
IBM XL C/C++ Advanced  Edition  for Blue  Gene, V9.0
IBM XL Fortran  Advanced  Edition  for Blue  Gene, V11.1

Using  the IBM  XL Compilers for  Blue  

Gene 

SC23-8513-00  

���





IBM XL C/C++ Advanced  Edition  for Blue  Gene, V9.0
IBM XL Fortran  Advanced  Edition  for Blue  Gene, V11.1

Using  the IBM  XL Compilers for  Blue  

Gene 

SC23-8513-00  

���



Note! 

Before using this information  and the product it supports, be sure to read the general  information  under “Notices”  on page 

51.

First  Edition  

This  edition  applies  to 

v   IBM  XL  C/C++  Advanced  Edition  for  Blue  Gene/P,  V9.0  (Program  5799-HJE)  

v   IBM  XL  C/C++  Advanced  Edition  for  Blue  Gene/L,  V9.0  (Program  5799-HJH)  

v   IBM  XL  Fortran  Advanced  Edition  for Blue  Gene/P,  V11.1  (Program  5799-HJF)  

v   IBM  XL  Fortran  Advanced  Edition  for Blue  Gene/L,  V11.1  (Program  5799-HJG)

and  to all  subsequent  releases  and  modifications  until  otherwise  indicated  in new  editions.  Make  sure  you  are  using  

the  correct  edition  for the  level  of the  product.  

© Copyright  International  Business  Machines  Corporation  2006,  2007.  All rights  reserved.  

US  Government  Users  Restricted  Rights  – Use,  duplication  or disclosure  restricted  by GSA  ADP  Schedule  Contract  

with  IBM  Corp.

 



Contents  

About this document  . . . . . . . . . v 

Who  should  read  this  document  . . . . . . . . v 

How  to use  this  document  . . . . . . . . . . v  

How  this  document  is organized   . . . . . . . v 

Conventions  used  in this  document   . . . . . . vi  

Related  information  . . . . . . . . . . . . ix 

Technical  support   . . . . . . . . . . . . xi 

How  to send  your  comments   . . . . . . . . xii  

Chapter 1. Compiling and linking 

applications for Blue Gene  . . . . . . 1 

Compiling  programs  . . . . . . . . . . . . 1  

Compiler  option  defaults  for Blue  Gene/L   . . . . 5 

-qarch=[440  | 440d]   . . . . . . . . . . . 5 

-qnoautoconfig  . . . . . . . . . . . . . 5 

-qtune=440   . . . . . . . . . . . . . . 5 

Unsupported  options  for Blue  Gene/L  . . . . . . 5 

Compiler  option  defaults  for Blue  Gene/P   . . . . 6 

-qarch=[450  | 450d]   . . . . . . . . . . . 6 

-qnoautoconfig  . . . . . . . . . . . . . 6 

-qstaticlink  (C/C++)   . . . . . . . . . . . 6 

-qtune=450   . . . . . . . . . . . . . . 6 

Unsupported  options  for Blue  Gene/P  . . . . . . 7 

Blue  Gene-specific  XL  C/C++  predefined  macros   . . 7 

Macros  related  to the  platform   . . . . . . . 7 

Macros  related  to architecture  settings   . . . . . 8 

Inline  assembly  statements  . . . . . . . . . . 8 

Chapter 2. Tuning your code for Blue 

Gene  . . . . . . . . . . . . . . . 11  

Using  the  compiler  optimization  options  . . . . . 11 

Structuring  data  in adjacent  pairs   . . . . . . . 11 

Using  vectorizable  basic  blocks  . . . . . . . . 12  

Using  inline  functions   . . . . . . . . . . . 13  

Turning off range  checking   . . . . . . . . . 13 

Removing  possibilities  for  aliasing  (C/C++)   . . . 14 

Structuring  floating-point  computations   . . . . . 15 

Checking  for  data  alignment  . . . . . . . . . 15 

Chapter 3. Using the high performance 

libraries  . . . . . . . . . . . . . . 19 

Using  the  Mathematical  Acceleration  Subsystem  

libraries  (MASS)    . . . . . . . . . . . . 19 

Using  the  scalar  library   . . . . . . . . . 19  

Using  the  vector  libraries  . . . . . . . . . 22 

Compiling  and  linking  a program  with  MASS  . . 29 

Chapter 4. Using XL builtin 

floating-point functions for Blue Gene  . 31 

Complex  type  manipulation  functions   . . . . . 35  

Load  and  store  functions   . . . . . . . . . . 36 

Move  functions   . . . . . . . . . . . . . 39 

Arithmetic  functions   . . . . . . . . . . . 39 

Unary  functions   . . . . . . . . . . . . 39 

Binary  functions  . . . . . . . . . . . . 41 

Multiply-add  functions   . . . . . . . . . 43 

Select  functions   . . . . . . . . . . . . 49 

Notices  . . . . . . . . . . . . . . 51 

Trademarks  and  service  marks   . . . . . . . . 53 

Index  . . . . . . . . . . . . . . . 55

 

© Copyright  IBM Corp. 2006, 2007 iii



iv Using  the IBM  XL Compilers  for Blue Gene



About  this  document  

The  IBM® XL  family  of  optimizing  compilers  allows  you  to  develop  C,  C++,  and  

Fortran  applications  for  the  IBM  Blue  Gene/P™ and  Blue  Gene/L™ 

supercomputers,  and  comprises  the  following  products:  

v   IBM  XL  C/C++  Advanced  Edition  for  Blue  Gene/P,  V9.0  

v   IBM  XL  C/C++  Advanced  Edition  for  Blue  Gene/L,  V9.0  

v   IBM  XL  Fortran  Advanced  Edition  for  Blue  Gene/P,  V11.1  

v   IBM  XL  Fortran  Advanced  Edition  for  Blue  Gene/L,  V11.1  

This  document  discusses  specific  considerations  for  developing,  compiling,  and  

optimizing  C/C++  and  Fortran  applications  for  the  Blue  Gene/P  PowerPC® 450  

and  Blue  Gene/L  PowerPC  440  processor  architectures  and  their  Double  Hummer  

floating-point  unit.  

Who should read this document 

This  document  is  for  anyone  who  is developing  or  cross-compiling  applications  for  

the  Blue  Gene® supercomputer  family,  is familiar  with  the  Linux® operating  

system,  and  who  has  some  previous  C,  C++,  or  Fortran  programming  experience.  

Users  new  to  the  XL  compilers  can  use  this  document  to  find  information  on  the  

capabilities  and  features  unique  to  the  Blue  Gene  version  of the  products.  

How to use this document 

This  document  is  an  add-on  to  the  documentation  suites  for  the  IBM  XL  C/C++  

Advanced  Edition  for  Linux,  V9.0  and  IBM  XL  Fortran  Advanced  Edition  for  

Linux,  V11.1  products.  It covers  only  material  that  is specific  to the  Blue  Gene  

implementation  of  the  compilers,  but  does  not  discuss  information  that  is common  

to  other  Linux  distributions.  

How this document is organized 

This  document  includes  the  following  topics:  

v   Chapter  1,  “Compiling  and  linking  applications  for  Blue  Gene”  describes  the  

commands  to  cross-compile  applications  for  Blue  Gene,  the  Blue  Gene  compiler  

option  defaults,  Blue  Gene  specific  compiler  options,  and  unsupported  compiler  

options.  

v   Chapter  2,  “Tuning  your  code  for  Blue  Gene”  describes  optimization  strategies  

that  best  exploit  the  SIMD  capabilities  of  the  Blue  Gene/P  450d  and  Blue  

Gene/L  440d  processors.  Topics  include  relevant  optimization  options,  

structuring  data  in adjacent  pairs,  inlining  functions,  aliasing,  structuring  

computations,  and  checking  for  data  alignment.  

v   Chapter  3,  “Using  the  high  performance  libraries”  describes  the  Mathematical  

Acceleration  Subsystem  (MASS)  libraries  of tuned  scalar  and  vector  functions  

available  for  Blue  Gene.  

v   Chapter  4,  “Using  XL  builtin  floating-point  functions  for  Blue  Gene”  summarizes  

the  built-in  functions  that  are  specifically  optimized  for  the  450d  and  440d  

processors'  Double  Hummer  dual  FPU.

 

© Copyright  IBM Corp. 2006, 2007 v



Conventions used in this document 

Typographical  conventions  

The  following  table  explains  the  typographical  conventions  used  in  this  document.  

 Table 1. Typographical  conventions  

Typeface  Indicates  Example  

bold  Commands,  executable  names,  

compiler  options  and  pragma  

directives  

If you  specify  -O3,  the  compiler  

assumes  -qhot=level=0. To prevent  

all HOT  optimizations  with  -O3,  you  

must  specify  -qnohot. 

italics  Parameters  or variables  whose  

actual  names  or values  are  to be 

supplied  by the  user.  Italics  are  

also  used  to introduce  new  terms  

Make  sure  that  you  update  the size  

parameter  if you  return  more  than  

the size  requested.  

monospace  Programming  keywords  and  

library  functions,  compiler  built-in  

functions,  examples  of program  

code,  command  strings,  or 

user-defined  names  

If one  or two  cases  of a switch  

statement  are  typically  executed  

much  more  frequently  than  other  

cases,  break  out  those  cases  by 

handling  them  separately  before  the 

switch  statement.  

UPPERCASE  

bold  

Fortran  programming  keywords,  

statements,  directives,  and  intrinsic  

procedures  

The  ASSERT  directive  applies  only  to 

the DO  loop  immediately  following  

the directive,  and  not  to any  nested  

DO  loops.  

lowercase  bold  Fortran  lowercase  programming  

keywords  and  library  functions,  

compiler  intrinsic  procedures,  file  

and  directory  names,  examples  of 

program  code,  command  strings,  

or  user-defined  names  

If you  specify  -O3,  the  compiler  

assumes  -qhot=level=0. To prevent  

all HOT  optimizations  with  -O3,  you  

must  specify  -qnohot.

  

Syntax  diagrams  

Throughout  this  document,  diagrams  illustrate  XL  C/C++  or  XL  Fortran  syntax.  

This  section  will  help  you  to  interpret  and  use  those  diagrams.  

v   Read  the  syntax  diagrams  from  left  to right,  from  top  to  bottom,  following  the  

path  of  the  line.  

The  ��───  symbol  indicates  the  beginning  of a command,  directive,  or  statement.  

The  ───�  symbol  indicates  that  the  command,  directive,  or  statement  syntax  is 

continued  on  the  next  line.  

The  �───  symbol  indicates  that  a command,  directive,  or  statement  is continued  

from  the  previous  line.  

The  ───��  symbol  indicates  the  end  of  a command,  directive,  or  statement.  

Fragments,  which  are  diagrams  of syntactical  units  other  than  complete  

commands,  directives,  or  statements,  start  with  the  │───  symbol  and  end  with  

the  ───│  symbol.  

IBM  XL  Fortran  extensions  are  marked  by  a number  in  the  syntax  diagram  with  

an  explanatory  note  immediately  following  the  diagram.  Program  units,  

procedures,  constructs,  interface  blocks  and  derived-type  definitions  consist  of 

 

vi Using  the IBM  XL Compilers  for Blue Gene



several  individual  statements.  For  such  items,  a box  encloses  the  syntax  

representation,  and  individual  syntax  diagrams  show  the  required  order  for  the  

equivalent  Fortran  statements.  

v   Required  items  are  shown  on  the  horizontal  line  (the  main  path):  

�� keyword required_argument ��

 

v   Optional  items  are  shown  below  the  main  path:  

�� keyword 

optional_argument
 ��

 

v   If you  can  choose  from  two  or  more  items,  they  are  shown  vertically,  in  a stack.  

If  you  must  choose  one  of the  items,  one  item  of  the  stack  is shown  on  the  main  

path.  

�� keyword required_argument1 

required_argument2
 ��

 

If  choosing  one  of the  items  is optional,  the  entire  stack  is shown  below  the  

main  path.  

�� keyword 

optional_argument1
 

optional_argument2

 ��

 

v   An  arrow  returning  to the  left  above  the  main  line  (a  repeat  arrow)  indicates  

that  you  can  make  more  than  one  choice  from  the  stacked  items  or  repeat  an  

item.  The  separator  character,  if it is other  than  a blank,  is also  indicated:  

��

 

�

 , 

keyword

 

repeatable_argument

 

��

 

v   The  item  that  is  the  default  is shown  above  the  main  path.  

��
 

keyword
 default_argument 

alternate_argument
 

��

 

v   Keywords  are  shown  in  nonitalic  letters  and  should  be  entered  exactly  as  shown.  

v   Variables  are  shown  in  italicized  lowercase  letters.  They  represent  user-supplied  

names  or  values.  

v   If punctuation  marks,  parentheses,  arithmetic  operators,  or  other  such  symbols  

are  shown,  you  must  enter  them  as  part  of  the  syntax.  

Sample  syntax  diagrams  

The  following  syntax  diagram  example  shows  the  syntax  for  the  #pragma  

comment  directive.  

 

About this document  vii



��
 (1) (2) (3) (4) (5) compiler (9) (10) 

#
 

pragma
 

comment
 

(
 

date
 

)
 

timestamp

 

(6)

 

copyright

 

user

 

(7)

 

(8)

 

,

 

"

 

token_sequence

 

"

 

��

 

Notes:   

1 This  is the  start  of the  syntax  diagram.  

2 The  symbol  # must  appear  first.  

3 The  keyword  pragma  must  appear  following  the  # symbol.  

4 The  name  of the  pragma  comment  must  appear  following  the  keyword  pragma. 

5 An  opening  parenthesis  must  be  present.  

6 The  comment  type  must  be  entered  only  as  one  of the  types  indicated:  

compiler, date, timestamp, copyright, or  user. 

7 A comma  must  appear  between  the  comment  type  copyright  or  user, and  an  

optional  character  string.  

8 A character  string  must  follow  the  comma.  The  character  string  must  be  

enclosed  in double  quotation  marks.  

9 A closing  parenthesis  is  required.  

10 This  is the  end  of the  syntax  diagram.

The  following  examples  of  the  #pragma  comment  directive  are  syntactically  correct  

according  to  the  diagram  shown  above:  

   #pragma  

   comment(date)  

   #pragma  comment(user)  

   #pragma  comment(copyright,"This  text  will  appear  in  the module")  

How  to  read  syntax  statements  

Syntax  statements  are  read  from  left  to right:  

v   Individual  required  arguments  are  shown  with  no  special  notation.  

v   When  you  must  make  a choice  between  a set  of alternatives,  they  are  enclosed  

by  { and  } symbols.  

v   Optional  arguments  are  enclosed  by  [ and  ] symbols.  

v   When  you  can  select  from  a group  of choices,  they  are  separated  by  | characters.  

v   Arguments  that  you  can  repeat  are  followed  by  ellipses  (...).

Example  of  a syntax  statement  

EXAMPLE  char_constant  {a|b}[c|d]e[,e]...  name_list{name_list}...  

The  following  list  explains  the  syntax  statement:  

v   Enter  the  keyword  EXAMPLE.  

v   Enter  a value  for  char_constant. 

v   Enter  a value  for  a or  b,  but  not  for  both.  

v   Optionally,  enter  a value  for  c or  d.  

v   Enter  at  least  one  value  for  e. If you  enter  more  than  one  value,  you  must  put  a 

comma  between  each.  

v   Optionally,  enter  the  value  of at least  one  name  for  name_list. If you  enter  more  

than  one  value,  you  must  put  a comma  between  each  name.

 

viii Using the IBM XL Compilers  for Blue Gene



Note:   The  same  example  is used  in  both  the  syntax-statement  and  syntax-diagram  

representations.

Examples  

The  examples  in  this  document,  except  where  otherwise  noted,  are  coded  in a 

simple  style  that  does  not  try  to  conserve  storage,  check  for  errors,  achieve  fast  

performance,  or  demonstrate  all  possible  methods  to achieve  a specific  result.  

Notes  on  path  names  

The  path  names  shown  in  this  document  assume  the  default  installation  path  for  

the  XL  C/C++  or  XL  Fortran  compiler.  By  default,  the  compiler  will  be  installed  in  

the  following  directory  on  the  selected  disk:  

XL  C/C++  /opt/ibmcmp/vacpp/bg/9.0/  

XL  Fortran  /opt/ibmcmp/xlf/bg/11.1/

You  can  select  a different  destination  (relocation-path)  for  the  compiler.  If you  

choose  a different  path,  the  compiler  will  be  installed  in  the  following  directory:  

XL  C/C++  relocation-path/opt/ibmcmp/vacpp/bg/9.0/  

XL  Fortran  relocation-path/opt/ibmcmp/xlf/bg/11.1/

Related information 

IBM  XL  C/C++  and  XL  Fortran  documentation  

Product  documentation  is provided  in  the  following  formats:  

v   README  files  

README  files  contain  late-breaking  information,  including  changes  and  

corrections  to  the  product  documentation.  README  files  are  located  in  the  root  

directory  of  the  installation  CD  and  by  default  in  the  following  directory:  

XL  C/C++  /opt/ibmcmp/vacpp/bg/9.0/  

XL  Fortran  /opt/ibmcmp/xlf/bg/11.1/

v    Installable  man  pages  

Man  pages  are  provided  for  the  compiler  invocations  and  all  command-line  

utilities  provided  with  the  product.  Instructions  for  installing  and  accessing  the  

man  pages  are  provided  in  the  XL  C/C++  Advanced  Edition  for  Blue  Gene,  V9.0  

Installation  Guide  and  XL  Fortran  Advanced  Edition  for  Blue  Gene,  V11.1  Installation  

Guide. 

v   Information  center  

The  information  center  of searchable  HTML  files  is  viewable  on  the  Web at  

http://publib.boulder.ibm.com/infocenter/compbgpl/v9v111/index.jsp.  

v   PDF  documents  

PDF  documents  are  located  by  default  in  the  following  directory:  

XL  C/C++  /opt/ibmcmp/vacpp/bg/9.0/doc/en_US/pdf  

XL  Fortran  /opt/ibmcmp/xlf/bg/11.1/doc/en_US/pdf

These  are  also  available  on  the  Web at:  

 

About  this document  ix

http://publib.boulder.ibm.com/infocenter/compbgpl/v9v111/index.jsp


http://www.ibm.com/software/awdtools/xlcpp/library  

  

and  

  

http://www.ibm.com/software/awdtools/fortran/xlfortran/library  

In  addition  to  this  document,  the  following  documents  comprise  the  full  set  of 

PDF  files  shipped  with  this  product.  The  IBM  XL  C/C++  Advanced  Edition  for  

Linux,  V9.0  and  IBM  XL  Fortran  Advanced  Edition  for  Linux,  V11.1  PDF  files  

are  included  as  additional  references  to  complement  the  topics  not  covered  in 

the  Blue  Gene  specific  documents.  

 Table 2. PDF  files  shipped  with  IBM  XL C/C++  Advanced  Edition  for Blue  Gene/L,  V9.0  

Document  title  

PDF  file  

name  Description  

IBM  XL  C/C++  Advanced  

Edition  for Blue  Gene,  V9.0  

Installation  Guide, 

GC23-8514-00  

install.pdf  Contains  information  for installing  XL C/C++  

for Blue  Gene  and  configuring  your  

environment  for basic  compilation  and  program  

execution.  

IBM  XL  C/C++  Advanced  

Edition  for Linux,  V9.0  

Getting  Started  with  XL  

C/C++, SC23-5891-00  

getstart.pdf  Contains  an introduction  to theXL  C/C++  for 

Linux  product,  with  information  on setting  up  

and  configuring  your  environment,  compiling  

and  linking  programs,  and  troubleshooting  

compilation  errors.  

IBM  XL  C/C++  Advanced  

Edition  for Linux,  V9.0  

Compiler  Reference, 

SC23-5889-00  

compiler.pdf  Contains  information  about  the various  

compiler  options,  pragmas,  macros,  

environment  variables,  and  built-in  functions,  

including  those  used  for parallel  processing.  

IBM  XL  C/C++  Advanced  

Edition  for Linux,  V9.0  

Language  Reference, 

SC23-5894-00  

language.pdf  Contains  information  about  the C and  C++  

programming  languages,  as supported  by  IBM,  

including  language  extensions  for portability  

and  conformance  to non-proprietary  standards.  

