FFTW User’s Manual

For version 2.1.5, 16 March 2003

Matteo Frigo
Steven G. Johnson

Copyright (©) 1997-1999 Massachusetts Institute of Technology.

Permission is granted to make and distribute verbatim copies of this manual provided the
copyright notice and this permission notice are preserved on all copies.

Permission is granted to copy and distribute modified versions of this manual under the con-
ditions for verbatim copying, provided that the entire resulting derived work is distributed
under the terms of a permission notice identical to this one.

Permission is granted to copy and distribute translations of this manual into another lan-
guage, under the above conditions for modified versions, except that this permission notice
may be stated in a translation approved by the Free Software Foundation.

Table of Contents

1 Introduction............................... 1
2 Tutorial.......... ... i, 3
2.1 Complex One-dimensional Transforms Tutorial 3
2.2 Complex Multi-dimensional Transforms Tutorial 4
2.3 Real One-dimensional Transforms Tutorial 6
2.4 Real Multi-dimensional Transforms Tutorial 7
2.5 Multi-dimensional Array Format 11
2.5.1 Row-major Format 11
2.5.2 Column-major Format 11
2.5.3 Static Arraysin C............ ... 11
2.5.4 Dynamic Arraysin C.......................... 12
2.5.5 Dynamic Arrays in C—The Wrong Way......... 12
2.6 Wordsof Wisdom 13
2.6.1 Caveats in Using Wisdom 14
2.6.2 Importing and Exporting Wisdom 14
3 FFTW Reference......................... 17
3.1 Data Types....oooni 17
3.2 One-dimensional Transforms Reference................... 18
3.2.1 Plan Creation for One-dimensional Transforms... 18
3.2.2 Discussion on Specific Plans 20
3.2.3 Computing the One-dimensional Transform. 20
3.2.4 Destroying a One-dimensional Plan 21
3.2.5 What FFTW Really Computes 21
3.3 Multi-dimensional Transforms Reference 22
3.3.1 Plan Creation for Multi-dimensional Transforms.. 22
3.3.2 Computing the Multi-dimensional Transform 24
3.3.3 Destroying a Multi-dimensional Plan............ 25
3.3.4 What FFTWND Really Computes.............. 25
3.4 Real One-dimensional Transforms Reference.............. 26

3.4.1 Plan Creation for Real One-dimensional Transforms
.. 26

3.4.2 Computing the Real One-dimensional Transform

.. 27
3.4.3 Destroying a Real One-dimensional Plan 28
3.4.4 What RFFTW Really Computes................ 28
3.5 Real Multi-dimensional Transforms Reference 29
3.5.1 Plan Creation for Real Multi-dimensional Transforms
.. 29

ii

3.5.3 Array Dimensions for Real Multi-dimensional

Transforms...........coo 32
3.5.4 Strides in In-place RFFTWND 32
3.5.5 Destroying a Multi-dimensional Plan............ 33
3.5.6 What RFFTWND Really Computes 33
3.6 Wisdom Reference 34
3.6.1 Exporting Wisdom 34
3.6.2 Importing Wisdom 35
3.6.3 Forgetting Wisdom 35
3.7 Memory Allocator Reference 35
3.8 Thread safety i 36
4 Parallel FFTW 37
4.1 Multi-threaded FEFTW 37
4.1.1 Installation and Supported Hardware/Software. .. 37
4.1.2 Usage of Multi-threaded FFTW 38
4.1.3 How Many Threads to Use? 39
4.1.4 Using Multi-threaded FFTW in a Multi-threaded
Program 40
4.1.5 Tips for Optimal Threading 40
4.1.6 Parallelization deficiencies in one-dimensional
transforms 40
4.2 MPIFFTW .. 40
4.2.1 MPI FFTW Installation........................ 40
4.2.2 Usage of MPI FFTW for Complex Multi-dimensional
Transforms............oo 41
4.2.3 MPI Data Layout.............................. 43
4.2.4 Usage of MPI FFTW for Real Multi-dimensional
Transforms........ ... 44
4.2.5 Usage of MPI FFTW for Complex One-dimensional
Transforms...........o 47
426 MPLTIPS ..ot 48
5 Calling FFTW from Fortran............... 51
5.1 Wrapper Routines........... 51
5.2 FFTW Constants in Fortran 52
5.3 Fortran Examples................. 52
6 Installation and Customization............ 55
6.1 Installation on Unix.......... 55
6.2 Installation on non-Unix Systems........................ 56
6.3 Installing FFTW in both single and double precision. o7
6.4 gccand Pentium hacks............. o o7
6.5 Customizing the timer.................................. 58
6.6 Generating your own code, 59

7 Acknowledgments......................... 61

FFTW

8 License and Copyright

9 Concept Index

10 Library Index

iii

v

FFTW

Chapter 1: Introduction 1

1 Introduction

This manual documents version 2.1.5 of FEFTW, the Fastest Fourier Transform in the
West. FFTW is a comprehensive collection of fast C routines for computing the discrete
Fourier transform (DFT) in one or more dimensions, of both real and complex data, and
of arbitrary input size. FFTW also includes parallel transforms for both shared- and
distributed-memory systems. We assume herein that the reader is already familiar with
the properties and uses of the DFT that are relevant to her application. Otherwise, see e.g.
The Fast Fourier Transform by E. O. Brigham (Prentice-Hall, Englewood Cliffs, N.J, 1974).
Our web page also has links to FFT-related information online.

FFTW is usually faster (and sometimes much faster) than all other freely-available
Fourier transform programs found on the Net. For transforms whose size is a power of
two, it compares favorably with the FFT codes in Sun’s Performance Library and IBM’s
ESSL library, which are targeted at specific machines. Moreover, FF'TW’s performance is
portable. Indeed, FFTW is unique in that it automatically adapts itself to your machine,
your cache, the size of your memory, the number of registers, and all the other factors
that normally make it impossible to optimize a program for more than one machine. An
extensive comparison of FFTW’s performance with that of other Fourier transform codes
has been made. The results are available on the Web at the benchFFT home page.

In order to use FFTW effectively, you need to understand one basic concept of FFTW’s
internal structure. FFTW does not used a fixed algorithm for computing the transform,
but it can adapt the DFT algorithm to details of the underlying hardware in order to
achieve best performance. Hence, the computation of the transform is split into two phases.
First, FFTW'’s planner is called, which “learns” the fastest way to compute the transform
on your machine. The planner produces a data structure called a plan that contains this
information. Subsequently, the plan is passed to FFTW’s executor, along with an array
of input data. The executor computes the actual transform, as dictated by the plan. The
plan can be reused as many times as needed. In typical high-performance applications,
many transforms of the same size are computed, and consequently a relatively-expensive
initialization of this sort is acceptable. On the other hand, if you need a single transform
of a given size, the one-time cost of the planner becomes significant. For this case, FFTW
provides fast planners based on heuristics or on previously computed plans.

The pattern of planning/execution applies to all four operation modes of FFTW, that is,
I) one-dimensional complex transforms (FFTW), II) multi-dimensional complex transforms
(FFTWND), III) one-dimensional transforms of real data (RFFTW), IV) multi-dimensional
transforms of real data (RFFTWND). Each mode comes with its own planner and executor.

Besides the automatic performance adaptation performed by the planner, it is also pos-
sible for advanced users to customize FFTW for their special needs. As distributed, FFTW
works most efficiently for arrays whose size can be factored into small primes (2, 3, 5, and
7), and uses a slower general-purpose routine for other factors. FFTW, however, comes
with a code generator that can produce fast C programs for any particular array size you
may care about. For example, if you need transforms of size 513 = 19-32, you can customize
FFTW to support the factor 19 efficiently.

FFTW can exploit multiple processors if you have them. FFTW comes with a shared-
memory implementation on top of POSIX (and similar) threads, as well as a distributed-
memory implementation based on MPI. We also provide an experimental parallel implemen-

http://www.fftw.org
http://theory.lcs.mit.edu/~benchfft

2 FFTW

tation written in Cilk, the superior programming tool of choice for discriminating hackers
(Olin Shivers). (See the Cilk home page.)

For more information regarding FFTW, see the paper, “The Fastest Fourier Transform
in the West,” by M. Frigo and S. G. Johnson, which is the technical report MIT-LCS-TR-
728 (Sep. '97). See also, “FFTW: An Adaptive Software Architecture for the FFT,” by M.
Frigo and S. G. Johnson, which appeared in the 23rd International Conference on Acoustics,
Speech, and Signal Processing (Proc. ICASSP 1998 3, p. 1381). The code generator is
described in the paper “A Fast Fourier Transform Compiler”, by M. Frigo, to appear in the
Proceedings of the 1999 ACM SIGPLAN Conference on Programming Language Design and
Implementation (PLDI), Atlanta, Georgia, May 1999. These papers, along with the latest
version of FFTW, the FAQ, benchmarks, and other links, are available at the FFTW home
page. The current version of FFTW incorporates many good ideas from the past thirty
years of FFT literature. In one way or another, FFTW uses the Cooley-Tukey algorithm,
the Prime Factor algorithm, Rader’s algorithm for prime sizes, and the split-radix algorithm
(with a variation due to Dan Bernstein). Our code generator also produces new algorithms
that we do not yet completely understand. The reader is referred to the cited papers for
the appropriate references.

The rest of this manual is organized as follows. We first discuss the sequential (one-
processor) implementation. We start by describing the basic features of FETW in Chap-
ter 2 [Tutorial], page 3. This discussion includes the storage scheme of multi-dimensional
arrays (Section 2.5 [Multi-dimensional Array Format], page 11) and FFTW’s mechanisms
for storing plans on disk (Section 2.6 [Words of Wisdom], page 13). Next, Chapter 3 [FFTW
Reference|, page 17 provides comprehensive documentation of all FFTW’s features. Parallel
transforms are discussed in their own chapter Chapter 4 [Parallel FFTW], page 37. Fortran
programmers can also use FFTW, as described in Chapter 5 [Calling FFTW from Fortran],
page 51. Chapter 6 [Installation and Customization|, page 55 explains how to install FFTW
in your computer system and how to adapt FFTW to your needs. License and copyright
information is given in Chapter 8 [License and Copyright], page 63. Finally, we thank all
the people who helped us in Chapter 7 [Acknowledgments], page 61.

http://supertech.lcs.mit.edu/cilk
http://www.fftw.org
http://www.fftw.org

Chapter 2: Tutorial 3

2 Tutorial

This chapter describes the basic usage of FF'TW, i.e., how to compute the Fourier trans-
form of a single array. This chapter tells the truth, but not the whole truth. Specifically,
FFTW implements additional routines and flags, providing extra functionality, that are not
documented here. See Chapter 3 [FFTW Referencel, page 17, for more complete informa-
tion. (Note that you need to compile and install FFTW before you can use it in a program.
See Chapter 6 [Installation and Customization], page 55, for the details of the installation.)

Here, we assume a default installation of FFTW. In some installations (particulary from
binary packages), the FFTW header files and libraries are prefixed with ‘d’ or ‘s’ to indicate
versions in double or single precision, respectively. The usage of FF'TW in that case is the
same, except that #include directives and link commands must use the appropriate prefix.
See Section 6.3 [Installing FFTW in both single and double precision], page 57, for more
information.

This tutorial chapter is structured as follows. Section 2.1 [Complex One-dimensional
Transforms Tutorial], page 3 describes the basic usage of the one-dimensional transform of
complex data. Section 2.2 [Complex Multi-dimensional Transforms Tutorial], page 4 de-
scribes the basic usage of the multi-dimensional transform of complex data. Section 2.3
[Real One-dimensional Transforms Tutorial], page 6 describes the one-dimensional trans-
form of real data and its inverse. Finally, Section 2.4 [Real Multi-dimensional Transforms
Tutorial], page 7 describes the multi-dimensional transform of real data and its inverse. We
recommend that you read these sections in the order that they are presented. We then
discuss two topics in detail. In Section 2.5 [Multi-dimensional Array Format], page 11, we
discuss the various alternatives for storing multi-dimensional arrays in memory. Section 2.6
[Words of Wisdom], page 13 shows how you can save FFTW’s plans for future use.

2.1 Complex One-dimensional Transforms Tutorial

The basic usage of FFTW is simple. A typical call to FFTW looks like:
#include <fftw.h>

fftw_complex in[N], out[N];
fftw_plan p;
ﬁ'; fftw_create_plan(N, FFTW_FORWARD, FFTW_ESTIMATE);
éféw_one(p, in, out);
éféw_destroy_plan(p);
}

The first thing we do is to create a plan, which is an object that contains all the data
that FFTW needs to compute the FFT, using the following function:

fftw_plan fftw_create_plan(int n, fftw_direction dir, int flags);

The first argument, n, is the size of the transform you are trying to compute. The size n
can be any positive integer, but sizes that are products of small factors are transformed most

4 FFTW

efficiently. The second argument, dir, can be either FFTW_FORWARD or FFTW_BACKWARD, and
indicates the direction of the transform you are interested in. Alternatively, you can use
the sign of the exponent in the transform, —1 or +1, which corresponds to FFTW_FORWARD
or FFTW_BACKWARD respectively. The flags argument is either FFTW_MEASURE or FFTW_
ESTIMATE. FFTW_MEASURE means that FFTW actually runs and measures the execution
time of several FFTs in order to find the best way to compute the transform of size n.
This may take some time, depending on your installation and on the precision of the timer
in your machine. FFTW_ESTIMATE, on the contrary, does not run any computation, and
just builds a reasonable plan, which may be sub-optimal. In other words, if your program
performs many transforms of the same size and initialization time is not important, use
FFTW_MEASURE; otherwise use the estimate. (A compromise between these two extremes
exists. See Section 2.6 [Words of Wisdom], page 13.)

Once the plan has been created, you can use it as many times as you like for transforms
on arrays of the same size. When you are done with the plan, you deallocate it by calling
fftw_destroy_plan(plan).

The transform itself is computed by passing the plan along with the input and output
arrays to fftw_one:

void fftw_one(fftw_plan plan, fftw_complex *in, fftw_complex *out);

Note that the transform is out of place: in and out must point to distinct arrays.
It operates on data of type fftw_complex, a data structure with real (in[i].re) and
imaginary (in[i].im) floating-point components. The in and out arrays should have the
length specified when the plan was created. An alternative function, fftw, allows you to
efficiently perform multiple and/or strided transforms (see Chapter 3 [FETW Reference],
page 17).

The DFT results are stored in-order in the array out, with the zero-frequency (DC)
component in out[0]. The array in is not modified. Users should note that FFTW
computes an unnormalized DFT, the sign of whose exponent is given by the dir parameter
of fftw_create_plan. Thus, computing a forward followed by a backward transform (or
vice versa) results in the original array scaled by n. See Section 3.2.5 [What FFTW Really
Computes], page 21, for the definition of DFT.

A program using FFTW should be linked with -1fftw -1m on Unix systems, or with
the FFTW and standard math libraries in general.

2.2 Complex Multi-dimensional Transforms Tutorial

FFTW can also compute transforms of any number of dimensions (rank). The syntax
is similar to that for the one-dimensional transforms, with ‘fftw_’ replaced by ‘fftwnd_’
(which stands for “fftw in N dimensions”).

As before, we #include <fftw.h> and create a plan for the transforms, this time of type
fftwnd_plan:

fftwnd_plan fftwnd_create_plan(int rank, const int *n,
fftw_direction dir, int flags);

rank is the dimensionality of the array, and can be any non-negative integer. The next
argument, n, is a pointer to an integer array of length rank containing the (positive) sizes
of each dimension of the array. (Note that the array will be stored in row-major order. See

Chapter 2: Tutorial 5)

Section 2.5 [Multi-dimensional Array Format|, page 11, for information on row-major order.)
The last two parameters are the same as in fftw_create_plan. We now, however, have an
additional possible flag, FFTW_IN_PLACE, since fftwnd supports true in-place transforms.
Multiple flags are combined using a bitwise or (‘|’). (An in-place transform is one in which
the output data overwrite the input data. It thus requires half as much memory as—and is
often faster than—its opposite, an out-of-place transform.)

For two- and three-dimensional transforms, FFTWND provides alternative routines that
accept the sizes of each dimension directly, rather than indirectly through a rank and an
array of sizes. These are otherwise identical to fftwnd_create_plan, and are sometimes
more convenient:

fftwnd_plan fftw2d_create_plan(int nx, int ny,
fftw_direction dir, int flags);
fftwnd_plan fftw3d_create_plan(int nx, int ny, int nz,
fftw_direction dir, int flags);

Once the plan has been created, you can use it any number of times for transforms of the
same size. When you do not need a plan anymore, you can deallocate the plan by calling
fftwnd_destroy_plan(plan).

Given a plan, you can compute the transform of an array of data by calling:
void fftwnd_one(fftwnd_plan plan, fftw_complex *in, fftw_complex *out);

Here, in and out point to multi-dimensional arrays in row-major order, of the size
specified when the plan was created. In the case of an in-place transform, the out parameter
is ignored and the output data are stored in the in array. The results are stored in-order,
unnormalized, with the zero-frequency component in out[0]. A forward followed by a
backward transform (or vice-versa) yields the original data multiplied by the size of the
array (i.e. the product of the dimensions). See Section 3.3.4 [What FFTWND Really
Computes|, page 25, for a discussion of what FFTWND computes.

For example, code to perform an in-place FF'T of a three-dimensional array might look
like:

#include <fftw.h>

fftw_complex in[L] [M][N];
fftwnd_plan p;
p = fftw3dd_create_plan(L, M, N, FFTW_FORWARD,
FFTW_MEASURE | FFTW_IN_PLACE);
fftwnd_one(p, &in[0] [0] [0], NULL);
fftwnd_destroy_plan(p);
}

Note that in is a statically-declared array, which is automatically in row-major order,
but we must take the address of the first element in order to fit the type expected by
fftwnd_one. (See Section 2.5 [Multi-dimensional Array Format|, page 11.)

6 FFTW

2.3 Real One-dimensional Transforms Tutorial

If the input data are purely real, you can save roughly a factor of two in both time and
storage by using the rfftw transforms, which are FFTs specialized for real data. The output
of a such a transform is a halfcomplex array, which consists of only half of the complex DFT
amplitudes (since the negative-frequency amplitudes for real data are the complex conjugate
of the positive-frequency amplitudes).

In exchange for these speed and space advantages, the user sacrifices some of the sim-
plicity of FFTW’s complex transforms. First of all, to allow maximum performance, the
output format of the one-dimensional real transforms is different from that used by the
multi-dimensional transforms. Second, the inverse transform (halfcomplex to real) has the
side-effect of destroying its input array. Neither of these inconveniences should pose a serious
problem for users, but it is important to be aware of them. (Both the inconvenient output
format and the side-effect of the inverse transform can be ameliorated for one-dimensional
transforms, at the expense of some performance, by using instead the multi-dimensional
transform routines with a rank of one.)

The computation of the plan is similar to that for the complex transforms. First, you
#include <rfftw.h>. Then, you create a plan (of type rfftw_plan) by calling:

rfftw_plan rfftw_create_plan(int n, fftw_direction dir, int flags);

n is the length of the real array in the transform (even for halfcomplex-to-real trans-
forms), and can be any positive integer (although sizes with small factors are transformed
more efficiently). dir is either FFTW_REAL_TO_COMPLEX or FFTW_COMPLEX_TO_REAL. The
flags parameter is the same as in fftw_create_plan.

