequence_id_t *

Number of I/O nodes on the node card
(can be 0, 1, or 2)

RM_NodeCardIONodes int *

Identifier of the partition assocated
with the node card

RM_NodeCardPartID pm_partition_id_t * free required.
If no partition is
associated,
NULL is
returned.

State of the partition assocated with
the node card

RM_NodeCardPartState rm_partition_state_t *

Sequence ID for the state of the
partition assocated with the node card

RM_NodeCardPartStateSeqID rm_sequence_id_t *

Flag indicating whether the node card
is being used by a partition whose size
is smaller than a node card

RM_NodeCardSDB int * 0=No
1=Yes

Number of I/O nodes in a list RM_NodeCardIONodeNum int *

First I/O node in the node card RM_NodeCardFirstIONode rm_ionode_t **

Next I/O node in the node card RM_NodeCardNextIONode rm_ionode_t **

Description Specification Argument type Notes

Node card identifier RM_NodeCardID rm_nodecard_id_t

Number of I/O nodes in list RM_NodeCardIONodeNum int *

First I/O node in the node card RM_NodeCardFirstIONode rm_ionode_t *

Next I/O node in the node card RM_NodeCardNextIONode rm_ionode_t *
232 IBM Blue Gene/P Application Development

I/O node object
The I/O node object (rm_ionode_t) represents an I/O node within a node card. The I/O node
object is retrieved from the node card object using the RM_NodeCardFirstIONode and
RM_NodeCardNextIONode specifications. See Table 13-10.

Table 13-10 Values retrieved from an I/O node object using rm_get_data()

Table 13-11 shows the values that are set in an I/O node object by using rm_set_data().

Table 13-11 Values set in an I/O node object using rm_set_data()

Switch object
The switch object (rm_switch_t) represents a switch in the Blue Gene/P system. The switch
object is retrieved from the following specifications:

� The Blue Gene object using the RM_FirstSwitch and RM_NextSwitch specifications

� The partition object using the RM_PartitionFirstSwitch and RM_PartitionNextSwitch
specifications

Description Specification Argument type Notes

I/O node identifier RM_IONodeID rm_ionode_id_t * Possible values:
J00, J01;
free required

Node card identifier RM_IONodeNodeCardID rm_nodecard_id_t * Possible values:
N00..N15;
free required

IP address RM_IONodeIPAddress char ** free required

MAC address RM_IONodeMacAddress char ** free required

Identifier of the partition assocated
with the I/O node

RM_IONodePartID pm_partition_id_t * free required.
If no partition is
associated with this
I/O node, NULL is
returned.

State of the partition assocated with
the I/O node

RM_IONodePartState rm_partition_state_t *

Sequence ID for the state of the
partition associated with the I/O
node

RM_IONodePartStateSeqID rm_sequence_id_t *

Description Specification Argument type Notes

I/O node identifier RM_IONodeID rm_ionode_id_t Possible values: J00, J01
Chapter 13. Control system (Bridge) APIs 233

Table 13-12 shows the values that are retrieved from a switch object using rm_get_data().

Table 13-12 Values retrieved from a switch object using rm_get_data()

Table 13-13 shows the values that are set in a switch object using rm_set_data().

Table 13-13 Values set in a switch object using rm_set_data()

Wire object
The wire object (rm_wire_t) represents a wire in the Blue Gene/P system. The wire object is
retrieved from the Blue Gene/P object using the RM_FirstWire and RM_NextWire
specifications. See Table 13-14 on page 235.

Description Specification Argument type Notes

Switch identifier RM_SwitchID rm_switch_id_t * free required

Identifier of the base partition
connected to the switch

RM_SwitchBPID rm_BP_id_t * free required

Switch state RM_SwitchState rm_switch_state_t *

Sequence ID for the switch state RM_SwitchStateSeqID rm_sequence_id_t *

Switch dimension RM_SwitchDim rm_dimension_t * Values:
� RM_DIM_X
� RM_DIM_Y
� RM_DIM_Z

Number of connections in the switch RM_SwitchConnNum int * A connection is a pair
of ports that are
connected internally in
the switch.

First connection in the list RM_SwitchFirstConnection rm_connection_t *

Next connection in the list RM_SwitchNextConnection rm_connection_t *

Description Specification Argument type Notes

Switch identifier RM_SwitchID rm_switch_id_t *

Number of connections in the
switch

RM_SwitchConnNum int * A connection is a pair of
ports that are connected
internally in the switch.

First connection in the list RM_SwitchFirstConnection rm_connection_t *

Next connection in the list RM_SwitchNextConnection rm_connection_t *
234 IBM Blue Gene/P Application Development

Table 13-14 Values retrieved from a wire object using rm_get_data()

Port object
The port object (rm_port_t) represents a port for a switch in the Blue Gene. The port object is
retrieved from the wire object using the RM_WireFromPort and RM_WireToPort specifications.
See Table 13-15.

Table 13-15 Values retrieved from a port object using rm_get_data()

Partition list object
The partition list object (rm_partition_list_t) contains a list of partition objects. The partition
list object is retrieved by calling the rm_get_partitions() or rm_get_partitions_info() APIs. See
Table 13-16.

Table 13-16 Values retrieved from a partition list object using rm_get_data()

Partition object
The partition object (rm_partition_t) represents a partition that is defined in the Blue Gene
system. The partition object is retrieved from the partition list object using the
RM_PartListFirstPart and RM_PartListNextPart specifications. A new partition object is
created using the rm_new_partition() API. After setting the appropriate fields in a new
partition object, the partition can be added to the system using the rm_add_partition() API.
See Table 13-17 on page 236.

Description Specification Argument type Notes

Wire identifier RM_WireID rm_wire_id_t * free required.

Wire state RM_WireState rm_wire_state_t * The state can be UP or
DOWN.

Source port RM_WireFromPort rm_port_t **

Destination port RM_WireToPort rm_port_t **

Identifier of the partition
associated with the wire

RM_WirePartID pm_partition_id_t * free required. If no
partition is associated,
NULL is returned.

State of the partition associated
with the wire

RM_WirePartState rm_partition_state_t *

Sequence ID for the state of the
partition associated with the wire

RM_WirePartStateSeqID rm_sequence_id_t *

Description Specification Argument type Notes

Identifier of the base
partition or switch
associated with the port

RM_PortComponentID rm_component_id_t * free required

Port identifier RM_PortID rm_port_id_t * Possible values for base partitions:
plus_x minus_x, plus_y, minus_y,
plus_z minus_z.
Possible values for switches: s0 . . . S5

Description Specification Argument type Notes

Number of partitions in the list RM_PartListSize int *

First partition in the list RM_PartListFirstPart rm_partition_t **

Next partition in the list RM_PartListNextPart rm_partition_t **
Chapter 13. Control system (Bridge) APIs 235

Table 13-17 Values retrieved from a partition object using rm_get_data()

Description Specification Argument type Notes

Partition identifier RM_PartitionID pm_partition_id_t * free required

Partition state RM_PartitionState rm_partition_state_t *

Sequence ID for the partition state RM_PartitionStateSeqID rm_sequence_id_t *

Connection type of the partition RM_PartitionConnection rm_connection_type_t * Values: TORUS
or MESH

Partition description RM_PartitionDescription char ** free required

Flag indicating whether this partition
is a partition smaller than the base
partition

RM_PartitionSmall int * 0=No
1=Yes

Number of used processor sets
(psets) per base partition

RM_PartitionPsetsPerBP int *

Job identifier of the current job RM_PartitionJobID int * If no job is
currently on the
partition, 0 is
returned; for HTC
partitions it
always returns 0
even when HTC
jobs are running.

Partition owner RM_PartitionUserName char ** free required

Partition options RM_PartitionOptions char ** free required

File name of the machine loader
image

RM_PartitionMloaderImg char ** free required

Comma-separated list of images to
load on the Compute Nodes

RM_PartitionCnloadImg char ** free required

Comma-separated list of images to
load on the I/O nodes

RM_PartitionIoloadImg char ** free required

Number of base partitions in the
partition

RM_PartitionBPNum int *

First base partition in the partition RM_PartitionFirstBP rm_BP_t **

Next base partition in the partition RM_PartitionNextBP rm_BP_t **

Number of switches in the partition RM_PartitionSwitchNum int *

First switch in the partition RM_PartitionFirstSwitch rm_switch_t **

Next switch in the partition RM_PartitionNextSwitch rm_switch_t **

Number of node cards in the partition RM_PartitionNodeCardNum int *

First node card in the partition RM_PartitionFirstNodeCard rm_nodecard_t **

Next node card in the partition RM_PartitionNextNodeCard rm_nodecard_t **

Number of users of the partition RM_PartitionUsersNum int *

First user name for the partition RM_PartitionFirstUser char ** free required
236 IBM Blue Gene/P Application Development

Table 13-18 shows the values that are set in a partition object using rm_set_data().

Table 13-18 Values set in a partition object using rm_set_data()

Next user name for the partition RM_PartitionNextUser char ** free required

HTC pool identifier RM_PartitionHTCPoolID pm_pool_id_t * Value will be
NULL for a HPC
partition.
free required

Partition size in compute nodes RM_PartitionSize int *

Boot options RM_PartitionBootOptions char ** free required

Description Specification Argument type Notes

Description Specification Argument type Notes

Partition identifier RM_PartitionID pm_partition_id_t Up to 32 characters for a
new partition ID, or up to
16 characters followed by
an asterisk (*) for a prefix
for a unique name

Connection type of the
partition

RM_PartitionConnection rm_connection_type_t * Values: TORUS or MESH

Partition description RM_PartitionDescription char *

Flag indicating whether this
partition is a partition smaller
than the base partition

RM_PartitionSmall int * 0=No
1=Yes

Number of used processor
sets (psets) per base partition

RM_PartitionPsetsPerBP int *

Partition owner RM_PartitionUserName char *

File name of the machine
loader image

RM_PartitionMloaderImg char *

Comma-separated list of
images to load on the
Compute Nodes

RM_PartitionCnloadImg char *

Comma-separated list of
images to load on the I/O
nodes

RM_PartitionIoloadImg char *

Number of base partitions in
the partition

RM_PartitionBPNum int *

First base partition in the
partition

RM_PartitionFirstBP rm_BP_t *

Next base partition in the
partition

RM_PartitionNextBP rm_BP_t *

Number of switches in the
partition

RM_PartitionSwitchNum int *

First switch in the list in the
partition

RM_PartitionFirstSwitch rm_switch_t *
Chapter 13. Control system (Bridge) APIs 237

Job list object
The job list object (rm_job_list_t) contains a list of job objects. The job list object is retrieved
by calling the rm_get_jobs() API. See Table 13-19.

Table 13-19 Values retrieved from a job list object using rm_get_data()

Job object
The job object (rm_job_t) represents a job defined in the Blue Gene system. The job object is
retrieved from the job list object using the RM_JobListFirstJob and RM_JobListNextJob
specifications. A new job object is created using the rm_new_job() API. After setting the
appropriate fields in a new job object, the job can be added to the system using the
rm_add_job() API. See Table 13-20.

Table 13-20 Values retrieved from a job object using rm_get_data()

Next switch in the partition RM_PartitionNextSwitch rm_switch_t *

Number of node cards in the
partition

RM_PartitionNodeCardNum int *

First node card in the partition RM_PartitionFirstNodecard rm_nodecard_t *

Next node card in the
partition

RM_PartitionNextNodecard rm_nodecard_t *

Boot options RM_PartitionBootOptions char *

Description Specification Argument type Notes

Description Specification Argument type Notes

Number of jobs in the list RM_JobListSize int *

First job in the list RM_JobListFirstJob rm_job_t **

Next job in the list RM_JobListNextJob rm_job_t **

Description Specification Argument type Notes

Job identifier RM_JobID rm_job_id_t * free required

Identifier is unique across
all jobs on the system.

Identifier of the partition assigned
for the job

RM_JobPartitionID pm_partition_id_t * free required

Job state RM_JobState rm_job_state_t *

Sequence ID for the job state RM_JobStateSeqID rm_sequence_id_t *

Executable file name for the job RM_JobExecutable char ** free required

Name of the user who submitted
the job

RM_JobUserName char ** free required

Integer containing the ID given to
the job by the database

RM_JobDBJobID db_job_id_t *

Job output file name RM_JobOutFile char ** free required

Job error file name RM_JobErrFile char ** free required
238 IBM Blue Gene/P Application Development

Job output directory name RM_JobOutDir char ** free required
This directory contains
the output files if a full
path is not given.

Error text returned from the control
daemons

RM_JobErrText char ** free required

Arguments for the job executable RM_JobArgs char ** free required

Environment parameter needed for
the job

RM_JobEnvs char ** free required

Flag indicating whether the job was
retrieved from the history table

RM_JobInHist int * 0=No
1=Yes

Job mode RM_JobMode rm_job_mode_t * Indicates virtual node,
SMP, or dual mode

System call trace indicator for
Compute Nodes

RM_JobStrace rm_job_strace_t *

Job start time
The format is
yyyy-mm-dd-hh.mm.ss.nnnnnn.
If the job never goes to running
state, it will be an empty string. Data
is only valid for completed jobs. The
rm_get_data() specification
RM_JobInHist can be used to
determine whether a job has
completed. If the job is an active
job, then the value returned is
meaningless.

RM_JobStartTime char ** free required

Job end time
Format is
yyyy-mm-dd-hh.mm.ss.nnnnnn.
Data is valid only for completed
jobs. The rm_get_data()
specification RM_JobInHist can be
used to determine whether a job
has completed. If the job is an
active job, the value returned is
meaningless.

RM_JobEndTime char ** free required

Job run time in seconds
Data is only valid for completed
jobs. The rm_get_data()
specification RM_JobInHist can be
used to determine whether a job
has completed. If the job is an
active job, the value returned is
meaningless.

RM_JobRunTime rm_job_runtime_t *

Description Specification Argument type Notes
Chapter 13. Control system (Bridge) APIs 239

Table 13-21 shows the values that are set in a job object using rm_set_data().

Table 13-21 Values set in a job object using rm_set_data()

Number of Compute Nodes used
by the job
Data is only valid for completed
jobs. The rm_get_data()
specification RM_JobInHist can be
used to determine whether a job
has completed. If the job is an
active job, the value returned is
meaningless.

RM_JobComputeNodesUsed rm_job_computenodes
_used_t *

Job exit status
Data is only valid for completed
jobs. The rm_get_data()
specification RM_JobInHist can be
used to determine whether a job
has completed. If the job is an
active job, the value returned is
meaningless.

RM_JobExitStatus rm_job_exitstatus_t *

User UID RM_JobUserUid rm_job_user_uid_t * Zero is returned when
querying existing jobs.

User GID RM_JobUserGid rm_job_user_gid_t * Zero is returned when
querying existing jobs.

Job location RM_JobLocation rm_job_location_t * If NULL value, then job is
HPC job. Non-NULL
value indicates the
location of the HTC job
and is of the form
Rxx-Mx-Nxx-Jxx-Cxx
(where C-xx is the
processor core).
free required

Pool ID assigned for the job RM_JobPooID pm_pool_id_t * If NULL value then job is
HPC job. Non-NULL
value indicates the
partition pool that the job
is assigned to.
free required

Description Specification Argument type Notes

Description Specification Argument type Notes

Job identifier RM_JobID rm_job_id_t This must be unique across all jobs
on the system; if not, return code
JOB_ALREADY_DEFINED is
returned.

Partition identifier assigned for
the job

RM_JobPartitionID pm_partition_id_t This field can be left blank when
adding a new job to the system.

Executable file name for the job RM_JobExecutable char *

Name of the user who submitted
the job

RM_JobUserName char *
240 IBM Blue Gene/P Application Development

Job filter object
The job filter object (rm_job_filter_t) represents a filter for jobs defined in the Blue Gene/P
system. The job filter object is passed as a parameter to the rm_get_filtered_jobs() API. The
jobs returned match all of the specified filter fields. See Table 13-22.

Table 13-22 Job filter object description for rm_job_filter_t

Job output file name RM_JobOutFile char *

Job error file name RM_JobErrFile char *

Job output directory RM_JobOutDir char * This directory contains the output
files if a full path is not given.

Arguments for the job executable RM_JobArgs char *

Environment parameter needed
for the job

RM_JobEnvs char *

Job mode RM_JobMode rm_job_mode_t * Possible values: Virtual node,
SMP, or dual mode.

System call trace indicator for
Compute Nodes

RM_JobStrace rm_job_strace_t *

User UID RM_JobUserUid rm_job_user_uid_t * This value can be set when adding
a job.

User GID RM_JobUserGid rm_job_user_gid_t * This value can be set when adding
a job.

Description Specification Argument type Notes

Description Specification Argument Type Notes

Job identifier RM_JobFilterID rm_job_id_t* ID is unique across all
jobs on the system.
free required

Partition identifier
assigned for the job

RM_JobFilterPartitionID pm_partition_id_t * Free required.

Job state RM_JobFilterState rm_job_state_t *

Executable file name for
the job

RM_JobFilterExecutable char** free required.

Name of the user who
submitted the job

RM_JobFilterUserName char** free required.

Integer containing the ID
given to the job by the
database

RM_JobFilterDBJobID db_job_id_t*

Job output directory name RM_JobFilterOutDir char** This directory contains
the
output files if a full path is
not given.
free required.

Job mode RM_JobFilterMode rm_job_mode_t* Indicates virtual node,
SMP, or dual mode.
Chapter 13. Control system (Bridge) APIs 241

Table 13-23 shows the job modes.

Table 13-23 Job modes

Table 13-24 shows Type modes.

Table 13-24 Job types

13.2.9 Object allocator APIs
In this section, we describe the APIs used to allocate memory for objects used with other API
calls:

� status_t rm_new_BP(rm_BP_t **bp);

Allocates storage for a new base partition object.

Job start time
Format is
yyyy-mm-dd-hh.mm.ss.n
nnnn.

RM_JobFilterStartTime char** free required.

Job location RM_JobFilterLocation rm_job_location_t * If NULL value, then job is
HPC job. Non-NULL value
indicates the location of
the HTC job and is of the
form
Rxx-Mx-Nxx-Jxx-Cxx
(where Cxx is the
processor core).
free required.

Pool ID assigned for the
job

RM_JobFilterPoolID pm_pool_id_t * If NULL value, then job is
HPC job. Non-NULL value
indicates the partition pool
that the job is assigned to.
free required.

Job type RM_JobFilterType rm_job_state_flag_t Flag to select HPC or
HTC jobs only or both.
The possible flags are
contained in the rm_api.h
include file.

Description Specification Argument Type Notes

Mode Value

RM_SMP_MODE 0x0000

RM_DUAL_MODE 0x0001

RM_VIRTUAL_NODE_MODE 0x0002

Type Value

JOB_TYPE_HPC_FLAG 0x0001

JOB_TYPE_HTC_FLAG 0x0002

JOB_TYPE_ALL_FLAG 0x0003
242 IBM Blue Gene/P Application Development

� status_t rm_new_ionode(rm_ionode_t **io);

Allocates storage for a new I/O node object.

� status_t rm_new_job(rm_job_t **job);

Allocates storage for a new job object.

� status_t rm_new_nodecard(rm_nodecard_t **nc);

Allocates storage for a new node card object.

� status_t rm_new_partition(rm_partition_t **partition);

Allocates storage for a new partition object.

� status_t rm_new_switch(rm_switch_t **switch);

Allocates storage for a new switch object.

� status_t rm_new_job_filter(rm_job_filter_t **jobfilter);

Allocates storage for a new job filter object

13.2.10 Object deallocator APIs
In this section, we describe the APIs used to deallocate memory for objects that are created
by other API calls:

� status_t rm_free_BG(rm_BG_t *bg);

Frees storage for a Blue Gene object.

� status_t rm_free_BP(rm_BP_t *bp);

Frees storage for a base partition object.

� status_t rm_free_ionode(rm_ionode_t *io);

Frees storage for an I/O node object.

� status_t rm_free_job(rm_job_t *job);

Frees storage for a job object.

� status_t rm_free_job_list(rm_job_list_t *job_list);

Frees storage for a job list object.

� status_t rm_free_nodecard(rm_nodecard_t *nc);

Frees storage for a node card object.

� status_t rm_free_nodecard_list(rm_nodecard_list_t *nc_list);

Frees storage for a node card list object.

� status_t rm_free_partition(rm_partition_t *partition);

Frees storage for a partition object.

� status_t rm_free_partition_list(rm_partition_list_t *part_list);

Frees storage for a partition list object.

� status_t rm_free_switch(rm_switch_t *switch);

Frees storage for a switch object.

� status_t rm_free_job_filter(rm_job_filter_t *jobfilter);

Frees storage for a job filter object.
Chapter 13. Control system (Bridge) APIs 243

13.2.11 Messaging APIs
In this section, we describe the set of thread-safe messaging APIs. These APIs are used by
the Bridge APIs as well as by other components of the job management system, such as the
mpirun program that ships with the Blue Gene/P software. Each message is written using the
following format:

<Timestamp> Component (Message type): Message text

Here is an example:

<Mar 9 04:24:30> BRIDGE (Debug): rm_get_BG()- Completed Successfully

The message can be one of the following types:

� MESSAGE_ERROR: Error messages
� MESSAGE_WARNING: Warning messages
� MESSAGE_INFO: Informational messages
� MESSAGE_DEBUG1: Basic debug messages
� MESSAGE_DEBUG2: More detailed debug messages
� MESSAGE_DEBUG3: Very detailed debug messages

The following verbosity levels, to which the messaging APIs can be configured, define the
policy:

� Level 0: Only error or warning messages are issued.
� Level 1: Level 0 messages and informational messages are issued.
� Level 2: Level 1 messages and basic debug messages are issued.
� Level 3: Level 2 messages and more debug messages are issued.
� Level 4: The highest verbosity level. All messages that will be printed are issued.

By default, only error and warning messages are written. To have informational and minimal
debug messages written, set the verbosity level to 2. To obtain more detailed debug
messages, set the verbosity level to 3 or 4.

In the following list, we describe the messaging APIs:

� int isSayMessageLevel(message_type_t m_type);

Tests the current messaging level. Returns 1 if the specified message type is included in
the current messaging level; otherwise returns 0.

� void closeSayMessageFile();

Closes the messaging log file.

� int sayFormattedMessage(FILE * curr_stream, const void * buf, size_t bytes);

Logs a preformatted message to the messaging output without a time stamp.

� void sayMessage(const char * component, message_type_t m_type, const char *
curr_func, const char * format, ...);

Logs a message to the messaging output.

The format parameter is a format string that specifies how subsequent arguments are
converted for output. This value must be compatible with printf format string
requirements.

� int sayPlainMessage(FILE * curr_stream, const char * format, ...);

Logs a message to the messaging output without a time stamp.

Note: Any messaging output after calling this method is sent to stderr.
244 IBM Blue Gene/P Application Development

The format parameter is a format string that specifies how subsequent arguments are
converted for output. This value must be compatible with the printf format string
requirements.

� void setSayMessageFile(const char* oldfilename, const char* newfilename);

Opens a new file for message logging.

� void setSayMessageLevel(unsigned int level);

Sets the messaging verbose level.

� void setSayMessageParams(FILE * stream, unsigned int level);

Uses the provided file for message logging and sets the logging level.

13.3 Small partition allocation
The base allocation unit in the Blue Gene/P system is a base partition. Partitions are
composed of whole numbers of base partitions, except in two special cases concerning small
partitions. A small partition is a partition that is comprised of a fraction of a base partition.
Small partitions can be created in the following sizes:

� 16 Compute Nodes

A 16-node partition is comprised of 16 Compute Nodes from a single node card. The node
card must have two installed I/O nodes in order to be used for a 16-node partition.

� 32 Compute Nodes

A 32-node partition is comprised of all the Compute Nodes in a single node card. The
node card must have at least one installed I/O node in order to be used for a 32-node
partition.

� 64 Compute Nodes

A 64-node partition is comprised of two adjacent node cards beginning with N00, N02,
N04, N06, N08, N10, N12, or N14. The first node card in the pair must have at least one
installed I/O node in order to be used for a 64-node partition.

� 128 Compute Nodes

A 128-node partition is comprised of set of four adjacent node cards beginning with N00,
N04, N08, or N12. The first node card in the set must have at least one installed I/O node
in order to be used for a 128-node partition.

� 256 Compute Nodes

A 256-node partition is comprised of a set of eight adjacent node cards beginning with
N00 or N08. The first node card in the set must have at least one installed I/O node in
order to be used for a 256-node partition.

Note: This method can be used to atomically rotate log files.

Note: This method has been deprecated in favor of the setSayMessageFile() and
setSayMessageLevel() methods.
Chapter 13. Control system (Bridge) APIs 245

13.3.1 Subdivided busy base partitions
It is important that you understand the concept of subdivided busy base partitions when
working with small partitions. A base partition is considered subdivided busy if at least one
partition, defined for a subset of its node cards, is busy. A partition is busy if its state is not
free (RM_PARTITION_FREE).

A base partition that is subdivided busy cannot be booted as a whole because some of its
hardware is unavailable. A base partition can have small partitions and full midplane
partitions (multiples of 512 Compute Nodes) defined for it in the database. If the base partition
has small partitions defined, they do not have to be in use, and a full midplane partition can
use the actual midplane. In this case, the partition name that is using the base partition is
returned on the RM_BPPartID specification.

For small partitions, multiple partitions can use the same base partition. This is the subdivided
busy (SDB) example. In this situation, the value returned for the RM_BPPartID specification is
meaningless. You must use the RM_BPSDB specification to determine whether the base
partition is subdivided busy (small partition in use).

13.4 API examples

In this section, we provide example API calls for several common situations.

13.4.1 Retrieving base partition information

The code in Example 13-2 retrieves the Blue Gene/P hardware information and prints some
information about each base partition in the system.

Example 13-2 Retrieving base partition information

#include "rm_api.h"
int main(int argc, char *argv[]) {
 status_t rmrc;
 rm_BG_t *rmbg;
 int bpNum;
 enum rm_specification getOption;
 rm_BP_t *rmbp;
 rm_bp_id_t bpid;
 rm_BP_state_t state;
 rm_location_t loc;
 rmrc = rm_set_serial("BGP");
 rmrc = rm_get_BG(&rmbg);
 if (rmrc) {
 printf("Error occured calling rm_get_BG: %d\n", rmrc);
 return -1;
 }
 rm_get_data(rmbg, RM_BPNum, &bpNum);
 printf("Number of base partitions: %d\n", bpNum);
 getOption = RM_FirstBP;
 for (int ii = 0; ii < bpNum; ++ii) {
 rm_get_data(rmbg, getOption, &rmbp);
 rm_get_data(rmbp, RM_BPID, &bpid);
 rm_get_data(rmbp, RM_BPState, &state);
 rm_get_data(rmbp, RM_BPLoc, &loc);
 printf(" BP %s with state %d at location <%d,%d,%d>\n", bpid, state, loc.X,
loc.Y, loc.Z);
 free(bpid);
246 IBM Blue Gene/P Application Development

 getOption = RM_NextBP;
 }
 rm_free_BG(rmbg); // Deallocate memory from rm_get_BG()
}

The example code can be compiled and linked with the commands shown in Figure 13-6.

Figure 13-6 Example compile and link commands

13.4.2 Retrieving node card information

The code in Example 13-3 shows how to retrieve information about the node cards for a base
partition. The rm_get_nodecards() function retrieves a list of all the node cards in a base
partition. The list always contains exactly 16 node cards.

Example 13-3 Retrieving node card information

int getNodeCards(rm_bp_id_t bpid) {
 int rmrc;
 rm_nodecard_list_t *ncList;
 int ncNum;
 enum rm_specification getOption;
 rm_nodecard_t *rmnc;
 rm_nodecard_id_t ncid;
 rm_nodecard_state_t ncState;
 int ioNum;
 rmrc = rm_get_nodecards(bpid, &ncList);
 if (rmrc) {
 printf("Error occured calling rm_get_nodecards: %d\n", rmrc);
 return -1;
 }
 rmrc = rm_get_data(ncList, RM_NodeCardListSize, &ncNum);
 printf(" Base partition %s has %d nodecards\n", bpid, ncNum);
 getOption = RM_NodeCardListFirst;
 for (int ii = 0; ii < ncNum; ++ii) {
 rmrc = rm_get_data(ncList, getOption, &rmnc);
 rmrc = rm_get_data(rmnc, RM_NodeCardID, &ncid);
 rmrc = rm_get_data(rmnc, RM_NodeCardState, &ncState);
 rmrc = rm_get_data(rmnc, RM_NodeCardIONodes, &ioNum);
 printf(" Node card %s with state %d has %d I/O nodes\n", ncid, ncState,
ioNum);
 free(ncid);

 getOption = RM_NodeCardListNext;
 }
 rm_free_nodecard_list(ncList);
}

g++ -m64 -pthread -I/bgsys/drivers/ppcfloor/include -c sample1.cc -o sample1.o_64

g++ -m64 -pthread -o sample1 sample1.o_64 -L/bgsys/drivers/ppcfloor/lib64 -lbgpbridge
Chapter 13. Control system (Bridge) APIs 247

13.4.3 Defining a new small partition
Example 13-4 contains pseudo code that shows how to allocate a new small partition.

Example 13-4 Allocating a new small partition

int isSmall = 1;

rm_new_partition(&newpart); //Allocate space for new partition

// Set the descriptive fields
rm_set_data(newpart,RM_PartitionUserName, username);
rm_set_data(newpart,RM_PartitionMloaderImg, BGP_MLOADER_IMAGE);
rm_set_data(newpart,RM_PartitionCnloadImg, BGP_CNLOAD_IMAGE);
rm_set_data(newpart,RM_PartitionIoloadImg, BGP_IOLOAD_IMAGE);
rm_set_data(newpart,RM_PartitionSmall, &isSmall); // Mark partition as a small partition

// Add a single BP
rm_new_BP(rm_BP_t **BP);
rm_set_data(BP, RM_BPID, “R01-M0”);
rm_set_data(newpart, RM_PartitionFirstBP, BP);

// Add the node card(s) comprising the partition
ncNum = 4; // The number of node cards is 4 for 128 compute nodes
rm_set_data(newpart, RM_PartitionNodeCardNum, &ncNum); // Set the number of node cards
for (1 to ncNum) {

// all four node cards must belong to same quarter!
rm_new_nodecard(rm_nodecard_t **nc); // Allocate space for new node card
rm_set_data(nc, RM_NodeCardID, ncid);
rm_set_data(newpart, RM_PartitionFirstNodeCard, nc); // Add the node card to the

partition
 or

rm_set_data(newpart, RM_PartitionNextNodeCard, nc);
rm_free_nodecard(nc);

}

rm_add_partition(newpart);

13.4.4 Querying a small partition

Example 13-5 contains pseudo code that shows how to query a small partition for its node
cards.

Example 13-5 Querying a small partition

rm_get_partition(part_id, &mypart); // Get the partition
rm_get_data(mypart, RM_PartitionSmall, &small); // Check if this is a “small” partition
if (small) {

rm_get_data(mypart,RM_PartitionFirstBP, &BP); // Get the First (and only) BP
rm_get_data(mypart,RM_PartitionNodeCardNum, &nc_num); // Get the number of node cards

for (1 to nc_num) {
rm_get_data(mypart, RM_PartitionFirstNodeCard, &nc);

or
rm_get_data(mypart, RM_PartitionNextNodeCard, &nc);

rm_get_data(nc, RM_NodeCardID, &ncid); // Get the id
rm_get_data(nc, RM_NodeCardQuarter, &quarter); // Get the quarter
rm_get_data(nc, RM_NodeCardState, &state); // Get the state
248 IBM Blue Gene/P Application Development

rm_get_data(nc, RM_NodeCardIONodes, &ionodes); // Get num of I/O nodes
rm_get_data(nc, RM_NodeCardPartID, &partid); // Get the partition ID
rm_get_data(nc, RM_NodeCardPartState, &partstate); // Get the partition state

print node card information

}
}

Chapter 13. Control system (Bridge) APIs 249

250 IBM Blue Gene/P Application Development

Chapter 14. Real-time Notification APIs

With the Blue Gene/P system, two programming models can handle state transitions for jobs,
blocks, base partitions, switches, wires, and node cards. The first model is based on a polling
model, where the caller of the Bridge APIs is responsible for the continuous polling of state
information. The second model consists of Real-time Notification APIs that allow callers to
register for state transition event notifications.

The Real-time Notification APIs are designed to eliminate the need for a resource
management system to constantly have to read in all of the machine state to detect changes.
The APIs enable the caller to be notified in real time of state changes to jobs, blocks, and
hardware, such as base partitions, switches, wires, and node cards. After a resource
management application obtains an initial snapshot of the machine state using the Bridge
APIs, the resource management application can then be notified only of changes using the
Real-time Notification APIs.

In this chapter, we describe the Real-time Notification APIs for the Blue Gene/P system that a
resource management application can use. We discuss the following specific topics:

� API support
� Real-time Notification APIs
� Real-time callback functions
� Real-time elements
� Server-side event filtering
� Real-time Notification API status codes
� Sample real-time application code

14
© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 251

14.1 API support overview
In the following sections, we present an overview of the support that the APIs provide.

14.1.1 Requirements
The requirements for writing programs to the Real-time Notification APIs are as follows:

� Currently, SUSE Linux Enterprise Server (SLES) 10 for PowerPC is the only supported
platform. The application must run on the IBM Blue Gene service node.

� When the application calls rt_init(), the API looks for the DB_PROPERTY environment
variable. The corresponding db.properties file indicates the port on which the real-time
server is listening and that the real-time client uses to connect to the server. The
environment variable should be set to point to the actual db.properties file location as
follows:

– On a bash shell

export DB_PROPERTY=/bgsys/drivers/ppcfloor/bin/db.properties

– On a csh shell

setenv DB_PROPERTY /bgsys/drivers/ppcfloor/bin/db.properties

� C and C++ are supported with the GNU gcc V4.1.2-level compilers. For more information
and downloads, refer to the following Web address:

http://gcc.gnu.org/

� The include file is /bgsys/drivers/ppcfloor/include/rt_api.h.

� Only 64-bit shared library support is provided. Link your real-time application with the file
/bgsys/drivers/ppcfloor/lib64/libbgrealtime.so.

Both the include and shared library files are installed as part of the standard system
installation. They are contained in the bgpbase.rpm file.

