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About This Information

This provides guide and reference information for using ESSL in doing application
programming. It includes:

* An overview of ESSL and guidance information for designing, coding, and
processing your program, as well as migrating existing programs, and
diagnosing problems

* Reference information for coding each ESSL calling sequence

This documentation is written for a wide class of ESSL users: scientists,
mathematicians, engineers, statisticians, computer scientists, and system
programmers. It assumes a basic knowledge of mathematics in the areas of ESSL
computation. It also assumes that users are familiar with Fortran, C, and C++
programming.

How to Use This Information

[Part 1, “Guide Information,” on page 1| provides guidance information for using
ESSL. It covers the user-oriented tasks of learning, designing, coding, migrating,
processing, and diagnosing. Refer to the following when performing any of these
tasks:

* |Chapter 1, “Introduction and Requirements,” on page 3| gives an introduction
to ESSL, providing highlights and general information. Read this first to
determine the aspects of ESSL you want to use.

* |Chapter 2, “Planning Your Program,” on page 27 provides ESSL-specific
information that helps you design your program. Read this before designing
your program.

[Chapter 3, “Setting Up Your Data Structures,” on page 71| describes all types of
data structures, such as vectors, matrices, and sequences. Use this information
when designing and coding your program.

[Chapter 4, “Coding Your Program,” on page 123|tells you how to code your
scalar and array data, how to code calls to ESSL in Fortran, C, and C++
programs, and how to do the coding necessary to handle errors. Use this
information when coding your program.

* [Chapter 5, “Processing Your Program,” on page 175|describes how to process
your program under your particular operating system on your hardware. Use
this information after you have coded your program and are ready to run it.

+ |Chapter 6, “Migrating Your Programs,” on page 191| explains all aspects of
migration to ESSL, to this version of ESSL, to different processors, and to future
releases and future processors. Read this before starting to design your program.

» |Chapter 7, “Handling Problems,” on page 195 provides diagnostic procedures
for analyzing all ESSL problems. When you encounter a problem, use the
symptom indexes at the beginning to guide you to the appropriate diagnostic
procedure.

[Part 2, “Reference Information,” on page 209| provides reference information you
need to code the ESSL calling sequences. It covers each of the mathematical areas
of ESSL, and the utility subroutines. The information for each subroutine area
begins with an introduction, followed by the subroutine descriptions. Each
introduction applies to all the subroutines in that area and is especially important
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in planning your use of the subroutines and avoiding problems. Use the
appropriate information when coding your program:

+ |Chapter 8, “Linear Algebra Subprograms,” on page 211

* |Chapter 9, “Matrix Operations,” on page 367

* [Chapter 10, “Linear Algebraic Equations,” on page 435|

+ |Chapter 11, “Eigensystem Analysis,” on page 725

e [Chapter 12, “Fourier Transforms, Convolutions and Correlations, and Related|
Computations,” on page 801

* |Chapter 13, “Sorting and Searching,” on page 963

* |Chapter 14, “Interpolation,” on page 979

* |Chapter 15, “Numerical Quadrature,” on page 997|

* |Chapter 16, “Random Number Generation,” on page 1019
* |Chapter 17, “Utilities,” on page 1029|

[Appendix A, “Basic Linear Algebra Subprograms (BLAS),” on page 1067
provides a list of the Level 1, 2, and 3 Basic Linear Algebra Subprograms (BLAS)
included in ESSL.

[Appendix B, “LAPACK,” on page 1071| provides a list of the LAPACK subroutines
included in ESSL.

[Appendix C, “FFTW Version 3.1.2 to ESSL Wrapper Libraries,” on page 1073|
provides a list of the FFTW subroutines included in ESSL.

[“Bibiography” on page 1083| provides information about publications related to
ESSL. Use it when you need more information than this documentation provides.

How to Find a Subroutine Description

If you want to locate a subroutine description and you know the subroutine name,
you can find it listed individually or under the entry “subroutines, ESSL” in the
Index.

Where to Find Related Publications

If you have a question about IBM® clustered servers or a related product, the
online resources listed in [‘ESSL Internet Resources” on page 11| make it easy to
find the information for which you are looking.

The locations of related programming and hardware publications are listed in the
bibliography. Also included is a list of math background publications you may find
helpful, along with the necessary information for ordering them from independent
sources. See|“Bibiography” on page 1083

How to Look Up a Bibliography Reference

xii

Special references are made throughout this documentation to mathematical
background publications and software libraries, available through IBM, publishers,
or other companies. All of these are described in detail in the bibliography. A
reference to one of these is made by using a bracketed number. The number refers
to the item listed under that number in the bibliography. For example, reference [1]
cites the first item listed in the bibliography.
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Special Terms

Standard data processing and mathematical terms are used in this documentation.
Terminology is generally consistent with that used for Fortran. See the Glossary for

definitions of terms used.

Short and Long Precision

Because ESSL can be used with more than one programming language, the terms
short precision and long precision are used in place of the Fortran terms single
precision and double precision.

Subroutines and Subprograms

An ESSL subroutine is a named sequence of instructions within the ESSL product
library whose execution is invoked by a call. A subroutine can be called in one or
more user programs and at one or more times within each program. The ESSL
subroutines are referred to as subprograms in the area of linear algebra
subprograms. The term subprograms is used because it is consistent with the
BLAS. Many of the linear algebra subprograms correspond to the BLAS; these are

listed in [Appendix A, “Basic Linear Algebra Subprograms (BLAS),” on page 1067.|

How to Interpret the Subroutine Names with a Prefix Underscore

A name specified with an underscore (_) prefix, such as _GEMUL, refers to all the
versions of the subroutine with that name. To get the entire list of subroutines that
name refers to, substitute the first letter for each version of the subroutine. For
example, _.GEMUL, refers to all versions of the matrix multiplication subroutine:
SGEMUL, DGEMUL, CGEMUL, and ZGEMUL. You do not use the underscore in
coding the names of the ESSL subroutines in your program. You code a complete

name, such as SGEMUL. For details about these names, see

[Mathematical Functions” on page 4.

Abbreviated Names

The abbreviated names used are defined below.

Short Name Full Name

AIX® Advanced Interactive Executive

AltiVec* A tradename, owned solely by Freescale Semiconductor,
Inc., for a floating point and integer SIMD instruction set
designed and owned by Apple, IBM, and Freescale
(formerly the Semiconductor Products Sector of Motorola).

BLAS Basic Linear Algebra Subprograms

ESSL IBM Engineering and Scientific Subroutine Library

FFTW “Fastest Fourier Transform in the West” (see |Appendix C]
“FFTW Version 3.1.2 to ESSL Wrapper Libraries,” on page|
107:§|D

HTML Hypertext Markup Language

LAPACK Linear Algebra Package

SL MATH Subroutine Library—Mathematics

SMP Symmetric Multi-Processing

SSP Scientific Subroutine Package
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Short Name

Full Name

*AltiVec is a trademark of Freescale Semiconductor, Inc.

Conventions and terminology used
describes the typographic conventions used.

Table 1. Summary of typographic conventions

xiv

Fonts

Typographic

Usage

Bold

Bold words or characters represent system elements that you must use
literally, such as commands, flags, and path names.

Italic

* Italic words or characters represent variable values that you must supply.

* Italics are also used for book titles and for general emphasis in text.

Constant
width

Examples and information that the system displays appear in constant
width typeface.

[]

Brackets enclose optional items in format and syntax descriptions.

{}

Braces enclose a list from which you must choose an item in format and
syntax descriptions.

A vertical bar separates items in a list of choices. (In other words, it means
g ”
or.

Angle brackets (less-than and greater-than) enclose the name of a key on
the keyboard. For example, <Enter> refers to the key on your terminal or
workstation that is labeled with the word Enter.

An ellipsis indicates that you can repeat the preceding item one or more
times.

<Ctrl-x>

The notation <Ctrl-x> indicates a control character sequence. For example,
<Ctrl-c> means that you hold down the control key while pressing <c>.

The continuation character is used in coding examples for formatting
purposes.

Conventions that are consistent with traditional mathematical usage are followed.

A variety of special fonts are used to distinguish between many mathematical and
programming items. These are defined below.

Special Font

Example Description

Italic with no subscripts

m, inclx, aux, iopt Calling sequence argument or

mathematical variable

Italic with subscripts

X1y @y Xj1 o Element of a vector, matrix, or

sequence
Bold italic lowercase XY, z Vector or sequence
Bold italic uppercase A, B, C Matrix
Gothic uppercase A, B, C, AGB Array

IM=ISMAX(4,X,2) Fortran statement
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Special Notations and Conventions

[x, x, x5 ...

This explains the special notations and conventions used to describe various types
of data.

Scalar Data
Following are the special notations used in the examples for scalar data items.

These notations are used to simplify the examples, and they do not imply usage of
any precision. For a definition of scalar data in Fortran, C, and C++, see |Chapter 4,

[“Coding Your Program,” on page 123

Data Item Example Description
Character item T Character(s) in single quotation marks
Hexadecimal string X'97FA0OC1' String of 4-bit hexadecimal characters
Logical item .TRUE. .FALSE. True or false logical value, as indicated
Integer data 1 Number with no decimal point
Real data 1.6 Number with a decimal point
Complex data (1.0,-2.9) Real part followed by the imaginary part
Continuation 1.6666 Continue the last digit

(1.6666666... and so forth)

Vectors

A vector is represented as a single row or column of subscripted elements enclosed
in square brackets. The subscripts refer to the element positions within the vector:

For a definition of vector, see|”Vectors” on page 71.|

Matrices

A matrix is represented as a block of elements enclosed in square brackets.
Subscripts refer to the row and column positions, respectively:
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ay

ayy

aml a

aim
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A1 Ayt -

xvi

a12 .

5%

ayny -

ary

m2 *

mn

- A

Ay

For a definition of matrix, see [“Matrices” on page 77|

Sequences
Sequences are used in the areas of sorting, searching, Fourier transforms,
convolutions, and correlations. For a definition of sequences, see|’Sequences” on|

One-Dimensional Sequences: A one-dimensional sequence is represented as a
series of elements enclosed in parentheses. Subscripts refer to the element position
within the sequence:

(X1, X3, X3, ey Xy)

Two-Dimensional Sequences: A two-dimensional sequence is represented as a
series of columns of elements. (They are represented in the same way as a matrix
without the square brackets.) Subscripts refer to the element positions within the
first and second dimensions, respectively:

Three-Dimensional Sequences: A three-dimensional sequence is represented as a
series of blocks of elements. Subscripts refer to the elements positions within the
first, second, and third dimensions, respectively:

a a ... a
Gy Ao Aon2 p 9np Donp
Auiz Az - - Ay amlp am2p o amnp

Arrays
Arrays contain vectors, matrices, or sequences. For a definition of array, see
[Do You Set Up Your Arrays?” on page 44

One-Dimensional Arrays: A one-dimensional array is represented as a single row
of numeric elements enclosed in parentheses:

(1.0, 2.0, 3.0, 4.0, 5.0)

Elements not significant to the computation are usually not shown in the array.
One dot appears for each element not shown. In the following array, five elements
are significant to the computation, and two elements not used in the computation
exist between each of the elements shown:
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[cNoRoNo]

(r.o, ., .

,2.0,

©s . 3.0, ., . ,4.0, ., . ,5.0)

This notation is used to show vector elements inside an array.

Two-Dimensional Arrays: A two-dimensional array is represented as a block of
numeric elements enclosed in square brackets:

Elements not significant to the computation are usually not shown in the array.

E NS I
[cNoNoNo)

11.0 5.0 25.0
12.0 6.0 26.0
13.0 7.0 27.0
14.0 8.0 28.0

One dot appears for each element not shown. The following array contains three
rows and two columns not used in the computation:

1.0 2.0 5.0 4.0
2.0 3.0 6.0 3.0
3.0 4.0 7.0 2.0
4.0 5.0 8.0 1.0

This notation is used to show matrix elements inside an array.

Three-Dimensional Arrays: A three-dimensional array is represented as a series
of blocks of elements separated by ellipses. Each block appears like a

two-dimensional array:

5.0 25.0 10.0 111.0
6.0 26.0 20.0 112.0
7.0 27.0 30.0 113.0
8.0 28.0 40.0 114.0

Elements not significant to the computation are usually not shown in the array.

125.0 100.0 11.0 15.0 25.0
126.0 200.0 12.0 16.0 26.0
127.0 300.0 13.0 17.0 27.0
128.0 400.0 14.0 18.0 28.0

One dot appears for each element not shown, just as for two-dimensional arrays.

Special Characters, Symbols, Expressions, and Abbreviations

The mathematical and programming notations used are consistent with traditional

mathematical and programming usage. These conventions are explained below,

along with special abbreviations that are associated with specific values.

Item Description

Greek letters: «, 6, w, Q Symbolic scalar values

lal The absolute value of 4

ab The dot product of a and b

X; The i-th element of vector x

Ci The element in matrix C at row 7 and column j
Xy e Xy Elements from x, to x,

i=1,n i is assigned the values 1 to n

yex Vector y is replaced by vector x
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Description

Vector x times vector y

AX is congruent to B

a raised to the k power

Exponential function of x

The transpose of matrix A; the transpose of vector x

The complex conjugate of vector x; the complex conjugate of
matrix A

The complex conjugate of the complex vector element x;, where:

if x; = (a;, b,),

1

then X, = (a;, - b,)

The complex conjugate of the complex matrix element c;

xH; AH

The complex conjugate transpose of vector x; the complex
conjugate transpose of matrix A

n
2%

i=1

The sum of elements x; to x,

JJa+b

The square root of a+b

Jj f(x) dx

The integral from a to b of f(x) dx

The Euclidean norm of vector x, defined as:

n

2]
j

J=1

The one norm of matrix A, defined as:

m
max Z‘ay

i=1

,1<j<n

The spectral norm of matrix A, defined as:

max{ [ Ax |, : |[x], =1}

The Frobenius or Euclidean norm of matrix A, defined as:

m n 2
X X ayl

i=1j=1

The infinity norm of matrix A, defined as:

n
max Zl‘a,-j 1 <i<m
j:

(E3 P
A
A
Al s
AT
A-l

The inverse of matrix A
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Item

Description

A-T

The transpose of A inverse

Al

The determinant of matrix A

m by n matrix A

Matrix A has m rows and n columns

sin a The sine of a
cos b The cosine of b
SIGN (a) The sign of a; the result is either + or -

address {a}

The storage address of a

max(x) The maximum element in vector x

min(x) The minimum element in vector x

ceiling(x) The smallest integer that is greater than or equal to x
floor(x) The largest integer that is not greater than x

int(x) The largest integer that is less than or equal to x

x mod(m) x modulo m; the remainder when x is divided by m
o Infinity

n Pi, 3.14159265...

How to Interpret the Subroutine Descriptions

This explains how to interpret the information in the subroutine descriptions.

Description

Each subroutine description begins with a brief explanation of what the subroutine
does. When we combine the description of multiple versions of a subroutine, we
give enough information to enable you to easily tell the differences among the
subroutines. Differences usually occur in either the function performed or the data

types required for each subroutine.

Syntax
This shows the syntax for the Fortran, C, and C++ calling statements:
Fortran CALL NAME-1 | NAME-2 | ... | NAME-n (arg-1, arg-2, ... ,arg-m, ...)
C and C++ name-1 | name-2 | ... | name-n (arg-1, ... ,arg-m);

The syntax indicates:

* The programming language (Fortran, C, or C++)

* Each possible subroutine name that you can code in the calling sequence. Each
name is separated by the | (or) symbol. You specify only one of these names in

your calling sequence. (You do not code the | in the calling sequence.)

e The arguments, listed in the order in which you code them in the calling
sequence. You must code them all in your calling sequence.

You can distinguish between input arguments and output arguments by looking
at “On Entry” and “On Return”, respectively. An argument used for both input
and output is described in both “On Entry” and “On Return”. In this case, the

input value for the argument is overlaid with the output value.

About This Information




The names of the arguments give an indication of the type of data that you
should specify for the argument; for example:

— Names beginning with the letters i through n, such as m, incx, iopt, and isign,
indicate that you specify integer data.

— Names beginning with the letters a through  and o through z, such as b, ¢,
alpha, sigma, and omega, indicate that you specify real or complex data.

On Entry

This lists the input arguments, which are the arguments you pass to the ESSL
subroutine. Each argument description first gives the meaning of the argument,
and then gives the form of data required for the argument.

On Return

This lists the output arguments, which are the arguments passed back to your
program from the ESSL subroutine. Each argument description first gives the
meaning of the argument, and then gives the form of data passed back to your
program for the argument.

Notes

The notes describe any programming considerations and restrictions that apply to
the arguments or the data for the arguments.

Function

This is a functional, or mathematical, description of the function performed by this
subroutine. It explains what computation is performed, not the implementation.
It explains the variations in the computation depending on the input arguments.
References are made, where appropriate, to mathematical background books listed
in the bibliography. References appear as a number enclosed in square brackets,
where the number refers to the item listed under that number in the bibliography.
For example, reference [1] cites the first item listed.

Special Usage

These are unique ways you can use the subroutine in your application. In most
cases, this does not address applications of the ESSL subroutines; however, in
special situations where the functional capability of the subroutine can be extended
by following certain rules for its use, these rules are described.

Error Conditions

These are all the ESSL run-time errors that can occur in the subroutine. They are
organized under three headings; Computational Errors, Input-Argument Errors,
and Resource Errors. The return code values resulting from these errors are also
explained.

Examples

The examples show how you would call the subroutine from a Fortran program
in a 32-bit integer, 32-bit pointer environment. If you are using a 64-bit integer,
64-bit pointer environment, you may need to use a larger workspace and therefore
you may need to increase the size of naux and lwork. (See [Setting Up Auxiliary|
Storage When Dynamic Allocation Is Not Used” on page 49))

The examples provided for each subroutine show a variety of uses of the
subroutine. Except where it is important to show differences in use between the
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various versions of the subroutine, the simplest version of the subroutine is used in
the examples. In most cases, this is the short-precision real version of the
subroutine. Each example provides a description of the important features of the
example, followed by the Fortran calling sequence, the input data, and the
resulting output data.

About This Information ~ XX1



xxil  ESSL for AIX, 5.1, and ESSL for Linux on POWER, 5.1.1: Guide and Reference



Summary of Changes

The following sections summarize changes to ESSL and the ESSL documentation
for each new release or major service update for a given product version. Within
each book in the library, a vertical line to the left of text and illustrations indicates
technical changes or additions made to the previous edition of the book.

Summary of changes

for ESSL for AIX, Version 5 Release 1

and ESSL for Linux on POWER, Version 5 Release 1.1
as updated, July 2012

This release of ESSL for Linux on POWER provides the following new libraries:

* ESSL Blue Gene® Serial Library and ESSL Blue Gene SMP Library, which provide
versions of the ESSL subroutines for use on Blue Gene/Q and run in a 32-bit
integer, 64-bit pointer environment on RHEL6.2.

These libraries can also be used with the FFTW Wrappers Support.

Support has been added for the following compiler levels:

e IBM XL Fortran for AIX 14.1 and IBM XL C/C++ for AIX 12.1

e IBM XL Fortran for Linux 14.1 and IBM XL C/C++ for Linux 12.1

This document has also been updated to include support for RHEL6 for Power

platforms. This support was added to ESSL 5.1 after the October 2010 publication
of this document.

Summary of changes

for ESSL for AIX, Version 5 Release 1

and ESSL for Linux on POWER, Version 5 Release 1
as updated, October 2010

The ESSL 5.1 Serial Library and the ESSL SMP Library contain:

* A VSX (SIMD) version of selected subroutines for use on POWER7
processor-based servers

* An AltiVec (SIMD) version of selected subroutines for use on POWER6
processor-based servers

This release of ESSL provides the changes described below.

Operating systems

Support has been added for the following operating system version:
« AIX71

Support is no longer provided for the following operating systems:

¢ SUSE Linux Enterprise Server 10 for POWER (SLES10)

* Red Hat Enterprise Linux 5 (RHELS5)

For a complete list of operating system versions and distributions on

which this release of ESSL is supported, see [‘Operating Systems Supported|
by ESSL” on page 8.|

Servers and processors
Support has been added for the IBM POWER? processor.
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Support is no longer provided for the following servers and processors:

* IBM BladeCenter JS21, IBM POWERPC 450, IBM POWERPC 450D, IBM
POWERS5, IBM POWERS5+, IBM POWERPC970 processors, IBM Blue
Gene/P.

For a complete list of servers and processors on which this release of ESSL
is supported, see [‘Hardware Products Supported by ESSL” on page 8

Subroutines

ESSL 5.1 is the last release to support non-LAPACK-conforming-
subroutines; that is, those ESSL subroutines whose name is the same as an
existing LAPACK subroutine, but whose calling-sequence arguments and
functionality are different from that LAPACK subroutine. See
{“Non-LAPACK-Conforming Subroutines” on page 1072 for more details.

This new LAPACK subroutine is now included:

+ DSYGVX. See|“DSYGVX (Selected Eigenvalues and, Optionally, theI
Eigenvectors of a Positive Definite Real Symmetric Generalized|
Eigenproblem)” on page 755

These new Fourier Transform subroutines are now included:

* SRCFTD and DRCFTD. See [“SRCFTD and DRCFTD (Multidimensional|
[Real-to-Complex Fourier Transform)” on page 818

+ SCRFTD and DCRFTD. See ['SCRFTD and DCRFTD (Multidimensional]
[Complex-to-Real Fourier Transform)” on page 826

FFTW Wrappers

Support has been added to the ESSL FFTW Wrapper Libraries
corresponding to the new ESSL Fourier Transform subroutines. See
Appendix C, “FFTW Version 3.1.2 to ESSL Wrapper Libraries,” on page]
1073 for the list of FFTW subroutines supported, restrictions on their use,
and instructions on how to build, install, and use the ESSL FFTW
Wrappers Library.

Documentation for FFTW Version 3.1.2 can be found at:
http:/ / www.fftw.orgl

Summary of changes

for ESSL for AIX, Version 4 Release 4

and ESSL for Linux on POWER®, Version 4 Release 4
as updated, November 2008

This release of ESSL provides the changes described below.

Operating systems
Support has been added on the following operating system version:
* AIX 6.1

Note: This support was added to ESSL 4.3 after the August 2007
publication of this document.

Support is no longer provided on the operating system version:
* AIX 5.2
For a complete list of operating system versions and distributions on

which this release of ESSL is supported, see [“Operating Systems Supported|
by ESSL” on page 8.
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Servers and processors
Support is no longer provided for the following servers and processors:

¢ IBM POWER4 and POWER4+ technology processors

For a complete list of servers and processors on which this release of ESSL
is supported, see [‘Hardware Products Supported by ESSL” on page 8

Subroutines
The following LAPACK subroutines have been added to the Linear Least
Squares subroutines:
* SGELS, CGELS, and ZGELS; see [“SGELS, DGELS, CGELS, and ZGELS|
[(Linear Least Squares Solution for a General Matrix)” on page 696

The following LAPACK subroutines have been added to the Eigensystem
Analysis subroutines:

 SGEEVX, DGEEVX, CGEEVX, and ZGEEVX; see ['SGEEVX, DGEEVX |
CGEEVX, and ZGEEVX (Eigenvalues and, Optionally, Right|
Eigenvectors, Left Eigenvectors, Reciprocal Condition Numbers for]
Eigenvalues, and Reciprocal Condition Numbers for Right Eigenvectors|
of a General Matrix)” on page 726

* SSPEVX, DSPEVX, CHPEVX, ZHPEVX, SSYEVX, DSYEVX, CHEEVX,
and ZHEEVX; see[“SSPEVX, DSPEVX, CHPEVX, ZHPEVX, SSYEVX|
DSYEVX, CHEEVX, and ZHEEVX (Eigenvalues and, Optionally, the]
Eigenvectors of a Real Symmetric or Complex Hermitian Matrix)” on|

[page 74OJ

The following subroutines have been added to the Fourier Transform

subroutines:

+ SCFTD and DCFTD; see [‘SCFTD and DCFTD (Multidimensional|
[Complex Fourier Transform)” on page 810,

FFTW Wrappers
ESSL 4.4 now includes header files and C and Fortran wrappers in source
form for a subset of the FFTW Version 3.1.2 subroutines.

A makefile is also provided to build the ESSL FFTW Wrappers library,
which can be used with the ESSL Serial Library and the ESSL SMP library
in the following environments:

* 32-bit integer, 32-bit pointer
* 32-bit integer, 64-bit pointer
On Blue Gene, applications can be linked with either the ESSL Blue Gene

Serial Library or the ESSL Blue Gene SMP Library, which run in a 32-bit
integer, 32-bit pointer environment.

For details, see [Appendix C, “FFTW Version 3.1.2 to ESSL Wrappet{
[Libraries,” on page 1073]

Summary of changes

for ESSL for AIX, Version 4 Release 3

and ESSL for Linux on POWER, Version 4 Release 3
as updated, August 2007

This release of ESSL provides the changes described below.

Operating systems
Support has been added on the following new Linux distribution:

Red Hat Enterprise Linux 5 (RHELS5)
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Support is no longer provided on the following distributions:

¢ SUSE Linux Enterprise Server 9 for POWER (SLES9)

* Red Hat Enterprise Linux 3 (RHEL3)

* Red Hat Enterprise Linux 4 (RHEL4)

* Terra Soft Solutions' Y-HPC

For a complete list of operating system versions and distributions on

which this release of ESSL is supported, see [“Operating Systems Supported|
by ESSL” on page 8|

Servers and processors
Support for the following servers and processors has been added:

« IBM POWER6® processors
« IBM Blue Gene®/P Solution

Support is no longer provided for the following servers and processors:
¢ IBM POWER3 and POWERS-II technology processors
» IBM Blue Gene®/L Solution

For a complete list of servers and processors on which this release of ESSL
is supported, see [“Hardware Products Supported by ESSL” on page 8.

Run-time libraries

This release of ESSL provides the following run-time libraries:

» ESSL Serial Libraries and ESSL SMP Libraries, which run in the
following environments:
— 32-bit integer, 32-bit pointer environment
— 32-bit integer, 64-bit pointer environment
— 64-bit integer, 64-bit pointer environment (new in this release)
These libraries are tuned for IBM POWERG6 processors.

They contain an AltiVec' version of selected subroutines (new in this
release) for use on the BladeCenter® JS21 server and on IBM POWER6
processors on AIX 5.3, SLES10, and RHELS.

¢ ESSL Blue Gene Serial Library (previously called the ESSL Blue Gene
Library) and ESSL Blue Gene SMP Library (new in this release), which
run in a 32-bit integer, 32-bit pointer environment

These libraries are tuned for IBM Blue Gene/P.

Subroutines
The following LAPACK subroutines have been added to the Dense Linear
Algebraic Equation subroutines:

+ SGECON, DGECON, CGECON, and ZGECON;; see _
DGECON, CGECON, and ZGECON (Estimate the Reciprocal of the

Condition Number of a General Matrix)” on page 466.|

« SPOCON, DPOCON, CPOCON, ZPOCON, SPPCON, DPPCON,

CPPCON, and ZPPCON; see ["'SPOCON, DPOCON, CPOCON||

ZPOCON, SPPCON, DPPCON, CPPCON, and ZPPCON (Estimate thd

Reciprocal of the Condition Number of a Positive Definite Real|
Symmetric or Complex Hermitian Matrix)” on page 516.]

* SLANGE, DLANGE, CLANGE, and ZLANGE; see |"SLANGE, DLANGE,
CLANGE, and ZLANGE (General Matrix Norm)” on page 481,

1. AltiVec is a trademark of Freescale Semiconductor, Inc.
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* SLANSY, DLANSY, CLANHE, ZLANHE, SLANSP, DLANSP, CLANHP,
and ZLANHP; see ['SLANSY, DLANSY, CLANHE, ZLANHE, SLANSP)
DLANSP, CLANHP, and ZLANHP (Real Symmetric or Complex|
Hermitian Matrix Norm)” on page 540

e CPPTRI and ZPPTRI; see the subroutine description for Positive Definite
Complex Hermitian Matrix Inverse in |”SPOTRI, DPOTRI, CPOTRI,|
ZPOTRI, SPOICD, DPOICD, SPPTRI, DPPTRI, CPPTRI, ZPPTRI)|
SPPICD, and DPPICD (Positive Definite Real Symmetric or Complex|
Hermitian Matrix Inverse, Condition Number Reciprocal, and|
Determinant)” on page 529.|
« SGEQRF, CGEQREF, and ZGEQREF; see ['SGEQRF, DGEQREF, CGEQRF,I
[and ZGEQRF (General Matrix QR Factorization)” on page 691

Summary of changes
for ESSL for Linux on POWER, Version 4 Release 2.2
as updated, November 2005

This release of ESSL for Linux on POWER provides the following new library:

* ESSL Blue Gene Library, which provides 32-bit versions of the ESSL subroutines
for use on Blue Gene

Summary of changes
for ESSL for Linux on POWER, Version 4 Release 2.1
as updated, April 2005

This release of ESSL for Linux on POWER is supported on the following new
distribution:

* Red Hat Linux Enterprise Server 4 (RHEL4)

Summary of changes
for ESSL for Linux on POWER, Version 4 Release 2
as updated, October 2004

This release of ESSL provides the changes described below:

* This release of ESSL is supported on the following operating system versions or
distributions:

AIX 5L Version 5.2

AIX 5L Version 5.3
— SuSE Linux Enterprise Server 9 for POWER (SLES9)
— Red Hat Enterprise Linux 3 (RHEL3) (Update 3)

e The ESSL Libraries are now tuned for the POWERS5 and the PowerPC 970.

* The Dense Linear Algebraic Equation Subroutines now include these new
LAPACK subroutines:

— CPPSV and ZPPSV; see the subroutine description for Positive Definite
Complex Hermitian Matrix Factorization and Multiple Right-Hand Side Solve
in [“SPPSV, DPPSV, CPPSV, and ZPPSV (Positive Definite Real Symmetric and|

Complex Hermitian Matrix Factorization and Multiple Right-Hand Side]

Solve)” on page 483

— CPPTRF and ZPPTRF; see the subroutine description for Positive Definite
Complex Hermitian Matrix Factorization in ['SPOTRF, DPOTRF, CPOTREF,
ZPOTRF, SPOF, DPOF, CPOF, ZPOF, SPPTRF, DPPTRF, CPPTRF, ZPPTREF,
SPPF, and DPPF (Positive Definite Real Symmetric or Complex Hermitian
Matrix Factorization)” on page 494
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— CPPTRS and ZPPTRS; see the subroutine description for Positive Definite
Complex Hermitian Matrix Multiple Right-Hand Side Solve in ['SPOTRS]
DPOTRS, CPOTRS, ZPOTRS, SPOSM, DPOSM, CPOSM, ZPOSM, SPPTRS)
DPPTRS, CPPTRS, and ZPPTRS (Positive Definite Real Symmetric o1
Complex Hermitian Matrix Multiple Right-Hand Side Solve)” on page 506.|

— SPPTRI and DPPTRI; see the subroutine description for Positive Definite Real
Symmetric Matrix Inverse in [‘SPOTRI, DPOTRI, CPOTRI, ZPOTRI, SPOICD |
DPOICD, SPPTRI, DPPTRI, CPPTRI, ZPPTRI, SPPICD, and DPPICD (Positive|
Definite Real Symmetric or Complex Hermitian Matrix Inverse, Condition|
Number Reciprocal, and Determinant)” on page 529,

Future Migration

If you are concerned with migration to possible future releases of ESSL or possible
future hardware, you should read [“Planning for Future Migration” on page 193,
which explains what you can do now to prevent future migration problems.
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Part 1. Guide Information

The following types of guidance information about how to use ESSL are available:
* Learning how to use ESSL documentation

* Learning what is new in ESSL

* Learning about the ESSL product

¢ Designing your program

* Setting up your data structures

* Coding your program

* Processing your program

* Migrating your programs

* Handling problems
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Chapter 1. Introduction and Requirements

This introduces you to the Engineering and Scientific Subroutine Library (ESSL)
product.

