

Exploiting the Dual FPU in Blue Gene/L
March 2006 (Updated June 2006)

Introduction
The Blue Gene®/L supercomputer consists of up to 65,536 compute nodes. Each
compute node contains 2 PowerPC 440 (PPC440) processors, each enhanced with a
specially designed dual Floating Point Unit (FPU). This dual FPU is also known as the
“Double Hummer” FPU. Each of the two FPU units contains 32 64-bit floating point
registers for a total of 64 FP registers per processor.

The PPC 440 and the dual FPU
In addition to the regular PowerPC floating point instructions (operating on the Primary
registers), new parallel floating point instructions have been added to operate
simultaneously on both the Primary and Secondary registers. Some of the new dual FPU
instructions perform identical operations on each set of registers in parallel. Other
instructions allow operands to be copied from one register set to the other, or perform
complex cross operations optimized for complex arithmetic. A set of load/store
instructions has also been added to perform loads and stores to both sets of FP registers
with a single instruction.

Since the PPC440 chip can issue at most one load/store and one FPU operation per cycle,
the parallel instructions have the potential to double the floating point performance of the
chip. The IBM Mathematical Acceleration Subsystem (MASS) library (and the vector
MASSV library), and the IBM Engineering and Scientific Software Library (ESSL) take
advantage of the parallel instructions to fully utilize the dual FPU. Hand written code
using the parallel instructions can easily access this performance increase. New builtin
functions have been added to the IBM XL C and C++ compilers to generate the parallel
instructions. Intrinsic functions have been added to the IBM XL Fortran compiler.

The IBM XL compilers will automatically generate parallel FPU instructions, but
doubling the floating point performance benefit is not usually achieved for arbitrary
floating point code.

How much benefit can you expect from a second FPU?
John D. McCalpin gave a keynote talk at the 3rd IEEE Workshop in Workload
Characterizations (http://www.cs.virginia.edu/~mccalpin/wwc-keynote.html), where he found
that most “real applications” and much of SPEC 2000 FP benchmarks show that
approximately 40% of instructions issues are load/store operations and about 20% are
floating point operations. Using this data, assuming completely independent operations
with perfect scheduling and no cache interference or stalls, adding a second load/store

unit and a second floating point unit would allow cutting approximately 60% of
instructions issued in half to 30%, increasing the instructions issued per cycle by 42%. In
the “real world”, the above assumptions would not hold, and the actual performance
increase would be smaller. For BlueGene/L, the “second” load/store unit may only be
used for parallel floating point load/stores, lowering the possible benefit.

There are obvious counter-examples, where the percentage of load/store and floating
point instructions issued is close to 100%, and the speedup can be close to 2. Examples
of this speedup include vector and matrix operations, as well as the LINPACK
benchmark. These examples generally process floating point data in regular patterns,
such as arrays of floating point values

Limitations of the BG/L dual FPU

Floating Point Registers
While an IBM POWER5® processor has only 32 FP registers, it does contain 2
independent floating point units, as well as 2 independent load/store units. A Power 5
processor may issue instructions to all four of those units every cycle. The PPC440 is
limited to issuing at most one floating point operation and one load/store instruction per
cycle. There are 64 FP registers available; however these registers are not independently
addressable. The encoding of registers in the PowerPC architecture allows only 5 bits to
name a register, suitable for addressing 32 registers. To overcome this limitation with the
BG/L double FPU, the new parallel instructions use the 5 bits to address a register pair.
A register pair N consists of the Nth register in the primary register set and the
corresponding Nth register in the secondary register set. This pairing obviously violates
the independent assumption in the previous section.

Parallel load/store
A major benefit of the dual FPU is the ability to issue parallel load/store instructions. As
only one load or store instruction may be issued each cycle, the maximum memory
accessed by a PPC440 (an 8 byte floating point operand) can be doubled, allowing 16
bytes to be loaded or stored per cycle. The compiler’s use of the parallel load/store
instructions must be conservative. On the PPC440, any floating point load or store whose
operands cross a cache line boundary (32 bytes) will take an alignment trap. Normally
floating point operands are aligned on an 8 byte boundary, so no alignment trap will
occur using a single floating point load or store. A 16 byte load from an arbitrary 8 byte
boundary will cause an alignment trap 25% of the time. As an alignment trap may cause
thousands of cycles of delay, it is important to avoid parallel loads and stores if the
operand cannot be proven to be aligned on a 16 byte boundary.
The parallel load/store instructions also have a further restriction. Like AltiVec™
load/store instructions, these instructions use the base/index instruction format, with no
displacement. Any non-zero displacement must be allocated in an index register. This
increases register pressure for the integer registers, causing more spill. Modification of
the compiler to force all floating point load/stores to use the base/index form showed that
for SPEC 2000 FP programs on an IBM Power 4, the slowdown was no more than 5%.