IBM  XL  C/C++  Advanced  

Edition  for Linux,  V9.0  

Programming  Guide, 

SC23-5890-00  

proguide.pdf  Contains  information  on advanced  

programming  topics,  such  as application  

porting,  interlanguage  calls  with  Fortran  code,  

library  development,  application  optimization  

and  parallelization,  and  the  XL C/C++  for  

Linux  high-performance  libraries.
  

  Table 3. PDF  files  shipped  with  IBM  XL Fortran  Advanced  Edition  for Blue  Gene/L,  V11.1 

Document  title  

PDF  file  

name  Description  

IBM  XL  Fortran  Advanced  

Edition  for Blue  Gene,  V11.1 

Installation  Guide, 

GC23-8515-00  

install.pdf  Contains  information  for installing  XL Fortran  

for Blue  Gene  and  configuring  your  

environment  for basic  compilation  and  program  

execution.  

IBM  XL  Fortran  Advanced  

Edition  for Linux,  V11.1  

Getting  Started  with  XL  

Fortran, SC23-5897-00  

getstart.pdf  Contains  an introduction  to the  XL Fortran  for 

Linux  product,  with  information  on setting  up  

and  configuring  your  environment,  compiling  

and  linking  programs,  and  troubleshooting  

compilation  errors.  

IBM  XL  Fortran  Advanced  

Edition  for Linux,  V11.1  

Compiler  Reference, 

SC23-5895-00  

cr.pdf  Contains  information  about  the various  

compiler  options  and  environment  variables.  

 

x Using the IBM XL Compilers  for Blue Gene

http://www.ibm.com/software/awdtools/xlcpp/library
http://www.ibm.com/software/awdtools/fortran/xlfortran/library


Table 3. PDF  files  shipped  with  IBM  XL  Fortran  Advanced  Edition  for  Blue  Gene/L,  

V11.1 (continued)  

Document  title  

PDF  file  

name  Description  

IBM  XL  Fortran  Advanced  

Edition  for Linux,  V11.1  

Language  Reference, 

SC23-5894-00  

lr.pdf  Contains  information  about  the Fortran  

programming  language  as supported  by IBM,  

including  language  extensions  for portability  

and  conformance  to non-proprietary  standards,  

compiler  directives  and  intrinsic  procedures.  

IBM  XL  Fortran  Advanced  

Edition  for Linux,  V11.1  

Optimization  and  

Programming  Guide, 

SC23-5898-00  

opg.pdf  Contains  information  on advanced  

programming  topics,  such  as application  

porting,  interlanguage  calls,  floating-point  

operations,  input/output,  application  

optimization  and  parallelization,  and  the XL  

Fortran  high-performance  libraries.
  

More  documentation  related  to the  compilers,  including  red  books,  white  papers,  

tutorials,  and  other  articles,  is available  on  the  Web at:  

http://www.ibm.com/software/awdtools/xlcpp/library  

  

and  

  

http://www.ibm.com/software/awdtools/fortran/xlfortran/library  

Other  IBM  publications  

The  following  publications  are  available  from  the  IBM  Redbooks® site  at  URL  

http://www.redbooks.ibm.com:  

v   Unfolding  the  IBM  eServer™ Blue  Gene  Solution, SG24-6686  

v   Blue  Gene/L:  Application  Development, SG24-7179

You  can  search  for, view, or  download  Redbooks,  Redpapers,  Hints  and  Tips,  draft  

publications,  and  additional  materials  from  this  site.  

Blue  Gene  literature,  such  as white  papers,  is also  available  at 

http://www.ibm.com/servers/deepcomputing/bluegene_literature.html  

Technical  support 

Additional  technical  support  is available  from  the  XL  C/C++  or  XL  Fortran  

Support  page.  This  page  provides  a portal  with  search  capabilities  to  a selection  of  

Technotes  (technical  notes)  and  other  support  documents.  You can  find  the  Support  

page  on  the  Web at:  

http://www.ibm.com/software/awdtools/xlcpp/support  

  

or 

  

http://www.ibm.com/software/awdtools/fortran/xlfortran/support  

For  the  latest  information  about  XL  C/C++  or  XL  Fortran,  visit  the  product  

information  site  at:  

  

http://www.ibm.com/software/awdtools/xlcpp  

 

 

About  this document  xi

http://www.ibm.com/software/awdtools/xlcpp/library
http://www.ibm.com/software/awdtools/fortran/xlfortran/library
http://www.redbooks.ibm.com
http://www.ibm.com/servers/deepcomputing/bluegene_literature.html
http://www.ibm.com/software/awdtools/xlcpp/support
http://www.ibm.com/software/awdtools/fortran/xlfortran/support
http://www.ibm.com/software/awdtools/xlcpp


or 

  

http://www.ibm.com/software/awdtools/fortran/xlfortran  

How to send your comments 

Your feedback  is important  in  helping  to  provide  accurate  and  high-quality  

information.  If  you  have  any  comments  about  this  document  or  any  other  XL  

C/C++  or  XL  Fortran  documentation,  send  your  comments  by  e-mail  to:  

compinfo@ca.ibm.com  

Be  sure  to  include  the  name  of the  document,  the  part  number  of the  document,  

the  version  of  the  product,  and,  if applicable,  the  specific  location  of the  text  you  

are  commenting  on  (for  example,  a page  number  or  table  number).  

 

xii Using the IBM XL Compilers  for Blue Gene

http://www.ibm.com/software/awdtools/fortran/xlfortran


Chapter  1.  Compiling  and  linking  applications  for  Blue  Gene  

This  section  contains  information  about  compiling  and  linking  applications  that  

will  run on  a Blue  Gene/P  or  Blue  Gene/L  supercomputer.  

For  complete  information  about  compiler  and  linker  options,  refer  to the  following,  

additional  documents:  

v   XL  C/C++  Advanced  Edition  for  Linux,  V9.0  Getting  Started  with  XL  C/C++  

v   XL  C/C++  Advanced  Edition  for  Linux,  V9.0  Compiler  Reference
v    XL  Fortran  Advanced  Edition  for  Linux,  V11.1  Getting  Started  with  XL  Fortran  

v   XL  Fortran  Advanced  Edition  for  Linux,  V11.1  Compiler  Reference

Compiling programs 

To compile  a source  program,  use  any  of  the  available  XL  C/C++  or  XL  Fortran  for  

Blue  Gene  compiler  invocation  commands.  The  compiler  commands  prefixed  with  

blrts_  or  bg  on  the  SLES  9 platform  are  for  cross-compiling  applications  for  use  on  

the  Blue  Gene/L  computer.  The  bg-prefixed  and  bg*_r  commands  on  the  SLES  10  

platform  are  for  cross-compiling  applications  for  use  on  the  Blue  Gene/P  

computer.  The  compiler  invocations  that  are  not  prefixed  with  blrts_  or  bg  create  

executables  targeted  for  the  SLES  10  platform,  and  are  provided  only  for  testing  

and  debugging  purposes.  For  the  development  of applications  targeted  for  the  

SLES  10  platform,  IBM  provides  the  IBM  XL  C/C++  Advanced  Edition  for  Linux,  

V9.0  and  IBM  XL  Fortran  Advanced  Edition  for  Linux,  V11.1  products.  As  well,  

only  the  compiler  options  which  are  supported  by  the  blrts_  or  bg  cross-compiler  

commands  are  supported  when  using  these  compiler  invocations  to  create  

executables  for  the  Blue  Gene  platform.  

These  commands  use  the  following  syntax,  where  invocation  can  be  replaced  with  

any  valid  compiler  invocation  command:  

��

 

invocation

 

�

 

command_line_options

 

input_files

 

��

 

The  parameters  of  the  compiler  invocation  command  can  be  the  names  of  input  

files,  compiler  options,  and  linkage-editor  options.  These  commands  accept  

essentially  the  same  XL  C/C++  or  XL  Fortran  language  but  use  different  default  

options.  Read  the  appropriate  vac.cfg  or  xlf.cfg  configuration  file  to  see  which  

option  defaults  are  used:  

Compiler  Configuration  file  

XL  C/C++  /etc/opt/ibmcmp/vac/bg/9.0/vac.cfg  

XL  Fortran  /etc/opt/ibmcmp/xlf/bg/11.1/xlf.cfg

Different  forms  of  the  XL  compiler  invocation  commands  support  various  levels  of  

the  C,  C++,  and  Fortran  languages.  These  compiler  invocation  commands  are  

summarized  in  Table  4 on  page  2,  Table 5 on  page  3, Table 6 on  page  3, and  Table 7 

on  page  4. 

Note:   For  Blue  Gene/P  commands,  the  _r-suffixed  invocations  allow  for  threadsafe  

compilation  and  you  can  use  them  to link  the  programs  that  use  

 

© Copyright  IBM Corp. 2006, 2007 1



multithreading.  Use  these  commands  if you  want  to  create  threaded  

applications.  The  -qsmp  option  must  only  be  used  together  with  threadsafe  

compiler  invocation  modes.  

 Table 4. XL C/C++  cross-compiler  invocations  for  Blue  Gene/L  

Invocation  Funtionality  

blrts_xlC
bgxlC
blrts_xlc++
bgxlc++  

Source  files  are  compiled  as C++  language  source  code.  If any  of your  source  

files  are  C++,  you  must  use  this  invocation  to link  with  the correct  runtime  

libraries.  Source  files  are  compiled  with  -qalias=ansi  set.  

Files  with  .c suffixes,  assuming  you  have  not  used  the -+ or -qsourcetype  

compiler  option  . 

blrts_xlc
bgxlc  

Invokes  the compiler  for C source  files.  The  following  compiler  options  are  

implied  with  this  invocation:  

v   -qlanglvl=extc99  

v   -qalias=ansi  

v   -qcpluscmt  

v   -qkeyword=inline  

blrts_cc
bgcc  

Invokes  the compiler  for C source  files.  The  following  compiler  options  are  

implied  with  this  invocation:  

v   -qlanglvl=extended  

v   -qnoro  

v   -qnoroconst  

blrts_c99
bgc99  

Invokes  the compiler  for C source  files,  with  support  for ISO  C99  language  

features.  Full ISO  C99  (ISO/IEC  9899:1999)  conformance  requires  the  presence  

of C99-compliant  header  files  and  runtime  libraries.  The  following  compiler  

options  are  implied  with  this  invocation:  

v   -qlanglvl=stdc99  

v   -qalias=ansi  

v   -qstrict_induction  

v   -D_ANSI_C_SOURCE  

v   -D_ISOC99_SOURCE  

v   -D__STRICT_ANSI__  

blrts_c89
bgc89  

Invokes  the compiler  for C source  files,  with  support  for ISO  C89  language  

features.  The  following  options  are  implied  with  this  invocation:  

v   -qalias=ansi  

v   -qstrict_induction  

v   -qnolonglong  

v   -D_ANSI_C_SOURCE  

v   -D__STRICT_ANSI__

Use  this  invocation  for strict  conformance  to  the ANSI  standard  (ISO/IEC  

9899:1990).

 

 

2 Using the IBM XL Compilers  for Blue Gene



Table 5. XL  C/C++  cross-compiler  invocations  for Blue  Gene/P  

Invocation  Funtionality  

bgxlC
bgxlC_r
bgxlc++
bgxlc++_r  

Source  files  are  compiled  as C++  language  source  code.  If any  of your  source  

files  are  C++,  you  must  use this  invocation  to link  with  the  correct  runtime  

libraries.  Source  files  are  compiled  with  -qalias=ansi  set.  

Files  with  .c suffixes,  assuming  you  have  not  used  the  -+ or -qsourcetype  

compiler  option  . 

bgxlc
bgxlc_r  

Invokes  the  compiler  for  C source  files.  The  following  compiler  options  are  

implied  with  this  invocation:  

v   -qlanglvl=stdc89  

v   -qalias=ansi  

v   -qcpluscmt  

v   -qkeyword=inline  

bgcc
bgcc_r  

Invokes  the  compiler  for  C source  files.  The  following  compiler  options  are  

implied  with  this  invocation:  

v   -qlanglvl=extended  

v   -qnoro  

v   -qnoroconst  

bgc99
bgc99_r  

Invokes  the  compiler  for  C source  files,  with  support  for  ISO  C99  language  

features.  Full  ISO  C99  (ISO/IEC  9899:1999)  conformance  requires  the  presence  

of C99-compliant  header  files  and  runtime  libraries.  The  following  compiler  

options  are  implied  with  this  invocation:  

v   -qlanglvl=stdc99  

v   -qalias=ansi  

v   -qstrict_induction  

v   -D_ANSI_C_SOURCE  

v   -D_ISOC99_SOURCE  

v   -D__STRICT_ANSI__  

bgc89
bgc89_r  

Invokes  the  compiler  for  C source  files,  with  support  for  ISO  C89  language  

features.  The  following  options  are  implied  with  this  invocation:  

v   -qalias=ansi  

v   -qstrict_induction  

v   -qnolonglong  

v   -D_ANSI_C_SOURCE  

v   -D__STRICT_ANSI__

Use  this  invocation  for strict  conformance  to the  ANSI  standard  (ISO/IEC  

9899:1990).

  

 Table 6. XL  Fortran  cross-compiler  invocations  for Blue  Gene/L  

Invocation  Funtionality  

blrts_xlf  

bgxlf
blrts_fort77  

bgfort77
blrts_f77  

bgf77  

Makes  programs  conform  more  closely  to the FORTRAN  77 standard.  

 

Chapter  1. Compiling  and linking  applications  for Blue Gene 3



Table 6. XL Fortran  cross-compiler  invocations  for Blue  Gene/L  (continued)  

Invocation  Funtionality  

blrts_xlf90  

bgxlf90  

blrts_f90
bgf90  

Makes  programs  conform  more  closely  to the  Fortran  90 standard.  

For  full  conformance,  compile  with  any  of the  following  additional  compiler  

options  or suboptions:  

-qnodirective  -qnoescape  -qextname  -qfloat=nomaf:nofold  -qnoswapomp  

-qlanglvl=90std  

blrts_xlf95
bgxlf95  

blrts_f95
bgf95  

Makes  programs  conform  more  closely  to the  Fortran  95 standard.  

For  full  conformance,  compile  with  any  of the  following  additional  compiler  

options  or suboptions:  

-qnodirective  -qnoescape  -qextname  -qfloat=nomaf:nofold  -qnoswapomp  

-qlanglvl=95std  

blrts_xlf2003
bgxlf2003  

blrts_f2003
bgf2003  

Makes  programs  conform  more  closely  to the  Fortran  2003  standard.  

For  full  conformance,  compile  with  the  following  additional  compiler  

options  or suboptions:  

-qlanglvl=2003std  -qnodirective  -qnoescape  -qextname  

-qfloat=nomaf:rndsngl:nofold  -qnoswapomp  -qstrictieeemod  

  

 Table 7. XL Fortran  cross-compiler  invocations  for Blue  Gene/P  

Invocation  Funtionality  

bgxlf
bgxlf_r
bgf77
bgfort77  

Makes  programs  conform  more  closely  to the  FORTRAN  77 standard.  

bgxlf90  

bgxlf90_r
bgf90  

Makes  programs  conform  more  closely  to the  Fortran  90 standard.  

For  full  conformance,  compile  with  any  of the  following  additional  compiler  

options  or suboptions:  

-qnodirective  -qnoescape  -qextname  -qfloat=nomaf:nofold  -qnoswapomp  

-qlanglvl=90std  

bgxlf95  

bgxlf95_r  

bgf95  

Makes  programs  conform  more  closely  to the  Fortran  95 standard.  

For  full  conformance,  compile  with  any  of the  following  additional  compiler  

options  or suboptions:  

-qnodirective  -qnoescape  -qextname  -qfloat=nomaf:nofold  -qnoswapomp  

-qlanglvl=95std  

bgxlf2003  

bgxlf2003_r
bgf2003  

Makes  programs  conform  more  closely  to the  Fortran  2003  standard.  

For  full  conformance,  compile  with  the  following  additional  compiler  options  

or suboptions:  

-qlanglvl=2003std  -qnodirective  -qnoescape  -qextname  

-qfloat=nomaf:rndsngl:nofold  -qnoswapomp  -qstrictieeemod  

 

 

4 Using the IBM XL Compilers  for Blue Gene



Compiler option defaults for Blue Gene/L 

Compilations  most  commonly  occur  on  the  Front  End  Node.  The  resulting  

program  can  run on  Blue  Gene/L  system  without  manually  copying  the  executable  

to  the  Service  Node.  See  the  “Running  Applications”  topic  in  section  5.1  of  the  Blue  

Gene/L  Application  Development  document  to  learn  how  to run programs  on  Blue  

Gene/L.  

The  blrts_*  compiler  invocation  commands,  or  their  bg*  equivalents,  set  certain  

default  compiler  options  to  maximize  the  use  of  the  Blue  Gene/L  architecture.  

-qarch=[440 | 440d] 

Arguments 

Specifies  which  instructions  the  compiler  can  generate.  Suboptions  include:  

440  

Generates  code  for  the  single  floating-point  unit  (FPU)  only.  

440d  

Generates  parallel  instructions  for  the  440d  Double  Hummer  dual  FPU.  This  is 

the  default.  Note  that  if you  encounter  problems  with  code  generation,  try  

resetting  this  option  to  -qarch=440.

Note:   Since  the  Double  Hummer  FPU  does  not  generate  exceptions,  

-qnoflttrap  is enabled  by  default.  If you  specify  both  -qflttrap  and  

-qarch=440d, the  compiler  ignores  the  -qflttrap  setting.  You must  specify  

-qarch=440  if you  want  to use  -qflttrap.

-qnoautoconfig 

Prevents  optimization  levels  -O4  and  -O5  from  resetting  the  -qarch  setting  to  auto, 

thereby  preserving  the  -qarch  setting  for  the  target  architecture.  This  allows  for  

cross-compilation  to  other  architectures,  such  as Blue  Gene.  

-qtune=440 

Optimizes  code  for  the  440  family  of  processors.  This  is the  default  for  -qarch=440  

and  -qarch=440d. 

Unsupported options for Blue Gene/L 

The  following  compiler  options  are  not  supported  by  the  Blue  Gene/L  hardware  

and  should  not  be  used:  

-qsmp  This  option  requires  shared  memory  parallelism,  which  is  not  used  by  the  

Blue  Gene/L.  

-qpdf,  -qshowpdf  

The  XL  C/C++  and  XL  Fortran  compilers  do  not  fully  support  tuning  

optimizations  through  profile-directed  feedback  (PDF)  for  Blue  Gene/L.  

options  specifying  64-bit  mode  

Blue  Gene/L  uses  a 32-bit  architecture.  You cannot  compile  in  64-bit  mode.  

-q64, -qwarn64, and  all  other  options  that  apply  to 64-bit  mode  are  

unsupported.  

-qaltivec  (C/C++)  

The  440  processor  does  not  support  VMX  instructions  or  vector  data  types.  

 

Chapter  1. Compiling  and linking  applications  for Blue Gene 5



-qenablevmx  

The  440  processor  does  not  support  VMX  instructions  or  vector  data  types.  

-qpic  This  option  controls  the  selection  of  TOC  size  for  Position  Independent  

Code.  PIC  code  is used  for  shared/dynamic  libraries,  which  are  not  

supported  on  Blue  Gene/L.  

-qmkshrobj  (C/C++)  

This  option  creates  a shared  library  object.  Shared  libraries  are  not  

supported  on  Blue  Gene/L.

Compiler option defaults for Blue Gene/P 

Compilations  most  commonly  occur  on  the  Front  End  Node.  The  resulting  

program  can  run on  the  Blue  Gene/P  system  without  manually  copying  the  

executable  to  the  Service  Node.  

The  bg*  and  bg*_r  compiler  invocation  commands  set  certain  default  compiler  

options  to  maximize  the  use  of  the  Blue  Gene/P  architecture.  

-qarch=[450 | 450d] 

Arguments 

Specifies  which  instructions  the  compiler  can  generate.  Suboptions  include:  

450  

Generates  code  for  the  single  floating-point  unit  (FPU)  only.  This  option  avoids  

SIMD  instructions  being  generated.  