Overview of ESSL

IBM Engineering and Scientific Subroutine Library (ESSL) is a state-of-the-art
collection of high-performance subroutines providing a wide range of
mathematical functions for many different scientific and engineering applications.
Its primary characteristics are performance, functional capability, and usability.

ESSL is provided as run-time libraries that run on the servers and processors listed
in [“Hardware Products Supported by ESSL” on page 8|

ESSL can be used with Fortran, C, and C++ programs operating under the AIX and
Linux operating systems.

To order ESSL, specify one of the program numbers below:

ESSL for AIX
5765-H25

ESSL for Linux
5765-1L51

Performance and Functional Capability

The mathematical subroutines, in nine computational areas, are tuned for
performance. The computational areas are:

* Linear Algebra Subprograms

* Matrix Operations

* Linear Algebraic Equations

* Eigensystem Analysis

* Fourier Transforms, Convolutions and Correlations, and Related Computations
* Sorting and Searching

* Interpolation

* Numerical Quadrature

* Random Number Generation

ESSL runs under the AIX and Linux operating systems.

ESSL provides the following run-time libraries (described in detail in [“What ESSL
|Library Do You Want to Use?” on page 27b:

e ESSL Serial Libraries and ESSL SMP Libraries, which run in the following
environments:

— 32-bit integer, 32-bit pointer environment
— 32-bit integer, 64-bit pointer environment

Note: For the 32-bit integer, 64-bit pointer environment, in accordance with
the LP64 data model, all ESSL integer arguments remain 32 bits except for the
iusadr argument for ERRSET.

— 64-bit integer, 64-bit pointer environment
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These libraries contain:

— a VSX (SIMD) version of selected subroutines for use on POWER7
processor-based servers.

— an AltiVec version of selected subroutines for use on POWER6 processors.

* ESSL Blue Gene Serial Library and ESSL Blue Gene SMP Library, which run in a
32-bit integer, 64-bit pointer environment. These libraries are tuned for Blue
Gene/Q.

Note: For the 32-bit integer, 64-bit pointer environment, in accordance with the
LP64 data model, all ESSL integer arguments remain 32 bits except for the
iusadr argument for ERRSET.

All libraries are designed to provide high levels of performance for numerically
intensive computing jobs. All versions provide mathematically equivalent results.

The ESSL subroutines can be called from application programs written in Fortran,
C, and C++.

Usability

ESSL is designed for usability:
* It has an easy-to-use call interface.

* If your existing application programs use the Serial Libraries, you only need to
re-link your program to take advantage of the increased performance of the SMP
Libraries.

* It has informative error-handling capabilities, enabling you to calculate auxiliary
storage sizes and transform lengths.

* Online documentation that can be displayed using a Hypertext Markup
Language (HTML) document browser is available for use with ESSL.

The Variety of Mathematical Functions

ESSL includes several different types of mathematical functions.

Areas of Application

ESSL provides a variety of mathematical functions for many different types of
scientific and engineering applications. Some of the industries using these
applications are: Aerospace, Automotive, Electronics, Petroleum, Finance, Utilities,
and Research. Examples of applications in these industries are:

Structural Analysis Time Series Analysis
Computational Chemistry Computational Techniques
Fluid Dynamics Analysis Mathematical Analysis
Seismic Analysis Dynamic Systems Simulation
Reservoir Modeling Nuclear Engineering
Quantitative Analysis Electronic Circuit Design

What ESSL Provides

ESSL provides run-time libraries that are designed to provide high levels of
performance for numerically intensive computing jobs.

The subroutines provided in ESSL, summarized in [Table 2 on page 5 fall into the
following groups:

ESSL for AIX, 5.1, and ESSL for Linux on POWER, 5.1.1: Guide and Reference



* Nine major areas of mathematical computation, providing the computations
commonly used by the industry applications listed above

* Utilities, performing general-purpose functions

Most of the subroutine calls are compatible with those in the ESSL/370 product.

To help you select the ESSL subroutines that fulfill your needs for performance,

accuracy, storage, and so forth, see [“Selecting an ESSL Subroutine” on page 27)

Table 2. Summary of ESSL Subroutines

Integer Short-Precision Long-Precision
ESSL Area of Computation Subroutines Subroutines Subroutines
Linear Algebra Subprograms:
Vector-scalar 0 41 41
Sparse vector-scalar 0 11 11
Matrix-vector 0 32 32
Sparse matrix-vector 0 0 3
Matrix Operations:
Addition, subtraction, multiplications, rank-k updates,
rank-2k updates, and matrix transposes 0 25 26
Linear Algebraic Equations:
Dense linear algebraic equations 0 66 71
Banded linear algebraic equations 0 18 18
Sparse linear algebraic equations 0 0 11
Linear least squares 0 7 7
Eigensystem Analysis:
Solutions to the algebraic eigensystem analysis problem
and the generalized eigensystem analysis problem 0 14 15
Signal Processing Computations:
Fourier transforms 0 18 14
Convolutions and correlations 0 10 2
Related computations 0 6 6
Sorting and Searching:
Sorting, sorting with index, and binary and sequential
searching 5 5 5
Interpolation:
Polynomial and cubic spline interpolation 0 4 4
Numerical Quadrature:
Numerical quadrature on a set of points or on a
function 0 6 6
Random Number Generation:
Generating vectors of uniformly distributed and
normally distributed random numbers 0 3 3
Utilities:
General service operations 8 0 3
Total ESSL Subroutines 13 266 278
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Accuracy of the Computations

ESSL provides accuracy comparable to libraries using equivalent algorithms with
identical precision formats. Both short- and long-precision real versions of the
subroutines are provided in most areas of ESSL. In some areas, short- and
long-precision complex versions are also provided, and, occasionally, an integer
version is provided. The data types operated on by the short-precision and
long-precision versions of the subroutines are ANSI/IEEE 32-bit and 64-bit binary
floating-point format. See the ANSI/IEEE Standard for Binary Floating-Point
Arithmetic, ANSI/IEEE Standard 754-1985, for more detail. (There are ESSL-specific
rules that apply to the results of computations on workstation processors using the
ANSI/IEEE standards. For details, see [“What Data Type Standards Are Used by|
[ESSL, and What Exceptions Should You Know About?” on page 60J)

For more information on accuracy, see ['Getting the Best Accuracy” on page 59.|

High Performance of ESSL

The ESSL subroutines have been designed to provide high performance. (See
references [35 on page 1085]], [46 on page 1086], and [47 on page 1086|].)

Algorithms

To achieve high performance, the subroutines use state-of-the-art algorithms
tailored to specific operational characteristics of the hardware, such as cache size,
Translation Lookaside Buffer (TLB) size, and page size.

Most subroutines use the following techniques to optimize performance:

* Managing the cache and TLB efficiently so the hit ratios are maximized; that is,
data is blocked so it stays in the cache or TLB for its computation.

* Accessing data stored contiguously—that is, using stride-1 computations.

* Exploiting the large number of available floating-point registers.

* Using algorithms that minimize paging.

e Structuring the ESSL subroutines so, where applicable, the compiled code fully
utilizes the dual floating-point execution units. Because two Multiply-Add

instructions can be executed each cycle, neglecting overhead, this allows four
floating-point operations per cycle to be performed.

e Structuring the ESSL subroutines so, where applicable, the compiled code takes
full advantage of the hardware data prefetching.

Obtaining High Performance
Obtaining high performance depends on the type of processor you are using.

Obtaining High Performance on SMP Processors: The SMP Libraries are
designed to exploit the processing power and shared memory of the SMP
processor. In addition, a subset of the ESSL SMP subroutines have been coded to
take advantage of increased performance from multithreaded (parallel)
programming techniques. For a list of the multithreaded subroutines in the ESSL
SMP Libraries, see [Table 37 on page 38|

Choosing the number of threads depends on the problem size, the specific
subroutine being called, and the number of physical processors you are running
on. To achieve optimal performance, experimentation is necessary; however,
picking the number of threads equal to the number of online processors generally
provides good performance in most cases. In some cases, performance may
increase if you choose the number of threads to be less than the number of online
processors.
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You should use either the XL Fortran XLSMPOPTS or the OMP_NUM_THREADS
environment variable to specify the number of threads you want to create.

Obtaining High Performance on VSX-Enabled Processors: The ESSL Serial
Libraries and the ESSL SMP Libraries are designed to exploit the processing power
of VSX-enabled processors. For details about how to use it to achieve optimal
performance, see [“The ESSL Serial Libraries and SIMD Algorithms on POWER7|
[VSX-Enabled Processors” on page 28|

Obtaining High Performance on AltiVec-Enabled Processors: The ESSL Serial
Libraries and the ESSL SMP Libraries are designed to exploit the processing power
of the AltiVec unit on certain PowerPC® processors. For details about how to use it
to achieve optimal performance, see [*The ESSL Serial Libraries and SIMD|
[Algorithms on POWER 6 AltiVec-Enabled Processors” on page 31]

Obtaining High Performance on Blue Gene SIMD Processors: The ESSL Blue
Gene Serial Library and the ESSL Blue Gene SMP Library are designed to exploit
the processing power of the PowerPC (A2 Core) 4-way SIMD QPX FPUs. For
details about how to use it to achieve optimal performance, see [“The ESSL Blug|
(Gene Serial Library and SIMD Algorithms on Blue Gene” on page 34

SMT Mode

SMT is a processor technology that allows multiple instruction streams (threads) to
run concurrently on the same physical processor, improving overall throughput. To
the operating system, each hardware thread is treated as an independent logical
processor.

Not all applications benefit from SMT. Having multiple threads executing on the
same processor will not increase the performance of applications with
execution-unit-limited performance or applications that consume all the chip's
memory bandwidth. For this reason, these processors support single-threaded (ST)
execution mode. In this mode, these processors give all the physical resources to
the active thread.

Mathematical Techniques

All areas of ESSL use state-of-the-art mathematical techniques to achieve high
performance. For example, the matrix-vector linear algebra subprograms operate
on a higher-level data structure, matrix-vector rather than vector-scalar. As a result,
they optimize performance directly for your program and indirectly through those
ESSL subroutines using them.

The Fortran Language Interface to the Subroutines

The ESSL subroutines follow standard Fortran calling conventions and must run in
the Fortran run-time environment. When ESSL subroutines are called from a
program in a language other than Fortran, such as C or C++, the Fortran
conventions must be used. This applies to all aspects of the interface, such as the
linkage conventions and the data conventions. For example, array ordering must
be consistent with Fortran array ordering techniques. Data and linkage conventions
for each language are given in [Chapter 4, “Coding Your Program,” on page 123
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Software and Hardware Products That Can Be Used with ESSL

This describes the hardware and software products you can use with ESSL, as well
as those products for installing ESSL and displaying the online documentation.

» |“Hardware Products Supported by ESSL’|
+ [“Operating Systems Supported by ESSL’|
* |“Software Products Required by ESSL”
» |“Software Products for Installing and Customizing ESSL” on page 10|

» [“Software Products for Displaying ESSL Documentation” on page 10|

Hardware Products Supported by ESSL
ESSL runs on the following hardware platforms:
* IBM POWERY? servers and blades
* IBM POWER6+ and POWERG servers and blades
* IBM Systems Blue Gene/Q

64-bit applications require 64-bit hardware.

Operating Systems Supported by ESSL

ESSL is supported in the following operating system environments:

Table 3. Operating systems supported by ESSL

Product Supported Environment
ESSL for AIX, Version 5 Release 1 (program number AIX 7.1 with the latest available Technology Level
5765-H25)

AIX 6.1 with the latest available Technology Level

AIX 5L Version 5.3 with the latest available Technology

Level
ESSL for Linux on POWER, Version 5 Release 1.1 * SUSE Linux Enterprise Server 11 SP1 (SLES11 SP1) or
(program number 5765-L51) later

* Red Hat Linux Enterprise Server 6 (RHEL6) or later

Software Products Required by ESSL
This describes the software products that are required by ESSL.
* [“Software Products Required by ESSL for AIX”|
* [“Software Products Required by ESSL for Linux” on page 9|

Software Products Required by ESSL for AIX

ESSL for AIX requires the software products shown in [“Required Software|
IProducts on AIX”| for compiling and running.

To assist C and C++ users, an ESSL header file is provided. Use of this file is
described in [“C Programs” on page 141| and [‘C++ Programs” on page 157|

Required Software Products on AIX:
The following table lists the required software products for ESSL for AIX:
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Table 4. Required Software Products for ESSL for AIX

Required Software Products Supported Levels
IBM XL Fortran for AIX 13.1 or 14.1 with the latest
service
For Compiling
IBM XL C/C++ for AIX 11.1 or 12.1 with the latest
service
For Linking, Loading, or IBM XL Fortran Runtime Environment for AIX 13.1 or 14.1 with the latest
R . service
unmng (See Note EI)
(See Notel[l) IBM XL C libraries (See Note [3)
Note:
1. Optional filesets are required for building applications. For details, consult the AIX and compiler documentation.
2. The correct version of IBM XL Fortran Runtime Environment for AIX is automatically shipped with the compiler.
It is also available for downloading from the following website: lhttp: / /www.ibm.com /support/|
[docview.wss?uid=swg24026634]
3. The AIX product includes the C and math libraries in the Application Development Toolkit.

Software Products Required by ESSL for Linux
ESSL for Linux requires the software products listed in|“Required Software]
IProducts on Linux”|for compiling and running.

To assist C and C++ users, an ESSL header file is provided. Use of this file is
described in [“C Programs” on page 141/ and [‘C++ Programs” on page 157

Required Software Products on Linux:
The following table lists the required software products for ESSL for Linux on

POWER:
Table 5. Required Software Products for ESSL for Linux on POWER
Required Software Products Supported Levels
IBM XL Fortran for Linux 13.1 or 14.1 with the latest service
For Compiling
IBM XL C/C++ for Linux 11.1 or 12.1 with the latest service
For Linking, Loading, or Running IBM XL Fortran Runtime 13.1 or 14.1 with the latest service
Environment for Linux
GCC 32-bit and 64-bit libraries See

Table Notes:

1.

Optional RPMs are required for building applications. For details, consult the Linux and compiler
documentation.

The correct version of IBM XL Fortran Runtime Environment for Linux is automatically shipped with the
compiler. It is also available for downloading from the following website:

http://www.ibm.com/support/docview.wss?rs=43&uid=swg21156900

Use the GCC libraries provided with your linux distribution.

Note for Blue Gene users:

* The ESSL Blue Gene Serial Library and the ESSL Blue Gene SMP Library are available only on RHEL6.2.
e XL Fortran 13.1 and XL C/C++ 11.1 are not available on Blue Gene.

* Blue Gene users only should also download the IBM XL Fortran Compiler Runtime Add-on for Blue Gene.
To do so:

a. Go to the Blue Gene website at the following URL:
https://wwwld.software.ibm.com/webapp/iwm/web/preLogin.do?source=BG-Q
b. Select IBM System Blue Gene Solution Downloads. (IBM ID sign-in is required.)
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Software Products for Installing and Customizing ESSL

The ESSL licensed program is distributed on a CD. Different software products are
required for installing and customizing ESSL on AIX or on Linux.

« |“Software Products for Installing and Customizing ESSL for AIX"]|

* [“Software Products for Installing and Customizing ESSL for Linux”|

Software Products for Installing and Customizing ESSL for AIX
The ESSL for AIX Installation Guide provides the detailed information you need to
install ESSL for AIX.

ESSL for AIX is packaged according to the AIX guidelines, as described in the AIX
General Programming Concepts: Writing and Debugging Programs manual. The product
can be installed using the smit command, as described in the AIX System
Management Guide: Operating System and Devices manual.

Software Products for Installing and Customizing ESSL for Linux
The ESSL for Linux Installation Guide provides the detailed information you need to
install ESSL for Linux.

ESSL for Linux is packaged as RPM packages. The product can be installed using
the rpm command, as described at the following URL:

http://www.rpm.org/

Software Products for Displaying ESSL Documentation

The software products needed to display ESSL online information are listed in

Table 6. Software needed to display various formats of ESSL online information

Format of online Software needed

information

HTML HTML document browser (such as Microsoft Internet Explorer)
PDF Adobe Acrobat Reader, which is freely available for downloading

from the Adobe Web site at:
http://www.adobe.com

Manpages No additional software needed.

Note: In order for manpages to be displayed properly on Linux,
the LANG environment variable must be set to either of the
following values: C or en_US.is0885915.

To display a specific manpage, use the man command as follows:

man subroutine-name
Note: These manpages will be installed in the following
directory:

/usr/share/man/man3

The manpages provided by LAPACK are installed in the
/usr/share/man/manl directory. By default, ESSL manpages
will be displayed rather than BLAS or LAPACK manpages with
the same names. If you want to access the BLAS or LAPACK
manpages, you must set the MANPATH environment variable.
See the documentation for the man command.
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ESSL Internet Resources

ESSL documentation, as well as other related information, can be displayed or
downloaded from the Internet at the URLs listed in the following table.

Table 7. Online resources for ESSL documentation

Website Type of File Formats

Information Available

Provided

PDF HTML

IBM Cluster Information Center: Documentation Yes Yes
http://publib.boulder.ibm.com/infocenter/clresctr/vxrx/index.jsp for IBM

clustered-server

and System p®

software products
IBM Publications Center: Documentation Yes No
http://www.ibm.com/e-business/Tinkweb/publications for any IBM

product

Blue Gene documentation

For Blue Gene documentation, go to the Blue Gene website at the following URL:

http://www.redbooks.ibm.com/cgi-bin/searchsite.cgi?query=blue+AND+gene/q

Getting on the ESSL Mailing List

Late breaking information about ESSL can be obtained by being placed on the
ESSL mailing list. In addition, users on the mailing list will receive information
about new ESSL function and may receive customer satisfaction surveys and
requirements surveys to provide feedback to ESSL Development on the product

and user requirements.

You can be placed on the mailing list by sending a request to:

fessl@us.ibm.com|

Note: You should also send us e-mail if you would like to be withdrawn from the

ESSL mailing list.

When requesting to be placed on the mailing list or asking any questions, please

provide the following information:
* Your name

¢ The name of your company

* Your mailing address

* Your Internet address

* Your phone number

List of ESSL Subroutines

ESSL provides several different types of subroutines.
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[Appendix A, “Basic Linear Algebra Subprograms (BLAS),” on page 1067| contains a

list of Level 1, 2, and 3 Basic Linear Algebra Subprograms (BLAS) included in

ESSL.

[Appendix B, “LAPACK,” on page 1071|contains a list of Linear Algebra Package

(LAPACK) subroutines included in ESSL.

Linear Algebra Subprograms

There are several types of linear algebra subprograms.
* Vector-scalar linear algebra subprograms (“Vector-Scalar Linear Algebral

Subprograms

/r

» Sparse vector-scalar linear algebra subprograms (“Sparse Vector-Scalar Linear

[Algebra Subprograms” on page 13)

* Matrix-vector linear algebra subprograms (“Matrix-Vector Linear Algebral

Subprograms” on page 1
prog pag

» Sparse matrix-vector linear algebra subprograms (“Sparse Matrix-Vector Linear|

[Algebra Subprograms” on page 15)

Note:

1. The term subprograms is used to be consistent with the Basic Linear Algebra
Subprograms (BLAS), because many of these subprograms correspond to the

BLAS.

2. Some of the linear algebra subprograms were designed in accordance with the
Level 1 and Level 2 BLAS de facto standard. If these subprograms do not
comply with the standard as approved, IBM will consider updating them to do
so. If IBM updates these subprograms, the updates could require modifications
of the calling application program.

Vector-Scalar Linear Algebra Subprograms

The vector-scalar linear algebra subprograms include a subset of the standard set
of Level 1 BLAS. For details on the BLAS, see reference [[87 on page 108§]. The
remainder of the vector-scalar linear algebra subprograms are commonly used
computations provided for your applications. Both real and complex versions of
the subprograms are provided.

Table 8. List of Vector-Scalar Linear Algebra Subprograms

Short-Precision

Long-Precision

Subprogram Subprogram Descriptive Name and Location

ISAMAX"™ IDAMAX™ “ISAMAX, IDAMAX, ICAMAX, and IZAMAX (Position of the First or Las

ICAMAX™ IZAMAX"™ Occurrence of the Vector Element Having the Largest Magnitude)” on page|
215

ISAMIN' IDAMIN' “ISAMIN and IDAMIN (Position of the First or Last Occurrence of the Vector|
Element Having Minimum Absolute Value)” on page 218|

ISMAX' IDMAX" “ISMAX and IDMAX (Position of the First or Last Occurrence of the Vector]
Element Having the Maximum Value)” on page 220|

ISMIN' IDMIN'* “ISMIN and IDMIN (Position of the First or Last Occurrence of the Vector|
Element Having Minimum Value)” on page 223

SASUM™ DASUM"™ “SASUM, DASUM, SCASUM, and DZASUM (Sum of the Magnitudes of the]

SCASUM™ DZASUM™ Elements in a Vector)” on page 225|

SAXPY DAXPY “SAXPY, DAXPY, CAXPY, and ZAXPY (Multiply a Vector X by a Scalar, Add|

CAXPY" ZAXPY" to a Vector Y, and Store in the Vector Y)” on page 228|

SCOPY" DCOPY” |“sCOPY, DCOPY, CCOPY, and ZCOPY (Copy a Vector)” on page 231|

CCOPrY’ ZCOPY"
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Table 8. List of Vector-Scalar Linear Algebra Subprograms (continued)

Short-Precision

Long-Precision

Subprogram Subprogram Descriptive Name and Location

SDOT™" DDOT™ “SDOT, DDOT, CDOTU, ZDOTU, CDOTC, and ZDOTC (Dot Product of Two|

CDOTU™ ZDOTU" Vectors)” on page 233|

CDOTC"™ ZDOTC"™

SNAXPY DNAXPY “SNAXPY and DNAXPY (Compute SAXPY or DAXPY N Times)” on page|
236

SNDOT DNDOT “SNDOT and DNDOT (Compute Special Dot Products N Times)” on page]
241

SNRM2™ DNRM2" “SNRM2, DNRM2, SCNRM?2, and DZNRM?2 (Euclidean Length of a Vect01|

SCNRM2™ DZNRM2" with Scaling of Input to Avoid Destructive Underflow and Overflow)” onl|
page 246

SNORM2* DNORM?2? “SNORM?2, DNORM?2, CNORM?2, and ZNORM?2 (Euclidean Length of a|

CNORM?2' ZNORM?2* Vector with No Scaling of Input)” on page 249|

SROTG’ DROTG’ “SROTG, DROTG, CROTG, and ZROTG (Construct a Given Plane Rotation)”]

CROTG ZROTG on page 251|

SROT" DROT “SROT, DROT, CROT, ZROT, CSROT, and ZDROT (Apply a Plane Rotation)”|

CROT ZROT on page 252|

CSROT ZDROT

SSCAL’ DSCAL" “SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, and ZDSCAL (Multiply a Vector]

CSCAL’ ZSCAL’ X by a Scalar and Store in the Vector X)” on page 261

CSSCAL’ ZDSCAL’

SSWAP* DSWAP” “SSWAP, DSWAP, CSWAP, and ZSWAP (Interchange the Elements of Twd]

CSWAP” ZSWATP" Vectors)” on page 264|

SVEA DVEA “SVEA, DVEA, CVEA, and ZVEA (Add a Vector X to a Vector Y and Store in|

CVEA ZVEA a Vector Z)” on page 266

SVES DVES “SVES, DVES, CVES, and ZVES (Subtract a Vector Y from a Vector X and|

CVES ZVES Store in a Vector Z)” on page 270|

SVEM DVEM “SVEM, DVEM, CVEM, and ZVEM (Multiply a Vector X by a Vector Y and)|

CVEM ZVEM Store in a Vector Z)” on page 274

SYAX DYAX “SYAX, DYAX, CYAX, ZYAX, CSYAX, and ZDYAX (Multiply a Vector X by a

CYAX ZYAX Scalar and Store in a Vector Y)” on page 277

CSYAX ZDYAX

SZAXPY DZAXPY “SZAXPY, DZAXPY, CZAXPY, and ZZAXPY (Multiply a Vector X by af

CZAXPY ZZAXPY Scalar, Add to a Vector Y, and Store in a Vector Z)” on page 280)

T This subprogram is invoked as a function in a Fortran program.

" Level 1 BLAS

Sparse Vector-Scalar Linear Algebra Subprograms

The sparse vector-scalar linear algebra subprograms operate on sparse vectors; that
is, only the nonzero elements of the vector are stored. These subprograms provide
similar functions to the vector-scalar subprograms. These subprograms represent a
subset of the sparse extensions to the Level 1 BLAS described in reference
. Both real and complex versions of the subprograms are provided.
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Table 9. List of Sparse Vector-Scalar Linear Algebra Subprograms

Short-Precision

Long-Precision

Subprogram Subprogram Descriptive Name and Location

SSCTR DSCTR “SSCTR, DSCTR, CSCTR, ZSCTR (Scatter the Elements of a Sparse Vector X|

CSCTR ZSCTR in Compressed-Vector Storage Mode into Specified Elements of a Sparse|
Vector Y in Full-Vector Storage Mode)” on page 283

SGTHR DGTHR “SGTHR, DGTHR, CGTHR, and ZGTHR (Gather Specified Elements of a|

CGTHR ZGTHR Sparse Vector Y in Full-Vector Storage Mode into a Sparse Vector X in|
Compressed-Vector Storage Mode)” on page 286|

SGTHRZ DGTHRZ “SGTHRZ, DGTHRZ, CGTHRZ, and ZGTHRZ (Gather Specified Elements of

CGTHRZ ZGTHRZ a Sparse Vector Y in Full-Vector Mode into a Sparse Vector X inf
Compressed-Vector Mode, and Zero the Same Specified Elements of Y)” on|
[page 288

SAXPYT DAXPYI “SAXPYI, DAXPYI, CAXPYI, and ZAXPYI (Multiply a Sparse Vector X in|

CAXPYI ZAXPYI Compressed-Vector Storage Mode by a Scalar, Add to a Sparse Vector Y inl
Full-Vector Storage Mode, and Store in the Vector Y)” on page 291|

SDOTI* DDOTI “SDOTI, DDOTI, CDOTUL ZDOTUI, CDOTCI, and ZDOTCI (Dot Product of]

CDOTCI ZDOTCTI a Sparse Vector X in Compressed-Vector Storage Mode and a Sparse Vector Y|

CDOTUI ZDOTUT in Full-Vector Storage Mode)” on page 293

" This subprogram is invoked as a function in a Fortran program.

Matrix-Vector Linear Algebra Subprograms

The matrix-vector linear algebra subprograms operate on a higher-level data
structure—matrix-vector rather than vector-scalar—using optimized algorithms to
improve performance. These subprograms include a subset of the standard set of
Level 2 BLAS. For details on the Level 2 BLAS, see ||39 on page 1085|] and [|40 on|
. Both real and complex versions of the subprograms are provided.

Table 10. List of Matrix-Vector Linear Algebra Subprograms

Short-Precision

Long-Precision

Subprogram Subprogram Descriptive Name and Location

SGEMV™ DGEMV™ “SGEMV, DGEMV, CGEMV, ZGEMV, SGEMX, DGEMX, SGEMTX, and|
CGEMV™ ZGEMV™ DGEMTX (Matrix-Vector Product for a General Matrix, Its Transpose, or Its|
SGEMX$ DGEMXS Conjugate Transpose)” on page 296|

SGEMTX® DGEMTX®

SGER™ DGER* “SGER, DGER, CGERU, ZGERU, CGERC, and ZGERC (Rank-One Update of|
CGERU" ZGERU™" a General Matrix)” on page 306|

CGERC" ZGERC®

SSPMV™ DSPMV™ “SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, ZHEMV)|
CHPMV™ ZHPMV™ SSLMX, and DSLMX (Matrix-Vector Product for a Real Symmetric or]
SSYMV*™ DSYMV™ Complex Hermitian Matrix)” on page 313|

CHEMV* ZHEMV™

SSLMXS DSLMX®

SSPR* DSPR™ “SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER, SSLR1, and DSLR1|
CHPR*® ZHPR® (Rank-One Update of a Real Symmetric or Complex Hermitian Matrix)” onf
SSYR™ DSYR® [page 32Q|

CHER* ZHER®

SSLR1S DSLR1S

SSPR2* DSPR2" “SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2, SSLR2 |
CHPR2® ZHPR2® and DSLR2 (Rank-Two Update of a Real Symmetric or Complex Hermitian|
SSYR2" DSYR2" Matrix)” on page 327

CHER2* ZHER2®

SSLR2S DSLR2S
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Table 10. List of Matrix-Vector Linear Algebra Subprograms (continued)

Short-Precision

Long-Precision

Subprogram Subprogram Descriptive Name and Location

SGBMV™ DGBMV™ |“SGBMV, DGBMV, CGBMYV, and ZGBMV (Matrix-Vector Product for al

CGBMV™ ZGBMV™® |General Band Matrix, Its Transpose, or Its Conjugate Transpose)” on page|
335

SSBMV*™ DSBMV™ “SSBMV, DSBMV, CHBMV, and ZHBMV (Matrix-Vector Product for a Real|

CHBMV™ ZHBMV"™ Symmetric or Complex Hermitian Band Matrix)” on page 341|

STRMV*™ DTRMV* “STRMYV, DTRMV, CTRMV, ZTRMV, STPMV, DTPMV, CTPMYV, and ZTPMV|

CTRMV™ ZTRMV™ (Matrix-Vector Product for a Triangular Matrix, Its Transpose, or Its|

STPMV™ DTPMV*™ Conjugate Transpose)” on page 346

CTPMV™ ZTPMV*

STBMV™ DTBMV™ “STBMV, DTBMV, CTBMV, and ZTBMV (Matrix-Vector Product for 4]

CTBMV™ ZTBMV™ Triangular Band Matrix, Its Transpose, or Its Conjugate Transpose)” on page|

351

“Level 2 BLAS

§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new

programs.

Sparse Matrix-Vector Linear Algebra Subprograms

The sparse matrix-vector linear algebra subprograms operate on sparse matrices;
that is, only the nonzero elements of the matrix are stored. These subprograms
provide similar functions to the matrix-vector subprograms.