Example 14-1 shows a possible excerpt from a makefile that you can create to help automate
builds of your application. This sample is shipped in the directory
/bgsys/drivers/ppcfoor/doc/realtime/sample/simple/Makefile. In this makefile, the program that
is being built is rt_sample_app, and the source is in the rt_sample_app.cc file.

Example 14-1 Makefile excerpt

ALL_APPS = rt_sample_app

CXXFLAGS += -w -Wall -g -m64 -pthread
CXXFLAGS += -I/bgsys/drivers/ppcfloor/include

LDFLAGS += -L/bgsys/drivers/ppcfloor/lib64 -lbgrealtime
LDFLAGS += -pthread

.PHONY: all clean default distclean

default: $(ALL_APPS)

all: $(ALL_APPS)

clean:
$(RM) $(ALL_APPS) *.o
252 IBM Blue Gene/P Application Development

http://gcc.gnu.org/

distclean: clean

...

14.1.2 General comments
The real-time APIs have general considerations that apply to all or most calls. We highlight
the following common features:

� All the API calls return an rt_status_t, which indicates either success or a status code.
An exit code of 0 (RT_STATUS_OK) indicates that no problems were encountered.
Positive status codes indicate that an expected non-error condition was encountered,
whereas negative status codes indicate an error occurred.

� Most of the API calls take a pointer to a real-time handle (rt_handle_t), which is an
opaque structure that represents a stream of real-time messages.

� The real-time APIs use sayMessage APIs for printing debug and error messages. The
application should initialize the sayMessage APIs before calling the real-time APIs.

Blocking mode versus nonblocking mode
A real-time handle can be in blocking or nonblocking mode. In blocking mode,
rt_request_realtime() and rt_set_server_filter() block until it can send the request, and
rt_read_msgs() blocks until there is an event to receive. In nonblocking mode,
rt_request_realtime() and rt_set_server_filter() return RT_WOULD_BLOCK if the request cannot
be sent. If your application gets this return code from rt_request_realtime() or
rt_set_server_filter(), you must call the function again until it returns RT_FINISHED_PREV. In
nonblocking mode, rt_read_msgs() returns RT_NO_REALTIME_MSGS immediately if no real-time
event is ready to be processed.

rt_get_socket_descriptor() can be used to get a file descriptor that can be used with a
select()-type system API to wait for a real-time event to be available to rt_read_msgs() when a
handle is in nonblocking mode.

The initial blocking or nonblocking mode is set using rt_init(). An initialized handle can be set
to blocking mode by using rt_set_blocking() or set to nonblocking mode by using
rt_set_nonblocking().

Filtering events
Prior to IBM Blue Gene/P release V1R3M0, filtering of real-time events was performed only
on the client. With V1R3M0, filtering of real-time events can be done by the server, which is
more efficient because the messages are sent only if the client wants to receive them. For
more information about server-side filtering, refer to 14.5, “Server-side filtering” on page 272.

A real-time handle can be configured so that only partition events that affect certain partitions,
job events, or both, are passed to the application.

Setting the client-side partition filter is done by using the rt_set_filter() API with RT_PARTITION
as the filter_type parameter. The filter_names parameter can specify one or more partition
IDs separated by spaces. When rt_get_msgs() is called, partition events are delivered only to
the application if the partition ID matches any of the partition IDs in the filter. If the
filter_names parameter is set to NULL, the partition filter is removed, and all partition events
are delivered to the application. An example of the value to use for the filter_names parameter
for partition IDs R00-M0 and R00-M1 is “R00-M0 R00-M1”.
Chapter 14. Real-time Notification APIs 253

You can set the client-side job filter by using the rt_set_filter() API with RT_JOB as the
filter_type parameter. The filter_names parameter can specify one or more job IDs (as
strings) separated by spaces. When the rt_get_msgs() API is called, job events are delivered
only to the application if the job ID matches any of the job IDs in the filter. If the filter_names
parameter is set to NULL, the job filter is removed, and all job events are delivered to the
application. An example of the value to use for the filter_names parameter for job IDs 10030
and 10031 is “10030 10031”.

The other use of the rt_set_filter() API is to remove both types of filter by passing
RT_CLEAR_ALL in the filter_type parameter.

14.2 Real-time Notification APIs
In this section, we describe the Real-time Notification APIs:

� rt_status_t rt_init(rt_handle_t **handle_out, rt_block_flag_t blocking_flag,
rt_callbacks_t* callbacks);

Initializes a real-time handle. This function gets the port of the real-time server from the
db.properties file. The name of the db.properties file must be in the DB_PROPERTY
environment variable, or RT_DB_PROPERTY_ERROR is returned.

If this function is successful, *handle_out is set to a valid handle connected to the
real-time server. The blocking state for the handle is set based on the blocking flag
parameter. The callbacks for the handle are set to the callbacks parameter. If this function
is not successful and handle_out is not NULL, then *handle_out is set to NULL:

� rt_status_t rt_close(rt_handle_t **handle);

Closes a real-time handle. The handle must not be used after calling this function.

� rt_status_t rt_set_blocking(rt_handle_t **handle);

Sets a real-time handle to blocking mode.

� rt_status_t rt_set_nonblocking(rt_handle_t **handle);

Sets a real-time handle to nonblocking mode.

� rt_status_t rt_create_server_filter(rt_filter_t **filter_out);

Creates a server-side filter object.

� rt_status_t rt_server_filter_set_property(rt_filter_t *filter,
rt_server_filter_property_t filter_property, void *property_value);

Sets a property of the server-side filter object.

� rt_status_t rt_set_server_filter(rt_handle_t **handle, const rt_filter_t
*filter, rt_filter_id_t *filter_id_out);

Assigns a server-side filter to a real-time handle.

� rt_status_t rt_free_server_filter(rt_filter_t **filter_in_out);

Frees a server-side filter object.
254 IBM Blue Gene/P Application Development

� rt_status_t rt_set_filter(rt_handle_t **handle, rt_filter_type_t filter_type,
const char* filter_names);

Sets the client-side filter on a real-time handle. The filter names consist of a C-style string
that contains a space-separated list of names to filter on. If removing filter entries, set
filter_names to NULL. For filtering on partition names, consider this example of “R01-M0
R02-M1 R03”.

� rt_status_t rt_request_realtime(rt_handle_t **handle);

Requests real-time events for this handle. If this function returns RT_WOULD_BLOCK,
the request has not been sent. Call this function again until it returns RT_FINISHED_PREV,
which indicates that the previous request has been sent.

If this function returns RT_FINISHED_PREV, a new request was not sent.

� rt_status_t rt_get_socket_descriptor(rt_handle_t **handle, int *sd_out);

Gets the socket descriptor used by the real-time APIs. You can use this socket descriptor
with the select() or poll() Linux APIs to wait until a real-time message is ready to be read.
Other file or socket descriptor APIs, such as close(), should not be used on the socket
descriptor returned by this API.

� rt_status_t rt_read_msgs(rt_handle_t **handle, void *data);

Receives real-time events on a handle. If the handle is blocking, this function blocks as
long as no events are waiting. If the handle is nonblocking, the function returns
immediately with RT_NO_REALTIME_MSGS if no events are waiting. If an event is waiting to be
processed, the callback associated with the event type is called. If the callback returns
RT_CALLBACK_CONTINUE, events continue to be processed.

� rt_status_t rt_get_data(rt_element_t *elem, rt_specification_t field, void
*data_out);

Gets data from a real-time element.

� rt_status_t rt_dup_element(rt_element_t *elem, rt_element_t **elem_out);

Copies a real-time element.

� rt_status_t rt_free_element(rt_element_t *elem);

Frees a real-time element.

� const char* rt_convert_ras_severity_to_string(rt_ras_severity_t severity);

Gets a printable string for a RAS severity value.

14.3 Real-time callback functions
Developers who use the Real-time Notification APIs must write functions that are called when
real-time events are received. These functions are callback functions because the application
calls the rt_read_msgs() API, which then calls the function supplied by the application.

Pointers to the callback functions must be set in an rt_callbacks_t structure. When a
real-time event is received, the corresponding function is called using that pointer. The
application passes its rt_callbacks_t into rt_init(), which is stored for use when
rt_read_msgs() is called. If the pointer to the callback function in the rt_callbacks_t
structure is NULL, the event is discarded.

In addition to setting the callback functions in the rt_callbacks_t structure, the application
must also set the version field to RT_CALLBACK_VERSION_2. With a later version of the real-time
APIs, we can provide different callbacks and a different version for this field. The application
Chapter 14. Real-time Notification APIs 255

can use the RT_CALLBACK_VERSION_CURRENT macro, which is the current version when the
application is compiled.

From inside your callback function, you cannot call a real-time API using the same handle on
which the event occurred; otherwise, your application deadlocks.

The return type of the callback functions is an indicator of whether rt_read_msgs() continues
to attempt to receive another real-time event on the handle or whether it stops. If the callback
function returns RT_CALLBACK_CONTINUE, rt_read_msgs() continues to attempt to receive
real-time events. If the callback function returns RT_CALLBACK_QUIT, rt_read_msgs() does not
attempt to receive another real-time event but returns RT_STATUS_OK.

Sequence identifiers (IDs) are associated with the state of each partition, job, base partition,
node card, wire, and switch. A state with a higher sequence ID is newer. If your application
gets the state for an object from the Bridge APIs in addition to the real-time APIs, you must
discard any state that has a lower sequence ID for the same object.

These APIs provide the raw state for partitions, jobs, base partitions, node cards, wires and
switches in addition to providing the state. The raw state is the status value that is stored in
the Blue Gene/P database as a single character, rather than the state enumeration that the
Bridge APIs use. Several raw state values map to a single state value so your application
might receive real-time event notifications where the state does not change but the raw state
does, for example, the partition raw states of “A” (allocating), “C” (configuring), and “B”
(booting) all map to the Bridge enumerated state of RM_PARTITION_CONFIGURING.

Real-time callback structure
In this section, we describe each of the callbacks available to applications in the
rt_callbacks_t structure. We list each field of the structure along with the following
information:

� The description of the event that causes the callback to be invoked

� The signature of the callback function

Your function must match the signature. Otherwise your program fails to compile.

� A description of each argument to the callback function

Field end_cb
The end_cb callback function is called when a real-time ended event occurs. Your application
does not receive any more real-time events on this handle until you request real-time events
from the server again by calling the rt_request_realtime API.

The function uses the following signature:

cb_ret_t my_rt_end(rt_handle_t **handle, void *extended_args, void *data);

Table 14-1 lists the arguments to the end_cb callback function.

Table 14-1 Field end_cb

Argument Description

handle Real-time handle on which the event occurred

extended_args Not used; is NULL for now

data Application data forwarded by rt_read_msgs()
256 IBM Blue Gene/P Application Development

Field partition_added_cb
The partition_added_cb function is called when a partition added event occurs.

The function uses the following signature:

cb_ret_t my_rt_partition_added(
rt_handle_t **handle,
rm_sequence_id_t seq_id,
pm_partition_id_t partition_id,
rm_partition_state_t partition_new_state,
rt_raw_state_t partition_raw_new_state,
void *extended_args,
void *data);

Table 14-2 lists the arguments to the partition_added_cb function.

Table 14-2 Field partition_added_cb

Field partition_state_changed_cb
The partition_state_changed_cb function is called when a partition state changed event
occurs.

The function uses the following signature:

cb_ret_t my_rt_partition_state_changed(
rt_handle_t **handle,
rm_sequence_id_t seq_id,
rm_sequence_id_t previous_seq_id,
pm_partition_id_t partition_id,
rm_partition_state_t partition_new_state,
rm_partition_state_t partition_old_state,
rt_raw_state_t partition_raw_new_state,
rt_raw_state_t partition_raw_old_state,
void *extended_args,
void *data);

Argument Description

handle Real-time handle on which the event occurred

seq_id Sequence ID for this partition’s state

partition_id The partition’s ID

partition_new_state The partition’s new state

partition_raw_new_state The partition’s new raw state

extended_args Not used; NULL for now

data Application data forwarded by rt_read_msgs()
Chapter 14. Real-time Notification APIs 257

Table 14-3 lists the arguments to the partition_state_changed_cb function.

Table 14-3 Field partition_state_changed_cb

Field partition_deleted_cb
The partition_deleted_cb function is called when a partition deleted event occurs.

The function uses the following signature:

cb_ret_t my_rt_partition_deleted(
rt_handle_t **handle,
rm_sequence_id_t previous_seq_id,
pm_partition_id_t partition_id,
void *extended_args,
void *data);

Table 14-4 lists the arguments to the partition_deleted_cb function.

Table 14-4 Field partition_deleted_cb

Field job_added_cb
The job_added_cb function is called when a job added event occurs.

Note that this function is not called if the version field is RT_CALLBACK_VERSION1 and the
job_added_v1_cb field is not NULL. The job_added_v1_cb callback provides more information.

Argument Description

handle Real-time handle on which the event occurred

seq_id Sequence ID for this partition’s new state

previous_seq_id Sequence ID for this partition’s old state

partition_id The partition’s ID

partition_new_state The partition’s new state

partition_old_state The partition’s old state

partition_raw_new_state The partition’s new raw state

partition_raw_old_state The partition’s old raw state

extended_args Not used; NULL for now

data Application data forwarded by rt_read_msgs()

Argument Description

handle Real-time handle on which the event occurred

previous_seq_id Sequence ID for this partition’s state when removed

partition_id The partition’s ID

extended_args Not used; NULL for now

data Application data forwarded by rt_read_msgs()
258 IBM Blue Gene/P Application Development

The function uses the following signature:

cb_ret_t my_rt_job_added(
rt_handle_t **handle,
rm_sequence_id_t seq_id,
db_job_id_t job_id,
pm_partition_id_t partition_id,
rm_job_state_t job_new_state,
rt_raw_state_t job_raw_new_state,
void *extended_args,
void *data);

Table 14-5 lists the arguments to the job_added_cb function.

Table 14-5 Field job_added_cb

Field job_state_changed_cb
The job_state_changed_cb function is called when a job state changed event occurs.

Note that this function is not called if the version field is RT_CALLBACK_VERSION1 and the
job_state_changed_v1_cb field is not NULL. The job_state_changed_v1_cb callback provides
more information.

The function uses the following signature:

cb_ret_t my_rt_job_state_changed(
rt_handle_t **handle,
rm_sequence_id_t seq_id,
rm_sequence_id_t previous_seq_id,
db_job_id_t job_id,
pm_partition_id_t partition_id,
rm_job_state_t job_new_state,
rm_job_state_t job_old_state,
rt_raw_state_t job_raw_new_state,
rt_raw_state_t job_raw_old_state,
void *extended_args,
void *data);

Argument Description

handle Real-time handle on which the event occurred

seq_id Sequence ID for the job’s state

job_id The new job’s ID

partition_id ID of the partition to which the job is assigned

job_new_state The job’s new state

job_raw_new_state The job’s new raw state

extended_args Not used; NULL for now

data Application data forwarded by rt_read_msgs()
Chapter 14. Real-time Notification APIs 259

Table 14-6 lists the arguments to the job_state_changed_cb function.

Table 14-6 Field job_state_changed_cb

Field job_deleted_cb
The job_deleted_cb function is called when a job-deleted event occurs.

Note that this function is not called if the version field is RT_CALLBACK_VERSION1 and the
job_deleted_v1_cb field is not NULL. The job_deleted_v1_cb callback provides more
information.

The function uses the following signature:

cb_ret_t my_rt_job_deleted(
rt_handle_t **handle,
rm_sequence_id_t previous_seq_id,
db_job_id_t job_id,
pm_partition_id_t partition_id,
void *extended_args,
void *data);

Table 14-7 lists the arguments to the job_deleted_cb function.

Table 14-7 Field job_deleted_cb

Argument Description

handle Real-time handle on which the event occurred

seq_id Sequence ID for the job’s new state

previous_seq_id Sequence ID of the job’s previous state

job_id The job’s ID

partition_id ID of the partition to which the job is assigned

job_new_state The job’s new state

job_old_state The job’s old state

job_raw_new_state The job’s new raw state

job_raw_old_state The job’s old raw state

extended_args Not used; NULL for now

data Application data forwarded by rt_read_msgs()

Argument Description

handle Real-time handle on which the event occurred

previous_seq_id Sequence ID of the job’s previous state

job_id Deleted job’s ID

partition_id ID of the partition to which the job was assigned

extended_args Not used; NULL for now

data Application data forwarded by rt_read_msgs()
260 IBM Blue Gene/P Application Development

Field bp_state_changed_cb
The bp_state_changed_cb is called when a base partition state changed event occurs.

The function uses the following signature:

cb_ret_t my_rt_BP_state_changed_fn(
rt_handle_t **handle,
rm_sequence_id_t seq_id,
rm_sequence_id_t previous_seq_id,
rm_bp_id_t bp_id,
rm_BP_state_t BP_new_state,
rm_BP_state_t BP_old_state,
rt_raw_state_t BP_raw_new_state,
rt_raw_state_t BP_raw_old_state,
void *extended_args,
void *data);

Table 14-8 lists the arguments to the bp_state_changed_cb function.

Table 14-8 Field bp_state_changed_cb

Field switch_state_changed_cb
The switch_state_changed_cb is called when a switch state changed event occurs.

The function uses the following signature:

cb_ret_t my_rt_switch_state_changed(
rt_handle_t **handle,
rm_sequence_id_t seq_id,
rm_sequence_id_t previous_seq_id,
rm_switch_id_t switch_id,
rm_bp_id_t bp_id,
rm_switch_state_t switch_new_state,
rm_switch_state_t switch_old_state,
rt_raw_state_t switch_raw_new_state,
rt_raw_state_t switch_raw_old_state,
void *extended_args,
void *data);

Argument Description

handle Real-time handle on which the event occurred

seq_id Sequence ID of the base partition’s new state

previous_seq_id Sequence ID of the base partition’s previous state

bp_id The base partition’s ID

BP_new_state The base partition’s new state

BP_old_state The base partition’s old state

BP_raw_new_state The base partition’s new raw state

BP_raw_old_state The base partition’s old raw state

extended_args Not used; NULL for now

data Application data forwarded by rt_read_msgs()
Chapter 14. Real-time Notification APIs 261

Table 14-9 lists the arguments to the switch_state_changed_cb function.

Table 14-9 Field switch_state_changed_cb

Field nodecard_state_changed_cb
The nodecard_state_changed_cb is called when a node card state changed event occurs.

The function uses the following signature:

cb_ret_t my_rt_nodecard_state_changed(
rt_handle_t **handle,
rm_sequence_id_t seq_id,
rm_sequence_id_t previous_seq_id,
rm_nodecard_id_t nodecard_id,
rm_bp_id_t bp_id,
rm_nodecard_state_t nodecard_new_state,
rm_nodecard_state_t nodecard_old_state,
rt_raw_state_t nodecard_raw_new_state,
rt_raw_state_t nodecard_raw_old_state,
void *extended_args,
void *data);

Argument Description

handle Real-time handle on which the event occurred

seq_id Sequence ID for the switch’s new state

previous_seq_id Sequence ID of the switch’s previous state

switch_id The switch’s ID

bp_id The switch’s base partition's ID

switch_new_state The switch’s new state

switch_old_state The switch’s old state

switch_raw_new_state The switch’s new raw state

switch_raw_old_state The switch’s old raw state

extended_args Not used; NULL for now

data Application data forwarded by rt_read_msgs()
262 IBM Blue Gene/P Application Development

Table 14-10 lists the arguments to the nodecard_state_changed_cb function.

Table 14-10 Field nodecard_state_changed_cb

Field job_added_v1_cb
The job_added_v1_cb function is called when a job added event occurs.

Note that this function is called only if the version field is RT_CALLBACK_VERSION_1 or later.

The function uses the following signature:

cb_ret_t my_rt_job_added(
rt_handle_t **handle,
rm_sequence_id_t previous_seq_id,
jm_job_id_t job_id,
db_job_id_t db_job_id,
pm_partition_id_t partition_id,
rm_job_state_t job_new_state,
rt_raw_state_t job_raw_new_state,
void *extended_args,
void *data);

Table 14-11 lists the arguments to the job_added_v1_cb function.

Table 14-11 Field job_added_vi_cb

Argument Description

handle Real-time handle on which the event occurred

seq_id Sequence ID for the node card’s new state

previous_seq_id Sequence ID of the node card’s previous state

nodecard_id The node card’s ID

bp_id The node card's base partition’s ID

nodecard_new_state The node card’s new state

nodecard_old_state The node card’s old state

nodecard_raw_new_state The node card’s new raw state

nodecard_raw_old_state The node card’s old raw state

extended_args Not used; NULL for now

data Application data forwarded by rt_read_msgs()

Argument Description

handle Real-time handle on which the event occurred

seq_id Sequence ID for the job’s state

job_id Job identifier

db_job_id Integer containing the ID given to the job by the database
Chapter 14. Real-time Notification APIs 263

Field job_state_changed_v1_cb
The job_state_changed_v1_cb function is called when a job state changed event occurs.

Note that this function is called only if the version field is RT_CALLBACK_VERSION_1 or later.

The function uses the following signature:

cb_ret_t my_rt_job_state_changed(
rt_handle_t **handle,
rm_sequence_id_t seq_id,
rm_sequence_id_t previous_seq_id,
jm_job_id_t job_id,
db_job_id_t db_job_id,
pm_partition_id_t partition_id,
rm_job_state_t job_new_state,
rm_job_state_t job_old_state,
rt_raw_state_t job_raw_new_state,
rt_raw_state_t job_raw_old_state,
void *extended_args,
void *data);

Table 14-12 lists the arguments to the job_state_changed_v1_cb function.

Table 14-12 Field job_state_changed_v1_cb

partition_id ID of the partition to which the job is assigned

job_new_state The job’s new state

job_raw_new_state The job’s new raw state

extended_args Not used; NULL for now

data Application data forwarded by rt_read_msgs()

Argument Description

handle Real-time handle on which the event occurred

seq_id Sequence ID for the job’s new state

previous_seq_id Sequence ID of the job’s previous state

job_id Job identifier

db_job_id Integer containing the ID given to the job by the database

partition_id ID of the partition to which the job is assigned

job_new_state The job’s new state

job_old_state The job’s old state

job_raw_new_state The job’s new raw state

job_raw_old_state The job’s old raw state

extended_args Not used; NULL for now

data Application data forwarded by rt_read_msgs()
264 IBM Blue Gene/P Application Development

Field job_deleted_v1_cb
The job_deleted_v1_cb function is called when a job-deleted event occurs.

Note that this function is called only if the version field is RT_CALLBACK_VERSION_1 or later.

The function uses the following signature:

cb_ret_t my_rt_job_deleted(
rt_handle_t **handle,
rm_sequence_id_t previous_seq_id,
jm_job_id_t job_id,
db_job_id_t db_job_id,
pm_partition_id_t partition_id,
void *extended_args,
void *data);

Table 14-13 lists the arguments to the job_deleted_v1_cb function.

Table 14-13 Field job_deleted_v1_cb

Field wire_state_changed_cb
The wire_state_changed_cb function is called when a wire state changed event occurs.

Note that this function is called only if the version field is RT_CALLBACK_VERSION_1 or later.

The function uses the following signature:

cb_ret_t my_rt_wire_state_changed(
rt_handle_t **handle,
rm_sequence_id_t seq_id,
rm_sequence_id_t previous_seq_id,
rm_wire_id_t wire_id,
rm_wire_state_t wire_new_state,
rm_wire_state_t wire_old_state,
rt_raw_state_t wire_raw_new_state,
rt_raw_state_t wire_raw_old_state,
void *extended_args,
void *data);

Argument Description

handle Real-time handle on which the event occurred

previous_seq_id Sequence ID of the job’s previous state

job_id Job identifier

db_job_id Integer containing the ID given to the job by the database

partition_id ID of the partition to which the job was assigned

extended_args Not used; NULL for now

data Application data forwarded by rt_read_msgs()
Chapter 14. Real-time Notification APIs 265

Table 14-14 lists the arguments to the wire_state_changed_cb function.

Table 14-14 Field wire_state_changed_cb

Field filter_acknowledge_cb
The filter_acknowledge_cb function is called when a filter acknowledged event occurs.

Note that this function is called only if the version field is RT_CALLBACK_VERSION_1 or later.

The function uses the following signature:

cb_ret_t my_filter_acknowledged(
rt_handle_t **handle,
rt_filter_id_t filter_id,
void *extended_args,
void *data);

Table 14-15 lists the arguments to the filter_acknowledge_cb function.

Table 14-15 Field filter_acknowledge_cb

Field htc_compute_node_failed_cb
The htc_compute_node_failed_cb function is called when a HTC compute node failed event
occurs.

Note that this function is called only if the version field is RT_CALLBACK_VERSION_1 or later.

The function uses the following signature:

cb_ret_t my_htc_compute_node_failed(
rt_handle_t **handle,
rt_compute_node_fail_info_t *compute_node_fail_info,

Argument Description

handle Real-time handle on which the event occurred

seq_id Sequence ID of the wire’s new state

previous_seq_id Sequence ID of the wire’s previous state

wire_id Wire identifier

wire_new_state The wire’s new state

wire_old_state The wire’s old state

wire_raw_new_state The wire’s new raw state

wire_raw_old_state The wire’s old raw state

extended_args Not used; NULL for now

data Application data forwarded by rt_read_msgs()

Argument Description

handle Real-time handle on which the event occurred

filter_id Filter identifier

extended_args Not used; NULL for now

data Application data forwarded by rt_read_msgs()
266 IBM Blue Gene/P Application Development

void *extended_args,
void *data);

Table 14-16 lists the arguments to the htc_compute_node_failed_cb function.

Table 14-16 Field htc_compute_node_failed_cb

Field htc_io_node_failed_cb
The htc_io_node_failed_cb function is called when a HTC I/O node failed event occurs.

Note that this function is called only if the version field is RT_CALLBACK_VERSION_1 or later.

The function uses the following signature:

cb_ret_t my_htc_io_node_failed(
rt_handle_t **handle,
rt_io_node_fail_info_t *io_node_fail_info,
void *extended_args,
void *data);

Table 14-17 lists the arguments to the htc_io_node_failed_cb function.

Table 14-17 Field htc_io_node_failed_cb

Field ras_event_cb
The ras_event_cb function is called when a RAS event occurs.

Note that this function is called only if the version field is RT_CALLBACK_VERSION_2.

The function uses the following signature:

cb_ret_t my_rt_ras_event(
rt_handle_t **handle,
rt_ras_event_t *ras_event_info,
void *extended_args,
void *data);

Argument Description

handle Real-time handle on which the event occurred

compute_node_fail_info Opaque structure with information about the compute node failure

extended_args Not used; NULL for now

data Application data forwarded by rt_read_msgs()

Argument Description

handle Real-time handle on which the event occurred

io_node_fail_info Opaque structure with information about the I/O node failure

extended_args Not used; NULL for now

data Application data forwarded by rt_read_msgs()
Chapter 14. Real-time Notification APIs 267

Table 14-18 lists the arguments to the ras_event_cb function.

Table 14-18 Field ras_event_cb

14.4 Real-time elements

A real-time element is an opaque structure that contains data fields. These structures are
opaque in that the application does not know the internals of the structure. The data fields
available in an element depend on the type of the element. Pointers to real-time elements are
passed to some of the real-time callback functions.

The value of a data field in a real-time element is retrieved using the rt_get_data() function.
The element is passed into this function as the elem argument. The data field is identified by
the field argument. If the element and field are valid, the data_out argument is set to point to
the value of the data field for the element.

When an element is passed into a callback function, that element exists only for the duration
of the callback. If the application wants to use the element outside of the callback, it must
duplicate the element using rt_dup_element(). The application is responsible for freeing
duplicated elements by using rt_free_element() to prevent a memory leak.

The following sections describe the element types and provide an example.

14.4.1 Real-time element types

In this section, we provide descriptions of each of the real-time element types, including the
fields defined for each element type.

Compute node failure information element
The compute node failure information element contains information about the compute node
that failed. It is used by the htc_compute_node_failed_cb callback when the client is notified
that a compute node failed. The data type of the compute node failure information element is
rt_compute_node_fail_info_t.

The following descriptions are of each of the fields in the compute node failure information
element.

Argument Description

handle Real-time handle on which the event occurred

ras_event_info Opaque structure with information about the RAS event

extended_args Not used; NULL for now

data Application data forwarded by rt_read_msgs()

RT_SPEC_ID

Description ID of the compute node that failed

Data type rm_component_id_t
268 IBM Blue Gene/P Application Development

I/O node failure information element
The I/O node failure information element contains information about the I/O node that failed. It
is used by the htc_io_node_failed_cb callback when the client is notified that an I/O node
failed. The data type of the I/O node failure information element is rt_io_node_fail_info_t.

The following descriptions are of each of the fields in the I/O node failure information element.

I/O node failure compute node information list element
The I/O node failure compute node information list element represents the list of compute
node failure information elements associated with the I/O node failure. This type of element is
in the RT_SPEC_COMPUTE_NODE_INFOS field of the I/O node failure information element.
The data type of the I/O node failure compute node information list element is
rt_ionode_fail_info_compute_node_infos_t.

RT_SPEC_DB_JOB_ID

Description DB ID of the job running on the compute node

Data type db_job_id_t

RT_SPEC_REASON

Description Text explaining why the compute node became unavailable (might return
RT_NO_DATA)

Data type char*

RT_SPEC_ID

Description ID of the I/O node that failed

Data type rm_ionode_id_t

RT_SPEC_COMPUTE_NODE_INFOS

Description Compute nodes associated with the I/O node

Data type rt_ionode_fail_info_compute_node_infos_t*

RT_SPEC_REASON

Description Text explaining why the I/O node became unavailable (might return
RT_NO_DATA)

Data type char*
Chapter 14. Real-time Notification APIs 269

The following descriptions are of each of the fields in the I/O node failure compute node
information list element.

I/O node failure compute node information element
The I/O node failure compute node information element contains information about a
compute node that is associated with an I/O node failure. It is the type of the fields in the I/O
node failure compute node information list element. The data type of this element is
rt_ionode_fail_info_compute_node_info_t.

The following description is of the field in the I/O node failure compute node information
element.

RAS event element
The RAS event element represents a RAS event. It is used by the ras_event_cb callback.
The data type of this element is rt_ras_event_t.

The following descriptions are of each of the fields in the RAS event element.

RT_SPEC_LIST_FIRST

Description First compute node info. rt_get_data() returns RT_NO_DATA if there are no
elements

Data type rt_ionode_fail_info_compute_node_info_t*

RT_SPEC_LIST_NEXT

Description Next compute node info. rt_get_data() returns RT_NO_DATA if there are no more
elements

Data type rt_ionode_fail_info_compute_node_info_t*

RT_SPEC_ID

Description ID of the compute node associated with the I/O node that failed

Data type rm_component_id_t

RT_SPEC_RECORD_ID

Description The RAS event’s record ID

Data type rt_ras_record_id_t

RT_SPEC_MESSAGE_ID

Description The RAS event’s message ID

Data type char*

RT_SPEC_SEVERITY

Description The RAS event’s severity
270 IBM Blue Gene/P Application Development

14.4.2 Example

Example 14-2 illustrates the use of real-time elements in a callback function that prints out the
information in the I/O node failure information element, as shown in Example 14-2.

Example 14-2 Accessing the fields of a real-time element

cb_ret_t rt_htc_io_node_failed_callback(
 rt_handle_t** handle,
 rt_io_node_fail_info_t* io_node_fail_info,
 void* extended_args,
 void* data
)
{
 rt_status rc;

 rm_ionode_id_t io_node_id;
 rc = rt_get_data((rt_element_t*) io_node_fail_info, RT_SPEC_ID, &io_node_id);

 const char *reason_buf = "";
 const char *reason_p(NULL);
 rc = rt_get_data((rt_element_t*) io_node_fail_info, RT_SPEC_REASON, &reason_buf);
 if (rc == RT_STATUS_OK) {
 reason_p = reason_buf;
 } else if (rc == RT_NO_DATA) {
 reason_p = NULL;
 rc = RT_STATUS_OK;
 }

 ostringstream sstr;
 sstr << "[";

 rt_ionode_fail_info_compute_node_infos *cn_infos(NULL);
 rc = rt_get_data((rt_element_t*) io_node_fail_info, RT_SPEC_COMPUTE_NODE_INFOS, &cn_infos
);

 int i(0);
 while (true) {

 rt_ionode_fail_info_compute_node_info *cn_info_p(NULL);

 rt_specification_t spec(i == 0 ? RT_SPEC_LIST_FIRST : RT_SPEC_LIST_NEXT);

 rc = rt_get_data((rt_element_t*) cn_infos, spec, &cn_info_p);
 if (rc == RT_NO_DATA) {
 rc = RT_STATUS_OK;
 break;
 }

 rm_component_id_t compute_node_id(NULL);
 rc = rt_get_data((rt_element_t*) cn_info_p, RT_SPEC_ID, &compute_node_id);

 if (i++ > 0) {

Data type rt_ras_severity_t
Chapter 14. Real-time Notification APIs 271

 sstr << ",";
 }
 sstr << compute_node_id;
 }

 sstr << "]";

 string cn_ids_str(sstr.str());

 cout << "Received callback for HTC I/O node failed.\n"
 " io_node=" << io_node_id <<
 " cns=" << cn_ids_str;
 if (reason_p) {
 cout << " reason='" << reason_p << "'";
 }
 cout << endl;

 return RT_CALLBACK_CONTINUE;
}

14.5 Server-side filtering

An application using the real-time APIs might not be interested in all types of events that the
real-time server sends, for example, it might be interested only in events that affect a certain
partition or job. One way to handle this situation is for the client to receive all events and
discard the ones it is not interested in. This approach is inefficient because the server must
send messages and the client must process them. A more efficient approach has the client
tell the server the types of events that it is not interested in receiving. This approach is
accomplished in the real-time APIs using server-side filtering.

To use server-side filtering, first create a rt_filter_t instance using rt_create_server_filter(). A
rt_filter_t instance has properties associated with it that indicate what the client is interested
in. The filter created by this API is initialized with default values for its properties. To change
the values of the filter’s properties, call rt_server_filter_set_property() for each value to be
changed. Then call rt_set_server_filter() to set the filter on the real-time handle.
rt_set_server_filter() generates a filter ID unique to the real-time handle. The client’s
filter_acknowledge_cb callback function is called when the client receives the filter
acknowledgment message from the server. After this point, the filter is in effect, and the client
does not receive the events that have been filtered.