Once created, a plan can be used for any number of transforms, and is deallocated when
you are done with it by calling rfftw_destroy_plan(plan).

Given a plan, a real-to-complex or complex-to-real transform is computed by calling:
void rfftw_one(rfftw_plan plan, fftw_real *in, fftw_real *out);

(Note that £ftw_real is an alias for the floating-point type for which FFTW was com-
piled.) Depending upon the direction of the plan, either the input or the output array is
halfcomplex, and is stored in the following format:

To,T1,725 -+ -5 Tn/25 Y(nt1)/2-15 - - -5 12,11

Here, 7}, is the real part of the kth output, and i, is the imaginary part. (We follow here
the C convention that integer division is rounded down, e.g. 7/2 = 3.) For a halfcomplex
array hc[], the kth component has its real part in hc[k] and its imaginary part in hc [n-
k], with the exception of k == 0 or n/2 (the latter only if n is even)—in these two cases,
the imaginary part is zero due to symmetries of the real-complex transform, and is not
stored. Thus, the transform of n real values is a halfcomplex array of length n, and vice
versa.® This is actually only half of the DFT spectrum of the data. Although the other
half can be obtained by complex conjugation, it is not required by many applications such
as convolution and filtering.

1 The output for the multi-dimensional rfftw is a more-conventional array of fftw_complex values, but the
format here permitted us greater efficiency in one dimension.

Chapter 2: Tutorial 7

Like the complex transforms, the RFFTW transforms are unnormalized, so a forward
followed by a backward transform (or vice-versa) yields the original data scaled by the
length of the array, n.

Let us reiterate here our warning that an FFTW_COMPLEX_TO_REAL transform has the
side-effect of destroying its (halfcomplex) input. The FFTW_REAL_TO_COMPLEX transform,
however, leaves its (real) input untouched, just as you would hope.

As an example, here is an outline of how you might use RFFTW to compute the power
spectrum of a real array (i.e. the squares of the absolute values of the DFT amplitudes):

#include <rfftw.h>

fftw_real in[N], out[N], power_spectrum[N/2+1];

rfftw_plan p;

int k;

p = rfftw_create_plan(N, FFTW_REAL_TO_COMPLEX, FFTW_ESTIMATE);

rfftw_one(p, in, out);

power_spectrum[0] = out[0]*out[0]; /% DC component */

for (k = 1; k < (N+1)/2; ++k) /* (k < N/2 rounded up) */
power_spectrum[k] = out[k]*out[k] + out[N-k]*out[N-k];

if (N % 2 ==0) /* N is even */
power_spectrum[N/2] = out[N/2]*out[N/2]; /* Nyquist freq. */

rfftw_destroy_plan(p);

}

Programs using RFFTW should link with -1rfftw -1fftw -1m on Unix, or with the
FFTW, RFFTW, and math libraries in general.

2.4 Real Multi-dimensional Transforms Tutorial

FEFTW includes multi-dimensional transforms for real data of any rank. As with the
one-dimensional real transforms, they save roughly a factor of two in time and storage
over complex transforms of the same size. Also as in one dimension, these gains come at
the expense of some increase in complexity—the output format is different from the one-
dimensional RFFTW (and is more similar to that of the complex FFTW) and the inverse
(complex to real) transforms have the side-effect of overwriting their input data.

To use the real multi-dimensional transforms, you first #include <rfftw.h> and then

create a plan for the size and direction of transform that you are interested in:
rfftwnd_plan rfftwnd_create_plan(int rank, const int *n,
fftw_direction dir, int flags);

The first two parameters describe the size of the real data (not the halfcomplex data,
which will have different dimensions). The last two parameters are the same as those for
rfftw_create_plan. Just as for fftwnd, there are two alternate versions of this routine,
rfftw2d_create_plan and rfftw3d_create_plan, that are sometimes more convenient for
two- and three-dimensional transforms. Also as in fftwnd, rfftwnd supports true in-place
transforms, specified by including FFTW_IN_PLACE in the flags.

8 FFTW

Once created, a plan can be used for any number of transforms, and is deallocated by
calling rfftwnd_destroy_plan(plan).

Given a plan, the transform is computed by calling one of the following two routines:

void rfftwnd_one_real_to_complex(rfftwnd_plan plan,

fftw_real *in, fftw_complex *out);
void rfftwnd_one_complex_to_real (rfftwnd_plan plan,

fftw_complex *in, fftw_real *out);

As is clear from their names and parameter types, the former function is for FFTW_REAL_
TO_COMPLEX transforms and the latter is for FFTW_COMPLEX_TO_REAL transforms. (We could
have used only a single routine, since the direction of the transform is encoded in the plan,
but we wanted to correctly express the datatypes of the parameters.) The latter routine,
as we discuss elsewhere, has the side-effect of overwriting its input (except when the rank
of the array is one). In both cases, the out parameter is ignored for in-place transforms.

The format of the complex arrays deserves careful attention. Suppose that the real data
has dimensions n; X ng X -+ X ng (in row-major order). Then, after a real-to-complex
transform, the output is an n; X ny X - -+ x (ng/2+ 1) array of fftw_complex values in row-
major order, corresponding to slightly over half of the output of the corresponding complex
transform. (Note that the division is rounded down.) The ordering of the data is otherwise
exactly the same as in the complex case. (In principle, the output could be exactly half
the size of the complex transform output, but in more than one dimension this requires too
complicated a format to be practical.) Note that, unlike the one-dimensional RFFTW, the
real and imaginary parts of the DFT amplitudes are here stored together in the natural
way.

Since the complex data is slightly larger than the real data, some complications arise for
in-place transforms. In this case, the final dimension of the real data must be padded with
extra values to accommodate the size of the complex data—two extra if the last dimension is
even and one if it is odd. That is, the last dimension of the real data must physically contain
2(ng/2 4+ 1) fftw_real values (exactly enough to hold the complex data). This physical
array size does not, however, change the logical array size—only n, values are actually
stored in the last dimension, and n4 is the last dimension passed to rfftwnd_create_plan.

For example, consider the transform of a two-dimensional real array of size nx by ny.
The output of the rfftwnd transform is a two-dimensional complex array of size nx by
ny/2+1, where the y dimension has been cut nearly in half because of redundancies in the
output. Because fftw_complex is twice the size of fftw_real, the output array is slightly
bigger than the input array. Thus, if we want to compute the transform in place, we must
pad the input array so that it is of size nx by 2*(ny/2+1). If ny is even, then there are two
padding elements at the end of each row (which need not be initialized, as they are only
used for output).

The following illustration depicts the input and output arrays just described, for both
the out-of-place and in-place transforms (with the arrows indicating consecutive memory
locations):

Chapter 2: Tutorial 9

ny
0 ny-1

00 1 2 3 ny-4| ny-3| ny-2| ny—1

ny |ny+1|*"

\J

nx

\J

input, out-of-place

nx-1

\

output

|:| = fftw_real ‘- = fftw_complex

ny + 2-ny%?2 = 2*(ny/2+1)

0 ny+1
00 1 2 3 ny-4| ny-3| ny-2| ny—1

8 ny+2| ny+3| ***

o

ﬁ; @
™ S
= ©
L

3 ©
£

nx-1

The RFFTWND transforms are unnormalized, so a forward followed by a backward
transform will result in the original data scaled by the number of real data elements—that
is, the product of the (logical) dimensions of the real data.

Below, we illustrate the use of RFFTWND by showing how you might use it to compute
the (cyclic) convolution of two-dimensional real arrays a and b (using the identity that a
convolution corresponds to a pointwise product of the Fourier transforms). For variety,
in-place transforms are used for the forward FFTs and an out-of-place transform is used for
the inverse transform.

#include <rfftw.h>

{
fftw_real a[M][2x(N/2+1)], b[M] [2*(N/2+1)], c[M][N];
fftw_complex *A, *B, C[M][N/2+1];
rfftwnd_plan p, pinv;
fftw_real scale = 1.0 / (M *x N);
int i, j;

P = rfftw2d_create_plan(M, N, FFTW_REAL_TO_COMPLEX,

10 FFTW

FFTW_ESTIMATE | FFTW_IN_PLACE);
pinv = rfftw2d_create_plan(M, N, FFTW_COMPLEX_TO_REAL,
FFTW_ESTIMATE) ;

/* aliases for accessing complex transform outputs: */
A = (fftw_complex*) &al[0][0];
B = (fftw_complexx) &b[0][0];

for (i = 0; i < M; ++i)
for (j = 0; j < N; ++j) {
alil (] = ... ;
blil[j] = ... ;
}

rfftwnd_one_real_to_complex(p, &al[0][0], NULL);
rfftwnd_one_real_to_complex(p, &b[0][0], NULL);

for (i = 0; i < M; ++i)
for (j = 0; j < N/2+1; ++j) {
int ij = ix(N/2+1) + j;
C[il[j].re = (A[ij]l.re * B[ij].re
- A[ij].im * B[ij].im) = scale;
Cli]1[j].im = (A[ij].re * B[ij].im
+ A[ij].im * B[ij].re) * scale;

3

/* inverse transform to get c, the convolution of a and b;
this has the side effect of overwriting C */
rfftwnd_one_complex_to_real(pinv, &C[0][0], &c[0][0]);

rfftwnd_destroy_plan(p);
rfftwnd_destroy_plan(pinv);

We access the complex outputs of the in-place transforms by casting each real array to a
fftw_complex pointer. Because this is a “flat” pointer, we have to compute the row-major
index ij explicitly in the convolution product loop. In order to normalize the convolution,
we must multiply by a scale factor—we can do so either before or after the inverse transform,
and choose the former because it obviates the necessity of an additional loop. Notice the
limits of the loops and the dimensions of the various arrays.

As with the one-dimensional RFFTW, an out-of-place FFTW_COMPLEX_TO_REAL trans-
form has the side-effect of overwriting its input array. (The real-to-complex transform, on
the other hand, leaves its input array untouched.) If you use RFFTWND for a rank-one
transform, however, this side-effect does not occur. Because of this fact (and the simpler
output format), users may find the RFFTWND interface more convenient than RFFTW
for one-dimensional transforms. However, RFFTWND in one dimension is slightly slower
than RFFTW because RFFTWND uses an extra buffer array internally.

Chapter 2: Tutorial 11

2.5 Multi-dimensional Array Format

This section describes the format in which multi-dimensional arrays are stored. We felt
that a detailed discussion of this topic was necessary, since it is often a source of confusion
among users and several different formats are common. Although the comments below refer
to £ftwnd, they are also applicable to the rfftwnd routines.

2.5.1 Row-major Format

The multi-dimensional arrays passed to fftwnd are expected to be stored as a single
contiguous block in row-major order (sometimes called “C order”). Basically, this means
that as you step through adjacent memory locations, the first dimension’s index varies most
slowly and the last dimension’s index varies most quickly.

To be more explicit, let us consider an array of rank d whose dimensions are n; X ng X
ns x --- X ng. Now, we specify a location in the array by a sequence of (zero-based) indices,
one for each dimension: (iy,42,143,...,474). If the array is stored in row-major order, then
this element is located at the position iy + ng(ig_1 + na_1(. .. + naiy)).

Note that each element of the array must be of type fftw_complex; i.e. a (real, imagi-
nary) pair of (double-precision) numbers. Note also that, in fftwnd, the expression above
is multiplied by the stride to get the actual array index—this is useful in situations where
each element of the multi-dimensional array is actually a data structure or another array,
and you just want to transform a single field. In most cases, however, you use a stride of 1.

2.5.2 Column-major Format

Readers from the Fortran world are used to arrays stored in column-major order (some-
times called “Fortran order”). This is essentially the exact opposite of row-major order in
that, here, the first dimension’s index varies most quickly.

If you have an array stored in column-major order and wish to transform it using £ftwnd,
it is quite easy to do. When creating the plan, simply pass the dimensions of the array to
fftwnd_create_plan in reverse order. For example, if your array is a rank three N x M x
L matrix in column-major order, you should pass the dimensions of the array as if it were
an L x M x N matrix (which it is, from the perspective of fftwnd). This is done for you
automatically by the FFTW Fortran wrapper routines (see Chapter 5 [Calling FETW from
Fortran|, page 51).

2.5.3 Static Arrays in C

Multi-dimensional arrays declared statically (that is, at compile time, not necessarily
with the static keyword) in C are already in row-major order. You don’t have to do any-
thing special to transform them. (See Section 2.2 [Complex Multi-dimensional Transforms
Tutorial], page 4, for an example of this sort of code.)

12 FFTW

2.5.4 Dynamic Arrays in C

Often, especially for large arrays, it is desirable to allocate the arrays dynamically,
at runtime. This isn’t too hard to do, although it is not as straightforward for multi-
dimensional arrays as it is for one-dimensional arrays.

Creating the array is simple: using a dynamic-allocation routine like malloc, allocate
an array big enough to store N fftw_complex values, where N is the product of the sizes of
the array dimensions (i.e. the total number of complex values in the array). For example,
here is code to allocate a 5x12x27 rank 3 array:

fftw_complex *an_array;

an_array = (fftw_complex *) malloc(5 * 12 * 27 * sizeof (fftw_complex));

Accessing the array elements, however, is more tricky—you can’t simply use multiple
applications of the ‘[]’ operator like you could for static arrays. Instead, you have to
explicitly compute the offset into the array using the formula given earlier for row-major
arrays. For example, to reference the (i, j, k)-th element of the array allocated above, you
would use the expression an_array[k + 27 * (j + 12 x 1)].

This pain can be alleviated somewhat by defining appropriate macros, or, in C++, cre-
ating a class and overloading the ()’ operator.

2.5.5 Dynamic Arrays in C—The Wrong Way

A different method for allocating multi-dimensional arrays in C is often suggested that
is incompatible with fftwnd: wusing it will cause FFTW to die a painful death. We discuss
the technique here, however, because it is so commonly known and used. This method is
to create arrays of pointers of arrays of pointers of .. .etcetera. For example, the analogue
in this method to the example above is:

int i,j;
fftw_complex ***a_bad_array; /* another way to make a 5x12x27 array */

a_bad_array = (fftw_complex **x*) malloc(5 * sizeof (fftw_complex **));
for (i = 0; i < 5; ++i) {

a_bad_arrayl[i] =

(fftw_complex **) malloc(12 * sizeof (fftw_complex *));
for (j = 0; j < 12; ++j)
a_bad_array[i] [j] =
(fftw_complex *) malloc(27 * sizeof (fftw_complex));

}

As you can see, this sort of array is inconvenient to allocate (and deallocate). On the
other hand, it has the advantage that the (i, j, k)-th element can be referenced simply by
a_bad_array[i] [j] [k].

If you like this technique and want to maximize convenience in accessing the array, but
still want to pass the array to FFTW, you can use a hybrid method. Allocate the array as
one contiguous block, but also declare an array of arrays of pointers that point to appropriate
places in the block. That sort of trick is beyond the scope of this documentation; for more
information on multi-dimensional arrays in C, see the comp.lang.c FAQ.

http://www.eskimo.com/~scs/C-faq/s6.html

Chapter 2: Tutorial 13

2.6 Words of Wisdom

FFTW implements a method for saving plans to disk and restoring them. In fact, what
FFTW does is more general than just saving and loading plans. The mechanism is called
wisdom. Here, we describe this feature at a high level. See Chapter 3 [FFTW Reference],
page 17, for a less casual (but more complete) discussion of how to use wisdom in FFTW.

Plans created with the FFTW_MEASURE option produce near-optimal FFT performance,
but it can take a long time to compute a plan because FFTW must actually measure the
runtime of many possible plans and select the best one. This is designed for the situations
where so many transforms of the same size must be computed that the start-up time is
irrelevant. For short initialization times but slightly slower transforms, we have provided
FFTW_ESTIMATE. The wisdom mechanism is a way to get the best of both worlds. There are,
however, certain caveats that the user must be aware of in using wisdom. For this reason,
wisdom is an optional feature which is not enabled by default.

At its simplest, wisdom provides a way of saving plans to disk so that they can be reused
in other program runs. You create a plan with the flags FFTW_MEASURE and FFTW_USE_
WISDOM, and then save the wisdom using fftw_export_wisdom:

plan = fftw_create_plan(..., ... | FFTW_MEASURE | FFTW_USE_WISDOM);
fftw_export_wisdom(...);

The next time you run the program, you can restore the wisdom with fftw_import_
wisdom, and then recreate the plan using the same flags as before. This time, however, the
same optimal plan will be created very quickly without measurements. (FFTW still needs
some time to compute trigonometric tables, however.) The basic outline is:

fftw_import_wisdom(...);
plan = fftw_create_plan(..., ... | FFTW_USE_WISDOM);

Wisdom is more than mere rote memorization, however. FFTW’s wisdom encompasses
all of the knowledge and measurements that were used to create the plan for a given size.
Therefore, existing wisdom is also applied to the creation of other plans of different sizes.

Whenever a plan is created with the FFTW_MEASURE and FFTW_USE_WISDOM flags, wisdom
is generated. Thereafter, plans for any transform with a similar factorization will be com-
puted more quickly, so long as they use the FFTW_USE_WISDOM flag. In fact, for transforms
with the same factors and of equal or lesser size, no measurements at all need to be made
and an optimal plan can be created with negligible delay!

For example, suppose that you create a plan for N = 216, Then, for any equal or smaller
power of two, FFTW can create a plan (with the same direction and flags) quickly, using the
precomputed wisdom. Even for larger powers of two, or sizes that are a power of two times
some other prime factors, plans will be computed more quickly than they would otherwise
(although some measurements still have to be made).

The wisdom is cumulative, and is stored in a global, private data structure managed
internally by FFTW. The storage space required is minimal, proportional to the logarithm
of the sizes the wisdom was generated from. The wisdom can be forgotten (and its associated
memory freed) by a call to fftw_forget_wisdom(); otherwise, it is remembered until the
program terminates. It can also be exported to a file, a string, or any other medium using
fftw_export_wisdom and restored during a subsequent execution of the program (or a
different program) using fftw_import_wisdom (these functions are described below).

14 FFTW

Because wisdom is incorporated into FFTW at a very low level, the same wisdom can be
used for one-dimensional transforms, multi-dimensional transforms, and even the parallel
extensions to FFTW. Just include FFTW_USE_WISDOM in the flags for whatever plans you
create (i.e., always plan wisely).

Plans created with the FFTW_ESTIMATE plan can use wisdom, but cannot generate it; only
FFTW_MEASURE plans actually produce wisdom. Also, plans can only use wisdom generated
from plans created with the same direction and flags. For example, a size 42 FFTW_BACKWARD
transform will not use wisdom produced by a size 42 FFTW_FORWARD transform. The only
exception to this rule is that FFTW_ESTIMATE plans can use wisdom from FFTW_MEASURE
plans.

2.6.1 Caveats in Using Wisdom

For in much wisdom is much grief, and he that increaseth knowledge increaseth
sorrow. [Ecclesiastes 1:18]

There are pitfalls to using wisdom, in that it can negate FFTW’s ability to adapt to
changing hardware and other conditions. For example, it would be perfectly possible to
export wisdom from a program running on one processor and import it into a program
running on another processor. Doing so, however, would mean that the second program
would use plans optimized for the first processor, instead of the one it is running on.