Table 11. List of Sparse Matrix-Vector Linear Algebra Subprograms

Long-Precision

Subprogram Descriptive Name and Location

DSMMX “DSMMX (Matrix-Vector Product for a Sparse Matrix in Compressed-Matrix Storage Mode)’|
on page 356

DSMTM |”DSMTM (Transpose a Sparse Matrix in Compressed-Matrix Storage Mode)” on page 359|

DSDMX “DSDMX (Matrix-Vector Product for a Sparse Matrix or Its Transpose in|

Compressed-Diagonal Storage Mode)” on page 362|

Matrix Operations

Some of the matrix operation subroutines were designed in accordance with the
Level 3 BLAS de facto standard. If these subroutines do not comply with the
standard as approved, IBM will consider updating them to do so. If IBM updates
these subroutines, the updates could require modifications of the calling
application program. For details on the Level 3 BLAS, see reference
. The matrix operation subroutines also include the commonly used matrix
operations: addition, subtraction, multiplication, and transposition.

Table 12. List of Matrix Operation Subroutines

Short-Precision

Long-Precision

Subroutine Subroutine Descriptive Name and Location

SGEADD DGEADD [“SGEADD, DGEADD, CGEADD, and ZGEADD (Matrix Addition for]
CGEADD ZGEADD |General Matrices or Their Transposes)” on page 370|

SGESUB DGESUB “SGESUB, DGESUB, CGESUB, and ZGESUB (Matrix Subtraction for General|
CGESUB ZGESUB Matrices or Their Transposes)” on page 375
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Table 12. List of Matrix Operation Subroutines (continued)

Short-Precision

Long-Precision

Subroutine Subroutine Descriptive Name and Location

SGEMUL DGEMUL “SGEMUL, DGEMUL, CGEMUL, and ZGEMUL (Matrix Multiplication for]

CGEMUL ZGEMUL General Matrices, Their Transposes, or Conjugate Transposes)” on page 381|

DGEMLPS

SGEMMS DGEMMS “SGEMMS, DGEMMS, CGEMMS, and ZGEMMS (Matrix Multiplication for|

CGEMMS ZGEMMS General Matrices, Their Transposes, or Conjugate Transposes Using]
Winograd's Variation of Strassen's Algorithm)” on page 390|

SGEMM* DGEMM* “SGEMM, DGEMM, CGEMM, and ZGEMM (Combined Matrix]|

CGEMM* ZGEMM* Multiplication and Addition for General Matrices, Their Transposes, o1
Conjugate Transposes)” on page 395

SSYMM* DSYMM* “SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, and ZHEMM|

CSYMM* ZSYMM* (Matrix-Matrix Product Where One Matrix is Real or Complex Symmetric orf

CHEMM®* ZHEMM* Complex Hermitian)” on page 402

STRMM* DTRMM* “STRMM, DTRMM, CTRMM, and ZTRMM (Triangular Matrix-Matrix|

CTRMM* ZTRMM* Product)” on page 409

SSYRK* DSYRK* “SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, and ZHERK (Rank-K Update of]

CSYRK* ZSYRK"* a Real or Complex Symmetric or a Complex Hermitian Matrix)” on page 416|

CHERK"* ZHERK"*

SSYR2K* DSYR2K* “SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, and ZHER2K (Rank-2K]

CSYR2K* ZSYR2K* Update of a Real or Complex Symmetric or a Complex Hermitian Matrix)”|

CHER2K* ZHER2K* on page 422]

SGETMI DGETMI “SGETMI, DGETMI, CGETMI, and ZGETMI (General Matrix Transpose|

CGETMI ZGETMI [In-Place])” on page 429

SGETMO DGETMO “SGETMO, DGETMO, CGETMO, and ZGETMO (General Matrix Transpose|

CGETMO ZGETMO [Out-of-Place])” on page 431]

* Level 3 BLAS

programs.

§ This subroutine is provided only for migration from earlier release of ESSL and is not intended for use in new

Linear Algebraic Equations

The linear algebraic equations consist of:

* |[“Dense Linear Algebraic Equations”]

+ |“Banded Linear Algebraic Equations” on page 18|

+ |“Sparse Linear Algebraic Equations” on page 19

* [“Linear Least Squares” on page 20|

Note: Some of the linear algebraic equations were designed in accordance with the
Level 2 BLAS, Level 3 BLAS, and LAPACK de facto standard. If these subprograms
do not comply with the standard as approved, IBM will consider updating them to
do so. If IBM updates these subprograms, the updates could require modifications

of the calling application program. For details on the Level 2 and 3 BLAS, see [37
8 on page 1083].

fon page 1085] and [39 on page 1087]]. For details on LAPACK, see |

Dense Linear Algebraic Equations

The dense linear algebraic equation subroutines provide solutions to linear systems
of equations for both real and complex general matrices and their transposes,
positive definite real symmetric and complex Hermitian matrices, real symmetric
indefinite matrices and triangular matrices. Some of these subroutines correspond
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to the Level 2 BLAS, Level 3 BLAS, and LAPACK routines described in references

37 on page 1085, [39 on page 1085, and [ on page 1083].

Table 13. List of Dense Linear Algebraic Equation Subroutines

Short-Precision

Long-Precision

Subroutine Subroutine Descriptive Name and Location

SGESV~ DGESV# “SGESV, DGESV, CGESV, ZGESV (General Matrix Factorization and Multiple]

CGESV~ ZGESV~ Right-Hand Side Solve)” on page 443

SGETRF” DGETRF” “SGETRF, DGETRF, CGETRF and ZGETRF (General Matrix Factorization)” on|

CGETRF* ZGETRF* page 447|

SGEF DGEF [“SGEF, DGEF, CGEF, and ZGEF (General Matrix Factorization)” on page 455

CGEF ZGEF

DGEFP*

SGETRS” DGETRS” “SGETRS, DGETRS, CGETRS, and ZGETRS (General Matrix Multiple]

CGETRS” ZGETRS” Right-Hand Side Solve)” on page 451|

SGESM DGESM “SGESM, DGESM, CGESM, and ZGESM (General Matrix, Its Transpose, or Its|

CGESM ZGESM Conjugate Transpose Multiple Right-Hand Side Solve)” on page 461|

SGES DGES “SGES, DGES, CGES, and ZGES (General Matrix, Its Transpose, or Its Conjugate]

CGES ZGES Transpose Solve)” on page 458

SGECON* DGECON* “SGECON, DGECON, CGECON, and ZGECON (Estimate the Reciprocal of the]

CGECON* ZGECON# Condition Number of a General Matrix)” on page 466|

SGEFCD DGEFCD “SGEFCD and DGEFCD (General Matrix Factorization, Condition Number]
Reciprocal, and Determinant)” on page 470|

SGETRI® DGETRI# “SGETRI, DGETRI, CGETRI, ZGETRI, SGEICD, and DGEICD (General Matrix

CGETRI# ZGETRI# Inverse, Condition Number Reciprocal, and Determinant)” on page 474

SGEICD DGEICD

SLANGE* DLANGE” “SLANGE, DLANGE, CLANGE, and ZLANGE (General Matrix Norm)” on page|

CLANGE” ZLANGE” 481

SPPSV~ DPPSV~ “SPPSV, DPPSV, CPPSV, and ZPPSV (Positive Definite Real Symmetric and)|

CPPSV~ ZPPSV4 Complex Hermitian Matrix Factorization and Multiple Right-Hand Side Solve)”|
on page 483|

SPOSV~ DPOSV~ “SPOSV, DPOSV, CPOSV, and ZPOSV (Positive Definite Real Symmetric or

CPOSV~ ZPOSV~ Complex Hermitian Matrix Factorization and Multiple Right-Hand Side Solve)”|
on page 489|

SPOTRF# DPOTRF* “SPOTRF, DPOTRF, CPOTRE, ZPOTRE, SPOF, DPOF, CPOF, ZPOF, SPPTRE)

CPOTRF” ZPOTRF* DPPTRE, CPPTRF, ZPPTRF, SPPF, and DPPF (Positive Definite Real Symmetrid

SPOF DPOF or Complex Hermitian Matrix Factorization)” on page 494|

CPOF ZPOF

SPPTRF* DPPTRF

CPPTRF* ZPPTRF”

SPPF DPPF

DPPFP$

SPOTRS” DPOTRS” “SPOTRS, DPOTRS, CPOTRS, ZPOTRS, SPOSM, DPOSM, CPOSM, ZPOSM |

CPOTRS* ZPOTRS” SPPTRS, DPPTRS, CPPTRS, and ZPPTRS (Positive Definite Real Symmetric or|

SPOSM DPOSM Complex Hermitian Matrix Multiple Right-Hand Side Solve)” on page 506|

CPOSM ZPOSM

SPPTRS” DPPTRS”

CPPTRS” ZPPTRS”

SPPS DPPS [“SPPS and DPPS (Positive Definite Real Symmetric Matrix Solve)” on page 513|

SPOCON* DPOCON* “SPOCON, DPOCON, CPOCON, ZPOCON, SPPCON, DPPCON, CPPCON, and|

CPOCON* ZPOCON* ZPPCON (Estimate the Reciprocal of the Condition Number of a Positive|

SPPCON* DPPCON* Definite Real Symmetric or Complex Hermitian Matrix)” on page 516|

CPPCON* ZPPCON*
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Table 13. List of Dense Linear Algebraic Equation Subroutines (continued)

Short-Precision

Long-Precision

Subroutine Subroutine Descriptive Name and Location
SPPFCD DPPFCD “SPPFCD, DPPFCD, SPOFCD, and DPOFCD (Positive Definite Real Symmetric|
SPOFCD DPOFCD Matrix Factorization, Condition Number Reciprocal, and Determinant)” on page
523
SPOTRI* DPOTRI* “SPOTRI, DPOTRI, CPOTRI, ZPOTRI, SPOICD, DPOICD, SPPTRI, DPPTRI)
CPOTRI* ZPOTRI# CPPTRI, ZPPTRI, SPPICD, and DPPICD (Positive Definite Real Symmetric o1
SPPTRI* DPPTRI* Complex Hermitian Matrix Inverse, Condition Number Reciprocal, and|
CPPTRI* ZPPTRI* Determinant)” on page 529
SPPICD DPPICD
SPOICD DPOICD
SLANSY? DLANSY% “SLANSY, DLANSY, CLANHE, ZLANHE, SLANSP, DLANSP, CLANHP, and|
CLANHE” ZLANHE” ZLANHP (Real Symmetric or Complex Hermitian Matrix Norm)” on page 540|
SLANSP DLANSP
CLANHP* ZLANHP?
DBSSV “DBSSV (Symmetric Indefinite Matrix Factorization and Multiple Right-Hand|
Side Solve)” on page 544
DBSTRF |"DBSTRF (Symmetric Indefinite Matrix Factorization)” on page 550
DBSTRS “DBSTRS (Symmetric Indefinite Matrix Multiple Right-Hand Side Solve)” on|
[page 554|
STRSV™® DTRSV* “STRSV, DTRSV, CTRSV, ZTRSV, STPSV, DTPSV, CTPSV, and ZTPSV (Solution of|
CTRSV* ZTRSV* a Triangular System of Equations with a Single Right-Hand Side)” on page 55|
STPSV* DTPSV*
CTPSV* ZTPSV*
STRSM* DTRSM* “STRSM, DTRSM, CTRSM, and ZTRSM (Solution of Triangular Systems of|
CTRSM"* ZTRSM"* Equations with Multiple Right-Hand Sides)” on page 563
STRTRI* DTRTRI* “STRTRI, DTRTRI, CTRTRI, ZTRTRI, STPTRI, DTPTRI, CTPTRI, and ZTPTR]|
CTRTRI# ZTRTRI# (Triangular Matrix Inverse)” on page 570)
STPTRI# DTPTRI®
CTPTRI® ZTPTRI®
STRI DTRE
STPIS DTPIS

“Level 2 BLAS
* Level 3 BLAS

54 LAPACK

§ This subroutine is provided for migration from earlier releases of ESSL and is not intended for use in new
programs. Documentation for this subroutine is no longer provided.

Banded Linear Algebraic Equations

The banded linear algebraic equation subroutines provide solutions to linear
systems of equations for real general band matrices, real positive definite
symmetric band matrices, real or complex general tridiagonal matrices, real
positive definite symmetric tridiagonal matrices, and real or complex triangular
band matrices.

Table 14. List of Banded Linear Algebraic Equation Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine

Descriptive Name and Location

SGBF

DGBF

|“SGBF and DGBF (General Band Matrix Factorization)” on page 57§
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Table 14. List of Banded Linear Algebraic Equation Subroutines (continued)

Short-Precision | Long-Precision

Subroutine Subroutine Descriptive Name and Location

SGBS DGBS |“SGBS and DGBS (General Band Matrix Solve)” on page 581

SPBF DPBF “SPBF, DPBF, SPBCHF, and DPBCHF (Positive Definite Symmetric Band|

SPBCHF DPBCHF Matrix Factorization)” on page 583

SPBS DPBS “SPBS, DPBS, SPBCHS, and DPBCHS (Positive Definite Symmetric Band|

SPBCHS DPBCHS Matrix Solve)” on page 586|

SGTF DGTF |“SGTF and DGTF (General Tridiagonal Matrix Factorization)” on page 588

SGTS DGTS [“SGTS and DGTS (General Tridiagonal Matrix Solve)” on page 591

SGTNP DGTNP |“SGTNP, DGTNP, CGTNP, and ZGTNP (General Tridiagonal Matrix|

CGTNP ZGTNP |Combined Factorization and Solve with No Pivoting)” on page 593

SGTNPF DGTNPF “SGTNPF, DGTNPF, CGTNPF, and ZGTNPF (General Tridiagonal Matrix|

CGTNPF ZGTNPF Factorization with No Pivoting)” on page 59

SGTNPS DGTNPS “SGTNPS, DGTNPS, CGTNPS, and ZGTNPS (General Tridiagonal Matrix|

CGTNPS ZGTNPS Solve with No Pivoting)” on page 598|

SPTF DPTF “SPTF and DPTF (Positive Definite Symmetric Tridiagonal Matriy
Factorization)” on page 600

SPTS DPTS “SPTS and DPTS (Positive Definite Symmetric Tridiagonal Matrix Solve)” on|
[page 602]

STBSV™ DTBSV* “STBSV, DTBSV, CTBSV, and ZTBSV (Triangular Band Equation Solve)” on|

CTBSV" ZTBSV* [page 604]

“Level 2 BLAS

Sparse Linear Algebraic Equations

The sparse linear algebraic equation subroutines provide direct and iterative
solutions to linear systems of equations both for general sparse matrices and their
transposes and for sparse symmetric matrices.

Table 15. List of Sparse Linear Algebraic Equation Subroutines

Long-Precision

Subroutine Descriptive Name and Location

DGSF ‘DGSF (General Sparse Matrix Factorization Using Storage by Indices, Rows, or Columns)”|
on page 602|

DGSS “DGSS (General Sparse Matrix or Its Transpose Solve Using Storage by Indices, Rows, o
Columns)” on page 615|

DGKFS "DGKEFS (General Sparse Matrix or Its Transpose Factorization, Determinant, and Solve|

DGKFSP$ Using Skyline Storage Mode)” on page 619|

DSKFS "DSKFS (Symmetric Sparse Matrix Factorization, Determinant, and Solve Using Skyline|

DSKFSP$ Storage Mode)” on page 636]

DSRIS ‘DSRIS (Iterative Linear System Solver for a General or Symmetric Sparse Matrix Stored by]|
Rows)” on page 653

DSMCG* ‘DSMCG (Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve|
Using Compressed-Matrix Storage Mode)” on page 663

DSDCG "DSDCG (Sparse Positive Definite or Negative Definite Symmetric Matrix Iterative Solve|
Using Compressed-Diagonal Storage Mode)” on page 671

DSMGCG?# "DSMGCG (General Sparse Matrix Iterative Solve Using Compressed-Matrix Storage Mode)”|

on page 67§|
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Table 15. List of Sparse Linear Algebraic Equation Subroutines (continued)

Long-Precision
Subroutine

Descriptive Name and Location

DSDGCG

‘DSDGCG (General Sparse Matrix Iterative Solve Using Compressed-Diagonal Storage]

Mode)” on page 685)|

§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new
programs. Documentation for this subroutine is no longer provided.

! This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new
programs. Use DSRIS instead.

Linear Least Squares
The linear least squares subroutines provide least squares solutions to linear
systems of equations for general matrices. Some of these subroutines correspond to

the LAPACK routines described in reference [|8 on page 1083].

Table 16. List of LAPACK-Conforming Linear Least Squares Subroutines

Short-Precision

Long-Precision

Subroutine Subroutine Descriptive Name and Location

SGEQRF* DGEQRF* “SGEQRF, DGEQRF, CGEQRF, and ZGEQRF (General Matrix QR|
CGEQRF* ZGEQRF* Factorization)” on page 691|

SGELS” DGELS” “SGELS, DGELS, CGELS, and ZGELS (Linear Least Squares Solution for a|
CGELS" ZGELS” General Matrix)” on page 69§

A LAPACK

Table 17. List of Non-LAPACK Linear Least Squares Subroutines

Short-Precision

Long-Precision

Subroutine Subroutine Descriptive Name and Location

SGESVF DGESVF “SGESVF and DGESVF (Singular Value Decomposition for a General
Matrix)” on page 706|

SGESVS DGESVS “SGESVS and DGESVS (Linear Least Squares Solution for a General Matrix|
Using the Singular Value Decomposition)” on page 713|

SGELLS DGELLS “SGELLS and DGELLS (Linear Least Squares Solution for a General Matrix|

with Column Pivoting)” on page 717]

Eigensystem Analysis

The eigensystem analysis subroutines provide solutions to the algebraic
eigensystem analysis problem and the generalized eigensystem analysis problem
(see the following table). Many of the eigensystem analysis subroutines use the
algorithms presented in Linear Algebra by Wilkinson and Reinsch

or use adaptations of EISPACK routines, as described in the EISPACK Guide
Lecture Notes in Computer Science in reference [96 on page 1088] or in the EISPACK
Guide Extension Lecture Notes in Computer Science in reference [65 on page 1087].
(EISPACK is available from the sources listed in reference [54 on page 1086]].)

Some of these subroutines correspond to the LAPACK routines described in

reference [[8 on page 1083].
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Table 18. List of LAPACK-Conforming Eigensystem Analysis Subroutines

Short-Precision

Long-Precision

Subroutine Subroutine Descriptive Name and Location

SGEEVX”® DGEEVX” “SGEEVX, DGEEVX, CGEEVX, and ZGEEVX (Eigenvalues and, Optionally)

CGEEVX~ ZGEEVX~" Right Figenvectors, Left Eigenvectors, Reciprocal Condition Numbers for]
Eigenvalues, and Reciprocal Condition Numbers for Right Eigenvectors of a|
General Matrix)” on page 726

SSPEVX~ DSPEVX” “SSPEVX, DSPEVX, CHPEVX, ZHPEVX, SSYEVX, DSYEVX, CHEEVX, and|

CHPEVX® ZHPEVX® ZHEEVX (Eigenvalues and, Optionally, the Eigenvectors of a Real Symmetrid

SSYEVX~ DSYEVX”* or Complex Hermitian Matrix)” on page 740|

CHEEVX” ZHEEVX”

DSYGVX~ “DSYGVX (Selected Eigenvalues and, Optionally, the Eigenvectors of af

Positive Definite Real Symmetric Generalized Eigenproblem)” on page 755

~ LAPACK

Table 19. List of Non-LAPACK-Conforming Eigensystem Analysis Subroutines

Short-Precision

Long-Precision

Subroutine Subroutine Descriptive Name and Location
SGEEV# DGEEV# “SGEEV, DGEEV, CGEEV, and ZGEEV (Eigenvalues and, Optionally, All o1
CGEEV# ZGEEV# Selected Eigenvectors of a General Matrix)” on page 764
“SSPEV, DSPEV, CHPEV, and ZHPEV (Eigenvalues and, Optionally, the|
SSPEV# DSPEV# Eigenvectors of a Real Symmetric Matrix or a Complex Hermitian Matrix)”|
CHPEV# ZHPEV# on page 774
“SSPSV, DSPSV, CHPSV, and ZHPSV (Extreme Eigenvalues and, Optionally,|
SSPSV& DSPSV# the Eigenvectors of a Real Symmetric Matrix or a Complex Hermitian|
CHPSV# ZHPSVS Matrix)” on page 782|
SGEGV¢ DGEGV¢ “SGEGV and DGEGV (Eigenvalues and, Optionally, the Eigenvectors of a
Generalized Real Eigensystem, Az=wBz, where A and B Are Real Genera
Matrices)” on page 789
SSYGV¢ DSYGV¢ “SSYGV and DSYGV (Eigenvalues and, Optionally, the Eigenvectors of al

Real Symmetric Generalized Eigenproblem)” on page 795|

‘Not LAPACK. Although this subroutine has the same name as an existing LAPACK subroutine, its calling-sequence
arguments and functionality are different from that LAPACK subroutine. ESSL 5.1 is the last release to support these

subroutines.

§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new

programs.

Fourier Transforms, Convolutions and Correlations, and
Related Computations

This signal processing area provides:

* Fourier transform subroutines

* Convolution and correlation subroutines
* Related-computation subroutines

Fourier Transforms
The Fourier transform subroutines perform mixed-radix transforms in one, two,
and three dimensions.
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Table 20. List of Fourier Transform Subroutines

Short-Precision

Long-Precision

Subroutine Subroutine Descriptive Name and Location

SCFTD DCFTD “SCFTD and DCFTD (Multidimensional Complex Fourier Transform)” on|
[page 81Q|

SRCFTD DRCFTD “SRCFTD and DRCFTD (Multidimensional Real-to-Complex Fourie]
Transform)” on page 818|

SCRFTD DCRFTD “SCRFTD and DCRFTD (Multidimensional Complex-to-Real Fourier]
Transform)” on page 826

SCFT® DCFT® [“SCFT and DCFT (Complex Fourier Transform)” on page 834

SCFTPS, NP

SRCFTS DRCFT$ |“SRCFT and DRCFT (Real-to-Complex Fourier Transform)” on page 842|

SCRFTS® DCREFTS [“SCRFT and DCRFT (Complex-to-Real Fourier Transform)” on page 849

SCOSF DCOSF |“SCOSF and DCOSF (Cosine Transform)” on page 857

SCOSFTS, NP

SSINF DSINF |“SSINF and DSINF (Sine Transform)” on page 865

SCFT2S DCFT28 “SCFT2 and DCFT2 (Complex Fourier Transform in Two Dimensions)” on]

SCFT2pPs, NP page 872

SRCFT2S DRCFT28 “SRCFT2 and DRCFT2 (Real-to-Complex Fourier Transform in Two|
Dimensions)” on page 879|

SCRFT2S DCRFT28 “SCRFT2 and DCRFT2 (Complex-to-Real Fourier Transform in Two|
Dimensions)” on page 886|

SCFT3¢ DCFT38 “SCFT3 and DCFT3 (Complex Fourier Transform in Three Dimensions)” on|

SCFT3Ps, NP [page 893

SRCFT38 DRCFT38 “SRCFT3 and DRCFT3 (Real-to-Complex Fourier Transform in Three|
Dimensions)” on page 899

SCRFT3S DCRFT3$ “SCRFT3 and DCRFT3 (Complex-to-Real Fourier Transform in Three|

Dimensions)” on page 906|

§ This subroutine is provided only for migration from earlier releases of ESSL and is not intended for use in new

programs.

NP Documentation for this subroutine is no longer provided.

Convolutions and Correlations

The convolution and correlation subroutines provide the choice of using Fourier
methods or direct methods. The Fourier-method subroutines contain a
high-performance mixed-radix capability. There are also several direct-method
subroutines that provide decimated output.

Table 21. List of Convolution and Correlation Subroutines

Short-Precision

Long-Precision

Subroutine Subroutine Descriptive Name and Location

SCONS “SCON and SCOR (Convolution or Correlation of One Sequence with One or]
SCORS More Sequences)” on page 912|

SCOND “SCOND and SCORD (Convolution or Correlation of One Sequence with|
SCORD Another Sequence Using a Direct Method)” on page 918|

SCONF “SCONF and SCORF (Convolution or Correlation of One Sequence with One]
SCORF or More Sequences Using the Mixed-Radix Fourier Method)” on page 924
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Table 21. List of Convolution and Correlation Subroutines (continued)

Short-Precision

Long-Precision

Subroutine Subroutine Descriptive Name and Location

SDCON DDCON “SDCON, DDCON, SDCOR, and DDCOR (Convolution or Correlation with|
SDCOR DDCOR Decimated Output Using a Direct Method)” on page 933

SACORS |“SACOR (Autocorrelation of One or More Sequences)” on page 937
SACORF “SACORF (Autocorrelation of One or More Sequences Using the]

Mixed-Radix Fourier Method)” on page 940|

$ These subroutines are provided only for migration from earlier releases of ESSL and are not intended for use in

new programs.

Related Computations

The related-computation subroutines consist of a group of computations that can
be used in general signal processing applications. They are similar to those
provided on the IBM 3838 Array Processor; however, the ESSL subroutines
generally solve a wider range of problems.

Table 22. List of Related-Computation Subroutines

Short-Precision

Long-Precision

Subroutine Subroutine Descriptive Name and Location

SPOLY DPOLY [“SPOLY and DPOLY (Polynomial Evaluation)” on page 944

SIZC DIZC [“S1ZC and DIZC (I-th Zero Crossing)” on page 948|

STREC DTREC [“STREC and DTREC (Time-Varying Recursive Filter)” on page 951|
SQINT DQINT [“SOINT and DQINT (Quadratic Interpolation)” on page 953|
SWLEV DWLEV “SWLEV, DWLEV, CWLEV, and ZWLEV (Wiener-Levinson Filterl
CWLEV ZWLEV Coefficients)” on page 957

Sorting and Searching

The sorting and searching subroutines operate on three types of data: integer,
short-precision real, and long-precision real. The sorting subroutines perform sorts
with or without index designations. The searching subroutines perform either a
binary or sequential search.

Table 23. List of Sorting and Searching Subroutines

Integer
Subroutine

Short-Precision
Subroutine

Long-Precision

Subroutine Descriptive Name and Location

ISORT

SSORT

“ISORT, SSORT, and DSORT (Sort the Elements of a|
Sequence)” on page 964|

DSORT

ISORTX

SSORTX

“ISORTX, SSORTX, and DSORTX (Sort the Elements of al
Sequence and Note the Original Element Positions)” on|

[page 965|

DSORTX

ISORTS

SSORTS

“ISORTS, SSORTS, and DSORTS (Sort the Elements of al
Sequence Using a Stable Sort and Note the Originall
Element Positions)” on page 968

DSORTS

IBSRCH

SBSRCH

“IBSRCH, SBSRCH, and DBSRCH (Binary Search for]
Elements of a Sequence X in a Sorted Sequence Y)” onl

[page 971|

DBSRCH

ISSRCH

SSSRCH

“ISSRCH, SSSRCH, and DSSRCH (Sequential Search for|
Elements of a Sequence X in the Sequence Y)” on pagd
975

DSSRCH
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Interpolation
The interpolation subroutines provide the capabilities of doing polynomial
interpolation, local polynomial interpolation, and both one- and two-dimensional
cubic spline interpolation (Table 24).

Table 24. List of Interpolation Subroutines

Short-Precision

Long-Precision

Subroutine Subroutine Descriptive Name and Location

SPINT DPINT [“SPINT and DPINT (Polynomial Interpolation)” on page 980|

STPINT DTPINT [“STPINT and DTPINT (Local Polynomial Interpolation)” on page 984
SCSINT DCSINT [“SCSINT and DCSINT (Cubic Spline Interpolation)” on page 987
SCSIN2 DCSIN2 “SCSIN2 and DCSIN?2 (Two-Dimensional Cubic Spline Interpolation)” on|

[page 992|

Numerical Quadrature

The numerical quadrature subroutines provide Gaussian quadrature methods for
integrating a tabulated function and a user-supplied function over a finite,
semi-infinite, or infinite region of integration.

Table 25. List of Numerical Quadrature Subroutines

Short-Precision

Long-Precision

Subroutine Subroutine Descriptive Name and Location

SPTNQ DPTNQ “SPTNQ and DPTNQ (Numerical Quadrature Performed on a Set of Points)”|
on page 999|

SGLNQ' DGLNQ! “SGLNQ and DGLNQ (Numerical Quadrature Performed on a Function|
Using Gauss-Legendre Quadrature)” on page 1001

SGLNQ2' DGLNQ2* “SGLNQ2 and DGLNQ2 (Numerical Quadrature Performed on a Function|
Over a Rectangle Using Two-Dimensional Gauss-Legendre Quadrature)” onl
[page 1003|

SGLGQ! DGLGQ' “SGLGQ and DGLGQ (Numerical Quadrature Performed on a Function|
Using Gauss-Laguerre Quadrature)” on page 1009|

SGRAQ' DGRAQ! “SGRAQ and DGRAQ (Numerical Quadrature Performed on a Function|
Using Gauss-Rational Quadrature)” on page 1012|

SGHMQ' DGHMQ' “SGHMQ and DGHMQ (Numerical Quadrature Performed on a Function|

Using Gauss-Hermite Quadrature)” on page 1015|

" This subprogram is invoked as a function in a Fortran program.

Random Number Generation

Random number generation subroutines generate uniformly distributed random
numbers or normally distributed random numbers.

Table 26. List of Random Number Generation Subroutines

Short-Precision
Subroutine

Long-Precision
Subroutine

Descriptive Name and Location

SURAND

DURAND

“SURAND and DURAND (Generate a Vector of Uniformly Distributed|

Random Numbers)” on page 1019|
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Table 26. List of Random Number Generation Subroutines (continued)

Short-Precision | Long-Precision

Subroutine Subroutine Descriptive Name and Location

SNRAND DNRAND “SNRAND and DNRAND (Generate a Vector of Normally Distributed|
Random Numbers)” on page 1022|

SURXOR DURXOR “SURXOR and DURXOR (Generate a Vector of Long Period Uniformly|
Distributed Random Numbers)” on page 1025|

Utilities

The utility subroutines perform general service functions that support ESSL, rather
than mathematical computations.

Table 27. List of Utility Subroutines

Subroutine Descriptive Name and Location

EINFO [“EINFO (ESSL Error Information-Handler Subroutine)” on page 1030

ERRSAV ["ERRSAV (ESSL ERRSAV Subroutine)” on page 1032|

ERRSET [“ERRSET (ESSL ERRSET Subroutine)” on page 1033

ERRSTR [“ERRSTR (ESSL ERRSTR Subroutine)” on page 1035|

IVSSETS Set the Vector Section Size (VSS) for the ESSL/370 Scalar Library

IEVOPS® Set the Extended Vector Operations Indicator for the ESSL/370 Scalar Library

IESSL ["IESSL (Determine the Level of ESSL Installed)” on page 1035|

STRIDE “STRIDE (Determine the Stride Value for Optimal Performance in Specified Fourier Transform|
Subroutines)” on page 1036|

DSRSM “DSRSM (Convert a Sparse Matrix from Storage-by-Rows to Compressed-Matrix Storage Mode)”|
on page 1052

DGKTRN “DGKTRN (For a General Sparse Matrix, Convert Between Diagonal-Out and Profile-In Skyline|
Storage Mode)” on page 1055

DSKTRN “DSKTRN (For a Symmetric Sparse Matrix, Convert Between Diagonal-Out and Profile-In|

Skyline Storage Mode)” on page 1060|

§ This subroutine is provided for migration from earlier releases of ESSL and is not intended for use in new
programs. Documentation for this subroutine is no longer provided.
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Chapter 2. Planning Your Program

Planning your ESSL program involves several tasks.