The client can set the filter on a handle before it has requested real-time messages using
rt_request_realtime().

14.5.1 Pattern filter properties

Some filter properties specify patterns. The values of these properties are regular
expressions, as defined in the documentation for the regcomp() function from the GNU C
library, for example, the RT_FILTER_PROPERTY_PARTITION_ID property specifies the
pattern for the IDs of the partitions that the application receives events for. Setting the value
to “^MYPREFIX_.*$” ensures that the application only receives partition events that occur on
partitions with IDs that start with MYPREFIX_.
272 IBM Blue Gene/P Application Development

14.5.2 Filter properties

In this section, we provide a list of the properties that are associated with a real-time filter.
Each property is listed with its name, description, default argument, and argument type. The
name is the constant value that is passed as the filter_property parameter. The description
describes the effect that the property has on the callbacks that the application receives when
the filter is applied to the real-time handle. The default value is the value of the property when
the filter is created using the rt_create_server_filter() API. The argument type is the C
language type expected for the property_value parameter.

Job filter properties
The following descriptions are of the job filter properties.

RT_FILTER_PROPERTY_JOBS

Description Indicates whether the application wants any job callbacks called. The value is an
integer, where non-zero indicates that job callbacks are called, and 0 indicates
that job callbacks are not called.

Default value 1, job callbacks are called

Argument type int*

RT_FILTER_PROPERTY_JOB_ID

Description A pattern specifying the job IDs that the job callbacks are called for.

Default value Jobs are not filtered by job ID

Argument type char*, a C-style string

RT_FILTER_PROPERTY_JOB_STATES

Description The states that jobs are changing to that the job callbacks are called for.

Default value Jobs are not filtered by state

Argument type rm_job_state*, an array of rm_job_state terminated by RM_JOB_NAV

RT_FILTER_PROPERTY_JOB_DELETED

Description Indicates whether the application wants the job deletion callback called. The value
is an integer, where non-zero indicates that the job deletion callback is called, and
0 indicates that the job deletion callback is not called.

Default value 1, job deletion callbacks are called

Argument type int*
Chapter 14. Real-time Notification APIs 273

Partition filter properties
The following descriptions are of the partition filter properties.

RT_FILTER_PROPERTY_JOB_TYPE

Description Indicates the type of jobs that the application wants the job callbacks called for.
The value is one of the rt_filter_property_partition_type_t enum values.
- RT_FILTER_PARTITION_TYPE_HPC_ONLY: only send events for HPC jobs
- RT_FILTER_PARTITION_TYPE_HTC_ONLY: only send events for HTC jobs
- RT_FILTER_PARTITION_TYPE_ANY: send events for any type of job

Default value RT_FILTER_PARTITION_TYPE_HPC_ONLY

Argument type rt_filter_property_partition_type_t*

RT_FILTER_PROPERTY_JOB_PARTITION

Description A pattern specifying the IDs of the partitions for the jobs that the application wants
the job callbacks called for.

Default value Jobs are not filtered by partition ID

Argument type char*, a C-style string

RT_FILTER_PROPERTY_PARTITIONS

Description Indicates whether the application wants any partition callbacks called. The value
is an integer, where non-zero indicates that partition callbacks are called, and 0
indicates that partition callbacks are not called.

Default value 1, partition callbacks are called

Argument type int*

RT_FILTER_PROPERTY_PARTITION_ID

Description A pattern specifying the partition IDs that the partition callbacks are called for.

Default value Partitions are not filtered by ID

Argument type char*, a C-style string

RT_FILTER_PROPERTY_PARTITION_STATES

Description The states that partitions are changing to that the partition callbacks are called for.

Default value Partitions are not filtered by state

Argument type rm_partition_state*, an array of rm_partition_state terminated by
RM_PARTITION_NAV
274 IBM Blue Gene/P Application Development

Base partition (midplane) filter properties
The following descriptions are of the base partition filter properties.

RT_FILTER_PROPERTY_PARTITION_DELETED

Description Indicates whether the application wants the partition deletion callback called. The
value is an integer, where non-zero indicates that the partition deletion callback is
called, and 0 indicates that the partition deletion callback is not called.

Default value 1, partition deletion callbacks are called

Argument type int*

RT_FILTER_PROPERTY_PARTITION_TYPE

Description Indicates the type of jobs that the application wants the job callbacks called for.
The value is one of the rt_filter_property_partition_type_t enum values.
- RT_FILTER_PARTITION_TYPE_HPC_ONLY: only send events for HPC jobs
- RT_FILTER_PARTITION_TYPE_HTC_ONLY: only send events for HTC jobs
- RT_FILTER_PARTITION_TYPE_ANY: send events for any type of job

Default value RT_FILTER_PARTITION_TYPE_ANY

Argument type rt_filter_property_partition_type_t*

RT_FILTER_PROPERTY_BPS

Description Indicates whether the application wants any base partition callbacks called. The
value is an integer, where non-zero indicates that base partition callbacks are
called, and 0 indicates that base partition callbacks are not called.

Default value 1, partition callbacks are called

Argument type int*

RT_FILTER_PROPERTY_BP_ID

Description The pattern for base partition IDs.

Default value Base partitions are not filtered by ID.

Argument type char*, a C-style string

RT_FILTER_PROPERTY_BP_STATES

Description The states that base partitions are changing to that the base partition callbacks
are called for.

Default value Base partitions are not filtered by state.

Argument type rm_BP_state*, an array of rm_BP_state terminated by RM_BP_NAV
Chapter 14. Real-time Notification APIs 275

Node card filter properties
The following descriptions are of the node card filter properties.

Switch filter properties
The following descriptions are of the switch filter properties.

RT_FILTER_PROPERTY_NODE_CARDS

Description Indicates whether the application wants any node card callbacks called. The value
is an integer, where non-zero indicates that node card callbacks are called, and 0
indicates that node card callbacks are not called.

Default value 1, node card callbacks are called

Argument type int*

RT_FILTER_PROPERTY_NODE_CARD_ID

Description The pattern for node card IDs.

Default value Node cards are not filtered by ID.

Argument type char*, a C-style string

RT_FILTER_PROPERTY_NODE_CARD_STATES

Description The states that node cards are changing to that the node card callbacks are called
for.

Default value Node cards are not filtered by state.

Argument type rm_nodecard_state_t*, an array of rm_nodecard_state_t terminated by
RM_NODECARD_NAV

RT_FILTER_PROPERTY_SWITCHES

Description Indicates whether the application wants any switch callbacks called. The value is
an integer, where non-zero indicates that switch callbacks are called, and 0
indicates that switch callbacks are not called.

Default value 1, switch callbacks are called.

Argument type int*

RT_FILTER_PROPERTY_SWITCH_ID

Description The pattern for switch IDs.

Default value Switches are not filtered by ID.

Argument type char*, a C-style string
276 IBM Blue Gene/P Application Development

Wire filter properties
The following descriptions are of the wire filter properties.

Filter properties related to HTC events
The following descriptions are of the filter properties related to HTC events.

RT_FILTER_PROPERTY_SWITCH_STATES

Description The states that switches are changing to that the switch callbacks are called for.

Default value Switches are not filtered by state.

Argument type rm_switch_state_t*, an array of rm_switch_state_t terminated by
RM_SWITCH_NAV

RT_FILTER_PROPERTY_WIRES

Description Indicates whether the application wants any wire callbacks called. The value is an
integer, where non-zero indicates that wire callbacks are called, and 0 indicates
that wire callbacks are not called.

Default value 1, wire callbacks are called.

Argument type int*

RT_FILTER_PROPERTY_WIRE_ID

Description The pattern for wire IDs.

Default value Wires are not filtered by ID.

Argument type char*, a C-style string

RT_FILTER_PROPERTY_WIRE_STATES

Description The states that wires are changing to that the wire callbacks are called for.

Default value Wires are not filtered by state.

Argument type rm_wire_state_t*, an array of rm_wire_state_t terminated by RM_WIRE_NAV

RT_FILTER_PROPERTY_HTC_EVENTS

Description Indicates whether the application wants any HTC callbacks called. The value is
an integer, where non-zero indicates that HTC callbacks are called, and 0
indicates that HTC callbacks are not called.

Default value 1, HTC callbacks are called.

Argument type int*
Chapter 14. Real-time Notification APIs 277

Filter properties related to RAS events
The following descriptions are of the filter properties related to RAS events.

RT_FILTER_PROPERTY_HTC_COMPUTE_NODE_FAIL

Description Indicates whether the application wants the HTC compute node failure callback
called. The value is an integer, where non-zero indicates that the HTC compute
node failure callback is called, and 0 indicates that the HTC compute node failure
callback is not called.

Default value 1, the HTC compute node callback is called.

Argument type int*

RT_FILTER_PROPERTY_HTC_IO_NODE_FAIL

Description Indicates whether the application wants the HTC I/O node failure callback called.
The value is an integer, where non-zero indicates that the HTC I/O node failure
callback is called, and 0 indicates that the HTC I/O node failure callback is not
called.

Default value 1, the HTC I/O node callback is called.

Argument type int*

RT_FILTER_PROPERTY_RAS_EVENTS

Description Indicates whether the application wants any RAS event callbacks called. The
value is an integer, where non-zero indicates that RAS event callbacks are called,
and 0 indicates that RAS event callbacks are not called.

Default value 0, RAS callbacks are not called.

Argument type int*

RT_FILTER_PROPERTY_RAS_MESSAGE_ID

Description The pattern for RAS event message IDs.

Default value RAS events aren’t filtered by message ID.

Argument type char*, a C-style string

RT_FILTER_PROPERTY_RAS_SEVERITIES

Description The pattern for message severities for RAS events.

Default value RAS events aren’t filtered by severity.

Argument type rt_ras_severity_t*, an array or rt_ras_severity_t, terminated by
RT_RAS_SEVERITY_NAV
278 IBM Blue Gene/P Application Development

14.5.3 Example

Example 14-3 illustrates use of the real-time server-side filtering APIs.

Example 14-3 Using the real-time server-side filtering APIs

#include <rt_api.h>
#include <iostream>
using namespace std;

cb_ret_t rt_filter_acknowledge_callback(
 rt_handle_t **handle,
 rt_filter_id_t filter_id,
 void* extended_args, void* data
)
{
 cout << "Received callback for filter acknowledged for filter ID " << filter_id << endl;
 return RT_CALLBACK_CONTINUE;
}

int main(int argc, char *argv[]) {
 rt_filter_t *filter_handle(NULL);
 rt_create_server_filter(&filter_handle);

 char job_name_pattern[] = "^MYPREFIX.*$";
 rt_server_filter_set_property(filter_handle, RT_FILTER_PROPERTY_JOB_ID,
 (void*) job_name_pattern);

 int filter_parts(0);
 rt_server_filter_set_property(filter_handle, RT_FILTER_PROPERTY_PARTITIONS,
 (void*) &filter_parts);

 rm_BP_state_t bp_states[] = { RM_BP_UP, RM_BP_ERROR, RM_BP_NAV };
 rt_server_filter_set_property(filter_handle, RT_FILTER_PROPERTY_BP_STATES,
 (void*) bp_states);

 rt_filter_id_t filter_id;

RT_FILTER_PROPERTY_RAS_JOB_DB_IDS

Description The job database IDs for RAS events.

Default value RAS events aren’t filtered by job database ID.

Argument type db_job_id_t*, an array of db_job_id_t, terminated by -1.

RT_FILTER_PROPERTY_RAS_PARTITION_ID

Description The pattern for RAS event partition IDs.

Default value RAS events aren’t filtered by partition ID.

Argument type char*, a C-style string
Chapter 14. Real-time Notification APIs 279

 rt_handle_t *rt_handle;

 rt_callbacks_t rt_callbacks;
 rt_callbacks.version = RT_CALLBACK_VERSION_CURRENT;
 rt_callbacks.filter_acknowledge_cb = &rt_filter_acknowledge_callback;

 rt_init(&rt_handle, RT_BLOCKING, &rt_callbacks);
 rt_set_server_filter(&rt_handle, filter_handle, &filter_id);
 rt_request_realtime(&rt_handle);
 rt_read_msgs(&rt_handle, NULL);
 rt_close(&rt_handle);
}

14.6 Real-time Notification APIs status codes

When a failure occurs, an API invocation returns a status code. This status code helps apply
automatic corrective actions within the resource management application. In addition, a
failure always generates a log message, which provides more information for the possible
cause of the problem and any corrective action. These log messages are used for debugging
and non-automatic recovery of failures.

The design aims at striking a balance between the number of status codes detected and the
different error paths per status code. Thus, some errors have specific status codes, while
others have more generic ones.

The Real-time Notification APIs use the following status codes:

� RT_STATUS_OK: API call completed successfully.

� RT_NO_REALTIME_MSGS: No events available.

� RT_WOULD_BLOCK: In nonblocking mode and the request blocks.

� RT_FINISHED_PREV: Previous request completed.

� RT_NO_DATA: The field in the real-time element contains no data.

� RT_CONNECTION_ERROR: Connection to the real-time server failed.

� RT_INTERNAL_ERROR: Unexpected internal error. No recovery possible.

� RT_INVALID_INPUT_ERROR: The input to the API is bad due to missing required data, illegal
data, and so on.

� RT_DB_PROPERTY_ERROR: Error trying to read the db.properties file.

� RT_PROTOCOL_ERROR: An incorrect message was received from the real-time server.

� RT_HANDLE_CLOSED: The handle passed to the API was previously closed.

� RT_UNEXPECTED_FIELD: The field is not valid for the real-time element.
280 IBM Blue Gene/P Application Development

14.6.1 Status code specification
The various API functions have the following status codes:

� rt_status_t rt_init(rt_handle_t **handle_out, rt_block_flag_t blocking_flag,
rt_callbacks_t* callbacks);

This function initializes a real-time handle.

The status codes are:

– RT_STATUS_OK: The handle is initialized.
– RT_CONNECTION_ERROR: Failed to connect to the real-time server.
– RT_INVALID_INPUT_ERROR: One or more of the parameters are not valid.
– RT_INTERNAL_ERROR: An unexpected internal error occurred in setting blocking or

nonblocking mode on socket.
– RT_DB_PROPERTY_ERROR: Problem accessing the db.properties file.

� rt_status_t rt_close(rt_handle_t **handle);

This function closes a real-time handle.

The status codes are:

– RT_STATUS_OK: The handle was closed.
– RT_INTERNAL_ERROR: An unexpected internal error occurred in closing the handle.
– RT_INVALID_INPUT_ERROR: The handle is not valid.
– RT_HANDLE_CLOSED: The handle was already closed.

� rt_status_t rt_set_blocking(rt_handle_t **handle);

This function sets a real-time handle to blocking mode.

The status codes are:

– RT_STATUS_OK: Blocking mode was set for the handle.
– RT_INTERNAL_ERROR: An unexpected internal error occurred in setting blocking mode.
– RT_INVALID_INPUT_ERROR: The handle is not valid.
– RT_HANDLE_CLOSED: The handle was closed.

� rt_status_t rt_set_nonblocking(rt_handle_t **handle);

This function sets a real-time handle to nonblocking mode.

The status codes are:

– RT_STATUS_OK: Nonblocking mode was set for the handle.
– RT_INTERNAL_ERROR: An unexpected internal error occurred in setting nonblocking

mode.
– RT_INVALID_INPUT_ERROR: The handle is not valid.
– RT_HANDLE_CLOSED: The handle was closed.

� rt_status_t rt_create_server_filter(rt_filter_t **filter_out);

This function creates a server-side filter object.

The status codes are:

– RT_STATUS_OK: The server-side filter was created.
– RT_INVALID_INPUT_ERROR: The parameter is not valid.
– RT_INTERNAL_ERROR: An unexpected internal error occurred when creating the

server-side filter object.

� rt_status_t rt_server_filter_set_property(rt_filter_t *filter,
rt_server_filter_property_t filter_property, void *property_value);

This function sets a property of the server-side filter object.
Chapter 14. Real-time Notification APIs 281

The status codes are:

– RT_STATUS_OK: The server-side filter was created.
– RT_INVALID_INPUT_ERROR: The parameter is not valid.
– RT_INTERNAL_ERROR: An unexpected internal error occurred when creating the

server-side filter object.

� rt_status_t rt_set_server_filter(rt_handle_t **handle, const rt_filter_t
*filter, rt_filter_id_t *filter_id_out);

This function assigns a server filter to a real-time handle.

The status codes are:

– RT_STATUS_OK: The server-side filter was assigned.
– RT_WOULD_BLOCK: The handle is nonblocking, and this request blocks.
– RT_FINISHED_PREV: A previous request finished.
– RT_CONNECTION_ERROR: The connection to the server was lost.
– RT_INTERNAL_ERROR: An unexpected internal error occurred when setting the

server-side filter on the real-time handle.
– RT_INVALID_INPUT_ERROR: A parameter is not valid.
– RT_PROTOCOL_ERROR: Protocol error communicating with the server.
– RT_HANDLE_CLOSED: The handle was closed.

� rt_status_t rt_free_server_filter(rt_filter_t **filter_in_out);

This function frees a server-side filter object.

The status codes are:

– RT_STATUS_OK: The server-side filter was freed.
– RT_INTERNAL_ERROR: An unexpected internal error occurred when freeing the

server-side filter.
– RT_INVALID_INPUT_ERROR: A parameter is not valid.

� rt_status_t rt_set_filter(rt_handle_t **handle, rt_filter_type_t filter_type,
const char* filter_names);

This function sets the client-side filter on a real-time handle.

The status codes are:

– RT_STATUS_OK: Filtering was set successfully.
– RT_INTERNAL_ERROR: An unexpected internal error occurred in setting the filter.
– RT_INVALID_INPUT_ERROR: An input parameter is not valid.
– RT_HANDLE_CLOSED: The handle was closed.

� rt_status_t rt_request_realtime(rt_handle_t **handle);

This function requests real-time events for this handle.

The status codes are:

– RT_STATUS_OK: Request to start real-time updates was successful.
– RT_WOULD_BLOCK: The handle is nonblocking, and this request blocks.
– RT_FINISHED_PREV: A previous request finished.
– RT_CONNECTION_ERROR: The connection to the server was lost.
– RT_INTERNAL_ERROR: An unexpected internal error occurred when requesting real-time.
– RT_INVALID_INPUT_ERROR: The handle is not valid.
– RT_PROTOCOL_ERROR: Protocol error communicating with the server.
– RT_HANDLE_CLOSED: The handle was closed.

� rt_status_t rt_get_socket_descriptor(rt_handle_t **handle, int *sd_out);

This function gets the socket descriptor used by the real-time APIs.
282 IBM Blue Gene/P Application Development

The status codes are:

– RT_STATUS_OK: Socket descriptor was retrieved successfully.
– RT_INTERNAL_ERROR: An unexpected internal error occurred when getting the socket

descriptor.
– RT_INVALID_INPUT_ERROR: The handle is not valid.
– RT_HANDLE_CLOSED: The handle was closed.

� rt_status_t rt_read_msgs(rt_handle_t **handle, void* data);

This function receives real-time events.

The status codes are:

– RT_STATUS_OK: Message or messages were read successfully.
– RT_NO_REALTIME_MSGS: Nonblocking mode and no messages to receive.
– RT_INVALID_INPUT_ERROR: The handle is not valid.
– RT_CONNECTION_ERROR: The connection to the server was lost.
– RT_INVALID_INPUT_ERROR: The handle is not valid.
– RT_INTERNAL_ERROR: An unexpected internal error occurred when reading messages.
– RT_PROTOCOL_ERROR: Protocol error communicating with the server.
– RT_HANDLE_CLOSED: The handle was closed.

� rt_status_t rt_get_data(rt_element_t *elem, rt_specification_t field, void
*data_out);

This function gets data from a real-time element.

The status codes are:

– RT_STATUS_OK: The field value was retrieved successfully.
– RT_NO_DATA: The field contains no data.
– RT_INTERNAL_ERROR: An unexpected internal error occurred when getting data.
– RT_INVALID_INPUT_ERROR: A parameter is not valid.
– RT_UNEXPECTED_FIELD: The field is not valid for the element type.

� rt_status_t rt_dup_element(rt_element_t *elem, rt_element_t **elem_out);

This function copies a real-time element.

The status codes are:

– RT_STATUS_OK: The element was copied.
– RT_INTERNAL_ERROR: An unexpected internal error occurred when copying the element.
– RT_INVALID_INPUT_ERROR: A parameter is not valid.

� rt_status_t rt_free_element(rt_element_t *elem);

This function frees a real-time element.

The status codes are:

– RT_STATUS_OK: The element was freed.
– RT_INTERNAL_ERROR: An unexpected internal error occurred when freeing the element.
– RT_INVALID_INPUT_ERROR: A parameter is not valid.
Chapter 14. Real-time Notification APIs 283

14.7 Sample real-time application code
Example 14-4 shows basic sample code for calling the real-time APIs and programming the
callback functions.

Example 14-4 Sample real-time application

#include <rt_api.h>
#include <sayMessage.h>

#include <stdio.h>
#include <unistd.h>

#include <iostream>
#include <sstream>

using namespace std;

// Converts partition state enum to character string for messages
string partition_state_to_msg(rm_partition_state_t state)
{
 switch (state) {
 case RM_PARTITION_FREE:
 return "Free";
 case RM_PARTITION_CONFIGURING:
 return "Configuring";
 case RM_PARTITION_READY:
 return "Ready";
 case RM_PARTITION_DEALLOCATING:
 return "Deallocating";
 case RM_PARTITION_ERROR:
 return "Error";
 case RM_PARTITION_NAV:
 return "Not a value (NAV)";
 }
 return "Unknown";
} // partition_state_to_msg()

// Converts job state enum to character string for messages
string job_state_to_msg(rm_job_state_t state)
{
 switch (state) {
 case RM_JOB_IDLE:
 return "Queued/Idle";
 case RM_JOB_STARTING:
 return "Starting";
 case RM_JOB_RUNNING:
 return "Running";
 case RM_JOB_TERMINATED:
 return "Terminated";
 case RM_JOB_ERROR:
 return "Error";
 case RM_JOB_DYING:
284 IBM Blue Gene/P Application Development

 return "Dying";
 case RM_JOB_DEBUG:
 return "Debug";
 case RM_JOB_LOAD:
 return "Load";
 case RM_JOB_LOADED:
 return "Loaded";
 case RM_JOB_BEGIN:
 return "Begin";
 case RM_JOB_ATTACH:
 return "Attach";
 case RM_JOB_NAV:
 return "Not a value (NAV)";
 }
 return "Unknown";
} // job_state_to_msg()

// Converts BP state enum to character string for messages
string BP_state_to_msg(rm_BP_state_t state)
{
 switch (state) {
 case RM_BP_UP:
 return "Available/Up";
 case RM_BP_MISSING:
 return "Missing";
 case RM_BP_ERROR:
 return "Error";
 case RM_BP_DOWN:
 return "Service/Down";
 case RM_BP_NAV:
 return "Not a value (NAV)";
 }
 return "Unknown";
} // BP_state_to_msg()

// Converts switch state enum to character string for messages
string switch_state_to_msg(rm_switch_state_t state)
{
 switch (state) {
 case RM_SWITCH_UP:
 return "Available/Up";
 case RM_SWITCH_MISSING:
 return "Missing";
 case RM_SWITCH_ERROR:
 return "Error";
 case RM_SWITCH_DOWN:
 return "Service/Down";
 case RM_SWITCH_NAV:
 return "Not a value (NAV)";
 }
 return "Unknown";
} // switch_state_to_msg()
Chapter 14. Real-time Notification APIs 285

// Converts nodecard state enum to character string for messages
string nodecard_state_to_msg(rm_nodecard_state_t state)
{
 switch (state) {
 case RM_NODECARD_UP:
 return "Available/Up";
 case RM_NODECARD_MISSING:
 return "Missing";
 case RM_NODECARD_ERROR:
 return "Error";
 case RM_NODECARD_DOWN:
 return "Service/Down";
 case RM_NODECARD_NAV:

 return "Not a value (NAV)";
 }
 return "Unknown";
} // nodecard_state_to_msg()

string wire_state_to_msg(rm_wire_state_t state)
{
 switch (state) {
 case RM_WIRE_UP:
 return "Available/Up";
 case RM_WIRE_MISSING:
 return "Missing";
 case RM_WIRE_ERROR:
 return "Error";
 case RM_WIRE_DOWN:
 return "Service/Down";
 case RM_WIRE_NAV:
 return "Not a value (NAV)";
 }
 return "Unknown";
} // wire_state_to_msg()

/* Definitions of the Real-time callback functions. */

cb_ret_t rt_end_callback(rt_handle_t **handle, void* extended_args, void* data)
{
 cout << "Received Real-time end message." << endl;
 return RT_CALLBACK_QUIT;
}

cb_ret_t rt_partition_added_callback(rt_handle_t **handle, rm_sequence_id_t seq_id,
 pm_partition_id_t partition_id, rm_partition_state_t partition_new_state,
 rt_raw_state_t partition_raw_new_state, void* extended_args, void* data)
{
 cout << "Received callback for add partition " << partition_id << " state of partition is "
 << partition_state_to_msg(partition_new_state) << endl << "Raw state="
 << partition_raw_new_state << " sequence ID=" << seq_id << endl;
 return RT_CALLBACK_CONTINUE;
}

286 IBM Blue Gene/P Application Development

cb_ret_t rt_partition_state_changed_callback(rt_handle_t **handle, rm_sequence_id_t seq_id,
 rm_sequence_id_t prev_seq_id, pm_partition_id_t partition_id,
 rm_partition_state_t partition_new_state, rm_partition_state_t partition_old_state,
 rt_raw_state_t partition_raw_new_state, rt_raw_state_t partition_raw_old_state,
 void* extended_args, void* data)
{
 cout << "Received callback for partition " << partition_id << " state change, old state is "
 << partition_state_to_msg(partition_old_state) << ", new state is "
 << partition_state_to_msg(partition_new_state) << endl << "Raw old state="
 << partition_raw_old_state << " Raw new state=" << partition_raw_new_state
 << " New sequence ID=" << seq_id << " Previous sequence ID=" << prev_seq_id << endl;
 return RT_CALLBACK_CONTINUE;
}

cb_ret_t rt_partition_deleted_callback(rt_handle_t **handle, rm_sequence_id_t prev_seq_id,
 pm_partition_id_t partition_id, void* extended_args, void* data)
{
 cout << "Received callback for delete on partition " << partition_id
 << " Previous sequence ID=" << prev_seq_id << endl;
 return RT_CALLBACK_CONTINUE;
}

cb_ret_t rt_job_added_v1_callback(
 rt_handle_t **handle,
 rm_sequence_id_t seq_id,
 jm_job_id_t job_id,
 db_job_id_t db_job_id,
 pm_partition_id_t partition_id,
 rm_job_state_t job_new_state,
 rt_raw_state_t job_raw_new_state,
 void* extended_args,
 void* data
)
{
 cout << "Received callback for add job " << job_id << " with id " << db_job_id << " on
partition " << partition_id << ","
 << " state of job is " << job_state_to_msg(job_new_state) << endl << "Raw new
state="
 << job_raw_new_state << " New sequence ID=" << seq_id << endl;
 return RT_CALLBACK_CONTINUE;
}

cb_ret_t rt_job_state_changed_v1_callback(
 rt_handle_t **handle,
 rm_sequence_id_t seq_id,
 rm_sequence_id_t previous_seq_id,

 jm_job_id_t job_id,
 db_job_id_t db_job_id,
 pm_partition_id_t partition_id,
 rm_job_state_t job_new_state,
 rm_job_state_t job_old_state,
 rt_raw_state_t job_raw_new_state,
 rt_raw_state_t job_raw_old_state,
Chapter 14. Real-time Notification APIs 287

 void* extended_args,
 void* data
)
{
 cout << "Received callback for job " << job_id << " with id " << db_job_id
 << " state change on partition " << partition_id
 << ", old state is " << job_state_to_msg(job_old_state) << ", new state is "
 << job_state_to_msg(job_new_state) << endl << "Raw old state=" <<
job_raw_old_state
 << " Raw new state=" << job_raw_new_state << " New sequence ID=" << seq_id
 << " Previous sequence ID=" << previous_seq_id << endl;
 return RT_CALLBACK_CONTINUE;
}

cb_ret_t rt_job_deleted_v1_callback(
 rt_handle_t **handle,
 rm_sequence_id_t previous_seq_id,
 jm_job_id_t job_id,
 db_job_id_t db_job_id,
 pm_partition_id_t partition_id,
 void* extended_args,
 void* data
)
{
 cout << "Received callback for delete of job " << job_id << " with id " << db_job_id
 << " on partition " << partition_id
 << " Previous sequence ID=" << previous_seq_id << endl;
 return RT_CALLBACK_CONTINUE;
}

cb_ret_t rt_BP_state_changed_callback(
 rt_handle_t **handle,
 rm_sequence_id_t seq_id,
 rm_sequence_id_t prev_seq_id,
 rm_bp_id_t bp_id,
 rm_BP_state_t BP_new_state,
 rm_BP_state_t BP_old_state,
 rt_raw_state_t BP_raw_new_state,
 rt_raw_state_t BP_raw_old_state,
 void* extended_args,
 void* data
)
{
 cout << "Received callback for BP " << bp_id << " state change,"
 " old state is " << BP_state_to_msg(BP_old_state) << ","
 " new state is " << BP_state_to_msg(BP_new_state) << "\n"
 "Raw old state=" << BP_raw_old_state <<
 " Raw new state=" << BP_raw_new_state <<
 " New sequence ID=" << seq_id <<
 " Previous sequence ID=" << prev_seq_id << endl;
 return RT_CALLBACK_CONTINUE;
}

cb_ret_t rt_switch_state_changed_callback(
 rt_handle_t **handle,
288 IBM Blue Gene/P Application Development

 rm_sequence_id_t seq_id,
 rm_sequence_id_t prev_seq_id,
 rm_switch_id_t switch_id,
 rm_bp_id_t bp_id,
 rm_switch_state_t switch_new_state,
 rm_switch_state_t switch_old_state,
 rt_raw_state_t switch_raw_new_state,
 rt_raw_state_t switch_raw_old_state,
 void* extended_args,
 void* data
)
{
 cout << "Received callback for switch " << switch_id << " state change on BP " << bp_id <<
","
 " old state is " << switch_state_to_msg(switch_old_state) << ","
 " new state is " << switch_state_to_msg(switch_new_state) << "\n"
 "Raw old state=" << switch_raw_old_state <<
 " Raw new state=" << switch_raw_new_state <<
 " New sequence ID=" << seq_id <<
 " Previous sequence ID=" << prev_seq_id << endl;
 return RT_CALLBACK_CONTINUE;
}

cb_ret_t rt_nodecard_state_changed_callback(
 rt_handle_t **handle,
 rm_sequence_id_t seq_id,
 rm_sequence_id_t prev_seq_id,
 rm_nodecard_id_t nodecard_id,
 rm_bp_id_t bp_id,
 rm_nodecard_state_t nodecard_new_state,
 rm_nodecard_state_t nodecard_old_state,
 rt_raw_state_t nodecard_raw_new_state,
 rt_raw_state_t nodecard_raw_old_state,
 void* extended_args,
 void* data
)
{
 cout << "Received callback for node card " << nodecard_id <<
 " state change on BP " << bp_id << ","
 " old state is " << nodecard_state_to_msg(nodecard_old_state) << ","
 " new state is " << nodecard_state_to_msg(nodecard_new_state) << "\n"
 "Raw old state=" << nodecard_raw_old_state <<
 " Raw new state=" << nodecard_raw_new_state <<
 " New sequence ID=" << seq_id <<
 " Previous sequence ID=" << prev_seq_id << endl;
 return RT_CALLBACK_CONTINUE;
}

cb_ret_t rt_wire_state_changed_callback(
 rt_handle_t **handle,
 rm_sequence_id_t seq_id,
 rm_sequence_id_t previous_seq_id,
 rm_wire_id_t wire_id,
 rm_wire_state_t wire_new_state,
Chapter 14. Real-time Notification APIs 289

 rm_wire_state_t wire_old_state,
 rt_raw_state_t wire_raw_new_state,
 rt_raw_state_t wire_raw_old_state,
 void* extended_args,
 void* data
)
{
 cout << "Received callback for wire '" << wire_id << "',"
 " old state is " << wire_state_to_msg(wire_old_state) << ","
 " new state is " << wire_state_to_msg(wire_new_state) << "\n"
 "Raw old state=" << wire_raw_old_state <<
 " Raw new state=" << wire_raw_new_state <<
 " New sequence ID=" << seq_id <<
 " Previous sequence ID=" << previous_seq_id << endl;

 return RT_CALLBACK_CONTINUE;
}

cb_ret_t rt_filter_acknowledge_callback(
 rt_handle_t **handle,
 rt_filter_id_t filter_id,
 void* extended_args, void* data
)
{
 cout << "Received callback for filter acknowledged for filter ID " << filter_id << endl;
 return RT_CALLBACK_CONTINUE;
}

cb_ret_t rt_htc_compute_node_failed_callback(
 rt_handle_t** handle,
 rt_compute_node_fail_info_t* compute_node_fail_info,
 void* extended_args,
 void* data
)
{
 rt_status rc;

 rm_component_id_t compute_node_id;
 rc = rt_get_data((rt_element_t*) compute_node_fail_info, RT_SPEC_ID, &compute_node_id);
 if (rc != RT_STATUS_OK) {
 cerr << "rt_get_data failed in " << __FUNCTION__ << " getting RT_SPEC_ID\n";
 return RT_CALLBACK_CONTINUE;
 }

 db_job_id_t db_job_id;
 rc = rt_get_data((rt_element_t*) compute_node_fail_info, RT_SPEC_DB_JOB_ID, &db_job_id);
 if (rc != RT_STATUS_OK) {
 cerr << "rt_get_data failed in " << __FUNCTION__ << " getting RT_SPEC_DB_JOB_ID\n";
 return RT_CALLBACK_CONTINUE;
 }

 const char *reason_buf = "";
 const char *reason_p;
290 IBM Blue Gene/P Application Development