Since many load/stores will be to primary registers without this restriction, the real effect
should be much smaller.

Single precision arithmetic
The parallel instructions added for the dual FPU calculate all operations in double
precision. It is possible to process single precision computations using double precision
instructions. While this increases the range of values over single precision operations, it
is not possible to deliver the bitwise exact same results generated by single precision
expressions using double precision, unless each double precision operation is
immediately followed by a round-to-single-precision operation. On the PPC440 FPU,
this additional rounding would add 5 cycles of latency to each parallel operation,
negating the benefits of the parallelization. For this reason, single precision calculations
are not parallelized automatically by the compiler.

IEEE FP Exceptions
In a similar vein, the parallel operations of the dual FPU do not signal IEEE exceptions.
Any program using the -qsigtrap compiler option to detect IEEE exceptions will not be
parallelized.

Compiler generation of dual FPU code
The IBM XL compilers will use the dual FPU in several ways:

• Even without optimization, complex arithmetic will use the parallel instructions to
speed up calculations. Structure assignments and memcpy will use the parallel
load/store instructions if the alignment and size are multiples of 16.

• At –O2 and up, the compiler will attempt to convert floating point calculations
within a single block to parallel operations using a Superword Level Parallelism1
(SLP) algorithm. Alignment information is propagated within a procedure, and
heuristics are used to detect situations where generating parallel code may
necessitate too many moves between primary and secondary registers.

• -qhot=simd (default with –qarch=440d and -qhot/-O4/-O5) will do loop analysis
to generate parallel code across basic blocks, versioning loops for alignment, and
rewriting loops to parallelize as much as possible.
The same framework used by the XL compilers for AltiVec and Cell Broadband
Engine™ Single Instruction Multiple Data (SIMD) code generation is used for
BlueGene, treating the double FPU as a 2-element vector.

• Linking with –O5 enables more loop analysis, and allows whole program
alignment propagation, reducing the overhead for loop versioning for alignment
and for overlap.

1 Exploiting Superword Level Parallelism with Multimedia Instruction Sets Samuel Larsen and Saman
Amarasinghe

Achieving doubled floating point performance using the
dual FPU
The IBM XL compiler can most easily utilize the dual FPU on BG/L when compiling
code processing vectors of doubles accessed with stride 1. An example of code that
parallelizes well is:
 subroutine daxpy (a,b,c,n)
 real*8 a(n),b(n),
 do 10 i = 1,n
 a(i) = a(i) + b(i) * c
10 continue
 end

Compiling this with –O5 –qarch=440d2, the compiler will generate (in pseudo-code):
 if (n is large enough && a is 16 byte aligned && b is 16 byte aligned) {
 Use parallel instructions to load/compute/store
 } else {
 Load/compute/store using single FPU
 }
Each loop is then unrolled enough times to cover the latency of the FPU (5 cycles), and
scheduled to overlap the load/stores and the computation as much as possible. For this
subroutine, each floating-point multiply-add (FMA) operation is fed by 2 loads and one
store. The parallel loop executes approximately ½ the number of instructions of the loop
using the single FPU.

Notes:

• The test for alignment and size of n add extra overhead that would not be present
when compiling with –qarch=440. This can reduce the benefit of the dual FPU
unless the value of n is large enough, and is one cause of dual FPU code that is
slower than the equivalent single FPU code.

• Whole program analysis using –O5 at link time will try to propagate alignment
information across the whole program. If interprocedural analysis (IPA)
optimizer can find that all callers of subroutine daxpy always pass aligned
parameters, then the alignment test may be omitted.

Program code that does not parallelize well
If we modify the daxpy routine above to handle non-stride one accesses, and add -qreport
to the command line, we will find that the program is not parallelized.
 subroutine daxpy1 (a,b,c,inca,incb,n)
 real*8 a(*),b(*)
 ia = 1
 ib = 1
 do 10 i = 1,n
 a(ia) = a(ia) + b(ib) * c

2 -qarch=440d asks the compiler to use the dual FPU. -qarch=440 generates code for a single FPU only.

 ia = ia + inca
 ib = ib + incb
10 continue
 end
The listing file contains:

>>>>> LOOP TRANSFORMATION SECTION <<<<<
1586-541 (I) <SIMD info> NON-SIMDIZABLE: other misc reasons. (Loop

index 1 on line 5 with nest-level 0 and iteration count 100.)
1586-543 (I) <SIMD info> Total number of loops considered <"1">. Total

number of loops simdized <"0">.
In this example, the loop is not parallelized because the SLP algorithm used to find
parallelizable loads and stores doesn’t handle non-stride 1 accesses.