* [“Selecting an ESSL Subroutine”|

* |“Avoiding Conflicts with Internal ESSL Routine Names That are Exported” on|
page 44|

» [“Setting Up Your Data” on page 44|

* [“Setting Up Your ESSL Calling Sequences” on page 46|

* ["Using Auxiliary Storage in ESSL” on page 47

* [‘Providing a Correct Transform Length to ESSL” on page 54|

. "’Getting the Best Accuracy” on page 59

« |“Getting the Best Performance” on page 61|

+ |[“Dealing with Errors when Using ESSL” on page 63

Selecting an ESSL Subroutine

Your choice of which ESSL subroutine to use is based mainly on the functional
needs of your program. However, you have a choice of several variations of many
of the subroutines. In addition, there are instances where certain subroutines
cannot be used.

What ESSL Library Do You Want to Use?

ESSL provides serial and SMP libraries, as described here. (For additional details
about using these libraries, see |Chapter 4, “Coding Your Program,” on page 123
and [Chapter 5, “Processing Your Program,” on page 175.)

Serial and SMP Libraries Provided by ESSL

ESSL provides the following serial libraries:

* ESSL Serial Libraries, which support the following environments:
— 32-bit integer, 32-bit pointer environment
— 32-bit integer, 64-bit pointer environment
— 64-bit integer, 64-bit pointer environment

* ESSL Blue Gene Serial Library, which supports only the 32-bit integer, 64-bit
pointer environment

These serial libraries provide thread-safe versions of the ESSL subroutines. You
may choose to use these libraries if you decide to develop your own multithreaded
programs that call the thread-safe ESSL subroutines.

ESSL also provides the following SMP libraries:

* ESSL SMP Libraries, which support the following environments:
— 32-bit integer, 32-bit pointer environment
— 32-bit integer, 64-bit pointer environment
— 64-bit integer, 64-bit pointer environment

* ESSL Blue Gene SMP Library, which supports only the 32-bit integer, 64-bit
pointer environment

© Copyright IBM Corp. 1986, 2012 27



These SMP libraries provide thread-safe versions of the ESSL subroutines, and in
addition, a subset of these subroutines are also multithreaded versions; that is, they
support the shared memory parallel processing programming model.

The number of threads you choose to use depends on the problem size, the specific
subroutine being called, and the number of physical processors you are running
on. To achieve optimal performance, experimentation is necessary; however,
picking the number of threads equal to the number of online processors generally
provides good performance in most cases. In a few cases, performance may
increase if you choose the number of threads to be less than the number of online
processors. The maximum number of threads supported by ESSL is 128.

You do not have to change your existing application programs that call ESSL to
take advantage of the increased performance of using the SMP processors; you can
simply re-link your existing application programs.

The multithreaded subroutines in the ESSL SMP Libraries and the ESSL Blue Gene
SMP Library are listed in[“Multithreaded Subroutines in the SMP Libraries|
[Provided by ESSL” on page 37.|

Use of SIMD Algorithms by Some Subroutines in the Libraries
Provided by ESSL

Some of the subroutines in the libraries provided by ESSL use SIMD algorithms, as
explained in the following sections.

The ESSL Serial Libraries and SIMD Algorithms on POWER7
VSX-Enabled Processors

A subset of the subroutines in the ESSL Serial Libraries use SIMD algorithms that
utilize the VSX unit on POWER?7. These subroutines need to use the vector load
and store instructions to effectively utilize the VSX unit. Alignment requirements
for the SIMD algorithms are described in [Table 28| and [Table 29 on page 29}

See [Table 30 on page 30| for a list of the ESSL subroutines that automatically use
SIMD algorithms when the appropriate alignment restrictions (as described in
[Table 2§ and [Table 29 on page 29) are met.

Note: For Fourier Transform and Fourier Method Convolution and Correlation
subroutines, if you choose to have ESSL calculate the size of auxiliary storage (see
“Who Do You Want to Calculate the Size of Auxiliary Storage? You or ESSL?” on|
page 49), you must pass all array arguments with the same alignment as those
passed during the initialization and computation calls. Because of this, it is
recommended that you use the processor-independent formulas.

Table 28. VSX Alignment Requirements for SIMD Algorithms in Linear Algebra Subroutines

Vector and Matrix
Data Type Alignment Vector Stride Leading Dimensions
Long-precision real Quadword and Varies depending on the type of subroutine: Any
doubleword .
1 For vector-scalar linear algebra
subroutines
Any For matrix-vector linear algebra
subprograms
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Table 28. VSX Alignment Requirements for SIMD Algorithms in Linear Algebra Subroutines (continued)

Vector and Matrix

Data Type Alignment Vector Stride Leading Dimensions
Short-precision real | Doubleword and Varies depending on the type of subroutine: | Any
singleword 1 For vector-scalar linear algebra
subroutines
Any For matrix-vector linear algebra
subprograms
Long-precision Quadword Any Any
complex
Short-precision Doubleword Varies depending on the type of subroutine: Any
complex 1 For vector-scalar linear algebra
subroutines
Any For matrix-vector linear algebra
subprograms
Note:

1. As long as the alignment requirements described in this table are met, you do not have to change your existing
application programs that call ESSL to take advantage of the increased performance produced by the SIMD
subroutines. However, you will obtain optimal performance for these subroutines when the following additional

conditions are met:

* Vectors and matrices are quadword aligned.

* LDAs are multiples of 2 for real long-precision matrices.

* LDAs are multiples of 4 for real short-precision matrices.

* LDAs are multiples of 2 for complex short-precision matrices.

e Stride is 1 for vectors.

2. If the alignment restrictions in the table are not met, in some cases attention message 2610 will be issued. The
default behavior for message 2610 is for the message to be suppressed. To change the default behavior, see

[“ERRSET (ESSL ERRSET Subroutine)” on page 1033

Table 29. VSX Alignment Requirements for SIMD Algorithms in Fourier Transform Subroutines and Convolution and

Correlation Subroutines

Data Type

Vector and Matrix
Alignment

Stride Between Elements
Within Sequence

Stride Between Sequences

Long-precision real

Quadword (see Notes |1 onl
lpage 30|and P on page 30)

1 (see Note |3 on page 30|D

Multiple of 2 (see Note E

on page 3

Short-precision real

Doubleword

1 (see Note |3 on page 30|D

Multiple of 4 (see Note E

|0n page 3{])

Long-precision complex

Quadword

Any

Any

Short-precision complex

Doubleword

1

Multiple of 2 (see Note E
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Table 29. VSX Alignment Requirements for SIMD Algorithms in Fourier Transform Subroutines and Convolution and
Correlation Subroutines (continued)

Vector and Matrix Stride Between Elements
Data Type Alignment Within Sequence Stride Between Sequences

Notes:
1. AUXI1 must be aligned on a quadword boundary.
2. AUX and AUX2 must either be aligned on a quadword boundary or dynamically allocated.

3. For _COSF and _SINFE, the stride between elements within a sequence and the stride between sequences can
have any value.

4. As long as the alignment requirements described in this table are met, you do not have to change your existing
application programs that call ESSL to take advantage of the increased performance produced by the SIMD
subroutines. However, some subroutines require separate calls for initialization and computation, and it can
occur that the alignment of an array meets the requirements during initialization but does not meet the
requirements during computation. When this happens, in some cases one of the following happens:

* Error 2152 will be issued and your program will terminate. If you want your program to continue processing,
use ERRSET with an ESSL error exit routine, ENOTRM, to make error 2152 recoverable

* Error 2211 will be issued and your program will terminate

5. If the alignment restrictions in this table are not met, in some cases one or more of the following attention
messages will be issued:
* 2610
o 2611
° 2612

The default behavior for these messages is to be suppressed. To change the default behavior, see ["ERRSET (ESSL
[ERRSET Subroutine)” on page 1033.|

Table 30. ESSL Serial Library Subroutines that Automatically Use SIMD Algorithms When Alignment Restrictions are
Met on VSX-enabled Processors

Subroutine Names

Vector-Scalar Linear Algebra Subprograms (See :

ISAMAX, IDAMAX, ICAMAX, IZAMAX

ISAMIN, IDAMIN

ISMAX, IDMAX

ISMIN, IDMIN

SASUM, DASUM, SCASUM, DZASUM

SAXPY, DAXPY, CAXPY, ZAXPY

SCOPY, DCOPY, CCOPY, ZCOPY

SDOT, DDOT, CDOTU, ZDOTU, CDOTC, ZDOTC
DNRM?2, DZNRM2

DNORM?2, ZNORM2

SROT, DROT, CROT, ZROT, CSROT, ZDROT
SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, ZDSCAL
SSWAP, DSWAP, CSWAP, ZSWAP

SVEA, DVEA, CVEA, ZVEA

SVES, DVES, CVES, ZVES

SVEM, DVEM, CVEM

SYAX, DYAX, CYAX, ZYAX, CSYAX, ZDYAX
SZAXPY, DZAXPY, CZAXPY, ZZAXPY
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Table 30. ESSL Serial Library Subroutines that Automatically Use SIMD Algorithms When Alignment Restrictions are
Met on VSX-enabled Processors (continued)

Subroutine Names

Matrix-Vector Linear Algebra Subprograms (See :

SGEMV, DGEMV, CGEMYV, ZGEMV

SGER, DGER, CGERU, ZGERU, CGERC, ZGERC

SSPMV, DSPMV, CHPMV, ZHPMV, SSYMV, DSYMV, CHEMV, ZHEMV
SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER

SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2
STRMV, DTRMV, CTRMYV, ZTRMV

STPMV, DTPMV, CTPMV, ZTPMV

Matrix Operations (See :

SGEMUL, DGEMUL, CGEMUL, ZGEMUL

SGEMM, DGEMM, CGEMM, ZGEMM

SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, ZHEMM
STRMM, DTRMM, CTRMM, ZTRMM

SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, ZHERK
SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, ZHER2K
SGETMI, DGETMI, CGETMI, ZGETMI

SGETMO, DGETMO, CGETMO, ZGETMO

Dense Linear Algebraic Equations:

STRSV, DTRSV, CTRSV, ZTRSY,
STPSV, DTPSV, CTPSV, ZTPSV
STRSM, DTRSM, CTRSM, ZTRSM

Fourier Transforms:

SCFTD, DCFTD
SRCFTD, DRCFTD
SCRFTD, DCRFTD
SCFT, DCFT
SRCFT, DRCFT
SCRFT, DCRFT
SCOSF, DCOSF
SSINE, DSINF
SCFT2, DCFT2
SRCFT2, DRCFT2
SCRFT2, DCRFT2
SCFT3, DCFT3
SRCFT3, DRCFT3
SCRFT3, DCRFT3

Convolutions and Correlations:

SCONE, SCORF, SACORF

Note: Many of the dense linear algebraic equations and eigensystem analysis subroutines make one or more calls to
the vector-scalar, matrix-vector linear algebra, and matrix operation subroutines listed in this table, and therefore
they indirectly use SIMD algorithms.

The ESSL Serial Libraries and SIMD Algorithms on POWER 6
AltiVec-Enabled Processors

A subset of the subroutines in the ESSL Serial Libraries use SIMD algorithms that
use the AltiVec unit on certain processors for short-precision real and
short-precision complex subroutines. These subroutines need to use the vector load
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and store instructions to use the AltiVec unit effectively. Alignment requirements
for the SIMD algorithms are described in [Table 31| and |Table 32}

See [Table 33 on page 33| for a list of the ESSL subroutines that automatically use
SIMD algorithms when the appropriate alignment restrictions (as described in
[Table 31| and [Table 32) are met.

Note: For Fourier Transform and Fourier Method Convolution and Correlation
subroutines, if you choose to have ESSL calculate the size of auxiliary storage (see
“Who Do You Want to Calculate the Size of Auxiliary Storage? You or ESSL?” on|
page 49), you must pass all array arguments with the same alignment as those
passed during the initialization and computation calls. Because of this, it is
recommended that you use the processor-independent formulas.

Table 31. AltiVec-Enabled Processor Alignment Restrictions for SIMD Algorithms in Linear Algebra Subroutines

Vector and Matrix

Data Type Alignment Vector Stride Leading Dimensions
Short-precision real | Singleword Varies depending on the type of subroutine: Any
1 For vector-scalar linear algebra
subroutines
Any For matrix-vector linear algebra
subprograms
Short-precision Doubleword Varies depending on the type of subroutine: | Any
1
complex 1 For vector-scalar linear algebra
subroutines
Any For matrix-vector linear algebra
subprograms
Note:

1.

As long as the alignment requirements described in this table are met, you do not have to change your existing
application programs that call ESSL to take advantage of the increased performance produced by the
AltiVec-enabled subroutines. However, you will obtain optimal performance for these subroutines when the
following additional conditions are met:

* Vectors and matrices are quadword aligned.

¢ LDAs are multiples of 4 for real matrices.

¢ LDAs are multiples of 2 for complex matrices.
* Stride is 1 for real and complex vectors.

If the alignment restrictions in the table are not met, in some cases attention message 2610 will be issued. The
default behavior for message 2610 is for the message to be suppressed. To change the default behavior, see
["ERRSET (ESSL ERRSET Subroutine)” on page 1033

Table 32. AltiVec-Enabled Processor Alignment Restrictions for SIMD Algorithms in Fourier Transform and Fourier
Method Convolution and Correlation Subroutines

Vector and Matrix

Stride Between Elements

[page 33|and |2 on page 33)

Data Type Alignment Within Sequence Stride Between Sequences
Short-precision real Quadword 1 (see Note |3 on page 33|D Multiple of 4 (see Note E
[on page 33)
Short-precision complex Quadword 1 Multiple of 2 (see Note E
Long-precision real Quadword (see Notes[l on] |1 Not applicable
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Table 32. AltiVec-Enabled Processor Alignment Restrictions for SIMD Algorithms in Fourier Transform and Fourier
Method Convolution and Correlation Subroutines (continued)

Vector and Matrix Stride Between Elements
Data Type Alignment Within Sequence Stride Between Sequences

Note:
1. AUX1 must be aligned on a quadword boundary.
2. AUX and AUX2 must either be aligned on a quadword boundary or dynamically allocated.

3. For SCOSF and SSINF, the stride between elements within a sequence and the stride between sequences can
have any value.

4. As long as the alignment requirements described in this table are met, you do not have to change your existing
application programs that call ESSL to take advantage of the increased performance produced by the
AltiVec-enabled subroutines. However, some subroutines require separate calls for initialization and
computation, and it can occur that the alignment of an array meets the requirements during initialization but
does not meet the requirements during computation. When this happens, in some cases error 2211 will be issued
and your program will terminate.

5. If the alignment restrictions in the table are not met, one or more of the following attention messages will be
issued:
* 2610
e 2611
* 2612

The default behavior for these messages is to be suppressed. To change the default behavior, see ['"ERRSET (ESSL
[ERRSET Subroutine)” on page 1033.]

Table 33. ESSL Serial Library Subroutines that Automatically Use SIMD Algorithms When Alignment Restrictions are
Met on AltiVec-Enabled Processors

Subroutine Names

Vector-Scalar Linear Algebra Subprogram

ISAMAX, ICAMAX
ISAMIN

ISMAX

ISMIN

SASUM, SCASUM
SAXPY

SDOT, CDOTU, CDOTC
SROT, CROT, CSROT
SSCAL, CSCAL, CSSCAL
SSWAP, CSWAP

SVEA, CVEA

SVES, CVES

SVEM,

SYAX, CYAX, CSYAX
SZAXPY, CZAXPY

Matrix-Vector Linear Algebra Subprogram

SGER, CGERU, CGERC
SSPMV, SSYMV

SSPR, CHPR, SSYR, CHER
SSPR2, CHPR2, SSYR2, CHER2

Matrix Operation

SGEADD, CGEADD
SGESUB, CGESUB
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Table 33. ESSL Serial Library Subroutines that Automatically Use SIMD Algorithms When Alignment Restrictions are
Met on AltiVec-Enabled Processors (continued)

Subroutine Names

Fourier Transforms:

SCFTD
SRCFTD
SCRFTD
SCFT
SRCFT
SCRFT
SCOSF
SSINF
SCFT2
SRCFT2
SCRFT2
SCFT3
SRCFT3
SCRFT3

Convolutions and Correlations:

SCONEF, SCORF
SACORF

Note:

1. Many of the dense linear algebraic equations and eigensystem analysis subroutines make one or more calls to
the vector-scalar, matrix-vector linear algebra, and matrix operation subroutines listed in this table, and therefore
they indirectly use SIMD algorithms.

The ESSL Blue Gene Serial Library and SIMD Algorithms on Blue
Gene

A subset of the subroutines in the ESSL Blue Gene Serial Library use SIMD
algorithms that utilize the PowerPC (A2 Core) 4-way SIMD QPX FPUs. These
SIMD algorithms need to use the QPX load and store instructions to effectively
utilize the QPX FPUs.

Alignment requirements for the SIMD algorithms are described in [Table 34| and
[Table 35 on page 35

See [Table 36 on page 36| for a list of the subroutines in the ESSL Blue Gene Serial
Library that automatically use SIMD algorithms when the appropriate alignment
requirements (as described in [Table 34 and [Table 35 on page 35) are met.

Table 34. Blue Gene Alignment Requirements for SIMD Algorithms in Linear Algebra Subroutines

Vector and Matrix

Alignment Leading Dimensions
Data Type | Minimum Optimal | Vector Stride Minimum  Optimal
Long- 8-byte 32-byte Varies depending on the type of subroutine: Any Multiple
I;;:lc ision 1 or-1 For vector-scalar linear algebra subroutines of 4
Any For matrix-vector linear algebra subprograms
Short- 4-byte 16-byte Varies depending on the type of subroutine: Any Multiple
I;Z:f ision 1 or-1 For vector-scalar linear algebra subroutines of 4

Any For matrix-vector linear algebra subprograms
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Table 34. Blue Gene Alignment Requirements for SIMD Algorithms in Linear Algebra Subroutines (continued)

Vector and Matrix

Alignment Leading Dimensions
Data Type | Minimum Optimal | Vector Stride Minimum Optimal
Long- 16-byte 32-byte Any Any Multiple
precision of 2
complex
Short- 8-byte 16-byte Any Any Multiple
precision of 2
complex
Note:
1. As long as the alignment requirements described in this table are met, you do not have to change your existing

application programs that call ESSL to take advantage of the increased performance produced by the SIMD
subroutines.

If the alignment restrictions in this table are not met, in some cases attention message 2610 will be issued. The
default behavior for message 2610 is for the message to be suppressed. To change the default behavior, see
FFERRSET (ESSL ERRSET Subroutine)” on page 1033)

Table 35. Blue Gene Alignment Requirements for SIMD Algorithms in Fourier Transform Subroutines and Convolution
and Correlation Subroutines

Stride Between Elements
Data Type Sequence Alignment Within Sequence Stride Between Sequences
Long-precision real (see 32-byte 1 (see Note EI) Multiple of 4 (see Note
Note
Short-precision real 16-byte 1 (see Note EI) Multiple of 4 (see Note
Long-precision complex 32-byte 1 Multiple of 2
Short-precision complex 16-byte 1 Multiple of 2

Note:

1.
2.
have any value.
3.
subroutines.
error 2152 recoverable.
4.

In addition, AUX and AUX2 must either be aligned on a 32-byte boundary or dynamically allocated.

For _COSF and _SINF, the stride between elements within a sequence and the stride between sequences can

As long as the alignment requirements described in this table are met, you do not have to change your existing
application programs that call ESSL to take advantage of the increased performance produced by the SIMD

However, some subroutines require separate calls for initialization and computation, and it can occur that the
alignment of an array meets the requirements during initialization but does not meet the requirements during
computation. When this happens, in some cases error 2152 will be issued and your program will terminate. If
you want your program to continue processing, use ERRSET with an ESSL error exit routine, ENOTRM, to make

If the alignment restrictions in this table are not met, in some cases one or both of the following attention
messages will be issued:

* 2610
e 2611

The default behavior for these messages is for the message to be suppressed. To change the default behavior, see
[“ERRSET (ESSL ERRSET Subroutine)” on page 1033
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Table 36. ESSL Blue Gene Serial Library Subroutines that Automatically Use SIMD Algorithms When Alignment
Restrictions are Met

Subroutine Name

Vector-Scalar Linear Algebra Subprograms (see :

ISAMAX, IDAMAX, ICAMAX, IZAMAX

ISAMIN, IDAMIN

ISMAX, IDMAX

ISMIN, IDMIN

SASUM, DASUM, SCASUM, DZASUM

SAXPY, DAXPY, CAXPY, ZAXPY

SCOPY, DCOPY, CCOPY, ZCOPY

SDOT, DDOT, CDOTU, ZzDOTU, CDOTC, ZDOTC
SNRM2, DNRM2, SCNRM2, DZNRM2

SNORM2, DNORM?2, CNORM?2, ZNORM2

SROT, DROT, CROT, ZROT, CSROT, ZDROT
SSCAL, DSCAL, CSCAL, ZSCAL, CSSCAL, ZDSCAL
SSWAP, DSWAP, CSWAP, ZSWAP

SVEA, DVEA, CVEA, ZVEA

SVES, DVES, CVES, ZVES

SVEM, DVEM, CVEM, ZVEM

SYAX, DYAX, CYAX, ZYAX, CSYAX, ZDYAX
SZAXPY, DZAXPY, CZAXPY, ZZAXPY

Matrix-Vector Linear Algebra Subprograms (see :

SGEMV, DGEMV, CGEMV, ZGEMV

SGER, DGER, CGERU, ZGERU, CGERC, ZGERC

SSPMV, DSPMV, CHPMV, ZHPMYV, SSYMV, DSYMV, CHEMV, ZHEMV
SSPR, DSPR, CHPR, ZHPR, SSYR, DSYR, CHER, ZHER

SSPR2, DSPR2, CHPR2, ZHPR2, SSYR2, DSYR2, CHER2, ZHER2
STRMYV, DTRMV, CTRMV, ZTRMYV, STPMV, DTPMV, CTPMV, ZTPMV

Matrix Operations (see :

SGEMUL, DGEMUL, CGEMUL, ZGEMUL

SGEMM, DGEMM, CGEMM, ZGEMM

SSYMM, DSYMM, CSYMM, ZSYMM, CHEMM, ZHEMM
STRMM, DTRMM, CTRMM, ZTRMM

SSYRK, DSYRK, CSYRK, ZSYRK, CHERK, ZHERK
SSYR2K, DSYR2K, CSYR2K, ZSYR2K, CHER2K, ZHER2K
SGETMI, DGETMI, CGETMI, ZGETMI

SGETMO, DGETMO, CGETMO, ZGETMO

Dense Linear Algebraic Equations:

STRSV, DTRSV, CTRSV, ZTRSV, STPSV, DIPSV, CTPSV, ZTPSV
STRSM, DTRSM, CTRSM, ZTRSM
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Table 36. ESSL Blue Gene Serial Library Subroutines that Automatically Use SIMD Algorithms When Alignment

Restrictions are Met (continued)

Subroutine Name

Fourier Transforms:

SCFTD, DCFTD
SRCFTD, DRCFTD
SCRFTD, DCRFTD
SCFT, DCFT
SRCFT, DRCFT
SCRFT, DCRFT
SCOSF, DCOSF
SSINE, DSINF
SCFT2, DCFT2
SRCFT2, DRCFT2
SCRFT2, DCRFT2
SCFT3, DCFT3
SRCFT3, DRCFT3
SCRFT3, DCRFT3

Convolutions and Correlations:

SCONF, SCORF
SACORF

Note: Many of the dense linear algebraic equations and eigensystem analysis subroutines make one or more calls to
the vector-scalar, matrix-vector linear algebra, and matrix operation subroutines listed in this table, and therefore
they indirectly use SIMD algorithms.

Multithreaded Subroutines in the SMP Libraries Provided by

ESSL

[Table 37 on page 38| lists the multithreaded subroutines in the SMP libraries
provided by ESSL and also indicates which of those subroutines use SIMD
algorithms.
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Table 37. Multithreaded Subroutines in the ESSL SMP Libraries and the ESSL Blue Gene SMP Library

Does this subroutine
also use SIMD
algorithms on
VSX-enabled
processors?

Does this
short-precision
subroutine also use
SIMD algorithms on
AltiVec-enabled
processors?

See [“The ESSL Seriall

(See [“The ESSI)

Libraries and SIMDJ

Serial Libraries and|

Does this subroutine
also use SIMD
algorithms on Blue
Gene/Q?

Algorithms on|

POWERY

'VSX-Enabled|

SIMD Algorithms on|

(See [“The ESSL Blue|

POWER 6|

|Gene Serial Library|

AltiVec-Enabled|

and SIMD|

CZAXPY, ZZAXPY

Multithreaded Processors” on page| |[Processors” on page| [|[Algorithms on Blue|
Subroutine Category |Subroutine 28.| 31.) Gene” on page 34.)
Vector-Scalar Linear SASUM, DASUM, No No No
Algebra SCASUM, DZASUM

A

Subprogramsl SAXPY, DAXPY, No No No

CAXPY, ZAXPY

SCOPY, DCOPY, No No No

CCOPrY, ZCOPrY

SDOT, DDOT, No No No

CDOTU, ZzDOTU,

CDOTC, ZDOTC

SNDOT, DNDOT No No No

SNORM2, DNORM?2, |No No No

CNORM?2, ZNORM2

SROT, DROT, CROT, |No No No

ZROT, CSROT,

ZDROT

SSCAL, DSCAL, No No No

CSCAL, ZSCAL,

CSSCAL, ZDSCAL

SSWAP, DSWAP, No No No

CSWAP, ZSWAP

SVEA, DVEA, CVEA, |No No No

ZVEA

SVES, DVES, CVES, |No No No

ZVES

SVEM, DVEM, No No No

CVEM, ZVEM

SYAX, DYAX, CYAX, |No No No

ZYAX, CSYAX,

ZDYAX

SZAXPY, DZAXPY, No No No
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Table 37. Multithreaded Subroutines in the ESSL SMP Libraries and the ESSL Blue Gene SMP Library (continued)

Does this subroutine
also use SIMD
algorithms on
VSX-enabled
processors?

Does this
short-precision
subroutine also use
SIMD algorithms on
AltiVec-enabled
processors?

See [“The ESSL Seriall

(See [“The ESSL)

Libraries and SIMDJ

Serial Libraries and|

Does this subroutine
also use SIMD
algorithms on Blue
Gene/Q?

Algorithms on|

POWERY

'VSX-Enabled|

SIMD Algorithms on|

(See [“The ESSL Blue|

POWER 6

AltiVec-Enabled|

|Gene Serial Library|
and SIMD|

Multithreaded Processors” on page| |[Processors” on page| [|[Algorithms on Blue|
Subroutine Category |Subroutine 28.| 31.) Gene” on page 34.)
Matrix-Vector Linear |SGEMYV, DGEMYV, Yes Yes Yes
Algebra CGEMYV, ZGEMV
Subprogramsm SGER, DGER, Yes Yes Yes
CGERU, ZGERU,
CGERC, ZGERC
SSPMYV, DSPMYV, Yes Yes Yes
CHPMV, ZHPMV
SSYMV, DSYMV, Yes Yes Yes
CHEMYV, ZHEMV
SSPR, DSPR, CHPR, | Yes Yes Yes
ZHPR
SSYR, DSYR, CHER, |Yes Yes Yes
ZHER
SSPR2, DSPR2, Yes Yes Yes
CHPR2, ZHPR2
SSYR2, DSYR2, Yes Yes Yes
CHER2, ZHER2
SGBMVE DGBMWE | No No No
CGBMW ZGBMWE | No No No
ssBMVE DSBMWE No No No
CcHBMVE ZHBMVE | No No No
STRMYV, DTRMY, Yes except DTRMV Yes Yes
CTRMYV, ZTRMV and ZTRMV
STPMV, DTPMYV, Yes except DTPMV Yes Yes
CTPMV, ZTPMV and ZTPMV
steMVE DTBMVE [ No No No
ctBMvE ztBMVE  [No No No
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Table 37. Multithreaded Subroutines in the ESSL SMP Libraries and the ESSL Blue Gene SMP Library (continued)

Does this subroutine
also use SIMD
algorithms on
VSX-enabled
processors?

Does this
short-precision
subroutine also use
SIMD algorithms on
AltiVec-enabled
processors?

See [“The ESSL Seriall

(See [“The ESSI)

Libraries and SIMDJ

Serial Libraries and|

Does this subroutine
also use SIMD
algorithms on Blue
Gene/Q?

Algorithms on|

POWERY

'VSX-Enabled|

SIMD Algorithms on|

(See [“The ESSL Blue|

POWER 6|

|Gene Serial Library|

AltiVec-Enabled|

and SIMD|

CGETMO, ZGETMO

Multithreaded Processors” on page| |[Processors” on page| [|[Algorithms on Blue|
Subroutine Category |Subroutine 28.| 31.) Gene” on page 34.)
Matrix Operation SGEADD, DGEADD, |No No No

CGEADD, ZGEADD

SGESUB, DGESUB, No No No

CGESUB, ZGESUB

SGEMUL, DGEMUL, | Yes Yes Yes

CGEMUL, ZGEMUL

SGEMM, DGEMM, Yes Yes Yes

CGEMM, ZGEMM

SSYMM, DSYMM, Yes Yes Yes

CSYMM, ZSYMM,

CHEMM, ZHEMM

STRMM, DTRMM, Yes Yes Yes

CTRMM, ZTRMM

SSYRK, DSYRK, Yes Yes Yes

CSYRK, ZSYRK,

CHERK, ZHERK

SSYR2K, DSYR2K, Yes Yes Yes

CSYR2K, ZSYR2K,

CHER2K, ZHER2K

SGETMI, DGETMI, Yes No Yes

CGETMI, ZGETMI

SGETMO, DGETMO, | Yes No Yes
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Table 37. Multithreaded Subroutines in the ESSL SMP Libraries and the ESSL Blue Gene SMP Library (continued)

Does this subroutine
also use SIMD
algorithms on
VSX-enabled
processors?

Does this
short-precision
subroutine also use
SIMD algorithms on
AltiVec-enabled
processors?

See [“The ESSL Seriall

(See [“The ESSL)

Libraries and SIMDJ

Serial Libraries and|

Does this subroutine
also use SIMD
algorithms on Blue
Gene/Q?