 rc = rt_get_data((rt_element_t*) compute_node_fail_info, RT_SPEC_REASON, &reason_buf);
 if (rc == RT_STATUS_OK) {
 reason_p = reason_buf;
 } else if (rc == RT_NO_DATA) {
 reason_p = NULL;
 rc = RT_STATUS_OK;
 } else {
 cerr << "rt_get_data failed in " << __FUNCTION__ << " getting RT_SPEC_REASON\n";
 return RT_CALLBACK_CONTINUE;
 }

 cout << "Received callback for HTC compute node failed.\n"
 " compute_node=" << compute_node_id <<
 " db_job_id=" << db_job_id;
 if (reason_p) {
 cout << " reason='" << reason_p << "'";
 }
 cout << endl;

 return RT_CALLBACK_CONTINUE;
}

cb_ret_t rt_htc_io_node_failed_callback(
 rt_handle_t** handle,
 rt_io_node_fail_info_t* io_node_fail_info,
 void* extended_args,
 void* data
)
{
 rt_status rc;

 rm_ionode_id_t io_node_id;
 rc = rt_get_data((rt_element_t*) io_node_fail_info, RT_SPEC_ID, &io_node_id);
 if (rc != RT_STATUS_OK) {
 cerr << "rt_get_data failed in " << __FUNCTION__ << " getting RT_SPEC_ID.\n";
 return RT_CALLBACK_CONTINUE;
 }

 const char *reason_buf = "";
 const char *reason_p(NULL);
 rc = rt_get_data((rt_element_t*) io_node_fail_info, RT_SPEC_REASON, &reason_buf);
 if (rc == RT_STATUS_OK) {
 reason_p = reason_buf;
 } else if (rc == RT_NO_DATA) {
 reason_p = NULL;
 rc = RT_STATUS_OK;
 } else {
 cerr << "rt_get_data failed in " << __FUNCTION__ << " getting RT_SPEC_REASON\n";
 return RT_CALLBACK_CONTINUE;
 }

 ostringstream sstr;
 sstr << "[";
Chapter 14. Real-time Notification APIs 291

 rt_ionode_fail_info_compute_node_infos *cn_infos(NULL);
 rc = rt_get_data((rt_element_t*) io_node_fail_info, RT_SPEC_COMPUTE_NODE_INFOS, &cn_infos
);
 if (rc != RT_STATUS_OK) {
 cerr << "rt_get_data failed in " << __FUNCTION__ << " getting
RT_SPEC_COMPUTE_NODE_INFOS.\n";
 return RT_CALLBACK_CONTINUE;
 }

 int i(0);
 while (true) {

 rt_ionode_fail_info_compute_node_info *cn_info_p(NULL);

 rt_specification_t spec(i == 0 ? RT_SPEC_LIST_FIRST : RT_SPEC_LIST_NEXT);

 rc = rt_get_data((rt_element_t*) cn_infos, spec, &cn_info_p);
 if (rc == RT_NO_DATA) {
 rc = RT_STATUS_OK;
 break;
 }
 if (rc != RT_STATUS_OK) {
 cerr << "rt_get_data failed in " << __FUNCTION__ << " getting compute node info list
element.\n";
 return RT_CALLBACK_CONTINUE;
 }

 rm_component_id_t compute_node_id(NULL);
 rc = rt_get_data((rt_element_t*) cn_info_p, RT_SPEC_ID, &compute_node_id);
 if (rc != RT_STATUS_OK) {
 cerr << "rt_get_data failed in " << __FUNCTION__ << " getting compute node info
RT_SPEC_ID.\n";
 return RT_CALLBACK_CONTINUE;
 }

 if (i++ > 0) {
 sstr << ",";
 }
 sstr << compute_node_id;
 }

 sstr << "]";

 string cn_ids_str(sstr.str());

 cout << "Received callback for HTC I/O node failed.\n"
 " io_node=" << io_node_id <<
 " cns=" << cn_ids_str;
 if (reason_p) {
 cout << " reason='" << reason_p << "'";
 }
 cout << endl;

 return RT_CALLBACK_CONTINUE;
}

292 IBM Blue Gene/P Application Development

/* Program entry point */

int main(int argc, char *argv[])
{
 setSayMessageParams(stdout, verbose);

 rt_handle_t *rt_handle;
 rt_callbacks_t rt_callbacks;

 rt_callbacks.end_cb = &rt_end_callback;
 rt_callbacks.partition_added_cb = &rt_partition_added_callback;
 rt_callbacks.partition_state_changed_cb = &rt_partition_state_changed_callback;
 rt_callbacks.partition_deleted_cb = &rt_partition_deleted_callback;
 rt_callbacks.job_added_cb = NULL; // switched to using v1 callback.
 rt_callbacks.job_state_changed_cb = NULL; // switched to using v1 callback.
 rt_callbacks.job_deleted_cb = NULL; // switched to using v1 callback.
 rt_callbacks.bp_state_changed_cb = &rt_BP_state_changed_callback;
 rt_callbacks.switch_state_changed_cb = &rt_switch_state_changed_callback;
 rt_callbacks.nodecard_state_changed_cb = &rt_nodecard_state_changed_callback;
 rt_callbacks.job_added_v1_cb = &rt_job_added_v1_callback;
 rt_callbacks.job_state_changed_v1_cb = &rt_job_state_changed_v1_callback;
 rt_callbacks.job_deleted_v1_cb = &rt_job_deleted_v1_callback;
 rt_callbacks.wire_state_changed_cb = &rt_wire_state_changed_callback;
 rt_callbacks.filter_acknowledge_cb = &rt_filter_acknowledge_callback;
 rt_callbacks.htc_compute_node_failed_cb = &rt_htc_compute_node_failed_callback;
 rt_callbacks.htc_io_node_failed_cb = &rt_htc_io_node_failed_callback;

 // Get a handle, set socket to block, and setup callbacks
 if (rt_init(&rt_handle, RT_BLOCKING, &rt_callbacks) != RT_STATUS_OK) {
 cout << "Failed on Real-time initialize (rt_init), exiting program." << endl;
 return -1;
 }

 // Tell Real-time server we are ready to handle messages
 if (rt_request_realtime(&rt_handle) != RT_STATUS_OK) {
 cout << "Failed to connect to Real-time server, exiting program." << endl;
 rt_close(&rt_handle);
 return -1;
 }

 // Read messages
 if (rt_read_msgs(&rt_handle, NULL) != RT_STATUS_OK) {
 cout << "rt_read_msgs failed" << endl;
 rt_close(&rt_handle);
 return -1;
 }

 // Close the handle
 rt_close(&rt_handle);
 return 0;
} // main()
Chapter 14. Real-time Notification APIs 293

294 IBM Blue Gene/P Application Development

Chapter 15. Dynamic Partition Allocator APIs

The Dynamic Partition Allocator APIs provide an easy-to-use interface for the dynamic
creation of partitions. These APIs inspect the current state of the Blue Gene/P machine and
attempt to create a partition based on available resources. If no resources are available that
match the partition requirements, the partition is not created. It is expected that any job
scheduler that uses the partition allocator does so from a centralized process to avoid
conflicts in finding free resources to build the partition. Dynamic Partition Allocator APIs are
thread safe. Only 64-bit shared libraries are provided.

In this chapter, we define a list of APIs into the Midplane Management Control System
(MMCS) Dynamic Partition Allocator. See Chapter 13, “Control system (Bridge) APIs” on
page 209, for details about the Bridge APIs.

We discuss the following specific topics in this chapter and provide a sample program:

� API support
� API details

15

Note: The Dynamic Partition Allocator APIs changed in IBM Blue Gene/P release V1R3M0
in ways that are not compatible with previous releases. Programs using the Dynamic
Partition Allocator APIs prior to V1R3M0 must be changed to use the new APIs.
© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 295

15.1 Overview of API support

In the following sections, we provide an overview of the support provided by the APIs.

15.2 Requirements

When writing programs to the Dynamic Partition Allocator APIs, you must meet the following
requirements:

� Operating system supported

Currently, SUSE Linux Enterprise Server (SLES) 10 for PowerPC is the only supported
platform.

� Languages supported

C and C++ are supported with the GNU gcc 4.1.2 level compilers. For more information
and downloads, refer to the following Web address:

http://gcc.gnu.org/

� Include files

All required include files are installed in the /bgsys/drivers/ppcfloor/include directory. The
include file for the dynamic allocator API is allocator_api.h.

� Library files

The Dynamic Partition Allocator APIs support 64-bit applications using dynamic linking
with shared objects.

Sixty-four bit libraries: The required library files are installed in the
/bgsys/drivers/ppcfloor/lib64 directory. The shared object for linking to the Bridge APIs
is libbgpallocator.so.

The libbgpallocator.so library has dependencies on other libraries included with the
IBM Blue Gene/P software, including the following objects:

• libbgpbridge.so
• libbgpconfig.so
• libbgpdb.so
• libsaymessage.so
• libtableapi.so

These files are installed with the standard system installation procedure. They are
contained in the bgpbase.rpm file.
296 IBM Blue Gene/P Application Development

http://gcc.gnu.org/

15.3 API details
In this section, we provide details about the APIs and return codes for dynamic partition
allocation.

15.3.1 APIs
The following APIs are used for dynamic partition allocation and are all thread safe:

� BGALLOC_STATUS rm_init_allocator(const char * caller_desc, const char *
drain_list);

A program should call rm_init_allocator() and pass a description that will be used as the
text description for all partitions used by subsequent rm_allocate_partition() calls, for
example, passing in ABC job scheduler causes any partitions that are created by
rm_allocate_partition() to have ABC job scheduler as the partition description.

The caller can also optionally specify a drain list file name that identifies the base
partitions (midplanes) that will be excluded from the list of resources to consider when
allocating new partitions. If NULL is passed in for the drain list file name, a default drain list
is set first from the following locations:

– The path in the environment variable ALLOCATOR_DRAIN_LIST if it exists
– The /etc/allocator_drain.lst file if it exists

If no drain list file is established, no base partitions are excluded. If an invalid file name is
passed in, the call fails, for example, a drain list file with the following content excludes
base partitions R00-M0, R00-M1, and R01-M0 when allocating resources for a partition:

R00-M0
R00-M1
R01-M0

The list of resources can contain items separated by any white-space character (space,
tab, new line, vertical tab, or form feed). Items found that do not match an existing
resource are ignored, but an error message is logged.

� BGALLOC_STATUS rm_allocate_partition(

const rm_size_t size,
const rm_connection_type_t conn,
const rm_size3D_t shape,
const rm_job_mode_t mode,
const rm_psetsPerBP_t psetsPerBP,
const char * user_name,
const char * caller_desc,
const char * options,
const char * ignoreBPs,
const char * partition_id,
char ** newpartition_id,
const char * bootOptions);

The caller to rm_allocate_partition() provides input parameters that describe the
characteristics of the partition that should be created from available Blue Gene/P machine
resources. If resources are available that match the requirements, a partition is created
and allocated, and the partition name is returned to the caller along with a return code of
BGALLOC_OK.

If both size and shape values are provided, the allocation is based on the shape value
only.

The user_name parameter is required.
Chapter 15. Dynamic Partition Allocator APIs 297

If the caller_desc value is NULL, the caller description specified on the call to
rm_init_allocator() is used.

The options parameter is optional and can be NULL.

If the ignoreBPs parameter is not NULL, it must be a string of blank-separated base
partition identifiers to be ignored. The base partitions listed in the parameter are ignored
as though the partitions were included in the drain list file currently in effect.

If the partition_id parameter is not NULL, it can specify one of the following options:

– The name of the new partition

The name can be from 1 to 32 characters. Valid characters are a...z, A...Z, 0...9, -
(hyphen), and _ (underscore).

– The prefix to be used for generating a unique partition name

The prefix can be from 1 to 16 characters, followed by an asterisk (*). Valid characters
are the same as those for a new partition name, for example, if ABC-Scheduler* is
specified as a prefix, the resulting unique partition name can be
ABC-Scheduler-27Sep1519514155.

The bootOptions parameter is optional and can be NULL. Otherwise it specifies the initial
boot options for the partition and typically is used when booting alternate images.

� BGALLOC_STATUS rm_allocate_htc_pool(

const unsigned int size,
const rm_job_mode_t mode,
const int psetsPerBP,
const char * user_name,
const char * caller_description,
const char * ignoreBPs,
const char * pool_id,
const char * user_list,
const char * bootOptions,
const rm_job_mode_extender_t mode_extender);

The caller to rm_allocate_htc_pool() provides input parameters that describe the
characteristics of the pool of HTC partitions that should be created from available Blue
Gene/P machine resources. If resources are available that match the requirements, a pool
of partitions is created and allocated, and a return code of BGALLOC_OK is returned.

The size parameter specifies the total number of nodes to allocate for the pool. The
psetsPerBP specifies the number of psets per base partition to be used. By specifying
fewer psets per base partition, the I/O ratio for the allocated partition can be effectively
increased. If zero is specified, use all IO nodes available. This will be the partition size
used or 32, whichever is greater.

The mode and mode_extender parameters are used in conjunction to specify the HTC job
mode and whether the new pool uses CNK or Linux. The mode_extender parameter
specifies whether the new pool uses CNK (RM_CNK) or Linux (RM_LINUX). If the
mode_extender parameter is RM_CNK, the mode parameter can be any of the job modes
in Table 13-23 on page 242. If the mode_extender parameter is RM_LINUX, the mode
parameter must be RM_SMP_MODE.

Important: The returned char * value for newpartition_id should be freed by the caller
when it is no longer needed to avoid memory leaks.
298 IBM Blue Gene/P Application Development

The user_name parameter is required. If the caller_desc value is NULL, the caller
description specified on the call to rm_init_allocator is used. If the ignoreBPs parameter is
not NULL, it must be a string of blank-separated base partition identifiers. The base
partitions listed in the parameter are ignored as though the partitions were included in the
drain list file currently in effect.

The pool_id is used as a prefix for generating unique partition names. It must be from 1 to
32 characters. Valid characters are a...z, A...Z, 0...9, -(hyphen), and _ (underscore). If the
user_list parameter is not NULL, the user IDs specified are permitted to run jobs in the
pool.

The bootOptions parameter is optional and can be NULL. Otherwise it specifies the initial
boot options for the partition and is typically used when booting alternate images.

Multiple calls can be made to rm_allocate_htc_pool() with the same pool ID; these calls
allocate additional resources to the pool. The additional resources can use different
parameters such as job mode and users.

� BGALLOC_STATUS rm_deallocate_htc_pool(

const unsigned int in_removed,
const char * pool_id,
unsigned * num_removed,
const rm_mode_pref_t mode_pref);

This API deallocates the specified number of nodes from a HTC pool.

The pool_id parameter specifies the name of the pool.

The mode_pref parameter specifies the job mode of the partitions to be deallocated from
the pool. The possible values for this parameter are described in Table 15-1.

Table 15-1 rm_mode_pref_t values

The in_removed parameter specifies the number of nodes to remove from the pool. If the
number of nodes to remove is not a multiple of the size of the partitions in the pool
allocated using the specified mode, or if the number is greater than the number of nodes
available to be removed, fewer nodes than in_removed are removed. If zero is specified,
all the nodes in the pool allocated with the specified mode are deallocated.

The value returned in num_removed is the actual number of nodes removed from the pool.
This number might be less than the number of nodes specified by in_removed.

15.3.2 Return codes
When a failure occurs, the API invocation returns an error code. In addition, a failure always
generates a log message, which provides more information about the possible cause of the
problem and an optional corrective action. These log messages are used for debugging and
non-automatic recovery of failures.

Name Description

RM_PREF_SMP_MODE Symmetric multiprocessing mode

RM_PREF_DUAL_MODE Dual mode

RM_PREF_VIRTUAL_NODE_MODE Virtual node mode

RM_PREF_LINUX_SMP_MODE Linux/SMP mode

RM_PREF_ANY_MODE Any of the modes
Chapter 15. Dynamic Partition Allocator APIs 299

The BGALLOC_STATUS return codes for the Dynamic Partition Allocator can be one of the
following types:

� BGALLOC_OK: Invocation completed successfully.

� BGALLOC_ILLEGAL_INPUT: The input to the API invocation is invalid. This result is due to
missing required data, illegal data, and similar problems.

� BGALLOC_ERROR: An error occurred, such as a memory allocation problem or failure on a
low-level call.

� BGALLOC_NOT_FOUND: The request to dynamically create a partition failed because required
resources are not available.

� BGALLOC_ALREADY_EXISTS: A partition already exists with the name specified. This error
occurs only when the caller indicates a specific name for the new partition.

15.3.3 Configuring environment variables

The environment variables in Table 15-1 on page 299 are used to control the dynamic
allocator and Bridge APIs.

Table 15-2 Environment variables that control the Bridge APIs

15.4 Sample program
The sample program in Example 15-1 shows how to allocate a partition from resources on
base partition R001.

Example 15-1 Sample allocator API program

#include <iostream>
#include <sstream>
#include <cstring>
#include "allocator_api.h"

using std::cout;
using std::cerr;
using std::endl;

Environment variable Required Description

DB_PROPERTY Yes This variable must be set to the path of the db.properties file
with database connection information. For a default
installation, the path to this file is
/bgsys/local/etc/db.properties.

BRIDGE_CONFIG Yes This variable must be set to the path of the bridge.config file
that contains the Bridge APIs configuration values. For a
default installation, the path to this file is
/bgsys/local/etc/bridge.config.

ALLOCATOR_DRAIN_LIST No This variable can be set to the path of the base partition drain
list to be used if one is not specified on the call to
rm_init_allocator(). When this variable is not set, the file
/etc/allocator_drain.lst is used as a default if it exists.

BRIDGE_DUMP_XML No When set to any value, this variable causes the Bridge APIs to
dump in-memory XML streams to files in /tmp for debugging.
When this variable is not set, the Bridge APIs do not dump
in-memory XML streams.
300 IBM Blue Gene/P Application Development

int main() {
 rm_size3D_t shape;
 rm_connection_type_t conn = RM_MESH;
 char * ignoreBPs = "R00-M0";
 char* new_partition_id;
 shape.X = 0;
 shape.Y = 0;
 shape.Z = 0;
 BGALLOC_STATUS alloc_rc;

 //set lowest level of verbosity
 setSayMessageParams(stderr, MESSAGE_DEBUG1);
 alloc_rc = rm_init_allocator("test", NULL);
 alloc_rc = rm_allocate_partition(256, conn, shape, RM_SMP_MODE, 0,
 "user1",
 "New partition description",
 NULL,
 ignoreBPs,
 "ABC-Scheduler*",
 &new_partition_id, NULL);
 if (alloc_rc == BGALLOC_OK) {
 cout << "successfully allocated partition: " << new_partition_id << endl;
 free(new_partition_id);
 } else {
 cerr << "could not allocate partition: " << endl;
 if (alloc_rc == BGALLOC_ILLEGAL_INPUT) {
 cerr << "illegal input" << endl;
 } else if (alloc_rc == BGALLOC_ERROR) {
 cerr << "unknown error" << endl;
 } else if (alloc_rc == BGALLOC_NOT_FOUND) {
 cerr << "not found" << endl;
 } else if (alloc_rc == BGALLOC_ALREADY_EXISTS) {
 cerr << "partition already exists" << endl;
 } else {
 cerr << "internal error" << endl;
 }

}
}

Example 15-2 shows the commands used to compile and link the sample program.

Example 15-2 compile and link commands

g++ -m64 -pthread -I/bgsys/drivers/ppcfloor/include -c sample1.cc -o sample1.o_64

g++ -m64 -pthread -o sample1 sample1.o_64 -L/bgsys/drivers/ppcfloor/lib64
-lbgpallocator
Chapter 15. Dynamic Partition Allocator APIs 301

302 IBM Blue Gene/P Application Development

Part 5 Applications

In this part, we discuss applications that are being used on the IBM Blue Gene/L or IBM Blue
Gene/P system. This part includes Chapter 16, “Performance overview of engineering and
scientific applications” on page 305.

Part 5
© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 303

304 IBM Blue Gene/P Application Development

Chapter 16. Performance overview of
engineering and scientific
applications

In this chapter, we briefly describe a series of scientific and engineering applications that are
currently being used on either the Blue Gene/L or Blue Gene/P system. For a comprehensive
list of applications, refer to the IBM Blue Gene Web page at:

http://www-03.ibm.com/servers/deepcomputing/bluegene/siapps.html

The examples in this chapter emphasize the benefits of using the Blue Gene supercomputer
as a highly scalable parallel system. They present results for running applications in various
modes that exploit the architecture of the system. We discuss the following topics:

� IBM Blue Gene/P system from an applications perspective
� Chemistry and life sciences applications

16
© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 305

http://www-03.ibm.com/servers/deepcomputing/bluegene/siapps.html

16.1 Blue Gene/P system from an applications perspective

This book has been dedicated to describing the Blue Gene/P massively parallel
supercomputer from IBM. In this section, we summarize the benefits of the Blue Gene/P
system from an applications point of view. At the core of the system is the IBM PowerPC (IBM
PowerPC 450) processor with the addition of two floating-point units (FPU). This system uses
a distributed memory, message-passing programming model.

To achieve a high level of integration and quantity of micro-processors with low power
consumption, the machine was developed based on a processor with moderate frequency.
The Blue Gene/P system uses system-on-a-chip (SoC) technology to allow a high level of
integration, low power, and low design cost. Each processor core runs at a frequency of
850 MHz giving a theoretical peak performance of 3.4 gigaflops/core or 13.6 gigaflops/chip.
The chip constitutes the Compute Node.

The next building blocks are the compute and I/O cards. A single Compute Node attached to
a processor card with either 2 GB or 4 GB of memory (RAM) creates the compute and I/O
cards. The compute cards and I/O cards are plugged into a node card. Two rows of sixteen
compute cards are on the node card. Up to two I/O cards can be on a node card.

A midplane consists of 16 node cards stacked in a rack. A rack holds two midplanes, for a
total of 32 node cards. A system with 72 racks consisting of 294,912 processor cores.

In 2005, running a real application on the Blue Gene/L system broke the barrier of
100 teraflops/second (TF/s), sustaining performance using the domain decomposition
molecular-dynamics code (ddcMD) from the Lawrence Livermore National Laboratory.34 In
2006, the first system to break the barrier of 200 TF/s was Qbox running at 207.3 TF/s.35
Real applications are currently achieving two orders of magnitude higher performance than
previously possible. Successful scaling has pushed from O(1000) processors to O(100,000)
processors by the Gordon Bell Prize finalists at Supercomputing 2006.36 Out of six finalists,
three ran on the Blue Gene/L system.

In silico experimentation plays a crucial role in many scientific disciplines. It provides a
fingerprint for experimentation. In engineering applications, such as automotive crash studies,
numerical simulation is much cheaper than physical experimentation. In other applications,
such as global climate change where experiments are impossible, simulations are used to
explore the fundamental scientific issues.37 This is certainly true in life sciences as well as in
materials science. Figure 16-1 on page 307 illustrates a landscape of a few selected areas
and techniques where High-Performance Computing is important to carry out simulations.
306 IBM Blue Gene/P Application Development

Figure 16-1 High-performance computing landscape for selected scientific and engineering
applications

In the rest of this chapter, we summarize the performance that has been recorded in the
literature for a series of applications in life sciences and materials science. A comprehensive
list of applications is available for the Blue Gene/L and Blue Gene/P systems. For more
information, see the IBM Blue Gene Applications Web page at:

http://www-03.ibm.com/servers/deepcomputing/bluegene/siapps.html

16.2 Chemistry and life sciences applications

In this section, we provide a brief overview of the performance characteristics of a selected
set of chemistry and life sciences applications. In particular, we focus on what is known as
computational chemistry. However, as other disciplines in sciences that traditionally relied
almost exclusively on experimental observation began to fully incorporate Information
Technology (IT) as one of their tools, the area of computational chemistry has expanded to
new disciplines such as bioinformatics, systems biology, and several other areas that have
emerged after the post-genomic era.

To understand or define the kind of molecular systems that can be studied with these
techniques, Figure 16-2 on page 308 defines the computational chemistry landscape as a
function of the size of the systems and the methodology. It illustrates that Classical Molecular
Mechanics/Molecular Dynamics (MM/MD) are commonly used to simulate large biomolecules
that cannot be treated with more accurate methods. The next level corresponds to
semi-empirical methods. Finally Ab Initio methods (also called electronic structure methods)
provide a more accurate description of the system, but the computational demands in terms
of compute cycles increase rapidly.
Chapter 16. Performance overview of engineering and scientific applications 307

http://www-03.ibm.com/servers/deepcomputing/bluegene/siapps.html

Alternatively, bioinformatics techniques rely mainly on string manipulations in an effort to
carry out data mining of large databases. These applications tend to be data intensive.

Figure 16-2 Computational methods landscape in computational chemistry

Although Density Functional Theory-based approaches are not fully represented in
Figure 16-2, nowadays these types of methods are being used to simulate biologically
important systems.38 These techniques allow for the calculation of larger systems. In this
chapter, we briefly describe Car-Parrinello Molecular Dynamics (CPMD).39 In the same vein,
use of mixed Quantum Mechanical/Molecular Mechanical (QM/MM) methods40 can simulate
larger systems.

16.2.1 Classical molecular mechanics and molecular dynamics applications

Applications in such areas as chemistry and life sciences can benefit from the type of
architecture used in the Blue Gene supercomputer.41 In particular, software packages based
on molecular dynamics have been considered good candidates for the Blue Gene
architecture. Classical MD simulations compute atomic trajectories by solving equations of
motion numerically by using empirical force fields. The overall MD energy equation is broken
into three components: bonded, van der Waals, and electrostatic. The first two components
are local in nature and therefore do not make a significant contribution to the overall running
time.

The quadratic scaling of the electrostatics force terms, however, requires a high level of
optimization of the MD application.42 To improve performance on simulations in which the
solvent is modeled at the atomic level (that is, explicit solvent modeling), the four Blue Gene
MD applications of AMBER,43 Blue Matter,44 LAMMPS,45 and NAMD46 employ a
reciprocal-space technique called Ewald sums, which enables the evaluation of long-range
electrostatic forces to a preselected level of accuracy. In addition to the particle mesh Ewald
(PME) method, LAMMPS offers the particle particle/particle-mesh (PPPM) technique with
characteristics that make it scale well on massively parallel processing (MPP) machines such
as the Blue Gene system.
308 IBM Blue Gene/P Application Development

AMBER
AMBER47 is the collective name for a suite of programs that are developed by the Scripps
Research Institute. With these programs, users can carry out molecular dynamics
simulations, particularly on biomolecules. The primary AMBER module, called sander, was
designed to run on parallel systems and provides direct support for several force fields for
proteins and nucleic acids. AMBER includes an extensively modified version of sander, called
pmemd (particle mesh). For complete information about AMBER as well as benchmarks, refer
to the AMBER Web site at:

http://amber.scripps.edu/

For implicit solvent (continuum) models, which rely on variations of the Poisson equation of
classical electrostatics, AMBER offers the Generalized Born (GB) method. This method uses
an approximation to the Poisson equation that can be solved analytically and allows for good
scaling. In Figure 16-3, the experiment is with an implicit solvent (GB) model of 120,000
atoms (Aon benchmark).

Figure 16-3 Parallel scaling of AMBER on the IBM Blue Gene/L system

0

500

1000

1500

2000

2500

3000

3500

0 512 1024 1536 2048 2560 3072

Processors

Pa
ra

lle
l S

pe
ed

up

Linear scaling AMBER GB scaling
Chapter 16. Performance overview of engineering and scientific applications 309

http://amber.scripps.edu/

AMBER also incorporates the PME algorithm, which takes the full electrostatic interactions
into account to improve the performance of electrostatic force evaluation (see Figure 16-4). In
Figure 16-4, the experiment is with an explicit solvent (PME) model of 290,000 atoms
(Rubisco).

Figure 16-4 Parallel scaling of AMBER on the Blue Gene/L system

Blue Matter
Blue Matter48 is a classical molecular dynamics application that has been under development
as part of the IBM Blue Gene project. The effort serves two purposes:

� Enables scientific work in the area of biomolecular simulation that IBM announced in
December 1999.

� Acts as an experimental platform for the exploration of programming models and
algorithms for massively parallel machines in the context of a real application.

Blue Matter has been implemented via spatial-force decomposition for N-body simulations
using the PME method for handling electrostatic interactions. The Ewald summation method
and particle mesh techniques are approximated by a finite range cut-off and a reciprocal
space portion for the charge distribution. This is done in Blue Matter via the
Particle-Particle-Particle-Mesh (P3ME) method.49

The results presented by Fitch et al.50 show impressive scalability on the Blue Gene/L
system. Figure 16-5 on page 311 shows scalability as a function of the number of nodes. It
illustrates that the performance in time/time step as a function of the number of processors for
β-Hairpin contains a total of 5,239 atoms. SOPE contains 13,758 atoms. In this case, the
timings that are reported here correspond to a size of 643 FFT. Rhodopsin contains 43,222
atoms, and ApoA1 contains 92,224 atoms. All runs were carried out using the P3ME method,
which was implemented in Blue Matter at constant particle number, volume, and energy
(NVE).52

0

100

200

300

400

500

600

0 128 256 384 512

Processors

Pa
ra

lle
l S

pe
ed

up
Linear scaling AMBER PME scaling
310 IBM Blue Gene/P Application Development

Figure 16-5 Performance in time/time step as a function of number of processors (from Fitch, et al.51)

LAMMPS
Large-scale Atomic/Molecular Massively Parallel Simulator (LAMMPS)53 is an MD program
from Sandia National Laboratories that is designed specifically for MPP. LAMMPS is
implemented in C++ and is distributed freely as open-source software under the GNU Public
License (GPL).54 LAMMPS can model atomic, polymeric, biological, metallic, or granular
systems using a variety of force fields and boundary conditions. The parallel efficiency of
LAMMPS varies from the size of the benchmark data and the number of steps being
simulated. In general, LAMMPS can scale to more processors on larger systems (see
Figure 16-6).

Figure 16-6 Parallel scaling of LAMMPS on Blue Gene/L (1M System: 1-million atom scaled rhodopsin;
4M System: 4-million atom scaled rhodopsin)

For a one-million atom system, LAMMPS can scale up to 4096 nodes. For a larger system,
such as a four-million atom system, LAMMPS can scale up to 4096 nodes as well. As the size
of the system increases, scalability increases as well.

0

5000

10000

15000

20000

512 1024 2048 4096 8192 16384

Processors

Pa
ra

lle
l S

pe
ed

up

Ideal b-Hairpin SOPE
Rhodopsin ApoA1

0

1 0 0 0

2 0 0 0

3 0 0 0

4 0 0 0

5 0 0 0

6 0 0 0

7 0 0 0

8 0 0 0

9 0 0 0

0 2 0 0 0 4 0 0 0 6 0 0 0 8 0 0 0

P r o c e s s o r s

Pa
ra

lle
l s

pe
ed

up

1 M S y s t e m 4 M S y s t e m L in e a r s c a lin g
Chapter 16. Performance overview of engineering and scientific applications 311

NAMD
NAMD is a parallel molecular dynamics application that was developed for high-performance
calculations of large biological molecular systems.55 NAMD supports the force fields used by
AMBER, CHARMM,56 and X-PLOR57 and is also file compatible with these programs. This
commonality allows simulations to migrate between these four programs. The C++ source for
NAMD and Charm++ are freely available from UIUC. For additional information about NAMD,
see the official NAMD Web site at:

http://www.ks.uiuc.edu/Research/namd/

NAMD incorporates the PME algorithm, which takes the full electrostatic interactions into
account and reduces computational complexity. To further reduce the cost of the evaluation of
long-range electrostatic forces, a multiple time step scheme is employed. The local
interactions (bonded, van der Waals, and electrostatic interactions within a specified distance)
are calculated at each time step. The longer range interactions (electrostatic interactions
beyond the specified distance) are computed less often. An incremental load balancer
monitors and adjusts the load during the simulation.

Due to the good balance of network and processor speed of the Blue Gene system, NAMD is
able to scale to large processor counts (see Figure 16-7). While scalability is affected by
many factors, many simulations can make use of multiple Blue Gene racks. Work by Kumar et
al.58 has reported scaling up to 8192 processors. Timing comparisons often use the
“benchmark time” metric instead of wall clock time to completion. The benchmark time metric
omits setup, I/O, and load balance overhead. While benchmark scaling can be considered a
guide to what is possible, ideal load balance and I/O parameters for each case must be found
for the wall clock time to scale similarly. Careful consideration of these parameters might be
necessary to achieve the best scalability.

Figure 16-7 Parallel speedup on the Blue Gene/L system for the NAMD standard apoA1 benchmark

16.2.2 Molecular docking applications

Applications in the area of molecular docking are becoming important in High-Performance
Computing. In particular, in silico screening using molecular docking has been recognized as
an approach that benefits from High-Performance Computing to identify novel small
molecules that can then be used for drug design.59 This process consists of the identification
or selection of compounds that show activity against a biomolecule that is of interest as a
drug target.60

0
500

1000
1500
2000
2500
3000
3500
4000
4500

4 128 512 1024 2048 4096
Processors

Pa
ra

lle
l S

pe
ed

up
312 IBM Blue Gene/P Application Development

http://www.ks.uiuc.edu/Research/namd/

Docking programs place molecules into the active site of the receptor (or target biomolecule)
in a noncovalent fashion and then rank them by the ability of the small molecules to interact
with the receptor.61 An extensive family of molecular docking software packages is
available.62

DOCK is an open-source molecular docking software package that is frequently used in
structure-based drug design.63 The computational aspects of this program can be divided
into two parts. The first part consists of the ligand atoms located inside the cavity or binding
pocket of a receptor, which is a large biomolecule. This step is carried out by a search
algorithm.64 The second part corresponds to scoring or identifying the most favorable
interactions, which is normally done by means of a scoring function.65

The latest version of the DOCK software package is Version 6.1. However, in our work, we
used Version 6.0. This version is written in C++ to exploit code modularity and has been
parallelized using the Message Passing Interface (MPI) paradigm. DOCK V6.0 is parallelized
using a master-worker scheme.66 The master handles I/O and tasks management, while
each worker is given an individual molecule to perform simultaneous independent docking.67

Recently, Peters, et al. have shown that DOCK6 is well suited for doing virtual screening on
the Blue Gene/L or Blue Gene/P system.68 Figure 16-8 shows the receptor HIV-1 reverse
transcriptase in complex with nevirapine as used and described in the Official UCSF DOCK
Web site. The ligand library corresponds to a subset of 27,005 drug-like ligands from the
ZINC database.69 The scalability of the parallel version of the code is illustrated by
constructing a set of ligands with 128,000 copies of nevirapine as recommended in the
Official UCSF DOCK Web site to remove dependence on the order and size of the
compound. You can find this Web site at:

http://dock.compbio.ucsf.edu

In Figure 16-8, the original code is the dark bar. Sorting by total number of atoms per ligand is
represented by the bar with horizontal lines. Sorting by total number of rotatable bonds per
ligand is represented by the white bar.70

Figure 16-8 The effect of load-balancing optimization for 27,005 ligands on 2048 processors

0

10000

20000

30000

40000

50000

60000

256 512 1024 2048

Number of Processors

Ti
m

e(
Se

c.
)

Chapter 16. Performance overview of engineering and scientific applications 313

http://dock.compbio.ucsf.edu

16.2.3 Electronic structure (Ab Initio) applications

Electronic structure calculations, such as the Hartree-Fock (HF) method, represent one of the
simplest techniques in this area. However, even this first approximation tends to be
computationally demanding. Many types of calculations begin with a Hartree-Fock calculation
and subsequently correct for electron-electron repulsion, which is also referred to as
electronic correlation. The Møller-Plesset perturbation theory (MPn) and coupled cluster
theory (CC) are examples of these post-Hartree-Fock methods.71

A common characteristic of these techniques is that they are used to accurately compute
molecular properties. As such, they tend to be widely available in High-Performance
Computing. However, in addition to traditional electronic structure methods, Density
Functional Theory-based methods have proven to be an attractive alternative to include
correction effects and still treat large systems.