450d  

Generates  parallel  instructions  for  the  450d  Double  Hummer  dual  FPU.  This  is 

the  default.  Note  that  if you  encounter  problems  with  code  generation,  try  

resetting  this  option  to -qarch=450.

Note:   Since  the  Double  Hummer  FPU  does  not  generate  exceptions,  

-qnoflttrap  is enabled  by  default.  If you  specify  both  -qflttrap  and  

-qarch=450d, the  compiler  ignores  the  -qflttrap  setting.  You must  specify  

-qarch=450  if you  want  to use  -qflttrap.

-qnoautoconfig 

Prevents  optimization  levels  -O4  and  -O5  from  resetting  the  -qarch  setting  to  auto, 

thereby  preserving  the  -qarch  setting  for  the  target  architecture.  This  allows  for  

cross-compilation  to  other  architectures,  such  as  Blue  Gene.  

-qstaticlink (C/C++) 

Although  shared  libraries  are  supported  on  the  Blue  Gene/P  platform,  note  that  

-qstaticlink  and  -qstaticlink=libgcc  are  enabled  by  default.  To use  shared  libraries,  

you  must  set  the  -qnostaticlink  or  -qnostaticlink=libgcc  option.  

-qtune=450 

Optimizes  code  for  the  450  family  of  processors.  This  is the  default  for  -qarch=450, 

-qarch=450d  , or  when  no  -qarch  or -qtune  settings  are  specified  and  the  bg  

prefixed  commands  are  used..  

 

6 Using the IBM XL Compilers  for Blue Gene



Unsupported options for Blue Gene/P 

The  following  compiler  options  are  not  supported  by  the  Blue  Gene/P  hardware  

and  should  not  be  used:  

-qpdf,  -qshowpdf  

The  XL  C/C++  and  XL  Fortran  compilers  do  not  fully  support  tuning  

optimizations  through  profile-directed  feedback  (PDF)  for  Blue  Gene/P.  

options  specifying  64-bit  mode  

Blue  Gene/P  uses  a 32-bit  architecture.  You cannot  compile  in  64-bit  mode.  

-q64, -qwarn64, and  all  other  options  that  apply  to 64-bit  mode  are  

unsupported.  

-qaltivec  (C/C++)  

The  450  processor  does  not  support  VMX  instructions  or  vector  data  types.  

-qenablevmx  

The  450  processor  does  not  support  VMX  instructions  or  vector  data  types.

Blue Gene-specific XL C/C++ predefined macros 

Predefined  macros  can  be  used  to  conditionally  compile  code  for  specific  

compilers,  specific  versions  of  compilers,  specific  environments  and/or  specific  

language  features.  

This  section  lists  the  Blue  Gene-specific  XL  C/C++  predefined  macros  for  the  

following  categories:  

v   “Macros  related  to  the  platform”  

v   “Macros  related  to  architecture  settings”  on  page  8

See  the  Compiler  predefined  macros  section  in  the  XL  C/C++  Advanced  Edition  for  

Linux,  V9.0  Compiler  Reference  for  a list  of  other  XL  C/C++  predefined  macros.  

Macros related to the platform 

The  following  predefined  macros  are  provided  to  facilitate  porting  applications  

between  platforms.  All  platform-related  predefined  macros  are  unprotected  and  

may  be  undefined  or  redefined  without  warning  unless  otherwise  specified.  

 Table 8. Platform-related  predefined  macros  

Predefined  macro  

name  Description  Predefined  value  

Predefined  under  the 

following  conditions  

__bg__  Indicates  that  this  is a Blue  Gene  

platform.  

1 Always  predefined  for all 

Blue  Gene  platforms.  

__bgp__  Indicates  that  the  architecture  is PowerPC  

450.  

1 Predefined  when  the 

architecture  is PowerPC  450.  

__blrts,  __blrts__  Indicates  that  the  architecture  is PowerPC  

440.  

1 Predefined  when  the 

architecture  is PowerPC  440.  

__THW_BLUEGENE__  Indicates  that  the  target  architecture  is 

Blue  Gene.  

1 Predefined  when  the target  

is Blue  Gene.  

__TOS_BGP__  Indicates  that  the  target  architecture  is 

PowerPC  450.  

1 Predefined  when  the target  

is PowerPC  450.  

__TOS_BLRTS__  Indicates  that  the  target  architecture  is 

PowerPC  440.  

1 Predefined  when  the target  

is PowerPC  440.
 

 

Chapter  1. Compiling  and linking  applications  for Blue Gene 7



Macros related to architecture settings 

The  following  macros  can  be  tested  for  target  architecture  settings.  All  of these  

macros  are  predefined  to  a value  of  1 by  a -qarch  compiler  option  setting,  or  any  

other  compiler  option  that  implies  that  setting.  If the  -qarch  suboption  enabling  the  

feature  is not  in  effect,  then  the  macro  is not  defined.  

 Table 9. -qarch-related  macros  

Macro  name  Description  

Predefined  by  the following  -qarch  

suboptions  

_ARCH_440  Indicates  that  the  application  is targeted  

to run  on  a PowerPC  440 processor.  

440,  440d, 450d  

_ARCH_440D  Indicates  that  the  application  is targeted  

to run  on  a PowerPC  440 processor.  

440d, 450d  

_ARCH_450  Indicates  that  the  application  is targeted  

to run  on  a PowerPC  450 processor.  

450,  450d  

_ARCH_450D  Indicates  that  the  application  is targeted  

to run  on  a PowerPC  450 processor.  

450d

  

Inline assembly statements 

This  section  lists  the  constraints  that  apply  to  the  Blue  Gene  platform  for  the  asm  

keyword.  These  constraints  address  the  handling  of floating  point  instructions  

mainly  for  complex  arithmetic.  

The  Blue  Gene  platform  provides  two  parallel  arithmetic  pipes,  with  each  pipe  

having  its  own  floating  point  register  (FPR)  files.  The  primary  FPR  file  corresponds  

with  that  defined  in the  PowerPC  architecture;  each  primary  FPR  has  a 

corresponding  secondary  FPR  that  is also  64-bits  wide.  The  imaginary  portion  of  

the  complex  number  is often  kept  in  the  secondary  FPR  (FPRs)  and  the  real  portion  

is kept  in the  corresponding  primary  FPR  (FPRp).  Complex  operands  are  typically  

accessed  in  pairs,  one  primary  and  one  secondary.  

The  constraint  syntax  is as  follows:  

XL:parameter:  ...  :parameter  

Multiple  letter  constraint  followed  by  : and  then  the  parameter  letters.  

The  operand  that  has  the  constraint  XL  cannot  have  any  other  constraint  except  the  

parameter  constraints,  listed  below.  The  XL  constraint  must  be  the  only  constraint  

for  the  operand.  The  parameters  defined  for  the  XL  constraint  must  be  used  with  

the  XL:  prefix.  

The  following  constraints  apply  as parameters  to  the  XL  constraint:  

RP  FPR  register  pair  constraint  for  two  operands.  

 When  this  constraint  is specified  on  an  operand,  a pair  of  registers  

(FPRp,  FPRs)  will  be  allocated  for  this  operand  and  the  operand  

that  follows  it.  The  register  pair  constraint  cannot  be  used  as  the  

last  operand  in  the  asm  statement.  

XP  Cross  FPR  pair  constraint  for  two  operands.  

 This  contraint  is similar  to the  RP  constraint,  except  that  the  register  

pair  is allocated  as  (FPRs,  FPRp).  

 

8 Using the IBM XL Compilers  for Blue Gene



p  Primary  FPR  constraint  for  32/64  bit  floating  point  operand.  

 This  is  equivalent  to  the  f constraint.  A primary  FPR  is allocated  

for  the  operand.  

s Secondary  FPR  constraint  for  32/64  bit  floating  point  operand.  

 A  secondary  FPR  is allocated  for  the  operand.  

CP  FPR  pair  constraint  for  operand  of  the  complex  types.  

 The  operand  must  be  of  any  valid  32-  or  64-bit  complex  type.  A  

register  pair  (FPRp,  FPRs)  is allocated  for  the  complex  operand,  

one  to  hold  the  real  portion  and  the  other  to  hold  the  imaginary  

portion.  

XCP  Cross  FPR  pair  constraint  for  operand  of the  complex  types.  

 This  is  similar  to the  CP  constraint,  except  that  the  register  pair  is  

allocated  as  (FPRs,  FPRp).

C/C++  only:   The  C99  complex  data  type  is not  supported  on  Blue  Gene,  by  

default.  To turn  on  C99  complex  data  type  support,  specify  the  

-qlanglvl=gnu_complex  option.  

For  clobbers,  f0 to  f63  correspond  to  the  Blue  Gene  floating  point  registers.  

See  the  -qasm  option  in  the  XL  C/C++  Advanced  Edition  for  Linux,  V9.0  Compiler  

Reference,  as  well.  

 

Chapter  1. Compiling  and linking  applications  for Blue Gene 9



10 Using the IBM XL Compilers  for Blue Gene



Chapter  2.  Tuning  your  code  for  Blue  Gene  

The  following  sections  describe  strategies  that  you  can  use  to  best  exploit  the  

single-instruction-multiple-data  (SIMD)  capabilities  of the  Blue  Gene/L  440d  or  

Blue  Gene/P  450d  processor  and  the  XL  compilers’  advanced  instruction  

scheduling  and  register  allocation  algorithms.  

Using the compiler optimization options 

The  -O3  compiler  option  provides  a high  level  of  optimization  and  automatically  

sets  other  compiler  options.  For  example,  the  -qfloat=rsqrt  and  -qmaxmem=1  

options  are  set  by  default  with  -O3, unless  -qstrict  is  specified.  Specifying  -O3  

implies  -qhot=level=0, unless  you  explicitly  specify  -qhot  or  -qhot=level=1  option.  

-O3  also  sets  -qfloat=norngchk  by  default,  which  turns  off  range  checking  on  

input  arguments  for  software  divide  and  inlined  square-root  operations.  

The  -qhot=simd  option  enables  SIMD  vectorization  of loops,  and  is enabled  by 

default  if you  use  -O4, -O5, or  -qhot  . 

The  -O5  option  provides  maximum  optimization  opportunities  at both  compile  and  

link  time.  For  maximum  optimization  at  compile  time  only,  the  -O3  option  is 

recommended.  

For  more  information  on  optimization  options,  see  Optimizing  your  applications  in 

the  XL  C/C++  Advanced  Edition  for  Linux,  V9.0  Programming  Guide  and  Optimizing  

XL  compiler  applications  in  the  XL  Fortran  Advanced  Edition  for  Linux,  V11.1  

Optimization  and  Programming  Guide. 

Structuring data in adjacent pairs 

The  Blue  Gene/L  440d  or  Blue  Gene/P  450d  processor’s  dual  FPU  includes  special  

instructions  for  parallel  computations.  The  compiler  tries  to  pair  adjacent  

double-precision  floating  point  values,  to  operate  on  them  in  parallel.  Therefore,  

you  can  speed  up  computations  by  defining  data  objects  that  occupy  adjacent  

memory  blocks  and  are  naturally  aligned.  These  include  arrays  or  structures  of  

floating-point  values  and  complex  data  types.  

Whether  you  use  an  array,  a structure,  or a complex  scalar, the  compiler  searches  

for  sequential  pairs  of data  for  which  it can  generate  parallel  instructions.  For  

example,  the  C  code  in  Figure  1 on  page  12  allows  each  pair  of  elements  in a 

structure  to  be  operated  on  in  parallel.  

 

 

© Copyright  IBM Corp. 2006, 2007 11



The  advantage  of  using  complex  types  in  arithmetic  operations  is that  the  compiler  

automatically  uses  parallel  add,  subtract,  and  multiply  instructions  when  complex  

types  appear  as  operands  to  addition,  subtraction,  and  multiplication  operators.  

Furthermore,  the  data  that  you  provide  does  not  actually  need  to  represent  

complex  numbers.  In  fact,  both  elements  are  represented  internally  as  two  real  

values.  See  Complex  type  manipulation  functions  for  a description  of  the  set  of  

built-in  functions  available  for  Blue  Gene.  These  functions  are  designed  to 

efficiently  manipulate  complex-type  data  and  include  a function  to  convert  

non-complex  data  to  complex  types.  

Using vectorizable basic blocks 

The  compiler  schedules  instructions  most  efficiently  within  extended  basic  blocks. 

These  are  code  sequences  which  can  contain  conditional  branches  but  have  no  

entry  points  other  than  the  first  instruction.  Specifically,  minimize  the  use  of  

branching  instructions  for  the  following:  

v   Handling  of  special  cases,  such  as  the  generation  of  not-a-number  (NaN)  values  

v   C/C++  error  handling  that  sets  a value  for  errno. 

To explicitly  inform  the  compiler  that  none  of  your  code  will  set  errno, compile  

with  the  -qignerrno  compiler  option  (automatically  set  with  -O3  ). 

v   C++  exception  handlers  

To explicitly  inform  the  compiler  that  none  of  your  code  will  throw  any  

exceptions,  and  therefore,  that  no  exception-handling  code  needs  to  be  

generated,  compile  with  the  -qnoeh  compiler  option.  

In  addition,  the  optimal  basic  blocks  remove  dependencies  between  computations,  

so  that  the  compiler  sees  each  statement  as  entirely  independent.  You can  construct  

a basic  block  as  a series  of independent  statements  or  as  a loop  that  repeatedly  

computes  the  same  basic  block  with  different  arguments.  

The  use  of  pointers  in  C/C++  may  cause  false  dependencies  between  computations  

if the  compiler  cannot  prove  that  the  references  are  disjoint,  causing  automatic  

SIMDization  to  fail.  It is recommended  that  pointer  usage  is minimized  or  

#pragma  disjoint  is used  to  assert  that  pointers  are  disjoint  from  one  another.  

If you  specify  the  -qhot=simd  option,  along  with  a minimum  optimization  level  of 

-O2, the  compiler  can  then  vectorize  these  loops  by  applying  various  

struct  quad  { 

   double  a, b, c, d; 

}; 

  

struct  quad  x, y, z; 

  

void  foo()  

{ 

   z.a  = x.a  + y.a;  

   z.b  = x.b  + y.b;   /* can  load  parallel  (x.a,x.b),  and  (y.a,  y.b),  

                        do parallel  add,  and  store  parallel  (z.a,  z.b)  */ 

  

   z.c  = x.c  + y.c;  

   z.d  = x.d  + y.d;   /* can  load  parallel  (x.c,x.d),  and  (y.c,  y.d),  

                        do parallel  add,  and  store  parallel  (z.c,  z.d)  */ 

} 

 

Figure  1. Adjacent  paired  data

 

12 Using the IBM XL Compilers  for Blue Gene



transformations,  such  as  unrolling  and  software  pipelining.  See  Removing  

possibilities  for  aliasing  (C/C++),  for  additional  strategies  for  removing  data  

dependencies.  

Using inline functions 

An  inline  function  is expanded  in any  context  in  which  it is  called.  This  avoids  the  

normal  performance  overhead  associated  with  the  branching  for  a function  call,  

and  it  allows  functions  to  be  included  in basic  blocks.  The  XL  C/C++  and  Fortran  

compilers  provide  several  options  for  inlining.  

The  following  options  instruct  the  compiler  to  automatically  inline  all  functions  it 

deems  appropriate:  

v   XL  C/C++:  

–   -O  through  -O5  

–   -qipa

v   XL  Fortran:  

–   -O4  or  -O5  

–   -qipa  

The  following  options  allow  you  to select  or  name  functions  to be  inlined:  

v   XL  C/C++:  

–   -qinline  

–   -Q

v   XL  Fortran:  

–   -Q  

In  C/C++,  you  can  also  use  the  standard  inline  function  specifier  or  the  

__attribute__(always_inline)  extension  in  your  code  to  mark  a function  for  

inlining.  

Important!:   Do  not  overuse  inlining  because  there  are  limits  on  how  much  inlining  

will  be  done.  Mark  only  the  most  important  functions.  

For  more  information  about  the  various  compiler  options  for  controlling  function  

inlining,  see  the  XL  Fortran  Optimization  and  Programming  and  XL  C/C++  

Programming  Guide. For  information  on  the  different  variations  of the  inline  

keyword  supported  by  XL  C/  C++,  as  well  as  the  inlining  function  attribute  

extensions,  see  the  XL  C/C++  Language  Reference  . 

Turning  off range checking 

Specifying  -qfloat=rngchk  enables  range  checking  on  input  arguments  for  software  

divide  and  inlined  square  root  operations.  When  -qnostrict  or  -O3  or  higher  

optimization  level  is  in  effect,  -qfloat=norngchk  is enabled  by  default.  The  

compiler  may  generate  software  division  code  instead  of  hardware  floating-point  

divide  instructions,  and  inlined  code  for  square  root  operations.  This  may  improve  

performance  where  division  and  square  root  operations  are  performed  repeatedly  

within  a loop.  Turning  off  range  checking  should  be  used  with  caution,  as  in some  

cases  it may  produce  undesirable  results.  

See  the  -qfloat=rngchk  | norngchk  description  in  the  XL  C/C++  Advanced  Edition  

for  Linux,  V9.0  Compiler  Reference  or  XL  Fortran  Advanced  Edition  for  Linux,  V11.1  

Compiler  Reference  for  more  information.  

 

Chapter  2. Tuning your code for Blue Gene  13



Removing possibilities for aliasing (C/C++) 

When  you  use  pointers  to  access  array  data  in C/C++,  the  compiler  cannot  assume  

that  the  memory  accessed  by  pointers  will  not  be  altered  by  other  pointers  that  

refer  to  the  same  address.  For  example,  if two  pointer  input  parameters  share  

memory,  the  instruction  to store  the  second  parameter  can  overwrite  the  memory  

read  from  the  first  load  instruction.  This  means  that,  after  a store  for  a pointer  

variable,  any  load  from  a pointer  must  be  reloaded.  Consider  the  following  code  

example:  

int  i = *p;  

*q = 0; 

j = *p;  

If *q  aliases  *p,  then  the  value  must  be  reloaded  from  memory.  If *q  does  not  alias  

*p,  the  old  value  that  is already  loaded  into  i can  be  used.  

To avoid  the  overhead  of reloading  values  from  memory  every  time  they  are  

referenced  in  the  code,  and  allow  the  compiler  to simply  manipulate  values  that  

are  already  resident  in  registers,  there  are  several  strategies  you  can  use.  One  

approach  is  to  assign  input  array  element  values  to local  variables  and  perform  

computations  only  on  the  local  variables,  as shown  in  Figure  2.  

 

 If you  are  certain  that  two  references  do  not  share  the  same  memory  address,  

another  approach  is  to  use  the  #pragma  disjoint  directive.  This  directive  asserts  

that  two  identifiers  do  not  share  the  same  storage  within  the  scope  of their  use.  

Specifically,  you  can  use  the  pragma  to  inform  the  compiler  that  two  pointer  

variables  do  not  point  to the  same  memory  address.  The  directive  in the  following  

exampleFigure  3 indicates  to  the  compiler  that  the  pointers-to-arrays  of  double  x 

and  f do  not  share  memory:  

 

Important!:   The  correct  functioning  of  this  directive  requires  that  the  two  pointers  

really  be  disjoint.  If they  are  not,  the  compiled  program  will  not  run 

correctly.

#include  <math.h>  

void  reciprocal_roots  (const  double*  x,  double*  f)  

{ 

      double  x0 = x[0]  ; 

      double  x1 = x[1]  ; 

      double  r0 = 1.0/sqrt(x0)  ; 

      double  r1 = 1.0/sqrt(x1)  ; 

      f[0]  = r0 ; 

      f[1]  = r1 ; 

} 

 

Figure  2. Array  parameters  assigned  to local  variables

__inline  void  ten_reciprocal_roots  (double*  x, double*  f) 

{ 

#pragma  disjoint  (*x,  *f)  

int  i; 

    for  (i=0;  i < 10;  i++)  

  f[i]=  1.0  / sqrt  (x[i]);  

} 

 

Figure  3. The  #pragma  disjoint  directive

 

14 Using the IBM XL Compilers  for Blue Gene



Structuring floating-point computations 

Floating-point  operations  are  pipelined  in  the  PowerPC  440  or  PowerPC  450  

processor  so  that  one  floating-point  calculation  is performed  per  cycle,  with  a 

latency  of  multiple  cycles.  The  compiler  can  organize  array  computations  and  loop  

unrolling  so  that  the  440d  or  450d  dual  floating-point  unit  (FPU)  usage  remains  

efficient.  Manually  unrolling  code  may  hinder  higher  optimizations.  