Algorithms on|

POWERY

'VSX-Enabled|

SIMD Algorithms on|

(See [“The ESSL Blue|

POWER 6

AltiVec-Enabled|

|Gene Serial Library|
and SIMD|

Multithreaded Processors” on page| |[Processors” on page| [|[Algorithms on Blue|
Subroutine Category |Subroutine 28.| 31.) Gene” on page 34.)
Dense Linear SGESV, DGESV, See Note See Note See Note
Algebraic Equations | CGESV, ZGESV )]

SGEF, DGEF, CGEF, | See Note See Note See Note

ZGEF )

SGES, DGES, CGES, | See Note See Note See Note

ZGES )

SGETRF, DGETRE, | See Note See Note See Note

CGETRF, ZGETRF )

SGETRS, DGETRS, See Note See Note See Note

CGETRS, ZGETRS ) )

SPPSV, DPPSV, See Note See Note See Note

CPPSV, ZPPSV 12 12

SPPF, DPPF, SPPTRF, |See Note See Note See Note

DPPTRE, CPPTRE, )

ZPPTRE, DPOF,

DPOTRF

SPPTRS, DPPTRS, See Note See Note See Note

CPPTRS, ZPPTRS 9l )

SPOSV, DPOSV, See Note See Note See Note

CPOSV, ZPOSV )

SPOSM, DPOSM, See Note See Note See Note

CPOSM, ZPOSM ) 2

SPPFCDE DPPFCDH | See Note[L on page] | See Note[L on page] |See Note[lon page]

DPOFC

SPPTRI, DPPTRI, See Note See Note See Note

CPPTRI, ZPPTRI,

sppict pppicd

DPOIC[{EI

STRSV, DTRSV, Yes except DTRSV Yes Yes

CTRSV, ZTRSV and ZTRSV

STPSV, DTPSV, Yes except DTPSV, Yes Yes

CTPSV, ZTPSV ZTPSV

STRSM, DTRSM, Yes Yes Yes

CTRSM, ZTRSM

STRI, DTRI, STRTRI, |See Note See Note See Note

DTRTRI, CTRTRI, )

ZTRTRI
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Table 37. Multithreaded Subroutines in the ESSL SMP Libraries and the ESSL Blue Gene SMP Library (continued)

Does this subroutine
also use SIMD
algorithms on
VSX-enabled
processors?

Does this
short-precision
subroutine also use
SIMD algorithms on
AltiVec-enabled
processors?

See [“The ESSL Seriall

(See [“The ESSI)

Libraries and SIMDJ

Serial Libraries and|

Does this subroutine
also use SIMD
algorithms on Blue
Gene/Q?

Algorithms on|

POWERY

'VSX-Enabled|

SIMD Algorithms on|

(See [“The ESSL Blue|

POWER 6|

|Gene Serial Library|

AltiVec-Enabled|

and SIMD|

Algebraic Equations

Multithreaded Processors” on page| |[Processors” on page| [|[Algorithms on Blue|
Subroutine Category |Subroutine 28.| 31.) Gene” on page 34.)
Sparse Linear DSRIA No No No

Linear Least Squares

SGEQRF, DGEQRE,
CGEQRF, ZGEQRF

See Note

See Note

See Note

Fourier Transforms

SCFTD, SRCFTD,
SCRFTD, SCFT,
SRCFT, SCRFT,
SCFT2, SRCFT2,
SCRFT2, SCFT3,
SRCFT3, SCRFT3

Yes

Yes

Yes

DCFTD, DRCFTD,
DCRFTD, DCFT,
DRCFT, DCREFT,
DCFT2, DRCFT2,
DCRFT2, DCFT3,
DRCFT3, DCRFT3

Yes

Yes

Convolution and
Correlation

SCOND, SCORD

SDCON, SDCOR,
DDCON, DDCOR

SCONF, SCORF
SACORF

Yes

Yes

Yes

Note:

ESSL for AIX

—and—

ESSL for Linux

export MALLOCMULTIHEAP=true

export XLSMPOPTS="spins=0:yields=0"

export XLSMPOPTS="spins=0:yields=0"
For additional information, see the AIX Performance Management Guide and the XLF Manuals.

4. Multiple threads are used for the factor or inverse computation.
5. DSRIS only uses multiple threads when IPARM(4) =1 or 2.

2. Your performance may be improved by setting the following environment variables:

1. Many of the dense linear algebraic equations and eigensystem analysis subroutines make one or more calls to
the vector-scalar, matrix-vector linear algebra, and matrix operation subroutines listed in this table, and therefore
they indirectly use multiple threads and SIMD algorithms.

3. The Level 2 Banded BLAS use multiple threads only when the bandwidth is sufficiently large.
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What Type of Data Are You Processing in Your Program?

The version of the ESSL subroutine you select should agree with the data you are
using. ESSL provides a short- and long-precision version of most of its subroutines
processing short- and long-precision data, respectively. In a few cases, it also
provides an integer version processing integer data or returning just integer data.
The subroutine names are distinguished by a one- or two-letter prefix based on the
following letters:

S for short-precision real

D for long-precision real

C for short-precision complex
Z for long-precision complex
I for integer

The precision of your data affects the accuracy of your results. This is discussed in
“Getting the Best Accuracy” on page 59 For a description of these data types, see
"“How Do You Set Up Your Scalar Data?” on page 44|

How Is Your Data Structured? And What Storage Technique
Are You Using?

Some subroutines process specific data structures, such as sparse vectors and
matrices or dense and banded matrices. In addition, these data structures can be
stored using various storage techniques. You should select the proper subroutine
on the basis of the type of data structure you have and the storage technique you
want to use. If possible, you should use a storage technique that conserves storage
and potentially improves performance. For more about storage techniques, see
[“Setting Up Your Data” on page 44

What about Performance and Accuracy?

ESSL provides variations among some of its subroutines. You should consider
performance and accuracy when deciding which subroutine is the best to use.
Study “Function” in each subroutine description. It helps you understand exactly
what each subroutine does, and helps you determine which subroutine is best for
you. For example, some subroutines perform multiple computations of a certain
type. This might give you better performance than a subroutine that does each
computation individually. In other cases, one subroutine may do scaling while
another does not. If scaling is not necessary for your data, you get better
performance by using the subroutine without scaling.
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Avoiding Conflicts with Internal ESSL Routine Names That are
Exported

Do not use names for your own subroutines, functions, and global variables that
are the same as the ESSL exported names. The following table explains how to
avoid using these names, depending on the type of ESSL library you are using;:

Table 38. Naming Rules for Use with Shared and Static Libraries

Type of
Library Name of Libraries Naming Rules
Shared ESSL Serial Libraries Internal ESSL routine names that are exported all begin with the ESV
prefix. Therefore, it is sufficient for you to avoid using this prefix for your
ESSL SMP Libraries own names.
ESSL Blue Gene Serial
Library
ESSL Blue Gene SMP
Library
Static ESSL Blue Gene Serial Internal ESSL routine names can begin with the ESV prefix or with any other
Library prefix. Therefore, it is not sufficient for you to avoid using the ESV prefix
for your own names; you must check each of your names individually to
ESSL Blue Gene SMP make sure that it is not the same as an internal ESSL routine name.
Library

Setting Up Your Data

There are various items to consider when setting up your scalar and array data.

How Do You Set Up Your Scalar Data?

A scalar item is a single item of data, whether it is a constant, a variable, or an
element of an array. ESSL assumes that your scalar data conforms to the
appropriate standards. The scalar data types and how you should code them for
each programming language are listed in “Coding Your Scalar Data” specific to
each language in [Chapter 4, “Coding Your Program,” on page 123)

Scalar data passed to ESSL from all types of programs, including Fortran, C, and
C++, should conform to the ANSI/IEEE 32-bit and 64-bit binary floating-point
format, as described in the ANSI/IEEE Standard for Binary Floating-Point Arithmetic,
ANSI/IEEE Standard 754-1985.

How Do You Set Up Your Arrays?

An array represents an area of storage in your program, containing data stored in
a series of locations. An array has a single name. It is made up of one or more
pieces of scalar data, all the same type. These are the elements of the array. It can
be passed to the ESSL subroutine as input, returned to your program as output, or
used for both input and output, in which case the original contents are
overwritten.

Arrays can contain conceptual (mathematical) data structures, such as vectors,
matrices, or sequences. There are many different types of data structures. Each type
of data structure requires a unique arrangement of data in an array and does not
necessarily have to include all the elements of the array. In addition, the elements
of these data structures are not always contiguous in storage within an array.
Stride and leading dimension arguments passed to ESSL subroutines define the

44  ESSL for AIX, 5.1, and ESSL for Linux on POWER, 5.1.1: Guide and Reference



separations in array storage for the elements of the vector, matrix, and sequence.
All these aspects of data structures are described in [Chapter 3, “Setting Up Your|
[Data Structures,” on page 71] You must first understand array storage techniques
to fully understand the concepts of data structures, stride, and leading dimension,
especially if you are using them in unconventional ways.

ESSL subroutines assume that all arrays passed to them are stored using the
Fortran array storage techniques (in column-major order), and they process your
data accordingly. For details, see|“Setting Up Arrays in Fortran” on page 124./On
the other hand, C, and C++ programs store arrays in row-major order. For details
on what you can do, see:

* For C, see |”Setting Up Arrays in C” on page 145)

* For C++, see[Setting Up Arrays in C++” on page 162]

How Should Your Array Data Be Aligned?

The following list explains how to align your array data for optimal performance,
depending on the type of ESSL library you are using:

ESSL Serial Libraries and ESSL SMP Libraries
All arrays, regardless of the type of data, should be aligned on a
doubleword boundary to ensure optimal performance.

For all subroutines running on POWERY processors, see [“The ESSL Seriall
Libraries and SIMD Algorithms on POWER7 VSX-Enabled Processors” on]

page 28.|

For short-precision real and short-precision complex subroutines running
on POWER6 AltiVec-enabled processors, see [“The ESSL Serial Libraries and|
[SIMD Algorithms on POWER 6 AltiVec-Enabled Processors” on page 31/

For information about how your programming language aligns data, see
your programming language manuals.

ESSL Blue Gene Serial Library and ESSL Blue Gene SMP Library
See [‘The ESSL Blue Gene Serial Library and SIMD Algorithms on Blue|
(Gene” on page 34/

What Storage Mode Should You Use for Your Data?

The amount of storage used by arrays and the storage arrangement of data in the
arrays can affect overall program performance. As a result, ESSL provides
subroutines that operate on different types of data structures, stored using various
storage modes. You should chose a storage mode that conserves storage and
potentially improves performance. For definitions of the various data structures
and their corresponding storage modes, see [Chapter 3, “Setting Up Your Data
Structures,” on page 71| You can also find special storage considerations, where
applicable, in “Notes” in each subroutine description.

How Do You Convert from One Storage Mode to Another?

ESSL provides conversion subroutines and sample programs to help you convert
from one storage mode to another.

Conversion Subroutines

ESSL provides several subroutines that help you convert from one storage mode to
another:

* DSRSM is used to migrate your existing program from sparse matrices stored by
rows to sparse matrices stored in compressed-matrix storage mode. This
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converts the matrices into a storage format that is compatible with the input
requirements for some ESSL sparse matrix subroutines, such as DSMMX.

* DGKTRN and DSKTRN are used to convert your sparse matrix from one skyline
storage mode to another, if necessary, before calling the subroutines
DGKFS/DGKFSP or DSKFS/DSKEFSP, respectively.

Sample Programs

In addition, sample programs are provided with many of the storage mode
descriptions in [Chapter 3, “Setting Up Your Data Structures,” on page 71| You can
use these sample programs to convert your data to the desired storage mode by
adapting them to your application program.

Setting Up Your ESSL Calling Sequences

This gives the general rules for setting up the ESSL calling sequences. The
information given here applies to all types of programs, running in all
environments. For a description and examples of how to code the ESSL calling
sequences in your particular programming language, see the following;:

+ |“Fortran Programs” on page 123|

+ |“C Programs” on page 141|

+ |[“C++ Programs” on page 157

What Is an Input-Output Argument?

Some arguments are used for both input and output. The contents of the input
argument are overlaid with the output value(s) on return to your program. Be
careful that you save any data you need to preserve before calling the ESSL
subroutine.

What Are the General Rules to Follow when Specifying Data
for the Arguments?

You should follow the syntax rules given for each argument in “On Entry” in the
subroutine description. Input-argument error messages may be issued, and your
program may terminate when you make an error specifying the input arguments.
For example:

* Data passed to ESSL must be of the correct type: 32-bit or 64-bit integer, 32-bit or
64-bit logical, character, real, complex, short-precision, or long-precision. There is
no conversion of data. Assuming you are using the ESSL header file with your C
and C++ programs, you first need to define the following;:

— Complex and logical data in C programs, using the guidelines in ["Setting Up]|
Complex Data Types in C” on page 144 and [“Using Logical Data in C” on|

page 145.|

— Short-precision complex and logical data in C++ programs, using the

uidelines in |”On AIX—Setting Up Short-Precision Complex Data Types Iﬂ
You Are Using the IBM Open Class Complex Mathematics Library in C++” onl
page 160[and [“Using Logical Data in C++” on page 162|

* Character values must be one of the specified values. For example, it may have
to be 'N', 'T', or 'C'.

* Numeric values must fall within the correct range for that argument. For
example, a numeric value may need to be greater than or equal to 0, or it may
have to be a nonzero value.

e Arrays must be defined correctly; that is, they must have the correct dimensions,
or the dimensions must fall within the correct range. For example, input and
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output matrices may need to be conformable, or the number of rows in the
matrix must be less than or equal to the leading dimension specified. (ESSL
assumes all arrays are stored in column-major order.)

What Happens When a Value of 0 Is Specified for N?

For most ESSL subroutines, if you specify 0 for the number of elements to be
processed in a vector or the order of a matrix (usually argument 7), no
computation is performed. After checking for input-argument errors, the
subroutine returns immediately and no result is returned. In the other subroutines,
an error message may be issued.

How Do You Specify the Beginning of the Data Structure in
the ESSL Calling Sequence?

When you specify a vector, matrix, or sequence in your calling sequence, it does
not necessarily have to start at the beginning of the array. It can begin at any
point in the array. For example, if you want vector x to start at element 3 in array
A, which is declared A(1:12), specify A(3) in your calling sequence for argument x,
such as in the following SASUM calling sequence in your Fortran program:

N X INCX

||
X = SASUM( 4 , A(3) , 2 )

Also, for example, if you want matrix A to start at the second row and third
column of array A, which is declared A(0:10,2:8), specify A(1,4) in your calling
sequence for argument a, such as in the following SGEADD calling sequence in
your Fortran program:

A LDA TRANSA B LDB TRANSB C LDC

D
| | I ||
4

M
|
CALL SGEADD( A(1,4) , 11, 'N' ,B, 4, 'N" ,C, 4

w—2=

)

For more examples of specifying vectors and matrices, see [Chapter 3, “Setting Up|
[Your Data Structures,” on page 71.]

Using Auxiliary Storage in ESSL

For the ESSL subroutines listed in you need to provide extra working
storage to perform the computation. It is necessary to understand the use of
dynamic allocation for providing auxiliary storage in ESSL and, if dynamic
allocation is not an option, how to calculate the amount of auxiliary storage you
need by use of formulas or error-handling capabilities provided in ESSL.

Auxiliary storage, or working storage, is supplied through one or more arguments,
such as aux, in the calling sequence for the ESSL subroutine. If the working
storage does not need to persist after the subroutine call, it is suggested you use
dynamic allocation. For example, in the Fourier Transforms subroutines, you may
allocate aux2 dynamically, but not aux1. See the subroutine descriptions for details
and variations.

Table 39. ESSL Subroutines Requiring Auxiliary Working Storage

Subroutine Names

Linear Algebra Subprograms:
DSMTM
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Table 39. ESSL Subroutines Requiring Auxiliary Working Storage (continued)

Subroutine Names

Matrix Operations:
_GEMMS

Dense Linear Algebraic Equations:
_GEFCD _PPFCD _GEICD _PPICD _POFCD
_POICD DGEFP* DPPFP*

Sparse Linear Algebraic Equations:
DGSF DGSS DGKFS DGKFSP* DSKFS DSKFSP*
DSRIS DSMCG DSDCG DSMGCG DSDGCG

Linear Least Squares:
_GESVF _GELLS

Eigensystem Analysis:
_GEEV _SPEV _HPEV _SPSV _HPSV
_GEGV _SYGV

Fourier Transforms:

_CFTD

_RCFTD

_CRFTD

_CFT _RCFT _CRFT _COSF _SINF
SCOSFT* _CFT2 _RCFT2 _CRFT2 _CFT3
_RCFT3 _CRFT3 SCFTP* SCFT2P* SCFT3P*

Convolutions and Correlations:
SCONF SCORF SACORF

Related Computations:
_WLEV

Interpolation:
_TPINT _CSIN2

Random Number Generation:
_NRAND

Utilities:
DGKTRN DSKTRN

* Documentation for this subroutine is no longer provided. The aux and naux arguments
for the subroutine are specified the same as for the corresponding serial ESSL subroutine.

Dynamic Allocation of Auxiliary Storage

Dynamic allocation for the auxiliary storage is performed when error 2015 is
unrecoverable and naux = 0. For details on which aux arguments allow dynamic
allocation, see the subroutine descriptions.
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Setting Up Auxiliary Storage When Dynamic Allocation Is Not

Used

You set up the storage area in your program and pass it to ESSL through
arguments, specifying the size of the aux work area in the naux argument.

Who Do You Want to Calculate the Size of Auxiliary Storage?
You or ESSL?

You have a choice of two methods for determining how much auxiliary storage
you should specify:

* Use the formulas provided in the subroutine description to derive sufficient
values for your current and future needs. Use them if ease of migration to
future machines and future releases of ESSL is your primary concern. For details,
see [‘How Do You Calculate the Size of Auxiliary Storage Using the Formulas?.”|

¢ Use the ESSL error-handling facilities to return to you a minimum value for the
particular processor you are currently running on. (Values vary by platform.)
Use this approach if conserving storage is your primary concern. For details, see
“How Do You Get ESSL to Calculate the Size of Auxiliary Storage Using ESSI|
Error Handling?.”|

How Do You Calculate the Size of Auxiliary Storage Using the
Formulas?

The formulas provided for calculating naux indicate a sufficient amount of
auxiliary storage required, which, in most cases, is larger than the minimum
amount, returned by ESSL error handling. There are two types of formulas:

e Simple formulas

These are given in the naux argument syntax descriptions. In general, these
formulas result in the minimum required value, but, in a few cases, they provide
overestimates.

* Processor-independent formulas

These are given separately in each subroutine description. In general, these
provide overestimates.

Both types of formulas provide values that are sufficient for all processors. As a
result, you can migrate to any other processor and to future releases of ESSL
without being concerned about having to increase the amount of storage for aux.
You do, of course, need to weigh your storage requirements against the
convenience of using this larger value.

To calculate the amount of storage using the formulas, you must substitute values
for specific variables, such as 1, m, n1, or n2. These variables are arguments
specified in the ESSL calling sequence or derived from the arguments in the calling
sequence.

How Do You Get ESSL to Calculate the Size of Auxiliary Storage
Using ESSL Error Handling?

When getting ESSL to calculate auxiliary storage, ask yourself which of the
following ways you prefer to obtain the information from ESSL:

* By leaving error 2015 unrecoverable, you can obtain the minimum required
value of naux from the input-argument error message, but your program
terminates.
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* By making error 2015 recoverable, you can obtain the minimum required value
of naux from the input-argument error message and have the updated naux
argument returned to your program.

For both techniques, the amount returned by the ESSL error-handling facility is the
minimum amount of auxiliary storage required to run your program successfully
on the particular processor you are currently running on. The ESSL
error-handling capability usually returns a smaller value than you derive by using
the formulas listed for the subroutine. This is because the formulas provide a good
estimate, but ESSL can calculate exactly what is needed on the basis of your data.

The values returned by ESSL error handling may not apply to future processors.
You should not use them if you plan to run your program on a future processor.
You should use them only if you are concerned with minimizing the amount of
auxiliary storage used by your program.

Having ESSL Calculate Auxiliary Storage Size with Unrecoverable Error 2015:
In this case, you obtain the minimum required value of naux from the error
message, but your program terminates. The following description assumes that
dynamic allocation is not selected as an option.

Leave error 2015 as unrecoverable, without calls to EINFO and ERRSET. Run your
program with the naux values smaller than required by the subroutine for the
particular processor you are running on. As a general guideline, specify values
smaller than those listed in the formulas. However, if a lower limit is specified in
the syntax (only for several naux1 arguments in the Fourier transform, convolution,
and correlation subroutines), you should not go below that limit. The ESSL error
monitor returns the necessary sizes of the aux storage areas in the input-argument
error message. This does, however, terminate your program when the error is
encountered. (If you accidentally specify a sufficient amount of storage for the
ESSL subroutine to perform the computation, error handling does not issue an
error message and processing continues normally.) [Figure 1 on page 51|illustrates
what happens when error 2015 is unrecoverable.
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User Program

] ESSL Subroutine

Is NAUX=0
and
dynamic allocation
is allowed

?

yes

Call ESSL 0
subroutine J

Is NAUX >

lower limit
7+

IA
I‘

es Issue message 2538-2015
y with lower limit
|
[ Terminate ]

Is NAUX =

minimum no

required

value?

Issue message 2538-2015
yes with minimum
required value
I
( Terminate ]
Perform ESSL
computation

* This check applies only to several NAUX1 arguments in the Fourier transform, convolution, and correlation

subroutines.

Figure 1. How to Obtain an NAUX Value from an Error Message, but Terminate

Having ESSL Calculate Auxiliary Storage Size with Recoverable Error 2015: In
this case, you obtain the minimum required value of naux from the error message
and from the updated naux argument returned to your program.

Use EINFO and ERRSET with an ESSL error exit routine, ENOTRM, to make error
2015 recoverable. This allows you to dynamically determine in your program the
minimum sizes required for the auxiliary working storage areas, specified in the
naux arguments. Run your program with the naux values smaller than required by
the subroutine for the particular processor you are running on. As a general
guideline, specify values smaller than those listed in the formulas. However, if a
lower limit is specified in the syntax (only for several naux1 arguments in the
Fourier transform, convolution, and correlation subroutines), you should not go
below that limit. The ESSL error monitor returns the necessary sizes of the aux
storage areas in the input-argument error message and a return code is passed
back to your program, indicating that updated values are also returned in the naux
arguments. You can then react to these updated values during run time in your
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User Program

program. ESSL does not perform any computation when this error occurs. For
details on how to do this, see [Chapter 4, “Coding Your Program,” on page 123 (If
you accidentally specify a sufficient amount of storage for the ESSL subroutine to
perform the computation, error handling does not issue an error message and
processing continues normally.) illustrates what happens when error 2015
is recoverable.

ESSL Subroutine

Make error
2015 recoverable

Is NAUX >
lower limit
7%

Call ESSL
subroutine

Issue message 2538-2015
with lower limit

N
J

<&
<

Is return code
=r?

Terminate

Is NAUX >
minimum
required
value?

Issue message 2538-2015
React to updated yes with minimum
NAUX value required value

Perform ESSL
computation

Updated NAUX argument
with minimum

required value

Set return code
=r

* This check applies only to several NAUX1 arguments in the Fourier transform, convolution, and correlation

subroutines.

Figure 2. How to Obtain an NAUX Value from an Error Message and in Your Program

Example of Input-Argument Error Recovery for Auxiliary Storage Sizes: The
following example illustrates all the actions taken by the ESSL error-handling
facility for each possible value of a recoverable input argument, naux. A key point
here is that if you want to have the updated argument value returned to your
program, you must make error 2015 recoverable and then specify an naux value
greater than or equal to 20 and less than 300. For values out of that range, the
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error recovery facility is not in effect. (These values of naux, 20 and 300, are used
only for the purposes of this example and do not relate to any of the ESSL

subroutines.)

NAUX Meaning of the NAUX Value

20 Lower limit of naux required for using recoverable input-argument
error-handling facilities in ESSL. (This applies only to several naux1
arguments in the Fourier transform, convolution, and correlation
subroutines. You can find the lower limit in the syntax description for the
naux1 argument. For a list of subroutines, see [“Using Auxiliary Storage in|

SSL” on page 47,
pag

300 Minimum value of naux, required for successful running (on the processor

the program is being run on).

describes the actions taken by ESSL in every possible situation for the

values given in this example.

Table 40. Example of Input-Argument Error Recovery for Auxiliary Storage Sizes

NAUX Value

Action When 2015 Is an Unrecoverable
Input-Argument Error

Action When 2015 Is a Recoverable
Input-Argument Error

naux < 20

An input-argument error message is issued.

The value in the error message is the lower
limit, 20. The application program stops.

An input-argument error message is issued.
The value in the error message is the lower
limit, 20. The application program stops.

20 = naux < 300

An input-argument error message is issued.

The value in the error message is the
minimum required value, 300. The
application program stops.

ESSL returns the value of naux as 300 to the
application program, and an input-argument
error message is issued. The value in the
error message is the minimum required
value, 300. ESSL does no computation, and
control is returned to the application
program.

naux = 300

Your application program runs successfully.

Your application program runs successfully.

Coding Your Program to Obtain Auxiliary Storage Sizes: If you leave error 2015
unrecoverable, you do not code anything in your program. You just look at the
error messages to get the sizes of auxiliary storage. On the other hand, if you want
to make error 2015 recoverable to obtain the auxiliary storage sizes dynamically in
your program, you need to add some coding statements to your program. For
details on coding these statements in each programming language, see the

following examples:

* For Fortran, see [‘Input-Argument Errors in Fortran Example” on page 133

* For C, see [“Input-Argument Errors in C Example” on page 151

 For C++, see ["Input-Argument Errors in C++ Example” on page 167

You may want to provide a separate subroutine to calculate the auxiliary storage

size whenever you need it. [Figure 3 on page 54| shows how you might code a

separate Fortran subroutine. Before calling SCFT in your program, call this
subroutine, SCFTQ, which calculates the minimum size and stores it in the naux
arguments. Upon return, your program checks the return code. If it is nonzero, the
naux arguments were updated, as planned. You should then make sure adequate
storage is available and call SCFT. On the other hand, if the return code is zero,
error handling was not invoked, the naux arguments were not updated, and the
initialization step was performed for SCFT.
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SUBROUTINE SCFTQ (INIT, X, INCIX, INC2X, Y, INCLY, INC2Y,
* N, M, ISIGN, SCALE, AUX1, NAUXL,AUX2,NAUX2)
REAL#4 X(0:%),Y(0:%),SCALE
REAL*8 AUX1(7),AUX2(0:%*)
INTEGER*4 INIT,INC1X,INC2X,INCLY,INC2Y,N,M,ISIGN,NAUX1,NAUX2
EXTERNAL ENOTRM
CHARACTER*8  $2015
CALL EINFO(0)
CALL ERRSAV(2015,52015)
CALL ERRSET(2015,0,-1,1,ENOTRM,0)
C SETS NAUX1 AND NAUX2 TO THE MINIMUM VALUES REQUIRED TO USE
C THE RECOVERABLE INPUT-ARGUMENT ERROR-HANDLING FACILITY
NAUX1 = 7
NAUX2 = 0
CALL SCFT(INIT,X,INCLX,INC2X,Y,INCLY,INC2Y,
* N,M, ISIGN,SCALE,AUX1,NAUX1,AUX2,NAUX2,*10)
CALL ERRSTR(2015,52015)
RETURN
10 CONTINUE
CALL ERRSTR(2015,52015)
RETURN 1
END

Figure 3. Sample Fortran Subroutine to Calculate Auxiliary Storage Sizes in a 32-bit Integer, 32-bit Pointer
Environment

Providing a Correct Transform Length to ESSL

This describes how to calculate the length of your transform by use of formulas or
error-handling capabilities provided in ESSL.

For the ESSL subroutines listed in you need to provide one or more
transform lengths for the computation of a Fourier transform. These transform
lengths are supplied through one or more arguments, such as 1, n1, n2, and #n3, in
the calling sequence for the ESSL subroutine. Only certain lengths of transforms
are permitted in the computation.

Table 41. ESSL Subroutines Requiring Transform Lengths

Subroutine Names

Fourier Transforms:

_CFT _RCFT _CRFT _COSF _SINF
SCOSFT _CFT2 _RCFT2 _CRFT2 _CFT3
_RCFT3 _CRFT3 SCFTP SCFT2P SCFT3P

Who Do You Want to Calculate the Transform Length? You or
ESSL?

You have a choice of two methods for determining an acceptable length for your
transform to be processed by ESSL:

* Use the formula or large table in[Acceptable Lengths for the Transforms” on|
page 804| to determine an acceptable length. For details, see ["How Do Youl
Calculate the Transform Length Using the Table or Formula?” on page 55

* Use the ESSL error-handling facilities to return to you an acceptable length. For
details, see ["How Do You Get ESSL to Calculate the Transform Length Using|
[ESSL Error Handling?” on page 55/
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How Do You Calculate the Transform Length Using the Table
or Formula?

The lengths ESSL accepts for transforms in the Fourier transform subroutines are
listed in [“Acceptable Lengths for the Transforms” on page 804 You should use the
information in that table to find the two values your length falls between. You then
specify the larger length for your transform. If you find a perfect match, you can
use that value without having to change it. The formula provided expresses how
to calculate the acceptable values listed in the table. If necessary, you can use the
formula to dynamically check lengths in your program.

How Do You Get ESSL to Calculate the Transform Length
Using ESSL Error Handling?

This describes how to get ESSL to calculate transform lengths. Ask yourself which
of the following ways you prefer to obtain the information from ESSL:

* By leaving error 2030 unrecoverable, you can obtain an acceptable value for n
from the input-argument error message, but your program terminates.

* By making error 2030 recoverable, you obtain an acceptable value for n from
the input-argument error message and have the updated n argument returned to
your program.

Because the Fourier transform subroutines allow only certain lengths for
transforms, ESSL provides this error-handling capability to return acceptable
lengths to your program. It returns them in the transform length arguments. The
value ESSL returns is the next larger acceptable length for a transform, based on
the length you specify in the n argument.

Having ESSL Calculate the Transform Length with Unrecoverable
Error 2030

In this case, you obtain an acceptable value of n from the error message, but your
program terminates.

Leave error 2030 as unrecoverable, without calls to EINFO and ERRSET. Run your
program with a close approximation of the transform length you want to use. If
this happens not to be an acceptable length, the ESSL error monitor returns an
acceptable length of the transform in input-argument error message. This does,
however, terminates your program when the error is encountered. (If you do
happen to specify an acceptable length for the transform, error handling does not
issue an error message and processing continues normally.) [Figure 4 on page 56|
illustrates what happens when error 2030 is unrecoverable.
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Figure 4. How to Obtain an N Value from an Error Message, but Terminate

Having ESSL Calculate the Transform Length with Recoverable
Error 2030

In this case, you obtain an acceptable value of 7 from the error message and from
the updated n argument returned to your program.

Use EINFO and ERRSET with an ESSL error exit routine, ENOTRM, to make error
2030 recoverable. This allows you to dynamically determine in your program an
acceptable length for your transform, specified in the n argument(s). Run your
program with a close approximation of the transform length you want to use. If
this happens not to be an acceptable length, the ESSL error monitor returns an
acceptable length of the transform in the input-argument error message and a
return code is passed back to your program, indicating that updated values are
also returned in the n argument(s). You can then react to these updated values
during run time in your program. ESSL does not perform any computation when
this error occurs. For details on how to do this, see [Chapter 4, “Coding Your|
[Program,” on page 123.|(If you do happen to specify an acceptable length for the
transform, error handling does not issue an error message and processing
continues normally.) [Figure 5 on page 57|illustrates what happens when error 2030
is recoverable.

56  ESSL for AIX, 5.1, and ESSL for Linux on POWER, 5.1.1: Guide and Reference



User Program

ESSL Subroutine

Make error

2030 recoverable ]

Is N= no
acceptable

transform
length?