The CPMD code is based on the original computer code written by Car and Parrinello.72 It
was developed first at the IBM Research Zurich laboratory, in collaboration with many groups
worldwide. It is a production code with many unique features written in Fortran and has grown
from its original size of approximately 10,000 lines to currently close to 200,000 lines of code.
Since January 2002, the program has been freely available for noncommercial use.73

The basics of the implementation of the Kohn-Sham method using a plane-wave basis set
and pseudopotentials are described in several review articles,74 and the CPMD code follows
them closely. All standard gradient-corrected density functionals are supported, and
preliminary support for functionals that depend on the kinetic energy density is available.
Pseudopotentials used in CPMD are either of the norm-conserving or the ultra-soft type.75
Norm-conserving pseudopotentials have been the default method in CPMD, and only some of
the rich functionality has been implemented for ultra-soft pseudopotentials.

The emphasis of CPMD on MD simulations of complex structures and liquids led to the
optimization of the code for large supercells and a single k-point (the k = 0 point)
approximation. Therefore, many features have only been implemented for this special case.
CPMD has a rich set of features, many of which are unique. For a complete overview, refer to
the CPMD manual.76 The basic electronic structure method implemented uses fixed
occupation numbers, either within a spin-restricted or an unrestricted scheme. For systems
with a variable occupation number (small gap systems and metals), the free energy
functional3 can be used together with iterative diagonalization methods.

16.2.4 Bioinformatics applications

The list of molecular biology databases is constantly increasing, and more scientists rely on
this information. The NAR Molecular Biology Database collection reported an increase of 139
more databases for 2006 compared to the previous year. enBank doubles its size
approximately every 18 months. However, the increase in microprocessor clock speed is not
changing at the same rate. Therefore, scientists try to leverage the use of multiple processors.
In this section, we introduce some of the applications currently running on the Blue Gene
supercomputer.
314 IBM Blue Gene/P Application Development

HMMER
For a complete discussion of hidden Markov models, refer to the work by Krogh et al.77
HMMER V2.3.2 consists of nine different programs: hmmalign, hmmbuild, hmmcalibrate,
hmmconvert, hmmemit, hmmfetch, hmmindex, hmmpfam, and hmmsearch.78 Out of these
nine programs, hmmcalibrate, hmmpfam, and hmmsearch have been parallelized.
hmmcalibrate is used to identify statistical significance parameters for profile HMM. hmmpfam
is used to search a profile HMM database, and hmmsearch is used to carry out sequence
database searches.79

The first module tested corresponds to hmmcalibrate. Figure 16-9 summarizes the
performance of this module up to 2048 nodes.80 Although this module was not optimized, the
parallel efficiency is still 75% on 2048 nodes. The graph in Figure 16-9 illustrates the
performance of hmmcalibrate using only the first 327 entries in the Pfam database.81

Figure 16-9 .hmmcalibrate parallel performance using the first 327 entries of the Pfam database

Figure 16-10 on page 316 illustrates the work presented by Jiang, et al.80 for optimizing
hmmsearch parallel performance using 50 proteins of the globin family from different
organisms and the UniProt release 8 database. For each processor count, the left bar shows
the original PVM to MPI port. Notice scaling stops at 64 nodes. The second bar shows the
multiple master implementation. The third bar shows the dynamic data collection
implementation, and the right bar shows the load balancing implementation.
Chapter 16. Performance overview of engineering and scientific applications 315

Figure 16-10 hmmsearch parallel performance

mpiBLAST-PIO
mpiBLAST is an open-source parallelization of BLAST that uses MPI.83 One of the key
features of the initial parallelization of mpiBLAST is its ability to fragment and distribute
databases.

Thorsen et al.84 have compared the query Arabidopsis thaliana, a model organism for
studying plant genetics. This query was further subdivided into small, medium, and large
query sets that contain 200, 1168, and 28014 sequences, respectively.

Figure 16-11 on page 317 illustrates the results of comparing three queries of three different
sizes. We labeled them “small,” “medium,” and “large.” The database corresponds to NR. This
figure shows that scalability is a function of the query size. The small query scales to
approximately 1024 nodes in coprocessor mode with a parallel efficiency of 72% where the
large query scales to 8,192 nodes with a parallel efficiency of 74%.
316 IBM Blue Gene/P Application Development

From the top of Figure 16-11, the thick solid line corresponds to ideal scaling. The thin solid
line corresponds to the large query. The dashed line corresponds to the medium query. The
dotted line corresponds to the small query.

Figure 16-11 Scaling chart for queries run versus the nr database

16.2.5 Performance kernel benchmarks

Communication performance is an important aspect when running parallel applications,
particularly, when running on a distributed-memory system such as the Blue Gene/P system.
On both the Blue Gene/L and Blue Gene/P systems, instead of implementing a single type of
network capable of transporting all protocols needed, these two systems have separate
networks for different types of communications.

Usually two measurements provide information about the network and can be used to look at
the parallel performance of applications:

Bandwidth The number of MB of data that can be sent from a node to another
node in one second

Latency The amount of time it takes for the first byte sent from one node to
reach its target node

These two values provide information about communication. In this section, we illustrate two
simple cases. The first case corresponds to a benchmark that involves a single transfer. The
second case corresponds to a collective as defined in the Intel MPI Benchmarks. Intel MPI
Benchmarks is formerly known as “Pallas MPI Benchmarks” - PMB-MPI1 (for MPI1 standard
functions only). Intel MPI Benchmarks - MPI1 provides a set of elementary MPI benchmark
kernels.

For more details, see the product documentation included in the package that you can
download from the Web at:

http://www.intel.com/cd/software/products/asmo-na/eng/219848.htm
Chapter 16. Performance overview of engineering and scientific applications 317

http://www.intel.com/cd/software/products/asmo-na/eng/219848.htm

The Intel MPI Benchmarks kernel or elementary set of benchmarks was reported as part of
Unfolding the IBM eServer Blue Gene Solution, SG24-6686. Here we describe and perform
the same benchmarks. You can run all of the supported benchmarks, or just a subset,
specified through the command line. The rules, such as time measurement, message
lengths, selection of communicators to run a particular benchmark, are program parameters.
For more information, see the product documentation that is included in the package, which
you can download from the Web at:

http://www.intel.com/software/products/cluster/mpi/mpi_benchmarks_lic.htm

This set of benchmarks has the following objectives:

� Provide a concise set of benchmarks targeted at measuring important MPI functions:
point-to-point message-passing, global data movement and computation routines, and
one-sided communications and file I/O

� Set forth precise benchmark procedures: run rules, set of required results, repetition
factors, and message lengths

� Avoid imposing an interpretation on the measured results: execution time, throughput, and
global operations performance

16.2.6 MPI point-to-point

In the Intel MPI Benchmarks, single transfer corresponds to PingPong and PingPing
benchmarks. Here we illustrate a comparison between the Blue Gene/L and Blue Gene/P
system for the case of PingPong. This benchmark illustrates a single message that was
transferred between two MPI tasks, which in our case, is on two different nodes.

To run this benchmark, we used the Intel MPI Benchmark Suite Version 2.3, MPI-1 part. On
the Blue Gene/L system, the benchmark was run in coprocessor mode, which is defined in
Unfolding the IBM eServer Blue Gene Solution, SG24-6686. On the Blue Gene/P system, we
used the SMP Node mode.

Example 16-1 shows how mpirun was invoked on the Blue Gene/L system.

Example 16-1 mpirun on the Blue Gene/L system

mpirun -nofree -timeout 120 -verbose 1 -mode CO -env "BGL_APP_L1_WRITE_THROUGH=0
BGL_APP_L1_SWOA=0" -partition R000 -cwd /bglscratch/pallas -exe
/bglscratch/pallas/IMB-MPI1.4MB.perf.rts -args "-msglen 4194304.txt -npmin 512
PingPong" | tee IMB-MPI1.4MB.perf.PingPong.4194304.512.out) >>
run.IMB-MPI1.4MB.perf.PingPong.4194304.512.out 2>&1

Example 16-2 shows how mpirun was invoked on the Blue Gene/P system.

Example 16-2 mpirun on the Blue Gene/P system

mpirun -nofree -timeout 300 -verbose 1 -np 512 -mode SMP -partition R01-M1 -cwd
/bgusr/BGTH_BGP/test512nDD2BGP/pallas/pall512DD2SMP/bgpdd2sys1-R01-M1 -exe
/bgusr/BGTH_BGP/test512nDD2BGP/pallas/pall512DD2SMP/bgpdd2sys1-R01-M1/IMB-MPI1.4MB
.perf.rts -args "-msglen 4194304.txt -npmin 512 PingPong" | tee
IMB-MPI1.4MB.perf.PingPong.4194304.512.out) >>
run.IMB-MPI1.4MB.perf.PingPong.4194304.512.out 2>&1

Figure 16-12 on page 319 shows the bandwidth on the torus network as a function of the
message size, for one simultaneous pair of nearest neighbor communications. The protocol
switch from short to eager is visible in these two cases, where the eager to rendezvous switch
318 IBM Blue Gene/P Application Development

http://www.intel.com/software/products/cluster/mpi/mpi_benchmarks_lic.htm

is most pronounced on the Blue Gene/L system. This figure also shows the improved
performance on the Blue Gene/P system. Notice also in Figure 16-12 that the diamonds
corresponds to the Blue Gene/P system and the asterisks (*) correspond to the Blue Gene/L
system.

Figure 16-12 Bandwidth versus message size

16.2.7 MPI collective benchmarks

In the Intel MPI Benchmarks, collective benchmarks correspond to Bcast, Allgather,
Allgatherv, Alltoall, Alltoallv, Reduce, Reduce_scatter, Allreduce, and Barrier benchmarks.
Here we illustrate a comparison between the Blue Gene/L and Blue Gene/P system for the
case of Allreduce, which is a popular collective used in certain scientific applications. These
benchmarks measure the message-passing power of a system as well as the quality of the
implementation.

To run this benchmark, we used the Intel MPI Benchmark Suite Version 2.3, MPI-1 part. On
the Blue Gene/P system, the benchmark was run in coprocessor mode, which is defined in
Unfolding the IBM eServer Blue Gene Solution, SG24-6686. On the Blue Gene/P system, we
used SMP Node mode.

Example 16-3 shows how mpirun was invoked on the Blue Gene/L system.

Example 16-3 mpirun on the Blue Gene/L system

mpirun -nofree -timeout 120 -verbose 1 -mode CO -env "BGL_APP_L1_WRITE_THROUGH=0
BGL_APP_L1_SWOA=0" -partition R000 -cwd
/bglscratch/BGTH/testsmall512nodeBGL/pallas -exe
/bglscratch/BGTH/testsmall512nodeBGL/pallas/IMB-MPI1.4MB.perf.rts -args "-msglen
4194304.txt -npmin 512 Allreduce" | tee
IMB-MPI1.4MB.perf.Allreduce.4194304.512.out) >>
run.IMB-MPI1.4MB.perf.Allreduce.4194304.512.out 2>&1

Example 16-4 shows how mpirun was invoked on the Blue Gene/P system.

Example 16-4 mpirun on the Blue Gene/P system

mpirun -nofree -timeout 300 -verbose 1 -np 512 -mode SMP -partition R01-M1 -cwd
/bgusr/BGTH_BGP/test512nDD2BGP/pallas/pall512DD2SMP/bgpdd2sys1-R01-M1 -exe

0
50

100
150
200
250
300
350
400

1 4 16 64 25
6

10
24

40
96

16
38

4
65

53
6

26
21

44

10
48

57
6

41
94

30
4

Message size in Bytes

Ba
nd

w
id

th
 in

 M
B/

s

Chapter 16. Performance overview of engineering and scientific applications 319

/bgusr/BGTH_BGP/test512nDD2BGP/pallas/pall512DD2SMP/bgpdd2sys1-R01-M1/IMB-MPI1.4MB
.perf.rts -args "-msglen 4194304.txt -npmin 512 Allreduce" | tee
IMB-MPI1.4MB.perf.Allreduce.4194304.512.out) >>
run.IMB-MPI1.4MB.perf.Allreduce.4194304.512.out 2>&1

Collective operations are more efficient on the Blue Gene/P system. You should try to use
these operations instead of point-to-point communication wherever possible. The overhead
for point-to-point communications is much larger than those for collectives. Unless all your
point-to-point communication is purely the nearest neighbor, it is also difficult to avoid network
congestion on the torus network.

Alternatively, collective operations can use the barrier (global interrupt) network or the torus
network. If they run over the torus network, they can still be optimized by using specially
designed communication patterns that achieve optimum performance. Doing this manually
with point-to-point operations is possible in theory, but in general, the implementation in the
Blue Gene/P MPI library offers superior performance.

With point-to-point communication, the goal of reducing the point-to-point Manhattan
distances necessitates a good mapping of MPI tasks to the physical hardware. For
collectives, mapping is equally important because most collective implementations prefer
certain communicator shapes to achieve optimum performance. The technique of mapping is
illustrated in Appendix F, “Mapping” on page 355.

Similar to point-to-point communications, collective communications also works best if you do
not use complicated derived data types and if your buffers are aligned to 16-byte boundaries.

While the MPI standard explicitly allows for MPI collective communications to occur at the
same time as point-to-point communications (on the same communicator), we generally do
not recommend that you allow this to happen for performance reasons.

Table 16-1 summarizes the MPI collectives that have been optimized on the Blue Gene/P
system, together with their performance characteristics when executed on the various
networks of the Blue Gene/P system.

Table 16-1 MPI collectives optimized on the Blue Gene/P system

MPI routine Condition Network Performance

MPI_Barrier MPI_COMM_WORLD Barrier (global
interrupt) network

1.2 μs

MPI_Barrier Any communicator Torus network 30 μs

MPI_Broadcast MPI_COMM_WORLD Collective network 817 MBps

MPI_Broadcast Rectangular
communicator

Torus network 934 MBps

MPI_Allreduce MPI_COMM_WORLD
fixed-point

Collective network 778 MBps

MPI_Allreduce MPI_COMM_WORLD
floating point

Collective network 98 MBps

MPI_Alltoall[v] Any communicator Torus network 84-97% peak

MPI_Allgatherv N/A Torus network Same as broadcast
320 IBM Blue Gene/P Application Development

Figure 16-13 shows a comparison between the Blue Gene/L and Blue Gene/P systems for
the MPI_Allreduce() type of communication.

Figure 16-13 MPI_Allreduce() performance on 512 nodes

Figure 16-14 illustrates the performance of the barrier on Blue Gene/P for up to 32 nodes.

Figure 16-14 Barrier performance on the Blue Gene/P system

0
20000
40000
60000
80000

100000
120000
140000
160000
180000

4 8 64 51
2

40
96

32
76

8

26
21

44

20
97

15
2

Message size in Bytes

Ti
m

e
in

s

Allreduce on BG/L
Allreduce on BG/P

0

5

10

15

20

25

2 4 8 16 32

Number of Processors

Av
er

ag
e

Ti
m

e
in

se

c

Blue Gene/P
Chapter 16. Performance overview of engineering and scientific applications 321

322 IBM Blue Gene/P Application Development

Part 6 Appendixes

In this part, we provide additional information about system administration for the IBM Blue
Gene/P system. This part includes the following appendixes:

� Appendix A, “Blue Gene/P hardware-naming conventions” on page 325
� Appendix B, “Files on architectural features” on page 331
� Appendix C, “Header files and libraries” on page 335
� Appendix D, “Environment variables” on page 339
� Appendix E, “Porting applications” on page 353
� Appendix F, “Mapping” on page 355
� Appendix G, “htcpartition” on page 359
� Appendix H, “Use of GNU profiling tool on Blue Gene/P” on page 361
� Appendix I, “Statement of completion” on page 365

Part 6
© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 323

324 IBM Blue Gene/P Application Development

Appendix A. Blue Gene/P hardware-naming
conventions

In this appendix, we present an overview of how the IBM Blue Gene/P hardware locations are
assigned. These naming conventions are used consistently throughout both hardware and
software.

A

© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 325

Figure A-1 shows the conventions used when assigning locations to all hardware except the
various cards in a Blue Gene/P system. Using the charts and diagrams that follow, consider
an example where you have an error in the fan named R23-M1-A3-0. This naming convention
tells you where to look for the error. In the upper-left corner of Figure A-1, you see that racks
use the convention Rxx. Looking at our error message, we can see that the rack involved is
R23. From the chart in Figure A-1, we see that R23 is the fourth rack in row two. (Remember
that all numbering starts with 0). The bottom midplane of any rack is 0. Therefore, we are
dealing with the top midplane (R23-M1).

In the chart, you can see in the fan assemblies description that assemblies 0-4 are on the
front of the rack, bottom to top, respectively. Therefore, we check for an attention light (Amber
LED) on the fan assembly second from the top, because the front-most fan is the one that is
causing the error message to surface. Service, link, and node cards use a similar form of
addressing.

Figure A-1 Hardware-naming conventions

Racks:
Rxx

Rack Column (0-F)
Rack Row (0-F)

Power Modules:
Rxx-B-Px

Midplanes:
Rxx-Mx

Clock Cards:
Rxx-K

Fan Assemblies:
Rxx-Mx-Ax

Fans:
Rxx-Mx-Ax-Fx

Power Module (0-7)
0-3 Left to right facing front
4-7 left to right facing rear

Bulk Power Supply
Rack Row (0-F)
Rack Column (0-F)

Midplane (0-1) 0=Bottom 1=Top
Rack Column (0-F)
Rack Row (0-F)

Clock
Rack Column (0-F)
Rack Row (0-F)

Fan Assembly (0-9)
0=Bottom Front, 4=Top Front
5=Bottom Rear, 9=Top Rear

Midplane (0-1) 0-Bottom, 1=Top
Rack Column (0-F)
Rack Row (0-F)

Fan (0-2) 0=Tailstock 2= Midplane
Fan Assembly (0-9)

0=Bottom Front, 4=Top Front
5=Bottom Rear, 9=Top Rear

Midplane (0-1) 0-Bottom, 1=Top
Rack Column (0-F)
Rack Row (0-F)

Bulk Power Supply:
Rxx-B

Bulk Power Supply
Rack Row (0-F)
Rack Column (0-F)

Power Cable:
Rxx-B-C

Power Cable
Bulk Power Supply
Rack Row (0-F)
Rack Column (0-F)
326 IBM Blue Gene/P Application Development

Figure A-2 shows the conventions used for the various card locations.

Figure A-2 Card-naming conventions

Table A-1 contains examples of various hardware conventions. The figures that follow the
table provide illustrations of the actual hardware.

Table A-1 Examples of hardware-naming conventions

Card Element Name Example

Compute Card J04 through J35 R23-M10-N02-J09

I/O Card J00 through J01 R57-M1-N04-J00

I/O & Compute Module U00 R23-M0-N13-J08-U00

Link Module U00 through U05 (00 leftmost, 05
rightmost)

R32-M0-L2_U03

Link Port TA through TF R01-M0-L1-U02-TC

Link data cable Connector J00 through J15 (as labeled on link
card)

R21-M1-L2-J13

Node Ethernet Connector EN0, EN1 R16-M1-N14-EN1

Service Connector Control FPGA, control network,
Clock R, Clock B

R05-M0-S-Control FPGA

Clock Connector Input, Output 0 through Output 9 R13-K- Output 3

Service Cards:
Rxx-Mx-S

Service Card
Midplane (0-1) 0-Bottom, 1=Top
Rack Column (0-F)
Rack Row (0-F)

Link Cards:
Rxx-Mx-Lx

Node Cards:
Rxx-Mx-Nxx

Compute Cards:
Rxx-Mx-Nxx-Jxx

Link Card (0-3)

Midplane (0-1) 0-Bottom, 1=Top
Rack Column (0-F)
Rack Row (0-F)

Node Card (00-15)

Midplane (0-1) 0-Bottom, 1=Top
Rack Column (0-F)
Rack Row (0-F)

Compute Card (04 through 35)
Node Card (00-15)
Midplane (0-1) 0-Bottom, 1=Top
Rack Column (0-F)
Rack Row (0-F)

0=Bottom Front
1=Top Front
2=Bottom Rear
3=Top Rear

00=Bottom Front
07=Top Front
08=Bottom Rear
15=Top Rear

I/O Cards:
Rxx-Mx-Nxx-Jxx

I/O Card (00-01)
Node Card (00-15)
Midplane (0-1) 0-Bottom, 1=Top
Rack Column (0-F)
Rack Row (0-F)

Note: Master service card for
a rack is always Rxx-M0-S
Appendix A. Blue Gene/P hardware-naming conventions 327

Figure A-3 shows the layout of a 64-rack system.

Figure A-3 Rack numbering

Figure A-4 identifies each of the cards in a single midplane.

Figure A-4 Positions of the node, link, and service cards

Note: The fact that Figure A-3 shows numbers 00 through 77 does not imply that this
configuration is the largest possible. The largest configuration possible is 256 racks
numbered 00 through FF.

Service Card Side

L1

N07

N06

N05

N04
S

N03

N02

N01

N00
L0

Note: N00-J23 is torus position 0,0,0

L3

N15

N14

N13

N12

N11

N10

N09

N08
L2
328 IBM Blue Gene/P Application Development

Figure A-5 shows a diagram of a node card. On the front of the card are Ethernet ports EN0
and EN1. The first nodes behind the Ethernet ports are the I/O Nodes. In this diagram, the
node card is fully populated with I/O Nodes, meaning that it has two I/O Nodes. Behind the
I/O Nodes are the Compute Nodes.

Figure A-5 Node card diagram

Figure A-6 is an illustration of a service card.

Figure A-6 Service card

J35
J31

J27
J23

J19
J15

J11
J07

J01

J34
J30

J26
J22

J18
J14

J10
J06

J33
J29

J25
J21

J17
J13

J09
J05

J00

J32
J28

J24
J20

J16
J12

J08
J04

EN0
EN1

Control Network

Control FPGA

Clock R

Clock B

Clock Input

Rack Row Indicator (0-F)
Rack Column Indicator (0-F)
Appendix A. Blue Gene/P hardware-naming conventions 329

Figure A-7 shows the link card. The locations identified as J00 through J15 are the link card
connectors. The link cables are routed from one link card to another to form the torus network
between the midplanes.

Figure A-7 Link card

Figure A-8 shows the clock card. If the clock is a secondary or tertiary clock, a cable comes to
the input connector on the far right. Next to the input (just to the left) is the master and worker
toggle switch. All clock cards are built with the capability of filling either role. If the clock is a
secondary or tertiary clock, this must be set to worker. Output zero through nine can be used
to send signals to midplanes throughout the system.

Figure A-8 Clock card

U00

U01

U02

U03

U04

U05

J00 J02 J04 J06 J08 J10 J12 J14
J01 J03 J05 J07 J09 J11 J13 J15

Output 9

Master

Output 8
Output 7

Output 6
Output 5

Output 4
Output 3

Output 2
Output 1

Output 0

Input

Worker
330 IBM Blue Gene/P Application Development

Appendix B. Files on architectural features

System calls that provide access to certain hardware or system features can be accessed by
applications. In this appendix, we illustrate how to obtain hardware-related information.

B

© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 331

Personality of Blue Gene/P
The personality of a Blue Gene/P node is static data given to every Compute Node and I/O
Node at boot time by the control system. This data contains information that is specific to the
node, with respect to the block that is being booted.

The personality is a set of C language structures that contain such items as the node’s
coordinates on the torus network. This kind of information can be useful if the application
programmer wants to determine, at run time, where the tasks of the application are running. It
can also be used to tune certain aspects of the application at run time, such as determining
which set of tasks share the same I/O Node and then optimizing the network traffic from the
Compute Nodes to that I/O Node.

Example of running personality on Blue Gene/P
Example B-1 illustrates how to invoke and print selected hardware features.

Example: B-1 personali.c architectural features program

/* --- */
/* Example: architectural features */
/* Written by: Bob Walkup */
/* IBM Watson, Yorktown, NY */
/* September 17, 2007 */
/* --- */

#include <mpi.h>
#include <stdio.h>

#include <spi/kernel_interface.h>
#include <common/bgp_personality.h>
#include <common/bgp_personality_inlines.h>

int main(int argc, char * argv[])
{
 int taskid, ntasks;
 int memory_size_MBytes;
 _BGP_Personality_t personality;
 int torus_x, torus_y, torus_z;
 int pset_size, pset_rank, node_config;
 int xsize, ysize, zsize, procid;
 char location[128];

 MPI_Init(&argc, &argv);
 MPI_Comm_rank(MPI_COMM_WORLD, &taskid);
 MPI_Comm_size(MPI_COMM_WORLD, &ntasks);

 Kernel_GetPersonality(&personality, sizeof(personality));

 if (taskid == 0)
 {
 memory_size_MBytes = personality.DDR_Config.DDRSizeMB;
 printf("Memory size = %d MBytes\n", memory_size_MBytes);

 node_config = personality.Kernel_Config.ProcessConfig;
332 IBM Blue Gene/P Application Development

 if (node_config == _BGP_PERS_PROCESSCONFIG_SMP) printf("SMP mode\n");
 else if (node_config == _BGP_PERS_PROCESSCONFIG_VNM) printf("Virtual-node mode\n");
 else if (node_config == _BGP_PERS_PROCESSCONFIG_2x2) printf("Dual mode\n");
 else printf("Unknown mode\n");

 printf("number of MPI tasks = %d\n", ntasks);

 xsize = personality.Network_Config.Xnodes;
 ysize = personality.Network_Config.Ynodes;
 zsize = personality.Network_Config.Znodes;

 pset_size = personality.Network_Config.PSetSize;
 pset_rank = personality.Network_Config.RankInPSet;

 printf("number of processors in the pset = %d\n", pset_size);
 printf("torus dimensions = <%d,%d,%d>\n", xsize, ysize, zsize);
 }

 torus_x = personality.Network_Config.Xcoord;
 torus_y = personality.Network_Config.Ycoord;
 torus_z = personality.Network_Config.Zcoord;

 BGP_Personality_getLocationString(&personality, location);

 procid = Kernel_PhysicalProcessorID();

 /*---*/
 /* print torus coordinates and the node location */
 /*---*/
 printf("MPI rank %d has torus coords <%d,%d,%d> cpu = %d, location = %s\n",
 taskid, torus_x, torus_y, torus_z, procid, location);

 MPI_Finalize();
 return 0;
}

Example B-2 illustrates the makefile that is used to build personality.c. This particular file uses
the GNU compiler.

Example: B-2 Makefile to build the personality.c program

BGP_FLOOR = /bgsys/drivers/ppcfloor
BGP_IDIRS = -I$(BGP_FLOOR)/arch/include

CC = /bgsys/drivers/ppcfloor/comm/bin/mpicc

EXE = personality
OBJ = personality.o
SRC = personality.c
FLAGS =
FLD =

$(EXE): $(OBJ)
 ${CC} $(FLAGS) -o $(EXE) $(OBJ) $(BGP_LIBS)
$(OBJ): $(SRC)
Appendix B. Files on architectural features 333

 ${CC} $(FLAGS) $(BGP_IDIRS) -c $(SRC)

clean:
 rm personality.o personality

Example B-3 shows a section of the output that is generated after running personality using
TXYZ mapping. (See Appendix F, “Mapping” on page 355.) Notice that the output has been
ordered by MPI rank for readability.

Example: B-3 Output generated with TXYZ mapping

/bgsys/drivers/ppcfloor/bin/mpirun -partition N04_32_1 -label -env "BG_MAPPING=TXYZ" -mode VN
-np 8 -cwd `pwd` -exe personality | tee personality_VN_8_TXYZ.out

Memory size = 2048 MBytes
Virtual-node mode
number of MPI tasks = 128
number of processors in the pset = 32
torus dimensions = <4,4,2>
MPI rank 0 has torus coords <0,0,0> cpu = 0, location = R00-M0-N04-J23
MPI rank 1 has torus coords <0,0,0> cpu = 1, location = R00-M0-N04-J23
MPI rank 2 has torus coords <0,0,0> cpu = 2, location = R00-M0-N04-J23
MPI rank 3 has torus coords <0,0,0> cpu = 3, location = R00-M0-N04-J23
MPI rank 4 has torus coords <1,0,0> cpu = 0, location = R00-M0-N04-J04
MPI rank 5 has torus coords <1,0,0> cpu = 1, location = R00-M0-N04-J04
MPI rank 6 has torus coords <1,0,0> cpu = 2, location = R00-M0-N04-J04
MPI rank 7 has torus coords <1,0,0> cpu = 3, location = R00-M0-N04-J04

Example B-4 illustrates running personality with XYZT mapping for a comparison. Notice
that the output has been ordered by MPI rank for readability.

Example: B-4 Output generated with XYZT mapping

/bgsys/drivers/ppcfloor/bin/mpirun -partition N04_32_1 -label -env "BG_MAPPING=XYZT" -mode VN
-np 8 -cwd `pwd` -exe personality | tee personality_VN_8_XYZT.out

Memory size = 2048 MBytes
Virtual-node mode
number of MPI tasks = 128
number of processors in the pset = 32
torus dimensions = <4,4,2>
MPI rank 0 has torus coords <0,0,0> cpu = 0, location = R00-M0-N04-J23
MPI rank 1 has torus coords <1,0,0> cpu = 0, location = R00-M0-N04-J04
MPI rank 2 has torus coords <2,0,0> cpu = 0, location = R00-M0-N04-J12
MPI rank 3 has torus coords <3,0,0> cpu = 0, location = R00-M0-N04-J31
MPI rank 4 has torus coords <0,1,0> cpu = 0, location = R00-M0-N04-J22
MPI rank 5 has torus coords <1,1,0> cpu = 0, location = R00-M0-N04-J05
MPI rank 6 has torus coords <2,1,0> cpu = 0, location = R00-M0-N04-J13
MPI rank 7 has torus coords <3,1,0> cpu = 0, location = R00-M0-N04-J30
334 IBM Blue Gene/P Application Development

Appendix C. Header files and libraries

In this appendix, we provide information about selected header files and libraries for the
IBM Blue Gene/P system. Directories that contain header files and libraries for the Blue
Gene/P system are under the main system path in the /bgsys/drivers/ppcfloor directory.

C

© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 335

Blue Gene/P applications
Blue Gene/P applications run on the Blue Gene/P compute nodes. Table C-1 describes the
header files in the /bgsys/drivers/ppcfloor/comm/default/include directory and the
/bgsys/drivers/ppcfloor/comm/fast/include directory. There are links to the “default” version of
the header files in /bgsys/drivers/ppcfloor/comm/include for compatibility with previous
releases of the Blue Gene/P software.

Table C-1 Header files in /bgsys/drivers/ppcfloor/comm/default/include

Table C-2 describes the header files in the /bgsys/drivers/ppcfloor/comm/sys/include
directory. There are links to the “default” version of the header files in
/bgsys/drivers/ppcfloor/comm/include for compatibility with previous releases of the Blue
Gene/P software.

Table C-2 Header files in /bgsys/drivers/ppcfloor/comm/sys/include

Table C-3 describes the header files in the /bgsys/drivers/ppcfloor/arch/include/common
directory.

Table C-3 Header files in /bgsys/drivers/ppcfloor/arch/include/common

File name Description

mpe_thread.h Multi-processing environment (MPE) routines

mpicxx.h MPI GCC script routine naming

mpif.h MPI Fortran parameters

mpi.h MPI C defines

mpiof.h MPI I/O Fortran programs

mpio.h MPI I/O C includes

mpix.h Blue Gene/P extensions to the MPI specifications

mpido_properties.h Properties used by MPIX_Get_property() and MPIX_Set_property()

mpi.mod,
mpi_base.mod,
mpi_constants.mod,
mpi_sizeofs.mod

F90 bindings

opa_config.h,
opa_primitives.h,
opa_queue.h,
opa_util.h

OpenPA headers used by MPICH2

File name Description

dcmf.h Common BGP message layer interface

dcmf_collectives.h Common BGP message layer interface for general collectives

File name Description

bgp_personality.h Defines personality

bgp_personality_inlines.h Static inline for personality

bgp_personalityP.h Defines personality processing
336 IBM Blue Gene/P Application Development

Table C-4 describes the 32-bit static and dynamic libraries in the
/bgsys/drivers/ppcfloor/comm/default/lib directory and the
/bgsys/drivers/ppcfloor/comm/fast/lib directory. There are links to the “default” version of the
libraries in /bgsys/drivers/ppcfloor/comm/lib for compatibility with previous releases of the
Blue Gene/P software.