For  example,  with  the  440d  or  450d,  at high  optimization  with  range  checking  

turned  off  (-qfloat=norngchk), the  function  in  Figure  4 should  perform  ten  parallel  

reciprocal  roots  in about  five  cycles  more  than  a single  reciprocal  root.  This  is 

because  the  compiler  will  perform  two  reciprocal  roots  in  parallel  and  then  use  the  

empty  cycles  to  run four  more  parallel  reciprocal  roots.  

 

 The  definition  in  Figure  5 shows  wrapping  of  the  inlined,  optimized  

ten_reciprocal_roots  function  inside  a function  that  allows  you  to  pass  in  arrays  

of  any  number  of  elements.  This  function  then  passes  the  values  in batches  of ten  

to  the  ten_reciprocal_roots  function,  and  calculates  the  remaining  operations  

individually.  

   

Checking for data alignment 

The  Blue  Gene  architecture  allows  for  two  double-precision  values  to be  loaded  in 

parallel  in  a single  cycle,  provided  that  the  load  address  is aligned  such  that  the  

values  loaded  do  not  cross  a cache-line  boundary  (which  is 32-bytes).  If  they  cross  

this  boundary,  the  hardware  generates  an  alignment  trap.  This  trap  may  cause  the  

program  to  crash  or  result  in a severe  performance  penalty  to be  fixed  at run time  

by  the  kernel.  

The  compiler  does  not  generate  these  parallel  load  and  store  instructions  unless  it  

is  sure  that  it is safe  to  do  so.  For  non-pointer  local  and  global  variables,  the  

__inline  void  ten_reciprocal_roots  (double*  x, double*  f) 

{ 

#pragma  disjoint  (*x,  *f)  

    int  i; 

    for  (i=0;  i < 10;  i++)  

 f[i]=  1.0  / sqrt  (x[i]);  

} 

 

Figure  4. A function  to calculate  reciprocal  roots  for arrays  of ten  elements

static  void  unaligned_reciprocal_roots  (double*  x, double*  f,  int  n) 

{ 

#pragma  disjoint  (*x,  *f)  

    while  (n >= 10)  { 

 ten_reciprocal_roots  (x,  f);  

 x += 10;  

 f += 10;  

    } 

    /* remainder  */ 

    while  (n > 0) { 

 *f = 1.0  / sqrt  (*x);  

 f++,  x++;  

    } 

} 

 

Figure  5. A function  to pass  values  in batches  of ten

 

Chapter  2. Tuning your code for Blue Gene  15



compiler  knows  when  this  is safe.  To allow  the  compiler  to  generate  these  parallel  

loads  and  stores  for  accesses  through  pointers,  include  code  that  tests  for  correct  

alignment  and  gives  the  compiler  hints.  

To test  for  alignment,  first  create  one  version  of a function  which  asserts  the  

alignment  of  an  input  variable  at  that  point  in  the  program  flow. You can  use  the  

C/C++  __alignx  builtin  function  or  the  Fortran  ALIGNX  function  to  inform  the  

compiler  that  the  incoming  data  is correctly  aligned  according  to a specific  byte  

boundary,  so  it  can  efficiently  generate  loads  and  stores.  

The  function  takes  two  arguments.  The  first  argument  is an  integer  constant  

expressing  the  number  of  alignment  bytes  (must  be  a positive  power  of  two).  The  

second  argument  is  the  variable  name,  typically  a pointer  to  a memory  address.  

The  C/C++  prototype  for  the  function  is:  

extern  

#ifdef  __cplusplus  

"builtin"  

#endif  

void  __alignx  (int  n,  const  void  *addr)  

Here  n is  the  number  of bytes.  For  example,  __align(16,  y)  specifies  that  the  

address  y is  16-byte  aligned.  

In  Fortran,  the  built-in  subroutine  is ALIGNX(K,M)  , where  K is of type  

INTEGER(4),  and  M  is a variable  of  any  type.  When  M  is an  integer  pointer,  the  

argument  refers  to  the  address  of the  pointee.  

Figure  6 asserts  that  the  variables  x and  f are  aligned  along  16-byte  boundaries.  

 

Note:   The  __alignx  function  does  not  perform  any  alignment.  It  merely  informs  

the  compiler  that  the  variables  are  aligned  as  specified,  at the  point  where  

the  __alignx  call  is placed.  If the  variables  are  not  aligned  correctly,  the  

program  can  end  abruptly  or  run very  slowly.  

After  you  create  a function  to  handle  input  variables  that  are  correctly  aligned,  you  

can  then  create  a function  that  tests  for  alignment  and  then  calls  the  appropriate  

function  to  perform  the  calculations.  The  function  in  Figure  7 on  page  17  checks  to  

see  whether  the  incoming  values  are  correctly  aligned.  Then  it  calls  the  aligned  

(Figure  6)  or  unaligned  (Figure  4 on  page  15)  version  of the  function  according  to  

the  result.  

 

#include  <math.h>  

__inline  void  aligned_ten_reciprocal_roots  (double*  x, double*  f) 

{ 

#pragma  disjoint  (*x,  *f)  

int  i; 

    __alignx  (16,  x);  

    __alignx  (16,  f);  

    for  (i=0;  i < 10;  i++)  

 f[i]=  1.0  / sqrt  (x[i]);  

} 

 

Figure  6. Use  of the __alignx  built-in  function

 

16 Using the IBM XL Compilers  for Blue Gene



The  alignment  test  in Figure  7 provides  an  optimized  method  of  testing  for  16-byte  

alignment  by  performing  a bit-wise  OR  on  the  two  incoming  addresses  and  testing  

whether  the  lowest  four  bits  are  0 (that  is,  16-byte  aligned).  

void  reciprocal_roots  (double  *x,  double  *f,  int  n) 

{ 

    /* are  both  x & f 16 byte  aligned?  */ 

    if ( ((((int)  x) | ((int)  f))  & 0xf)  == 0)  /*    This  could  also  be done  as: 

           if  (((int)  x % 16 == 0) && ((int)  f % 16) ==  0) */ 

 aligned_ten_reciprocal_roots  (x,  f,  n);  

 else  

 ten_reciprocal_roots  (x,  f, n);  

} 

 

Figure  7. A function  to test  for alignment

 

Chapter  2. Tuning your code for Blue Gene  17



18 Using the IBM XL Compilers  for Blue Gene



Chapter  3.  Using  the  high  performance  libraries  

XL  C/C++  and  XL  Fortran  Advanced  Edition  for  Blue  Gene  are  shipped  with  a set  

of  libraries  for  high-performance  mathematical  computing:  

v   The  Mathematical  Acceleration  Subsystem  (MASS)  is a set  of  libraries  of  tuned  

mathematical  intrinsic  functions  that  provide  improved  performance  over  the  

corresponding  standard  system  math  library  functions.  MASS  is described  in 

“Using  the  Mathematical  Acceleration  Subsystem  libraries  (MASS)  .”

Note:   In  this  discussion,  rather  than  repeating  the  phrase  XL  C/C++  function(s)  or 

XL  Fortran  routine(s), the  term  function(s)  is used  to  denote  a XL  C/C++  

function(s)  or  XL  Fortran  routine(s)  as  it applies  within  its  respective  

contexts.  

Using the Mathematical Acceleration Subsystem libraries (MASS) 

The  MASS  libraries  consist  of a library  of  scalar  XL  C/C++  functions  or  XL  Fortran  

routines  described  in “Using  the  scalar  library”;  and  a set  of vector  libraries  tuned  

for  specific  architectures,  described  in  “Using  the  vector  libraries”  on  page  22.  The  

functions  contained  in  both  scalar  and  vector  libraries  are  automatically  called  at 

certain  levels  of  optimization,  but  you  can  also  call  them  explicitly  in your  

programs.  Note  that  the  accuracy  and  exception  handling  might  not  be  identical  in  

MASS  functions  and  system  library  functions.  

“Compiling  and  linking  a program  with  MASS”  on  page  29  describes  how  to  

compile  and  link  a program  that  uses  the  MASS  libraries,  and  how  to  selectively  

use  the  MASS  scalar  library  functions  in  concert  with  the  regular  system  library  

scalar  functions.  

Using the scalar library 

The  MASS  scalar  library,  libmass.a, contains  an  accelerated  set  of frequently  used  

math  intrinsic  functions  that  provide  improved  performance  over  the  

corresponding  standard  system  library  functions.  These  functions  are  available  

when  you  compile  programs  with  any  of the  following  options:  

v   XL  C/C++: -qhot  -qignerrno  -qnostrict  

v   XL  Fortran:  -qhot  -qnostrict  

v   -qhot  -O3  

v   -O4  

v   -O5  

the  compiler  automatically  uses  the  faster  MASS  functions  for  most  math  library  

functions.  In  fact,  the  compiler  first  tries  to  ″vectorize″ calls  to math  library  

functions  by  replacing  them  with  the  equivalent  MASS  vector  functions;  if it 

cannot  do  so,  it uses  the  MASS  scalar  functions.  When  the  compiler  performs  this  

automatic  replacement  of  math  library  functions,  it uses  versions  of the  MASS  

functions  contained  in  the  system  library  libxlopt.a. You do  not  need  to add  any  

special  calls  to  the  MASS  functions  in  your  code,  or  to  link  to  the  libxlopt  library.  

If  you  are  not  using  any  of  the  optimization  options  listed  above,  and  want  to  

explicitly  call  the  MASS  scalar  functions,  you  can  do  so  as follows:  

For  XL  C/C++  

 

© Copyright  IBM Corp. 2006, 2007 19



1.   Provide  the  prototypes  for  the  functions  (except  anint, cosisin, dnint, 

sincos, and  rsqrt), by  including  math.h  in  your  source  files.  

2.   Provide  the  prototypes  for  anint, cosisin,  dnint, sincos, and  rsqrt, by  

including  mass.h  in your  source  files.  

3.   Link  the  MASS  scalar  library  libmass.a  with  your  application.  For  

instructions,  see  “Compiling  and  linking  a program  with  MASS”  on  

page  29.

For  XL  Fortran  

1.   Link  the  MASS  scalar  library  libmass.a  with  your  application.  For  

instructions,  see  “Compiling  and  linking  a program  with  MASS”  on  

page  29  

2.   All  the  MASS  scalar  routines,  except  those  listed  in  3 are  recognized  by  

XL  Fortran  as  intrinsic  functions,  so  no  explicit  interface  block  is 

needed.  To provide  an  interface  block  for  the  functions  listed  in  3, 

include  mass.include  in your  source  file.  

3.   Include  mass.include  in  your  source  file  for  the  following  functions:  

v   acosf, acosh, acoshf, asinf, asinh, asinhf, atan2f, atanf, atanh, 

atanhf, cbrt, cbrtf, copysign, copysignf, cosf, coshf, cosisin, erff, 

erfcf, expf, expm1, expm1f, hypot, hypotf, lgammaf,  logf, log10f, 

log1p, log1pf, powf, rsqrt, sincos, sinf, sinhf, tanf, and  tanhf

 The  MASS  scalar  functions  accept  double-precision  parameters  and  return  a 

double-precision  result,  or  accept  single-precision  parameters  and  return  a 

single-precision  result,  except  sincos  which  gives  2 double-precision  results.  They  

are  summarized  in  Table 10.  

 Table 10.  MASS  scalar  functions  

Double-
precision  

function  

Single-
precision  

function  

Description  Double-
precision  

function  

prototype  

Single-precision  

function  

prototype  

acos  acosf  Returns  the  

arccosine  of x 

double  acos  

(double  x); 

float  acosf  (float  

x); 

acosh  acoshf  Returns  the  

hyperbolic  

arccosine  of x 

double  acosh  

(double  x); 

float  acoshf  (float  

x); 

anint  Returns  the  

rounded  integer  

value  of x 

float  anint  (float  

x); 

asin  asinf  Returns  the  

arcsine  of x 

double  asin  

(double  x); 

float  asinf  (float  

x); 

asinh  asinhf  Returns  the  

hyperbolic  

arcsine  of x 

double  asinh  

(double  x); 

float  asinhf  (float  

x); 

atan2  atan2f  Returns  the  

arctangent  of x/y  

double  atan2  

(double  x, double  

y); 

float  atan2f  (float  

x, float  y); 

atan  atanf  Returns  the  

arctangent  of x 

double  atan  

(double  x); 

float  atanf  (float  

x); 

atanh  atanhf  Returns  the  

hyperbolic  

arctangent  of x 

double  atanh  

(double  x); 

float  atanhf  (float  

x); 

 

20 Using the IBM XL Compilers  for Blue Gene



Table 10.  MASS  scalar  functions  (continued)  

Double-
precision  

function  

Single-
precision  

function  

Description  Double-
precision  

function  

prototype  

Single-precision  

function  

prototype  

cbrt  cbrtf  Returns  the  cube  

root  of x 

double  cbrt  

(double  x); 

float  cbrtf  (float  

x); 

copysign  copysignf  Returns  x with  

the  sign  of y 

double  copysign  

(double  x,double  

y); 

float  copysignf  

(float  x); 

cos  cosf Returns  the  

cosine  of x 

double  cos 

(double  x); 

float  cosf  (float  

x); 

cosh  coshf  Returns  the  

hyperbolic  cosine  

of x 

double  cosh  

(double  x); 

float  coshf  (float  

x); 

cosisin  Returns  a 

complex  number  

with  the  real  part  

the  cosine  of x 

and  the 

imaginary  part  

the  sine  of x. 

double_Complex  

cosisin  (double);  

dnint  Returns  the  

nearest  integer  to 

x (as a double)  

double  dnint  

(double  x); 

erf erff  Returns  the  error  

function  of x 

double  erf 

(double  x); 

float  erff  (float  x); 

erfc  erfcf  Returns  the  

complementary  

error  function  of 

x 

double  erfc  

(double  x); 

float  erfcf  (float  

x); 

exp  expf  Returns  the  

exponential  

function  of x 

double  exp  

(double  x); 

float  expf  (float  

x); 

expm1  expm1f  Returns  (the  

exponential  

function  of x) − 1 

double  expm1  

(double  x); 

float  expm1f  

(float  x); 

hypot  hypotf  Returns  the  

square  root  of x2 

+ y2 

double  hypot  

(double  x, double  

y); 

float  hypotf  (float  

x, float  y); 

lgamma  lgammaf  Returns  the  

natural  logarithm  

of the  absolute  

value  of the 

Gamma  function  

of x 

double  lgamma  

(double  x); 

float  lgammaf  

(float  x); 

log  logf  Returns  the  

natural  logarithm  

of x 

double  log  

(double  x); 

float  logf  (float  

x); 

log10  log10f  Returns  the  base  

10  logarithm  of x 

double  log10  

(double  x); 

float  log10f  (float  

x); 

 

Chapter  3. Using the high performance  libraries  21



Table 10.  MASS  scalar  functions  (continued)  

Double-
precision  

function  

Single-
precision  

function  

Description  Double-
precision  

function  

prototype  

Single-precision  

function  

prototype  

log1p  log1pf  Returns  the  

natural  logarithm  

of (x + 1) 

double  log1p  

(double  x); 

float  log1pf  (float  

x); 

pow  powf  Returns  x raised  

to the power  y 

double  pow  

(double  x, double  

y); 

float  powf  (float  

x); 

XL  Fortran  

version:  x**y  

Returns  x raised  

to the power  y 

N/A  

rsqrt  Returns  the  

reciprocal  of the  

square  root  of x 

double  rsqrt  

(double  x); 

sin  sinf  Returns  the  sine  

of x 

double  sin  

(double  x); 

float  sinf  (float  x); 

sincos  Sets  *s to the  

sine  of x and  *c 

to the cosine  of x 

void  sincos  

(double  x, 

double*  s, 

double*  c); 

sinh  sinhf  Returns  the  

hyperbolic  sine  of 

x 

double  sinh  

(double  x); 

float  sinhf  (float  

x); 

sqrt  Returns  the  

square  root  of x 

double  sqrt  

(double  x); 

tan  tanf  Returns  the  

tangent  of x 

double  tan  

(double  x); 

float  tanf  (float  

x); 

tanh  tanhf  Returns  the  

hyperbolic  

tangent  of x 

double  tanh  

(double  x); 

float  tanhf  (float  

x);

  

The  following  example  shows  the  XL  Fortran  interface  declaration  for  the  rsqrt  

scalar  function:  

      interface  

  

      real*8  function  rsqrt  (%val(x))  

        real*8  x      ! Returns  the  reciprocal  of the  square  root  of x. 

      end  function  rsqrt  

  

      end  interface  

Notes:  

v   The  trigonometric  functions  (sin, cos, tan) return  NaN  (Not-a-Number)  for  large  

arguments  (where  the  absolute  value  is greater  than  250pi).  

v   In  some  cases,  the  MASS  functions  are  not  as  accurate  as  the  libm.a  library,  and  

they  might  handle  edge  cases  differently  (sqrt(Inf), for  example).

Using the vector libraries 

When  you  compile  programs  with  any  of the  following  options:  

v   XL  C/C++: -qhot  -qignerrno  -qnostrict  

 

22 Using the IBM XL Compilers  for Blue Gene



v   XL  Fortran:  -qhot  -qnostrict  

v   -qhot  -O3  

v   -O4  

v   -O5  

the  compiler  automatically  attempts  to  vectorize  calls  to  system  math  functions  by 

calling  the  equivalent  MASS  vector  functions  (with  the  exceptions  of functions  

vatan2  (XL  Fortran),  vsatan2  (XL  Fortran),  vdnint, vdint, vsincos,  vssincos, 

vcosisin, vscosisin, vqdrt, vsqdrt, vrqdrt, vsrqdrt,  vpopcnt4, and  vpopcnt8). For  

automatic  vectorization,  the  compiler  uses  versions  of the  MASS  functions  

contained  in  the  system  library  libxlopt.a. You do  not  need  to add  any  special  

calls  to  the  MASS  functions  in  your  code,  or  to link  to  the  libxlopt  library.  

If  you  are  not  using  any  of  the  optimization  options  listed  above,  and  want  to  

explicitly  call  any  of  the  MASS  vector  functions,  you  can  do  so  by  including  the  XL  

C/C++  header  massv.h  or  XL  Fortran  massv.include  file  in  your  source  files  and  

linking  your  application  with  the  appropriate  vector  library.  (Information  on  

linking  is  provided  in  “Compiling  and  linking  a program  with  MASS”  on  page  29.)  

The  single-precision  and  double-precision  floating-point  functions  contained  in  the  

vector  libraries  are  summarized  in  Table  11 on  page  24  and  Table 12  on  page  26.  

The  integer  functions  contained  in  the  vector  libraries  are  summarized  in  Table 13  

on  page  28  and  Table 14  on  page  28.  Note  that  in  C and  C++  applications,  only  call  

by  reference  is  supported,  even  for  scalar  arguments.  

With  the  exception  of  a few  functions  (described  below),  all  of  the  floating-point  

functions  in  the  vector  libraries  accept  three  parameters  (XL  C/C++)  or  arguments  

(XL  Fortran):  

v   a double-precision  (for  double-precision  functions)  or  single-precision  (for  

single-precision  functions)  vector  output  parameter  or  argument  

v   a double-precision  (for  double-precision  functions)  or  single-precision  (for  

single-precision  functions)  vector  input  parameter  or  argument  

v   an  integer  vector-length  parameter  or  argument

The  functions  are  of  the  form  

function_name  (y,x,n)  

where  y is  the  target  vector,  x is the  source  vector,  and  n is the  vector  length.  The  

parameters  or  y and  x are  assumed  to  be  double-precision  for  functions  with  the  

prefix  v, and  single-precision  for  functions  with  the  prefix  vs.  As  examples,  the  

following  code:  

XL C/C++  

#include  <massv.h>  

  

double  x[500],  y[500];  

int  n; 

n = 500;  

...  

vexp  (y,  x, &n);  

XL Fortran  

include  ’massv.include’  

  

real*8  x(500),  y(500)  

integer  n 

n = 500  

...  

call  vexp  (y,  x, n)

 

Chapter  3. Using the high performance  libraries  23



outputs  a vector  y of  length  500  whose  elements  are  exp(x[i]),  where  i=0,...,499(XL  

C/C++)  or  exp(x(i)),  where  i=1,...,500  (XL  Fortran).  