It should be safe to reuse wisdom as long as the hardware and program binaries remain
unchanged. (Actually, the optimal plan may change even between runs of the same binary
on identical hardware, due to differences in the virtual memory environment, etcetera. Users
seriously interested in performance should worry about this problem, too.) It is likely that,
if the same wisdom is used for two different program binaries, even running on the same
machine, the plans may be sub-optimal because of differing code alignments. It is therefore
wise to recreate wisdom every time an application is recompiled. The more the underlying
hardware and software changes between the creation of wisdom and its use, the greater
grows the risk of sub-optimal plans.

2.6.2 Importing and Exporting Wisdom

void fftw_export_wisdom_to_file(FILE *output_file);
fftw_status fftw_import_wisdom_from_file(FILE *input_file);

fftw_export_wisdom_to_file writes the wisdom to output_file, which must be a file

open for writing. fftw_import_wisdom_from_file reads the wisdom from input_file,
which must be a file open for reading, and returns FFTW_SUCCESS if successful and FFTW_
FAILURE otherwise. In both cases, the file is left open and must be closed by the caller. It
is perfectly fine if other data lie before or after the wisdom in the file, as long as the file is
positioned at the beginning of the wisdom data before import.

char *fftw_export_wisdom_to_string(void);

fftw_status fftw_import_wisdom_from_string(const char *input_string)

fftw_export_wisdom_to_string allocates a string, exports the wisdom to it in NULL-
terminated format, and returns a pointer to the string. If there is an error in allocating
or writing the data, it returns NULL. The caller is responsible for deallocating the string
(with fftw_free) when she is done with it. fftw_import_wisdom_from_string imports

Chapter 2: Tutorial 15

the wisdom from input_string, returning FFTW_SUCCESS if successful and FFTW_FAILURE
otherwise.

Exporting wisdom does not affect the store of wisdom. Imported wisdom supplements
the current store rather than replacing it (except when there is conflicting wisdom, in which
case the older wisdom is discarded). The format of the exported wisdom is “nerd-readable”
LISP-like ASCII text; we will not document it here except to note that it is insensitive to
white space (interested users can contact us for more details).

See Chapter 3 [FFTW Reference|, page 17, for more information, and for a description
of how you can implement wisdom import/export for other media besides files and strings.

The following is a brief example in which the wisdom is read from a file, a plan is created
(possibly generating more wisdom), and then the wisdom is exported to a string and printed
to stdout.

{
fftw_plan plan;
char *wisdom_string;
FILE *input_file;

/* open file to read wisdom from */

input_file = fopen("sample.wisdom", "r");

if (FFTW_FAILURE == fftw_import_wisdom_from_file(input_file))
printf ("Error reading wisdom!\n");

fclose(input_file); /* be sure to close the file! */

/* create a plan for N=64, possibly creating and/or using wisdom */
plan = fftw_create_plan(64,FFTW_FORWARD,
FFTW_MEASURE | FFTW_USE_WISDOM) ;

/* ... do some computations with the plan ... */

/* always destroy plans when you are done */
fftw_destroy_plan(plan);

/* write the wisdom to a string */
wisdom_string = fftw_export_wisdom_to_string();
if (wisdom_string != NULL) {
printf("Accumulated wisdom: %s\n",wisdom_string) ;

/* Just for fun, destroy and restore the wisdom */
fftw_forget_wisdom(); /* all gone! */
fftw_import_wisdom_from_string(wisdom_string) ;

/* wisdom is back! */

fftw_free(wisdom_string); /* deallocate it since we’re done */

16

FFTW

Chapter 3: FFTW Reference 17

3 FFTW Reference

This chapter provides a complete reference for all sequential (i.e., one-processor) FFTW
functions. We first define the data types upon which FFTW operates, that is, real, com-
plex, and “halfcomplex” numbers (see Section 3.1 [Data Types|, page 17). Then, in four sec-
tions, we explain the FFTW program interface for complex one-dimensional transforms (see
Section 3.2 [One-dimensional Transforms Reference], page 18), complex multi-dimensional
transforms (see Section 3.3 [Multi-dimensional Transforms Reference], page 22), and real
one-dimensional transforms (see Section 3.4 [Real One-dimensional Transforms Reference],
page 26), real multi-dimensional transforms (see Section 3.5 [Real Multi-dimensional Trans-
forms Reference|, page 29). Section 3.6 [Wisdom Reference], page 34 describes the wisdom
mechanism for exporting and importing plans. Finally, Section 3.7 [Memory Allocator Ref-
erencel, page 35 describes how to change FFTW’s default memory allocator. For parallel
transforms, See Chapter 4 [Parallel FFTW], page 37.

3.1 Data Types

The routines in the FFTW package use three main kinds of data types. Real and
complex numbers should be already known to the reader. We also use the term halfcomplex
to describe complex arrays in a special packed format used by the one-dimensional real
transforms (taking advantage of the hermitian symmetry that arises in those cases).

By including <fftw.h> or <rfftw.h>, you will have access to the following definitions:
typedef double fftw_real;

typedef struct {
fftw_real re, im;
} fftw_complex;

#define c_re(c) ((c).re)
#define c_im(c) ((c).im)
All FFTW operations are performed on the fftw_real and fftw_complex data types.
For fftw_complex numbers, the two macros c_re and c_im retrieve, respectively, the real
and imaginary parts of the number.

A real array is an array of real numbers. A complex array is an array of complex
numbers. A one-dimensional array X of n complex numbers is hermitian if the following
property holds: for all 0 < i < n, we have X; = X . where z* denotes the complex
conjugate of x. Hermitian arrays are relevant to FF'TW because the Fourier transform of a
real array is hermitian.

Because of its symmetry, a hermitian array can be stored in half the space of a complex
array of the same size. FFTW’s one-dimensional real transforms store hermitian arrays as
halfcomplex arrays. A halfcomplex array of size n is a one-dimensional array of n fftw_
real numbers. A hermitian array X in stored into a halfcomplex array Y as follows. For
all integers i such that 0 < i < n/2, we have Y; := Re(X;). For all integers ¢ such that
0 <i<n/2, we have Y,,_,; := Im(X,).

We now illustrate halfcomplex storage for n = 4 and n = 5, since the scheme depends on
the parity of n. Let n = 4. In this case, we have Y, := Re(Xj), Y1 := Re(X), Y5 := Re(X2),

18 FFTW

and Y3 := Im(X;). Let now n = 5. In this case, we have Y; := Re(Xj), Y1 := Re(X)),
Y, := Re(X3), Y3 := Im(X3), and Y} := Im(X,).

By default, the type fftw_real equals the C type double. To work in single precision
rather than double precision, #define the symbol FFTW_ENABLE_FLOAT in fftw.h and then
recompile the library. On Unix systems, you can instead use configure --enable-float
at installation time (see Chapter 6 [Installation and Customization]|, page 55).

In version 1 of FFTW, the data types were called FFTW_REAL and FFTW_COMPLEX. We
changed the capitalization for consistency with the rest of FFTW’s conventions. The old
names are still supported, but their use is deprecated.

3.2 One-dimensional Transforms Reference

The one-dimensional complex routines are generally prefixed with fftw_. Programs
using FFTW should be linked with -1fftw -1m on Unix systems, or with the FFTW and
standard math libraries in general.

3.2.1 Plan Creation for One-dimensional Transforms

#include <fftw.h>

fftw_plan fftw_create_plan(int n, fftw_direction dir,
int flags);

fftw_plan fftw_create_plan_specific(int n, fftw_direction dir,

int flags,

fftw_complex *in, int istride,

fftw_complex *out, int ostride);

The function fftw_create_plan creates a plan, which is a data structure containing all

the information that fftw needs in order to compute the 1D Fourier transform. You can
create as many plans as you need, but only one plan for a given array size is required (a
plan can be reused many times).

fftw_create_plan returns a valid plan, or NULL if, for some reason, the plan can’t be
created. In the default installation, this cannot happen, but it is possible to configure
FEFTW in such a way that some input sizes are forbidden, and FFTW cannot create a plan.

The fftw_create_plan_specific variant takes as additional arguments specific in-
put/output arrays and their strides. For the last four arguments, you should pass the
arrays and strides that you will eventually be passing to fftw. The resulting plans will be
optimized for those arrays and strides, although they may be used on other arrays as well.
Note: the contents of the in and out arrays are destroyed by the specific planner (the initial
contents are ignored, so the arrays need not have been initialized).

Arguments

e 1 is the size of the transform. It can be any positive integer.

— FFTW is best at handling sizes of the form 223°5°¢7911¢13/, where e+ f is either 0 or
1, and the other exponents are arbitrary. Other sizes are computed by means of a
slow, general-purpose routine (which nevertheless retains O(nlogn) performance,

Chapter 3: FFTW Reference 19

even for prime sizes). (It is possible to customize FFTW for different array sizes.
See Chapter 6 [Installation and Customization], page 55, for more information.)
Transforms whose sizes are powers of 2 are especially fast.

e dir is the sign of the exponent in the formula that defines the Fourier transform. It
can be —1 or +1. The aliases FFTW_FORWARD and FFTW_BACKWARD are provided, where
FFTW_FORWARD stands for —1.

e flags is a boolean OR (‘|”) of zero or more of the following:

FFTW_MEASURE: this flag tells FFTW to find the optimal plan by actually computing
several FFTs and measuring their execution time. Depending on the installation,
this can take some time.'

FFTW_ESTIMATE: do not run any FFT and provide a “reasonable” plan (for a RISC
processor with many registers). If neither FFTW_ESTIMATE nor FFTW_MEASURE is
provided, the default is FFTW_ESTIMATE.

FFTW_OUT_OF_PLACE: produce a plan assuming that the input and output arrays
will be distinct (this is the default).

FFTW_IN_PLACE: produce a plan assuming that you want the output in the input
array. The algorithm used is not necessarily in place: FFTW is able to compute
true in-place transforms only for small values of n. If FF'TW is not able to compute
the transform in-place, it will allocate a temporary array (unless you provide one
yourself), compute the transform out of place, and copy the result back. Warning:
This option changes the meaning of some parameters of £ftw (see Section 3.2.3
[Computing the One-dimensional Transform]|, page 20).

The in-place option is mainly provided for people who want to write their own in-
place multi-dimensional Fourier transform, using FFTW as a base. For example,
consider a three-dimensional n * n * n transform. An out-of-place algorithm will
need another array (which may be huge). However, FFTW can compute the
in-place transform along each dimension using only a temporary array of size n.
Moreover, if FF'TW happens to be able to compute the transform truly in-place,
no temporary array and no copying are needed. As distributed, FEFTW ‘knows’
how to compute in-place transforms of size 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13,
14, 15, 16, 32 and 64.

The default mode of operation is FFTW_0OUT_OF_PLACE.

FFTW_USE_WISDOM: use any wisdom that is available to help in the creation of the
plan. (See Section 2.6 [Words of Wisdom|, page 13.) This can greatly speed the
creation of plans, especially with the FFTW_MEASURE option. FFTW_ESTIMATE plans
can also take advantage of wisdom to produce a more optimal plan (based on past
measurements) than the estimation heuristic would normally generate. When the
FFTW_MEASURE option is used, new wisdom will also be generated if the current
transform size is not completely understood by existing wisdom.

e in, out, istride, ostride (only for fftw_create_plan_specific): see correspond-
ing arguments in the description of fftw. (See Section 3.2.3 [Computing the One-
dimensional Transform|, page 20.) In particular, the out and ostride parameters
have the same special meaning for FFTW_IN_PLACE transforms as they have for fftw.

! The basic problem is the resolution of the clock: FFTW needs to run for a certain time for the clock to
be reliable.

20 FFTW

3.2.2 Discussion on Specific Plans

We recommend the use of the specific planners, even in cases where you will be transform-
ing arrays different from those passed to the specific planners, as they confer the following
advantages:

e The resulting plans will be optimized for your specific arrays and strides. This may
or may not make a significant difference, but it certainly doesn’t hurt. (The ordinary
planner does its planning based upon a stride-one temporary array that it allocates.)

e Less intermediate storage is required during the planning process. (The ordinary plan-
ner uses O(N) temporary storage, where N is the maximum dimension, while it is cre-
ating the plan.)

e For multi-dimensional transforms, new parameters become accessible for optimization
by the planner. (Since multi-dimensional arrays can be very large, we don’t dare to
allocate one in the ordinary planner for experimentation. This prevents us from doing
certain optimizations that can yield dramatic improvements in some cases.)

On the other hand, note that the specific planner destroys the contents of the in and
out arrays.

3.2.3 Computing the One-dimensional Transform

#include <fftw.h>

void fftw(fftw_plan plan, int howmany,
fftw_complex *in, int istride, int idist,
fftw_complex *out, int ostride, int odist);

void fftw_one(fftw_plan plan, fftw_complex *in,
fftw_complex *out);

The function £ftw computes the one-dimensional Fourier transform, using a plan created
by fftw_create_plan (See Section 3.2.1 [Plan Creation for One-dimensional Transforms,
page 18.) The function fftw_one provides a simplified interface for the common case of
single input array of stride 1.

Arguments

e plan is the plan created by fftw_create_plan (see Section 3.2.1 [Plan Creation for
One-dimensional Transforms|, page 18).

e howmany is the number of transforms fftw will compute. It is faster to tell FFTW to
compute many transforms, instead of simply calling fftw many times.

e in, istride and idist describe the input array(s). There are howmany input arrays;
the first one is pointed to by in, the second one is pointed to by in + idist, and so on,
up to in + (howmany - 1) * idist. Each input array consists of complex numbers (see
Section 3.1 [Data Types]|, page 17), which are not necessarily contiguous in memory.
Specifically, in[0] is the first element of the first array, in[istride] is the second
element of the first array, and so on. In general, the i-th element of the j-th input
array will be in position in[i * istride + j * idist].

Chapter 3: FFTW Reference 21

e out, ostride and odist describe the output array(s). The format is the same as for
the input array.

— In-place transforms: If the plan specifies an in-place transform, ostride and
odist are always ignored. If out is NULL, out is ignored, too. Otherwise, out is
interpreted as a pointer to an array of n complex numbers, that FFTW will use
as temporary space to perform the in-place computation. out is used as scratch
space and its contents destroyed. In this case, out must be an ordinary array
whose elements are contiguous in memory (no striding).

The function fftw_one transforms a single, contiguous input array to a contiguous
output array. By definition, the call
fftw_one(plan, in, out)
is equivalent to
fftw(plan, 1, in, 1, 0, out, 1, 0)

3.2.4 Destroying a One-dimensional Plan

#include <fftw.h>

void fftw_destroy_plan(fftw_plan plan);

The function fftw_destroy_plan frees the plan plan and releases all the memory asso-
ciated with it. After destruction, a plan is no longer valid.

3.2.5 What FFTW Really Computes

In this section, we define precisely what FFTW computes. Please be warned that differ-
ent authors and software packages might employ different conventions than FFTW does.

The forward transform of a complex array X of size n computes an array Y, where
n—1
Y; — ZXJ.efZﬂ'ij\/jl/n)

Jj=0

The backward transform computes

n—1
Yz‘ — ZXjezmj\/Tl/n)

Jj=0

FFTW computes an unnormalized transform, that is, the equation IFFT(FFT (X)) =
nX holds. In other words, applying the forward and then the backward transform will
multiply the input by n.

An FFTW_FORWARD transform corresponds to a sign of —1 in the exponent of the DFT.
Note also that we use the standard “in-order” output ordering—the k-th output corresponds
to the frequency k/n (or k/T', where T is your total sampling period). For those who like to
think in terms of positive and negative frequencies, this means that the positive frequencies
are stored in the first half of the output and the negative frequencies are stored in backwards
order in the second half of the output. (The frequency —k/n is the same as the frequency

(n—k)/n.)

22 FFTW

3.3 Multi-dimensional Transforms Reference

The multi-dimensional complex routines are generally prefixed with fftwnd_. Programs
using FFTWND should be linked with -1fftw -1m on Unix systems, or with the FFTW
and standard math libraries in general.

3.3.1 Plan Creation for Multi-dimensional Transforms

#include <fftw.h>

fftwnd_plan fftwnd_create_plan(int rank, const int *n,
fftw_direction dir, int flags);

fftwnd_plan fftw2d_create_plan(int nx, int ny,
fftw_direction dir, int flags);

fftwnd_plan fftw3d_create_plan(int nx, int ny, int nz,
fftw_direction dir, int flags);

fftwnd_plan fftwnd_create_plan_specific(int rank, const int *n,
fftw_direction dir,
int flags,
fftw_complex *in, int istride,
fftw_complex *out, int ostride);

fftwnd_plan fftw2d_create_plan_specific(int nx, int ny,
fftw_direction dir,
int flags,
fftw_complex *in, int istride,
fftw_complex *out, int ostride);

fftwnd_plan fftw3d_create_plan_specific(int nx, int ny, int nz,
fftw_direction dir, int flags,
fftw_complex *in, int istride,
fftw_complex *out, int ostride);

The function fftwnd_create_plan creates a plan, which is a data structure containing
all the information that fftwnd needs in order to compute a multi-dimensional Fourier
transform. You can create as many plans as you need, but only one plan for a given array
size is required (a plan can be reused many times). The functions fftw2d_create_plan
and fftw3d_create_plan are optional, alternative interfaces to fftwnd_create_plan for
two and three dimensions, respectively.

fftwnd_create_plan returns a valid plan, or NULL if, for some reason, the plan can’t be
created. This can happen if memory runs out or if the arguments are invalid in some way
(e.g. if rank < 0).

The create_plan_specific variants take as additional arguments specific input /output
arrays and their strides. For the last four arguments, you should pass the arrays and strides
that you will eventually be passing to fftwnd. The resulting plans will be optimized for
those arrays and strides, although they may be used on other arrays as well. Note: the

Chapter 3: FFTW Reference 23

contents of the in and out arrays are destroyed by the specific planner (the initial contents
are ignored, so the arrays need not have been initialized). See Section 3.2.2 [Discussion on
Specific Plans], page 20, for a discussion on specific plans.

Arguments

rank is the dimensionality of the arrays to be transformed. It can be any non-negative
integer.

n is a pointer to an array of rank integers, giving the size of each dimension of the
arrays to be transformed. These sizes, which must be positive integers, correspond
to the dimensions of row-major arrays—i.e. n[0] is the size of the dimension whose
indices vary most slowly, and so on. (See Section 2.5 [Multi-dimensional Array Format],
page 11, for more information on row-major storage.) See Section 3.2.1 [Plan Creation
for One-dimensional Transforms|, page 18, for more information regarding optimal
array sizes.

nx and ny in fftw2d_create_plan are positive integers specifying the dimensions of
the rank 2 array to be transformed. i.e. they specify that the transform will operate
on nx x ny arrays in row-major order, where nx is the number of rows and ny is the
number of columns.

nx, ny and nz in fftw3d_create_plan are positive integers specifying the dimensions
of the rank 3 array to be transformed. i.e. they specify that the transform will operate
ON DX X ny X nz arrays in row-major order.

dir is the sign of the exponent in the formula that defines the Fourier transform. It
can be —1 or +1. The aliases FFTW_FORWARD and FFTW_BACKWARD are provided, where
FFTW_FORWARD stands for —1.

flags is a boolean OR (‘|”) of zero or more of the following:

— FFTW_MEASURE: this flag tells FF'TW to find the optimal plan by actually computing
several FFTs and measuring their execution time.

— FFTW_ESTIMATE: do not run any FFT and provide a “reasonable” plan (for a RISC
processor with many registers). If neither FFTW_ESTIMATE nor FFTW_MEASURE is
provided, the default is FFTW_ESTIMATE.