Table C-4 32-bit static and dynamic libraries in /bgsys/drivers/ppcfloor/comm/default/lib/

Table C-5 describes the 32-bit static and dynamic libraries in the
/bgsys/drivers/ppcfloor/comm/sys directory. There are links to the “default” version of the
libraries in /bgsys/drivers/ppcfloor/comm/lib for compatibility with previous releases of the
Blue Gene/P software.

Table C-5 32-bit static and dynamic libraries in /bgsys/drivers/ppcfloor/comm/sys

Resource management APIs
Blue Gene/P resource management applications run on the Service Node. Table C-6
describes the header files used by resource management applications. They are located in
the /bgsys/drivers/ppcfloor/include directory.

Table C-6 Header files for resource management APIs

File name Description

libmpich.cnk.a,
libmpich.cnk.so

C bindings for MPI

libcxxmpich.cnk.a,
libcxxmpich.cnk.so

C++ bindings for MPI

libfmpich.cnk.a,
libfmpich.cnk.so

Fortran bindings for MPI

libfmpich_.cnk.a Fortran bindings for MPI with extra underscoring

libmpich.cnkf90.a,
libmpich.cnkf90.so

Fortran 90 bindings

libopa.a OpenPA library used by MPICH2

libtvmpich2.so TotalView library for MPICH2 queue debugging

File name Description

libdcmf.cnk.a,
libdcmf.cnk.so

Common BGP message layer interface in C

libdcmfcoll.cnk.a,
libdcmfcoll.cnk.so

Common BGP message layer interface for general collectives in C

libdcmf-fast.cnk.a “Fast” version of the common BGP message layer interface in C

libdcmfcoll-fast.cnk.a “Fast” version of the common BGP message layer interface for general
collectives in C

File name Description

allocator_api.h Available for applications using the Dynamic Partition Allocator APIs
Appendix C. Header files and libraries 337

Table C-7 describes the 64-bit dynamic libraries available to resource management
applications. They are located in the /bgsys/drivers/ppcfloor/lib64 directory.

Table C-7 64-bit dynamic libraries for resource management APIs

attach_bg.h The Blue Gene/P version of attach.h, which is described in the Message
Passing Interface (MPI) debug specification

rm_api.h Available for applications that use Bridge APIs

rt_api.h Available for applications that use Real-time Notification APIs

sayMessage.h Available for applications that use sayMessage APIs

sched_api.h Available for applications that use the mpirun plug-in interface

submit_api.h Available for applications that use the submit plug-in interface

File Name Description

libbgpallocator.so Required when using the Dynamic Partition Allocator APIs

libbgrealtime.so Required when using the Real-time Notification APIs

libbgpbridge.so Required when using the Bridge APIs

libsaymessage.so Required when using the sayMessage APIs

File name Description
338 IBM Blue Gene/P Application Development

Appendix D. Environment variables

In this appendix, we describe the environment variables that the user can change to affect the
run time characteristics of a program that is running on the IBM Blue Gene/P compute nodes.
Changes are usually made in an attempt to improve performance, although on occasion the
goal is to modify functional attributes of the application.

In this appendix, we discuss the following topics:

� Setting environment variables
� Blue Gene/P MPI environment variables
� Compute Node Kernel environment variables

D

© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 339

Setting environment variables
The easiest and most convenient way to set environment variables is to pass them in on the
command line when running mpirun, for example, if you want to set environment variable
“XYZ” to value “ABC,” you can call mpirun as the example shows:

$ mpirun -env "XYZ=ABC" myprogram.rts

Multiple environment variables can be passed by separating them by a space, for example:

$ mpirun -env "XYZ=ABC DEF=123" myprogram.rts

You can use other ways to pass environment variables with mpirun. For more information,
see Chapter 11, “mpirun” on page 177.

Blue Gene/P MPI environment variables
The Blue Gene/P MPI implementation provides several environment variables that affect its
behavior. By setting these environment variables, you can allow a program to run faster, or, if
you set the variables improperly, you might cause the program not to run at all. None of these
environment variables are required to be set for the Blue Gene/P MPI implementation to work.

The Blue Gene/P MPI implementation provides the following environment variables:

� DCMF_VERBOSE: Increases the amount of information dumped during an MPI_Abort()
call. Possible values:

– 0: No additional information is dumped.
– 1: Additional information is dumped.
– Default is 0.

� DCMF_STATISTICS: Turns on statistics printing for the message layer such as the
maximum receive queue depth. Possible values:

– 0: No statistics are printed.
– 1: Statistics are printed.
– Default is 0.

� DCMF_EAGER, DCMF_RZV, or DCMF_RVZ: Sets the cutoff for the switch to the
rendezvous protocol. All three options are identical. This takes an argument, in bytes, to
switch from the eager protocol to the rendezvous protocol for point-to-point messaging.
Increasing the limit might help for larger partitions and if most of the communication is
nearest neighbor:

– Default is 1200 bytes.

� DCMF_OPTRVZ or DCMF_OPTRZV: Determines the optimized rendezvous limit. Both
options are identical. This takes an argument, in bytes. The optimized rendezvous
protocol will be used if: eager_limit <= message_size < (eager_limit + DCMF_OPTRZV).
For sending, one of three protocols will be used depending on the message size: The
eager protocol for small messages, the optimized rendezvous protocol for medium
messages, and the default rendezvous protocol for large messages. The optimized
rendezvous protocol generally has less latency than the default rendezvous protocol, but
does not wait for a receive to be posted first. Therefore, unexpected messages in this size
range might be received, consuming storage until the receives are issued. The default
rendezvous protocol waits for a receive to be posted first. Therefore, no unexpected
messages in this size range will be received. The optimized rendezvous protocol also
avoids filling injection fifos which can cause delays while larger fifos are allocated, for
340 IBM Blue Gene/P Application Development

example, alltoall on large subcommunicators with thread mode multiple will benefit from
optimized rendezvous.

– Default is 0 bytes, meaning that optimized rendezvous is not used.

� DCMF_NUMREQUESTS: Sets the number of outstanding asynchronous broadcasts to
have before a barrier is called. This is mostly used in allgather/allgatherv using
asynchronous broadcasts. Higher numbers can help on larger partitions and larger
message sizes.

– Default is 32.

� DCMF_RMA_PENDING: Maximum outstanding RMA requests. Limits number of
DCMF_Request objects allocated by MPI Onesided operations.

– Default is 1000.

� DCMF_INTERRUPT or DCMF_INTERRUPTS: Turns on interrupt driven communications.
This can be beneficial to some applications and is required if you are using Global Arrays
or ARMCI. (They force this on, regardless of the environment setting). Possible values:

– 0: Interrupt driven communications is not used.
– 1: Interrupt driven communications is used.
– Default is 0.

� DCMF_SENDER_SIDE_MATCHING or DCMF_SSM: Turns on sender-side matching.
This can speed up point-to-point messaging in well-behaved applications, specifically
those that do not do MPI_ANY_SOURCE receives. Possible values:

– 0: Sender side matching is not used.
– 1: Sender side matching is used.
– Default is 0.

� DCMF_TOPOLOGY: Turns on optimized topology creation functions when using
MPI_Cart_create with the reorder flag. We attempt to create communicators similar to
those requested, that match physical hardware as much as possible. Possible values:

– 0: Optimized topology creation functions are not used.
– 1: Optimized topology creation functions are used.
– Default is 1.

– DCMF_COLLECTIVE or DCMF_COLLECTIVES: Controls whether optimized
collectives are used. Possible values:

– 0: Optimized collectives are not used.
– 1: Optimized collectives are used.
– NOTREE. Only collective network optimizations are not used.
– Default is 1.

� DCMF_ASYNCCUTOFF: Changes the cutoff point between asynchronous and
synchronous rectangular/binomial broadcasts. This can be highly application dependent:

– Default is 128k.

� DCMF_SCATTER: Controls the protocol used for scatter. Possible values:

– MPICH: Use the MPICH point-to-point protocol.

– Default (or if anything else is specified) is to use a broadcast-based scatter at a 2k or
larger message size.

� DCMF_SCATTERV: Controls the protocol used for scatterv. Possible values:

– ALLTOALL: Use an all-to-all based protocol when the message size is above 2k. This
is optimal for larger messages and larger partitions.

– BCAST: Use a broadcast-based scatterv. This works well for small messages.
Appendix D. Environment variables 341

– MPICH: Use the MPICH point-to-point protocol.

– Default is ALLTOALL.

� DCMF_GATHER: Controls the protocol used for gather. Possible values:

– MPICH: Use the MPICH point-to-point protocol.

– Default (or if anything else is specified) is to use a reduce-based algorithm for larger
message sizes.

� DCMF_REDUCESCATTER: Controls the protocol used for reduce_scatter operations.
The options for DCMF_SCATTERV and DCMF_REDUCE can change the behavior of
reduce_scatter. Possible values:

– MPICH: Use the MPICH point-to-point protocol.

– Default (or if anything else is specified) is to use an optimized reduce followed by an
optimized scatterv. This works well for larger messages.

� DCMF_BCAST: Controls the protocol used for broadcast. Possible values:

– MPICH: Turn off all optimizations for broadcast and use the MPICH point-to-point
protocol.

– TREE: Use the collective network. This is the default on MPI_COMM_WORLD and
duplicates of MPI_COMM_WORLD in MPI_THREAD_SINGLE mode. This provides
the fastest possible broadcast.

– CCMI: Use the CCMI collective network protocol. This is off by default.

– CDPUT: Use the CCMI collective network protocol with DPUT. This is off by default.

– AR: Use the asynchronous rectangle protocol. This is the default for small messages
on rectangular subcommunicators. The cutoff between async and sync can be
controlled with DCMF_ASYNCCUTOFF.

– AB: Use the asynchronous binomial protocol. This is the default for irregularly shaped
subcommunicators. The cutoff between async and sync can be controlled with
DCMF_ASYNCCUTOFF.

– RECT: Use the rectangle protocol. This is the default for rectangularly shaped
subcommunicators for large messages. This disables the asynchronous protocol.

– BINOM: Use the binomial protocol. This is the default for irregularly shaped
subcommunicators for large messages. This disables the asynchronous protocol.

– Default varies based on the communicator. See above.

� DCMF_NUMCOLORS: Controls how many colors are used for rectangular broadcasts.
Possible values:

– 0: Let the lower-level messaging system decide.
– 1, 2, or 3.
– Default is 0.

� DCMF_SAFEALLREDUCE: The direct put allreduce bandwidth optimization protocols
require the send/recv buffers to be 16-byte aligned on all nodes. Unfortunately, you can
have root's buffer be misaligned from the rest of the nodes. Therefore, by default we must
do an allreduce before dput allreduces to ensure all nodes have the same alignment. If
you know all of your buffers are 16 byte aligned, turning on this option will skip the
allreduce step and improve performance. Possible values:

– N: Perform the allreduce

– Y: Bypass the allreduce. If you have mismatched alignment, you will likely get weird
behavior or asserts.

– Default is N.
342 IBM Blue Gene/P Application Development

� DCMF_SAFEBCAST: The rectangle direct put bcast bandwidth optimization protocol
requires the bcast buffers to be 16-byte aligned on all nodes. Unfortunately, you can have
root's buffer be misaligned from the rest of the nodes. Therefore, by default we must do an
allreduce before dput bcasts to ensure all nodes have the same alignment. If you know all
of your buffers are 16 byte aligned, turning on this option will skip the allreduce step.
Possible values:

– N: Perform the allreduce

– Y: Bypass the allreduce. If you have mismatched alignment, you will likely get weird
behavior or asserts.

– Default is N.

� DCMF_SAFEALLGATHER: The optimized allgather protocols require contiguous
datatypes and similar datatypes on all nodes. To verify this is true, we must do an
allreduce at the beginning of the allgather call. If the application uses well-behaved
datatypes, you can set this option to skip over the allreduce. This is most useful in irregular
subcommunicators where the allreduce can be expensive. Possible values:

– N: Perform the allreduce.

– Y: Skip the allreduce. Setting this with unsafe datatypes will yield unpredictable results,
usually hangs.

– Default is N.

� DCMF_SAFEALLGATHERV: The optimized allgatherv protocols require contiguous
datatypes and similar datatypes on all nodes. Allgatherv also requires continuous
displacements. To verify this is true, we must do an allreduce at the beginning of the
allgatherv call. If the application uses well-behaved datatypes and displacements, you can
set this option to skip over the allreduce. This is most useful in irregular subcommunicators
where the allreduce can be expensive. Possible values:

– N: Perform the allreduce.

– Y: Skip the allreduce. Setting this with unsafe datatypes will yield unpredictable results,
usually hangs.

– Default is N.

� DCMF_SAFESCATTERV: The optimized scatterv protocol requires contiguous datatypes
and similar datatypes on all nodes. It also requires continuous displacements. To verify
this is true, we must do an allreduce at the beginning of the scatterv call. If the application
uses well-behaved datatypes and displacements, you can set this option to skip over the
allreduce. This is most useful in irregular subcommunicators where the allreduce can be
expensive. Possible values:

– N: Perform the allreduce.

– Y: Skip the allreduce. Setting this with unsafe datatypes will yield unpredictable results,
usually hangs.

– Default is N.

� DCMF_ALLTOALL, DCMF_ALLTOALLV, or DCMF_ALLTOALLW: Controls the protocol
used for alltoall/alltoallv/alltoallw. Possible values:

– MPICH: Turn off all optimizations and use the MPICH point-to-point protocol.
– Default (or if anything else is specified) is to use an optimized alltoall/alltoallv/alltoallw.

� DCMF_ALLTOALL_PREMALLOC, DCMF_ALLTOALLV_PREMALLOC, or
DCMF_ALLTOALLW_PREMALLOC: These are equivalent options. The alltoall protocols
require 6 arrays to be setup before communication begins. These 6 arrays are each of
size (comm_size) so can be sizeable on large machines. If your application does not use
alltoall, or you need as much memory as possible, you can turn off pre-allocating these
Appendix D. Environment variables 343

arrays. By default, we allocate them once per communicator creation. There is only one
set, regardless of whether you are using alltoall, alltoallv, or alltoallw. Possible values:

– Y: Premalloc the arrays.
– N: Malloc and free on every alltoall operation.
– Default is Y.

� DCMF_ALLGATHER: Controls the protocol used for allgather. Possible values:

– MPICH: Turn off all optimizations for allgather and use the MPICH point-to-point
protocol.

– ALLREDUCE: Use a collective network based allreduce. This is the default on
MPI_COMM_WORLD for smaller messages.

– ALLTOALL: Use an all-to-all based algorithm. This is the default on irregular
communicators. It works very well for larger messages.

– BCAST: Use a broadcast. This will use a collective network broadcast on
MPI_COMM_WORLD. It is the default for larger messages on MPI_COMM_WORLD.
This can work well on rectangular subcommunicators for smaller messages.

– ASYNC: Use an async broadcast. This will use asynchronous broadcasts to do the
allgather. This is a good option for small messages on rectangular or irregular
subcommunicators.

– Default varies based on the communicator. See above.

� DCMF_ALLGATHERV: Controls the protocol used for allgatherv. Possible values:

– MPICH: Turn off all optimizations for allgather and use the MPICH point-to-point
protocol.

– ALLREDUCE: Use a collective network based allreduce. This is the default on
MPI_COMM_WORLD for smaller messages.

– ALLTOALL: Use an all-to-all based algorithm. This is the default on irregular
communicators. It works very well for larger messages.

– BCAST: Use a broadcast. This will use a collective network broadcast on
MPI_COMM_WORLD. It is the default for larger messages on MPI_COMM_WORLD.
This can work well on rectangular subcommunicators for smaller messages.

– ASYNC: Use an async broadcast. This will use asynchronous broadcasts to do the
allgather. This is a good option for small messages on rectangular or irregular
subcommunicators.

– Default varies based on the communicator. See previous.

� DCMF_PREALLREDUCE: Controls the protocol used for the pre-allreducing employed by
bcast, allreduce, allgather(v), and scatterv. This option is mostly independent from
DCMF_ALLREDUCE. Possible values are:

– MPIDO: Just call MPIDO_Allreduce and let the existing logic determine what allreduce
to use. This can be expensive, but it is the only guaranteed option, and it is the only
way to get MPICH for the pre-allreduce

– SRECT: Use the short rectangle protocol. If you set this and do not have a rectangular
(sub)communicator, you get the MPIDO option. This is the default selection for
rectangular subcomms.

– SBINOM: Use the short binomial protocol. This is the default for irregular subcomms.

– ARING: Use the async rectangular ring protocol

– ARECT: Use the async rectangle protocol

– ABINOM: Use the async binomial protocol
344 IBM Blue Gene/P Application Development

– RING: Use the rectangular ring protocol

– RECT: Use the rectangle protocol

– TDPUT: Use the tree dput protocol. This is the default in virtual node mode on
MPI_COMM_WORLD

– TREE: Use the tree. This is the default in SMP mode on MPI_COMM_WORLD

– DPUT: Use the rectangular direct put protocol

– PIPE: Use the pipelined CCMI tree protocol

– BINOM: Use a binomial protocol

� DCMF_ALLREDUCE: Controls the protocol used for allreduce. Possible values:

– MPICH: Turn off all optimizations for allreduce and use the MPICH point-to-point
protocol.

– RING - Use a rectangular ring protocol. This is the default for rectangular
subcommunicators.

– RECT: Use a rectangular/binomial protocol. This is off by default.

– BINOM: Use a binomial protocol. This is the default for irregular subcommunicators.

– TREE: Use the collective network. This is the default (except for GLOBAL between 512
and 8K) for MPI_COMM_WORLD and duplicates of MPI_COMM_WORLD in
MPI_THREAD_SINGLE mode.

– GLOBAL: Use the global collective network protocol for sizes between 512 and 8K.
Otherwise this defaults the same as TREE.

– CCMI: Use the CCMI collective network protocol. This is off by default.

– PIPE: Use the pipelined CCMI collective network protocol. This is off by default.

– ARECT: Enable the asynchronous rectangle protocol

– ABINOM: Enable the async binomial protocol

– ARING: Enable the asynchronous version of the rectangular ring protocol.

– TDPUT: Use the tree+direct put protocol. This is the default for VNM on
MPI_COMM_WORLD

– DPUT: Use the rectangular direct put protocol. This is the default for large messages
on rectangular subcomms and MPI_COMM_WORLD

– Default varies based on the communicator and message size and if the
operation/datatype pair is supported on the tree hardware.

� DCMF_ALLREDUCE_REUSE_STORAGE: This allows the lower level protocols to reuse
some storage instead of malloc/free on every allreduce call. Possible values:

– Y: Does not malloc/free on every allreduce call. This improves performance, but retains
malloc'd memory between allreduce calls.

– N: Malloc/free on every allreduce call. This frees up storage for use between allreduce
calls.

– Default is Y.

� DCMF_ALLREDUCE_REUSE_STORAGE_LIMIT: This specifies the upper limit of
storage to save and reuse across allreduce calls when
DCMF_ALLREDUCE_REUSE_STORAGE is set to Y. (This environment variable is
processed within the DCMF_Allreduce_register() API, not in MPIDI_Env_setup().):

– Default is 1048576 bytes.
Appendix D. Environment variables 345

� DCMF_REDUCE: Controls the protocol used for reduce. Possible values:

– MPICH: Turn off all optimizations and use the MPICH point-to-point protocol.

– RECT: Use a rectangular/binomial protocol. This is the default for rectangular
subcommunicators.

– BINOM: Use a binomial protocol. This is the default for irregular subcommunicators.

– TREE: Use the collective network. This is the default for MPI_COMM_WORLD and
duplicates of MPI_COMM_WORLD in MPI_THREAD_SINGLE mode.

– CCMI: Use the CCMI collective network protocol. This is off by default.

– Default varies based on the communicator. See previous.

� DCMF_REDUCE_REUSE_STORAGE: This allows the lower level protocols to reuse
some storage instead of malloc/free on every reduce call. Possible values:

– Y: Does not malloc/free on every reduce call. This improves performance, but retains
malloc'd memory between reduce calls.

– N: Malloc/free on every reduce call. This frees up storage for use between reduce
calls.

– Default is Y.

� DCMF_REDUCE_REUSE_STORAGE_LIMIT: This specifies the upper limit of storage to
save and reuse across allreduce calls when DCMF_REDUCE_REUSE_STORAGE is set
to Y. (This environment variable is processed within the DCMF_Reduce_register() API, not
in MPIDI_Env_setup().):

– Default is 1048576 bytes.

� DCMF_BARRIER: Controls the protocol used for barriers. Possible values:

– MPICH: Turn off optimized barriers and use the MPICH point-to-point protocol.

– BINOM: Use the binomial barrier. This is the default for all subcommunicators.

– GI: Use the GI network. This is the default for MPI_COMM_WORLD and duplicates of
MPI_COMM_WORLD in MPI_THREAD_SINGLE mode.

– CCMI: Use the CCMI GI network protocol. This is off by default.

– Default varies based on the communicator. See above.

� DCMF_STAR: Turns on the STAR-MPI mechanism that tunes MPI collectives. STAR-MPI
is turned off by default. Possible values:

– 1: turn on

� DCMF_STAR_NUM_INVOCS: Sets the number of invocations that STAR-MPI uses to
examine performance of each communication algorithm:

– Possible values: any integer value > 0 (default is 10).

� DCMF_STAR_TRACEBACK_LEVEL: Sets the traceback level of an MPI collective
routine, which will be used to get the address of the caller to the collective routine. The
default is 3 (MPI application, MPICH, MPIDO). If users utilize or write their own collective
wrappers, then they must increase the traceback level (beyond 3) depending on the extra
levels they introduce by their wrappers:

– Possible values: any integer value > 3 (default is 3).
346 IBM Blue Gene/P Application Development

� DCMF_STAR_CHECK_CALLSITE: Turns on sanity check that makes sure all ranks are
involved in the same collective call site. This is important in root-like call sites (Bcast,
Reduce, Gather...etc) where the call site of the root might be different than non root ranks
(different if statements):

– Possible values: 1 - (default is 1: on).

� DCMF_STAR_VERBOSE: Turns on verbosity of STAR-MPI by writing to an output file in
the form "exec_name-star-rank#.log". This is turned off by default:

– Possible values: 1 - (default is 0: off).

� DCMF_RECFIFO: The size, in bytes, of each DMA reception FIFO. Incoming torus
packets are stored in this fifo until DCMF Messaging can process them. Making this larger
can reduce torus network congestion. Making this smaller leaves more memory available
to the application. DCMF Messaging uses one reception FIFO. The value specified is
rounded up to the nearest 32-byte boundary:

– Default is 8388608 bytes (8 megabytes).

� DCMF_INJFIFO: The size, in bytes, of each DMA injection FIFO. These FIFOs store
32-byte descriptors, each describing a memory buffer to be sent on the torus. Making this
larger can reduce overhead when there are many outstanding messages. Making this
smaller can increase that overhead. DCMF Messaging uses 15 injection FIFOs in
DEFAULT and RZVANY mode, and 25 injection FIFOs in ALLTOALL mode (refer to
DCMF_FIFOMODE). The value given is rounded up to the nearest 32-byte boundary:

– Default is 32768 (32 kilobytes).

� DCMF_RGETFIFO: The size, in bytes, of each DMA remote get FIFO. These FIFOs store
32-byte descriptors, each describing a memory buffer to be sent on the torus, and are
used to queue requests for data (remote gets). Making this larger can reduce torus
network congestion and reduce overhead. Making this smaller can increase that
congestion and overhead. DCMF Messaging uses 7 remote get FIFOs in DEFAULT and
ALLTOALL mode, and 13 remote get FIFOs in RZVANY mode (refer to
DCMF_FIFOMODE). The value given is rounded up to the nearest 32-byte boundary:

– Default is 32768 (32 kilobytes).

� DCMF_POLLLIMIT: The limit on the number of consecutive non-empty polls of the
reception fifo before exiting the poll function so other processing can be performed.
Making this larger might help performance because polling overhead is smaller. Making
this smaller might be necessary for applications that continuously send to a node that
needs to perform processing. Special values:

– 0: There is no limit.
– Default is 16 polls.

� DCMF_INJCOUNTER: The number of DMA injection counter subgroups that DCMF will
allocate during MPI_Init or DCMF_Messager_Initialize. There are 8 DMA counters in a
subgroup. This is useful for applications that access the DMA directly and need to limit the
number of injection counters used for messaging. Possible values:

– 1..8: The specified value can range from 1 to 8.
– Default is 8.

� DCMF_RECCOUNTER: The number of DMA reception counter subgroups that DCMF will
allocate during MPI_Init or DCMF_Messager_Initialize. There are 8 DMA counters in a
subgroup. This is useful for applications that access the DMA directly and need to limit the
number of reception counters used for messaging. Possible values:

– 1..8: The specified value can range from 1 to 8.
– Default is 8.
Appendix D. Environment variables 347

� DCMF_FIFOMODE: The fifo mode to use. This determines how many injection fifos are
used by messaging and what they are used for:

– DEFAULT: The default fifo mode. Uses 22 injection fifos:

• 6 normal fifos, each mapped to 1 torus fifo.
• 1 local normal fifo.
• 6 remote get fifos, each mapped to 1 torus fifo.
• 1 local remote get fifo.
• 6 all-to-all fifos. These can inject into any of the torus fifos.
• 2 control message fifos.

– RZVANY: Similar to DEFAULT, except it is optimized for sending messages that use the
rendezvous protocol. It has 6 more remote get fifos optimized for sending around
corners:

• 6 normal fifos, each mapped to 1 torus fifo.
• 1 local normal fifo.
• 6 remote get fifos, each mapped to 1 torus fifo.
• 6 remote get fifos, each mapped to all of the torus fifos.
• 1 local remote get fifo.
• 6 all-to-all fifos.
• 2 control message fifos.

– ALLTOALL: Optimized for All-To-All communications. Same as DEFAULT, except there
are 16 All-To-All fifos that can inject into any of the torus fifos:

• Default is DEFAULT.

� DCMF_DMA_VERBOSE: Control the output of information associated with the Direct
Memory Access messaging device. Specifically, it controls whether informational RAS
events are generated when remote get resources become full and are increased in size.
Possible values:

– 0: No DMA information is output.
– 1: DMA information is output.
– Default is 0.

� DCMF_THREADED_TREE: Bitmask indicating whether Send (1) and Recv (2) should use
Comm (helper) Threads. Note, Comm threads might not be used in all cases, it depends
on factors, such as run mode, message size, partition size, data operand, and so on.
Possible values:

– 0: Neither Send nor Recv will use Comm Threads.
– 1: Only Send will use Comm Threads.
– 2: Only Recv will use Comm Threads.
– 3: Both Send and Recv will use Comm Threads.
– Default is 3.

� DCMF_PERSISTENT_ADVANCE: Number of cycles to persist in the advance loop
waiting for a (the first) receive packet to arrive:

– Default is a value computed from the partition size (Collective network depth).

� DCMF_PERSIST_MAX: Upper limit on the number of cycles to persist in advance. This is
only used when DCMF_PERSISTENT_ADVANCE is computed:

– Default is 5000 cycles.

� DCMF_PERSIST_MIN: Lower limit on the number of cycles to persist in advance. This is
only used when DCMF_PERSISTENT_ADVANCE is computed:

– Default is 1000 cycles.
348 IBM Blue Gene/P Application Development

� DCMF_TREE_DBLSUM_THRESH: Number of doubles at which to start using the 2-Pass
algorithm. Special values:

– -1 (minus 1): Effectively disables the 2-Pass algorithm.
– Default is 2 doubles.

� DCMF_TREE_HELPER_THRESH: Number of bytes (message size) at which to start
using a helper thread. Ideally this value would be computed based on network depth and
comm thread start-up time:

– Default 16384 bytes.

� DCMF_TREE_VN_DEEP: Boolean indicating whether to use the Deep protocol for
receiving a message in virtual node mode. Currently not used. Possible values:

– 0 (false): The Deep protocol is not used.
– 1 (true): The Deep protocol is used.
– Default is 1.

Compute Node Kernel environment variables
The Compute Node Kernel (CNK) provides several environment variables that affect its
run-time characteristics. If these variables are set improperly, it could cause a program to fail
to run. None of these environment variables are required to be set for the CNK to work.

The CNK provides the following environment variables:

� BG_STACKGUARDENABLE

Boolean indicating whether CNK creates guard pages. Default is 1 (YES). If the variable is
specified, a value must be set to either "0" or "1".

� BG_STACKGUARDSIZE

Size, in bytes, of the main() ’s stack guard area. Default is 4096. If the specified value is
greater than zero but less than 512, 512 bytes are used.

� BG_PROCESSWINDOWS

The number of TLB slots that are preserved for process windows. If not specified, no slots
are reserved.

� BG_MAXALIGNEXP

The maximum number of floating-point alignment exceptions that CNK can handle. If the
maximum is exceeded, the application coredumps. Values:

– 0: No alignment exceptions are processed.
– -1: All alignment exceptions.
– <n>: n alignment exceptions are processed (1000 is the default).

� BG_POWERMGMTPERIOD

The number of microseconds between proactive power management idle loops.

� BG_POWERMGMTDUR

The number of microseconds spent in one proactive power management idle loop.

� BG_SHAREDMEMPOOLSIZE

Size, in MB, of the shared memory region. Default is 8 MB.

� BG_PERSISTMEMSIZE

Size, in MB, of the persistent memory region. Default is 0.
Appendix D. Environment variables 349

� BG_PERSISTMEMRESET

Boolean indicating that the persistent memory region must be cleared before the job
starts. Default is 0. To enable, the value must be set to “1”.

� BG_COREDUMPONEXIT

Creates a core file when the application exits. This variable is useful when the application
performed an exit() operation and the cause and location of the exit() is not known.

� BG_COREDUMPONERROR

Creates a core file when the application exits with a non-zero exit status. This variable is
useful when the application performed an exit(1) operation and the cause and location of
the exit(1) is not known.

� BG_COREDUMPDISABLED

Boolean. Disables creation of core files if set.

� BG_COREDUMP_FILEPREFIX

Sets the file name prefix of the core files. The default is “core”. The MPI task number is
appended to this prefix to form the file name.

� BG_COREDUMP_PATH

Sets the directory for the core files.

� BG_COREDUMP_FULL

Specifies that the full core file format is to be used for coredumps.

� BG_COREDUMP_REGS

Part of the Booleans that control whether or not register information is included in the core
files. BG_COREDUMP_REGS is the master switch.

� BG_COREDUMP_GPR

Part of the Booleans that control whether or not register information is included in the core
files. BG_COREDUMP_GPR controls GPR (integer) registers.

� BG_COREDUMP_FPR

Part of the Booleans that control whether or not register information is included in the core
files. BG_COREDUMP_FPR controls output of FPR (floating-point) registers.

� BG_COREDUMP_SPR

Part of the Booleans that control whether or not register information is included in the core
files. BG_COREDUMP_SPR controls output of SPR (special purpose) registers.

� BG_COREDUMP_PERS

Boolean that controls whether the node's personality information (XYZ dimension location,
memory size, and so on) are included in the core files.

� BG_COREDUMP_INTCOUNT

Boolean that controls whether the number of interrupts handled by the node are included
in the core file.

� BG_COREDUMP_TLBS

Boolean that controls whether the TLB layout at the time of the core is to be included in the
core file.

� BG_COREDUMP_STACK

Boolean that controls whether the application stack addresses are to be included in the
core file.
350 IBM Blue Gene/P Application Development

� BG_COREDUMP_SYSCALL

Boolean that controls whether a histogram of the number of system calls performed by the
application is to be included in the core file.

� BG_COREDUMP_BINARY

Specifies the MPI ranks for which a binary core file will be generated rather than a
lightweight core file. This type of core file can be used with the GNU Project Debugger
(GDB) but not the Blue Gene/P Core Processor utility. If this variable is not set then all
ranks will generate a lightweight core file. The variable must be set to a comma-separated
list of the ranks that will generate a binary core file or “*” (an asterisk) to have all ranks
generate a binary core file.

� BG_APPTHREADDEPTH

Integer that controls the number of application threads per core. Default is 1. The value
can be between 1 and 3.
Appendix D. Environment variables 351

352 IBM Blue Gene/P Application Development

Appendix E. Porting applications

In this appendix, we summarize Appendix A, “BG/L prior to porting code,” in Unfolding the
IBM eServer Blue Gene Solution, SG24-6686. Porting applications to massively parallel
systems requires special considerations to take full advantage of this specialized
architecture. Never underestimate the effort required to port a code to any new hardware.
The amount of effort depends on the nature of the way in which the code has been
implemented.

Answer the following questions to help you in the decision-making process of porting applications
and the level of effort required (answering “yes” to most of the questions is an indication that your
code is already enabled for distributed-memory systems and a good candidate for Blue Gene/P):

1. Is the code already running in parallel?

2. Is the application addressing 32-bit?

3. Does the application rely on system calls, for example, system?

4. Does the code use the Message Passing Interface (MPI), specifically MPICH? Of the
several parallel programming APIs, the only one supported on the Blue Gene/P system
that is portable is MPICH. OpenMP is supported only on individual nodes.

5. Is the memory requirement per MPI task less than 4 GB?

6. Is the code computational intensive? That is, is there a small amount of I/O compared to
computation?

7. Is the code floating-point intensive? This allows the double floating-point capability of the
Blue Gene/P system to be exploited.

8. Does the algorithm allow for distributing the work to a large number of nodes?

9. Have you ensured that the code does not use flex_lm licensing? At present, flex_lm
library support for Linux on IBM System p® is not available.

If you answered “yes” to all of these questions, answer the following questions:

� Has the code been ported to Linux on System p?

E

© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 353

� Is the code Open Source Software (OSS)? These type of applications require the use of
the GNU standard configure and special considerations are required.85

� Can the problem size be increased with increased numbers of processors?

� Do you use standard input? If yes, can this be changed to single file input?
354 IBM Blue Gene/P Application Development

Appendix F. Mapping

In this appendix, we summarize and discuss mapping of tasks with respect to the Blue
Gene/P system. We define mapping as an assignment of MPI rank onto IBM Blue Gene
processors. As with IBM Blue Gene/L, the network topology for IBM Blue Gene/P is a
three-dimensional (3D) torus or mesh, with direct links between the nearest neighbors in the
+/-x, +/-y, and +/-z directions. When communication involves the nearest neighbors on the
torus network, you can obtain a large fraction of the theoretical peak bandwidth. However,
when MPI ranks communicate with many hops between the neighbors, the effective
bandwidth is reduced by a factor that is equal to the average number of hops that messages
take on the torus network. In a number of cases, it is possible to control the placement of MPI
ranks so that communication remains local. This can significantly improve scaling for a
number of applications, particularly at large processor counts.