Call ESSL
subroutine

\ yes Issue message 2538-2030
) with next larger

acceptable transform
length

&
<

Is return code
=r?

Perform ESSL
computation

Update N argument
with next larger
acceptable transform

React to updated ) length

N value
[ Set return code ]
=r

Figure 5. How to Obtain an N Value from an Error Message and in Your Program

Example of Input-Argument Error Recovery for Transform
Lengths

The following example illustrates all the actions taken by the ESSL error-handling
facility for each possible value of a recoverable input argument, n. The values of n
used in the example are as follows:

N Meaning of the N Value

7208960
An acceptable transform length, required for successful computing of a

Fourier transform

7340032
The next larger acceptable transform length, required for successful

computing of a Fourier transform

[Table 42 on page 58| describes the actions taken by ESSL in every possible situation
for the values given in this example.
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Table 42. Example of Input-Argument Error Recovery for Transform Lengths

Action When 2030 Is an Unrecoverable

Action When 2030 Is a Recoverable

N Value Input-Argument Error Input-Argument Error

n = 7208960 Your application program runs Your application program runs
successfully. successfully.

n = 7340032

7208960 < n < 7340032 An input-argument error message is
issued. The value in the error message is

7340032. The application program stops.

ESSL returns the value of 1 as 7340032 to
the application program, and an
input-argument error message is issued.

The value in the error message is 7340032.
ESSL does no computation, and control is
returned to the application program.

Coding Your Program to Obtain Transform Lengths

If you leave error 2030 unrecoverable, you do not code anything in your program.
You just look at the error messages to get the transform lengths. On the other
hand, if you want to make error 2030 recoverable to obtain the transform lengths
dynamically in your program, you need to add some coding statements to your
program. For details on coding these statements in each programming language,
see the following examples:

e For Fortran, see I“Input—Argument Errors in Fortran Example” on page 133.|

e For C, see |”Input—Argument Errors in C Example” on page 151

* For C++, see ['Input-Argument Errors in C++ Example” on page 167.|

You may want to provide a separate subroutine to calculate the transform length
whenever you need it. shows how you might code a separate Fortran
subroutine. Before calling SCFT in your program, you call this subroutine, SCFTQ,
which calculates the correct length and stores it in #n. Upon return, your program
checks the return code. If it is nonzero, the n argument was updated, as planned.
You then do any necessary data setup and call SCFT. On the other hand, if the
return code is zero, error handling was not invoked, the n argument was not
updated, and the initialization step was performed for SCFT.

SUBROUTINE SCFTQ (INIT, X, INC1X, INC2X, Y, INC1Y, INC2Y,

REAL#4 X(0:%),Y(0:%),SCALE
REAL*8 AUX1(7),AUX2(0:%)

EXTERNAL ENOTRM
CHARACTER*8  S2030
CALL EINFO(0)
CALL ERRSAV(2030,52030)
CALL ERRSET(2030,0,-1,1,ENOTRM,0)
CALL SCFT(INIT,X,INC1X,INC2X,Y,INCLY,INC2Y,

* N,M, ISIGN,SCALE,AUX1,NAUX1,AUX2,NAUX2,*10)
CALL ERRSTR(2030,52030)
RETURN
10 CONTINUE
CALL ERRSTR(2030,52030)
RETURN 1
END

INTEGER*4 INIT,INCIX,INC2X,INC1Y,INC2Y,N,M,ISIGN,NAUX1,NAUX2

* N, M, ISIGN, SCALE, AUX1, NAUX1,AUX2,NAUX2)

Figure 6. Sample Fortran Subroutine to Calculate Transform Length in a 32-bit Integer, 32-bit Pointer Environment

You might want to combine the request for auxiliary storage sizes along with your

request for transform lengths. [Figure 7 on page 59 shows how you might code a
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separate Fortran subroutine combining both requests. It combines the functions
performed by the subroutine shown above and that shown in[*Coding Your
[Program to Obtain Auxiliary Storage Sizes” on page 53/

SUBROUTINE SCFTQ (INIT, X, INC1X, INC2X, Y, INC1Y, INC2Y,
* N, M, ISIGN, SCALE, AUX1, NAUX1, AUX2, NAUX2)
REAL*4 X(0:%),Y(0:*),SCALE
REAL*8 AUX1(7),AUX2(0:x)
INTEGER*4 INIT,INCIX,INC2X,INC1Y,INC2Y,N,M,ISIGN,NAUX1,NAUX2
EXTERNAL ENOTRM
CHARACTER*8  S2015,52030
CALL EINFO(0)
CALL ERRSAV(2015,S2015)
CALL ERRSAV(2030,52030)
CALL ERRSET(2015,0,-1,1,ENOTRM,0)
CALL ERRSET(2030,0,-1,1,ENOTRM,0)
SETS NAUX1 AND NAUXZ2 TO THE MINIMUM VALUES REQUIRED TO USE
THE RECOVERABLE INPUT-ARGUMENT ERROR-HANDLING FACILITY
NAUX1 = 7
NAUX2 = 0
CALL SCFT(INIT,X,INCIX,INC2X,Y,INC1Y,INC2Y,
* N,M,ISIGN,SCALE,AUX1,NAUX1,AUX2,NAUX2,*10)
CALL ERRSTR(2015,52015)
CALL ERRSTR(2030,52030)
RETURN
10 CONTINUE
CALL ERRSTR(2015,52015)
CALL ERRSTR(2030,52030)
RETURN 1
END

oo

Figure 7. Sample Fortran Subroutine to Calculate Auxiliary Storage Sizes and Transform Length in a 32-bit Integer,
32-bit Pointer Environment

Getting the Best Accuracy

This explains how accuracy of your results can be affected in various situations
and what you can do to achieve the best possible accuracy.

What Precisions Do ESSL Subroutines Operate On?

Both short- and long-precision real versions of the subroutines are provided in
most areas of ESSL. In some areas, short- and long-precision complex versions are
also provided, and, occasionally, a 32-bit or 64-bit integer version is provided. The
subroutine names are distinguished by a one- or two-letter prefix based on the
following letters:

S for short-precision real

D for long-precision real

C for short-precision complex
Z for long-precision complex
I for integer

For a description of these data types, see ["How Do You Set Up Your Scalar Data?”]
The scalar data types and how you should code them for each
programming language are listed under “Coding Your Scalar Data” specific to each
programming language in |Chapter 4, “Coding Your Program,” on page 123.|
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How does the Nature of the ESSL Computation Affect
Accuracy?

In subroutines performing operations such as copy and swap, the accuracy of data
is not affected. In subroutines performing computations involving mathematical
operations on array data, the accuracy of the result may be affected by the
following:

* The algorithm, which can vary depending on values or array sizes within the
computation or the number of threads used.

¢ The matrix and vector sizes

For this reason, the ESSL subroutines do not have a closed formula for the error of
computation. In other words, there is no formula with which you can calculate the
error of computation in each subroutine.

Many of the short-precision subprograms provide increased accuracy by
accumulating results in long precision. However, when short-precision subroutines
use the AltiVec or VSX unit to improve performance, they do not accumulate
intermediate results in long precision. This is noted in the functional description of
each subprogram.

Where applicable, the ESSL subroutines use the Multiply-Add instructions, which
combine a Multiply and Add operation without an intermediate rounding
operation.

The ESSL Serial Libraries and the ESSL SMP Libraries allow you to run
applications in any of the following environments, and results obtained in any of
these environments using the same ESSL library are mathematically equivalent but
may not be bit identical:

* 32-bit integer, 32-bit pointer environment
* 32-bit integer, 64-bit pointer environment

* 64-bit integer, 64-bit pointer environment

What Data Type Standards Are Used by ESSL, and What
Exceptions Should You Know About?

The data types operated on by the short-precision, long-precision, and integer
versions of the subroutines are ANSI/IEEE 32-bit and 64-bit binary floating-point
format, and 32-bit and 64-bit integer. See the ANSI/IEEE Standard for Binary
Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985 for more detail.

There are ESSL-specific rules that apply to the results of computations using the
ANSI/IEEE standards. When running your program, the result of a multiplication
of NaN (“Not-a-Number”) by a scalar zero, under certain circumstances, may
differ in the ESSL subroutines from the result you expect.

Usually, when NaN is multiplied by a scalar zero, the result is NaN; however, in
some ESSL subroutines where scaling is performed, the result may be zero. For
example, in computing @A, where « is a scalar and A is a matrix, if « is zero and
one (or more) of the elements of A is Nal, the scaled result, using that element,
may be a zero, rather than NaN. To avoid problems, you should consider this
when designing your program.
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How is Underflow Handled?

ESSL does not mask underflow. If your program incurs a number of unmasked
underflows, its overall performance decreases. Floating-point exception trapping is
disabled by default. Therefore, you do not have to mask underflow unless you
have changed the default.

Where Can You Find More Information on Accuracy?

Information about accuracy can be found in the following places:

Migration considerations concerning accuracy of results between releases,

platforms, and so forth are described in|Chapter 6, “Migrating Your Programs,”]

Specific information on accuracy for each area of ESSL is given in “Performance
and Accuracy Considerations” associated with the subroutine descriptions for
that area.

The functional description under “Function” for each subroutine explains what
you need to know about the accuracy of the computation. Varying
implementation techniques are sometimes used to improve performance. To let
you know how accuracy is affected, the functional description may explain in
general terms the different techniques used in the computation.

What about Bitwise-ldentical Results?

There are several circumstances where you may not get bitwise identical results,
although the results are mathematically equivalent:

Results obtained on different hardware platforms
Results obtained using different ESSL releases
Results obtained using different ESSL Libraries
Results obtained using a different number of threads

Results obtained using arrays that are aligned differently. For example, the
Power VSX/VMX or BGQ QPX units require specific data alignments. If a
subroutine uses one of these units and the input and/or output arrays are not
aligned as required, some data may be processed using the floating point unit
before or after the main SIMD loop.

Getting the Best Performance

This describes how you can achieve the best possible performance from the ESSL
subroutines.

What General Coding Techniques Can You Use to Improve
Performance?

There are many ways in which you can improve the performance of your program.
Here are some of them:

Use the basic linear algebra subprograms and matrix operations in the order of
optimum performance: matrix-matrix computations, matrix-vector computations,
and vector-scalar computations. When data is presented in matrices or vectors,
rather than vectors or scalars, multiple operations can be performed by a single
ESSL subroutine.

Where possible, use subroutines that do multiple computations, such as SNDOT
and SNAXPY, rather than individual computations, such as SDOT and SAXPY.

Use a stride of 1 for the data in your computations. Not having vector elements
consecutively accessed in storage can degrade your performance. The closer the
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vector elements are to each other in storage, the better your performance. For an
explanation of stride, see|"How Stride Is Used for Vectors” on page 74/

* Do not specify the size of the leading dimension of an array (lda) or stride of a
vector (inc) equal to or near a multiple of:
— 128 for a long-precision array
— 256 for a short-precision array

* For users of the ESSL Blue Gene Serial Library and the ESSL Blue Gene SMP
Library: Specify the size of the leading dimension to be a multiple of 4 for real
arrays and a multiple of 2 for complex arrays.

* On POWER? processors, specify the size of the leading dimension of a long or
short-precision array as follows:
— Long-precision real arrays - multiple of 2
— Short-precision real arrays - multiple of 4
— Short-precision complex arrays - multiple of 2

Vectors and matrices are quadword aligned.

* On AltiVec-Enabled Processors, specify the size of the leading dimension of a
short-precision array as follows:

— Short-precision real array - multiple of 4
— Short-precision complex array - multiple of 2

* Do not specify the individual sizes of your one-dimensional arrays as multiples
of 128. This is especially important when you are passing several
one-dimensional arrays to an ESSL subroutine. (The multiplicity can cause a
performance problem that otherwise might not occur.)

* For small problems, avoid using a large leading dimension (Ida) for your matrix.

* The following list explains how to align your data arrays for optimal
performance, depending on the type of ESSL library you are using:

ESSL Serial Libraries and ESSL SMP Libraries

In general, align your arrays on doubleword boundaries, regardless of
the type of data. For short-precision real and short-precision complex
subroutines running on AltiVec-enabled processors, see|“The ESSL Seriall
Libraries and SIMD Algorithms on POWER 6 AltiVec-Enabled|
Processors” on page 31.]For POWER7 processors, see [‘The ESSL Seria
Libraries and SIMD Algorithms on POWER7 VSX-Enabled Processors”|
on page 28] For information on how your programming language aligns
data, see your programming language manuals.

ESSL Blue Gene Serial Library and ESSL Blue Gene SMP Library
See[“The ESSL Blue Gene Serial Library and SIMD Algorithms on Blue|
[Gene” on page 34]

* One subroutine may do scaling while another does not. If scaling is not
necessary for your data, you get better performance by using the subroutine
without scaling. SNORM2 and DNORM?2 are examples of subroutines that do
not do scaling, versus SNRM2 and DNRM2, which do scaling.

¢ Use the STRIDE subroutine to calculate the optimal stride values for your input
or output data when using any of the Fourier transform subroutines, except
_RCFT and _CRFT. Using these stride values for your data allows the Fourier
transform subroutines to achieve maximum performance. You first obtain the
optimal stride values from STRIDE, calling it once for each stride value desired.
You then arrange your data using these stride values. After the data is set up,
you call the Fourier transform subroutine. For details on the STRIDE subroutine
and how to use it for each Fourier transform subroutine, see
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(Determine the Stride Value for Optimal Performance in Specified Fourier
Transform Subroutines)” on page 1036.|For additional information, see
Up Your Data” on page 807.|

Where Can You Find More Information on Performance?
Information about performance can be found in the following places:

* Many of the techniques ESSL uses to achieve the best possible performance are
described in the [“High Performance of ESSL” on page 6|

* Migration considerations concerning performance are described in|Chapter 6
[“Migrating Your Programs,” on page 191

* Specific information on performance for each area of ESSL is given in
“Performance and Accuracy Considerations” for each grouping of subroutine
descriptions.

* Detailed performance information for selected subroutines can be found in
reference 35 on page 1085], [46 on page 1086, [[47 on page 1086].

Dealing with Errors when Using ESSL

At run time, you can encounter different types of errors or messages that are
related to the use of the ESSL subroutines:

* Program exceptions

¢ ESSL input-argument errors

* ESSL computational errors

* ESSL resource errors

* ESSL attention messages

There are specific ways to handle all these situations.

What Can You Do about Program Exceptions?

The program exceptions you can encounter in ESSL are described in the ANSI/IEEE
Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985.

What Can You Do about ESSL Input-Argument Errors?

This gives an overview on how you can handle input-argument errors.

All Input-Argument Errors

ESSL checks the validity of most input arguments. If it finds that any are invalid, it
issues the appropriate error messages. Also, except for the three recoverable errors
described below, it terminates your program. You should use standard
programming techniques to diagnose and fix unrecoverable input-argument errors,
as described in|Chapter 7, “Handling Problems,” on page 195

You can determine the input-argument errors that can occur in a subroutine by
looking under “Error Conditions” in each subroutine description. Error messages
for all input-argument errors are listed in [“Input-Argument Error]
Messages(2001-2099)” on page 200.|

Recoverable Errors 2015, 2030 and 2200 Can Return Updated
Values in the NAUX, N and NSINFO Arguments

For three input-argument errors, 2015, 2030, and 2200 in Fortran, C, and C++
programs, you have the option to continue running and have an updated value of
the input argument returned to your program for subsequent use. These are called
recoverable errors. This recoverable error-handling capability gives you flexibility
in determining the correct values for the arguments. You can:
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* Determine the correct size of an auxiliary work area by using error 2015. For
help in deciding whether you want to use this capability and details on how to
use it, see ["Using Auxiliary Storage in ESSL” on page 47|

* Determine the correct length of a transform by using error 2030. For help in
deciding whether you want to use this capability and details on how to use it,
see ["Providing a Correct Transform Length to ESSL” on page 54

* Determine the minimal size of the array AP for DBSTRF and DBSSV by using
error 2200. For help deciding whether you want to use this capability, see
“DBSTRF (Symmetric Indefinite Matrix Factorization)” on page 550 and |“DBSSV|
(Symmetric Indefinite Matrix Factorization and Multiple Right-Hand Side]
Solve)” on page 544

If you chose to leave errors 2015, 2030 and 2200 unrecoverable, you do not need to
make any coding changes to your program. The input-argument error message is
issued upon termination, containing the updated values you could have specified
for the program to run successfully. You then make the necessary corrections in
your program and rerun it.

If you choose to make errors 2015, 2030 and 2200 recoverable, you call the ERRSET
subroutine to set up the ESSL error exit routine, ENOTRM, and then call the ESSL
subroutine. When one or more of these errors occurs, the input-argument error
message is issued with the updated values. In addition, the updated values are
returned to your program in the input arguments named in the error message,
along with a nonzero return code and processing continues. Return code values
associated with these recoverable errors are described under “Error Conditions” for
each ESSL subroutine in Part 2.

For details on how to code the necessary statements in your program to make
2015, 2030 and 2200 recoverable, see the following:

* [“Input-Argument Errors in Fortran” on page 131|

* [“Input-Argument Errors in C” on page 148

* [“Input-Argument Errors in C++” on page 164|

What Can You Do about ESSL Computational Errors?

This gives an overview on how you can handle computational errors.

All Computational Errors
ESSL computational errors are errors occurring in the computational data, such as
in your vectors and matrices. You can determine the computational errors that can
occur in a subroutine by looking under “Error Conditions” in each subroutine
description. These errors cause your program to terminate abnormally unless you
take preventive action. A message is also provided in your output, containing
information about the error. Messages are listed in [“Computational Error]|
[Messages(2100-2199)” on page 205.

When a computational error occurs, you should assume that the results are
unpredictable. The result of the computation is valid only if no errors have
occurred. In this case, a zero return code is returned.

[Figure 8 on page 65 shows what happens when a computational error occurs.
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Figure 8. How to Obtain Computational Error Information from an Error Message, but Terminate

Recoverable Computational Errors Can Return Values Through
EINFO

In Fortran, C, and C++ programs, you have the capability to make certain
computational errors recoverable and have information returned to your program
about the errors. Recoverable computational errors are listed in
[Error Information-Handler Subroutine)” on page 1030.| First, you call EINFO in the
beginning of your program to initialize the ESSL error option table. You then call
ERRSET to reset the number of allowable errors for the computational error codes
in which you are interested. When a computational error occurs, a nonzero return
code is returned for each computational error. Return code values associated with
these errors are described under “Error Conditions” in each subroutine description.
Based on the return code, your program can branch to an appropriate statement to
call the ESSL error information-handler subroutine, EINFO, to obtain specific
information about the data involved in the error. This information is returned in
the EINFO output arguments, infl and, optionally, inf2. You can then check the
information returned and continue processing, if you choose. The syntax for
EINFO is described under ["EINFO (ESSL Error Information-Handler Subroutine)”]
You also get a message in your output for each computational error
encountered, containing information about the error. The EINFO subroutine
provides the same information in the messages as it provides to your program.

For details on how to code the necessary statements in your program to obtain
specific information on computational errors, see the following:

» |“Computational Errors in Fortran” on page 134|

* |“Computational Errors in C” on page 153

» |“Computational Errors in C++” on page 169
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Figure 9. How to Obtain Computational Error Information in an Error Message and in Your Program

What Can You Do about ESSL Resource Errors?

This gives an overview on how you can handle resource errors.

All Resource Errors

ESSL returns a resource error and terminates your program when an attempt to
allocate work area fails. Some ESSL subroutines attempt to allocate work area for
their internal use. Other ESSL subroutines attempt to dynamically allocate auxiliary
storage when a user requests it through calling sequence arguments, such as aux
and naux. For information on how you could reduce memory constraints on the
system or increase the amount of memory available before rerunning the
application program, see [“ESSL Resource Error Messages” on page 198

You can determine the resource errors that can occur in a subroutine by looking
under “Error Conditions” in each subroutine description. Error messages for all
resource errors are listed in [“Resource Error Messages(2400-2499)” on page 208

What Can You Do about ESSL Attention Messages?

This gives an overview on how you can handle attention messages.
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All Attention Messages

ESSL returns an attention message to describe a condition that occurred, however,
ESSL is able to continue processing. For information on how you could reduce
memory constraints on the system or increase the amount of memory available, see
[“ESSL Resource Error Messages” on page 198

For example, an attention message may be issued when enough work area was
available to continue processing, but was not the amount initially requested. An
attention message would be issued to indicate that performance may be degraded.

For a list of attention messages, see [“Informational and Attention Error|
Messages(2600-2699)” on page 208.|

How Do You Control Error Handling by Setting Values in the
ESSL Error Option Table?

This explains all aspects of using the ESSL error option table.

What Values Are Set in the ESSL Error Option Table?

The ESSL error option table contains information that tells ESSL what to do every
time it encounters an ESSL-generated error. shows the default values
established in the table when ESSL is installed.

Table 43. ESSL Error Option Table Default Values

Number of
Allowable Errors Number of Messages | Modifiable Table
Range of Error Messages (From-To) (ALLOW) Printed (PRINT) Entry (MODENT)
2538-2000 Unlimited 255 NO
2538-2001 through 2538-2073 Unlimited 255 YES
2538-2074 Unlimited 5 YES
2538-2075 through 2538-2098 Unlimited 255 YES
2538-2099 1 255 YES
2538-2100 through 2538-2101 1 255 YES
2538-2102 Unlimited 255 YES
2538-2103 through 2538-2113 1 255 YES
2538-2114 Unlimited 255 YES
2538-2115 through 2538-2122 1 255 YES
2538-2123 through 2538-2124 Unlimited 255 YES
2538-2125 through 2538-2126 1 255 YES
2538-2127 Unlimited 255 YES
2538-2128 through 2538-2137 1 255 YES
2538-2138 through 2538-2143 Unlimited 255 YES
2538-2144 through 2538-2145 1 255 YES
2538-2146 through 2538-2149 Unlimited 255 YES
2538-2150 1 255 YES
2538-2151 through 2538-2158 Unlimited 255 YES
2538-2159 through 2538-2198 1 255 YES
2538-2199 1 255 YES
2538-2200 through 2538-2299 Unlimited 255 YES
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Table 43. ESSL Error Option Table Default Values (continued)

Number of

Allowable Errors Number of Messages | Modifiable Table
Range of Error Messages (From-To) (ALLOW) Printed (PRINT) Entry (MODENT)
2538-2400 through 2538-2499 1 255 NO
2538-2600 through 2538-2609 Unlimited 255 NO
2538-2610 through 2538-2613 Unlimited -1 YES
2538-2614 through 2538-2699 Unlimited 255 NO
2538-2700 through 2538-2799 1 255 NO

How Can You Change the Values in the Error Option Table?

You can change any of the values in the ESSL error option table by calling the
ERRSET subroutine in your program. This dynamically changes values at run time.
You can also save and restore entries in the table by using the ERRSAV and
ERRSTR subroutines, respectively. For a description of the ERRSET, ERRSAV, and
ERRSTR subroutines see [Chapter 17, “Utilities,” on page 1029

When Do You Change the Values in the Error Option Table?
Because you can change the information in the error option table, you can control
what happens when any of the ESSL errors occur. There are a number of instances
when you may want to do this:

To Customize Your Error-Handling Environment: You may simply want to adjust
the number of times an error is allowed to occur before your program terminates.
You can use any of the capabilities available in ERRSET.

To Obtain Auxiliary Storage Sizes and Transform Lengths: You may want to
make ESSL input-argument error 2015 or 2030 recoverable, so ESSL returns
updated auxiliary storage sizes or transform lengths, respectively, to your program.
For a more detailed discussion, see [“What Can You Do about ESSI|
Input-Argument Errors?” on page 63]For how to use ERRSET to do this, see the
information specific to your programming language in [Chapter 4, “Coding Your|
[Program,” on page 123

To Obtain the Minimal Size of the Array AP for DBSTRF and DBSSV: You may
want to make ESSL input-argument error 2200 recoverable, so ESSL returns an
updated size to your program. For a more detailed discussion, see [“What Can You|
[Do about ESSL Input-Argument Errors?” on page 63 For how to use ERRSET to

do this, see the information specific to your programming language in
[“Coding Your Program,” on page 123

To Get More Information About a Computational Error: You may want ESSL to
return information about a computational error to your program. For a more
detailed discussion, see [“What Can You Do about ESSL Computational Errors?” onl|
For how to do use ERRSET to do this, see the information specific to your
programming language in [Chapter 4, “Coding Your Program,” on page 123

To Allow Parts of Your Application to Have Unique Error-Handling
Environments: If your program is part of a large application, you may want to
dynamically save and restore entries in the error option table that have been
altered by ERRSET. This ensures the integrity of the error option table when it is
used by multiple programs within an application. For a more detailed discussion,
see [‘'How Can You Control Error Handling in Large Applications by Saving and|
[Restoring Entries in the Error Option Table?” on page 69 For how to use ERRSAV
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and ERRSTR, see the information specific to your programming language in
[Chapter 4, “Coding Your Program,” on page 123

How Can You Control Error Handling in Large Applications by
Saving and Restoring Entries in the Error Option Table?

When your program is part of a larger application, you should consider that one of
the following can occur:

* If you use ERRSET in your program to reset any of the values in the error
option table for any of the ESSL input-argument errors or computational errors,
some other program in the application may be adversely affected. It may be
expecting its original values.

* If some other program in the application uses ERRSET to reset any of the values
in the error option table for any of the ESSL input-argument errors or
computational errors, your program may be adversely affected. You may need a
certain value in the error option table, and the application may have reset that
value.

These situations can be avoided if every program that uses ERRSET, in the large
application, also uses the ERRSAV and ERRSTR facilities. For a particular error
number, ERRSAV saves an entry from the error option table in an area accessible to
your program. ERRSTR then stores the entry back into the error option table from
the storage area. You code an ERRSAV and ERRSTR for each input-argument error
number and computational error number for which you do an ERRSET to reset the
values in the error option table. Call ERRSAV at the beginning of your program
after you call EINFO, and then call ERRSTR at the end of your program after all
ESSL computations are completed. This saves the original contents of the error
option table while your program is running with different values, and then restores
it to its original contents when your program is done. For details on how to code
these statements in your program, see [Chapter 4, “Coding Your Program,” on page|
123.

How does Error Handling Work in a Threaded Environment?

When your application program or the open MP library first creates a thread, ESSL
initializes the error option table information to the default settings shown in
[Values Are Set in the ESSL Error Option Table?” on page 67 You can change the
default settings for each thread you created by calling the appropriate error
handling subroutines (ERRSET, ERRSAV, or ERRSTR) from each thread. An
example of how to initialize the error option table and change the default settings
on multiple threads is shown in ["Example of Handling Errors in a Multithreaded|
[Application Program” on page 139.|

ESSL issues error messages as they occur in a threaded environment. Error
messages issued from any of the existing threads are written to standard output in
the order in which they occur.

When a terminating condition occurs on any of the existing threads (for example,
the number of allowable errors was exceeded), ESSL terminates your application
program. One set of summary information corresponding to the terminating thread
is always printed. Summary information corresponding to other threads may also
be printed.

Where Can You Find More Information on Errors?

Information about errors and how to handle them can be found in the following
places:
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* How to code your program to use the ESSL error-handling facilities is described
in|Chapter 4, “Coding Your Program,” on page 123

* All ESSL error messages are listed under [“Messages” on page 199,

* The errors and return codes associated with each ESSL subroutine are listed
under “Error Conditions” in each subroutine description.

* Complete diagnostic procedures for all types of ESSL programming and
documentation problems, along with how to collect information and report a
problem, are provided in |Chapter 7, “Handling Problems,” on page 195)
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Chapter 3. Setting Up Your Data Structures

This provides you with information that you need to set up your data structures,
consisting of vectors, matrices, and sequences. These techniques apply to programs
in all programming languages.

Concepts

Vectors, matrices, and sequences are conceptual data structures contained in arrays.
In many cases, ESSL uses stride or leading dimension to select the elements of the
vector, matrix, or sequence from an array. In other cases, ESSL uses a specific
mapping, or storage layout, that identifies the elements of the vector, matrix, or
sequence in an array, sometimes requiring several arrays to help define the
mapping. These elements selected from the array(s) make up the conceptual data
structure.

When you call an ESSL subroutine, it assumes that the data structure is set up
properly in the array(s) you pass to it. If it is not, your results are unpredictable.
ESSL also uses these same storage layouts for data structures passed back to your
program.

The use of the terms vector, matrix, and sequence here is consistent with standard
mathematical definitions, and their representations are consistent with conventions
used in mathematical texts.

Overlapping Data Structures: Most of the subroutines do not allow vectors,
matrices, or sequences to overlap. If this occurs, results are unpredictable. This
means the elements of the data structure cannot reside in the same storage
locations as any of the other data structures. It is possible, however, to have
elements of different data structures in the same array, as long as the elements are
interleaved through storage using strides greater than 1. For example, using
vectors x and y with strides of 2, where x starts at A(1) and y starts at A(2), the
elements reside in array A in the order xy, y;, X5, Y5, X3, Y3, ... and so forth.

When you use this technique, you should be careful that you specify different
starting locations for each data structure contained in the array.

Vectors

A vector is a one-dimensional, ordered collection of numbers. It can be a column
vector, which represents an 7 by 1 ordered collection, or a row vector, which
represents a 1 by n ordered collection.

The column vector appears symbolically as follows:
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A row vector appears symbolically as follows:

Vectors can contain either real or complex numbers. When they contain real
numbers, they are sometimes called real vectors. When they contain complex
numbers, they are called complex vectors.

Transpose of a Vector

The transpose of a vector changes a column vector to a row vector, or vice versa:

] ]
X, X
x X
73 T T _ |7
x=|. X = [x1 X, x3...xn] (x') =
_xn_ _x”l_

The ESSL subroutines use the vector as it is intended in the computation, as either
a column vector or a row vector; therefore, no movement of data is necessary.

In the examples provided with the subroutine descriptions in [Part 2, “Reference]
[Information,” on page 209/ both types of vectors are represented in the same way,
showing the elements of the array that make up the vector x, as follows:

(1.0, 2.0, 3.0, 4.0, 5.0, 6.0)

Conjugate Transpose of a Vector

The conjugate transpose of a vector x, containing complex numbers, is denoted by
x" and is expressed as follows:

H_ [= = = —
X —[x1 X, x3...xn]

=
Il
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Just as for the transpose of a vector, no movement of data is necessary for the
conjugate transpose of a vector.

Vector Storage Representation

A vector is usually stored within a one- or two-dimensional array. Its elements are
stored sequentially in the array, but not necessarily contiguously.

The location of the vector in the array is specified by the argument for the vector
in the ESSL calling sequence. It can be specified in a number of ways. For example,
if A is an array of length 12, and you want to specify vector x as starting at the first
element of array A, specify A as the argument, such as in:

X = SASUM (4,A,2)

where the number of elements to be summed in the vector is 4, the location of the
vector is A, and the stride is 2.