The  functions  vdiv, vsincos,  vpow, and  vatan2  (and  their  single-precision  versions,  

vsdiv, vssincos, vspow, and  vsatan2)  take  four  parameters.  The  functions  vdiv, 

vpow, and  vatan2  take  the  parameters  (z,x,y,n).  The  function  vdiv  outputs  a vector  z 

whose  elements  are  x[i]/y[i],  where  i=0,..,*n–1(XL  C/C++)  or  x(i)/y(i),  where  

i=1,...,n  (XL  Fortran).  The  function  vpow  outputs  a vector  z whose  elements  are  

x[i]y[i], where  i=0,..,*n–1(XL  C/C++)  or  x(i)y(i), where  i=1,..,n  (XL  Fortran).  The  

function  vatan2  outputs  a vector  z whose  elements  are  atan(x[i]/y[i]),  where  

i=0,..,*n–1(XL  C/C++),  or  atan(x(i)/y(i)),  where  i=1,..,n  (XL  Fortran).  The  function  

vsincos  takes  the  parameters  (y,z,x,n),  and  outputs  two  vectors,  y and  z, whose  

elements  are  sin(x[i])  and  cos(x[i])(XL  C/C++),  or  sin(x(i))  and  cos(x(i))  (XL  

Fortran),  respectively.  

In  vcosisin(y,x,n)  and  vscosisin(y,x,n), x is a vector  of n elements  and  the  

function  outputs  a vector  y of  n complex(XL  C/C++),  or  complex*16  (XL  Fortran)  

elements  of  the  form  (cos(x[i]),sin(x[i]))(cos(x(i)),sin(x(i)))  (XL  Fortran).  

 Table 11.  MASS  floating-point  vector  functions  (XL  C/C++)  

Double-
precision  

function  

Single-
precision  

function  

Description  Double-precision  

function  prototype  

Single-precision  

function  prototype  

vacos  vsacos  Sets  y[i]  to the  arc 

cosine  of x[i], for 

i=0,..,*n–1  

void  vacos  (double  y[],  

double  x[],  int *n);  

void  vsacos  (float  

y[],  float  x[], int *n); 

vacosh  vsacosh  Sets  y[i]  to the  

hyperbolic  arc  

cosine  of x[i], for 

i=0,..,*n–1  

void  vacosh  (double  

y[],  double  x[],  int *n);  

void  vsacosh  (float  

y[],  float  x[], int *n); 

vasin  vsasin  Sets  y[i]  to the  arc 

sine  of x[i], for  

i=0,..,*n–1  

void  vasin  (double  y[],  

double  x[],  int *n);  

void  vsasin  (float  y[],  

float  x[],  int *n);  

vasinh  vsasinh  Sets  y[i]  to the  

hyperbolic  arc  sine  

of x[i], for  

i=0,..,*n–1  

void  vasinh  (double  

y[],  double  x[],  int *n);  

void  vsasinh  (float  

y[],  float  x[], int *n); 

vatan2  vsatan2  Sets  z[i]  to the  arc 

tangent  of 

x[i]/y[i], for 

i=0,..,*n–1  

void  vatan2  (double  z[], 

double  x[],  double  y[],  

int *n);  

void  vsatan2  (float  

z[],  float  x[],  float  

y[],  int *n);  

vatanh  vsatanh  Sets  y[i]  to the  

hyperbolic  arc  

tangent  of x[i], for 

i=0,..,*n–1  

void  vatanh  (double  

y[],  double  x[],  int *n);  

void  vsatanh  (float  

y[],  float  x[], int *n); 

vcbrt  vscbrt  Sets  y[i]  to the  

cube  root  of x[i], 

for i=0,..,*n-1  

void  vcbrt  (double  y[], 

double  x[],  int *n);  

void  vscbrt  (float  y[], 

float  x[],  int *n);  

vcos  vscos  Sets  y[i]  to the  

cosine  of x[i], for 

i=0,..,*n–1  

void  vcos  (double  y[],  

double  x[],  int *n);  

void  vscos  (float  y[],  

float  x[],  int *n);  

vcosh  vscosh  Sets  y[i]  to the  

hyperbolic  cosine  

of x[i], for  

i=0,..,*n–1  

void  vcosh  (double  y[],  

double  x[],  int *n);  

void  vscosh  (float  

y[],  float  x[], int *n); 

 

24 Using the IBM XL Compilers  for Blue Gene



Table 11. MASS  floating-point  vector  functions  (XL  C/C++)  (continued)  

Double-
precision  

function  

Single-
precision  

function  

Description  Double-precision  

function  prototype  

Single-precision  

function  prototype  

vcosisin  vscosisin  Sets  the  real  part  of 

y[i]  to the  cosine  

of x[i]  and  the  

imaginary  part  of 

y[i]  to the  sine  of 

x[i], for  i=0,..,*n–1  

void  vcosisin  (double  

_Complex  y[], double  

x[], int *n);  

void  vscosisin  (float  

_Complex  y[], float  

x[], int *n); 

vdint  Sets  y[i]  to  the 

integer  truncation  

of x[i], for 

i=0,..,*n–1  

void  vdint  (double  y[],  

double  x[],  int *n);  

vdiv  vsdiv  Sets  z[i]  to  

x[i]/y[i], for 

i=0,..,*n–1  

void  vdiv  (double  z[], 

double  x[],  double  y[], 

int *n);  

void  vsdiv  (float  z[],  

float  x[],  float  y[],  int  

*n);  

vdnint  Sets  y[i]  to  the 

nearest  integer  to 

x[i], for  i=0,..,n–1  

void  vdnint  (double  

y[],  double  x[], int *n); 

vexp  vsexp  Sets  y[i]  to  the 

exponential  

function  of x[i], 

for i=0,..,*n–1  

void  vexp  (double  y[],  

double  x[],  int *n);  

void  vsexp  (float  y[],  

float  x[],  int *n); 

vexpm1  vsexpm1  Sets  y[i]  to  (the  

exponential  

function  of x[i])-1, 

for i=0,..,*n–1  

void  vexpm1  (double  

y[],  double  x[], int *n); 

void  vsexpm1  (float  

y[],  float  x[], int  *n);  

vlog  vslog  Sets  y[i]  to  the 

natural  logarithm  

of x[i], for 

i=0,..,*n–1  

void  vlog  (double  y[],  

double  x[],  int *n);  

void  vslog  (float  y[],  

float  x[],  int *n); 

vlog10  vslog10  Sets  y[i]  to  the 

base-10  logarithm  

of x[i], for 

i=0,..,*n–1  

void  vlog10  (double  

y[],  double  x[], int *n); 

void  vslog10  (float  

y[],  float  x[], int  *n);  

vlog1p  vslog1p  Sets  y[i]  to  the 

natural  logarithm  

of (x[i]+1), for 

i=0,..,*n–1  

void  vlog1p  (double  

y[],  double  x[], int *n); 

void  vslog1p  (float  

y[],  float  x[], int  *n);  

vpow  vspow  Sets  z[i]  to  x[i]  

raised  to the  power  

y[i], for  i=0,..,*n-1  

void  vpow  (double  z[],  

double  x[],  double  y[], 

int *n);  

void  vspow  (float  

z[],  float  x[], float  

y[],  int *n);  

vqdrt  vsqdrt  Sets  y[i]  to  the 

fourth  root  of x[i], 

for i=0,..,*n-1  

void  vqdrt  (double  y[],  

double  x[],  int *n);  

void  vsqdrt  (float  

y[],  float  x[], int  *n);  

vrcbrt  vsrcbrt  Sets  y[i]  to  the 

reciprocal  of the  

cube  root  of x[i], 

for i=0,..,*n-1  

void  vrcbrt  (double  y[], 

double  x[],  int *n);  

void  vsrcbrt  (float  

y[],  float  x[], int  *n);  

vrec  vsrec  Sets  y[i]  to  the 

reciprocal  of x[i], 

for i=0,..,*n–1  

void  vrec  (double  y[],  

double  x[],  int *n);  

void  vsrec  (float  y[],  

float  x[],  int *n); 

 

Chapter  3. Using the high performance  libraries  25



Table 11.  MASS  floating-point  vector  functions  (XL  C/C++)  (continued)  

Double-
precision  

function  

Single-
precision  

function  

Description  Double-precision  

function  prototype  

Single-precision  

function  prototype  

vrqdrt  vsrqdrt  Sets  y[i]  to the  

reciprocal  of the  

fourth  root  of x[i], 

for i=0,..,*n-1  

void  vrqdrt  (double  y[],  

double  x[],  int *n);  

void  vsrqdrt  (float  

y[],  float  x[], int *n); 

vrsqrt  vsrsqrt  Sets  y[i]  to the  

reciprocal  of the  

square  root  of x[i], 

for i=0,..,*n–1  

void  vrsqrt  (double  y[],  

double  x[],  int *n);  

void  vsrsqrt  (float  

y[],  float  x[], int *n); 

vsin  vssin  Sets  y[i]  to the  

sine  of x[i], for  

i=0,..,*n–1  

void  vsin  (double  y[],  

double  x[],  int *n);  

void  vssin  (float  y[],  

float  x[],  int *n);  

vsincos  vssincos  Sets  y[i]  to the  

sine  of x[i]  and  

z[i]  to the  cosine  

of x[i], for  

i=0,..,*n–1  

void  vsincos  (double  

y[],  double  z[],  double  

x[],  int *n);  

void  vssincos  (float  

y[],  float  z[],  float  

x[],  int *n);  

vsinh  vssinh  Sets  y[i]  to the  

hyperbolic  sine  of 

x[i], for  i=0,..,*n–1  

void  vsinh  (double  y[],  

double  x[],  int *n);  

void  vssinh  (float  

y[],  float  x[], int *n); 

vsqrt  vssqrt  Sets  y[i]  to the  

square  root  of x[i], 

for i=0,..,*n–1  

void  vsqrt  (double  y[],  

double  x[],  int *n);  

void  vssqrt  (float  y[],  

float  x[],  int *n);  

vtan  vstan  Sets  y[i]  to the  

tangent  of x[i], for 

i=0,..,*n-1  

void  vtan  (double  y[], 

double  x[],  int *n);  

void  vstan  (float  y[],  

float  x[],  int *n);  

vtanh  vstanh  Sets  y[i]  to the  

hyperbolic  tangent  

of x[i], for  

i=0,..,*n–1  

void  vtanh  (double  y[], 

double  x[],  int *n);  

void  vstanh  (float  

y[],  float  x[], int *n);

  

Table  12  

 Table 12.  MASS  floating-point  vector  library  functions  (XL  Fortran)  

Double-
precision  

function  

Single-precision  

function  Arguments  Description  

vacos  vsacos  (y,x,n)  Sets  y(i)  to the  arc cosine  of x(i), 

for i=1,..,n  

vacosh  vsacosh  (y,x,n)  Sets  y(i)  to the  hyperbolic  arc  

cosine  of x(i),  for  i=1,..,n  

vasin  vsasin  (y,x,n)  Sets  y(i)  to the  arc sine  of x(i),  for  

i=1,..,n  

vasinh  vsasinh  (y,x,n)  Sets  y(i)  to the  arc hyperbolic  

sine  of x(i), for  i=1,..,n  

vatan2  vsatan2  (z,x,y,n)  Sets  z(i)  to the  arc  tangent  of 

x(i)/y(i),  for i=1,..,n  

vatanh  vsatanh  (y,x,n)  Sets  y(i)  to the  arc hyperbolic  

tangent  of x(i),  for i=1,..,n  

 

26 Using the IBM XL Compilers  for Blue Gene



Table 12.  MASS  floating-point  vector  library  functions  (XL  Fortran)  (continued)  

Double-
precision  

function  

Single-precision  

function  Arguments  Description  

vcbrt  vscbrt  (y,x,n)  Sets  y(i)  to the  cube  root  of x(i),  

for  i=1,..,n  

vcos  vscos  (y,x,n)  Sets  y(i)  to the  cosine  of x(i),  for  

i=1,..,n  

vcosh  vscosh  (y,x,n)  Sets  y(i)  to the  hyperbolic  cosine  

of x(i),  for i=1,..,n  

vcosisin  vscosisin  (y,x,n)  Sets  the real  part  of y(i) to the 

cosine  of x(i)  and  the  imaginary  

part  of y(i) to the  sine  of x(i),  for 

i=1,..,n  

vdint  (y,x,n)  Sets  y(i)  to the  integer  truncation  

of x(i),  for i=1,..,n  

vdiv  vsdiv  (z,x,y,n)  Sets  z(i)  to x(i)/y(i),  for  i=1,..,n  

vdnint  (y,x,n)  Sets  y(i)  to the  nearest  integer  to 

x(i),  for i=1,..,n  

vexp  vsexp  (y,x,n)  Sets  y(i)  to the  exponential  

function  of x(i),  for i=1,..,n  

vexpm1  vsexpm1  (y,x,n)  Sets  y(i)  to (the  exponential  

function  of x(i))-1,  for  i=1,..,n  

vlog  vslog  (y,x,n)  Sets  y(i)  to the  natural  logarithm  

of x(i),  for i=1,..,n  

vlog10  vslog10  (y,x,n)  Sets  y(i)  to the  base-10  logarithm  

of x(i),  for i=1,..,n  

vlog1p  vslog1p  (y,x,n)  Sets  y(i)  to the  natural  logarithm  

of (x(i)+1),  for i=1,..,n  

vpow  vspow  (z,x,y,n)  Sets  z(i)  to x(i) raised  to the 

power  y(i),  for i=1,..,n  

vqdrt  vsqdrt  (y,x,n)  Sets  y(i)  to the  4th  root  of x(i),  

for  i=1,..,n  

vrcbrt  vsrcbrt  (y,x,n)  Sets  y(i)  to the  reciprocal  of the 

cube  root  of x(i),  for i=1,..,n  

vrec  vsrec  (y,x,n)  Sets  y(i)  to the  reciprocal  of x(i),  

for  i=1,..,n  

vrqdrt  vsrqdrt  (y,x,n)  Sets  y(i)  to the  reciprocal  of the 

4th  root  of x(i),  for  i=1,..,n  

vrsqrt  vsrsqrt  (y,x,n)  Sets  y(i)  to the  reciprocal  of the 

square  root  of x(i), for i=1,..,n  

vsin  vssin  (y,x,n)  Sets  y(i)  to the  sine  of x(i), for  

i=1,..,n  

vsincos  vssincos  (y,z,x,n)  Sets  y(i)  to the  sine  of x(i) and  

z(i)  to the  cosine  of x(i),  for 

i=1,..,n  

vsinh  vssinh  (y,x,n)  Sets  y(i)  to the  hyperbolic  sine  of 

x(i),  for i=1,..,n  

vsqrt  vssqrt  (y,x,n)  Sets  y(i)  to the  square  root  of 

x(i),  for i=1,..,n  

 

Chapter  3. Using the high performance  libraries  27



Table 12.  MASS  floating-point  vector  library  functions  (XL  Fortran)  (continued)  

Double-
precision  

function  

Single-precision  

function  Arguments  Description  

vtan  vstan  (y,x,n)  Sets  y(i)  to the  tangent  of x(i),  for  

i=1,..,n  

vtanh  vstanh  (y,x,n)  Sets  y(i)  to the  hyperbolic  

tangent  of x(i),  for i=1,..,n
  

XL  C/C++  Integer  functions  are  of the  form  function_name  (x[],  *n),  where  x[]  is a 

vector  of  4-byte  (for  vpopcnt4) or  8-byte  (for  vpopcnt8) numeric  objects  (integral  or  

floating-point),  and  *n is  the  vector  length.  

 Table 13.  MASS  integer  vector  library  functions  (XL  C/C++)  

Function  Description  Prototype  

vpopcnt4  Returns  the  total  number  of 1 bits  in the  

concatenation  of the  binary  

representation  of x[i], for i=0,..,*n–1  , 

where  x is a vector  of 32-bit  objects.  

unsigned  int vpopcnt4  (void  *x, 

int  *n) 

vpopcnt8  Returns  the  total  number  of 1 bits  in the  

concatenation  of the  binary  

representation  of x[i], for i=0,..,*n–1  , 

where  x is a vector  of 64-bit  objects.  

unsigned  int vpopcnt8  (void  *x, 

int  *n)

  

 Table 14.  MASS  integer  vector  library  functions  (XL  Fortran)  

Function  Description  Interface  

vpopcnt4  Returns  the  total  number  of 1 bits  in the  

concatenation  of the  binary  

representation  of x(i),  for  i=1,...,n,  where  

x is vector  of 32-bit  objects  

integer*4  function  vpopcnt4  

(x,  n) integer*4  x(*),  n 

vpopcnt8  Returns  the  total  number  of 1 bits  in the  

concatenation  of the  binary  

representation  of x(i),  for  i=1,...,n,  where  

x is vector  of 64-bit  objects  

integer*4  function  vpopcnt8  

(x,  n) integer*8  x(*)  

integer*4  n

  

The  following  example  shows  XL  Fortran  interface  declarations  for  some  of  the  

MASS  double-precision  vector  routines:  

interface  

  

subroutine  vsqrt  (y,  x,  n) 

  real*8  y(*),  x(*)  

  integer  n        ! Sets  y(i)  to the  square  root  of x(i),  for  i=1,..,n  

end  subroutine  vsqrt  

  

subroutine  vrsqrt  (y,  x, n) 

  real*8  y(*),  x(*)  

  integer  n        ! Sets  y(i)  to the  reciprocal  of the  square  root  of x(i),  

                   ! for  i=1,..,n  

end  subroutine  vrsqrt  

  

end  interface  

The  following  example  shows  XL  Fortran  interface  declarations  for  some  of  the  

MASS  single-precision  vector  routines:  

 

28 Using the IBM XL Compilers  for Blue Gene



interface  

  

subroutine  vssqrt  (y,  x, n) 

  real*4  y(*),  x(*)  

  integer  n       ! Sets  y(i)  to the square  root  of  x(i),  for i=1,..,n  

end  subroutine  vssqrt  

  

subroutine  vsrsqrt  (y,  x, n) 

  real*4  y(*),  x(*)  

  integer  n       ! Sets  y(i)  to the reciprocal  of the  square  root  of x(i),  

                   ! for  i=1,..,n  

end  subroutine  vsrsqrt  

  

end  interface  

Overlap of input and output vectors 

In  most  applications,  the  MASS  vector  functions  are  called  with  disjoint  input  and  

output  vectors;  that  is,  the  two  vectors  do  not  overlap  in  memory.  Another  

common  usage  scenario  is to  call  them  with  the  same  vector  for  both  input  and  

output  parameters  for  example,  vsin  (y,  y,  &n)  (XL  C/C++)  or  vsin  (y,  y, n)  

(XL  Fortran).  Other  kinds  of  overlap  (where  input  and  output  vectors  are  neither  

disjoint  nor  identical)  should  be  avoided,  since  they  may  produce  unexpected  

results:  

v   For  calls  to  vector  functions  that  take  one  input  and  one  output  vector  (for  

example,   vsin  (y,  x,  n)):  

The  vectors  x[0:n-1]  and  y[0:n-1]  (XL  C/C++)  or  x(1:n)  and  y(1:n)  (XL  

Fortran)  must  be  either  disjoint  or  identical,  or  unexpected  results  may  be  

obtained.  

v   For  calls  to  vector  functions  that  take  two  input  vectors,  for  example,  vatan2  (y,  

x1,  x2,  &n)  (XL  C/C++)  or  vatan2  (y,  x1,  x2,  n)  (XL  Fortran):  

The  previous  restriction  applies  to both  pairs  of  vectors  y,x1  and  y,x2.  That  is,  

y[0:n-1]  and  x1[0:n-1]  (XL  C/C++)  or  y(1:n)  and  x1(1:n)  (XL  Fortran)  must  

be  either  disjoint  or  identical;  and  y[0:n-1]  and  x2[0:n-1]  (XL  C/C++)  or  

y(1:n)  and  x2(1:n)  (XL  Fortran)  must  be  either  disjoint  or  identical.  

v   For  calls  to  vector  functions  that  take  two  output  vectors,  for  example,  vsincos  

(y1,  y2,  x,  &n)  (XL  C/C++)  or  vsincos  (y1,  y2,  x,  n)  (XL  Fortran):  

The  above  restriction  applies  to  both  pairs  of  vectors  y1,x  and  y2,x.  That  is,  

y1[0:n-1]  and  x[0:n-1]  (XL  C/C++)  or  y1(1:n)  and  x(1:n)  (XL  Fortran)  must  

be  either  disjoint  or  identical;  and  y2[0:n-1]  and  x[0:n-1]  (XL  C/C++)  or  

y2(1:n)  and  x(1:n)  (XL  Fortran)  must  be  either  disjoint  or  identical.  Also,  the  

vectors  y1[0:n-1]  and  y2[0:n-1]  (XL  C/C++)  or  y1(1:n)  and  y2(1:n)  (XL  

Fortran)  must  be  disjoint.