The default mapping is to place MPI ranks on the system in XYZT order, where <X,Y,Z> are
torus coordinates and T is the processor number within each node (T=0,1,2,3). If the job uses
symmetrical multiprocessing (SMP) Node mode on the Blue Gene/P system, only one MPI
rank is assigned to each node using processor 0. For SMP Node mode and the default
mapping, we get the following results:

� MPI rank 0 is assigned to <X,Y,Z,T> coordinates <0,0,0,0>.
� MPI rank 1 is assigned to <X,Y,Z,T> coordinates <1,0,0,0>.
� MPI rank 2 is assigned to <X,Y,Z,T> coordinates <2,0,0,0>.

The results continue like this, first incrementing the X coordinate, then the Y coordinate, and
then the Z coordinate. In Virtual Node Mode and in Dual mode, the same XYZT order remains
the default, for example, in Virtual Node Mode, the system first places one MPI rank using
processor 0 on each of the nodes in XYZ order. The next MPI ranks are assigned to
processor 1, again in XYZ order, and so forth. In many cases, it might be better to change this
assignment so that the first four MPI ranks use processors 0,1,2,3 on the first node, then the
next four ranks use processors 0,1,2,3 on the second node, where the nodes are populated in
XYZ order. This ordering is called TXYZ order (first increment T, then X, then Y, and then Z).

The predefined mappings available on Blue Gene/P are the same as those available on Blue
Gene/L: XYZT, XZYT, YZXT, YXZT, ZXYT, ZYXT, TXYZ, TXZY, TYZX, TYXZ, TZXY, TZYX.

F

© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 355

Table F-1 illustrates this type of mapping using the output from the personality program
presented in Appendix B, “Files on architectural features” on page 331.

Table F-1 Topology mapping 4x4x2 with TXYZ and XYZT

The way to specify a mapping depends on the method that is used for job submission. The
mpirun command for the Blue Gene/P system includes two methods to specify the mapping.
You can add -mapfile TXYZ to request TXYZ order. Other permutations of XYZT are also
permitted. You can also create a map file, and use -mapfile my.map, where my.map is the
name of your map file. Alternatively, you can specify the environment variable -env
BG_MAPPING=TXYZ to obtain one of the predefined non-default mappings.

Using customized map file provides the most flexibility. The syntax for the map file is simple.
It must contain one line for each MPI rank in the Blue Gene/P partition, with four integers on
each line separated by spaces, where the four integers specify the <X,Y,Z,T> coordinates for
each MPI rank. The first line in the map file assigns MPI rank 0, the second line assigns MPI
rank 1, and so forth. It is important to ensure that your map file is consistent, with a unique
relationship between MPI rank and <X,Y,Z,T> location.

General guidance
For applications that use a 1D, 2D, 3D, or 4D (D for dimensional) logical decomposition
scheme, it is often possible to map MPI ranks onto the Blue Gene/P torus network in a way
that preserves locality for nearest-neighbor communication, for example, in a
one-dimensional processor topology, where each MPI rank communicates with its rank +/- 1,
the default XYZT mapping is sufficient at least for partitions large enough to use torus
wrap-around.

Mapping option Topology Coordinates Processor

TXYZ 4x4x2 0,0,0 0

0,0,0 1

0,0,0 2

0,0,0 3

1,0,0 0

1,0,0 1

1,0,0 2

1,0,0 3

XYZT 4x4x2 0,0,0 0

1,0,0 0

2,0,0 0

3,0,0 0

0,1,0 0

1,1,0 0

2,1,0 0

3,1,0 0
356 IBM Blue Gene/P Application Development

Torus wrap-around is enabled for partitions that are one midplane = 8x8x8 512 nodes, or
multiples of one midplane. With torus wrap-around, the XYZT order keeps communication
local, except for one extra hop at the torus edges. For smaller partitions, such as a 64-node
partition with a 4x4x4 mesh topology, it is better to create a map file that assigns ranks that go
down the X-axis in the +x direction, and then for the next Y-value, fold the line to return in the
-x direction, making a snake-like pattern that winds back and forth, filling out the 4x4x4 mesh.
It is worthwhile to note that for a random placement of MPI ranks onto a 3D torus network, the
average number of hops is one-quarter of the torus length, in each of the three dimensions.
Thus mapping is generally more important for large or elongated torus configurations.

Two-dimensional logical processes topologies are more challenging. In some cases, it is
possible to choose the dimensions of the logical 2D process mesh so that one can fold the
logical 2D mesh to fit perfectly in the 3D Blue Gene/P torus network, for example, if you want
to use one midplane (8x8x8 nodes) in virtual node mode, a total of 2048 CPUs are available.
A 2D process mesh is 32x64 for this problem. The 32 dimension can be lined up along one
edge of the torus, say the X-axis, using TX order to fill up processors (0,1,2,3) on each of the
eight nodes going down the X-axis, resulting in 32 MPI ranks going down the X-axis.

The simplest good mapping, in this case, is to specify -mapfile TXYZ. This keeps
nearest-neighbor communication local on the torus, except for one extra hop at the torus
edges. You can do slightly better by taking the 32x64 logical 2D process mesh, aligning one
edge along the X-axis with TX order and then folding the 64 dimension back and forth to fill
the 3D torus in a seamless manner. It is straightforward to construct small scripts or programs
to generate the appropriate map file. Not all 2D process topologies can be neatly folded onto
the 3D torus.

For 3D logical process topologies, it is best to choose a decomposition or mapping that fits
perfectly onto the 3D torus if possible, for example, if your application uses SMP Node mode
on one Blue Gene/P rack (8x8x16 torus); then it is best to choose a 3D decomposition with 8
ranks in the X-direction, 8 ranks in the Y-direction, and 16 ranks in the Z-direction. If the
application requires a different decomposition - for example, 16x8x8 - you might be able to
use mapping to maintain locality for nearest-neighbor communication. In this case, ZXY order
works.

Quantum chromodynamics (QCD) applications often use a 4D process topology. This can fit
perfectly onto Blue Gene/P using virtual node mode, for example, with one full rack, there are
4096 CPUs in virtual node mode, with a natural layout of 8x8x16x4 (X,Y,Z,T order). By
choosing a decomposition of 8x8x16x4, communication remains entirely local for nearest
neighbors in the logical 4D process mesh. In contrast, a more balanced decomposition of
8x8x8x8 results in a significant amount of link sharing, and thus degraded bandwidth in one of
the dimensions.

In summary, it is often possible to choose a mapping that keeps communication local on the
Blue Gene/P torus network. This is recommended for cases where a natural mapping can be
identified based on the parallel decomposition strategy used by the application. The mapping
can be specified using the -mapfile argument for the mpirun command.
Appendix F. Mapping 357

358 IBM Blue Gene/P Application Development

Appendix G. htcpartition

The htcpartition utility, the subject of this appendix, boots or frees a HTC partition from a
Front End Node or service node. The htcpartition utility is similar to mpirun in two ways.
First, both communicate with the mpirun daemon on the service node; however, htcpartition
cannot run a job. Second, the mpirun scheduler plug-in interface is also called when
htcpartition is executed. The plug-in interface provides a method for the resource scheduler
to specify the partition to boot or free, and if the resource scheduler does not allow mpirun
outside its framework, that policy is also enforced with htcpartition.

The htcpartition utility is located in /bgsys/drivers/ppcfloor/bin along with the other IBM Blue
Gene/P executables. Its return status indicates whether or not the request succeeded; zero
indicates success and non-zero means failure. Table G-1 provides a complete list of options
for the htcpartition command.

Table G-1 htcpartition parameters

G

Parameter (and syntax) Description

--help Extended help information.

--version Version information.

--boot | --free Indication whether to boot or free the HTC partition. One, and
only one, of these parameters must be specified.

--partition <partition> Partition to boot or free. Alternatively, the partition might be
supplied by the mpirun scheduler plug-in.

--mode
<smp | dual | vn | linux_smp>

The mode that the HTC partition is to be booted in. This
parameter applies only when the --boot option is used. The
default is smp.

--userlist <user_list | *ALL> A comma-separated list of users and groups that can run jobs on
the HTC partition. This parameter applies only when the --boot
option is used. *ALL enables any user job to run. The default is
that only the user that boots the partition can submit jobs to the
partition.
Prior to Blue Gene/P release V1R3M0, only user names could
be specified for this parameter.
© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 359

Example G-1 shows how to boot a partition in SMP mode.

Example: G-1 Booting in SMP mode

$ htcpartition --boot --partition MYPARTITION

By default, htcpartition boots a partition so only the owner can run jobs on that partition. You
can use the --userlist argument to add additional users so they can run jobs on the partition
(see Example G-2).

Example: G-2 Adding users

$ htcpartition --boot --mode DUAL --partition MYPARTITION --userlist
“sam,tom,mark,brant”

Freeing a partition is shown in Example G-3.

Example: G-3 Free partition

$ htcpartition --free --partition MYPARTITION

--host <hostname> Service node host name that the mpirun server listens on. If not
specified, the host name must be in the MMCS_SERVER_IP
environment variable.

--port <port> Service node TCP/IP port number that the mpirun server listens
on. The default port is 9874.

--config <path> mpirun configuration file, which contains the shared secret
needed for htcpartition to authenticate with the mpirun daemon
on the service node. If not specified, the mpirun configuration file
is located by looking for these files in order: /etc/mpirun.cfg or
<release-dir>/bin/mpirun.cfg (where <release-dir> is the Blue
Gene/P system software directory, for example,
/bgsys/drivers/V1R2M0_200_2008-080513P/ppc).

--trace <0-7> Trace level. Higher numbers provide more tracing information.
The default is 0.

Parameter (and syntax) Description
360 IBM Blue Gene/P Application Development

Appendix H. Use of GNU profiling tool on Blue
Gene/P

In this appendix we describe the GNU profiling toolchain for IBM Blue Gene/P.

For additional information about the usage of the GNU toolchain profiling tools, visit GNU
gprof:

http://sourceware.org/binutils/docs-2.16/gprof/index.html

Speed your code with the GNU profiler:

http://www.ibm.com/developerworks/library/l-gnuprof.html

H

© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 361

http://sourceware.org/binutils/docs-2.16/gprof/index.html
http://www.ibm.com/developerworks/library/l-gnuprof.html

Profiling with the GNU toolchain
Profiling tools provide information about potential bottlenecks in your program; they help
identify functions or sections of the code that might become good candidates to optimize.
When using gmon profiling, three levels of profiling information can be generated, machine
instruction level, procedure level, or full level. The choice of options depends on the amount of
detail desired and the amount of overhead that is acceptable. Profiling with the GNU compiler
set is usually enabled by adding -pg to the gcc compile flags.

Timer tick (machine instruction level) profiling
This level of profiling provides timer tick profiling information at the machine instruction level.
To enable this type of profiling, add the -p option on the link command but no additional
options on the compile commands:

� This level of profiling adds the least amount of performance collection overhead.
� It does not provide call graph information.

Procedure-level profiling with timer tick information
This level of profiling provides call graph information. To enable this level of profiling, include
the -p option on all compile commands and on the link command. In addition to call-level
profiling, you get profiling information at the machine instruction level:

� This level of profiling adds additional overhead during performance data collection.

� When using higher levels of optimization, the entire call flow might not be available due to
inlining, code movement, scheduling, and other optimizations performed by the compiler.

Full level of profiling
To enable all available profiling for a program, add the -pg options to all compiles and links.
Doing so provides profiling information that can be used to create call graph information,
statement-level profiling, basic block profiling, and machine instruction profiling. This level of
profiling introduces the most overhead while collecting performance data. When higher levels
of compiler optimization are used, the statement mappings and procedure calls might not
appear as expected due to inlining, code movement, scheduling, and other optimizations
performed by the compiler.

Additional function in the Blue Gene/P gmon support
The basic gmon support is described in the man pages for the GNU toolchain:

http://gcc.gnu.org/

On Blue Gene/P, in addition to the functionality provided in the standard GNU toolchain,
profiling information can be collected on each node. An application can run on multiple nodes,
in which case profiling data is collected on each node of execution. To provide data for each
node, gmon on Blue Gene/P generates a gmon.out file for each node where the application
runs. The files is named gmon.out.x, where x is the rank of the node where profiling
information was collected.
362 IBM Blue Gene/P Application Development

http://gcc.gnu.org/

Enabling and disabling profiling within your application
To turn profiling on and off within your application, the application must still be compiled with
the -p or -pg options as described previously. By inserting the following procedures at various
points in the application, the user can enable and disable profile data collection and only
collect data for the significant sections of the application:

� __moncontrol(1) turns profiling on

� __moncontrol(0) turns profiling off

Collecting the gmon data as a set of program counter values
Performance data can be collected in an alternate format, as a set of instruction addresses
that were executing at the time of each sampling interval, instead of a summarized histogram.
To enable this type of collection, set the environment variable GMON_SAMPLE_DATA="yes"
before running your program. When data is collected this way, the output files are named
gmon.sample.x instead of gmon.out.x. In most cases, this file is much smaller than the
gmon.out.x file and also allows the user to see the sequence of execution samples instead of
the summarized profile. The gprof tool in the Blue Gene/P toolchain has been updated to read
this type of file.

Enabling profile data for threads in Blue Gene/P
Because enabling profiling on threads impacts the performance of nonprofiled runs, the
thread profiling function is not included in the base gmon support. To do this type of profiling,
an alternate toolchain must be built.

Enhancements to gprof in the Blue Gene/P toolchain
Because Blue Gene/P is a massivelly parallel system, the GNU toolchain requires additional
functionality to collect profiling information about multiple nodes.

Using gprof to read gmon.sample.x files
The version of gprof in the Blue Gene/P toolchain has been modified to recognize and
process gmon.sample.x files as described previously. When using gprof on a sample file,
gprof generates the same type of report as it does for gmon.out.x files. If the -sum option is
added, gprof generates a gmon.sum file that is in normal gmon.out format from the data in the
gmon.sample.x file(s). The -d option displays the program counter values in the order in which
they were collected.

Using gprof to merge a large number of gmon.out.x files
The base version of gprof has a limit on the number of gmon.out.x files that can be merged in
one command invocation, which is due to the Linux limit on input arguments to a command.

The following new option has been added to gprof to allow merging of an unlimited number of
gmon.out.x files:

> /bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc-bgp-linux-gprof -sumbg some.pgm
Appendix H. Use of GNU profiling tool on Blue Gene/P 363

This command searches the current directory for all gmon.out files of the form gmon.out.x
where x is an integer value, starting with 0 until a file in the sequence cannot be found. The
data in these files is summed in the same way as gprof normally does.

As in the previous case, the following command searches the current directory for all
gmon.sample files of the form gmon.sample.x where x is an integer value, starting with 0 until
a file in the sequence cannot be in. A gmon histogram is generated by summing the data
found in each individual file, and the output goes to gmon.sum.

> /bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc-bgp-linux-gprof -sumbg=gmon.sample
pgm
364 IBM Blue Gene/P Application Development

Appendix I. Statement of completion

IBM considers the IBM Blue Gene/P installation to be complete when the following activities
have taken place:

� The Blue Gene/P rack or racks have been physically placed in position.
� The cabling is complete, including power, Ethernet, and torus cables.
� The Blue Gene/P racks can be powered on.
� All hardware is displayed in the Navigator and is available.

I

© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 365

366 IBM Blue Gene/P Application Development

References

1. TOP500 Supercomputer sites:

http://www.top500.org/

2. The MPI Forum. The MPI message-passing interface standard. May 1995:

http://www.mcs.anl.gov/mpi/standard.html

3. OpenMP application programming interface (API):

http://www.openmp.org

4. IBM XL family of compilers:

– XL C/C++

http://www-306.ibm.com/software/awdtools/xlcpp/

– XL Fortran

http://www-306.ibm.com/software/awdtools/fortran/xlfortran/features/bg/

5. GCC, the GNU Compiler Collection:

http://gcc.gnu.org/

6. IBM System Blue Gene Solution: Configuring and Maintaining Your Environment,
SG24-7352.

7. GPFS Multicluster with the IBM System Blue Gene Solution and eHPS Clusters,
REDP-4168.

8. Engineering and Scientific Subroutine Library (ESSL):

http://www.ibm.com/systems/p/software/essl.html

9. See note 2.

10.See note 3.

11.See note 4.

12.See note 5.

13.See note 6.

14.See note 7.

15.See note 8.

16.Gropp, W. and Lusk, E. “Dynamic Process Management in an MPI Setting.” 7th IEEE
Symposium on Parallel and Distributed Processing. p. 530, 1995:

http://www.cs.uiuc.edu/homes/wgropp/bib/papers/1995/sanantonio.pdf

17.See note 2.

18.See note 3.

19.See note 5.

20.See note 8.

21.Ganier, C J. “What is Direct Memory Access (DMA)?”

http://cnx.org/content/m11867/latest/

22.See note 2.
© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 367

http://www.top500.org/
http://www.mcs.anl.gov/mpi/standard.html
http://www.openmp.org
http://www-306.ibm.com/software/awdtools/xlcpp/
http://www-306.ibm.com/software/awdtools/fortran/xlfortran/features/bg/
http://gcc.gnu.org/
http://www-03.ibm.com/systems/p/software/essl.html
http://www.cs.uiuc.edu/homes/wgropp/bib/papers/1995/sanantonio.pdf
http://cnx.org/content/m11867/latest/

23.See note 3.

24.A. Faraj, X. Yuan, and D. K. Lowenthal. “STAR-MPI: Self Tuned Adaptive Routines for MPI
Collective Operations.” The 20th ACM International Conference on Supercomputing
(ICS’ 06), Queensland, Australia, June 28-July 1, 2006.

25.Quinn, Michael J. Parallel Programming in C with MPI and OpenMP. McGraw-Hill, New
York, 2004. ISBN 0-072-82256-2.

26.Snir, Marc, et. al. MPI: The Complete Reference, 2nd Edition, Volume 1. MIT Press,
Cambridge, Massachusetts, 1998. ISBN 0-262-69215-5.

27.Gropp, William, et. al. MPI: The Complete Reference, Volume 2 - The MPI-2 Extensions.
MIT Press, Cambridge, Massachusetts, 1998. ISBN 0-262-69216-3.

28.See note 3.

29.See note 25.

30.Ibid.

31.Ibid.

32.See note 3.

33.Flynn’s taxonomy in Wikipedia:

http://en.wikipedia.org/wiki/Flynn%27s_Taxonomy

34.Rennie, Gabriele. “Keeping an Eye on the Prize.” Science and Technology Review,
July/August 2006:

http://www.llnl.gov/str/JulAug06/pdfs/07_06.3.pdf

35.Rennie, Gabriele. “Simulating Materials for Nanostructural Designs.” Science and
Technology Review, January/February 2006:

http://www.llnl.gov/str/JanFeb06/Schwegler.html

36.SC06 Supercomputing Web site, press release from 16 November 2006:

http://sc06.supercomputing.org/news/press_release.php?id=14

37.Unfolding the IBM eServer Blue Gene Solution, SG24-6686

38.Sebastiani, D. and Rothlisberger, U. “Advances in Density-functional-based Modeling
Techniques of the Car-Parrinello Approach,” chapter in Quantum Medicinal Chemistry,
P. Carloni and F. Alber, eds. Wiley-VCH, Germany, 2003. ISBN 9-783-52730-456-1.

39.Car, R. and Parrinello, M. “Unified Approach for Molecular Dynamics and
Density-Functional Theory.” Physical Review Letter 55, 2471 (1985):

http://prola.aps.org/abstract/PRL/v55/i22/p2471_1

40.See note 34.

41.Suits, F., et al. “Overview of molecular dynamics techniques and early scientific results
from the Blue Gene Project.” IBM Research & Development, 2005. 49, 475 (2005):

http://www.research.ibm.com/journal/rd/492/suits.pdf

42.Ibid.

43.Case, D. A., et al. “The Amber biomolecular simulation programs.” Journal of
Computational Chemistry. 26, 1668 (2005).
368 IBM Blue Gene/P Application Development

http://en.wikipedia.org/wiki/Flynn%27s_Taxonomy
http://www.llnl.gov/str/JulAug06/pdfs/07_06.3.pdf
http://www.llnl.gov/str/JanFeb06/Schwegler.html
http://sc06.supercomputing.org/news/press_release.php?id=14
http://prola.aps.org/abstract/PRL/v55/i22/p2471_1
http://www.research.ibm.com/journal/rd/492/suits.pdf

44.Fitch, B. G., et al. “Blue Matter, an application framework for molecular simulation on Blue
Gene.” Journal of Parallel and Distributed Computing. 63, 759 (2003):

http://portal.acm.org/citation.cfm?id=952903.952912&dl=GUIDE&dl=ACM

45.Plimpton, S. “Fast parallel algorithms for short-range molecular dynamics.” Journal of
Computational Physics. 117, 1 (1995).

46.Phillips, J., et al. “Scalable molecular dynamics with NAMD.” Journal of Computational
Chemistry. 26, 1781 (2005).

47.See note 43.

48.See note 44.

49.Ibid.

50.Ibid.

51.Ibid.

52.Ibid.

53.See note 45.

54.LAMMPS Molecular Dynamics Simulator:

http://lammps.sandia.gov/

55.See note 46.

56.Brooks, B. R., et. al. “CHARMM. A Program for Macromolecular Energy, Minimization, and
Dynamics Calculations.” Journal of Computational Chemistry. 4, 187 (1983).

57.Brünger, A. I. “X-PLOR, Version 3.1, A System for X-ray Crystallography and NMR.” 1992:
The Howard Hughes Medical Institute and Department of Molecular Biophysics and
Biochemistry, Yale University. 405.

58.Kumar, S., et al. “Achieving Strong Scaling with NAMD on Blue Gene/L.” Proceedings of
IEEE International Parallel & Distributed Processing Symposium, 2006.

59.Waszkowycz, B., et al. “Large-scale Virtual Screening for Discovering Leads in the
Postgenomic Era.” IBM Systems Journal. 40, 360 (2001).

60.Patrick, G. L. An Introduction to Medicinal Chemistry, 3rd Edition. Oxford University Press,
Oxford, UK, 2005. ISBN 0-199-27500-9.

61.Kontoyianni, M., et al. “Evaluation of Docking Performance: Comparative Data on Docking
Algorithms.” Journal of Medical Chemistry. 47, 558 (2004).

62.Kuntz, D., et al. “A Geometric Approach to Macromolecule-ligand Interactions.” Journal of
Molecular Biology. 161, 269 (1982); Morris, G. M., et al. “Automated Docking Using a
Lamarckian Genetic Algorithm and Empirical Binding Free Energy Function.” Journal of
Computational Chemistry. 19, 1639 (1998); Jones, G., et al. “Development and Validation
of a Genetic Algorithm to Flexible Docking.” Journal of Molecular Biology. 267, 904 (1997);
Rarey, M., et al. “A Fast Flexible Docking Method Using an Incremental Construction
Algorithm.” Journal of Molecular Biology. 261, 470 (1996), Scrödinger, Portland, OR
972001; Pang, Y. P., et al. “EUDOC: A Computer Program for Identification of Drug
Interaction Sites in Macromolecules and Drug Leads from Chemical Databases.” Journal
of Computational Chemistry. 22, 1750 (2001).

63.(a) http://dock.compbio.ucsf.edu; (b) Moustakas, D. T., et al. “Development and
Validation of a Modular, Extensible Docking Program: DOCK5.” Journal of Computational
Aided Molecular Design. 20, 601 (2006).

64.Ibid.

65.Ibid.
 References 369

http://portal.acm.org/citation.cfm?id=952903.952912&dl=GUIDE&dl=ACM
http://lammps.sandia.gov/
http://dock.compbio.ucsf.edu

66.Ibid.

67.Ibid.

68.Peters, A., et al., “High Throughput Computing Validation for Drug Discovery using the
DOCK Program on a Massively Parallel System.” 1st Annual MSCBB. Northwestern
University, Evanston, IL, September, 2007.

69.Irwin, J. J. and Shoichet, B. K. “ZINC - A Free Database of Commercially Available
Compounds for Virtual Screening.” Journal of Chemical Information and Modeling. 45, 177
(2005).

70.Ibid.

71.Pople, J. A. Approximate Molecular Orbital Theory (Advanced Chemistry). McGraw-Hill,
NY. June 1970. ISBN 0-070-50512-8.

72.See note 39.

73.(a) CPMD V3.9, Copyright IBM Corp. 1990-2003, Copyright MPI fur Festkorperforschung,
Stuttgart, 1997-2001. (b) See also:

http://www.cpmd.org

74.Marx, D. and Hutter, J. Ab-initio molecular dynamics: Theory and implementation in
Modern Methods and Algorithms of Quantum Chemistry. J. Grotendorst (ed.), NIC Series,
1, FZ Julich, Germany, 2000. See also the following URL and references therein:

http://www.fz-juelich.de/nic-series/Volume3/marx.pdf

75.Vanderbilt, D. “Soft self-consistent pseudopotentials in a generalized eigenvalue
formalism.” Physical Review B. 1990, 41, 7892 (1990):

http://prola.aps.org/abstract/PRB/v41/i11/p7892_1

76.See note 73.

77.Eddy, S. R., HMMER User’s Guide. Biological Sequence Analysis Using Profile Hidden
Markov Models, Version 2.3.2, October 1998.

78.Ibid.

79.Ibid.

80.Jiang, K., et al. “An Efficient Parallel Implementation of the Hidden Markov Methods for
Genomic Sequence Search on a Massively Parallel System.” IEEE Transactions on
Parallel and Distributed Systems. 19, 1 (2008).

81.Bateman, A., et al. “The Pfam Protein Families Database.” Nucleic Acids Research. 30,
276 (2002).

82.Ibid.

83.Darling, A., et al. “The Design, Implementation, and Evaluation of mpiBLAST.”
Proceedings of 4th International Conference on Linux Clusters (in conjunction with
ClusterWorld Conference & Expo), 2003.

84.Thorsen, O., et al. “Parallel genomic sequence-search on a massively parallel system.”
Conference on Computing Frontiers: Proceedings of the 4th International Conference on
Computing Frontiers. ACM, 2007, pp. 59-68.

85.Heyman, J. “Recommendations for Porting Open Source Software (OSS) to Blue Gene/P,”
white paper WP101152:

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101152
370 IBM Blue Gene/P Application Development

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101152
http://www.cpmd.org
http://www.fz-juelich.de/nic-series/Volume3/marx.pdf
http://prola.aps.org/abstract/PRB/v41/i11/p7892_1

Related publications

The publications listed in this section are considered particularly suitable for a more detailed
discussion of the topics covered in this book.

IBM Redbooks
For information about ordering these publications, see “How to get IBM Redbooks” on
page 374. Note that some of the documents referenced here might be available in softcopy
only:

� IBM System Blue Gene Solution: Blue Gene/P Safety Considerations, REDP-4257

� Blue Gene/L: Hardware Overview and Planning, SG24-6796

� Blue Gene/L: Performance Analysis Tools, SG24-7278

� Evolution of the IBM System Blue Gene Solution, REDP-4247

� GPFS Multicluster with the IBM System Blue Gene Solution and eHPS Clusters,
REDP-4168

� IBM System Blue Gene Solution: Application Development, SG24-7179

� IBM System Blue Gene Solution: Configuring and Maintaining Your Environment,
SG24-7352

� IBM System Blue Gene Solution: Hardware Installation and Serviceability, SG24-6743

� IBM System Blue Gene Solution Problem Determination Guide, SG24-7211

� IBM System Blue Gene Solution: System Administration, SG24-7178

� Unfolding the IBM eServer Blue Gene Solution, SG24-6686

Other publications
These publications are also relevant as further information sources:

� Bateman, A., et al. “The Pfam Protein Families Database.” Nucleic Acids Research. 30,
276 (2002).

� Brooks, B. R.; Bruccoleri, R. E.; Olafson, B. D.; States, D. J.; Swaminathan, S.; Karplus, M.
“CHARMM: A Program for Macromolecular Energy, Minimization, and Dynamics
Calculations.” Journal of Computational Chemistry. 4, 187 (1983).

� Brünger, A. I. “X-PLOR, Version 3.1, A System for X-ray Crystallography and NMR.” 1992:
The Howard Hughes Medical Institute and Department of Molecular Biophysics and
Biochemistry, Yale University. 405.

� Car, R. and Parrinello, Mi. “Unified Approach for Molecular Dynamics and
Density-Functional Theory.” Physical Review Letter 55, 2471 (1985):

http://prola.aps.org/abstract/PRL/v55/i22/p2471_1

� Case, D. A., et al. “The Amber biomolecular simulation programs.” Journal of
Computational Chemistry. 26, 1668 (2005).
© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved. 371

http://prola.aps.org/abstract/PRL/v55/i22/p2471_1

� Darling, A., et al. “The Design, Implementation, and Evaluation of mpiBLAST.”
Proceedings of 4th International Conference on Linux Clusters (in conjunction with
ClusterWorld Conference & Expo), 2003.

� Eddy, S. R., HMMER User’s Guide. Biological Sequence Analysis Using Profile Hidden
Markov Models, Version 2.3.2, October 1998.

� Fitch, B. G., et al. “Blue Matter, an application framework for molecular simulation on Blue
Gene.” Journal of Parallel and Distributed Computing. 63, 759 (2003).

� Gropp, W. and Lusk, E. “Dynamic Process Management in an MPI Setting.” 7th IEEE
Symposium on Parallel and Distributed Processing. p. 530, 1995:

http://www.cs.uiuc.edu/homes/wgropp/bib/papers/1995/sanantonio.pdf

� Gropp, William; Huss-Lederman, Steven; Lumsdaine, Andrew; Lusk, Ewing; Nitzberg, Bill;
Saphir, William; Snir, Marc. MPI: The Complete Reference, Volume 2 - The MPI-2
Extensions. MIT Press, Cambridge, Massachusetts, 1998. ISBN 0-262-69216-3.

� Heyman, J. “Recommendations for Porting Open Source Software (OSS) to Blue Gene/P,”
white paper WP101152.

http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101152

� Irwin, J. J. and Shoichet, B. K. “ZINC - A Free Database of Commercially Available
Compounds for Virtual Screening.” Journal of Chemical Information and Modeling. 45, 177
(2005).

� Jiang, K., et al. “An Efficient Parallel Implementation of the Hidden Markov Methods for
Genomic Sequence Search on a Massively Parallel System.” IEEE Transactions On
Parallel and Distributed Systems. 19, 1 (2008).

� Jones, G., et al. “Development and Validation of a Genetic Algorithm to Flexible Docking.”
Journal of Molecular Biology. 267, 904 (1997).

� Kontoyianni, M., et al. “Evaluation of Docking Performance: Comparative Data on Docking
Algorithms.” Journal of Medical Chemistry. 47, 558 (2004).

� Kumar, S., et al. “Achieving Strong Scaling with NAMD on Blue Gene/L.” Proceedings of
IEEE International Parallel & Distributed Processing Symposium, 2006.

� Kuntz, D., et al. “A Geometric Approach to Macromolecule-ligand Interactions.” Journal of
Molecular Biology. 161, 269 (1982).

� Marx, D. and Hutter, J. Ab-initio molecular dynamics: Theory and implementation, in:
Modern Methods and Algorithms of Quantum Chemistry. J. Grotendorst (ed.), NIC Series,
1, FZ Julich, Germany, 2000:

http://www.fz-juelich.de/nic-series/Volume3/marx.pdf

� Morris, G. M., et al. “Automated Docking Using a Lamarckian Genetic Algorithm and
Empirical Binding Free Energy Function.” Journal of Computational Chemistry. 19, 1639
(1998).

� Pang, Y. P., et al. “EUDOC: A Computer Program for Identification of Drug Interaction Sites
in Macromolecules and Drug Leads from Chemical Databases.” Journal of Computational
Chemistry. 22, 1750 (2001).

� Patrick, G. L. An Introduction to Medicinal Chemistry, 3rd Edition. Oxford University Press,
Oxford, UK, 2005. ISBN 0-199-27500-9.

� Peters, A., et al., “High Throughput Computing Validation for Drug Discovery using the
DOCK Program on a Massively Parallel System.” 1st Annual MSCBB - Location:
Northwestern University - Evanston, IL, September, 2007.

� Phillips, J., et al. “Scalable molecular dynamics with NAMD.” Journal of Computational
Chemistry. 26, 1781 (2005).
372 IBM Blue Gene/P Application Development

http://www.cs.uiuc.edu/homes/wgropp/bib/papers/1995/sanantonio.pdf
http://www-03.ibm.com/support/techdocs/atsmastr.nsf/WebIndex/WP101152
http://www.fz-juelich.de/nic-series/Volume3/marx.pdf

� Plimpton, S. “Fast parallel algorithms for short-range molecular dynamics.” Journal of
Computational Physics. 117, 1 (1995).

� Pople, J. A. Approximate Molecular Orbital Theory (Advanced Chemistry). McGraw-Hill,
NY. June 1970. ISBN 0-070-50512-8.

� Quinn, Michael J. Parallel Programming in C with MPI and OpenMP. McGraw-Hill, New
York, 2004. ISBN 0-072-82256-2.

� Rarey, M., et al. “A Fast Flexible Docking Method Using an Incremental Construction
Algorithm.” Journal of Molecular Biology. 261, 470 (1996), Scrödinger, Portland, OR
972001.

� Sebastiani, D. and Rothlisberger, U. “Advances in Density-functional-based Modeling
Techniques of the Car-Parrinello Approach,” chapter in Quantum Medicinal Chemistry,
P. Carloni and F. Alber (eds.), Wiley-VCH, Germany, 2003. ISBN 9-783-52730-456-1.

� Snir, Marc; Otto, Steve; Huss-Lederman, Steven; Walker, David; Dongarra, Jack. MPI: The
Complete Reference, 2nd Edition, Volume 1. MIT Press, Cambridge, Massachusetts,
1998. ISBN 0-262-69215-5.

� Suits, F., et al. “Overview of Molecular Dynamics Techniques and Early Scientific Results
from the Blue Gene Project.” IBM Research & Development, 2005. 49, 475 (2005).

http://www.research.ibm.com/journal/rd/492/suits.pdf

� Thorsen, O., et al. “Parallel genomic sequence-search on a massively parallel system.”
Conference on Computing Frontiers: Proceedings of the 4th International Conference on
Computing Frontiers. ACM, 2007, pp. 59-68.