— FFTW_OUT_OF_PLACE: produce a plan assuming that the input and output arrays
will be distinct (this is the default).

— FFTW_IN_PLACE: produce a plan assuming that you want to perform the trans-
form in-place. (Unlike the one-dimensional transform, this “really”? performs the
transform in-place.) Note that, if you want to perform in-place transforms, you
must use a plan created with this option.

The default mode of operation is FFTW_0OUT_OF_PLACE.

— FFTW_USE_WISDOM: use any wisdom that is available to help in the creation of
the plan. (See Section 2.6 [Words of Wisdom], page 13.) This can greatly speed
the creation of plans, especially with the FFTW_MEASURE option. FFTW_ESTIMATE

2

fftwnd actually may use some temporary storage (hidden in the plan), but this storage space is only
the size of the largest dimension of the array, rather than being as big as the entire array. (Unless you
use fftwnd to perform one-dimensional transforms, in which case the temporary storage required for
in-place transforms is as big as the entire array.)

24 FFTW

plans can also take advantage of wisdom to produce a more optimal plan (based
on past measurements) than the estimation heuristic would normally generate.
When the FFTW_MEASURE option is used, new wisdom will also be generated if the
current transform size is not completely understood by existing wisdom. Note
that the same wisdom is shared between one-dimensional and multi-dimensional
transforms.

e in, out, istride, ostride (only for the _create_plan_specific variants): see cor-
responding arguments in the description of fftwnd. (See Section 3.3.2 [Computing the
Multi-dimensional Transform]|, page 24.)

3.3.2 Computing the Multi-dimensional Transform

#include <fftw.h>

void fftwnd(fftwnd_plan plan, int howmany,
fftw_complex *in, int istride, int idist,
fftw_complex *out, int ostride, int odist);

void fftwnd_one(fftwnd_plan p, fftw_complex *in,
fftw_complex *out);

The function fftwnd computes one or more multi-dimensional Fourier Transforms, us-
ing a plan created by fftwnd_create_plan (see Section 3.3.1 [Plan Creation for Multi-
dimensional Transforms|, page 22). (Note that the plan determines the rank and dimensions
of the array to be transformed.) The function fftwnd_one provides a simplified interface
for the common case of single input array of stride 1.

Arguments

e plan is the plan created by fftwnd_create_plan. (see Section 3.3.1 [Plan
Creation for Multi-dimensional Transforms|, page 22). In the case of two and
three-dimensional transforms, it could also have been created by fftw2d_create_plan
or fftw3d_create_plan, respectively.

e howmany is the number of multi-dimensional transforms fftwnd will compute.

e in, istride and idist describe the input array(s). There are howmany multi-
dimensional input arrays; the first one is pointed to by in, the second one is pointed to
by in + idist, and so on, up to in + (howmany - 1) * idist. Each multi-dimensional
input array consists of complex numbers (see Section 3.1 [Data Types|, page 17),
stored in row-major format (see Section 2.5 [Multi-dimensional Array Format],
page 11), which are not necessarily contiguous in memory. Specifically, in[0] is
the first element of the first array, in[istride] is the second element of the first
array, and so on. In general, the i-th element of the j-th input array will be in
position in[i * istride + j * idist]. Note that, here, i refers to an index into
the row-major format for the multi-dimensional array, rather than an index in any
particular dimension.

— In-place transforms: For plans created with the FFTW_IN_PLACE option, the trans-
form is computed in-place—the output is returned in the in array, using the same
strides, etcetera, as were used in the input.

Chapter 3: FFTW Reference 25

e out, ostride and odist describe the output array(s). The format is the same as for
the input array.

— In-place transforms: These parameters are ignored for plans created with the
FFTW_IN_PLACE option.
The function fftwnd_one transforms a single, contiguous input array to a contiguous
output array. By definition, the call
fftwnd_one(plan, in, out)
is equivalent to

fftwnd(plan, 1, in, 1, O, out, 1, 0)

3.3.3 Destroying a Multi-dimensional Plan

#include <fftw.h>

void fftwnd_destroy_plan(fftwnd_plan plan);

The function fftwnd_destroy_plan frees the plan plan and releases all the memory
associated with it. After destruction, a plan is no longer valid.

3.3.4 What FFTWND Really Computes

The conventions that we follow for the multi-dimensional transform are analogous to
those for the one-dimensional transform. In particular, the forward transform has a negative
sign in the exponent and neither the forward nor the backward transforms will perform any
normalization. Computing the backward transform of the forward transform will multiply
the array by the product of its dimensions. The output is in-order, and the zeroth element
of the output is the amplitude of the zero frequency component.

The exact mathematical definition of our multi-dimensional transform follows. Let X
be a d-dimensional complex array whose elements are X[ji, ja, ..., ja], where 0 < j, < n,
for all s € {1,2,...,d}. Let also w, = >™V=1/7 for all s {1,2,...,d}.

The forward transform computes a complex array Y, whose structure is the same as that
of X, defined by

ni—1lns—1 ng—1

Vit in,.ovia = > Y o > X[oy - dalws rwy 22wyt

J1=0 j2=0 Jja=0
The backward transform computes
ni—1lngs—1 ng—1

Viivsinsoovial = 3 >0 e 2 Xljnday oo Jalot e "

Jj1=0 j2=0 Jja=0

Computing the forward transform followed by the backward transform will multiply the
array by Hle Ng.

26 FFTW

3.4 Real One-dimensional Transforms Reference

The one-dimensional real routines are generally prefixed with rfftw_.> Programs using
RFFTW should be linked with -1rfftw -1fftw —-1m on Unix systems, or with the RFFTW,
the FFTW, and the standard math libraries in general.

3.4.1 Plan Creation for Real One-dimensional Transforms

#include <rfftw.h>
rfftw_plan rfftw_create_plan(int n, fftw_direction dir, int flags);

rfftw_plan rfftw_create_plan_specific(int n, fftw_direction dir,
int flags, fftw_real *in, int istride,
fftw_real *out, int ostride);

The function rfftw_create_plan creates a plan, which is a data structure containing all
the information that rfftw needs in order to compute the 1D real Fourier transform. You
can create as many plans as you need, but only one plan for a given array size is required
(a plan can be reused many times).

rfftw_create_plan returns a valid plan, or NULL if, for some reason, the plan can’t
be created. In the default installation, this cannot happen, but it is possible to configure
RFFTW in such a way that some input sizes are forbidden, and RFFTW cannot create a
plan.

The rfftw_create_plan_specific variant takes as additional arguments specific in-
put/output arrays and their strides. For the last four arguments, you should pass the
arrays and strides that you will eventually be passing to rfftw. The resulting plans will
be optimized for those arrays and strides, although they may be used on other arrays as
well. Note: the contents of the in and out arrays are destroyed by the specific planner (the
initial contents are ignored, so the arrays need not have been initialized). See Section 3.2.2
[Discussion on Specific Plans], page 20, for a discussion on specific plans.

Arguments

e 1 is the size of the transform. It can be any positive integer.

— RFFTW is best at handling sizes of the form 223°5°7911°13/, where e+ f is either
0 or 1, and the other exponents are arbitrary. Other sizes are computed by means
of a slow, general-purpose routine (reducing to O(n?) performance for prime sizes).
(It is possible to customize REFFTW for different array sizes. See Chapter 6 [In-
stallation and Customization], page 55, for more information.) Transforms whose
sizes are powers of 2 are especially fast. If you have large prime factors, it may
be faster to switch over to the complex FFTW routines, which have O(nlogn)
performance even for prime sizes (we don’t know of a similar algorithm specialized
for real data, unfortunately).

e dir is the direction of the desired transform, either FFTW_REAL_TO_COMPLEX or FFTW_
COMPLEX_TO_REAL, corresponding to FFTW_FORWARD or FFTW_BACKWARD, respectively.

3 The etymologically-correct spelling would be frftw_, but it is hard to remember.

Chapter 3: FFTW Reference 27

e flags is a boolean OR (‘|’) of zero or more of the following:

— FFTW_MEASURE: this flag tells RFFTW to find the optimal plan by actually com-
puting several FFTs and measuring their execution time. Depending on the in-
stallation, this can take some time.

— FFTW_ESTIMATE: do not run any FFT and provide a “reasonable” plan (for a RISC
processor with many registers). If neither FFTW_ESTIMATE nor FFTW_MEASURE is
provided, the default is FFTW_ESTIMATE.

— FFTW_OUT_OF_PLACE: produce a plan assuming that the input and output arrays
will be distinct (this is the default).

— FFTW_IN_PLACE: produce a plan assuming that you want the output in the input
array. The algorithm used is not necessarily in place: RFFTW is able to compute
true in-place transforms only for small values of n. If RFFTW is not able to
compute the transform in-place, it will allocate a temporary array (unless you
provide one yourself), compute the transform out of place, and copy the result
back. Warning: This option changes the meaning of some parameters of rfftw
(see Section 3.4.2 [Computing the Real One-dimensional Transform|, page 27).

The default mode of operation is FFTW_0OUT_OF_PLACE.

— FFTW_USE_WISDOM: use any wisdom that is available to help in the creation of the
plan. (See Section 2.6 [Words of Wisdom], page 13.) This can greatly speed the
creation of plans, especially with the FFTW_MEASURE option. FFTW_ESTIMATE plans
can also take advantage of wisdom to produce a more optimal plan (based on past
measurements) than the estimation heuristic would normally generate. When the
FFTW_MEASURE option is used, new wisdom will also be generated if the current
transform size is not completely understood by existing wisdom.

e in, out, istride, ostride (only for rfftw_create_plan_specific): see correspond-
ing arguments in the description of rfftw. (See Section 3.4.2 [Computing the Real
One-dimensional Transform|, page 27.) In particular, the out and ostride parameters
have the same special meaning for FFTW_IN_PLACE transforms as they have for rfftw.

3.4.2 Computing the Real One-dimensional Transform

#include <rfftw.h>

void rfftw(rfftw_plan plan, int howmany,
fftw_real *in, int istride, int idist,
fftw_real *out, int ostride, int odist);

void rfftw_one(rfftw_plan plan, fftw_real *in, fftw_real *out);

The function rfftw computes the Real One-dimensional Fourier Transform, using a plan
created by rfftw_create_plan (see Section 3.4.1 [Plan Creation for Real One-dimensional
Transforms|, page 26). The function rfftw_one provides a simplified interface for the
common case of single input array of stride 1.

Important: When invoked for an out-of-place, FFTW_COMPLEX_TO_REAL transform, the
input array is overwritten with scratch values by these routines. The input array is not
modified for FFTW_REAL_TO_COMPLEX transforms.

28 FFTW

Arguments

e plan is the plan created by rfftw_create_plan (see Section 3.4.1 [Plan Creation for
Real One-dimensional Transforms], page 26).

e howmany is the number of transforms rfftw will compute. It is faster to tell RFFTW
to compute many transforms, instead of simply calling rfftw many times.

e in, istride and idist describe the input array(s). There are two cases. If the
plan defines a FFTW_REAL_TO_COMPLEX transform, in is a real array. Otherwise, for
FFTW_COMPLEX_TO_REAL transforms, in is a halfcomplex array whose contents will be
destroyed.

e out, ostride and odist describe the output array(s), and have the same meaning as
the corresponding parameters for the input array.

— In-place transforms: If the plan specifies an in-place transform, ostride and
odist are always ignored. If out is NULL, out is ignored, too. Otherwise, out is
interpreted as a pointer to an array of n complex numbers, that FFTW will use
as temporary space to perform the in-place computation. out is used as scratch
space and its contents destroyed. In this case, out must be an ordinary array
whose elements are contiguous in memory (no striding).

The function rfftw_one transforms a single, contiguous input array to a contiguous
output array. By definition, the call
rfftw_one(plan, in, out)
is equivalent to
rfftw(plan, 1, in, 1, 0, out, 1, 0)

3.4.3 Destroying a Real One-dimensional Plan

#include <rfftw.h>

void rfftw_destroy_plan(rfftw_plan plan);

The function rfftw_destroy_plan frees the plan plan and releases all the memory
associated with it. After destruction, a plan is no longer valid.

3.4.4 What RFFTW Really Computes

In this section, we define precisely what RFFTW computes.

The real to complex (FFTW_REAL_TO_COMPLEX) transform of a real array X of size n
computes an hermitian array Y, where

n—1
}/7; — ZXje—Qﬂiijl/n

Jj=0

(That Y is a hermitian array is not intended to be obvious, although the proof is easy.) The
hermitian array Y is stored in halfcomplex order (see Section 3.1 [Data Types]|, page 17).
Currently, RFFTW provides no way to compute a real to complex transform with a positive
sign in the exponent.

Chapter 3: FFTW Reference 29

The complex to real (FFTW_COMPLEX_TO_REAL) transform of a hermitian array X of size
n computes a real array Y, where

n—1
}/7; — ZXje%rij\/—il/n

Jj=0

(That Y is a real array is not intended to be obvious, although the proof is easy.) The
hermitian input array X is stored in halfcomplex order (see Section 3.1 [Data Types],
page 17). Currently, RFFTW provides no way to compute a complex to real transform
with a negative sign in the exponent.

Like FFTW, RFFTW computes an unnormalized transform. In other words, applying
the real to complex (forward) and then the complex to real (backward) transform will
multiply the input by n.

3.5 Real Multi-dimensional Transforms Reference

The multi-dimensional real routines are generally prefixed with rfftwnd_. Programs
using RFFTWND should be linked with -1rfftw -1fftw -1m on Unix systems, or with the
FFTW, RFFTW, and standard math libraries in general.

3.5.1 Plan Creation for Real Multi-dimensional Transforms

#include <rfftw.h>

rfftwnd_plan rfftwnd_create_plan(int rank, const int *n,
fftw_direction dir, int flags);

rfftwnd_plan rfftw2d_create_plan(int nx, int ny,
fftw_direction dir, int flags);

rfftwnd_plan rfftw3d_create_plan(int nx, int ny, int nz,
fftw_direction dir, int flags);

The function rfftwnd_create_plan creates a plan, which is a data structure containing
all the information that rfftwnd needs in order to compute a multi-dimensional real Fourier
transform. You can create as many plans as you need, but only one plan for a given array
size is required (a plan can be reused many times). The functions rfftw2d_create_plan
and rfftw3dd_create_plan are optional, alternative interfaces to rfftwnd_create_plan
for two and three dimensions, respectively.

rfftwnd_create_plan returns a valid plan, or NULL if, for some reason, the plan can’t
be created. This can happen if the arguments are invalid in some way (e.g. if rank < 0).

Arguments
e rank is the dimensionality of the arrays to be transformed. It can be any non-negative
integer.

e nis a pointer to an array of rank integers, giving the size of each dimension of the arrays
to be transformed. Note that these are always the dimensions of the real arrays; the

30

FFTW

complex arrays have different dimensions (see Section 3.5.3 [Array Dimensions for Real
Multi-dimensional Transforms|, page 32). These sizes, which must be positive integers,
correspond to the dimensions of row-major arrays—i.e. n[0] is the size of the dimension
whose indices vary most slowly, and so on. (See Section 2.5 [Multi-dimensional Array
Format|, page 11, for more information.)

— See Section 3.4.1 [Plan Creation for Real One-dimensional Transforms|, page 26,
for more information regarding optimal array sizes.

nx and ny in rfftw2d_create_plan are positive integers specifying the dimensions of
the rank 2 array to be transformed. i.e. they specify that the transform will operate
on nx x ny arrays in row-major order, where nx is the number of rows and ny is the
number of columns.

nx, ny and nz in rfftw3d_create_plan are positive integers specifying the dimensions
of the rank 3 array to be transformed. i.e. they specify that the transform will operate
ON DX X Ny X Nz arrays in row-major order.

dir is the direction of the desired transform, either FFTW_REAL_TO_COMPLEX or FFTW_
COMPLEX_TO_REAL, corresponding to FFTW_FORWARD or FFTW_BACKWARD, respectively.

flags is a boolean OR (‘|”) of zero or more of the following:

— FFTW_MEASURE: this flag tells FFTW to find the optimal plan by actually computing
several FFTs and measuring their execution time.

— FFTW_ESTIMATE: do not run any FFT and provide a “reasonable” plan (for a RISC
processor with many registers). If neither FFTW_ESTIMATE nor FFTW_MEASURE is
provided, the default is FFTW_ESTIMATE.

— FFTW_OUT_OF_PLACE: produce a plan assuming that the input and output arrays
will be distinct (this is the default).

— FFTW_IN_PLACE: produce a plan assuming that you want to perform the trans-
form in-place. (Unlike the one-dimensional transform, this “really” performs the
transform in-place.) Note that, if you want to perform in-place transforms, you
must use a plan created with this option. The use of this option has important
implications for the size of the input/output array (see Section 3.5.2 [Computing
the Real Multi-dimensional Transform], page 30).

The default mode of operation is FFTW_0OUT_OF_PLACE.

— FFTW_USE_WISDOM: use any wisdom that is available to help in the creation of
the plan. (See Section 2.6 [Words of Wisdom], page 13.) This can greatly speed
the creation of plans, especially with the FFTW_MEASURE option. FFTW_ESTIMATE
plans can also take advantage of wisdom to produce a more optimal plan (based
on past measurements) than the estimation heuristic would normally generate.
When the FFTW_MEASURE option is used, new wisdom will also be generated if the
current transform size is not completely understood by existing wisdom. Note
that the same wisdom is shared between one-dimensional and multi-dimensional
transforms.

3.5.2 Computing the Real Multi-dimensional Transform

#include <rfftw.h>

Chapter 3: FFTW Reference 31

void rfftwnd_real_to_complex(rfftwnd_plan plan, int howmany,
fftw_real *in, int istride, int idist,
fftw_complex *out, int ostride, int odist);
void rfftwnd_complex_to_real(rfftwnd_plan plan, int howmany,
fftw_complex *in, int istride, int idist,
fftw_real *out, int ostride, int odist);

void rfftwnd_one_real_to_complex(rfftwnd_plan p, fftw_real *in,
fftw_complex *out);

void rfftwnd_one_complex_to_real(rfftwnd_plan p, fftw_complex *in,
fftw_real *out);

These functions compute the real multi-dimensional Fourier Transform, using a plan cre-
ated by rfftwnd_create_plan (see Section 3.5.1 [Plan Creation for Real Multi-dimensional
Transforms|, page 29). (Note that the plan determines the rank and dimensions of the ar-
ray to be transformed.) The ‘rfftwnd_one_’ functions provide a simplified interface for the
common case of single input array of stride 1. Unlike other transform routines in FFTW,
we here use separate functions for the two directions of the transform in order to correctly
express the datatypes of the parameters.

Important: When invoked for an out-of-place, FFTW_COMPLEX_TO_REAL transform with
rank > 1, the input array is overwritten with scratch values by these routines. The input
array is not modified for FFTW_REAL_TO_COMPLEX transforms or for FFTW_COMPLEX_TO_REAL
with rank ==

Arguments

e planisthe plan created by rfftwnd_create_plan. (see Section 3.5.1 [Plan Creation for
Real Multi-dimensional Transforms], page 29). In the case of two and three-dimensional
transforms, it could also have been created by rfftw2d_create_plan or rfftw3d_
create_plan, respectively.