If we add a main program to the above daxpy1 routine, and compile and link with -O5,
we can see how whole program analysis removes alignment testing:

program main
real*8 a(1000),b(1000)
call daxpy1 (a,b,5.0, 1, 1, 500)
end

The pseudo code generated for the main program and the call to daxpy is now:

if (a and b are disjoint) {
 Use parallel instructions to load/compute/store

 } else {
Load/compute/store using single FPU

 }
Whole program analysis has enabled the compiler to discover that a and b are aligned on
16 byte boundaries, that the array is accessed using stride 1, and that the iteration count is
large enough to be worth parallelizing. Unfortunately, it does not realize that a and b are
already disjoint. We plan to fix this oversight shortly.

Unable to SIMDize messages from –qreport
When compiling with –qhot=simd and –qreport, the listing file may contain explanations
of why the compiler was unable to generate parallel instructions:

NON-SIMDIZABLE: non-simdizable reductions.
NON-SIMDIZABLE: upper bound of loop too small.
NON-SIMDIZABLE: loop not innermost.
NON-SIMDIZABLE: data dependence due to aliasing.
NON-SIMDIZABLE: unknown alignment.
NON-SIMDIZABLE: invalid operation.
NON-SIMDIZABLE: invalid loop structure.
NON-SIMDIZABLE: loop with function calls.
NON-SIMDIZABLE: non stride one access.
NON-SIMDIZABLE: other misc reasons.

Knowing why a loop doesn’t use the parallel instructions may lead to source code
changes that will allow use of the dual FPU.

Performance improvements in the latest compilers
The newest versions of the IBM XL compilers (IBM XL C/C++ Advanced Edition V8.0
for Blue Gene, IBM XL Fortran Advanced Edition V10.1 for Blue Gene) have focused on
increasing the quality of the compiler, as well as improving the performance of both -
qarch=440 and -qarch=440d generated code. Performance improvements from the
C/C++ V8.0 and Fortran V10.1 compilers for AIX and Linux have also improved the
performance of BlueGene programs. In addition, significant effort has also been invested
in improving the generation of SIMD instructions:

• Simdization of double complex with -qhot
• Simdizing part of a loop without distributing the loop
• Enhanced interprocedural alignment analysis to track 16-byte compile-time

misalignment
• Better alignment code generation to maximize load reuse across statements and

across iterations
• More reuse conscious loop distribution for simdization purposes

The following chart shows the improvement at –O5 for both the V8/10.1 GA compilers
and PTF1 compilers, compared to the latest update for the V7/9.1 compilers. Detailed
breakdowns for each benchmark suite can be found in Appendix A.

Improvement with -O5: V8/10.1 GA, PTF1 vs. V7/9.1

0.00%

5.00%

10.00%

15.00%

20.00%

25.00%

30.00%

35.00%

40.00%

Spec2000FP NAS 3.2 Serial sPPM ddcmd uKernels

V8/10.1 GA 440
V8/10.1 GA 440d
V8/10.1 PTF1 440
V8/10.1 PTF1 440d

The following chart shows how well the compiler uses the dual FPU. Examination of the
detailed results shows that several benchmarks have seen a large penalty for using
–qarch=440d. Investigation into some of these problems has led to increased
performance, as can be seen by the improved results in the V8/10.1 GA and PTF1
versions.

Improvement with -O5: -qarch=440d vs. -qarch=440

-60.00%

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

Spec2000FP NAS 3.2 Serial sPPM ddcmd uKernels

V7/9.1
V8/10.1 GA
V8/10.1 PTF1

Future directions
IBM plans to continue to address performance of dual FPU code in future updates and
releases. Improvements in the SIMD framework will also benefit BlueGene. We expect
that this will lead to better exploitation of the dual FPU.

Summary
The presence of a second FPU on the BG/L processors potentially allows double the
performance on floating point algorithms over just using a single FPU. The ability of the
IBM XL compilers to automatically use the dual FPU unit depends strongly on the
properties of the source code. The more regular the accesses to floating point data, the
more the compiler is able to exploit the dual FPU. Examples of regular access include
matrix multiplication and vector processing. This paper has described the implementation
of the dual FPU in BlueGene/L and some limitations of automatic compiler exploitation
of this dual FPU. Our long term goal is to ensure that using the dual FPU will be no
slower than single FPU code. This may not be achievable, due to the extra versioning
necessary for alignment or aliasing checks, but the overhead should be minimized.

Recommended reading
The document “Using the XL Compilers for Blue Gene” (SC10-4310-00) comes with the
IBM XL C/C++ Advanced Edition V8.0 for Blue Gene and IBM XL Fortran Advanced
Edition V10.1 for Blue Gene compilers.