If you want to specify vector x as starting at element 3 in array A, which is
declared as A(1:12), specify:

X = SASUM (4,A(3),2)

If A is declared as A(-1:8), specify the following for element 3:
X = SASUM (4,A(1),2)

If A is a two-dimensional array and declared as A(1:4,1:10), and you want vector
x to start at the second row and third column of A, specify the following;:

X = SASUM (4,A(2,3),2)

The stride specified in the ESSL calling sequence is used to step through the array
to select the vector elements. The direction in which the vector elements are
selected from the array—that is, front to back or back to front—is indicated by the
sign (+ or -) of the stride. The absolute value of the stride gives the spacing
between each element selected from the array.

To calculate the total number of elements needed in an array for a vector, you can
use the following formula, which takes into account the number of elements, #, in
the array and the stride, inc, specified for the vector:

1+(n-1) linc|
An array can be much larger than the vector that it contains; that is, there can be

many elements following the vector in the array, as well as elements preceding
the vector.

For a complete description of how vectors are stored within arrays, see
Stride Is Used for Vectors” on page 74/

For a complex vector, a special storage arrangement is used to accommodate the
two parts, a and b, of each complex number (a+bi) in the array. For each complex
number, two sequential storage locations are required in the array. Therefore,
exactly twice as much storage is required for complex vectors and matrices as for
real vectors and matrices of the same precision. See [‘How Do You Set Up Your]|
Scalar Data?” on page 44| for a description of real and complex numbers, and
“How Do You Set Up Your Arrays?” on page 44|for a description of how real and
complex data is stored in arrays.
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How Stride Is Used for Vectors

The stride for a vector is an increment that is used to step through array storage to
select the vector elements from an array. To define exactly which elements become
the conceptual vector in the array, the following items are used together:

* The location of the vector within the array

* The stride for the vector

e The number of elements, n, to be processed

The stride can be positive, negative, or 0. For positive and negative strides, if you
specify vector elements beyond the range of the array, your results are be
unpredictable, and you may get program errors.

This explains how each of the three types of stride is used to select the vector
elements from the array.

Positive Stride

When a positive stride is specified for a vector, the location specified by the
argument for the vector is the location of the first element in the vector, element x;.
The vector is in forward order in the array: (x;, x5, ..., X,,). For example, if you
specify X(1) for vector x, where X is declared as X(0:12) and defined as:

X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0, 10.0, 11.0, 12.0, 13.0)
then processing begins at the second element in X, which is 2.0.

To find each successive element, the stride is added cumulatively to the starting
point of vector x in the array. In this case, the starting point is X(1). If the stride
specified for vector x is 3 and the number of elements to be processed is 4, then
the resulting elements selected from X for vector x are: X(1),X(4),X(7), and X(10).

Vector x is then:
(2.0, 5.0, 8.0, 11.0)

As shown in this example, a vector does not have to extend to the end of the array.
Elements are selected from the second to the eleventh element of the array, and the
array elements after that are not used.

This element selection can be expressed in general terms. Using BEGIN as the
starting point in an array X and inc as the stride, this results in the following
elements being selected from the array:

X(BEGIN)
X(BEGIN+inc)

X(BEGIN+(2)inc)
X(BEGIN+(3)inc)

X(BEGIN+(n-1)inc)

The following general formula can be used to calculate each vector element
position in a one-dimensional array:

x; = X(BEGIN + (i-1)(inc)) for i = 1, n
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When using an array with more than one dimension, you should understand how
the array elements are stored to ensure that elements are selected properly. For a
description of array storage, see [“Setting Up Arrays in Fortran” on page 124 You
should remember that the elements of an array are selected as they are arranged in
storage, regardless of the number of dimensions defined in the array. Stride is used
to step through array storage until # elements are selected. ESSL processing stops
at that point. For example, given the following two-dimensional array, declared as
A(1:7,1:4).

Matrix A is:
1.0 8.0 15.0 22.0
2.0 9.0 16.0 23.0
3.0 10.0 17.0 24.0
4.0 11.0 18.0 25.0
5.0 12.0 19.0 26.0
6.0 13.0 20.0 27.0
7.0 14.0 21.0 28.0

with A(3,1) specified for vector x, a stride of 2, and the number of elements to be
processed as 12, the resulting vector x is:

(3.0, 5.0, 7.0, 9.0, 11.0, 13.0, 15.0, 17.0, 19.0, 21.0, 23.0, 25.0)

This is not a conventional use of arrays, and you should be very careful when
using this technique.

Zero Stride

When a zero stride is specified for a vector, the starting point for the vector is the
only element used in the computation. The starting point for the vector is at the
location specified by the argument for the vector, just as though you had specified
a positive stride. For example, if you specify X for vector x, where X is defined as:

X = (5.0, 4.0, 3.0, 2.0, 1.0)

and you specify the number of elements, 1, to be processed as 6, then processing
begins at the first element, which is 5.0. This element is used for each of the six
elements in vector x.

This makes the conceptual vector x appear as:
(5.0, 5.0, 5.0, 5.0, 5.0, 5.0)

The following general formula shows how to calculate each vector position in a
one-dimensional array:

x, = X(BEGIN) for i = 1, n

Negative Stride

When a negative stride is specified for a vector, the location specified for the vector
is actually the location of the last element in the vector. In other words, the vector
is in reverse order in the array: (x,, x,.1, ..., X;). You specify the end of the vector,
(x,). ESSL then calculates where the starting point (x;) is by using the following
arguments:

* The location of the vector in the array
e The stride for the vector, inc
¢ The number of elements, n, to be processed
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If you specify vector x at location X(BEGIN) in array X with a negative stride of inc
and 7 elements to be processed, then the following formula gives the starting point
of vector x in the array:

X(BEGIN + (-n+1)(inc))

For example, if you specify X(2) for vector x, where X is declared as X(1:9) and
defined as:

X = (1.0, 2.0, 3.0, 4.0, 5.0, 6.0, 7.0, 8.0, 9.0)

and if you specify a stride of -2, and four elements to be processed, processing
begins at the following element in X:

X(2+(-4+1)(-2)) = X(8)
where element X(8) is 8.0.

To find each of the n successive element positions in the array, you successively
add the stride to the starting point n-1 times. Suppose the formula calculated a
starting point of X(SP); the elements selected are:

X(SP)
X(SP+inc)
X(SP+(2)inc)
X(SP+(3)inc)

;((S P+(n-1)inc)

In the above example, the resulting elements selected from X for vector x are X(8),
X(6), X(4), and X(2). This makes the resulting vector x appear as follows:

(8.0, 6.0, 4.0, 2.0)

The following general formula can be used to calculate each vector element
position in a one-dimensional array:

x; = X(BEGIN + (-n+i)(inc)) for i = 1, n

Sparse Vector

A sparse vector is a vector having a relatively small number of nonzero elements.

Consider the following as an example of a sparse vector x with #n elements, where
n is 11, and vector x is:

(0.0, 0.0, 1.0, 0.0, 2.0, 3.0, 0.0, 4.0, 0.0, 5.0, 0.0)

In Storage

There are two storage modes that apply to sparse vectors: full-vector storage mode
and compressed-vector storage mode. When a sparse vector is stored in full-vector
storage mode, all its elements, including its zero elements, are stored in an array.

For example, sparse vector x is stored in full-vector storage mode in a
one-dimensional array X, as follows:

X = (0.0, 0.0, 1.0, 0.0, 2.0, 3.0, 0.0, 4.0, 0.0, 5.0, 0.0)
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When a sparse vector is stored in compressed-vector storage mode, it is stored
without its zero elements. It consists of two one-dimensional arrays, each with a
length of nz, where nz is the number of nonzero elements in vector x:

* The first array contains the nonzero elements of the sparse vector x, stored
contiguously within the array.

Note: The ESSL subroutines do not check that all elements are nonzero. You do
not get an error if any elements are zero.

* The second array contains a sequence of integers indicating the element
positions (indices) of the nonzero elements of the sparse vector x stored in
full-vector storage mode. This is referred to as the indices array.

For example, the sparse vector x shown above might have its five nonzero
elements stored in ascending order in array X of length 5, as follows:

X = (1.0, 2.0, 3.0, 4.0, 5.0)

in which case, the array of indices, INDX, also of length 5, contains:
INDX = (3, 5, 6, 8, 10)

If the sparse vector x has its elements stored in random order in the array X as:
X = (5.0, 3.0, 4.0, 1.0, 2.0)

then the array INDX contains:
INDX = (16, 6, 8, 3, 5)

In general terms, this storage technique can be expressed as follows:
For each x # 0, forj=1,n

there exists i, where 1 =i = nz,

such that X(i) = x; and INDX()) = j.

where:

Xy, ..., X, are the n elements of sparse vector x, stored in full-vector storage mode.

X is the array containing the nz nonzero elements of sparse vector x; that is, vector
x is stored in compressed-vector storage mode.

INDX is the array containing the nz indices indicating the element positions.
To avoid an error when using the INDX array to access the elements in any other

target vector, the length of the target vector must be greater than or equal to
max(INDX(7)) for i = 1, nz.

Matrices

A matrix, also referred to as a general matrix, is an m by n ordered collection of
numbers. It is represented symbolically as:
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ml

where the matrix is named A and has m rows and n columns. The elements of the
matrix are 4y, wherei =1, mandj=1, n.

Matrices can contain either real or complex numbers. Those containing real
numbers are called real matrices; those containing complex numbers are called
complex matrices.

Transpose of a Matrix

mn

The transpose of a matrix A is a matrix formed from A by interchanging the rows
and columns such that row 7 of matrix A becomes column i of the transposed
matrix. The transpose of A is denoted by A”. Each element 4;; in A becomes
element a;; in A'.If A is an m by n matrix, then A" is an n by m matrix. The
following represents a matrix and its transpose:

n* * " "mn

ESSL assumes that all matrices are stored in untransformed format, such as matrix
A shown above. No movement of data is necessary in your application program
when you are processing transposed matrices. The ESSL subroutines adjust their
selection of elements from the matrix when an argument in the calling sequence
indicates that the transposed matrix is to be used in the computation. Examples of
this are the transa and transb arguments specified for SGEADD, matrix addition.

Conjugate Transpose of a Matrix

mn

The conjugate transpose of a matrix A, containing complex numbers, is denoted by
A" and is expressed as follows:

all . . .aml

A =

ay, - - -y,

Just as for the transpose of a matrix, the conjugate transpose of a matrix is stored
in untransformed format. No movement of data is necessary in your program.

Matrix Storage Representation

A matrix is usually stored in a two-dimensional array. Its elements are stored
successively within the array. Each column of the matrix is stored successively in
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the array. The leading dimension argument is used to select the matrix elements
from each successive column of the array. The starting point of the matrix in the
array is specified as the argument for the matrix in the ESSL calling sequence. For
example, if matrix A is contained in array A and starts at the first element in the
first row and first column of A, you should specify A as the argument for matrix A,
such as in:

CALL SGEMX (5,2,1.0,A,6,X,1,Y,1)

where, in the matrix-vector product, the number of rows in matrix A is 5, the
number of columns in matrix A is 2, the scaling constant is 1.0, the location of the
matrix is A, the leading dimension is 6, the vectors used in the matrix-vector
product are X and Y, and their strides are 1.

If matrix A is contained in the array BIG, declared as BIG(1:20,1:30), and starts at
the second row and third column of BIG, you should specify BIG(2,3) as the
argument for matrix A, such as in:

CALL SGEMX (5,2,1.0,BIG(2,3),6,X,1,Y,1)

See [“How Leading Dimension Is Used for Matrices”| for a complete description of
how matrices are stored within arrays.

For a complex matrix, a special storage arrangement is used to accommodate the
two parts, a and b, of each complex number (a+bi) in the array. For each complex
number, two sequential storage locations are required in the array. Therefore,
exactly twice as much storage is required for complex matrices as for real matrices
of the same precision. See [“How Do You Set Up Your Scalar Data?” on page 44| for
a_description of real and complex numbers, and [“How Do You Set Up Your|
|Arrays?” on page 44| for a description of how real and complex data is stored in
arrays.

How Leading Dimension Is Used for Matrices

The leading dimension for a two-dimensional array is an increment that is used to
find the starting point for the matrix elements in each successive column of the
array. To define exactly which elements become the conceptual matrix in the array,
the following items are used together:

* The location of the matrix within the array

* The leading dimension

¢ The number of rows, m, to be processed in the array

* The number of columns, 7, to be processed in the array

The leading dimension must always be positive. It must always be greater than or
equal to m, the number of rows in the matrix to be processed. For an array, A,
declared as A(E1:E2,F1:F2), the leading dimension is equal to:

(E2-E1+1)

The starting point for selecting the matrix elements from the array is at the location
specified by the argument for the matrix in the ESSL calling sequence. For
example, if you specify A(3,0) for a 4 by 4 matrix A, where A is declared as
A(1:7,0:4):

[oNoNo N
— O W o

B wWw N
— =
[cNoNoNo)
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then processing begins at the element at row 3 and column 0 in array A, which is
3.0.

The leading dimension is used to find the starting point for the matrix elements in
each of the n successive columns in the array. ESSL subroutines assume that the
arrays are stored in column-major order, as described under ["How Do You Set Up|
[Your Arrays?” on page 44,and they add the leading dimension (times the size of
the element in bytes) to the starting point. They do this n-1 times. This finds the
starting point in each of the n columns of the array.

In the above example, the leading dimension is:
E2-E1+1 = 7-1+1 = 7

If the number of columns, 1, to be processed is 4, the starting points are: A(3,0),
A(3,1), A(3,2), and A(3,3). These are elements 3.0, 10.0, 17.0, and 24.0 for a,;, 4,5,
a3, and a,,, respectively.

In general terms, this results in the following starting positions of each column in
the matrix being calculated as follows:

A(BEGINI, BEGINJ)
A(BEGINI, BEGINJ+1)
A(BEGINI, BEGINJ+2)

A(BEGINI, BEGINJ+n-1)

To find the elements in each column of the array, 1 is added successively to the
starting point in the column until m elements are selected. This is why the leading
dimension must be greater than or equal to m; otherwise, you go past the end of
each dimension of the array. In the above example, if the number of elements, m,
to be processed in each column is 4, the following elements are selected from array
A for the first column of the matrix: A(3,0), A(4,0), A(5,0), and A(6,0). These
are elements 3.0, 4.0, 5.0, and 6.0, corresponding to the matrix elements a,;, a,,, a3,
and ay,, respectively.

Column element selection can also be expressed in general terms. Using
A(BEGINI,BEGINJ) as the starting point in the array, this results in the following
elements being selected from each column in the array:

A(BEGINI, BEGINJ)

A(BEGINI+1, BEGINJ)
A(BEGINI+2, BEGINJ)

A(BEGINI+m-1, BEGINJ)
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Combining this with the technique already described for finding the starting point
in each column of the array, the resulting matrix in the example is:

30 100 17.0 240
40 11.0 18.0 250
50 120 19.0 260
6.0 13.0 200 27.0

As shown in this example, a matrix does not have to include all columns and rows
of an array. The elements of matrix A are selected from rows 3 through 6 and
columns 0 through 3 of the array. Rows 1, 2, and 7 and column 4 of the array are
not used.

Symmetric Matrix

a; dy dsp - -

ay dy Ay
Qs  ds; ds;

nl

The matrix A is symmetric if it has the property A = AT which means:

e It has the same number of rows as it has columns; that is, it has n rows and n
columns.

¢ The value of every element a; on one side of the main diagonal equals its mirror

image a; on the other side: g; =a; for1sisnand 1=j=n.

The following matrix illustrates a symmetric matrix of order #; that is, it has n
rows and n columns. The subscripts on each side of the diagonal appear the same
to show which elements are equal:

Gy |

-a,,

Symmetric Matrix Storage Representation
The four storage modes used for storing symmetric matrices are described in the
following:

+ [“Lower-Packed Storage Mode”|
+ |“Upper-Packed Storage Mode” on page 83|

* [“Lower Storage Mode” on page 84|

* [“Upper Storage Mode” on page 85|

The storage technique you should use depends on the ESSL subroutine you are
using.

Lower-Packed Storage Mode: When a symmetric matrix is stored in
lower-packed storage mode, the lower triangular part of the symmetric matrix is
stored, including the diagonal, in a one-dimensional array. The lower triangle is
packed by columns. (This is equivalent to packing the upper triangle by rows.) The
matrix is packed sequentially column by column in n(n+1)/2 elements of a
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one-dimensional array. To calculate the location of each element 4; of matrix A in

an array, AP, using the lower triangular packed technique, use the following
formula:

APGi + (2n-)(j-1)/2)) = a;  where i = j

This results in the following storage arrangement for the elements of a symmetric
matrix A in an array AP:

AP(1) = ay, (start the first column)

AP(2) =a,
AP (3) = 6131
AP(n) =a,
AP(n+1)
= a,, (start the second column)
AP(1n+2)
=ds
AP(2n-1)
=
AP(2n) = ay; (start the third column and so forth)
AP(2n+1)
=0y
AP(n(n+1)/2)
=a

nn

Following is an example of a symmetric matrix that uses the element values to
show the order in which the matrix elements are stored in the array.

Given the following matrix A:

12 3 4 5
26 7 8 9
3 7 10 11 12
4 8 11 13 14
5 9 12 14 15

the array is:
AP = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)
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Note: Additional work storage is required in the array for some ESSL subroutines;
for example, in the simultaneous linear algebraic equation subroutines SPPF, DPPF,
SPPS, and DPPS. See the description of those subroutines in [Part 2, “Reference]
[nformation,” on page 209|for details.

Following is an example of how to transform your symmetric matrix to
lower-packed storage mode:

K=0
DO 1 J=1,N
DO 2 I=J,N
K = K+1
AP(K)=A(I,J)
2 CONTINUE
1 CONTINUE

Upper-Packed Storage Mode: When a symmetric matrix is stored in
upper-packed storage mode, the upper triangular part of the symmetric matrix is
stored, including the diagonal, in a one-dimensional array. The upper triangle is
packed by columns. (This is equivalent to packing the lower triangle by rows.) The
matrix is packed sequentially column by column in n(n+1)/2 elements of a
one-dimensional array. To calculate the location of each element 4; of matrix A in
an array AP using the upper triangular packed technique, use the following
formula:

AP(i+(j(i-1)/2)) = a;  where j = i

This results in the following storage arrangement for the elements of a symmetric
matrix A in an array AP:

AP(1) = ay, (start the first column)

AP(2) = ay, (start the second column)
AP(3) =4y

AP(4) = ay; (start the third column)
AP(5) =y,

AP(6) =a,,

AP(7) = ay, (start the fourth column)

AP(j(j-1)/2+1)
= ay; (start the j-th column)

AP(j(j-1)/2+2)
= 1;[2],

AP(j(j-1)/2+3)
= a3].
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AP(i(j-1)/2+))
= a; (end of the j-th column)

AP(n(n+1)/2)

=

Following is an example of a symmetric matrix that uses the element values to
show the order in which the matrix elements are stored in the array. Given the
following matrix A:

N BEN -
N 0O O WwN
w o oo~
S O wvw oo
(=
w

the array is:
AP = (1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14, 15)

Following is an example of how to transform your symmetric matrix to
upper-packed storage mode:

K=0
DO 1 J=1,N
D0 2 I=1,J
K = K+1
AP(K)=A(I,J)
2 CONTINUE
1 CONTINUE

Lower Storage Mode: When a symmetric matrix is stored in lower storage mode,
the lower triangular part of the symmetric matrix is stored, including the diagonal,
in a two-dimensional array. These elements are stored in the array in the same way
they appear in the matrix. The upper part of the matrix is not required to be stored
in the array.

Following is an example of a symmetric matrix A of order 5 and how it is stored in
an array AL.

Given the following matrix A:

1 2 3 4 5
26 7 8 9
3 7 10 11 12
4 8 11 13 14
5 9 12 14 15

the array is:

N

[=)]
*
*

AL

"
w
~
—_
(<]

*
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| 4 8 11 13 = |
[5912 14 15J

"y
*

where means you do not have to store a value in that position in the array.
However, these storage positions are required.

Upper Storage Mode: When a symmetric matrix is stored in upper storage mode,
the upper triangular part of the symmetric matrix is stored, including the diagonal,
in a two-dimensional array. These elements are stored in the array in the same way
they appear in the matrix. The lower part of the matrix is not required to be stored
in the array.

Following is an example of a symmetric matrix A of order 5 and how it is stored in
an array AU.

Given the following matrix A:

3 4 5
7 8 9

11 13 14
12 14 15

Ol WN =
O 00 N O
—

(<]

—

—

—
nN

the array is:

1 2 3 4 5
= 6 7 8 9
AU = * * 10 11 12
* x *x 13 14
*  * * * 15

o

where “*” means you do not have to store a value in that position in the array.
However, these storage positions are required.

Positive Definite or Negative Definite Symmetric Matrix

A real symmetric matrix A is positive definite if and only if xTAx is positive for all
nonzero vectors x.

A real symmetric matrix A is negative definite if and only if x"Ax is negative for all
nonzero vectors x.

Positive Definite or Negative Definite Symmetric Matrix Storage
Representation

The positive definite or negative definite symmetric matrix is stored in the same
way the symmetric matrix is stored. For a description of this storage technique, see
[“Symmetric Matrix” on page 81/

Symmetric Indefinite Matrix

A real symmetric matrix A is indefinite if and only if (x"Ax) (A y'Ay) < 0 for some
non-zero vectors x and y.
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Symmetric Indefinite Matrix Storage Representation
The symmetric indefinite matrix is stored in the same way the symmetric matrix is
stored. For a description of this storage technique, see [’Symmetric Matrix” on page|

Complex Hermitian Matrix

A complex matrix is Hermitian if it is equal to its conjugate transpose:

H = HY

Complex Hermitian Matrix Storage Representation
The complex Hermitian matrix is stored using the same four techniques used for
symmetric matrices:

* Lower-packed storage mode, as described in[“Lower-Packed Storage Mode” on|
(The complex Hermitian matrix is not symmetric; therefore,
lower-packed storage mode is not equivalent to packing the upper triangle by
rows, as it is for a symmetric matrix.)

* Upper-packed storage mode, as described in [“Upper-Packed Storage Mode” onl
(The complex Hermitian matrix is not symmetric; therefore,

upper-packed storage mode is not equivalent to packing the lower triangle by
rows, as it is for a symmetric matrix.)

* Lower storage mode, as described in|“Lower Storage Mode” on page 84.

* Upper storage mode, as described in[“Upper Storage Mode” on page 85/

Following is an example of a complex Hermitian matrix H of order 5.
Given the following matrix H:

(11, 0) (21, -1) (31, 1) (41, -1) (51, -1)
(21, 1) (22, 0) (32, -1) (42, -1) (52, 1)
(31, -1) (32, 1) (33, 0) (43, -1) (53, -1)
(41, 1) (42, 1) (43, 1) (44, 0) (54, -1)
(519 1) (52: _1) (539 1) (54: 1) (553 0)

it is stored in a one-dimensional array, HP, in n(n+1)/2 = 15 elements as follows:
* In lower-packed storage mode:

HP = ((119 *)s (21, l)s (319 _l)s (419 1)9 (519 1)9
(22, =), (32, 1), (42, 1), (52, -1), (33, *),
(43, 1), (53, 1), (44, *), (54, 1), (55, *))

* In upper-packed storage mode:

HP = ((11, *), (21, -1), (22, *), (31, 1), (32, -1),
(333 *)s (419 '1)3 (429 '1)s 433 '1)9 (443 *)s
(519 '1)9 (529 1)9 (539 '1)9 (549 '1)9 (559 *))

or it is stored in a two-dimensional array, HP, as follows:

* In lower storage mode:

(11, =) * * * *

(21, 1) (22, =) = * *

HP = (31, -1) (32, 1) (33, %) * *
(41, 1) (42, 1) (43, 1) (44, »*) *

5,

(513 1) (529 _1) (53: 1) (549 1) (5 *)

* In upper storage mode
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(11, *) (21, -1) (31, 1) (41, -1) (51, -1)

* (22, =) (32, -1) (42, -1) (52, 1)
HP = * * (33, =*) (43, -1) (53, -1)
* * * (449 *) (54: _1)
* * * * (55, =*)

7

where “*” means you do not have to store a value in that position in the array.
The imaginary parts of the diagonal elements of a complex Hermitian matrix are
always 0, so you do not need to set these values. The ESSL subroutines always
assume that the values in these positions are 0.

Positive Definite or Negative Definite Complex Hermitian
Matrix

A complex Hermitian matrix A is positive definite if and only if x"Ax is positive
for all nonzero vectors x.

A complex Hermitian matrix A is negative definite if and only if x"'Ax is negative
for all nonzero vectors x.

Positive Definite or Negative Definite Complex Hermitian Matrix
Storage Representation

The positive definite or negative definite complex Hermitian matrix is stored in the
same way the complex Hermitian matrix is stored. For a description of this storage
technique, see [“Complex Hermitian Matrix” on page 86|

Positive Definite or Negative Definite Symmetric Toeplitz
Matrix

a ay, dzp -
ay dyy dyy -

as;dyy Ay

nl

- Q3147 Ay |

A positive definite or negative definite symmetric matrix A of order # is also a
Toeplitz matrix if and only if:

@G = Aijq fori=2nandj=2n
The elements on each diagonal of the Toeplitz matrix have a constant value. For
the definition of a positive definite or negative definite symmetric matrix, see
[“Positive Definite or Negative Definite Symmetric Matrix” on page 85.|

The following matrix illustrates a symmetric Toeplitz matrix of order n; that is, it
has n rows and #n columns:

anlw

as,
. Qy,

A symmetric Toeplitz matrix of order n is represented by a vector x of length n
containing the elements of the first column of the matrix (or the elements of the
first row), such that x; = a; for i = 1, n.
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The following vector represents the matrix A shown above:

Positive Definite or Negative Definite Symmetric Toeplitz Matrix
Storage Representation

The elements of the vector x, which represent a positive definite symmetric
Toeplitz matrix, are stored sequentially in an array. This is called
packed-symmetric-Toeplitz storage mode. Following is an example of a positive
definite symmetric Toeplitz matrix A and how it is stored in an array X.

Given the following matrix A:

99 12 13 14 15 16
12 99 12 13 14 15
13 12 99 12 13 14
14 13 12 99 12 13
15 14 13 12 99 12
16 15 14 13 12 99

the array is:
X = (99, 12, 13, 14, 15, 16)

Positive Definite or Negative Definite Complex Hermitian
Toeplitz Matrix

A positive definite or negative definite complex Hermitian matrix A of order # is
also a Toeplitz matrix if and only if:

@j = Aiqjq fori=2 nandj=2n

The real part of the diagonal elements of the Toeplitz matrix must have a constant

value. The imaginary part of the diagonal elements must be zero.

For the definition of a positive definite of negative definite complex Hermitian
matrix, see [‘Positive Definite or Negative Definite Complex Hermitian Matrix” on|

|Eage 87.|

The following matrix illustrates a complex Hermitian Toeplitz matrix of order #;
that is, it has n rows and n columns:
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Ay di3 -
app dyy dyp -

aj3dyp Ay

- Ay3ayp Ay |

ap;

A complex Hermitian Toeplitz matrix of order n is represented by a vector x of
length n containing the elements of the first row of the matrix.

The following vector represents the matrix A shown above.

Positive Definite or Negative Definite Complex Hermitian Toeplitz
Matrix Storage Representation

The elements of the vector x, which represent a positive definite complex
Hermitian Toeplitz matrix, are stored sequentially in an array. This is called
packed-Hermitian-Toeplitz storage mode. Following is an example of a positive
definite complex Hermitian Toeplitz matrix A and how it is stored in an array X.

Given the following matrix A:

(10.0, 0.0) (2.0, -3.0) (-3.0, 1.0) (1.0, 1.0)

(2.0, 3.0) (l0.0, 0.0) (2.0, -3.0) (-3.0, 1.0)
(-3.0, -1.0) (2.0, 3.0) (10.0, 0.0) (2.0, -3.0)
(1.0, -1.0) (-3.0, -1.0) (2.0, 3.0) (l0.0, 0.0)

the array is:
X = ((10.0, 0.0), (2.0, -3.0), (-3.0, 1.0), (1.0, 1.0))

Triangular Matrix

There are two types of triangular matrices: upper triangular matrix and lower
triangular matrix. Triangular matrices have the same number of rows as they have
columns; that is, they have n rows and n columns.

A matrix U is an upper triangular matrix if its nonzero elements are found only in
the upper triangle of the matrix, including the main diagonal; that is:

u; =0

i ifi>7j

A matrix L is an lower triangular matrix if its nonzero elements are found only in
the lower triangle of the matrix, including the main diagonal; that is:

Ii =0

i ifi <j
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_un Uy Uiz
0wy uy;
0 0 uy

0

1 Upp Uz
0 1 wuy
00 1

0

The following matrices, U and L, illustrate upper and lower triangular matrices of
order n, respectively:

u, I, 0 0 0 |
121 122 0
131 132 133
L =
. 0
O unn_ _lnl lnn_

A unit triangular matrix is a triangular matrix in which all the diagonal elements
have a value of one; that is:

* For an upper triangular matrix, u; = 1if i = j.
* For an lower triangular matrix, [; = 1if i = j.

The following matrices, U and L, illustrate upper and lower unit real triangular
matrices of order n, respectively:

i 10 0 i
L, 0
31 1

uln

1
h

—_o

n

Triangular Matrix Storage Representation

The four storage modes used for storing triangular matrices are described in the
following:

* [“Upper-Triangular-Packed Storage Mode”|

+ |[“Lower-Triangular-Packed Storage Mode” on page 91|

+ |“Upper-Triangular Storage Mode” on page 91|

* [“Lower-Triangular Storage Mode” on page 92|

It is important to note that because the diagonal elements of a unit triangular
matrix are always one, you do not need to set these values in the array for these
four storage modes. ESSL always assumes that the values in these positions are
one.

Upper-Triangular-Packed Storage Mode: When an upper-triangular matrix is
stored in upper-triangular-packed storage mode, the upper triangle of the matrix is
stored, including the diagonal, in a one-dimensional array. The upper triangle is
packed by columns. The elements are packed sequentially, column by column, in
n(n+1)/2 elements of a one-dimensional array. To calculate the location of each
element of the triangular matrix in the array, use the technique described in
[“Upper-Packed Storage Mode” on page 83.|
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Following is an example of an upper triangular matrix U of order 5 and how it is
stored in array UP. It uses the element values to show the order in which the
elements are stored in the one-dimensional array.

Given the following matrix U:

1 2 4 7 11
6 3 5 8 12
6 066 9 13
06 0 0 10 14
6 060 0 15

the array is:
up=(1, 2,3, 4,5,6, 7,8,9, 10, 11, 12, 13, 14, 15)

Lower-Triangular-Packed Storage Mode: When a lower-triangular matrix is
stored in lower-triangular-packed storage mode, the lower triangle of the matrix is
stored, including the diagonal, in a one-dimensional array. The lower triangle is
packed by columns. The elements are packed sequentially, column by column, in
n(n+1)/2 elements of a one-dimensional array. To calculate the location of each
element of the triangular matrix in the array, use the technique described in
[“Lower-Packed Storage Mode” on page 81|

Following is an example of a lower triangular matrix L of order 5 and how it is
stored in array LP. It uses the element values to show the order in which the
elements are stored in the one-dimensional array.