FFTW_REAL_TO_COMPLEX plans must be used with the ‘real_to_complex’ functions, and
FFTW_COMPLEX_TO_REAL plans must be used with the ‘complex_to_real’ functions. It
is an error to mismatch the plan direction and the transform function.

e howmany is the number of transforms to be computed.

e in, istride and idist describe the input array(s). There are howmany input arrays;
the first one is pointed to by in, the second one is pointed to by in + idist, and
so on, up to in + (howmany - 1) * idist. Each input array is stored in row-major
format (see Section 2.5 [Multi-dimensional Array Format]|, page 11), and is not neces-
sarily contiguous in memory. Specifically, in[0] is the first element of the first array,
in[istride] is the second element of the first array, and so on. In general, the i-th
element of the j-th input array will be in position in[i * istride + j * idist]. Note
that, here, i refers to an index into the row-major format for the multi-dimensional
array, rather than an index in any particular dimension.

The dimensions of the arrays are different for real and complex data, and are discussed
in more detail below (see Section 3.5.3 [Array Dimensions for Real Multi-dimensional
Transforms|, page 32).
— In-place transforms: For plans created with the FFTW_IN_PLACE option, the trans-
form is computed in-place—the output is returned in the in array. The meaning

32 FFTW

of the stride and dist parameters in this case is subtle and is discussed below
(see Section 3.5.4 [Strides in In-place RFFTWND], page 32).

e out, ostride and odist describe the output array(s). The format is the same as that
for the input array. See below for a discussion of the dimensions of the output array
for real and complex data.

— In-place transforms: These parameters are ignored for plans created with the
FFTW_IN_PLACE option.

The function rfftwnd_one transforms a single, contiguous input array to a contiguous
output array. By definition, the call

rfftwnd_one_...(plan, in, out)
is equivalent to
rfftwnd_...(plan, 1, in, 1, 0, out, 1, 0)

3.5.3 Array Dimensions for Real Multi-dimensional Transforms

The output of a multi-dimensional transform of real data contains symmetries that, in
principle, make half of the outputs redundant (see Section 3.5.6 [What REFTWND Really
Computes|, page 33). In practice, it is not possible to entirely realize these savings in an
efficient and understandable format. Instead, the output of the rfftwnd transforms is slightly
over half of the output of the corresponding complex transform. We do not “pack” the data
in any way, but store it as an ordinary array of fftw_complex values. In fact, this data is
simply a subsection of what would be the array in the corresponding complex transform.

Specifically, for a real transform of dimensions n; X ny X - -+ X ng, the complex data is
an ny X ng X -+ X (ng/2 + 1) array of fftw_complex values in row-major order (with the
division rounded down). That is, we only store the lower half (plus one element) of the
last dimension of the data from the ordinary complex transform. (We could have instead
taken half of any other dimension, but implementation turns out to be simpler if the last,
contiguous, dimension is used.)

Since the complex data is slightly larger than the real data, some complications arise for
in-place transforms. In this case, the final dimension of the real data must be padded with
extra values to accommodate the size of the complex data—two extra if the last dimension is
even and one if it is odd. That is, the last dimension of the real data must physically contain
2(nq/2 + 1) fftw_real values (exactly enough to hold the complex data). This physical
array size does not, however, change the logical array size—only n, values are actually
stored in the last dimension, and n, is the last dimension passed to rfftwnd_create_plan.

3.5.4 Strides in In-place RFFTWND

The fact that the input and output datatypes are different for rfftwnd complicates the
meaning of the stride and dist parameters of in-place transforms—are they in units of
fftw_real or fftw_complex elements? When reading the input, they are interpreted in
units of the datatype of the input data. When writing the output, the istride and idist
are translated to the output datatype’s “units” in one of two ways, corresponding to the
two most common situations in which stride and dist parameters are useful. Below, we
refer to these “translated” parameters as ostride_t and odist_t. (Note that these are

Chapter 3: FFTW Reference 33

computed internally by rfftwnd; the actual ostride and odist parameters are ignored for
in-place transforms.)

First, there is the case where you are transforming a number of contiguous arrays located
one after another in memory. In this situation, istride is 1 and idist is the product of
the physical dimensions of the array. ostride_t and odist_t are then chosen so that the
output arrays are contiguous and lie on top of the input arrays. ostride_t is therefore
1. For a real-to-complex transform, odist_t is idist/2; for a complex-to-real transform,
odist_t is idist*2.

The second case is when you have an array in which each element has nc components
(e.g. a structure with nc numeric fields), and you want to transform all of the components
at once. Here, istride is nc and idist is 1. For this case, it is natural to want the output
to also have nc consecutive components, now of the output data type; this is exactly what
rfftwnd does. Specifically, it uses an ostride_t equal to istride, and an odist_t of 1.
(Astute readers will realize that some extra buffer space is required in order to perform such
a transform; this is handled automatically by rfftwnd.)

The general rule is as follows. ostride_t equals istride. If idist is 1 and idist is
less than istride, then odist_t is 1. Otherwise, for a real-to-complex transform odist_t
is idist/2 and for a complex-to-real transform odist_t is idist*2.

3.5.5 Destroying a Multi-dimensional Plan

#include <rfftw.h>

void rfftwnd_destroy_plan(rfftwnd_plan plan);

The function rfftwnd_destroy_plan frees the plan plan and releases all the memory
associated with it. After destruction, a plan is no longer valid.

3.5.6 What RFFTWND Really Computes

The conventions that we follow for the real multi-dimensional transform are analogous to
those for the complex multi-dimensional transform. In particular, the forward transform has
a negative sign in the exponent and neither the forward nor the backward transforms will
perform any normalization. Computing the backward transform of the forward transform
will multiply the array by the product of its dimensions (that is, the logical dimensions of
the real data). The forward transform is real-to-complex and the backward transform is
complex-to-real.

The exact mathematical definition of our real multi-dimensional transform follows.

Real to complex (forward) transform. Let X be a d-dimensional real array whose elements
are X[j1,jas .- ., ja), where 0 < j, < n, for all s € {1,2,...,d}. Let also w, = e*™V=1/" for
all se{1,2,...,d}.

The real to complex transform computes a complex array Y, whose structure is the same
as that of X, defined by

s L . —i1J1, ,—i2j2 —idjd
Y[hyh,-nﬂd]— E E]17]2,--~,]d] Wy Wy .

34 FFTW

The output array Y enjoys a multidimensional hermitian symmetry, that is, the identity
Yli,iay ... iq) = Y[ng — iy, ng — da,...,ng — ig)* holds for all 0 < iy < n,. Because of this
symmetry, Y is stored in the peculiar way described in Section 3.5.3 [Array Dimensions for
Real Multi-dimensional Transforms], page 32.

Complex to real (backward) transform. Let X be a d-dimensional complex array whose
elements are X[ji,J2,...,ja], where 0 < j, < ng for all s € {1,2,...,d}. The array X
must be hermitian, that is, the identity X[ji, j2,...,74] = X[n1 — ji,m2 — Joy .-, ng — Jal*
must hold for all 0 < j, < n,. Moreover, X must be stored in memory in the peculiar
way described in Section 3.5.3 [Array Dimensions for Real Multi-dimensional Transforms],
page 32.

Let w, = e2™V=1/7 forall s€ {1,2,...,d}. The complex to real transform computes a
real array Y, whose structure is the same as that of X, defined by

n1—1n2—1 ndfl
- N - E E E S ; i1j1, i2j2 idjd
Y[ZhZQv"'de]* X[.717j27"'7,7d]w1 Wo ”'wd .
Jj1=0 j2=0 Jja=0

(That Y is real is not meant to be obvious, although the proof is easy.)
Computing the forward transform followed by the backward transform will multiply the
array by Hle Ng.

3.6 Wisdom Reference

3.6.1 Exporting Wisdom

#include <fftw.h>

void fftw_export_wisdom(void (*emitter)(char c, void *), void *data);
void fftw_export_wisdom_to_file(FILE *output_file);
char *fftw_export_wisdom_to_string(void);

These functions allow you to export all currently accumulated wisdom in a form from
which it can be later imported and restored, even during a separate run of the program.
(See Section 2.6 [Words of Wisdom]|, page 13.) The current store of wisdom is not affected
by calling any of these routines.

fftw_export_wisdom exports the wisdom to any output medium, as specified by the
callback function emitter. emitter is a putc-like function that writes the character c to
some output; its second parameter is the data pointer passed to fftw_export_wisdom. For
convenience, the following two “wrapper” routines are provided:

fftw_export_wisdom_to_file writes the wisdom to the current position in output_
file, which should be open with write permission. Upon exit, the file remains open and is
positioned at the end of the wisdom data.

fftw_export_wisdom_to_string returns a pointer to a NULL-terminated string holding
the wisdom data. This string is dynamically allocated, and it is the responsibility of the
caller to deallocate it with fftw_free when it is no longer needed.

All of these routines export the wisdom in the same format, which we will not document
here except to say that it is LISP-like ASCII text that is insensitive to white space.

Chapter 3: FFTW Reference 35

3.6.2 Importing Wisdom

#include <fftw.h>

fftw_status fftw_import_wisdom(int (*get_input) (void *), void *data);

fftw_status fftw_import_wisdom_from_file(FILE *input_file);

fftw_status fftw_import_wisdom_from_string(const char *input_string);

These functions import wisdom into a program from data stored by the fftw_export_

wisdom functions above. (See Section 2.6 [Words of Wisdom]|, page 13.) The imported
wisdom supplements rather than replaces any wisdom already accumulated by the running
program (except when there is conflicting wisdom, in which case the existing wisdom is
replaced).

fftw_import_wisdom imports wisdom from any input medium, as specified by the call-
back function get_input. get_input is a getc-like function that returns the next character
in the input; its parameter is the data pointer passed to fftw_import_wisdom. If the end
of the input data is reached (which should never happen for valid data), it may return
either NULL (ASCII 0) or EOF (as defined in <stdio.h>). For convenience, the following two
“wrapper” routines are provided:

fftw_import_wisdom_from_file reads wisdom from the current position in input_
file, which should be open with read permission. Upon exit, the file remains open and is
positioned at the end of the wisdom data.

fftw_import_wisdom_from_string reads wisdom from the NULL-terminated string
input_string.

The return value of these routines is FFTW_SUCCESS if the wisdom was read successfully,
and FFTW_FAILURE otherwise. Note that, in all of these functions, any data in the input
stream past the end of the wisdom data is simply ignored (it is not even read if the wisdom
data is well-formed).

3.6.3 Forgetting Wisdom

#include <fftw.h>

void fftw_forget_wisdom(void);

Calling fftw_forget_wisdom causes all accumulated wisdom to be discarded and its
associated memory to be freed. (New wisdom can still be gathered subsequently, however.)

3.7 Memory Allocator Reference

#include <fftw.h>

void *(*fftw_malloc_hook) (size_t n);
void (xfftw_free_hook) (void *p);
Whenever it has to allocate and release memory, FFTW ordinarily callsmalloc and free.
If malloc fails, FF'TW prints an error message and exits. This behavior may be undesirable
in some applications. Also, special memory-handling functions may be necessary in certain
environments. Consequently, FFTW provides means by which you can install your own
memory allocator and take whatever error-correcting action you find appropriate. The

36 FFTW

variables fftw_malloc_hook and fftw_free_hook are pointers to functions, and they are
normally NULL. If you set those variables to point to other functions, then FFTW will use
your routines instead of malloc and free. fftw_malloc_hook must point to a malloc-like
function, and fftw_free_hook must point to a free-like function.

3.8 Thread safety

Users writing multi-threaded programs must concern themselves with the thread safety
of the libraries they use—that is, whether it is safe to call routines in parallel from multiple
threads. FFTW can be used in such an environment, but some care must be taken because
certain parts of FFTW use private global variables to share data between calls. In particular,
the plan-creation functions share trigonometric tables and accumulated wisdom. (Users
should note that these comments only apply to programs using shared-memory threads.
Parallelism using MPI or forked processes involves a separate address-space and global
variables for each process, and is not susceptible to problems of this sort.)

The central restriction of FFTW is that it is not safe to create multiple plans in parallel.
You must either create all of your plans from a single thread, or instead use a semaphore,
mutex, or other mechanism to ensure that different threads don’t attempt to create plans
at the same time. The same restriction also holds for destruction of plans and import-
ing/forgetting wisdom. Once created, a plan may safely be used in any thread.

The actual transform routines in FFTW (fftw_one, etcetera) are re-entrant and thread-
safe, so it is fine to call them simultaneously from multiple threads. Another question arises,
however—is it safe to use the same plan for multiple transforms in parallel? (It would be
unsafe if, for example, the plan were modified in some way by the transform.) We address
this question by defining an additional planner flag, FFTW_THREADSAFE. When included
in the flags for any of the plan-creation routines, FFTW_THREADSAFE guarantees that the
resulting plan will be read-only and safe to use in parallel by multiple threads.

Chapter 4: Parallel FF'TW 37

4 Parallel FFTW

In this chapter we discuss the use of FFTW in a parallel environment, document-
ing the different parallel libraries that we have provided. (Users calling FFTW from a
multi-threaded program should also consult Section 3.8 [Thread safety]|, page 36.) The
FFTW package currently contains three parallel transform implementations that leverage
the uniprocessor FFTW code:

e The first set of routines utilizes shared-memory threads for parallel one- and multi-
dimensional transforms of both real and complex data. Any program using FE'TW can
be trivially modified to use the multi-threaded routines. This code can use any com-
mon threads implementation, including POSIX threads. (POSIX threads are available
on most Unix variants, including Linux.) These routines are located in the threads
directory, and are documented in Section 4.1 [Multi-threaded FFTW], page 37.

e The mpi directory contains multi-dimensional transforms of real and complex data for
parallel machines supporting MPI. It also includes parallel one-dimensional transforms
for complex data. The main feature of this code is that it supports distributed-memory
transforms, so it runs on everything from workstation clusters to massively-parallel
supercomputers. More information on MPI can be found at the MPI home page. The
FFTW MPI routines are documented in Section 4.2 [MPI FETW], page 40.

e We also have an experimental parallel implementation written in Cilk, a C-like parallel
language developed at MIT and currently available for several SMP platforms. For more
information on Cilk see the Cilk home page. The FFTW Cilk code can be found in
the cilk directory, with parallelized one- and multi-dimensional transforms of complex
data. The Cilk FFTW routines are documented in cilk/README.

4.1 Multi-threaded FFTW

In this section we document the parallel FFTW routines for shared-memory threads on
SMP hardware. These routines, which support parallel one- and multi-dimensional trans-
forms of both real and complex data, are the easiest way to take advantage of multiple
processors with FF'TW. They work just like the corresponding uniprocessor transform rou-
tines, except that they take the number of parallel threads to use as an extra parameter.
Any program that uses the uniprocessor FFTW can be trivially modified to use the multi-
threaded FFTW.

4.1.1 Installation and Supported Hardware/Software

All of the FFTW threads code is located in the threads subdirectory of the FFTW
package. On Unix systems, the FFTW threads libraries and header files can be auto-
matically configured, compiled, and installed along with the uniprocessor FFTW libraries
simply by including --enable-threads in the flags to the configure script (see Section 6.1
[Installation on Unix|, page 55). (Note also that the threads routines, when enabled, are
automatically tested by the ‘make check’ self-tests.)

The threads routines require your operating system to have some sort of shared-memory
threads support. Specifically, the FFTW threads package works with POSIX threads (avail-
able on most Unix variants, including Linux), Solaris threads, BeOS threads (tested on

http://www.mcs.anl.gov/mpi
http://supertech.lcs.mit.edu/cilk
http://www.be.com

38 FFTW

BeOS DR8.2), Mach C threads (reported to work by users), and Win32 threads (reported
to work by users). (There is also untested code to use MacOS MP threads.) We also support
using OpenMP or SGI MP compiler directives to launch threads, enabled by using --with-
openmp or —-with-sgimp in addition to -—enable-threads. This is especially useful if you
are employing that sort of directive in your own code, in order to minimize conflicts. If
you have a shared-memory machine that uses a different threads API, it should be a simple
matter of programming to include support for it; see the file fftw_threads-int.h for more
detail.

SMP hardware is not required, although of course you need multiple processors to get
any benefit from the multithreaded transforms.

4.1.2 Usage of Multi-threaded FFTW

Here, it is assumed that the reader is already familiar with the usage of the uniprocessor
FFTW routines, described elsewhere in this manual. We only describe what one has to
change in order to use the multi-threaded routines.

First, instead of including <fftw.h> or <rfftw.h>, you should include the files <fftw_
threads.h> or <rfftw_threads.h>, respectively.

Second, before calling any FFTW routines, you should call the function:
int fftw_threads_init(void);

This function, which should only be called once (probably in your main() function),
performs any one-time initialization required to use threads on your system. It returns
zero if successful, and a non-zero value if there was an error (in which case, something is
seriously wrong and you should probably exit the program).

Third, when you want to actually compute the transform, you should use one of the
following transform routines instead of the ordinary FFTW functions:

fftw_threads(nthreads, plan, howmany, in, istride,
idist, out, ostride, odist);

fftw_threads_one(nthreads, plan, in, out);

fftwnd_threads(nthreads, plan, howmany, in, istride,
idist, out, ostride, odist);

fftwnd_threads_one(nthreads, plan, in, out);

rfftw_threads(nthreads, plan, howmany, in, istride,
idist, out, ostride, odist);

rfftw_threads_one(nthreads, plan, in, out);

rfftwnd_threads_real_to_complex(nthreads, plan, howmany, in,
istride, idist, out, ostride, odist);

rfftwnd_threads_one_real_to_complex(nthreads, plan, in, out);

rfftwnd_threads_complex_to_real (nthreads, plan, howmany, in,

http://www.openmp.org

Chapter 4: Parallel FF'TW 39

istride, idist, out, ostride, odist);
rfftwnd_threads_one_real_to_complex(nthreads, plan, in, out);

rfftwnd_threads_one_complex_to_real (nthreads, plan, in, out);

All of these routines take exactly the same arguments and have exactly the same effects
as their uniprocessor counterparts (i.e. without the ‘_threads’) except that they take one
extra parameter, nthreads (of type int), before the normal parameters.! The nthreads
parameter specifies the number of threads of execution to use when performing the transform
(actually, the maximum number of threads).

For example, to parallelize a single one-dimensional transform of complex data, instead
of calling the uniprocessor fftw_one(plan, in, out), you would call fftw_threads_
one(nthreads, plan, in, out). Passing an nthreads of 1 means to use only one thread
(the main thread), and is equivalent to calling the uniprocessor routine. Passing an
nthreads of 2 means that the transform is potentially parallelized over two threads (and
two processors, if you have them), and so on.

These are the only changes you need to make to your source code. Calls to all other
FEFTW routines (plan creation, destruction, wisdom, etcetera) are not parallelized and
remain the same. (The same plans and wisdom are used by both uniprocessor and multi-
threaded transforms.) Your arrays are allocated and formatted in the same way, and so
on.

Programs using the parallel complex transforms should be linked with -1fftw_threads
-1fftw -1m on Unix. Programs using the parallel real transforms should be linked with
-lrfftw_threads -1fftw_threads -1lrfftw -1fftw -1m. You will also need to link with
whatever library is responsible for threads on your system (e.g. -1pthread on Linux).

4.1.3 How Many Threads to Use?

There is a fair amount of overhead involved in spawning and synchronizing threads, so
the optimal number of threads to use depends upon the size of the transform as well as on
the number of processors you have.