Contacting IBM
IBM welcomes your comments. You can send them to compinfo@ca.ibm.com or mail
them to this address:

XL Compiler Development
Department 697
Application Development Technology Centre
Software Division Toronto Laboratory IBM Canada Ltd.
8200 Warden Avenue
Markham, Ontario
Canada – L6G 1C7

Copyright Notice
© Copyright IBM Corp. 2006. All Rights Reserved.

IBM is trademark or registered trademark of International Business Machines
Corporation in the U.S., other countries or both.

Appendix A: Detailed Compiler Results V8/10.1 vs. V7/9.1

These measurements were made on a 700Mhz DD2 BG/L system at Watson Research Lab. The
V7/9.1 compilers used update 3. The V8/10.1 GA compiler used was the version available March
17, 2006, and the PTF1 compiler is the version available June 23, 2006.

NAS Serial Improvement with -O5:
V8/10.1 GA, PTF1 vs. V7/9.1 Compilers

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

ft mg sp lu
lu-

hp bt is ep cg ua

Ave
rag

e

V8/10.1 GA 440
V8/10.1 GA 440d
V8/10.1 PTF1 440
V8/10.1 PTF1 440d

NAS Serial Improvement with -O5:
 -qarch=440d vs. -qarch=440

-40.00%

-30.00%

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

ft mg sp lu
lu-

hp bt is ep cg ua

Ave
rag

e

V7/9.1
V8/10.1 GA
V8/10.1 PTF1

ddcmd uKernels Improvement with -O5:
V8/10.1 GA, PTF1 vs. V7/9.1 Compilers

-60.00%

-40.00%

-20.00%

0.00%

20.00%

40.00%

60.00%

80.00%

dax
py.d

ax
py_

ke
rn

el

ddcm
d.ke

rnl

ddcm
d.re

sid
ual

ddcm
d.TABC5X

5X
3

ddcm
d.ke

rn
l_s

ddcm
d.re

sid
ual_

s

ddcm
d.sp

lit

dot.d
ot_k

ern
el

mm.m
m_e

ve
n

mm.m
m_o

dd

sl1
1.s

l11
_0

00

sl1
1.s

l11
_1

10

sl1
1.s

l11
_1

01

sl1
1.s

l11
_1

11

sl1
1.s

l11
_5

50

sl7
1.s

l71
_0

00

sl7
1.s

l71
_1

00

sl7
1.s

l71
_1

10

sl7
1.s

l71
_1

01

sl7
1.s

l71
_1

11

Ave
rag

e

V8/10.1 GA 440
V8/10.1 GA 440d
V8/10.1 PTF1 440
V8/10.1 PTF1 440d

ddcmd uKernels Improvement with -O5:
-qarch=440d vs. -qarch=440

-100.00%

-50.00%

0.00%

50.00%

100.00%

150.00%

200.00%

250.00%

dax
py.d

ax
py_

ke
rnel

ddcm
d.ke

rnl

ddcm
d.re

sid
ual

ddcm
d.TABC5X

5X
3

ddcm
d.ke

rn
l_s

ddcm
d.re

sid
ual_

s

ddcm
d.sp

lit

dot.d
ot_k

ern
el

mm.m
m_e

ve
n

mm.m
m_o

dd

sl1
1.s

l11
_0

00

sl1
1.s

l11
_1

10

sl1
1.s

l11
_1

01

sl1
1.s

l11
_1

11

sl1
1.s

l11
_5

50

sl7
1.s

l71
_0

00

sl7
1.s

l71
_1

00

sl7
1.s

l71
_1

10

sl7
1.s

l71
_1

01

sl7
1.s

l71
_1

11

Ave
rag

e

V7/9.1
V8/10.1 GA
V8/10.1 PTF1

SPEC2000FP Improvement with -O5:
-qarch=440d vs. -qarch=440

-20.00%

-15.00%

-10.00%

-5.00%

0.00%

5.00%

10.00%

15.00%

20.00%

wupwise
sw

im
mgrid

ap
plu

mes
a

galgel art

eq
uak

e

fac
er

ec
am

mp
luca

s
fm

a3
d

six
tra

ck ap
si

Ave
rag

e

V7/9.1

V8/10.1 GA

V8/10.1 PTF1

Note: sixtrack and fma3d failed with –qarch=440d –O5 with V7/9.1 compilers

SPEC2000FP Improvement with -O5:
V8/10.1 GA, PTF1 vs. V7/9.1 Compilers

-20.00%

-10.00%

0.00%

10.00%

20.00%

30.00%

40.00%

50.00%

60.00%

70.00%

wupwise
sw

im
mgrid

applu
mes

a
galg

el art

eq
uak

e

fac
er

ec
ammp

luca
s

fm
a3d

six
tra

ck ap
si

Ave
rag

e

V8/10.1 440
V8/10.1 440d
PTF1 440
PTF1 440d

Note: sixtrack and fma3d failed with –qarch=440d –O5 with V7/9.1 compilers