Consistency of MASS vector functions 

All  the  functions  in  the  MASS  vector  libraries  are  consistent,  in  the  sense  that  a 

given  input  value  will  always  produce  the  same  result,  regardless  of its  position  in  

the  vector,  and  regardless  of  the  vector  length.  

Compiling and linking a program with MASS 

To compile  an  application  that  calls  the  functions  in  the  MASS  libraries,  specify  

mass  and  massv  on  the  -l  linker  option.  

For  example,  if the  MASS  libraries  are  installed  in  the  default  directory,  you  could  

specify  one  of  the  following:  

bgxlc  progc.c  -o progc  -lmass  -lmassv  

  

bgxlf  progf.f  -o progf  -lmass  -lmassv  

 

Chapter  3. Using the high performance  libraries  29



The  MASS  functions  must  run in  the  default  rounding  mode  and  floating-point  

exception  trapping  settings.  

Using libmass.a with the math system library 

If you  wish  to  use  the  libmass.a  scalar  library  for  some  functions  and  the  normal  

math  library  libm.a  for  other  functions,  follow  this  procedure  to  compile  and  link  

your  program:  

1.   Use  the  ar  command  to  extract  the  object  files  of  the  desired  functions  from  

libmass.a.  For  most  functions,  the  object  file  name  is  the  function  name  

followed  by  .s32.o.1 For  example,  to extract  the  object  file  for  the  tan  function,  

the  command  would  be:  

ar -x tan.s32.o  libmass.a  

2.   Archive  the  extracted  object  files  into  another  library:  

 ar -qv  libfasttan.a  tan.s32.o  

 ranlib  libfasttan.a  

3.   Create  the  final  executable  using  bgxlc  or  bgxlf, specifying  -lfasttan  instead  of  

-lmass: 

bgxlc  sample.c  -o sample  dir_containing_libfasttan  -lfasttan  

  

OR 

  

bgxlf  sample.f  -o sample  -L dir_containing_libfasttan  -lfasttan  

This  links  only  the  tan  function  from  MASS  (now  in  libfasttan.a) and  the  

remainder  of  the  math  functions  from  the  standard  system  library.

Exceptions:   

1.   The  sin  and  cos  functions  are  both  contained  in the  object  file  sincos.s32.o.  The  

cosisin  and  sincos  functions  are  both  contained  in  the  object  file  cosisin.s32.o.

 

30 Using the IBM XL Compilers  for Blue Gene



Chapter  4.  Using  XL  builtin  floating-point  functions  for  Blue  

Gene  

The  XL  C/C++  and  XL  Fortran  compilers  include  a set  of built-in  functions  that  are  

optimized  for  the  PowerPC  architecture.  For  a full  description  of  them,  refer  to the  

following  documents  (available  from  the  Web pages  listed  at the  beginning  of  this  

chapter):  

v   Built-in  functions  for  POWER™ and  PowerPC  architectures  in  XL  C/C++  Advanced  

Edition  for  Linux,  V9.0  Compiler  Reference  

v   Intrinsic  procedures  in  XL  Fortran  Advanced  Edition  for  Linux,  V11.1  Language  

Reference  

In  addition,  on  Blue  Gene,  the  XL  compilers  provide  a set  of built-in  functions  that  

are  specifically  optimized  for  the  PowerPC  440  or  PowerPC  450  Double  Hummer  

dual  FPU.  These  built-in  functions  provide  an  almost  one-to-one  correspondence  

with  the  Double  Hummer  instruction  set.  

All  of  the  C/C++  and  Fortran  built-in  functions  operate  on  complex  data  types,  

which  have  an  underlying  representation  of  a two-element  array,  in  which  the  real  

part  represents  the  primary  element  and  the  imaginary  part  represents  the  second  

element.  The  input  data  you  provide  does  not  actually  need  to  represent  complex  

numbers:  in  fact,  both  elements  are  represented  internally  as two  real  values,  and  

none  of the  built-in  functions  actually  performs  complex  arithmetic.  A set  of  

built-in  functions  especially  designed  to  efficiently  manipulate  complex-type  

variables  is  also  available.  

The  Blue  Gene  built-in  functions  perform  the  several  types  of  operations  as 

explained  in  the  following  paragraphs.  

Parallel  operations  perform  SIMD  computations  on  the  primary  and  secondary  

elements  of one  or  more  input  operands.  They  store  the  results  in  the  

corresponding  elements  of the  output.  As  an  example,  Figure  8 on  page  32  

illustrates  how  a parallel  multiply  operation  is  performed.  

 

 

© Copyright  IBM Corp. 2006, 2007 31



Cross  operations  perform  SIMD  computations  on  the  opposite  primary  and  

secondary  elements  of one  or  more  input  operands.  They  store  the  results  in  the  

corresponding  elements  in  the  output.  As  an  example,  Figure  9 illustrates  how  a 

cross-multiply  operation  is performed.  

 

 Copy-primary  operations  perform  SIMD  computation  between  the  corresponding  

primary  and  secondary  elements  of two  input  operands,  where  the  primary  

element  of  the  first  operand  is replicated  to the  secondary  element.  As  an  example,  

Figure  10  on  page  33  illustrates  how  a cross-primary  multiply  operation  is 

performed.  

 

  

Figure  8. Parallel  operations

  

Figure  9. Cross  operations

 

32 Using the IBM XL Compilers  for Blue Gene



Copy-secondary  operations  perform  SIMD  computation  between  the  corresponding  

primary  and  secondary  elements  of two  input  operands,  where  the  secondary  

element  of  the  first  operand  is replicated  to  the  primary  element.  As  an  example,  

Figure  11 illustrates  how  a cross-secondary  multiply  operation  is performed.  

 

 In  cross-copy  operations,  the  compiler  crosses  either  the  primary  or  secondary  

element  of  the  first  operand,  so  that  copy-primary  and  copy-secondary  operations  

can  be  used  interchangeably  to  achieve  the  same  result.  The  operation  is performed  

on  the  total  value  of  the  first  operand.  As  an  example,  Figure  12  on  page  34 

illustrates  the  result  of a cross-copy  multiply  operation.  

 

  

Figure  10. Copy-primary  operations

  

Figure  11.  Copy-secondary  operations

 

Chapter  4. Using XL builtin  floating-point  functions  for Blue Gene 33



The  following  sections  describe  the  available  built-in  functions  by  category:  

v   Complex  type  manipulation  functions  

v   Load  and  store  functions  

v   Move  functions  

v   Arithmetic  functions  

v   Select  functions  

For  each  function,  the  C/C++  prototype  is provided.  In  C,  you  do  not  need  to  

include  a header  file  to  obtain  the  prototypes.  The  compiler  includes  them  

automatically.  In  C++,  you  need  to include  the  header  file  builtins.h. 

Fortran  does  not  use  prototypes  for  built-in  functions.  Therefore,  the  interfaces  for  

the  Fortran  functions  are  provided  in  textual  form.  The  function  names  omit  the  

double  underscore  (__  ) in  Fortran.  

All  of  the  built-in  functions,  with  the  exception  of  the  complex  type  manipulation  

functions,  require  compilation  under  -qarch=440d  for  Blue  Gene/L,  or  -qarch=450d  

for  Blue  Gene/P.  This  is the  default  setting  for  these  processors.  

To help  clarify  the  English  description  of each  function,  the  following  notation  is 

used:  

element  (variable  ) 

where  element  represents  one  of  primary  or  secondary  , and  variable  represents  input  

variable  a , b , or  c , and  the  output  variable  result  . For  example,  consider  the  

following  formula:  

primary(result)  = primary(a)  + primary(b)  

The  formula  indicates  that  the  primary  element  of input  variable  a is added  to the  

primary  element  of  input  variable  b and  stored  in  the  primary  element  of  the  

result. 

  

Figure  12. Cross-copy  operations

 

34 Using the IBM XL Compilers  for Blue Gene



To optimize  your  calls  to  the  Blue  Gene  built-in  functions,  follow  the  guidelines  

provided  in  Tuning  your  code  for  Blue  Gene.  Using  the  alignx  built-in  function  

(described  in  Checking  for  data  alignment),  and  specifying  the  disjoint  pragma  

(described  in  Removing  possibilities  for  aliasing  (C/C++)),  are  recommended  for  

code  that  calls  any  of  the  built-in  functions.  

Complex type manipulation functions 

The  functions  described  in  this  section  are  useful  for  efficiently  manipulating  

complex  data  types,  by  allowing  you  to  automatically  convert  real  floating-point  

data  to  complex  types,  and  to extract  the  real  (primary)  and  imaginary  (secondary)  

parts  of  complex  values.  

 Table 15.  Complex  type  manipulation  functions  

 Function   Convert  dual  reals  to complex  (single-precision):  __cmplxf  

Purpose  Converts  two  single-precision  real  values  to a single  complex  value.  The  

real  a is converted  to the primary  element  of the  return  value,  and  the real  

b is converted  to the  secondary  element  of the return  value.  

Formula  primary(result)  = a 

secondary(result)  = b 

C/C++  

prototype  

float  _Complex  __cmplxf  (float  a, float  b); 

Fortran  

description  

CMPLX(A,B)  

 where  A is of type  REAL(4)  

where  B is of type  REAL(4)  

result  is of type  COMPLEX(4)  

 Function   Convert  dual  reals  to complex  (double-precision):  __cmplx  

Purpose  Converts  two  double-precision  real  values  to a single  complex  value.  The  

real  a is converted  to the primary  element  of the  return  value,  and  the real  

b is converted  to the  secondary  element  of the return  value.  

Formula  primary(result)  = a 

secondary(result)  = b 

C/C++  

prototype  

double  _Complex  __cmplx  (double  a, double  b); 

long  double  _Complex  __cmplxl  (long  double  a, long  double  b);1 

Fortran  

description  

CMPLX(A,B)  

 where  A is of type  REAL(8)  

where  B is of type  REAL(8)  

result  is of type  COMPLEX(8)  

 Function   Extract  real  part  of complex  (single-precision):  __crealf  

Purpose  Extracts  the  primary  part  of a single-precision  complex  value  a , and  

returns  the  result  as a single  real  value.  

Formula  result  = primary(a)  

C/C++  

prototype  

float  __crealf  (float  _Complex  a); 

Fortran  

description  

N/A  

 Function   Extract  real  part  of complex  (double-precision):  __creal,  __creall  

Purpose  Extracts  the  primary  part  of a double-precision  complex  value  a , and  

returns  the  result  as a single  real  value.  

 

Chapter  4. Using XL builtin  floating-point  functions  for Blue Gene 35



Table 15.  Complex  type  manipulation  functions  (continued)  

Formula  result  = primary(a)  

C/C++  

prototype  

double  __creal  (double  _Complex  a); 

long  double  __creall  (long  double  _Complex  a);1 

Fortran  

description  

N/A  

 Function   Extract  imaginary  part  of complex  (single-precision):  __cimagf  

Purpose  Extracts  the secondary  part  of a single-precision  complex  value  a , and  

returns  the  result  as a single  real  value.  

Formula  result  = secondary(a)  

C/C++  

prototype  

float  __cimagf  (float  _Complex  a); 

Fortran  

description  

N/A  

 Function   Extract  imaginary  part  of complex  (double-precision):  __cimag,  __cimagl  

Purpose  Extracts  the imaginary  part  of a double-precision  complex  value  a , and  

returns  the  result  as a single  real  value.  

Formula  result  =secondary(a)  

C/C++  

prototype  

double  __cimag  (double  _Complex  a); long  double  __cimagl  (long  double  

_Complex  a);1 

Fortran  

description  

N/A  

Notes:   

1.   128-bit  C/C++  long  double  types  are  not  supported  on Blue  Gene/L.  Long  doubles  are  

treated  as regular  double-precision  doubles.
  

Load and store functions 

Table  16  lists  and  explains  the  various  parallel  load  and  store  functions  that  are  

available.  

 Table 16.  Load  and  store  functions  

 Function   Parallel  load  (single-precision):  __lfps  

Purpose  Loads  parallel  single-precision  values  from  the  address  of a , and  converts  

the  results  to double-precision.  The  first  word  in address(a)  is loaded  into  

the  primary  element  of the  return  value.  The  next  word,  at location  

address(a)  +4,  is loaded  into  the  secondary  element  of the return  value.  

Formula  primary(result)  = a[0]  

secondary(result)  = a[1] 

C/C++  

prototype  

double  _Complex  __lfps  (float  * a); 

Fortran  

description  

LOADFP(A)

 where  A is of type  REAL(4)  or COMPLEX(4)  

result  is of type  COMPLEX(8)  

 Function   Cross  load  (single-precision):  __lfxs  

 

36 Using the IBM XL Compilers  for Blue Gene



Table 16.  Load  and  store  functions  (continued)  

Purpose  Loads  single-precision  values  that  have  been  converted  to double-precision,  

from  the  address  of a. The  first  word  in address(a)  is loaded  into  the  

secondary  element  of the  return  value.  The  next  word,  at location  address(a)  

+4,  is loaded  into  the  primary  element  of the return  value.  

Formula  primary(result)  = a[1] 

secondary(result)  = a[0]  

C/C++  

prototype  

double  _Complex  __lfxs  (float  * a); 

Fortran  

description  

LOADFX(A)  

 where  A is of type  REAL(4)  or COMPLEX(4)  

result  is of type  COMPLEX(8)  

 Function   Parallel  load:  __lfpd  

Purpose  Loads  in parallel  values  from  the  address  of a. The  first  word  in address(a)  

is loaded  into  the  primary  element  of the  return  value.  The  next  word,  at 

location  address(a)  +8,  is loaded  into  the secondary  element  of the  return  

value.  

Formula  primary(result)  = a[0] 

secondary(result)  = a[1]  

C/C++  

prototype  

double  _Complex  __lfpd(double*  a); 

Fortran  

description  

LOADFP(A)  

 where  A is of type  REAL(8)  or COMPLEX(8)  

result  is of type  COMPLEX(8)  

 Function   Cross  load:  __lfxd  

Purpose  Loads  values  from  the  address  of a. The  first  word  in address(a)  is loaded  

into  the secondary  element  of the  return  value.  The  next  word,  at location  

address(a)  +8,  is loaded  into  the  primary  element  of the return  value.  

Formula  primary(result)  = a[1] 

secondary(result)  = a[0]  

C/C++  

prototype  

double  _Complex  __lfxd  (double  * a); 

Fortran  

description  

LOADFX(A)  

 where  A is of type  REAL(8)  or COMPLEX(8)  

result  is of type  COMPLEX(8)  

 Function   Parallel  store  (single-precision):  __stfps  

Purpose  Stores  in parallel  double-precision  values  that  have  been  converted  to 

single-precision,  into  address(b). The  primary  element  of a is converted  to 

single-precision  and  stored  as the  first  word  in  address(b). The  secondary  

element  of a is converted  to single-precision  and  stored  as the  next  word  at 

location  address(b)  +4. 

Formula  b[0]  = primary(a)  

b[1]  = secondary(a)  

C/C++  

prototype  

void  __stfps  (float  * b, double  _Complex  a); 

 

Chapter  4. Using XL builtin  floating-point  functions  for Blue Gene 37



Table 16.  Load  and  store  functions  (continued)  

Fortran  

description  

STOREFP(B,A)  

 where  B is of type  REAL(4)  or COMPLEX(4)  

where  A is of type  COMPLEX(8)  

result  is none  

 Function   Cross  store  (single-precision):  __stfxs  

Purpose  Stores  double-precision  values  that  have  been  converted  to single-precision,  

into  address(b). The  secondary  element  of a is converted  to single-precision  

and  stored  as the  first  word  in address(b). The  primary  element  of a is 

converted  to single-precision  and  stored  as the  next  word  at location  

address(b)  +4. 

Formula  b[0]  = secondary(a)  

b[1]  = primary(a)  

C/C++  

prototype  

void  __stfxs  (float  * b, double  _Complex  a); 

Fortran  

description  

STOREFX(B,A)  

 where  B is of type  REAL(4)  or COMPLEX(4)  

where  A is of type  COMPLEX(8)  

result  is none  

 Function   Parallel  store:  __stfpd  

Purpose  Stores  in  parallel  values  into  address(b). The  primary  element  of a is stored  

as the  first  double  word  in address(b). The  secondary  element  of a is stored  

as the  next  double  word  at location  address(b)  +8.  

Formula  b[0]  = primary(a)  

b[1]  = secondary(a)  

C/C++  

prototype  

void  __stfpd  (double  * b, double  _Complex  a); 

Fortran  

description  

STOREFP(B,A)  

 where  B is of type  REAL(8)  or  COMPLEX(8)  

where  A is of type  COMPLEX(8)  

result  is none  

 Function   Cross  store:  __stfxd  

Purpose  Stores  values  into  address(b). The  secondary  element  of a is stored  as the 

first  double  word  in address(b). The  primary  element  of a is stored  as the  

next  double  word  at location  address(b)  +8. 

Formula  b[0]  = secondary(a)  

b[1]  = primary(a)  

C/C++  

prototype  

void  __stfxd  (double  * b, double  _Complex  a); 

Fortran  

description  

STOREFX(B,A)  

 where  B is of type  REAL(8)  or  COMPLEX(8)  

where  A is of type  COMPLEX(8)  

result  is none  

 Function   Parallel  store  as integer:  __stfpiw  

 

38 Using the IBM XL Compilers  for Blue Gene



Table 16.  Load  and  store  functions  (continued)  

Purpose  Stores  in parallel  floating-point  double-precision  values  into  b as integer  

words.  The  lower-order  32  bits of the primary  element  of a are  stored  as the 

first  integer  word  in address(b). The  lower-order  32 bits  of the secondary  

element  of a are  stored  as the next  integer  word  at location  address(b)  +4. 

This  function  is typically  preceded  by a call  to the  __fpctiw  or __fpctiwz  

built-in  functions,  described  in Unary  functions,  which  perform  parallel  

conversion  of dual  floating-point  values  to integers.  

Formula  

 b[0]  = primary(a)  

b[1]  = secondary(a)  

C/C++  

prototype  

void  __stfpiw  (int  * b, double  _Complex  a); 

Fortran  

description  

STOREFP(B,A)  

 where  B is of type  INTEGER(4)  

where  A is of type  COMPLEX(8)  

result  is none  

  

Move functions 

 Table 17.  

 Function   Cross  move:  __fxmr  

Purpose  Swaps  the  values  of the primary  and  secondary  elements  of operand  a. 

Formula  primary(result)  = secondary(a)  

secondary(result)  = primary(a)  

C/C++  

prototype  

double  _Complex  __fxmr  (double  _Complex  a); 

Fortran  

description  

FXMR(A)  

 where  A is of type  COMPLEX(8)  

result  is of type  COMPLEX(8)  

  

Arithmetic functions 

The  following  sections  describe  all  the  arithmetic  built-in  functions,  categorized  by  

their  number  of operands:  

v   Unary  functions  

v   Binary  functions  

v   Multiply-add  functions

Unary functions 

Unary  functions  operate  on  a single  input  operand.  These  functions  are  listed  in  

Table 18.  