As a general rule, you don’t want to use more threads than you have processors. (Using
more threads will work, but there will be extra overhead with no benefit.) In fact, if the
problem size is too small, you may want to use fewer threads than you have processors.

You will have to experiment with your system to see what level of parallelization is
best for your problem size. Useful tools to help you do this are the test programs that are
automatically compiled along with the threads libraries, fftw_threads_test and rfftw_
threads_test (in the threads subdirectory). These take the same arguments as the other
FETW test programs (see tests/README), except that they also take the number of threads
to use as a first argument, and report the parallel speedup in speed tests. For example,

fftw_threads_test 2 -s 128x128

I There is one exception: when performing one-dimensional in-place transforms, the out parameter is
always ignored by the multi-threaded routines, instead of being used as a workspace if it is non-NULL as
in the uniprocessor routines. The multi-threaded routines always allocate their own workspace (the size
of which depends upon the number of threads).

40 FFTW

will benchmark complex 128x128 transforms using two threads and report the speedup
relative to the uniprocessor transform.

For instance, on a 4-processor 200MHz Pentium Pro system running Linux 2.2.0, we
found that the "crossover" point at which 2 threads became beneficial for complex trans-
forms was about 4k points, while 4 threads became beneficial at 8k points.

4.1.4 Using Multi-threaded FFTW in a Multi-threaded Program

It is perfectly possible to use the multi-threaded FFTW routines from a multi-threaded
program (e.g. have multiple threads computing multi-threaded transforms simultaneously).
If you have the processors, more power to you! However, the same restrictions apply as for
the uniprocessor FEFTW routines (see Section 3.8 [Thread safety], page 36). In particular,
you should recall that you may not create or destroy plans in parallel.

4.1.5 Tips for Optimal Threading

Not all transforms are equally well-parallelized by the multi-threaded FFTW routines.
(This is merely a consequence of laziness on the part of the implementors, and is not inherent
to the algorithms employed.) Mainly, the limitations are in the parallel one-dimensional
transforms. The things to avoid if you want optimal parallelization are as follows:

4.1.6 Parallelization deficiencies in one-dimensional transforms

e Large prime factors can sometimes parallelize poorly. Of course, you should avoid these
anyway if you want high performance.

e Single in-place transforms don’t parallelize completely. (Multiple in-place transforms,
i.e. howmany > 1, are fine.) Again, you should avoid these in any case if you want high
performance, as they require transforming to a scratch array and copying back.

e Single real-complex (rfftw) transforms don’t parallelize completely. This is unfortu-
nate, but parallelizing this correctly would have involved a lot of extra code (and a
much larger library). You still get some benefit from additional processors, but if you
have a very large number of processors you will probably be better off using the parallel
complex (fftw) transforms. Note that multi-dimensional real transforms or multiple
one-dimensional real transforms are fine.

4.2 MPI FFTW

This section describes the MPI FFTW routines for distributed-memory (and shared-
memory) machines supporting MPI (Message Passing Interface). The MPI routines are
significantly different from the ordinary FFTW because the transform data here are dis-
tributed over multiple processes, so that each process gets only a portion of the array.
Currently, multi-dimensional transforms of both real and complex data, as well as one-
dimensional transforms of complex data, are supported.

4.2.1 MPI FFTW Installation

The FFTW MPI library code is all located in the mpi subdirectoy of the FFTW package
(along with source code for test programs). On Unix systems, the FETW MPI libraries and

Chapter 4: Parallel FF'TW 41

header files can be automatically configured, compiled, and installed along with the unipro-
cessor FFTW libraries simply by including --enable-mpi in the flags to the configure
script (see Section 6.1 [Installation on Unix], page 55).

The only requirement of the FFTW MPI code is that you have the standard MPI 1.1
(or later) libraries and header files installed on your system. A free implementation of MPI
is available from the MPICH home page.

Previous versions of the FEFTW MPI routines have had an unfortunate tendency to
expose bugs in MPI implementations. The current version has been largely rewritten,
and hopefully avoids some of the problems. If you run into difficulties, try passing the
optional workspace to (r)fftwnd_mpi (see below), as this allows us to use the standard
(and hopefully well-tested) MPI_Alltoall primitive for communications. Please let us know
(fftwefftw.org) how things work out.

Several test programs are included in the mpi directory. The ones most useful to you
are probably the fftw_mpi_test and rfftw_mpi_test programs, which are run just like an
ordinary MPI program and accept the same parameters as the other FFTW test programs
(c.f. tests/README). For example, mpirun ...params... fftw_mpi_test -r 0 will run non-
terminating complex-transform correctness tests of random dimensions. They can also do
performance benchmarks.

4.2.2 Usage of MPI FFTW for Complex Multi-dimensional
Transforms

Usage of the MPI FFTW routines is similar to that of the uniprocessor FFTW. We
assume that the reader already understands the usage of the uniprocessor FFTW routines,
described elsewhere in this manual. Some familiarity with MPI is also helpful.

A typical program performing a complex two-dimensional MPI transform might look
something like:
#include <fftw_mpi.h>

int main(int argc, char *xargv)

{
const int NX = ..., NY = ...;
fftwnd_mpi_plan plan;
fftw_complex *data;

MPI_Init(&argc,&argv) ;
plan = fftw2d_mpi_create_plan(MPI_COMM_WORLD,
NX, NY,
FFTW_FORWARD, FFTW_ESTIMATE);

...allocate and initialize data...

fftwnd_mpi(p, 1, data, NULL, FFTW_NORMAL_ORDER) ;

http://www-unix.mcs.anl.gov/mpi/mpich/
mailto:fftw@fftw.org

42 FFTW

fftwnd_mpi_destroy_plan(plan);
MPI_Finalize();
}

The calls to MPI_Init and MPI_Finalize are required in all MPI programs; see the
MPI home page for more information. Note that all of your processes run the program in
parallel, as a group; there is no explicit launching of threads/processes in an MPI program.

As in the ordinary FFTW, the first thing we do is to create a plan (of type fftwnd_
mpi_plan), using:
fftwnd_mpi_plan fftw2d_mpi_create_plan(MPI_Comm comm,
int nx, int ny,
fftw_direction dir, int flags);

Except for the first argument, the parameters are identical to those of fftw2d_create_
plan. (There are also analogous fftwnd_mpi_create_plan and fftw3d_mpi_create_plan
functions. Transforms of any rank greater than one are supported.) The first argument is
an MPI communicator, which specifies the group of processes that are to be involved in the
transform; the standard constant MPI_COMM_WORLD indicates all available processes.

Next, one has to allocate and initialize the data. This is somewhat tricky, because the
transform data is distributed across the processes involved in the transform. It is discussed
in detail by the next section (see Section 4.2.3 [MPI Data Layout|, page 43).

The actual computation of the transform is performed by the function fftwnd_mpi,
which differs somewhat from its uniprocessor equivalent and is described by:

void fftwnd_mpi(fftwnd_mpi_plan p,
int n_fields,
fftw_complex *local_data, fftw_complex *work,
fftwnd_mpi_output_order output_order);

There are several things to notice here:

e First of all, all fftw_mpi transforms are in-place: the output is in the local_data
parameter, and there is no need to specify FFTW_IN_PLACE in the plan flags.

e The MPI transforms also only support a limited subset of the howmany/stride/dist
functionality of the uniprocessor routines: the n_fields parameter is equivalent to
howmany=n_fields, stride=n_fields, and dist=1. (Conceptually, the n_fields pa-
rameter allows you to transform an array of contiguous vectors, each with length n_
fields.) n_fields is 1 if you are only transforming a single, ordinary array.

e The work parameter is an optional workspace. If it is not NULL, it should be exactly the
same size as the local_data array. If it is provided, FFTW is able to use the built-in
MPI_Alltoall primitive for (often) greater efficiency at the expense of extra storage
space.

e Finally, the last parameter specifies whether the output data has the same ordering as
theinputdama(FFTW_NURMAL_ORDER),0rifﬂ}$1mansposed(FFTW_TRANSPUSED_ORDER)
Leaving the data transposed results in significant performance improvements due to a
saved communication step (needed to un-transpose the data). Specifically, the first
two dimensions of the array are transposed, as is described in more detail by the next
section.

http://www.mcs.anl.gov/mpi/

Chapter 4: Parallel FF'TW 43

The output of fftwnd_mpi is identical to that of the corresponding uniprocessor trans-
form. In particular, you should recall our conventions for normalization and the sign of the
transform exponent.

The same plan can be used to compute many transforms of the same size. After you are
done with it, you should deallocate it by calling fftwnd_mpi_destroy_plan.

Important: The FFTW MPI routines must be called in the same order by all processes
involved in the transform. You should assume that they all are blocking, as if each contained
a call to MPI_Barrier.

Programs using the FF'TW MPI routines should be linked with -1fftw_mpi -1fftw -1m
on Unix, in addition to whatever libraries are required for MPI.

4.2.3 MPI Data Layout

The transform data used by the MPI FFTW routines is distributed: a distinct portion
of it resides with each process involved in the transform. This allows the transform to be
parallelized, for example, over a cluster of workstations, each with its own separate memory,
so that you can take advantage of the total memory of all the processors you are parallelizing
over.

In particular, the array is divided according to the rows (first dimension) of the data:
each process gets a subset of the rows of the data. (This is sometimes called a “slab decom-
position.”) One consequence of this is that you can’t take advantage of more processors
than you have rows (e.g. 64x64x64 matrix can at most use 64 processors). This isn’t usually
much of a limitation, however, as each processor needs a fair amount of data in order for
the parallel-computation benefits to outweight the communications costs.

Below, the first dimension of the data will be referred to as ‘x” and the second dimension
as ‘y’.

FFTW supplies a routine to tell you exactly how much data resides on the current
process:

void fftwnd_mpi_local_sizes(fftwnd_mpi_plan p,
int *local_nx,
int *local_x_start,
int *local_ny_after_transpose,
int *local_y_start_after_transpose,
int *total_local_size);

Given a plan p, the other parameters of this routine are set to values describing the
required data layout, described below.

total_local_size is the number of fftw_complex elements that you must allocate for
your local data (and workspace, if you choose). (This value should, of course, be multiplied
by n_fields if that parameter to £ftwnd_mpi is not 1.)

The data on the current process has local_nx rows, starting at row local_x_start. If
fftwnd_mpi is called with FFTW_TRANSPOSED_ORDER output, then y will be the first dimen-
sion of the output, and the local y extent will be given by local_ny_after_transpose and
local_y_start_after_transpose. Otherwise, the output has the same dimensions and
layout as the input.

44 FFTW

For instance, suppose you want to transform three-dimensional data of size nx x ny x nz.
Then, the current process will store a subset of this data, of size local_nx x ny x nz, where
the x indices correspond to the range local_x_start to local_x_start+local_nx-1 in the
“real” (i.e. logical) array. If fftwnd_mpi is called with FFTW_TRANSPOSED_ORDER output,
then the result will be a ny x nx x nz array, of which a local_ny_after_transpose x nx
x nz subset is stored on the current process (corresponding to y values starting at local_
y_start_after_transpose).

The following is an example of allocating such a three-dimensional array array (Local_
data) before the transform and initializing it to some function f (x,y,z):

fftwnd_mpi_local_sizes(plan, &local_nx, &local_x_start,
&local_ny_after_transpose,
&local_y_start_after_transpose,
&total_local_size);

local_data = (fftw_complex*) malloc(sizeof (fftw_complex) *
total_local_size);

for (x = 0; x < local_nx; ++x)
for (y = 0; y < ny; ++y)
for (z = 0; z < nz; ++z)
local_datal[(x*ny + y)*nz + z]
= f(x + local_x_start, y, z);

Some important things to remember:

e Although the local data is of dimensions local_nx x ny x nz in the above example, do
not allocate the array to be of size local_nx*ny*nz. Use total_local_size instead.

e The amount of data on each process will not necessarily be the same; in fact, local_
nx may even be zero for some processes. (For example, suppose you are doing a 6x6
transform on four processors. There is no way to effectively use the fourth processor
in a slab decomposition, so we leave it empty. Proof left as an exercise for the reader.)

e All arrays are, of course, in row-major order (see Section 2.5 [Multi-dimensional Array
Format], page 11).

e If you want to compute the inverse transform of the output of fftwnd_mpi, the dimen-
sions of the inverse transform are given by the dimensions of the output of the forward
transform. For example, if you are using FFTW_TRANSPOSED_ORDER output in the above
example, then the inverse plan should be created with dimensions ny x nx x nz.

e The data layout only depends upon the dimensions of the array, not on the plan, so
you are guaranteed that different plans for the same size (or inverse plans) will use the
same (consistent) data layouts.

4.2.4 Usage of MPI FFTW for Real Multi-dimensional Transforms

MPI transforms specialized for real data are also available, similiar to the uniprocessor
rfftwnd transforms. Just as in the uniprocessor case, the real-data MPI functions gain
roughly a factor of two in speed (and save a factor of two in space) at the expense of more
complicated data formats in the calling program. Before reading this section, you should

Chapter 4: Parallel FF'TW

definitely understand how to call the uniprocessor rfftwnd functions and also the complex

MPI FFTW functions.

The following is an example of a program using rfftwnd_mpi. It computes the size nx x
ny x nz transform of a real function f (x,y,z), multiplies the imaginary part by 2 for fun,
then computes the inverse transform. (We’ll also use FFTW_TRANSPOSED_ORDER output for
the transform, and additionally supply the optional workspace parameter to rfftwnd_mpi,

just to add a little spice.)

#include <rfftw_mpi.h>

int main(int argc, char **argv)

{

const int nx = ..., ny = ..., nz = ...;

int local_nx, local_x_start, local_ny_after_transpose,
local_y_start_after_transpose, total_local_size;

int x, y, z;

rfftwnd_mpi_plan plan, iplan;

fftw_real *data, *work;

fftw_complex *cdata;

MPI_Init(&argc,&argv) ;

/* create the forward and backward plans: */

plan = rfftw3d_mpi_create_plan(MPI_COMM_WORLD,
nx, ny, nz,
FFTW_REAL_TO_COMPLEX,
FFTW_ESTIMATE) ;

iplan = rfftw3d_mpi_create_plan(MPI_COMM_WORLD,

/* dim.’s of REAL data --> */ nx, ny, nz,

FFTW_COMPLEX_TO_REAL,
FFTW_ESTIMATE) ;

rfftwnd_mpi_local_sizes(plan, &local_nx, &local_x_start,
&local_ny_after_transpose,
&local_y_start_after_transpose,
&total_local_size);

data = (fftw_real*) malloc(sizeof (fftw_real) * total_local_size);

/* workspace is the same size as the data: */

work = (fftw_real*) malloc(sizeof (fftw_real) * total_local_size);

/* initialize data to f(x,y,z): */
for (x = 0; x < local_nx; ++x)
for (y = 0; y < ny; ++y)
for (z = 0; z < nz; ++z)

datal(x*ny + y) * (2x(nz/2+1)) + z]
= f(x + local_x_start, y, z);

46

FFTW

/* Now, compute the forward transform: */
rfftwnd_mpi(plan, 1, data, work, FFTW_TRANSPOSED_ORDER);

/* the data is now complex, so typecast a pointer: */
cdata = (fftw_complex*) data;

/* multiply imaginary part by 2, for fun:
(note that the data is transposed) */
for (y = 0; y < local_ny_after_transpose; ++y)
for (x = 0; x < nx; ++x)
for (z = 0; z < (nz/2+1); ++z)
cdatal(y*nx + x) * (nz/2+1) + z].im
*= 2.0;

/* Finally, compute the inverse transform; the result
is transposed back to the original data layout: */
rfftwnd_mpi(iplan, 1, data, work, FFTW_TRANSPOSED_ORDER) ;

free(data);
free(work) ;
rfftwnd_mpi_destroy_plan(plan);
rfftwnd_mpi_destroy_plan(iplan);
MPI_Finalize();

}

There’s a lot of stuff in this example, but it’s all just what you would have guessed, right?

We replaced all the fftwnd_mpi* functions by rfftwnd_mpi*, but otherwise the parameters
were pretty much the same. The data layout distributed among the processes just like for
the complex transforms (see Section 4.2.3 [MPI Data Layout], page 43), but in addition
the final dimension is padded just like it is for the uniprocessor in-place real transforms
(see Section 3.5.3 [Array Dimensions for Real Multi-dimensional Transforms|, page 32). In
particular, the z dimension of the real input data is padded to a size 2*x(nz/2+1), and after
the transform it contains nz/2+1 complex values.

Some other important things to know about the real MPI transforms:

e As for the uniprocessor rfftwnd_create_plan, the dimensions passed for the FFTW_

COMPLEX_TO_REAL plan are those of the real data. In particular, even when FFTW_
TRANSPOSED_ORDER is used as in this case, the dimensions are those of the (untrans-
posed) real output, not the (transposed) complex input. (For the complex MPI trans-
forms, on the other hand, the dimensions are always those of the input array.)

The output ordering of the transform (FFTW_TRANSPOSED_ORDER or FFTW_TRANSPOSED_
ORDER) must be the same for both forward and backward transforms. (This is not
required in the complex case.)

total_local_size is the required size in fftw_real values, not fftw_complex values
as it is for the complex transforms.
local_ny_after_transpose and local_y_start_after_transpose describe the por-
tion of the array after the transform; that is, they are indices in the complex array for an
FFTW_REAL_TO_COMPLEX transform and in the real array for an FFTW_COMPLEX_TO_REAL
transform.

Chapter 4: Parallel FF'TW 47

e rfftwnd_mpi always expects fftw_real* array arguments, but of course these pointers
can refer to either real or complex arrays, depending upon which side of the transform
you are on. Just as for in-place uniprocessor real transforms (and also in the example
above), this is most easily handled by typecasting to a complex pointer when handling
the complex data.

e As with the complex transforms, there are also rfftwnd_create_plan and rfftw2d_
create_plan functions, and any rank greater than one is supported.

Programs using the MPI FFTW real transforms should link with -1rfftw_mpi -1fftw_
mpi -1lrfftw -1fftw -1m on Unix.

4.2.5 Usage of MPI FFTW for Complex One-dimensional
Transforms

The MPI FFTW also includes routines for parallel one-dimensional transforms
of complex data (only). Although the speedup is generally worse than it is for the
multi-dimensional routines,? these distributed-memory one-dimensional transforms are
especially useful for performing one-dimensional transforms that don’t fit into the memory
of a single machine.

The usage of these routines is straightforward, and is similar to that of the multi-
dimensional MPI transform functions. You first include the header <fftw_mpi.h> and
then create a plan by calling:

fftw_mpi_plan fftw_mpi_create_plan(MPI_Comm comm, int n,
fftw_direction dir, int flags);

The last three arguments are the same as for fftw_create_plan (except that all MPI
transforms are automatically FFTW_IN_PLACE). The first argument specifies the group of
processes you are using, and is usually MPI_COMM_WORLD (all processes). A plan can be used
for many transforms of the same size, and is destroyed when you are done with it by calling
fftw_mpi_destroy_plan(plan).

If you don’t care about the ordering of the input or output data of the transform, you
can include FFTW_SCRAMBLED_INPUT and/or FFTW_SCRAMBLED_OUTPUT in the flags. These
save some communications at the expense of having the input and/or output reordered in
an undocumented way. For example, if you are performing an FFT-based convolution, you
might use FFTW_SCRAMBLED_QUTPUT for the forward transform and FFTW_SCRAMBLED_INPUT
for the inverse transform.