� Vanderbilt, D. “Soft self-consistent pseudopotentials in a generalized eigenvalue
formalism.” Physical Review B. 1990, 41, 7892 (1990).

http://prola.aps.org/abstract/PRB/v41/i11/p7892_1

� Waszkowycz, B., et al. “Large-scale Virtual Screening for Discovering Leads in the
Postgenomic Era.” IBM Systems Journal. 40, 360 (2001).

Online resources
These Web sites are also relevant as further information sources:

� Compiler-related topics:

– XL C/C++

http://www-306.ibm.com/software/awdtools/xlcpp/

– XL C/C++ library

http://www.ibm.com/software/awdtools/xlcpp/library/

– XL Fortran Advanced Edition for Blue Gene

http://www-306.ibm.com/software/awdtools/fortran/xlfortran/features/bg/

– XL Fortran library

http://www-306.ibm.com/software/awdtools/fortran/xlfortran/library/
 Related publications 373

http://www.research.ibm.com/journal/rd/492/suits.pdf
http://prola.aps.org/abstract/PRB/v41/i11/p7892_1
http://www-306.ibm.com/software/awdtools/xlcpp/
http://www.ibm.com/software/awdtools/xlcpp/library/
http://www-306.ibm.com/software/awdtools/fortran/xlfortran/features/bg/
http://www-306.ibm.com/software/awdtools/fortran/xlfortran/library/

� Debugger-related topics:

– GDB: The GNU Project Debugger

http://www.gnu.org/software/gdb/gdb.html

– GDB documentation:

http://www.gnu.org/software/gdb/documentation/

� Engineering and Scientific Subroutine Library (ESSL) and Parallel ESSL

http://www.ibm.com/systems/p/software/essl.html

� GCC, the GNU Compiler Collection

http://gcc.gnu.org/

� Intel MPI Benchmarks is formerly known as “Pallas MPI Benchmarks.”

http://www.intel.com/cd/software/products/asmo-na/eng/219848.htm

� Mathematical Acceleration Subsystem

http://www-306.ibm.com/software/awdtools/mass/index.html

� Message Passing Interface Forum

http://www.mpi-forum.org/

� MPI Performance Topics

http://www.llnl.gov/computing/tutorials/mpi_performance/

� The OpenMP API Specification:

http://www.openmp.org

� Danier, CJ, “What is Direct Memory Access (DMA)?”

http://cnx.org/content/m11867/latest/

How to get IBM Redbooks
You can search for, view, or download Redbooks, Redpapers, Hints and Tips, draft
publications and Additional materials, as well as order hardcopy Redbooks or CD-ROMs, at
this Web site:

ibm.com/redbooks

Help from IBM
IBM Support and downloads

ibm.com/support

IBM Global Services

ibm.com/services
374 IBM Blue Gene/P Application Development

http://www.gnu.org/software/gdb/gdb.html
http://www.gnu.org/software/gdb/documentation/
http://www-03.ibm.com/systems/p/software/essl.html
http://gcc.gnu.org/
http://www.intel.com/cd/software/products/asmo-na/eng/219848.htm
http://www-306.ibm.com/software/awdtools/mass/index.html
http://www.mpi-forum.org/
http://www.llnl.gov/computing/tutorials/mpi_performance/
http://www.openmp.org
http://cnx.org/content/m11867/latest/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.ibm.com/support/
http://www.ibm.com/support/
http://www.ibm.com/services/
http://www.ibm.com/services/

Index

Numerics
10 Gb Ethernet network 11
3.2 C, GNU 21
32-bit static link files 337
3D torus network 10

A
Ab Initio method 307
abstract device interface (ADI) 68
adaptive routing 69
addr2line utility 159
address space 20
ADI (abstract device interface) 68
Aggregate Remote Memory Copy Interface (ARMCI) 67
ALIGNX 116
__alignx function 116
allocate block 140
AMBER 309
ANSI-C 59
APIs

Bridge. See Bridge APIs
Control System. See Bridge APIs
Dynamic Partition Allocator APIs See Dynamic Parti-
tion Allocator APIs
Real-time Notification APIs See Real-time Notification
APIs

applications
checkpoint and restart support for 169–176
chemistry and life sciences 307–321
compiling and linking 98
debugging 143–167

See also GPD (GNU Project debugger), Scalable
Debug API

developing with XL compilers 97–138
optimizing 111–138
porting 353
running 140–142
SIMD instructions in 109–111

architecture 4–6
CIOD threading 34

Argonne National Labs 18
arithmetic functions 126–135
ARMCI (Aggregate Remote Memory Copy Interface) 67
asynchronous APIs, Bridge APIs 213
asynchronous file I/O 20
__attribute__(always_inline) extension 114

B
bandwidth, MPI 83
base partition 245
Berkeley Unified Parallel C (Berkeley UPC) 67
Berkeley UPC (Berkeley Unified Parallel C) 67
BG_CHKPTENABLED 176
© Copyright IBM Corp. 2007, 2008, 2009. All rights reserved.
BG_SHAREDMEMPOOLSIZE 40
BGLAtCheckpoint 174
BGLAtContinue 174
BGLAtRestart 174
BGLCheckpoint 173
BGLCheckpointExcludeRegion 174
BGLCheckpointInit 173
BGLCheckpointRestart 174
bgpmaster daemon 24
binary functions 128
binutils 98
block 140
blrts_xlc 100
blrts_xlc++ 100
blrts_xlf 100
Blue Gene specifications 12
Blue Gene XL compilers, developing applications with 97
Blue Gene/L PowerPC 440d processor 97
Blue Gene/P

software programs 11
V1R3M0 7–8

Blue Gene/P MPI, environment variables 340
Blue Matter 310
boot sequence, compute node 31
Bridge APIs 23, 161, 209–249

asynchronous APIs 213
environment variables 210
examples 246–249
first and next calls 211
functions 212
HTC paradigm and 202
invalid pointers 211
memory allocation and deallocation 211
messaging APIs 244
MMCS API 212
partition state flags 218
requirements 210–212
return codes 213
small partition allocation 245

bridge.config 182
bss, applications storing data 19
buffer alignment 73
built-in floating-point functions 118

C
C++, GNU 21
cache 44
Car-Parrinello Molecuar Dynamics (CPMD) 308
Cartesian

communicator functions 75
optimized functions 68

Charm++ 67
checkpoint and restart application support 169–176

directory and file-naming conventions 175
 375

I/O considerations 171
restarting 175–176
signal considerations 171–173
technical overview 170

checkpoint API 173–174
checkpoint library 170
checkpoint write complete flag 175
chemistry and life sciences applications 307–321
chip component 4
CIMAG 122
__cimag 122
CIMAGF 122
__cimagf 122
CIMAGL 122
__cimagl 122
CIOD (control and I/O daemon) 31, 33
CIOD threading 34
ciodb 24
Classical Molecular Mechanics/Molecular Dynamics
(MM/MD) 307
CMPLX 121
__cmplx 121
CMPLXF 121
__cmplxf 121
__cmplxl 121
CNK (Compute Node Kernel) 5, 17, 20, 30–32, 52

environment variables 349
socket services 23

collective MPI 85, 320
collective network 69
Communication Coprocessor mode 17, 38, 48
communications performance 83–88
compilers

GNU 21
IBM XL 22

complex type manipulation functions 121
compute card 4
compute node 5–6, 9

debugging 150
features 12

Compute Node Kernel See CNK
control and I/O daemon See CIOD
control network 6, 11
control system 23
Control System APIs See Bridge APIs
copy-primary operations 119
copy-secondary operations 120
core files, debugging 157–159
Core Processor tool 149
cores, computation of 5
CPMD (Car-Parrinello Molecuar Dynamics) 308
CREAL 122
__creal 122
CREALF 122
__crealf 122
CREALL 122
__creall 122
critical pragma 93
cross operations 118
cross-copy operations 120

D
data, applications storing 19
db.properties 182
DB_PROPERTY 252
DCMF_EAGER 70
DDR (double data RAM) 47
debug client, debug server 143
debugging applications 143–167

live debug 150–155
Scalable Debug API 161–167
See also GPD (GNU Project debugger)

deterministic routing 69
direct memory access (DMA) 69
directory names, checkpoint and restarting conventions
175
DMA (direct memory access) 69
DOCK6 313
double data RAM (DDR) 47
Double Hummer FPU 100
double-precision square matrix multiply example 136
Dual mode 17, 299

memory access in 49
dynamic linking 21
Dynamic Partition Allocator APIs 295–301

library files 296
requirements 296

E
eager protocol 69
electronic correlation 314
electronic structure method 307
Engineering and Scientific Subroutine Library (ESSL)
105
environment variables 339–351

Blue Gene/P MPI 340
Bridge APIs 210
Compute Node Kernel 349
mpirun 187

ESSL (Engineering and Scientific Subroutine Library)
105
Ewald sums 308
extended basic blocks 113

F
fault recovery 170

See also checkpoint and restart application support
file I/O 20
files

on architectural features 331–334
checkpoint and restart naming conventions 175

Fortran77, GNU 21
FPABS 127
__fpabs 127
FPADD 128
__fpadd 128
FPCTIW 126
__fpctiw 126
FPCTIWZ 126
__fpctiwz 126
376 IBM Blue Gene/P Application Development

FPMADD 129
__fpmadd 129
FPMSUB 130
__fpmsub 130
FPMUL 128
__fpmul 128
FPNABS 128
__fpnabs 127
FPNEG 127
__fpneg 127
FPNMADD 130
__fpnmadd 129
FPNMSUB 130
__fpnmsub 130
FPRE 127
__fpre 127
FPRSP 126
__fprsp 126
FPRSQRTE 127
__fprsqrte 127
FPSEL 135
__fpsel 135
FPSUB 128
__fpsub 128
freepartition 178
front end node 6, 13
function network 6, 11
functions

Bridge APIs 209–249
built-in floating-point, IX compilers 118
built-in, XL compilers 135–138
Dynamic Partition Allocator APIs 295–301
inline, XL compilers 114
load and store, XL compilers 123
move, XL compilers 125
MPI 80
Real-time Notification APIs 255–268
select, XL compilers 135
unary 126–128

FXCPMADD 132
__fxcpmadd 132
FXCPMSUB 132
__fxcpmsub 132
FXCPNMADD 132
__fxcpnmadd 132
FXCPNMSUB 133
__fxcpnmsub 133
FXCPNPMA 133
__fxcpnpma 133
__fxcpnsma 133
FXCSMADD 132
__fxcsmadd 132
FXCSMSUB 132
__fxcsmsub 132
FXCSNMADD 132
__fxcsnmadd 132
FXCSNMSUB 133
__fxcsnmsub 133
FXCSNPMA 133
__fxcsnpma 133

__fxcsnsma 133
FXCXMA 134
__fxcxma 134
FXCXNMS 134
__fxcxnms 134
FXCXNPMA 134
__fxcxnpma 134
FXCXNSMA 135
__fxcxnsma 135
FXMADD 130
__fxmadd 130
FXMR 125
__fxmr 125
FXMSUB 131
__fxmsub 131
FXMUL 129
__fxmul 129
FXNMADD 131
__fxnmadd 131
FXNMSUB 131
__fxnmsub 131
FXPMUL 129
__fxpmul 129
FXSMUL 129
__fxsmul 129

G
GA toolkit (Global Arrays toolkit) 67
GASNet (Global-Address Space Networking) 68
GDB (GNU Project debugger) 143–149
gdbserver 143
General Parallel File System (GPFS) 13
get_parameters() 199
gid 52
Global Arrays (GA) toolkit 67
global collective network 11
global interrupt network 11, 69
Global-Address Space Networking (GASNet) 68
GNU Compiler Collection V4.1.1 21
GNU profiling tool 361–364
GNU Project debugger (GDB) 143–149
GPFS (General Parallel File System) 13

H
hardware 3–14

naming conventions 325–330
header files 335–338
heap 19
high-performance computing mode 18
high-performance network 69
High-Throughput Computing mode 18
HMMER 315
host system 13
host system software 14
HTC 65
HTC paradigm 201–206
htcpartition 202, 359
 Index 377

I
I/O (input/output) 20
I/O node 5–6, 10

daemons 23
debugging 156
features 12
file system services 22
kernel boot 22
software 22–24

I/O node kernel 32–35
IBM LoadLeveler 142
IBM XL compilers 22

arithmetic functions 126–135
basic blocks 113
batching computations 115
built-in floating-point functions 118
built-in functions, using 135–138
complex type manipulation functions 121
complex types, using 113
cross operations 119
data alignment 116
data objects, defining 112
default options 99
developing applications with 97–138
inline functions 114
load and store functions 123
move functions 125
optimization 107
parallel operations 118
pointer aliasing 114
scripts 100
select functions 135
SIMD 118
vectorizable basic blocks 113

input/output (I/O) 20
Intel MPI Benchmarks 83

J
jm_attach_job() 222
jm_begin_job() 222
jm_cancel_job 222
jm_debug_job() 223
jm_load_job() 224
jm_signal_job() 225
jm_start_job() 225
job modes 37–42
job state flags 223

K
kernel functionality 29–35

L
L1 cache 44–45, 73
L2 cache 44, 46
L3 cache 44, 46
LAMMPS 311
latency, MPI 83
__lfpd 123

__lfps 123
__lfxd 124
__lfxs 123
libbgrealtime.so 252
libraries 335–338

XL 104
ligand atoms 313
Linux/SMP mode 299
load and store functions 123
LOADFP 123
LOADFX 123–124
LoadLeveler 142

M
mapping 355–357
MASS (Mathematical Acceleration Subsystem) 104
Mathematical Acceleration Subsystem (MASS) 104
mcServer daemon 24
memory 18–20, 43–49

address space 20
addressing 19
considerations 9
distributed 44, 66
leaks 20
management 20, 45–47
MPI and 71
persistent 49
protection 47–49
shared 40
virtual 44

message layer 39
Message Passing Interface. See MPI
messages, flooding of 72
microprocessor 8
midplane 7
Midplane Management Control System (MMCS) 23, 25
Midplane Management Control System APIs 295
MM/MD (Classical Molecular Mechanics/Molecular Dy-
namics) 307
mmap 40
MMCS (Midplane Management Control System) 23, 25,
33
MMCS console 140
MMCS daemon 24
mmcs_db_console 202
modes, specifying 41
move functions 125
MPI (Message Passing Interface) 18, 65, 68

bandwidth 83
Blue Gene/P extensions 74–80
Blue Gene/P implementation, protocols 69
buffer ownership, violating 73
collective 85, 320
communications 74
communications performance 83–88
compiling programs on Blue Gene/P 82–83
eager protocol 69
functions 80
latency 83
memory, too much 71
378 IBM Blue Gene/P Application Development

mpirun and 177
point-to-point 84
rendezvous protocol 69
short protocol 69

MPI algorithms, configuring at run time 77
MPI implementation, Blue Gene/P system 68
MPI V1.2 68
MPI_COMM_WORLD 76
MPI_Irecv 70
MPI_Isend 70
MPI_SUCCESS 75
MPI_Test 72
MPI_Wait 73
MPI-2 18
mpiBLAST-PIO 316
MPICH2 68
MPICH2 standard 18
mpiexec 179
mpikill 180
mpirun 23, 141, 177–200

APIs 199
challenge protocol 183
command examples 191–199
-env 194
environment variables 187
freepartition 178
invoking 183–187
MPMD 178
return codes 188–191
setup 181
SIGINT 198
tool-launching interface 188

mpirun daemon, configuration files 182
mpirun.cfg 182
mpirun_done() 200
MPIX functions 68
mpix.h file 75
MPMD (multiple program, multiple data) 178
multiple program, multiple data (MPMD) 178
multiply-add functions 129–135

N
NAMD 312
natural alignment 108
network 10

10 Gb Ethernet 11
3D torus 10
collective 11, 69
control 11
functional 11
global collective 11
global interrupt 11, 69
high-performance 69
point-to-point 69
torus 10

networks
function 11

node card 4
retrieving information 247

node services, common 32

O
OpenMP 89–96, 100

GPD 144
OpenMP, HPC (High-Performance Computing) 65

P
parallel execution 69
parallel operations 118
parallel paradigms 65–96

See also MPI (Message Passing Interface)
Parallel Programming Laboratory 67
particle mesh Ewald (PME) method 308
performance

application efficiency 71
collective operations and 85
data alignment and 116
engineering and scientific applications 305–321
L2 cache and 46
memory and 45
MPI algorithms 77
MPI communications 83–88

persistent memory 49
personality 31
PingPong 318
pm_create_partition() 216
pm_destroy_partition() 217
PME (particle mesh Ewald) method 308
pmemd 309
PMI_Cart_comm_create() 75
PMI_Pset_diff_comm_create() 76
PMI_Pset_same_comm_create() 75
pointer aliasing 114
pointers, uninitialized 20
point-to-point MPI 84
point-to-point network 69
pool, HTC 205
porting applications 353
PowerPC 440d Double Hummer dual FPU 118
PowerPC 440d processor 97
PowerPC 450 microprocessor 8
PowerPC 450, parallel operations on 107
#pragma disjoint directive 115
processor set (pset) 75
pset (processor set) 75
-psets_per_bp 193
pthreads 100
Python 106

Q
q64 100
qaltivec 100
qarch 99
qcache 99
qflttrap 100
qinline 114
qipa 114
QM/MM (Quantum Mechanical/Molecular Mechanical)
308
qmkshrobj 100
 Index 379

qnoautoconfig 99
qpic 100
qtune 99
Quantum Mechanical/Molecular Mechanical (QM/MM)
308

R
rack component 4
raw state 256
real-time application code 284–293
Real-time Notification APIs 251–293

blocking or nonblocking 253
functions 255–268
libbgrealtime.so 252
library files 252
requirements 252
return codes 280–283
sample makefile 252
status codes 281

Redbooks Web site 374
Contact us xiii

reduction clause 93
rendezvous protocol 69
rm_add_job() 221
rm_add_part_user() 216, 255, 282
rm_add_partition() 215, 254, 281
rm_assign_job() 216
rm_free_BG() 243
rm_free_BP() 243
rm_free_job() 243
rm_free_job_list() 243
rm_free_nodecard() 243
rm_free_nodecard_list() 243
rm_free_partition() 243
rm_free_partition_list() 243
rm_free_switch() 243
rm_get_BG() 214
rm_get_data() 212, 214
rm_get_job() 223
rm_get_jobs() 223
rm_get_partitions() 217, 254, 281
rm_get_partitions_info() 218, 255, 283
rm_get_serial() 215
rm_modify_partition() 218
rm_new_BP() 242
rm_new_job() 243
rm_new_nodecard() 243
rm_new_partition() 243
rm_new_switch() 243
rm_query_job() 224
rm_release_partition() 219
rm_remove_job() 224
rm_remove_part_user() 220, 255, 282
rm_remove_partition() 219
rm_set_data() 212, 215
rm_set_part_owner() 220
rm_set_serial() 215
rt_api.h 252
RT_CALLBACK_CONTINUE 256
RT_CALLBACK_QUIT 256

RT_CALLBACK_VERSION_0 255
rt_callbacks_t() 255
RT_CONNECTION_ERROR 283
RT_DB_PROPERTY_ERROR 281
rt_get_msgs() 253
rt_handle_t() 253
rt_init() 252
RT_INVALID_INPUT_ERROR 282–283
rt_set_blocking() 253
rt_set_filter() 254
rt_set_nonblocking() 253
RT_STATUS_OK 256
RT_WOULD_BLOCK 282

S
Scalable Debug API 161–167
scripts, XL compilers 100
security, mpirun and 141, 178
segfaults 48
Self Tuned Adaptive Routines for MPI (STAR-MP) 79
service actions 24
service node 6, 13
shared libraries 101
shared memory 40
shm_open() 40
signal support, system calls 59
SIMD (single-instruction, multiple-data) 46, 107
SIMD computation 118
SIMD instructions in applications 109–111
Single Program Multiple Data. See SPMD 68
single-instruction, multiple-data See SIMD
size command 19
small partition

allocation 245, 248, 284
defining new 248
querying 248

SMP mode 38
as default mode 48

socket support, system calls 58
sockets calls 21
software 15–25
SPI (System Programming Interface) 57
SPMD (Single Program Multiple Data) 68, 179
stack 19
standard input 21
STAR-MPI (Self Tuned Adaptive Routines for MPI) 79
static libraries 101
stdin 21
__stfpd 124
__stfpiw 125
__stfps 124
__stfxd 125
__stfxs 124
storage node 13
STOREFP 124–125
STOREFX 124
structure alignment 112
submit 141

HTC paradigm 202
submit APIs, HTC paradigm 206
380 IBM Blue Gene/P Application Development

SUBMIT_CWD 203
SUBMIT_POOL 203
SUBMIT_PORT 203
Symmetrical Multiprocessor (SMP) mode 17
system architecture 4–6
system calls 51–61

return codes 52
signal support 59
socket support 58
unsupported 60

System Programming Interface (SPI) 57

T
threading support 18
TLB (translation look-aside buffer) 47
torus communications 74
torus wrap-around 357
translation look-aside buffer (TLB) 47
TXYZ order 355

U
uid 52
unary functions 126–128
uninitialized pointers 20

V
vectorizable basic blocks 113
virtual FIFO 39
virtual memory 44
Virtual node mode 17, 38, 299

memory access in 48
virtual paging 20

X
XL C/C++ Advanced Edition V8.0 for Blue Gene 97
XL compilers. See IBM XL compilers
XL Fortran Advanced Edition V10.1 for Blue Gene 97
XL libraries 104
 Index 381

382 IBM Blue Gene/P Application Development

(0.5” spine)
0.475”<

->
0.873”

250 <
->

 459 pages

IBM
 System

 Blue Gene Solution: Blue Gene/P Application Developm
ent

IBM
 Blue Gene/P Application

Developm
ent

IBM
 Blue Gene/P Application

Developm
ent

IBM
 Blue Gene/P Application Developm

ent

IBM
 Blue Gene/P Application

Developm
ent

IBM
 Blue Gene/P Application

Developm
ent

®

SG24-7287-03 ISBN 0738433330

INTERNATIONAL
TECHNICAL
SUPPORT
ORGANIZATION

BUILDING TECHNICAL
INFORMATION BASED ON
PRACTICAL EXPERIENCE

IBM Redbooks are developed
by the IBM International
Technical Support
Organization. Experts from
IBM, Customers and Partners
from around the world create
timely technical information
based on realistic scenarios.
Specific recommendations
are provided to help you
implement IT solutions more
effectively in your
environment.

For more information:
ibm.com/redbooks

®

IBM System Blue Gene
Solution: Blue Gene/P
Application Development

Understand the Blue
Gene/P programming
environment

Learn how to run and
debug MPI programs

Learn about Bridge
and Real-time APIs

This IBM® Redbooks® publication is one in a series of IBM books
written specifically for the IBM System Blue Gene/P Solution. The Blue
Gene/P system is the second generation of a massively parallel
supercomputer from IBM in the IBM System Blue Gene Solution series.
In this book, we provide an overview of the application development
environment for the Blue Gene/P system. We intend to help
programmers understand the requirements to develop applications on
this high-performance massively parallel supercomputer.

In this book, we explain instances where the Blue Gene/P system is
unique in its programming environment. We also attempt to look at the
differences between the IBM System Blue Gene/L Solution and the
Blue Gene/P Solution. In this book, we do not delve into great depth
about the technologies that are commonly used in the supercomputing
industry, such as Message Passing Interface (MPI) and Open
Multi-Processing (OpenMP), nor do we try to teach parallel
programming. References are provided in those instances for you to
find more information if necessary.

Prior to reading this book, you must have a strong background in
high-performance computing (HPC) programming. The high-level
programming languages that we use throughout this book are C/C++
and Fortran95. Previous experience using the Blue Gene/L system can
help you better understand some concepts in this book that we do not
extensively discuss. However, several IBM Redbooks publications
about the Blue Gene/L system are available for you to obtain general
information about the Blue Gene/L system. We recommend that you
refer to “IBM Redbooks” on page 371 for a list of those publications.

Back cover

http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/
http://www.redbooks.ibm.com/

	Go to the current abstract on ibm.com/redbooks
	Front cover
	Contents
	Notices
	Trademarks

	Preface
	The team who wrote this book
	Become a published author
	Comments welcome

	Summary of changes
	September 2009, Fourth Edition
	December 2008, Third Edition
	September 2008, Second Edition

	Part 1 Blue Gene/P: System and environment overview
	Chapter 1. Hardware overview
	1.1 System architecture overview
	1.1.1 System buildup
	1.1.2 Compute and I/O nodes
	1.1.3 Blue Gene/P environment

	1.2 Differences between Blue Gene/L and Blue Gene/P hardware
	1.3 Microprocessor
	1.4 Compute nodes
	1.5 I/O nodes
	1.6 Networks
	1.7 Blue Gene/P programs
	1.8 Blue Gene/P specifications
	1.9 Host system
	1.9.1 Service node
	1.9.2 Front end nodes
	1.9.3 Storage nodes

	1.10 Host system software

	Chapter 2. Software overview
	2.1 Blue Gene/P software at a glance
	2.2 Compute Node Kernel
	2.2.1 High-performance computing and High-Throughput Computing modes
	2.2.2 Threading support on Blue Gene/P

	2.3 Message Passing Interface on Blue Gene/P
	2.4 Memory considerations
	2.4.1 Memory leaks
	2.4.2 Memory management
	2.4.3 Uninitialized pointers

	2.5 Other considerations
	2.5.1 Input/output
	2.5.2 Linking

	2.6 Compilers overview
	2.6.1 Programming environment overview
	2.6.2 GNU Compiler Collection
	2.6.3 IBM XL compilers

	2.7 I/O node software
	2.7.1 I/O nodes kernel boot considerations
	2.7.2 I/O node file system services
	2.7.3 Socket services for the Compute Node Kernel
	2.7.4 I/O node daemons
	2.7.5 Control system

	2.8 Management software
	2.8.1 Midplane Management Control System

	Part 2 Kernel overview
	Chapter 3. Kernel functionality
	3.1 System software overview
	3.2 Compute Node Kernel
	3.2.1 Boot sequence of a Compute Node
	3.2.2 Common Node Services

	3.3 I/O node kernel
	3.3.1 Control and I/O daemon

	Chapter 4. Execution process modes
	4.1 Symmetrical Multiprocessing mode
	4.2 Virtual Node mode
	4.3 Dual mode
	4.4 Shared memory support
	4.5 Deciding which mode to use
	4.6 Specifying a mode
	4.7 Multiple application threads per core

	Chapter 5. Memory
	5.1 Memory overview
	5.2 Memory management
	5.2.1 L1 cache
	5.2.2 L2 cache
	5.2.3 L3 cache
	5.2.4 Double data RAM

	5.3 Memory protection
	5.4 Persistent memory

	Chapter 6. System calls
	6.1 Introduction to the Compute Node Kernel
	6.2 System calls
	6.2.1 Return codes
	6.2.2 Supported system calls
	6.2.3 Other system calls

	6.3 System programming interfaces
	6.4 Socket support
	6.5 Signal support
	6.6 Unsupported system calls

	Part 3 Applications environment
	Chapter 7. Parallel paradigms
	7.1 Programming model
	7.2 Blue Gene/P MPI implementation
	7.2.1 High-performance network for efficient parallel execution
	7.2.2 Forcing MPI to allocate too much memory
	7.2.3 Not waiting for MPI_Test
	7.2.4 Flooding of messages
	7.2.5 Deadlock the system
	7.2.6 Violating MPI buffer ownership rules
	7.2.7 Buffer alignment sensitivity

	7.3 Blue Gene/P MPI extensions
	7.3.1 Blue Gene/P communicators
	7.3.2 Configuring MPI algorithms at run time
	7.3.3 Self Tuned Adaptive Routines for MPI

	7.4 MPI functions
	7.5 Compiling MPI programs on Blue Gene/P
	7.6 MPI communications performance
	7.6.1 MPI point-to-point
	7.6.2 MPI collective

	7.7 OpenMP
	7.7.1 OpenMP implementation for Blue Gene/P
	7.7.2 Selected OpenMP compiler directives
	7.7.3 Selected OpenMP compiler functions
	7.7.4 Performance

	Chapter 8. Developing applications with IBM XL compilers
	8.1 Compiler overview
	8.2 Compiling and linking applications on Blue Gene/P
	8.3 Default compiler options
	8.4 Unsupported options
	8.5 Support for pthreads and OpenMP
	8.6 Creation of libraries on Blue Gene/P
	8.7 XL runtime libraries
	8.8 Mathematical Acceleration Subsystem libraries
	8.9 Engineering and Scientific Subroutine Library libraries
	8.10 Configuring Blue Gene/P builds
	8.11 Python
	8.12 Tuning your code for Blue Gene/P
	8.12.1 Using the compiler optimization options
	8.12.2 Parallel Operations on the PowerPC 450
	8.12.3 Using single-instruction multiple-data instructions in applications

	8.13 Tips for optimizing applications

	Chapter 9. Running and debugging applications
	9.1 Running applications
	9.1.1 MMCS console
	9.1.2 mpirun
	9.1.3 submit
	9.1.4 IBM LoadLeveler
	9.1.5 Other scheduler products

	9.2 Debugging applications
	9.2.1 General debugging architecture
	9.2.2 GNU Project debugger
	9.2.3 Core Processor debugger
	9.2.4 Starting the Core Processor tool
	9.2.5 Attaching running applications
	9.2.6 Saving your information
	9.2.7 Debugging live I/O Node problems
	9.2.8 Debugging core files
	9.2.9 The addr2line utility
	9.2.10 Scalable Debug API

	Chapter 10. Checkpoint and restart support for applications
	10.1 Checkpoint and restart
	10.2 Technical overview
	10.2.1 Input/output considerations
	10.2.2 Signal considerations

	10.3 Checkpoint API
	10.4 Directory and file-naming conventions
	10.5 Restart
	10.5.1 Determining the latest consistent global checkpoint
	10.5.2 Checkpoint and restart functionality

	Chapter 11. mpirun
	11.1 mpirun implementation on Blue Gene/P
	11.1.1 mpiexec
	11.1.2 mpikill

	11.2 mpirun setup
	11.2.1 User setup
	11.2.2 System administrator set up

	11.3 Invoking mpirun
	11.4 Environment variables
	11.5 Tool-launching interface
	11.6 Return codes
	11.7 Examples
	11.8 mpirun APIs

	Chapter 12. High-Throughput Computing (HTC) paradigm
	12.1 HTC design
	12.2 Booting a partition in HTC mode
	12.3 Running a job using submit
	12.4 Checking HTC mode
	12.5 submit API
	12.6 Altering the HTC partition user list

	Part 4 Job scheduler interfaces
	Chapter 13. Control system (Bridge) APIs
	13.1 API requirements
	13.1.1 Configuring environment variables
	13.1.2 General comments

	13.2 APIs
	13.2.1 API to the Midplane Management Control System
	13.2.2 Asynchronous APIs
	13.2.3 State sequence IDs
	13.2.4 Bridge APIs return codes
	13.2.5 Blue Gene/P hardware resource APIs
	13.2.6 Partition-related APIs
	13.2.7 Job-related APIs
	13.2.8 Field specifications for the rm_get_data() and rm_set_data() APIs
	13.2.9 Object allocator APIs
	13.2.10 Object deallocator APIs
	13.2.11 Messaging APIs

	13.3 Small partition allocation
	13.3.1 Subdivided busy base partitions

	13.4 API examples
	13.4.1 Retrieving base partition information
	13.4.2 Retrieving node card information
	13.4.3 Defining a new small partition
	13.4.4 Querying a small partition

	Chapter 14. Real-time Notification APIs
	14.1 API support overview
	14.1.1 Requirements
	14.1.2 General comments

	14.2 Real-time Notification APIs
	14.3 Real-time callback functions
	14.4 Real-time elements
	14.4.1 Real-time element types
	14.4.2 Example

	14.5 Server-side filtering
	14.5.1 Pattern filter properties
	14.5.2 Filter properties
	14.5.3 Example

	14.6 Real-time Notification APIs status codes
	14.6.1 Status code specification

	14.7 Sample real-time application code

	Chapter 15. Dynamic Partition Allocator APIs
	15.1 Overview of API support
	15.2 Requirements
	15.3 API details
	15.3.1 APIs
	15.3.2 Return codes
	15.3.3 Configuring environment variables

	15.4 Sample program

	Part 5 Applications
	Chapter 16. Performance overview of engineering and scientific applications
	16.1 Blue Gene/P system from an applications perspective
	16.2 Chemistry and life sciences applications
	16.2.1 Classical molecular mechanics and molecular dynamics applications
	16.2.2 Molecular docking applications
	16.2.3 Electronic structure (Ab Initio) applications
	16.2.4 Bioinformatics applications
	16.2.5 Performance kernel benchmarks
	16.2.6 MPI point-to-point
	16.2.7 MPI collective benchmarks

	Part 6 Appendixes
	Appendix A. Blue Gene/P hardware-naming conventions
	Appendix B. Files on architectural features
	Personality of Blue Gene/P
	Example of running personality on Blue Gene/P

	Appendix C. Header files and libraries
	Blue Gene/P applications
	Resource management APIs

	Appendix D. Environment variables
	Setting environment variables
	Blue Gene/P MPI environment variables
	Compute Node Kernel environment variables

	Appendix E. Porting applications
	Appendix F. Mapping
	Appendix G. htcpartition
	Appendix H. Use of GNU profiling tool on Blue Gene/P
	Profiling with the GNU toolchain
	Timer tick (machine instruction level) profiling
	Procedure-level profiling with timer tick information
	Full level of profiling

	Additional function in the Blue Gene/P gmon support
	Enabling and disabling profiling within your application
	Collecting the gmon data as a set of program counter values
	Enabling profile data for threads in Blue Gene/P
	Enhancements to gprof in the Blue Gene/P toolchain
	Using gprof to read gmon.sample.x files
	Using gprof to merge a large number of gmon.out.x files

	Appendix I. Statement of completion
	References
	Related publications
	IBM Redbooks
	Other publications
	Online resources
	How to get IBM Redbooks
	Help from IBM

	Index
	Back cover