 Table 18.  Unary  functions  

 Function   Parallel  convert  to integer:  __fpctiw  

 

Chapter  4. Using XL builtin  floating-point  functions  for Blue Gene 39



Table 18.  Unary  functions  (continued)  

Purpose  Converts  in  parallel  the  primary  and  secondary  elements  of operand  a to 

32-bit  integers.  After  a call  to this  function,  use  the  __stfpiw  function  to  

store  the converted  integers  in parallel,  as described  in Load  and  store  

functions.  

Formula   primary(result)  = primary(a)  

secondary(result)  = secondary(a)  

C/C++  

prototype  

double  _Complex  __fpctiw  (double  _Complex  a); 

Fortran  

description  

FPCTIW(A)  

 where  A is of type  COMPLEX(8)  

result  is of type  COMPLEX(8)  

 Function   Parallel  convert  to integer  and  round  to zero:  __fpctiwz  

Purpose  Converts  in  parallel  the  primary  and  secondary  elements  of operand  a to 32 

bit  integers  and  rounds  the results  to zero.  After  a call  to this  function,  you  

will  want  to use  the  __stfpiw  function  to store  the  converted  integers  in 

parallel,  as described  in Load  and  store  functions.  

Formula  primary(result)  = primary(a)  

secondary(result)  = secondary(a)  

C/C++  

prototype  

double  _Complex  __fpctiwz(double  _Complex  a); 

Fortran  

description  

FPCTIWZ(A)  

 where  A is of type  COMPLEX(8)  

result  is of type  COMPLEX(8)  

 Function   Parallel  round  double-precision  to single-precision:  __fprsp  

Purpose  Rounds  in parallel  the  primary  and  secondary  elements  of double-precision  

operand  a to single  precision.  

Formula  primary(result)  = primary(a)  

secondary(result)  = secondary(a)  

C/C++  

prototype  

double  _Complex  __fprsp  (double  _Complex  a); 

Fortran  

description  

FPRSP(A)  

 where  A is of type  COMPLEX(8)  

result  is of type  COMPLEX(8)  

 Function   Parallel  reciprocal  estimate:  __fpre  

Purpose  Calculates  in  parallel  double-precision  estimates  of the  reciprocal  of the 

primary  and  secondary  elements  of operand  a. 

Formula  primary(result)  = primary(a)  

secondary(result)  = secondary(a)  

C/C++  

prototype  

double  _Complex  __fpre(double  _Complex  a); 

Fortran  

description  

FPRE(A)  

 where  A is of type  COMPLEX(8)  

result  is of type  COMPLEX(8)  

 Function   Parallel  reciprocal  square  root:  __fprsqrte  

Purpose  Calculates  in  parallel  double-precision  estimates  of the  reciprocals  of the 

square  roots  of the primary  and  secondary  elements  of operand  a. 

 

40 Using the IBM XL Compilers  for Blue Gene



Table 18.  Unary  functions  (continued)  

Formula  primary(result)  = primary(a)  

secondary(result)  = secondary(a)  

C/C++  

prototype  

double  _Complex  __fprsqrte  (double  _Complex  a); 

Fortran  

description  

FPRSQRTE(A)  

 where  A is of type  COMPLEX(8)  

result  is of type  COMPLEX(8)  

 Function   Parallel  negate:  __fpneg  

Purpose  Calculates  in parallel  the  negative  absolute  values  of the  primary  and  

secondary  elements  of operand  a. 

Formula  primary(result)  = primary(a)  

secondary(result)  = secondary(a)  

C/C++  

prototype  

double  _Complex  __fpneg  (double  _Complex  a); 

Fortran  

description  

FPNEG(A)  

 where  A is of type  COMPLEX(8)  

result  is of type  COMPLEX(8)  

 Function   Parallel  absolute:  __fpabs  

Purpose  Calculates  in parallel  the  absolute  values  of the  primary  and  secondary  

elements  of operand  a. 

Formula  primary(result)  = primary(a)  

secondary(result)  = secondary(a)  

C/C++  

prototype  

double  _Complex  __fpabs  (double  _Complex  a); 

Fortran  

description  

FPABS(A)  

 where  A is of type  COMPLEX(8)  

result  is of type  COMPLEX(8)  

 Function   Parallel  negate  absolute:  __fpnabs  

Purpose  Calculates  in parallel  the  negative  absolute  values  of the  primary  and  

secondary  elements  of operand  a. 

Formula  primary(result)  = primary(a)  

secondary(result)  = secondary(a)  

C/C++  

prototype  

double  _Complex  __fpnabs  (double  _Complex  a); 

Fortran  

description  

FPNABS(A)  

 where  A is of type  COMPLEX(8)  

result  is of type  COMPLEX(8)  

  

Binary functions 

Binary  functions  operate  on  two  input  operands.  The  functions  are  listed  in  

Table 19.  

 Table 19.  

 Function   Parallel  add:  __fpadd  

 

Chapter  4. Using XL builtin  floating-point  functions  for Blue Gene 41



Table 19.  (continued)  

Purpose  Adds  in parallel  the  primary  and  secondary  elements  of operands  a and  b. 

Formula  primary(result)  = primary(a)  + primary(b)  

secondary(result)  = secondary(a)  + secondary(b)  

C/C++  

prototype  

double  _Complex  __fpadd  (double  _Complex  a, double  _Complex  b); 

Fortran  

description  

FPADD(A,B)  

 where  A is of type  COMPLEX(8)  

where  B is of type  COMPLEX(8)  

result  is of type  COMPLEX(8)  

 Function   Parallel  subtract:  __fpsub  

Purpose  Subtracts  in parallel  the  primary  and  secondary  elements  of operand  b from  

the  corresponding  primary  and  secondary  elements  of operand  a. 

Formula  primary(result)  = primary(a)  - primary(b)  

secondary(result)  = secondary(a)  - secondary(b)  

C/C++  

prototype  

double  _Complex  __fpsub  (double  _Complex  a, double  _Complex  b);  

Fortran  

description  

FPSUB(A,B)  

 where  A is of type  COMPLEX(8)  

where  B is of type  COMPLEX(8)  

result  is of type  COMPLEX(8)  

 Function   Parallel  multiply:  __fpmul  

Purpose  Multiples  in parallel  the  values  of primary  and  secondary  elements  of 

operands  a and  b. 

Formula  primary(result)  = primary(a)  × primary(b)  

secondary(result)  = secondary(a)  × secondary(b)  

C/C++  

prototype  

double  _Complex  __fpmul  (double  _Complex  a, double  _Complex  b); 

Fortran  

description  

FPMUL(A,B)  

 where  A is of type  COMPLEX(8)  

where  B is of type  COMPLEX(8)  

result  is of type  COMPLEX(8)  

 Function   Cross  multiply:  __fxmul  

Purpose  The  product  of the  secondary  element  of a and  the  primary  element  of b is 

stored  as the  primary  element  of the  return  value.  The  product  of the  

primary  element  of a and  the  secondary  element  of b is stored  as the  

secondary  element  of the  return  value.  

Formula  primary(result)  = secondary(a)  x primary(b)  

secondary(result)  = primary(a)  × secondary(b)  

C/C++  

prototype  

double  _Complex  __fxmul  (double  _Complex  a, double  _Complex  b);  

Fortran  

description  

FXMUL(A,B)  

 where  A is of type  COMPLEX(8)  

where  B is of type  COMPLEX(8)  

result  is of type  COMPLEX(8)  

 Function   Cross  copy  multiply:  _fxpmul,  __fxsmul  

 

42 Using the IBM XL Compilers  for Blue Gene



Table 19.  (continued)  

Purpose  Both  of these  functions  can  be used  to achieve  the  same  result.  The  product  

of a and  the  primary  element  of b is stored  as the primary  element  of the  

return  value.  The  product  of a and  the  secondary  element  of b is stored  as 

the  secondary  element  of the  return  value.  

Formula  primary(result)  = a x primary(b)  

secondary(result)  = a x secondary(b)  

C/C++  

prototype  

double  _Complex  __fxpmul  (double  _Complex  b, double  a); 

double  _Complex  __fxsmul  (double  _Complex  b, double  a); 

Fortran  

description  

FXPMUL(B,A)  or FXSMUL(B,A)  

 where  B is of type  COMPLEX(8)  

where  A is of type  COMPLEX(8)  

result  is of type  COMPLEX(8)  

  

Multiply-add functions 

Multiply-add  functions  take  three  input  operands,  multiply  the  first  two,  and  add  

or  subtract  the  third.  

 Table 20.  

 Function   Parallel  multiply-add:  __fpmadd  

Purpose  The  sum  of the  product  of the  primary  elements  of a and  b, added  to the  

primary  element  of c, is stored  as the  primary  element  of the return  value.  

The  sum  of the  product  of the  secondary  elements  of a and  b, added  to the 

secondary  element  of c, is stored  as the  secondary  element  of the  return  

value.  

Formula  primary(result)  = primary(a)  × primary(b)  + primary(c)  

secondary(result)  = secondary(a)  × secondary(b)  + secondary(c)  

C/C++  

prototype  

double  _Complex  __fpmadd  (double  _Complex  c, double  _Complex  b, 

double  _Complex  a); 

Fortran  

description  

FPMADD(C,B,A)  

 where  C is of type  COMPLEX(8)  

where  B is of type  COMPLEX(8)  

where  A is of type  COMPLEX(8)  

result  is of type  COMPLEX(8)  

 Function   Parallel  negative  multiply-add:  __fpnmadd  

Purpose  The  sum  of the  product  of the  primary  elements  of a and  b, added  to the  

primary  element  of c, is negated  and  stored  as the  primary  element  of the 

return  value.  The  sum  of the  product  of the  secondary  elements  of a and  b, 

added  to the  secondary  element  of c, is negated  and  stored  as  the  

secondary  element  of the  return  value.  

Formula  primary(result)  = -(primary(a)  × primary(b)  + primary(c))  

secondary(result)  = -(secondary(a)  × secondary(b)  + secondary(c))  

C/C++  

prototype  

double  _Complex  __fpnmadd  (double  _Complex  c, double  _Complex  b, 

double  _Complex  a); 

Fortran  

description  

FPNMADD(C,B,A)  

 where  C is of type  COMPLEX(8)  

where  B is of type  COMPLEX(8)  

where  A is of type  COMPLEX(8)  

result  is of type  COMPLEX(8)  

 

Chapter  4. Using XL builtin  floating-point  functions  for Blue Gene 43



Table 20.  (continued)  

 Function   Parallel  multiply-subtract:  __fpmsub  

Purpose  The  difference  of the  primary  element  of c, subtracted  from  the  product  of 

the  primary  elements  of a and  b, is stored  as the  primary  element  of the 

return  value.  The  difference  of the  secondary  element  of c, subtracted  from  

the  product  of the  secondary  elements  of a and  b, is stored  as the  secondary  

element  of the return  value.  

Formula  primary(result)  = primary(a)  × primary(b)  - primary(c)  

secondary(result)  = secondary(a)  × secondary(b)  - secondary(c)  

C/C++  

prototype  

double  _Complex  __fpmsub  (double  _Complex  c, double  _Complex  b, 

double  _Complex  a); 

Fortran  

description  

FPMSUB(C,B,A)  

 where  C is of type  COMPLEX(8)  

where  B is of type  COMPLEX(8)  

where  A is of type  COMPLEX(8)  

result  is of type  COMPLEX(8)  

 Function   Parallel  negative  multiply-subtract:  __fpnmsub  

Purpose  The  difference  of the  primary  element  of c, subtracted  from  the  product  of 

the  primary  elements  of a and  b, is negated  and  stored  as the  primary  

element  of the return  value.  The  difference  of the  secondary  element  of c, 

subtracted  from  the  product  of the  secondary  elements  of a and  b, is 

negated  and  stored  as the  secondary  element  of the return  value.  

Formula  primary(result)  = -(primary(a)  × primary(b)  - primary(c))  

secondary(result)  = -(secondary(a)  × secondary(b)  - secondary(c))  

C/C++  

prototype  

double  _Complex  __fpnmsub  (double  _Complex  c, double  _Complex  b, 

double  _Complex  a); 

Fortran  

description  

FPNMSUB(C,B,A)  

 where  C is of type  COMPLEX(8)  

where  B is of type  COMPLEX(8)  

where  A is of type  COMPLEX(8)  

result  is of type  COMPLEX(8)  

 Function   Cross  multiply-add:  __fxmadd  

Purpose  The  sum  of the  product  of the  primary  element  of a and  the  secondary  

element  of b, added  to the  primary  element  of c, is stored  as the  primary  

element  of the return  value.  The  sum  of the product  of the secondary  

element  of a and  the  primary  element  of b, added  to the  secondary  element  

of c, is stored  as the secondary  element  of the return  value.  

Formula  primary(result)    = primary(a)  × secondary(b)  + primary(c)  

secondary(result)  = secondary(a)  × primary(b)  + secondary(c)  

C/C++  

prototype  

double  _Complex  __fxmadd  (double  _Complex  c, double  _Complex  b, 

double  _Complex  a); 

Fortran  

description  

FXMADD(C,B,A)  

 where  C is of type  COMPLEX(8)  

where  B is of type  COMPLEX(8)  

where  A is of type  COMPLEX(8)  

result  is of type  COMPLEX(8)  

 Function   Cross  negative  multiply-add:  __fxnmadd  

 

44 Using the IBM XL Compilers  for Blue Gene



Table 20.  (continued)  

Purpose  The  sum  of the  product  of the  primary  element  of a and  the  secondary  

element  of b, added  to the  primary  element  of c, is negated  and  stored  as 

the  primary  element  of the  return  value.  The  sum  of the  product  of the 

secondary  element  of a and  the  primary  element  of b, added  to the  

secondary  element  of c, is negated  and  stored  as the  secondary  element  of 

the  return  value.  

Formula  primary(result)   = -(primary(a)  × secondary(b)  + primary(c))  

secondary(result)  = -(secondary(a)  × primary(b)  + secondary(c))  

C/C++  

prototype  

double  _Complex  __fxnmadd  (double  _Complex  c, double  _Complex  b, 

double  _Complex  a); 

Fortran  

description  

FXNMADD(C,B,A)  

 where  C is of type  COMPLEX(8)  

where  B is of type  COMPLEX(8)  

where  A is of type  COMPLEX(8)  

result  is of type  COMPLEX(8)  

 Function   Cross  multiply-subtract:  __fxmsub  

Purpose  The  difference  of the  primary  element  of c, subtracted  from  the product  of 

the  primary  element  of a and  the  secondary  element  of b, is stored  as the 

primary  element  of the  return  value.  The  difference  of the  secondary  

element  of c, subtracted  from  the  product  of the  secondary  element  of a and  

the  primary  element  of b, is stored  as the  secondary  element  of the return  

value.  

Formula  primary(result)   = primary(a)  × secondary(b)  - primary(c)  

secondary(result)  = secondary(a)  × primary(b)  - secondary(c)  

C/C++  

prototype  

double  _Complex  __fxmsub  (double  _Complex  c, double  _Complex  b, 

double  _Complex  a); 

Fortran  

description  

FXMSUB(C,B,A)  

 where  C is of type  COMPLEX(8)  

where  B is of type  COMPLEX(8)  

where  A is of type  COMPLEX(8)  

result  is of type  COMPLEX(8)  

 Function   Cross  negative  multiply-subtract:  __fxnmsub  

Purpose  The  difference  of the  primary  element  of c, subtracted  from  the product  of 

the  primary  element  of a and  the  secondary  element  of b, is negated  and  

stored  as the  primary  element  of the  return  value.  The  difference  of the 

secondary  element  of c, subtracted  from  the product  of the secondary  

element  of a and  the primary  element  of b, is negated  and  stored  as the 

secondary  element  of the  return  value.  

Formula  primary(result)    = -(primary(a)  × secondary(b)  - primary(c))  

secondary(result)  = -(secondary(a)  × primary(b)  - secondary(c))  

C/C++  

prototype  

double  _Complex  __fxnmsub  (double  _Complex  c, double  _Complex  b, 

double  _Complex  a); 

Fortran  

description  

FXNMSUB(C,B,A)  

 where  C is of type  COMPLEX(8)  

where  B is of type  COMPLEX(8)  

where  A is of type  COMPLEX(8)  

result  is of type  COMPLEX(8)  

 Function   Cross  copy  multiply-add:  __fxcpmadd,  __fxcsmadd  

 

Chapter  4. Using XL builtin  floating-point  functions  for Blue Gene 45



Table 20.  (continued)  

Purpose  Both  of these  functions  can  be used  to achieve  the  same  result.  The  sum  of 

the  product  of a and  the  primary  element  of b, added  to the  primary  

element  of c , is stored  as the  primary  element  of the  return  value.  The  sum  

of the  product  of a and  the  secondary  element  of b, added  to the secondary  

element  of c , is stored  as the  secondary  element  of the  return  value.  

Formula  primary(result)  = a x primary(b)  + primary(c)  

secondary(result)  = a x secondary(b)  + secondary(c)  

C/C++  

prototype  

double  _Complex  __fxcpmadd  (double  _Complex  c, double  

          _Complex  b, double  a); 

double  _Complex  __fxcsmadd  (double  _Complex  c, double  

          _Complex  b, double  a); 

Fortran  

description  

FXCPMADD(C,B,A)  or FXCSMADD(C,B,A)  

 where  C is of type  COMPLEX(8)  

where  B is of type  COMPLEX(8)  

where  A is of type  REAL(8)  

result  is of type  COMPLEX(8)  

 Function   Cross  copy  negative  multiply-add:  __fxcpnmadd,  __fxcsnmadd  

Purpose  Both  of these  functions  can  be used  to achieve  the  same  result.  The  

difference  of the  primary  element  of c, subtracted  from  the  product  of a and  

the  primary  element  of b, is negated  and  stored  as the  primary  element  of 

the  return  value.  The  difference  of the  secondary  element  of c , subtracted  

from  the  product  of a and  the  secondary  element  of b, is negated  stored  as 

the  secondary  element  of the  return  value.  

Formula  primary(result)  = -(a x primary(b)  + primary(c))  

secondary(result)  = -(a x secondary(b)  + secondary(c))  

C/C++  

prototype  

double  _Complex  __fxcpnmadd  (double  _Complex  c, 

          double  _Complex  b, double  a); 

double  _Complex  __fxcsnmadd  (double  _Complex  c, double  

          _Complex  b, double  a); 

Fortran  

description  

FXCPNMADD(C,B,A)  or FXCSNMADD(C,B,A)  

 where  C is of type  COMPLEX(8)  

where  B is of type  COMPLEX(8)  

where  A is of type  REAL(8)  

result  is of type  COMPLEX(8)  

 Function   Cross  copy  multiply-subtract:  __fxcpmsub,  __fxcsmsub  

Purpose  Both  of these  functions  can  be used  to achieve  the  same  result.  The  

difference  of the  primary  element  of c, subtracted  from  the  product  of a and  

the  primary  element  of b, is stored  as the  primary  element  of the  return  

value.  The  difference  of the  secondary  element  of c, subtracted  from  the 

product  of a and  the  secondary  element  of b, is stored  as the  secondary  

element  of the return  value.  

Formula  primary(result)  = a x primary(b)  - primary(c)  

secondary(result)  = a x secondary(b)  - secondary(c)  

C/C++  

prototype  

double  _Complex  __fxcpmsub  (double  _Complex  c, double  

          _Complex  b, double  a); 

double  _Complex  __fxcsmsub  (double  _Complex  c, double  

          _Complex  b, double  a); 

 

46 Using the IBM XL Compilers  for Blue Gene



Table 20.  (continued)  

Fortran  

description  

FXCPMSUB(C,B,A)  or FXCSMSUB(C,B,A)  

 where  C is of type  COMPLEX(8)  

where  B is of type  COMPLEX(8)  

where  A is of type  REAL(8)  

result  is of type  COMPLEX(8)  

 Function   Cross  copy  negative  multiply-subtract:  __fxcpnmsub,  __fxcsnmsub  

Purpose  Both  of these  functions  can  be used  to achieve  the  same  result.  The  

difference  of the  primary  element  of c, subtracted  from  the  product  of a and  

the  primary  element  of b, is negated  and  stored  as the  primary  element  of 

the  return  value.  The  difference  of the  secondary  element  of c, subtracted  

from  the  product  of a and  the  secondary  element  of b, is negated  stored  as 

the  secondary  element  of the  return  value.  