The transform itself is computed by:

void fftw_mpi(fftw_mpi_plan p, int n_fields,
fftw_complex *local_data, fftw_complex *work);

n_fields, as in fftwnd_mpi, is equivalent to howmany=n_fields, stride=n_fields,
and dist=1, and should be 1 when you are computing the transform of a single array.
local_data contains the portion of the array local to the current process, described below.
work is either NULL or an array exactly the same size as local_data; in the latter case,

2 The 1D transforms require much more communication. All the communication in our FFT routines
takes the form of an all-to-all communication: the multi-dimensional transforms require two all-to-all
communications (or one, if you use FFTW_TRANSPOSED_ORDER), while the one-dimensional transforms
require three (or two, if you use scrambled input or output).

48 FFTW

FFTW can use the MPI_Alltoall communications primitive which is (usually) faster at
the expense of extra storage. Upon return, local_data contains the portion of the output
local to the current process (see below).

To find out what portion of the array is stored local to the current process, you call the
following routine:
void fftw_mpi_local_sizes(fftw_mpi_plan p,
int *local_n, int *local_start,
int *local_n_after_transform,
int *local_start_after_transform,
int *total_local_size);
total_local_size is the number of fftw_complex elements you should actually allocate
for local_data (and work). local_n and local_start indicate that the current process
stores local_n elements corresponding to the indices local_start to local_start+local_
n-1 in the “real” array. After the transform, the process may store a different portion of
the array. The portion of the data stored on the process after the transform is given by
local_n_after_transform and local_start_after_transform. This data is exactly the
same as a contiguous segment of the corresponding uniprocessor transform output (i.e. an
in-order sequence of sequential frequency bins).

Note that, if you compute both a forward and a backward transform of the same size,
the local sizes are guaranteed to be consistent. That is, the local size after the forward
transform will be the same as the local size before the backward transform, and vice versa.

Programs using the FFTW MPI routines should be linked with -1fftw_mpi -1fftw -1m
on Unix, in addition to whatever libraries are required for MPI.

4.2.6 MPI Tips

There are several things you should consider in order to get the best performance out of
the MPI FFTW routines.

First, if possible, the first and second dimensions of your data should be divisible by
the number of processes you are using. (If only one can be divisible, then you should
choose the first dimension.) This allows the computational load to be spread evenly among
the processes, and also reduces the communications complexity and overhead. In the one-
dimensional transform case, the size of the transform should ideally be divisible by the
square of the number of processors.

Second, you should consider using the FFTW_TRANSPOSED_ORDER output format if it is
not too burdensome. The speed gains from communications savings are usually substantial.

Third, you should consider allocating a workspace for (r)fftw(nd) _mpi, as this can
often (but not always) improve performance (at the cost of extra storage).

Fourth, you should experiment with the best number of processors to use for your
problem. (There comes a point of diminishing returns, when the communications costs
outweigh the computational benefits.?) The fftw_mpi_test program can output helpful
performance benchmarks. It accepts the same parameters as the uniprocessor test programs
(c.f. tests/README) and is run like an ordinary MPI program. For example, mpirun -np

3 An FFT is particularly hard on communications systems, as it requires an all-to-all communication,
which is more or less the worst possible case.

Chapter 4: Parallel FF'TW 49

4 fftw_mpi_test -s 128x128x128 will benchmark a 128x128x128 transform on four pro-
cessors, reporting timings and parallel speedups for all variants of fftwnd_mpi (transposed,
with workspace, etcetera). (Note also that there is the rfftw_mpi_test program for the
real transforms.)

50

FFTW

Chapter 5: Calling FFTW from Fortran 51

5 Calling FFTW from Fortran

The standard FFTW libraries include special wrapper functions that allow Fortran pro-
grams to call FFTW subroutines. This chapter describes how those functions may be
employed to use FFTW from Fortran. We assume here that the reader is already familiar
with the usage of FF'TW in C, as described elsewhere in this manual.

In general, it is not possible to call C functions directly from Fortran, due to Fortran’s
inability to pass arguments by value and also because Fortran compilers typically expect
identifiers to be mangled somehow for linking. However, if C functions are written in a
special way, they are callable from Fortran, and we have employed this technique to create
Fortran-callable “wrapper” functions around the main FFTW routines. These wrapper
functions are included in the FFTW libraries by default, unless a Fortran compiler isn’t
found on your system or --disable-fortran is included in the configure flags.

As a result, calling FFTW from Fortran requires little more than appending ‘_£f77’ to
the function names and then linking normally with the FFTW libraries. There are a few
wrinkles, however, as we shall discuss below.

5.1 Wrapper Routines

All of the uniprocessor and multi-threaded transform routines have Fortran-callable
wrappers, except for the wisdom import/export functions (since it is not possible to ex-
change string and file arguments portably with Fortran) and the specific planner routines
(see Section 3.2.2 [Discussion on Specific Plans], page 20). The name of the wrapper routine
is the same as that of the corresponding C routine, but with fftw/fftwnd/rfftw/rfftwnd
replaced by fftw_£77/fftwnd_£77/rfftw_£77/rfftwnd_£77. For example, in Fortran, in-
stead of calling fftw_one you would call fftw_f77_one.! For the most part, all of the
arguments to the functions are the same, with the following exceptions:

e plan variables (what would be of type fftw_plan, rfftwnd_plan, etcetera, in C), must
be declared as a type that is the same size as a pointer (address) on your machine.
(Fortran has no generic pointer type.) The Fortran integer type is usually the same
size as a pointer, but you need to be wary (especially on 64-bit machines). (You could
also use integer*4 on a 32-bit machine and integer*8 on a 64-bit machine.) Ugh.
(g77 has a special type, integer (kind=7), that is defined to be the same size as a
pointer.)

e Any function that returns a value (e.g. fftw_create_plan) is converted into a subrou-
tine. The return value is converted into an additional (first) parameter of the wrapper
subroutine. (The reason for this is that some Fortran implementations seem to have
trouble with C function return values.)

e When performing one-dimensional FFTW_IN_PLACE transforms, you don’t have the op-
tion of passing NULL for the out argument (since there is no way to pass NULL from
Fortran). Therefore, when performing such transforms, you must allocate and pass
a contiguous scratch array of the same size as the transform. Note that for in-place
multi-dimensional ((r)fftwnd) transforms, the out argument is ignored, so you can
pass anything for that parameter.

! Technically, Fortran 77 identifiers are not allowed to have more than 6 characters, nor may they contain
underscores. Any compiler that enforces this limitation doesn’t deserve to link to FFTW.

52 FFTW

e The wrapper routines expect multi-dimensional arrays to be in column-major order,
which is the ordinary format of Fortran arrays. They do this transparently and cost-
lessly simply by reversing the order of the dimensions passed to FFTW, but this has
one important consequence for multi-dimensional real-complex transforms, discussed
below.

In general, you should take care to use Fortran data types that correspond to (i.e. are
the same size as) the C types used by FFTW. If your C and Fortran compilers are made by
the same vendor, the correspondence is usually straightforward (i.e. integer corresponds
to int, real corresponds to float, etcetera). Such simple correspondences are assumed
in the examples below. The examples also assume that FFTW was compiled in double
precision (the default).

5.2 FFTW Constants in Fortran

When creating plans in FFTW, a number of constants are used to specify options,
such as FFTW_FORWARD or FFTW_USE_WISDOM. The same constants must be used with the
wrapper routines, but of course the C header files where the constants are defined can’t be
incorporated directly into Fortran code.

Instead, we have placed Fortran equivalents of the FF'TW constant definitions in the file
fortran/fftw_£f77.i of the FFTW package. If your Fortran compiler supports a prepro-
cessor, you can use that to incorporate this file into your code whenever you need to call
FEFTW. Otherwise, you will have to paste the constant definitions in directly. They are:

integer FFTW_FORWARD,FFTW_BACKWARD
parameter (FFTW_FORWARD=-1,FFTW_BACKWARD=1)

integer FFTW_REAL_TO_COMPLEX,FFTW_COMPLEX_TO_REAL
parameter (FFTW_REAL_TO_COMPLEX=-1,FFTW_COMPLEX_TO_REAL=1)

integer FFTW_ESTIMATE,FFTW_MEASURE
parameter (FFTW_ESTIMATE=0,FFTW_MEASURE=1)

integer FFTW_QUT_OF_PLACE,FFTW_IN_PLACE,FFTW_USE_WISDOM
parameter (FFTW_OUT_OF_PLACE=0)
parameter (FFTW_IN_PLACE=8,FFTW_USE_WISDOM=16)

integer FFTW_THREADSAFE
parameter (FFTW_THREADSAFE=128)

In C, you combine different flags (like FFTW_USE_WISDOM and FFTW_MEASURE) using the
‘|” operator; in Fortran you should just use ‘+’.

5.3 Fortran Examples

In C you might have something like the following to transform a one-dimensional complex
array:
fftw_complex in[N], *out[N];
fftw_plan plan;

Chapter 5: Calling FFTW from Fortran 53

plan = fftw_create_plan(N,FFTW_FORWARD,FFTW_ESTIMATE) ;
fftw_one(plan,in,out);
fftw_destroy_plan(plan);

In Fortran, you use the following to accomplish the same thing:

double complex in, out
dimension in(N), out(N)
integer plan

call fftw_£f77_create_plan(plan,N,FFTW_FORWARD,FFTW_ESTIMATE)
call fftw_£f77_one(plan,in,out)
call fftw_f77_destroy_plan(plan)

Notice how all routines are called as Fortran subroutines, and the plan is returned via
the first argument to fftw_f77_create_plan. Important: these examples assume that
integer is the same size as a pointer, and may need modification on a 64-bit machine. See
Section 5.1 [Wrapper Routines|, page 51, above. To do the same thing, but using 8 threads
in parallel (see Section 4.1 [Multi-threaded FFTW], page 37), you would simply replace the
call to fftw_£77_one with:

call fftw_£f77_threads_one(8,plan,in,out)

To transform a three-dimensional array in-place with C, you might do:

fftw_complex arr[L][M] [N];
fftwnd_plan plan;
int n[3] = {L,M,N};

plan = fftwnd_create_plan(3,n,FFTW_FORWARD,
FFTW_ESTIMATE | FFTW_IN_PLACE);

fftwnd_one(plan, arr, 0);

fftwnd_destroy_plan(plan);

In Fortran, you would use this instead:

double complex arr
dimension arr(L,M,N)
integer n

dimension n(3)
integer plan

n(1) =L

n(2) =M

n(3) =N

call fftwnd_f77_create_plan(plan,3,n,FFTW_FORWARD,

+ FFTW_ESTIMATE + FFTW_IN_PLACE)

call fftwnd_£f77_one(plan, arr, 0)
call fftwnd_£f77_destroy_plan(plan)

Instead of calling fftwnd_£77_create_plan(plan,3,n,...), we could also have called
fftw3d_f77_create_plan(plan,L,M,N,...)

Note that we pass the array dimensions in the "natural" order; also note that the last
argument to fftwnd_£77 is ignored since the transform is FFTW_IN_PLACE.

54 FFTW

To transform a one-dimensional real array in Fortran, you might do:
double precision in, out
dimension in(N), out(N)
integer plan

call rfftw_£f77_create_plan(plan,N,FFTW_REAL_TO_COMPLEX,
+ FFTW_ESTIMATE)

call rfftw_£f77_one(plan,in,out)

call rfftw_£f77_destroy_plan(plan)

To transform a two-dimensional real array, out of place, you might use the following:
double precision in
double complex out
dimension in(M,N), out(M/2 + 1, N)
integer plan

call rfftw2d_£f77_create_plan(plan,M,N,FFTW_REAL_TO_COMPLEX,
+ FFTW_ESTIMATE)

call rfftwnd_f77_one_real_to_complex(plan, in, out)

call rfftwnd_£77_destroy_plan(plan)

Important: Notice that it is the first dimension of the complex output array that is cut
in half in Fortran, rather than the last dimension as in C. This is a consequence of the
wrapper routines reversing the order of the array dimensions passed to FFTW so that the
Fortran program can use its ordinary column-major order.

Chapter 6: Installation and Customization 55

6 Installation and Customization

This chapter describes the installation and customization of FFTW, the latest version
of which may be downloaded from the FETW home page.

As distributed, FFTW makes very few assumptions about your system. All you need is
an ANSI C compiler (gcc is fine, although vendor-provided compilers often produce faster
code). However, installation of FFTW is somewhat simpler if you have a Unix or a GNU
system, such as Linux. In this chapter, we first describe the installation of FFTW on
Unix and non-Unix systems. We then describe how you can customize FFTW to achieve
better performance. Specifically, you can I) enable gcc/x86-specific hacks that improve
performance on Pentia and PentiumPro’s; IT) adapt FFTW to use the high-resolution clock
of your machine, if any; III) produce code (codelets) to support fast transforms of sizes that
are not supported efficiently by the standard FFTW distribution.

6.1 Installation on Unix

FFTW comes with a configure program in the GNU style. Installation can be as simple
as:
./configure
make
make install

This will build the uniprocessor complex and real transform libraries along with the test
programs. We strongly recommend that you use GNU make if it is available; on some systems
it is called gmake. The “make install” command installs the fftw and rfftw libraries in
standard places, and typically requires root privileges (unless you specify a different install
directory with the —-prefix flag to configure). You can also type “make check” to put
the FFTW test programs through their paces. If you have problems during configuration
or compilation, you may want to run “make distclean” before trying again; this ensures
that you don’t have any stale files left over from previous compilation attempts.

The configure script knows good CFLAGS (C compiler flags) for a few systems. If your
system is not known, the configure script will print out a warning.! In this case, you can
compile FFTW with the command

make CFLAGS="<write your CFLAGS here>"

If you do find an optimal set of CFLAGS for your system, please let us know what they are
(along with the output of config.guess) so that we can include them in future releases.

The configure program supports all the standard flags defined by the GNU Coding
Standards; see the INSTALL file in FFTW or the GNU web page. Note especially --help to
list all flags and --enable-shared to create shared, rather than static, libraries. configure
also accepts a few FFTW-specific flags, particularly:

e —-enable-float Produces a single-precision version of FFTW (float) instead of the
default double-precision (double). See Section 6.3 [Installing FETW in both single and
double precision], page 57.

1 Each version of cc seems to have its own magic incantation to get the fastest code most of the time—you’d
think that people would have agreed upon some convention, e.g. "-Omax", by now.

http://www.fftw.org
http://www.gnu.org/prep/standards_toc.html

56 FFTW

e —-enable-type-prefix Adds a ‘d’ or ‘s’ prefix to all installed libraries and header
files to indicate the floating-point precision. See Section 6.3 [Installing FFTW in both
single and double precision|, page 57. (--enable-type-prefix=<prefix> lets you add
an arbitrary prefix.) By default, no prefix is used.

e —-enable-threads Enables compilation and installation of the FF'TW threads library
(see Section 4.1 [Multi-threaded FFTW], page 37), which provides a simple interface
to parallel transforms for SMP systems. (By default, the threads routines are not
compiled.)

e —-with-openmp, —-with-sgimp In conjunction with --enable-threads, causes the
multi-threaded FFTW library to use OpenMP or SGI MP compiler directives in order
to induce parallelism, rather than spawning its own threads directly. (Useful especially
for programs already employing such directives, in order to minimize conflicts between
different parallelization mechanisms.)

e —-enable-mpi Enables compilation and installation of the FFTW MPI library (see
Section 4.2 [MPI FETW], page 40), which provides parallel transforms for distributed-
memory systems with MPI. (By default, the MPI routines are not compiled.)

e --disable-fortran Disables inclusion of Fortran-callable wrapper routines (see Chap-
ter 5 [Calling FEFTW from Fortran|, page 51) in the standard FFTW libraries. These
wrapper routines increase the library size by only a negligible amount, so they are
included by default as long as the configure script finds a Fortran compiler on your
system.

e —-with-gcc Enables the use of gcc. By default, FFTW uses the vendor-supplied cc
compiler if present. Unfortunately, gcc produces slower code than cc on many systems.

e —-enable-i386-hacks See Section 6.4 [gcc and Pentium hacks], page 57, below.
e —-enable-pentium-timer See Section 6.4 [gcc and Pentium hacks], page 57, below.

To force configure to use a particular C compiler (instead of the default, usually cc), set
the environment variable CC to the name of the desired compiler before running configure;
you may also need to set the flags via the variable CFLAGS.

6.2 Installation on non-Unix Systems

It is quite straightforward to install FF'TW even on non-Unix systems lacking the niceties
of the configure script. The FFTW Home Page may include some FFTW packages pre-
configured for particular systems/compilers, and also contains installation notes sent in by
users. All you really need to do, though, is to compile all of the .c files in the appropriate
directories of the FFTW package. (You needn’t worry about the many extraneous files
lying around.)

For the complex transforms, compile all of the .c files in the fftw directory and link
them into a library. Similarly, for the real transforms, compile all of the .c files in the
rfftw directory into a library. Note that these sources #include various files in the fftw
and rfftw directories, so you may need to set up the #include paths for your compiler
appropriately. Be sure to enable the highest-possible level of optimization in your compiler.

By default, FF'TW is compiled for double-precision transforms. To work in single preci-
sion rather than double precision, #define the symbol FFTW_ENABLE_FLOAT in fftw.h (in
the fftw directory) and (re)compile FFTW.

Chapter 6: Installation and Customization 57

These libraries should be linked with any program that uses the corresponding trans-
forms. The required header files, fftw.h and rfftw.h, are located in the fftw and rfftw
directories respectively; you may want to put them with the libraries, or wherever header
files normally go on your system.

FFTW includes test programs, fftw_test and rfftw_test, in the tests directory.
These are compiled and linked like any program using FFTW, except that they use addi-
tional header files located in the fftw and rfftw directories, so you will need to set your
compiler #include paths appropriately. fftw_test is compiled from fftw_test.c and
test_main.c, while rfftw_test is compiled from rfftw_test.c and test_main.c. When
you run these programs, you will be prompted interactively for various possible tests to
perform; see also tests/README for more information.

6.3 Installing FFTW in both single and double precision

It is often useful to install both single- and double-precision versions of the FFTW
libraries on the same machine, and we provide a convenient mechanism for achieving this
on Unix systems.

When the --enable-type-prefix option of configure is used, the FFTW libraries and
header files are installed with a prefix of ‘d’ or ‘s’, depending upon whether you compiled
in double or single precision. Then, instead of linking your program with -1lrfftw -1fftw,
for example, you would link with -1drfftw -1dfftw to use the double-precision version
or with -1srfftw -1sfftw to use the single-precision version. Also, you would #include
<drfftw.h> or <srfftw.h> instead of <rfftw.h>, and so on.

The names of FFTW functions, data types, and constants remain unchanged! You still
call, for instance, fftw_one and not dfftw_one. Only the names of header files and libraries
are modified. One consequence of this is that you cannot use both the single- and double-
precision FFTW libraries in the same program, simultaneously, as the function names would
conflict.

So, to install both the single- and double-precision libraries on the same machine, you
would do:

./configure --enable-type-prefix [other options |

make

make install

make clean

./configure --enable-float --enable-type-prefix [other options |
make

make install

6.4 gcc and Pentium hacks

The configure option -—enable-i386-hacks enables specific optimizations for the Pen-
tium and later x86 CPUs under gcc, which can significantly improve performance of double-
precision transforms. Specifically, we have tested these hacks on Linux with gcc 2.[789] and
versions of egcs since 1.0.3. These optimizations affect only the performance and not the
correctness of FEFTW (i.e. it is always safe to try them out).