Formula  primary(result)  = -(a x primary(b)  - primary(c))  

secondary(result)  = -(a  x secondary(b)  - secondary(c))  

C/C++  

prototype  

double  _Complex  __fxcpnmsub  (double  _Complex  c, double  

          _Complex  b, double  a); 

double  _Complex  __fxcsnmsub  (double  _Complex  c, double  

          _Complex  b, double  a); 

Fortran  

description  

FXCPNMSUB(C,B,A)  or FXCSNMSUB(C,B,A)  

 where  C is of type  COMPLEX(8)  

where  B is of type  COMPLEX(8)  

where  A is of type  REAL(8)  

result  is of type  COMPLEX(8)  

 Function   Cross  copy  sub-primary  multiply-add:  __fxcpnpma,  __fxcsnpma  

Purpose  Both  of these  functions  can  be used  to achieve  the  same  result.  The  

difference  of the  primary  element  of c, subtracted  from  the  product  of a and  

the  primary  element  of b, is negated  and  stored  as the  primary  element  of 

the  return  value.  The  sum  of the  product  of a and  the  secondary  element  of 

b, added  to the secondary  element  of c, is stored  as the  secondary  element  

of the  return  value.  

Formula  primary(result)  = -(a x primary(b)  - primary(c))  

secondary(result)  = a x secondary(b)  + secondary(c)  

C/C++  

prototype  

double  _Complex  __fxcpnpma  (double  _Complex  c, double  

          _Complex  b, double  a); 

double  _Complex  __fxcsnpma  (double  _Complex  c, double  

          _Complex  b, double  a); 

Fortran  

description  

FXCPNPMA(C,B,A)  or FXCSNPMA(C,B,A)  

 where  C is of type  COMPLEX(8)  

where  B is of type  COMPLEX(8)  

where  A is of type  REAL(8)  

result  is of type  COMPLEX(8)  

 Function   Cross  copy  sub-secondary  multiply-add:  __fxcpnsma,  __fxcsnsma  

Purpose  Both  of these  functions  can  be used  to achieve  the  same  result.  The  sum  of 

the  product  of a and  the  primary  element  of b, added  to the  primary  

element  of c, is stored  as  the  primary  element  of the  return  value.  The  

difference  of the  secondary  element  of c, subtracted  from  the product  of a 

and  the  secondary  element  of b, is negated  and  stored  as the  secondary  

element  of the  return  value.  

Formula  primary(result)  = a x primary(b)  + primary(c))  

secondary(result)  = -(a  x secondary(b)  - secondary(c))  

 

Chapter  4. Using XL builtin  floating-point  functions  for Blue Gene 47



Table 20.  (continued)  

C/C++  

prototype  

double  _Complex  ____fxcpnsma  (double  _Complex  c, double  

          _Complex  b, double  a); 

double  _Complex  __fxcsnsma  (double  _Complex  c, double  

          _Complex  b, double  a); 

Fortran  

description  

FXCPNSMA(C,B,A)  or FXCSNSMA(C,B,A)  

 where  C is of type  COMPLEX(8)  

where  B is of type  COMPLEX(8)  

where  A is of type  REAL(8)  

result  is of type  COMPLEX(8)  

 Function   Cross  mixed  multiply-add:  __fxcxma  

Purpose  The  sum  of the  product  of a and  the  secondary  element  of b, added  to the 

primary  element  of c, is stored  as the  primary  element  of the return  value.  

The  sum  of the  product  of a and  the  primary  element  of b, added  to the 

secondary  element  of c, is stored  as the  secondary  element  of the  return  

value.  

Formula  primary(result)  = a x secondary(b)  + primary(c)  

secondary(result)  = a x primary(b)  +secondary(c)  

C/C++  

prototype  

double  _Complex  __fxcxma  (double  _Complex  c, double  _Complex  b, 

double  a); 

Fortran  

description  

FXCXMA(C,B,A)  

 where  C is of type  COMPLEX(8)  

where  B is of type  COMPLEX(8)  

where  A is of type  REAL(8)  

result  is of type  COMPLEX(8)  

 Function   Cross  mixed  negative  multiply-subtract:  __fxcxnms  

Purpose  The  difference  of the  primary  element  of c, subtracted  from  the  product  of a 

and  the secondary  element  of b, is negated  and  stored  as the primary  

element  of the return  value.  The  difference  of the  secondary  element  of c, 

subtracted  from  the  product  of a and  the  primary  element  of b, is negated  

and  stored  as the  primary  secondary  of the return  value.  

Formula  primary(result)  = -(a × secondary(b)  - primary(c))  

secondary(result)  = -(a × primary(b)  - secondary(c))  

C/C++  

prototype  

double  _Complex  __fxcxnms  (double  _Complex  c, double  _Complex  b, 

double  a); 

Fortran  

description  

FXCXNMS(C,B,A)  

 where  C is of type  COMPLEX(8)  

where  B is of type  COMPLEX(8)  

where  A is of type  REAL(8)  

result  is of type  COMPLEX(8)  

 Function   Cross  mixed  negative  sub-primary  multiply-add:  __fxcxnpma  

Purpose  The  difference  of the  primary  element  of c, subtracted  from  the  product  of 

the  secondary  element  of a and  the  secondary  element  of b, is negated  and  

stored  as the  primary  element  of the  return  value.  The  sum  of the  product  

of a and  the  primary  element  of b, added  to the  secondary  element  of c, is 

stored  as the  secondary  element  of the return  value.  

Formula  primary(result)  = -(secondary(a)  × secondary(b)  - primary(c))  

secondary(result)  = a × primary(b)  + secondary(c)  

 

48 Using the IBM XL Compilers  for Blue Gene



Table 20.  (continued)  

C/C++  

prototype  

double  _Complex  __fxcxnpma  (double  _Complex  c, double  _Complex  b, 

double  a); 

Fortran  

description  

FXCXNPMA(C,B,A)  

 where  C is of type  COMPLEX(8)  

where  B is of type  COMPLEX(8)  

where  A is of type  REAL(8)  

result  is of type  COMPLEX(8)  

 Function   Cross  mixed  sub-secondary  multiply-add:  __fxcxnsma  

Purpose  The  sum  of the  product  of a and  the  secondary  element  of b, added  to the 

primary  element  of c, is stored  as the  primary  element  of the return  value.  

The  difference  of the  secondary  element  of c, subtracted  from  the  product  

of a and  the  primary  element  of b, is stored  as the  secondary  element  of the 

return  value.  

Formula  primary(result)  = a x secondary(b)  + primary(c))  

secondary(result)  = -(a  x primary(b)  - secondary(c))  

C/C++  

prototype  

double  _Complex  __fxcxnsma  (double  _Complex  c, double  _Complex  b, 

double  a); 

Fortran  

description  

FXCXNSMA(C,B,A)  

 where  C is of type  COMPLEX(8)  

where  B is of type  COMPLEX(8)  

where  A is of type  REAL(8)  

result  is of type  COMPLEX(8)  

  

Select functions 

Table 21  lists  and  explains  the  select  functions  that  are  available.  

 Table 21.  Select  functions  

 Function   Parallel  select:  __fpsel  

Purpose  The  value  of the  primary  element  of a is compared  to zero.  If its value  is 

equal  to or greater  than  zero,  the primary  element  of c is stored  in the  

primary  element  of the  return  value.  Otherwise,  the  primary  element  of b is 

stored  in the  primary  element  of the  return  value.  The  value  of the  

secondary  element  of a is compared  to zero.  If its value  is equal  to or 

greater  than  zero,  the  secondary  element  of c is stored  in the  secondary  

element  of the  return  value.  Otherwise,  the  secondary  element  of b is stored  

in the  secondary  element  of the  return  value.  

Formula  primary(result)  = if primary(a)   ≥ 0 then  primary(c);  else  primary(b)  

secondary(result)  = if secondary(a)  ≥ 0 then  primary(c);  else  secondary(b)  

C/C++  

prototype  

double  _Complex  __fpsel  (double  _Complex  a, double  _Complex  b, double  

_Complex  c); 

Fortran  

description  

FPSEL(A,B,C)  

 where  A is of type  COMPLEX(8)  

where  B is of type  COMPLEX(8)  

where  C is of type  COMPLEX(8)  

result  is of type  COMPLEX(8)  

 

Chapter  4. Using XL builtin  floating-point  functions  for Blue Gene 49



50 Using the IBM XL Compilers  for Blue Gene



Notices  

This  information  was  developed  for  products  and  services  offered  in  the  U.S.A.  

IBM  may  not  offer  the  products,  services,  or  features  discussed  in  this  document  in 

other  countries.  Consult  your  local  IBM  representative  for  information  on  the  

products  and  services  currently  available  in  your  area.  Any  reference  to  an  IBM  

product,  program,  or  service  is not  intended  to  state  or  imply  that  only  that  IBM  

product,  program,  or  service  may  be  used.  Any  functionally  equivalent  product,  

program,  or  service  that  does  not  infringe  any  IBM  intellectual  property  right  may  

be  used  instead.  However,  it  is the  user’s  responsibility  to  evaluate  and  verify  the  

operation  of  any  non-IBM  product,  program,  or  service.  

IBM  may  have  patents  or  pending  patent  applications  covering  subject  matter  

described  in  this  document.  The  furnishing  of  this  document  does  not  give  you  

any  license  to  these  patents.  You can  send  license  inquiries,  in writing,  to:  

IBM  Director  of  Licensing  

IBM  Corporation  

North  Castle  Drive  

Armonk,  NY  10504-1785  

U.S.A.

For  license  inquiries  regarding  double-byte  (DBCS)  information,  contact  the  IBM  

Intellectual  Property  Department  in your  country  or  send  inquiries,  in  writing,  to:  

IBM  World  Trade Asia  Corporation  

Licensing  

2-31  Roppongi  3-chome,  Minato-ku  

Tokyo  106,  Japan

The  following  paragraph  does  not  apply  to  the  United  Kingdom  or  any  other  

country  where  such  provisions  are  inconsistent  with  local  law: 

INTERNATIONAL  BUSINESS  MACHINES  CORPORATION  PROVIDES  THIS  

PUBLICATION  ″AS  IS″  WITHOUT  WARRANTY  OF  ANY  KIND,  EITHER  

EXPRESS  OR  IMPLIED,  INCLUDING,  BUT  NOT  LIMITED  TO,  THE  IMPLIED  

WARRANTIES  OF  NON-INFRINGEMENT,  MERCHANTABILITY  OR  FITNESS  

FOR  A  PARTICULAR  PURPOSE.  Some  states  do  not  allow  disclaimer  of  express  or  

implied  warranties  in  certain  transactions,  therefore,  this  statement  may  not  apply  

to  you.  

This  information  could  include  technical  inaccuracies  or  typographical  errors.  

Changes  are  periodically  made  to  the  information  herein;  these  changes  will  be 

incorporated  in  new  editions  of the  publication.  IBM  may  make  improvements  

and/or  changes  in  the  product(s)  and/or  the  program(s)  described  in  this  

publication  at  any  time  without  notice.  

Any  references  in  this  information  to  non-IBM  Web sites  are  provided  for  

convenience  only  and  do  not  in  any  manner  serve  as  an  endorsement  of  those  Web 

sites.  The  materials  at those  Web sites  are  not  part  of  the  materials  for  this  IBM  

product  and  use  of  those  Web sites  is at your  own  risk.  

IBM  may  use  or  distribute  any  of  the  information  you  supply  in any  way  it 

believes  appropriate  without  incurring  any  obligation  to you.  

 

© Copyright  IBM Corp. 2006, 2007 51



Licensees  of  this  program  who  wish  to have  information  about  it for  the  purpose  

of  enabling:  (i)  the  exchange  of information  between  independently  created  

programs  and  other  programs  (including  this  one)  and  (ii)  the  mutual  use  of  the  

information  which  has  been  exchanged,  should  contact:  

Lab  Director  

IBM  Canada  Ltd.  Laboratory  

8200  Warden  Avenue  

Markham,  Ontario  L6G  1C7  

Canada

Such  information  may  be  available,  subject  to  appropriate  terms  and  conditions,  

including  in  some  cases,  payment  of a fee.  

The  licensed  program  described  in  this  document  and  all  licensed  material  

available  for  it are  provided  by  IBM  under  terms  of  the  IBM  Customer  Agreement,  

IBM  International  Program  License  Agreement  or  any  equivalent  agreement  

between  us.  

Any  performance  data  contained  herein  was  determined  in  a controlled  

environment.  Therefore,  the  results  obtained  in other  operating  environments  may  

vary  significantly.  Some  measurements  may  have  been  made  on  development-level  

systems  and  there  is  no  guarantee  that  these  measurements  will  be  the  same  on  

generally  available  systems.  Furthermore,  some  measurements  may  have  been  

estimated  through  extrapolation.  Actual  results  may  vary.  Users  of  this  document  

should  verify  the  applicable  data  for  their  specific  environment.  

Information  concerning  non-IBM  products  was  obtained  from  the  suppliers  of  

those  products,  their  published  announcements  or  other  publicly  available  sources.  

IBM  has  not  tested  those  products  and  cannot  confirm  the  accuracy  of  

performance,  compatibility  or  any  other  claims  related  to non-IBM  products.  

Questions  on  the  capabilities  of non-IBM  products  should  be  addressed  to  the  

suppliers  of  those  products.  

All  statements  regarding  IBM’s  future  direction  or  intent  are  subject  to change  or  

withdrawal  without  notice,  and  represent  goals  and  objectives  only.  

This  information  contains  examples  of  data  and  reports  used  in  daily  business  

operations.  To illustrate  them  as  completely  as possible,  the  examples  include  the  

names  of  individuals,  companies,  brands,  and  products.  All  of  these  names  are  

fictitious  and  any  similarity  to the  names  and  addresses  used  by  an  actual  business  

enterprise  is  entirely  coincidental.  

COPYRIGHT  LICENSE:  

This  information  contains  sample  application  programs  in  source  language,  which  

illustrates  programming  techniques  on  various  operating  platforms.  You may  copy,  

modify,  and  distribute  these  sample  programs  in  any  form  without  payment  to 

IBM,  for  the  purposes  of  developing,  using,  marketing  or  distributing  application  

programs  conforming  to  the  application  programming  interface  for  the  operating  

platform  for  which  the  sample  programs  are  written.  These  examples  have  not  

been  thoroughly  tested  under  all  conditions.  IBM,  therefore,  cannot  guarantee  or  

imply  reliability,  serviceability,  or  function  of  these  programs.  You may  copy,  

modify,  and  distribute  these  sample  programs  in  any  form  without  payment  to 

IBM  for  the  purposes  of  developing,  using,  marketing,  or  distributing  application  

programs  conforming  to  IBM’s  application  programming  interfaces.  

 

52 Using the IBM XL Compilers  for Blue Gene



Each  copy  or  any  portion  of  these  sample  programs  or  any  derivative  work,  must  

include  a copyright  notice  as follows:  

©  (your  company  name)  (year).  Portions  of  this  code  are  derived  from  IBM  Corp.  

Sample  Programs.  © Copyright  IBM  Corp.  1998,  2007.  All  rights  reserved.  

Trademarks and service marks 

Company,  product,  or  service  names  identified  in  the  text  may  be  trademarks  or  

service  marks  of IBM  or  other  companies.  Information  on  the  trademarks  of 

International  Business  Machines  Corporation  in  the  United  States,  other  countries,  

or  both  is  located  at http://www.ibm.com/legal/copytrade.shtml.  

Linux  is  a registered  trademark  of  Linus  Torvalds  in  the  United  States,  other  

countries,  or  both.  

Other  company,  product,  and  service  names  may  be  trademarks  or  service  marks  

of  others.  

 

Notices  53

http://www.ibm.com/legal/copytrade.shtml


54 Using the IBM XL Compilers  for Blue Gene



Index  

Special  characters
__alignx  builtin 16 

-qaltivec  5, 7 

-qenablevmx  6, 7 

-qmkshrobj  6 

-qpdf 5, 7 

-qpic 6 

-qshowpdf  5, 7 

-qsmp 5 

#pragma disjoint  14 

Numerics
64-bit mode options  5, 7 

A
aliasing  14 

ALIGNX  function  16 

arch 440 5 

macros 8 

arch 450 6 

macros 8 

arithmetic  builtins,  functions  39 

asm support  8 

B
batching  computations  15 

binary builtins,  functions  41 

builtins,  floating  point 31 

C
compiler  command  syntax 1 

compiler  commands  2 

compiler  documentation  ix 

compiling  programs  1 

complex  type manipulation  functions  35 

constraints,  asm keyword 8 

D
data alignment  15 

default compiler  options  5, 6 

documentation  ix 

E
examples  ix 

F
floating-point  builtins  31 

floating-point  calculations,  

structuring  15 

I
inlining  functions  13 

L
libmass  30 

libmass  library  19 

libmassv library  22 

library
MASS 19 

scalar 19 

vector  22 

load and store functions  36 

M
MASS libraries 19 

scalar functions  19 

vector  functions  22 

memory  overhead, aliasing  14 

move functions  39 

multiply-add  builtins, functions  43 

O
optimization

math functions  19 

optimizations  11 

P
path names ix 

R
range checking,  input arguments 13 

related  documentation  ix 

S
scalar  MASS library 19 

select builtins, functions  49 

shared  library  sup[port  6 

structuring  data, adjacent pairs 11 

syntax, compiler  commands  1 

U
unary functions  39 

unsupported  Blue Gene/L compiler 

options 5 

unsupported  Blue Gene/P compiler 

options 7 

V
vector MASS library  22 

vectorizable  basic blocks 12 

X
XL C/C++ cross-compiler commands  for 

Blue Gene/L 2 

XL C/C++ cross-compiler commands  for 

Blue Gene/P  3 

XL C/C++ macros 7 

related  to architecture 8 

related  to the platform  7 

XL Fortran  cross-compiler  commands  for 

Blue Gene/L 3 

XL Fortran  cross-compiler  commands  for 

Blue Gene/P  4

 

© Copyright  IBM Corp. 2006, 2007 55



56 Using the IBM XL Compilers  for Blue Gene





����

Program Number: 5799-HJE
5799-HJH
5799-HJF
5799-HJG

  

Printed in USA 

 

  

SC23-8513-00  

              

 


	Contents
	About this document
	Who should read this document
	How to use this document
	How this document is organized
	Conventions used in this document
	Related information
	Technical support
	How to send your comments

	Chapter 1. Compiling and linking applications for Blue Gene
	Compiling programs
	Compiler option defaults for Blue Gene/L
	-qarch=[440 | 440d]
	-qnoautoconfig
	-qtune=440

	Unsupported options for Blue Gene/L
	Compiler option defaults for Blue Gene/P
	-qarch=[450 | 450d]
	-qnoautoconfig
	-qstaticlink (C/C++)
	-qtune=450

	Unsupported options for Blue Gene/P
	Blue Gene-specific XL C/C++ predefined macros
	Macros related to the platform
	Macros related to architecture settings

	Inline assembly statements

	Chapter 2. Tuning your code for Blue Gene
	Using the compiler optimization options
	Structuring data in adjacent pairs
	Using vectorizable basic blocks
	Using inline functions
	Turning off range checking
	Removing possibilities for aliasing (C/C++)
	Structuring floating-point computations
	Checking for data alignment

	Chapter 3. Using the high performance libraries
	Using the Mathematical Acceleration Subsystem libraries (MASS)
	Using the scalar library
	Using the vector libraries
	Overlap of input and output vectors
	Consistency of MASS vector functions

	Compiling and linking a program with MASS
	Using libmass.a with the math system library



	Chapter 4. Using XL builtin floating-point functions for Blue Gene
	Complex type manipulation functions
	Load and store functions
	Move functions
	Arithmetic functions
	Unary functions
	Binary functions
	Multiply-add functions
	Select functions


	Notices
	Trademarks and service marks

	Index