58 FFTW

These hacks provide a workaround to the incorrect alignment of local double variables
in gcc. The compiler aligns these variables to multiples of 4 bytes, but execution is much
faster (on Pentium and PentiumPro) if doubles are aligned to a multiple of 8 bytes. By
carefully counting the number of variables allocated by the compiler in performance-critical
regions of the code, we have been able to introduce dummy allocations (using alloca) that
align the stack properly. The hack depends crucially on the compiler flags that are used.
For example, it won’t work without -fomit-frame-pointer.

In principle, these hacks are no longer required under gcc versions 2.95 and later, which
automatically align the stack correctly (see -mpreferred-stack-boundary in the gcc man-
ual). However, we have encountered a bug in the stack alignment of versions 2.95.[012] that
causes FFTW’s stack to be misaligned under some circumstances. The configure script
automatically detects this bug and disables gcc’s stack alignment in favor of our own hacks
when --enable-i386-hacks is used.

The fftw_test program outputs speed measurements that you can use to see if these
hacks are beneficial.

The configure option --enable-pentium-timer enables the use of the Pentium and
PentiumPro cycle counter for timing purposes. In order to get correct results, you must
define FFTW_CYCLES_PER_SEC in fftw/config.h to be the clock speed of your processor;
the resulting FFTW library will be nonportable. The use of this option is deprecated. On
serious operating systems (such as Linux), FFTW uses gettimeofday (), which has enough
resolution and is portable. (Note that Win32 has its own high-resolution timing routines
as well. FFTW contains unsupported code to use these routines.)

6.5 Customizing the timer

FFTW needs a reasonably-precise clock in order to find the optimal way to compute a
transform. On Unix systems, configure looks for gettimeofday and other system-specific
timers. If it does not find any high resolution clock, it defaults to using the clock()
function, which is very portable, but forces FFTW to run for a long time in order to get
reliable measurements.

If your machine supports a high-resolution clock not recognized by FFTW, it is therefore
advisable to use it. You must edit fftw/fftw-int.h. There are a few macros you must
redefine. The code is documented and should be self-explanatory. (By the way, fftw-int
stands for fftw-internal, but for some inexplicable reason people are still using primitive
systems with 8.3 filenames.)

Even if you don’t install high-resolution timing code, we still recommend that you look
at the FFTW_TIME_MIN constant in fftw/fftw-int.h. This constant holds the minimum
time interval (in seconds) required to get accurate timing measurements, and should be
(at least) several hundred times the resolution of your clock. The default constants are
on the conservative side, and may cause FFTW to take longer than necessary when you
create a plan. Set FFTW_TIME_MIN to whatever is appropriate on your system (be sure to
set the right FFTW_TIME_MIN. . .there are several definitions in fftw-int.h, corresponding
to different platforms and timers).

As an aid in checking the resolution of your clock, you can use the tests/fftw_test
program with the -t option (c.f. tests/README). Remember, the mere fact that your

http://egcs.cygnus.com/ml/gcc-bugs/1999-11/msg00259.html

Chapter 6: Installation and Customization 59

clock reports times in, say, picoseconds, does not mean that it is actually accurate to that
resolution.

6.6 Generating your own code

If you know that you will only use transforms of a certain size (say, powers of 2) and want
to reduce the size of the library, you can reconfigure FEFTW to support only those sizes you
are interested in. You may even generate code to enable efficient transforms of a size not
supported by the default distribution. The default distribution supports transforms of any
size, but not all sizes are equally fast. The default installation of FFTW is best at handling
sizes of the form 293°5°7911°137, where e+ f is either 0 or 1, and the other exponents are
arbitrary. Other sizes are computed by means of a slow, general-purpose routine. However,
if you have an application that requires fast transforms of size, say, 17, there is a way to
generate specialized code to handle that.

The directory gensrc contains all the programs and scripts that were used to generate
FFTW. In particular, the program gensrc/genfft.ml was used to generate the code that
FFTW uses to compute the transforms. We do not expect casual users to use it. genfft
is a rather sophisticated program that generates directed acyclic graphs of FFT algorithms
and performs algebraic simplifications on them. genfft is written in Objective Caml, a
dialect of ML. Objective Caml is described at http://pauillac.inria.fr/ocaml/ and
can be downloaded from from ftp://ftp.inria.fr/lang/caml-light.

If you have Objective Caml installed, you can type sh bootstrap.sh in the top-level
directory to re-generate the files. If you change the gensrc/config file, you can optimize
FFTW for sizes that are not currently supported efficiently (say, 17 or 19).

We do not provide more details about the code-generation process, since we do not
expect that users will need to generate their own code. However, feel free to contact us at
fftwefftw.org if you are interested in the subject.

You might find it interesting to learn Caml and /or some modern programming techniques
that we used in the generator (including monadic programming), especially if you heard the
rumor that Java and object-oriented programming are the latest advancement in the field.
The internal operation of the codelet generator is described in the paper, “A Fast Fourier
Transform Compiler,” by M. Frigo, which is available from the FFTW home page and
will appear in the Proceedings of the 1999 ACM SIGPLAN Conference on Programming
Language Design and Implementation (PLDI).

http://pauillac.inria.fr/ocaml/
ftp://ftp.inria.fr/lang/caml-light
mailto:fftw@fftw.org
http://www.fftw.org

60

FFTW

Chapter 7: Acknowledgments 61

7 Acknowledgments

Matteo Frigo was supported in part by the Defense Advanced Research Projects Agency
(DARPA) under Grants N00014-94-1-0985 and F30602-97-1-0270, and by a Digital Equip-
ment Corporation Fellowship. Steven G. Johnson was supported in part by a DoD NDSEG
Fellowship, an MIT Karl Taylor Compton Fellowship, and by the Materials Research Sci-
ence and Engineering Center program of the National Science Foundation under award
DMR-9400334.

Both authors were also supported in part by their respective girlfriends, by the letters
“Q” and “R”, and by the number 12.

We are grateful to SUN Microsystems Inc. for its donation of a cluster of 9 8-processor
Ultra HPC 5000 SMPs (24 Gflops peak). These machines served as the primary platform
for the development of earlier versions of FFTW.

We thank Intel Corporation for donating a four-processor Pentium Pro machine. We
thank the Linux community for giving us a decent OS to run on that machine.

The genfft program was written using Objective Caml, a dialect of ML. Objective Caml
is a small and elegant language developed by Xavier Leroy. The implementation is available
from ftp.inria.fr in the directory lang/caml-light. We used versions 1.07 and 2.00 of
the software. In previous releases of FFTW, genfft was written in Caml Light, by the
same authors. An even earlier implementation of genfft was written in Scheme, but Caml
is definitely better for this kind of application.

FFTW uses many tools from the GNU project, including automake, texinfo, and
libtool.

Prof. Charles E. Leiserson of MIT provided continuous support and encouragement. This
program would not exist without him. Charles also proposed the name “codelets” for the
basic FF'T blocks.

Prof. John D. Joannopoulos of MIT demonstrated continuing tolerance of Steven’s
“extra-curricular” computer-science activities. Steven’s chances at a physics degree would
not exist without him.

Andrew Sterian contributed the Windows timing code.

Didier Miras reported a bug in the test procedure used in FFTW 1.2. We now use a
completely different test algorithm by Funda Ergun that does not require a separate FFT
program to compare against.

Wolfgang Reimer contributed the Pentium cycle counter and a few fixes that help porta-
bility.

Ming-Chang Liu uncovered a well-hidden bug in the complex transforms of FFTW 2.0
and supplied a patch to correct it.

The FFTW FAQ was written in bfnn (Bizarre Format With No Name) and formatted
using the tools developed by lan Jackson for the Linux FAQ.

We are especially thankful to all of our users for their continuing support, feedback, and
interest during our development of FFTW.

62

FFTW

Chapter 8: License and Copyright 63

8 License and Copyright

FFTW is copyright © 1997-1999 Massachusetts Institute of Technology.

FFTW is free software; you can redistribute it and/or modify it under the terms of the
GNU General Public License as published by the Free Software Foundation; either version
2 of the License, or (at your option) any later version.

This program is distributed in the hope that it will be useful, but WITHOUT ANY
WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS
FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.

You should have received a copy of the GNU General Public License along with this
program; if not, write to the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
Boston, MA 02111-1307 USA. You can also find the GPL on the GNU web site.

In addition, we kindly ask you to acknowledge FFTW and its authors in any program
or publication in which you use FFTW. (You are not required to do so; it is up to your
common sense to decide whether you want to comply with this request or not.)

Non-free versions of FFTW are available under terms different than the General Public
License. (e.g. they do not require you to accompany any object code using FFTW with
the corresponding source code.) For these alternate terms you must purchase a license from
MIT’s Technology Licensing Office. Users interested in such a license should contact us
(fftw@fftw.org) for more information.

http://www.gnu.org/copyleft/gpl.html
mailto:fftw@fftw.org

64

FFTW

Chapter 9: Concept Index

9 Concept Index

A

algorithm 2

B

benchfft....... 1
benchmark...................... ... 1, 40, 48, 58
blocking 43

C

C multi-dimensional arrays 11
Caml...........o i 59, 61
Cilk ..o 2, 37
CLlOCK . ot 58
code generator i, 1, 59
column-major 11, 52, 54
compiler............ 2, 51, 55, 56, 58
compiler flags L 55, 56
complex multi-dimensional transform 4, 22
complex number........ 17
complex one-dimensional transform 3
complex to real transform.................. 6, 26
complex transform 3
configure..................... 18, 37, 41, 55, 57
convolution............. L 9
cyclic convolution............................. 9

D

Discrete Fourier Transform......... 21, 25, 28, 33
distributed array format............... 43, 46, 48
distributed memory 37, 40, 43

E

Ecclesiastes i 14
EXECULOT . vttt et e 1

FETW .o 1
FETWND. ... 22
flags 4, 5,19, 23, 27, 30, 47, 52
floating-point precision 18, 52, 55, 56, 57
Fortran-callable wrappers.............. 11, 51, 56

frequency........ ... i 4,5, 21

65
gettimeofday 58
girlfriends 61
H
halfcomplex array 6, 17
hermitian array 17, 33, 34

I

in-place transform.. 5, 19, 21, 24, 30, 32, 40, 42, 51
installation............. L 55

L

linking on Unix............... 4,7, 39, 43, 47, 48
LISP ..o 15, 61
load-balancing, 48

M

malloc ...ttt 12, 35
ML . 59
monadic programming 59
MPL... ..o 1, 37, 40, 56
MPI_A11t0alloovneeanenn. 41, 42, 48
MPI_Barrierc. i, 43
MPI_COMM_WORLD................oinin... 42, 47
MPI_FinalizZecouuiiiiuneunnnan.. 42
MPI_Init........oii i, 42
multi-dimensional transform 4,22, 29

nfields........... 42, 47
nerd-readable text 15
normalization............ 4,5,7,9, 10, 21, 29, 42
number of threads 39

Q)

out-of-place transform......................... 5

P

padding 8, 32, 46
parallel transform 1, 37
Pentium hack 57
plan ... 1, 3, 42
planner 1

66

rank ... 4
real multi-dimensional transform 7,29
real number 17
real transform............ 6, 26
REFTW .o 6, 26
REFTWND 29
rfftwnd array format................ 8, 32, 46, 54
TOW-TNAJOT v vvveee e ieeaeenn 10, 11, 23, 44

S

saving plans todisk.......... 13

FFTW

slab decomposition........................... 43
specific planner, 20
stride.ooeeeee . 11, 20, 24, 27, 31, 32, 42

T

thread safety............ 36, 40
threads, 1, 36, 37, 56
timer, customization of............... 58
Tutorial ... 3

\%\%

WISAOTL . + v e e 13, 19, 23, 30, 34
wisdom, import and export................... 14
wisdom, problems with....................... 14

Chapter 10: Library Index

10 Library Index

F

e i v 20
fftw_threads 38
fftw_threads_one........................... 38
FFTW_BACKWARD 4
fftw_complex.......... 4, 17
FFTW_COMPLEX e 18
FFTW_COMPLEX_TO_REAL................. 6, 26, 46
fftw_create_plan......................... 3, 18
fftw_create_plan_specific................. 18
fftw_destroy_plan 4, 21
fftw_direction............... 3, 4,6, 18, 22, 29
FFTW_ENABLE_FLOAT 18
FFTW_ESTIMATE e 4
fftw_export_wisdom 13, 34
fftw_export_wisdom_to_file............. 14, 34
fftw_export_wisdom_to_string........... 14, 34
fftw_£f77_create_plan....................... 53
fftw_£f77_destroy_plan 53
fftw_f77_one....... L 51, 53
fftw_£f77_threads_one....................... 53
fftw_forget_wisdom......................... 35
FFTW_FORWARD 4
fftw_free_hook.......... 35
fftw_import_wisdom 13, 35
fftw_import_wisdom_from_file........... 14, 35
fftw_import_wisdom_from_string 14, 35
FFTW_IN_PLACEt 5
fftw_malloc ...t 35
fftw_malloc_hook.............coiiiiuuninn.. 35
FFTW_MEASURE, 4
fftwompi...... 47
fftw_mpi_create_plan....................... 47
fftw_mpi_destroy_plan 47
fftw_mpi_local_sizes....................... 48
fftwmpi_plan............. 47
fftw_mpi_test........ 41, 48
FFTW_NORMAL_ORDER........... ..., 42
fftw_one 4, 20
FFTW_OUT_OF_PLACE........... ..., 19
fftw_plan........ 3, 18
fftw_real 17
FFTW_REAL e 18
FFTW_REAL_TO_COMPLEX 6, 26
FFTW_SCRAMBLED_INPUT....................... 47
FFTW_SCRAMBLED_OQUTPUT 47
fftw_testo 57, 58
fftw_threads_dinit.......................... 38
fftw_threads_test.......................... 39
FFTW_THREADSAFE 36
FFTW_TIME_MIN, 58
FFTW_TRANSPOSED_ORDER 42,44, 46, 48

67
FFTW_USE_WISDOM...........0iinn.. 13
fftw2d_create_plan...................... 5, 22
fftw2d_create_plan_specific............... 22
fftw2d_mpi_create_plan 42
fftw3dd_create_plan 5, 22
fftw3dd_create_plan_specific............... 22
fftw3d_f77_create_plan 53
fftw3d_mpi_create_plan 42
fftwnd 5, 24
fftwnd_threads............................. 38
fftwnd_threads_one......................... 38
fftwnd_create_plan...................... 4, 22
fftwnd_create_plan_specific............... 22
fftwnd_destroy_plan..................... 5, 25
fftwnd_£f77_create_plan 53
fftwnd_£77_destroy_plan................... 53
fftwnd_£f77_one............... 53
fftwnd_mpi 42
fftwnd_mpi_create_plan 42
fftwnd_mpi_destroy_plan................... 43
fftwnd_mpi_local_sizes 43
fftwnd_mpi_plan..........., 42
fftwnd_one i 5, 24
fftwnd_plan.............. 4, 22
G
genfftl 59, 61
R
rfftw. . 27
rfftw_threads 38
rfftw_threads_one.......................... 38
rfftw_create_plan 6, 26
rfftw_create_plan_specific................ 26
rfftw_destroy_plan...................... 6, 28
rfftw_£f77_create_plan 54
rfftw_£f77_destroy_plan 54
rfftw_£77_one 54
rfftw_mpi_test............ 41, 49
rfftw_one 6, 27
rfftw_plan............ 6, 26
rfftw_test 57
rfftw_threads_test......................... 39
rfftw2d_create_plan.................. 7,29, 47
rfftw2d_f77_create_plan 54
rfftw3d_mpi_create_plan................... 45
rfftw3d_create_plan..................... 7,29
rfftwnd_mpi........ Ll 46
rfftwnd_mpi_destroy_plan.................. 46

rfftwnd_mpi_local_sizes 45

68

rfftwnd_threads_complex_to_real........... 39
rfftwnd_threads_one_complex_to_real 39
rfftwnd_threads_one_real_to_complex... 38, 39
rfftwnd_threads_real_to_complex........... 38
rfftwnd_complex_to_real 31
rfftwnd_create_plan.................. 7,29, 47

rfftwnd_destroy_plan....................... 33

FFTW
rfftwnd_£f77_destroy_plan.................. 54
rfftwnd_£f77_one_real_to_complex........... 54
rfftwnd_one_complex_to_real............. 8, 31
rfftwnd_one_real_to_complex............. 8, 31
rfftwnd_plan.............. 7,29
rfftwnd_real_to_complex 31

	Introduction
	Tutorial
	Complex One-dimensional Transforms Tutorial
	Complex Multi-dimensional Transforms Tutorial
	Real One-dimensional Transforms Tutorial
	Real Multi-dimensional Transforms Tutorial
	Multi-dimensional Array Format
	Row-major Format
	Column-major Format
	Static Arrays in C
	Dynamic Arrays in C
	Dynamic Arrays in C---The Wrong Way

	Words of Wisdom
	Caveats in Using Wisdom
	Importing and Exporting Wisdom

	FFTW Reference
	Data Types
	One-dimensional Transforms Reference
	Plan Creation for One-dimensional Transforms
	Discussion on Specific Plans
	Computing the One-dimensional Transform
	Destroying a One-dimensional Plan
	What FFTW Really Computes

	Multi-dimensional Transforms Reference
	Plan Creation for Multi-dimensional Transforms
	Computing the Multi-dimensional Transform
	Destroying a Multi-dimensional Plan
	What FFTWND Really Computes

	Real One-dimensional Transforms Reference
	Plan Creation for Real One-dimensional Transforms
	Computing the Real One-dimensional Transform
	Destroying a Real One-dimensional Plan
	What RFFTW Really Computes

	Real Multi-dimensional Transforms Reference
	Plan Creation for Real Multi-dimensional Transforms
	Computing the Real Multi-dimensional Transform
	Array Dimensions for Real Multi-dimensional Transforms
	Strides in In-place RFFTWND
	Destroying a Multi-dimensional Plan
	What RFFTWND Really Computes

	Wisdom Reference
	Exporting Wisdom
	Importing Wisdom
	Forgetting Wisdom

	Memory Allocator Reference
	Thread safety

	Parallel FFTW
	Multi-threaded FFTW
	Installation and Supported Hardware/Software
	Usage of Multi-threaded FFTW
	How Many Threads to Use?
	Using Multi-threaded FFTW in a Multi-threaded Program
	Tips for Optimal Threading
	Parallelization deficiencies in one-dimensional transforms

	MPI FFTW
	MPI FFTW Installation
	Usage of MPI FFTW for Complex Multi-dimensional Transforms
	MPI Data Layout
	Usage of MPI FFTW for Real Multi-dimensional Transforms
	Usage of MPI FFTW for Complex One-dimensional Transforms
	MPI Tips

	Calling FFTW from Fortran
	Wrapper Routines
	FFTW Constants in Fortran
	Fortran Examples

	Installation and Customization
	Installation on Unix
	Installation on non-Unix Systems
	Installing FFTW in both single and double precision
	gcc and Pentium hacks
	Customizing the timer
	Generating your own code

	Acknowledgments
	License and Copyright
	Concept Index
	Library Index