Given the following matrix L:

10 06 0 0
2 6 0 0 O
37 10 0 0
4 8 11 13 0
5 9 12 14 15

the array is:

Lp=(1, 2,3, 4,5,6, 7, 8,9, 10, 11, 12, 13, 14, 15)
Upper-Triangular Storage Mode: A triangular matrix is stored in upper-triangular
storage mode in a two-dimensional array. Only the elements in the upper triangle

of the matrix, including the diagonal, are stored in the upper triangle of the array.

Following is an example of an upper triangular matrix U of order 5 and how it is
stored in array UTA.

Given the following matrix U:

2 13 14 15

0 0 44 45

1
0
06 0 33 34 35
0
6 06 0 0 55

the array is:
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12 13 14 15
22 23 24 25
* 33 34 35
* % 44 45
* * * bh

UTA =

* ok ok Sk

"

where “*” means you do not have to store a value in that position in the array.
Lower-Triangular Storage Mode: A triangular matrix is stored in lower-triangular
storage mode in a two-dimensional array. Only the elements in the lower triangle

of the matrix, including the diagonal, are stored in the lower triangle of the array.

Following is an example of a lower triangular matrix L of order 5 and how it is
stored in array LTA.

Given the following matrix L:

1 0 06 0 0
21 .22 6 0 0
31 32 33 0 0
41 42 43 44 0O
51 52 53 54 55
the array is:
11 * * * *
21 22 x  x %
LTA = | 31 32 33 = =
41 42 43 44«

51 52 53 54 55

"y
*

where means you do not have to store a value in that position in the array:.

General Band Matrix

A general band matrix has its nonzero elements arranged uniformly near the
diagonal, such that:

a; =0 if (i-j) > ml or (j-i) > mu

where ml and mu are the lower and upper band widths, respectively, and ml+mu+1
is the total band width.

The following matrix illustrates a square general band matrix of order 1, where the
band widths are ml = g-1 and mu = p-1:
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|« mu — |

anay, a3 - a0 .0
Qy Ay Ay . 0
Qs dsz; Az .0

0. .0. .. a

nn

Some special types of band matrices are:

* Tridiagonal matrix: ml = mu =1

* 9-diagonal matrix: ml = mu = 4

The following two matrices illustrate m by n rectangular general band matrices,
where the band widths are ml = g-1 and mu = p-1. For both matrices, the leading

diagonal is ayy, a4y, as3, ..., a,,. Following is a general band matrix with m > n:

« mu —> |
.a,0. .0

apdp diz - P
Ay Ay Ay . 0
Qs dszp Az .0

nn

mn

Following is a general band matrix with m < n:
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|« mu — |

ayap ajz - - 4,0 . 0
| 92192 A3 -0
T | as a5, ass
ml 0
— |ag .
0 . 0
0 .
. 0 .
L 0 nn * a}ﬂn

General Band Matrix Storage Representation
The two storage modes used for storing general band matrices are described in the
following:

+ |“General-Band Storage Mode”]
+ |“BLAS-General-Band Storage Mode” on page 96|

General-Band Storage Mode: (This storage mode is used only for square
matrices.) Only the band elements of a general band matrix are stored for
general-band storage mode. Additional storage must also be provided for fill- in.
General-band storage mode packs the matrix elements by columns into a
two-dimensional array, such that each diagonal of the matrix appears as a row in
the packed array.

For a matrix A of order n with band widths ml and mu, the array must have a
leading dimension, Ida, greater than or equal to 2ml+mu+16. The size of the second
dimension must be (at least) 1, the number of columns in the matrix.

Using array AGB, which is declared as AGB(2ml+mu+16, n), the columns of elements
in matrix A are stored in each column in array AGB as follows, where 4 is stored at
AGB(ml+mu+1, 1):
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AGB

-l 3 >l

mu

—> | =l

—l

%
*
alp a2,p+1 . . . . anfmu,n
i3
app
a}’l}’l
*
aq+1,2 aq+mu,p . an,n—ml
*
where “*” means you do not store an element in that position in the array.

In the ESSL subroutine computation, some of the positions in the array indicated
by an “*” are used for fill- in. Other positions may not be accessed at all.
Following is an example of a band matrix A of order 9 and band widths of ml = 2
and mu = 3.

Given the following matrix A:

11 12 13 14 06 0 0 0
21 22 23 24 25 0O 0O O
31 32 33 34 35 36 0 0
0 42 43 44 45 46 47 0

[oNoNoNONo]

you store it in general-band storage mode in a 23 by 9 array AGB as follows, where
ay, is stored in AGB(6,1):

* * * * * * *

*
* * * * * * * *
*

12 23 34 45 56 67 78 89
22 33 44 55 66 77 88 99

*
*
*
x o« 13 24 35 46 57 68 79
*
1
1 32 43 54 65 76 87 98
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S
N
()]
w
(@]
>
~
[oe]
(o))
O

AGB =

L R N R N R
L R SR R N
LR R R R R R R N
LG R G R R I R
ok % X X ok 3k X X X * X X X X O
L R B R T S R
L R N A e e B N e R N |
L R I R R R
L R I G R R N

Following is an example of how to transform your general band matrix, of order n,
to general-band storage mode:
MD=ML+MU+1
DO 1 J=1,N
DO 1 I=MAX(J-MU,1),MIN(J+ML,N)
AGB(I-J+MD,J)=A(I,J)
1 CONTINUE

BLAS-General-Band Storage Mode: (This storage mode is used for both square
and rectangular matrices.) Only the band elements of a general band matrix are
stored for BLAS-general-band storage mode. The storage mode packs the matrix
elements by columns into a two-dimensional array, such that each diagonal of the
matrix appears as a row in the packed array.

For an m by n matrix A with band widths m! and mu, the array AGB must have a
leading dimension, Ida, greater than or equal to ml+mu+1. The size of the second
dimension must be (at least) n, the number of columns in the matrix.

Using the array AGB, which is declared as AGB(ml+mu+1, n), the columns of
elements in matrix A are stored in each column in array AGB as follows, where a;; is
stored at AGB(mu+1, 1):

n -
* Aip A2 pyi
a3
din
Ayi12
where “*” means you do not store an element in that position in the array. These

positions are not accessed by ESSL. Unused positions in the array always occur in
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the upper left triangle of the array, but may not occur in the lower right triangle
of the array, as you can see from the examples given here.

Following is an example where m > 1, and general band matrix A is 9 by 8 with
band widths of ml = 2 and mu = 3.

Given the following matrix A:

11 12 13 14 06 06 0 0
21 22 23 24 25 0O 0O O
31 32 33 34 35 36 0 0
0 42 43 44 45 46 47 0O
0 53 54 55 56 57 58
0 64 65 66 67 68
06 0 75 76 77 78
06 0 0 8 87 88
6 0 06 0 97 98

you store it in array AGB, declared as AGB(6,8), as follows, where a,; is stored in
AGB(4,1):

* o« o« 14 25 36 47 58
* *« 13 24 35 46 57 68
AGB = * 12 23 34 45 56 67 78
11 22 33 44 55 66 77 88
21 32 43 54 65 76 87 98
31 42 53 64 75 86 97

Following is an example where m < 1, and general band matrix A is 7 by 9 with
band widths of m/ = 2 and mu = 3.

Given the following matrix A:

11 12 13 14 06 0 ©
21 22 23 24 25 0O O
31 32 33 34 35 36 O
0 42 43 44 45 46 47
0 0 53 54 55 56 57

06 0 0 64 65 66 67 68 69
6 06 06 0 75 76 77 78 79

(S
[ceNoNoNoNo)
[cNoNoNoNo)

you store it in array AGB, declared as AGB(6,9), as follows, where ay; is stored in
AGB(4,1) and the leading diagonal does not fill up the whole row:

* o+ o« 14 25 36 47 58 69
* % 13 24 35 46 57 68 79
AGB = * 12 23 34 45 56 67 78 «x
11 22 33 44 55 66 77 =+ =*
21 32 43 54 65 76 x & %
31 42 53 64 75 * x x o«

"o

and where “*” means you do not store an element in that position in the array.

Following is an example of how to transform your general band matrix, for all
values of m and n, to BLAS-general-band storage mode:

Chapter 3. Setting Up Your Data Structures 97



10
20

DO 20 J=1,N
K=MU+1-J
DO 10 I=MAX(1,J-MU),MIN(M,J+ML)
AGB(K+I,J)=A(I,J)
CONTINUE
CONTINUE

Symmetric Band Matrix

A symmetric band matrix is a symmetric matrix whose nonzero elements are
arranged uniformly near the diagonal, such that:

{1,/=0

if lijl > k
where k is the half band width.

The following matrix illustrates a symmetric band matrix of order n, where the
half band width k = g-1:

| « k > |

Qy1dy A3
Qs dsz; Az

ap Ay dzp -

~ a0 . 0 |
0

0

ann

Symmetric Band Matrix Storage Representation
The two storage modes used for storing symmetric band matrices are described in
the following:

+ |“Upper-Band-Packed Storage Mode”|
* [“Lower-Band-Packed Storage Mode” on page 99

Upper-Band-Packed Storage Mode: Only the band elements of the upper
triangular part of a symmetric band matrix, including the main diagonal, are
stored for upper-band-packed storage mode.

For a matrix A of order n and a half band width of k, the array must have a
leading dimension, Ida, greater than or equal to k+1, and the size of the second
dimension must be (at least) n.

Using array ASB, which is declared as ASB(Ida,n), where p = Ida = k+1, the elements
of a symmetric band matrix are stored as follows:
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ASB

* Ay, Ay pyg Ay_kn
* o di3 dy
i dx
ay Ay
where “+” means you do not store an element in that position in the array.

Following is an example of a symmetric band matrix A of order 6 and a half band

width of 3.
Given the following matrix A:

11 12 13 14 0 0
12 22 23 24 25 0O
13 23 33 34 35 36
14 24 34 44 45 46
0 25 35 45 55 56
0 0 36 46 56 66

you store it in upper-band-packed storage mode in array ASB, declared as ASB(4,6),

as follows.

ASB = * 13 24 35 46
x 12 23 34 45 56
11 22 33 44 55 66

Following is an example of how to transform your symmetric band matrix to
upper-band-packed storage mode:
DO 20 J=1,N
M=K+1-J
DO 10 I=MAX(1,J-K),J
ASB(M+1,J)=A(I,J)
10 CONTINUE
20 CONTINUE

Lower-Band-Packed Storage Mode: Only the band elements of the lower
triangular part of a symmetric band matrix, including the main diagonal, are
stored for lower-band-packed storage mode.

For a matrix A of order n and a half band width of k, the array must have a
leading dimension, Ida, greater than or equal to k+1, and the size of the second
dimension must be (at least) n.

Using array ASB, which is declared as ASB(Ida,n), where q = Ida = k+1, the elements

of a symmetric band matrix are stored as follows:
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all a22 annw
ay dx *
azy dy
ASB =
_Clql aq+1’2. . . an’n_k* e e X ]

7R

where “+” means you do not store an element in that position in the array.

Following is an example of a symmetric band matrix A of order 6 and a half band
width of 2.

Given the following matrix A:

11 21 31 0 0 0
21 22 32 42 0 0
31 32 33 43 53 0
0 42 43 44 54 64
0 0 53 54 55 65
06 0 0 64 65 66

you store it in lower-band-packed storage mode in array ASB, declared as ASB(3,6),
as follows:

11 22 33 44 55 66
ASB = | 21 32 43 54 65 ~
31 42 53 64 * *

Following is an example of how to transform your symmetric band matrix to
lower-band-packed storage mode:
DO 20 J=1,N
DO 10 I=J,MIN(J+K,N)
ASB(I-J+1,J)=A(I,J)
10 CONTINUE
20 CONTINUE

Positive Definite Symmetric Band Matrix

A real symmetric band matrix A is positive definite if and only if x'Ax is positive
for all nonzero vectors x.

Positive Definite Symmetric Band Matrix Storage Representation
The positive definite symmetric band matrix is stored in the same way a
symmetric band matrix is stored. For a description of this storage technique, see
[“Symmetric Band Matrix” on page 98.|

Complex Hermitian Band Matrix

A complex band matrix is Hermitian if it is equal to its conjugate transpose:

H = HY
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Complex Hermitian Band Matrix Storage Representation
The complex Hermitian band matrix is stored using the same two techniques used
for symmetric band matrices:

+ Lower-band-packed storage mode, as described in [“Lower-Band-Packed Storage]
[Mode” on page 99|

* Upper-band-packed storage mode, as described in [“Upper-Band-Packed Storage
[Mode” on page 98|

Following is an example of a complex Hermitian band matrix H of order 5, having
a half band width of 2.

Given the following matrix H:

(21, 1) (22, 0) (32, -1) (42, -1) (0, 0)
(31, -1) (32, 1) (33, 0) (43, -1) (53, -1)
(0, 0) (42, 1) (43, 1) (44, 0) (54, -1)
(0, 0) (0, 0) (53, 1) (54, 1) (55, 0)

{ (11, o) (21, -1) (31, 1) (0, 0) (6, 0) l

you store it in a two-dimensional array HP, as follows:

* In lower-band-packed storage mode:

| (11, =) (22, =) (33, *) (44, =x) (55, *)
HP = | (21, 1) (32, 1) (43, 1) (54, 1) *
(31, -1) (42, 1) (53, 1) * *

* In upper-band-packed storage mode:

_ * * (31, 1) (42, -1) (53, -1)
HP = * (21, -1) (32, -1) (43, -1) (54, -1)
(11, =) (22, =*) (33, =*) (44, =*) (55, =)

“uy

where “*” means you do not have to store a value in that position in the array.
The imaginary parts of the diagonal elements of a complex Hermitian band matrix
are always 0, so you do not need to set these values. The ESSL subroutines always
assume that the values in these positions are 0.

Triangular Band Matrix

There are two types of triangular band matrices: upper triangular band matrix and
lower triangular band matrix. Triangular band matrices have the same number of
rows as they have columns; that is, they have n rows and n columns. They have an
upper or lower band width of k.

A band matrix U is an upper triangular band matrix if its nonzero elements are
found only in the upper triangle of the matrix, including the main diagonal; that
is:

Its band elements are arranged uniformly near the diagonal in the upper triangle
of the matrix, such that:

uij=0 lf]—l>k
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The following matrix U illustrates an upper triangular band matrix of order n with
an upper band width k = g-1:

|« k > |
1y, 1 1y, Sy 0 0 ]
0 uy, usy, 0
0 uyy 0 .
0
o . . . 0 u,, |

A band matrix L is a lower triangular band matrix if its nonzero elements are
found only in the lower triangle of the matrix, including the main diagonal; that is:

Its band elements are arranged uniformly near the diagonal in the lower triangle of
the matrix such that:

The following matrix L illustrates an upper triangular band matrix of order n with
a lower band width k = ¢-1:

1,0 . . . 0]

nn

A triangular band matrix can also be a unit triangular band matrix if all the
diagonal elements have a value of 1. For an illustration of a unit triangular matrix,
see [“Triangular Matrix” on page 89

Triangular Band Matrix Storage Representation
The two storage modes used for storing triangular band matrices are described in
the following:

* [“Upper-Triangular-Band-Packed Storage Mode” on page 103

* |"Lower-Triangular-Band-Packed Storage Mode” on page 104|
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uTB

It is important to note that because the diagonal elements of a unit triangular
band matrix are always one, you do not need to set these values in the array for
these two storage modes. ESSL always assumes that the values in these positions
are one.

Upper-Triangular-Band-Packed Storage Mode: Only the band elements of the
upper triangular part of an upper triangular band matrix, including the main
diagonal, are stored for upper-triangular-band-packed storage mode.

For a matrix U of order n and an upper band width of k, the array must have a
leading dimension, Ida, greater than or equal to k+1, and the size of the second
dimension must be (at least) n.

Using array UTB, which is declared as UTB(Ida,n), where p = Ida = k+1, the elements
of an upper triangular band matrix are stored as follows:

® Uy Uy ppy o o - Uyjp
Uy Uy
(X
unn
where “+” means you do not store an element in that position in the array.

Following is an example of an upper triangular band matrix U of order 6 and an
upper band width of 3.

Given the following matrix U:

11 12 13 14 0 0
22 23 24 25 0O
0 33 34 35 36
0 0 44 45 46
06 0 0 55 56

6 06 0 0 66

[eNoRoRoNoN

you store it in upper-triangular-band-packed storage mode in array UTB, declared
as UTB(4,6), as follows:

UTB = * 13 24 35 46
x 12 23 34 45 56
11 22 33 44 55 66

Following is an example of how to transform your upper triangular band matrix to
upper-triangular-band-packed storage mode:
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104

q

122 lnn
132 *
142

lq+1’2. .. ln,nfk* e es 3% i

DO 20 J=1,N
M=K+1-J
DO 10 I=MAX(1,J-K),J
UTB(M+I,J)=U(I,J)
10 CONTINUE
20 CONTINUE

Lower-Triangular-Band-Packed Storage Mode: Only the band elements of the
lower triangular part of a lower triangular band matrix, including the main
diagonal, are stored for lower-triangular-band-packed storage mode.

Note: As an alternative to this storage mode, you can specify your arguments in
your subroutine in a special way so that ESSL selects the matrix elements properly,
and you can leave your matrix stored in full-matrix storage mode.

For a matrix L of order n and a lower band width of k, the array must have a
leading dimension, Ida, greater than or equal to k+1, and the size of the second
dimension must be (at least) n.

Using array LTB, which is declared as LTB(Ida,n), where q = Ida = k+1, the elements
of a lower triangular band matrix are stored as follows:

7

where “+” means you do not store an element in that position in the array.

Following is an example of a lower triangular band matrix L of order 6 and a
lower band width of 2.

Given the following matrix L:

11 0 0 0
21 22 0 O
31 32 33 0
0 42 43 44
06 0 53 54
6 0 0 64

[ NS NoNoNoNo]
[ NoNoNoNoNo]

o o1

you store it in lower-triangular-band-packed storage mode in array LTB, declared
as LTB(3,6), as follows:

11 22 33 44 55 66
LTB = 21 32 43 54 65 *
31 42 53 64 * x

Following is an example of how to transform your lower triangular band matrix to
lower-triangular-band-packed storage mode:
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DO 20 J=1,N
M=1-J
DO 10 I=J,MIN(N,J+K)
LTB(M+I,J)=L(I,J)
10 CONTINUE
20 CONTINUE

General Tridiagonal Matrix

A general tridiagonal matrix is a matrix whose nonzero elements are found only
on the diagonal, subdiagonal, and superdiagonal of the matrix; that is:

The following matrix illustrates a general tridiagonal matrix of order n:

fa,a, 0 . . . 0
Ay Ay Ay; 0
0 a3 az ay 0
0 a; ay

nn

General Tridiagonal Matrix Storage Representation

Only the diagonal, subdiagonal, and superdiagonal elements of the general
tridiagonal matrix are stored. This is called tridiagonal storage mode. The elements
of a general tridiagonal matrix, A, of order n are stored in three one-dimensional
arrays, C, D, and E, each of length #n, where array C contains the subdiagonal
elements, stored as follows:

C = (% ay, a3, Az oy Gyp)

and array D contains the main diagonal elements, stored as follows:

D = (ay, Ay, G35, -f Ayp)

and array E contains the superdiagonal elements, stored as follows:

E = (a1 3 G310 -y Gyyp *)

"o

where “+” means you do not store an element in that position in the array.
Following is an example of a general tridiagonal matrix A of order 5:

11 12 0 0

21 22 23 O
0 32 33 34
0 0 43 44 4
6 0 0 54 5

(S NS NoNoNo]

which you store in tridiagonal storage mode in arrays C, D, and E, each of length 5,
as follows:
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(», 21, 32, 43, 54)
D = (11, 22, 33, 44, 55)

E

(12, 23, 34, 45, *)

Note: Some ESSL subroutines provide an option for specifying at least n additional
locations at the end of each of the arrays C, D, and E. These additional locations are
used for working storage by the ESSL subroutine. The reasons for choosing this
option are explained in the subroutine descriptions.

Symmetric Tridiagonal Matrix

[a, ay, 0 . 0
Ay Ay Az 0
0 ay as; a5 0
A= 0 ay; ay
0
0 .a,, |

A tridiagonal matrix A is also symmetric if and only if its nonzero elements are
found only on the diagonal, subdiagonal, and superdiagonal of the matrix, and its
subdiagonal elements and superdiagonal elements are equal; that is:

(@; =0 if li5jl > 1) and (a; = a

The following matrix illustrates a symmetric tridiagonal matrix of order n:

Symmetric Tridiagonal Matrix Storage Representation

Only the diagonal and subdiagonal elements of the positive definite symmetric
tridiagonal matrix are stored. This is called symmetric-tridiagonal storage mode.
The elements of a symmetric tridiagonal matrix A of order n are stored in two
one-dimensional arrays C and D, each of length 1, where array C contains the
subdiagonal elements, stored as follows:

C = (¥ ay, a3, Ay oy Aypq)

"y
*

where means you do not store an element in that position in the array. Then
array D contains the main diagonal elements,stored as follows:

D = (ay, Ay, Gz -y Gyy)

Following is an example of a symmetric tridiagonal matrix A of order 5:

[ 10 1

1 0 0 0
1 20 2 0 ©
6 2 306 3 0
6 06 3 40 4
6 0 0 4 50

which you store in symmetric-tridiagonal storage mode in arrays C and D, each of
length 5, as follows:
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C = (*, ]-, 2’ 33 4)

D = (10, 20, 30, 40, 50)

Note: Some ESSL subroutines provide an option for specifying at least n additional
locations at the end of each of the arrays C and D. These additional locations are
used for working storage by the ESSL subroutine. The reasons for choosing this
option are explained in the subroutine descriptions.

Positive Definite Symmetric Tridiagonal Matrix

A real symmetric tridiagonal matrix A is positive definite if and only if x"Ax is
positive for all nonzero vectors x.

Positive Definite Symmetric Tridiagonal Matrix Storage
Representation

The positive definite symmetric tridiagonal matrix is stored in the same way the
symmetric tridiagonal matrix is stored. For a description of this storage technique,
see [‘Symmetric Tridiagonal Matrix” on page 106)

Sparse Matrix

A sparse matrix is a matrix having a relatively small number of nonzero elements.
Consider the following as an example of a sparse matrix A:

11 0 13 06 0 0
21 22 0 24 0 ©
0 32 33 0 35 0
0 0 43 44 0 46
51 0 0 54 55 0
61 62 0 0O 65 66

Sparse Matrix Storage Representation

A sparse matrix can be stored in full-matrix storage mode or a packed storage
mode. When a sparse matrix is stored in full-matrix storage mode, all its elements,
including its zero elements, are stored in an array.

The seven packed storage modes used for storing sparse matrices are described in
the following:

+ |"Compressed-Matrix Storage Mode”|

* |“Compressed-Diagonal Storage Mode” on page 109

* |“Storage-by-Indices” on page 111|

+ [“Storage-by-Columns” on page 112

* |“Storage-by-Rows” on page 113

+ [“Diagonal-Out Skyline Storage Mode” on page 115|

» |“Profile-In Skyline Storage Mode” on page 116}

Note: When the elements of a sparse matrix are stored using any of these storage
modes, the ESSL subroutines do not check that all elements are nonzero. You do
not get an error if any elements are zero.

Compressed-Matrix Storage Mode: The sparse matrix A, stored in
compressed-matrix storage mode, uses two two-dimensional arrays to define the
sparse matrix storage, AC and KA. See reference [81 on page 1088]. Given the m by n
sparse matrix A, having a maximum of nz nonzero elements in each row:
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* AC is defined as AC(lda,nz), where the leading dimension, /da, must be greater
than or equal to m. Each row of array AC contains the nonzero elements of the
corresponding row of matrix A. For each row in matrix A containing less than nz
nonzero elements, the corresponding row in array AC is padded with zeros. The
elements in each row can be stored in any order.

e KA is an integer array defined as KA(lda,nz), where the leading dimension, Ida,
must be greater than or equal to m. It contains the column numbers of the
matrix A elements that are stored in the corresponding positions in array AC. For
each row in matrix A containing less than nz nonzero elements, the
corresponding row in array KA is padded with any values from 1 to n. Because
this array is used by the ESSL subroutines to access other target vectors in the
computation, you must adhere to these required values to avoid errors.

Unless all the rows of sparse matrix A contain approximately the same number
of nonzero elements, this storage mode requires a large amount of storage. This
diminishes the performance you can obtain by using this storage mode.

Consider the following as an example of a 6 by 6 sparse matrix A with a
maximum of four nonzero elements in each row. It shows how matrix A can be

stored in arrays AC and KA.

Given the following matrix A:

11 0 13 06 0 ©
21 22 0 24 0 0
0 32 33 0 35 0
0 0 43 44 0 46
51 0 0 54 55 0
61 62 0 0 65 66

the arrays are:

AC = 33 32 35

[ NoRoNoNoNo)

DO WN =
=W N =W
N BOYO B X
Q1 % % %k * F

"y
*

where means you can store any value from 1 to 6 in that position in the array.

Symmetric sparse matrices use the same storage technique as nonsymmetric sparse
matrices; that is, all nonzero elements of a symmetric matrix A must be stored in

array AC, not just the elements of the upper triangle and diagonal of matrix A.

In general terms, this storage technique can be expressed as follows:
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For each a; # 0, fori=1mandj=1n
there exists k, where 1 = k = nz,
such that AC(i,k) = a; and KA(ik) = j.

For all other elements of AC and KA,
AC(i,k) = 0 and 1 = KA(i,k) = n

where:

* aj; are the elements of the m by n matrix A that has a maximum of nz nonzero

elements in each row.
e Array AC is defined as AC(Ida,nz), where lda = m.
* Array KA is defined as KA(Ida,nz), where lda =z m.

Compressed-Diagonal Storage Mode: The storage mode used for square sparse
matrices stored in compressed-diagonal storage mode has two variations,
depending on whether the matrix is a general sparse matrix or a symmetric sparse
matrix. This explains both of these variations; however, the conventions used for
numbering the diagonals in the matrix, which apply to the storage descriptions,
are explained first.

Matrix A of order n has 2n-1 diagonals. Because k = j-i is constant for the elements
a; along each diagonal, each diagonal can be assigned a diagonal number, k,
having a value from 1-n to n-1. Then the diagonals can be referred to as d;, where
k = 1-n, n-1.

The following matrix shows the starting position of each diagonal, d;:

dyd, d, . . . d, _,
ap Ay iz - - . Uy
ayy dyy o3

Qs dzp diz

_anl ann_

For a general (square) sparse matrix A, compressed-diagonal storage mode uses
two arrays to define the sparse matrix storage, AD and LA. Using the above
convention for numbering the diagonals, and given that sparse matrix A contains
nd diagonals having nonzero elements, arrays AD and LA are set up as follows:

* AD is defined as AD(lda,nd), where the leading dimension, /da, must be greater
than or equal to n. Each diagonal of matrix A that has at least one nonzero
element is stored in a column of array AD. All of the elements of the diagonal,
including its zero elements, are stored in n contiguous locations in the array, in
the same order as they appear in the diagonal. Padding with zeros is required as
follows to fill the n locations in each column of array AD:

— Each superdiagonal (k > 0), which has n-k elements, is padded with k trailing
Zeros.

— The main diagonal (k = 0), which has n elements, does not require padding.

— Each subdiagonal (k < 0), which has n-1k| elements, is padded with Ik
leading zeros.

The diagonals can be stored in any columns in array AD.
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* LA is a one-dimensional integer array of length nd, containing the diagonal
numbers k for the diagonals stored in each corresponding column in array AD.

Because this storage mode requires entire diagonals to be stored, if the nonzero
elements in matrix A are not concentrated along a few diagonals, this storage
mode requires a large amount of storage. This diminishes the performance you
obtain by using this storage mode.

Consider the following as an example of how a 6 by 6 general sparse matrix A
with 5 nonzero diagonals is stored in arrays AD and LA.

Given the following matrix A:

11 0 13 0 0 0
21 22 0 24 0O O
0 32 33 0 35 0
0 0 43 44 0 46
51 0 0 54 55 0
61 62 0 0 65 66

the arrays are:

11 13 0 0 0
22 24 21 0 0
AD = 33 35 32 0 0
44 46 43 0 0O
55 0 54 51 0
66 0 65 62 61

LA

(09 29 _19 _49 _5)

For a symmetric sparse matrix, where each superdiagonal k is equal to subdiagonal
-k, compressed-diagonal storage mode uses the same storage technique as for the
general sparse matrix, except that only the nonzero main diagonal and one
diagonal of each couple of nonzero diagonals, k and -k, are used in setting up
arrays AD and LA. You can store either the upper or the lower diagonal of each
couple.

Consider the following as an example of a symmetric sparse matrix of order 6 and
how it is stored in arrays AD and LA, using only three nonzero diagonals in the
matrix.

Given the following matrix A:

11 0 13 0 51 0
0 22 0 24 0 62
13 0 33 0 3 0
0 24 0 44 0 46
51 0 35 0 55 0
0 62 0 46 0O 66

the arrays are:

AD = 33 35

[cNoNoNo]
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LA = (0, 2, -4)
In general terms, this storage technique can be expressed as follows:

For each d, = (0, ..., 0), for k = 1-n, n-1
for general square sparse matrices, or

for each unique d, = (0, ..., 0), for k = 1-n, n-1
for symmetric sparse matrices,

there exists I, where 1 = [ = nd,
such that LA(l) = k and column [ in array AD contains dp;.

where:

* Array AD is defined as AD(Ida,nd), where Ida = n, and where nd is the number of
nonzero diagonals, d, that are stored in array AD.

¢ Array LA has nd elements.
* k is the diagonal number of each diagonal, d;, where k = i-j.

* dp, are the diagonals, d;, with padding, which are constructed from the sparse
matrix A elements, aj, for i, j = 1, n as follows:

For superdiagonals (k > 0), dp, has k trailing zeros: dp, = (a, 4,1, @142/ - @gnr Oy
v Op)

For the main diagonal (k = 0), dp, has no padding: dp, = (a1, 45, ..., 4,,,,)

For subdiagonals (k < 0), dp, has |k leading zeros: dp; = (0, ..., 05, @541,
k1422 s @, n-1k1)

Storage-by-Indices: For a sparse matrix A, storage-by-indices uses three
one-dimensional arrays to define the sparse matrix storage, AR, IA, and JA. Given
the m by n sparse matrix A having ne nonzero elements, the arrays are set up as
follows:

* AR of (at least) length ne contains the ne nonzero elements of the sparse matrix A,
stored contiguously in any order.

e IA, an integer array of (at least) length ne contains the corresponding row
numbers of each nonzero element, a;, in matrix A.

e JA, an integer array of (at least) length ne contains the corresponding column
numbers of each nonzero element, a;, in matrix A.

Consider the following as an example of a 6 by 6 sparse matrix A and how it can

be stored in arrays AR, IA, and JA.:

Given the following matrix A:

11 0 13 0 0 0
21 22 0 24 0 ©
0 32 33 0 35 0
0 0 43 44 0 46
6 0 06 0 0 0
61 62 0 0O 65 66

the arrays are:
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AR = (11, 22, 32, 33, 13, 21, 43, 24, 66, 46, 35, 62, 61, 65, 44)
IA=(,2,3,3,1,2,4,2,6, 4, 3,6, 6,6, 4)

JA=1(1,2,2,3,3,1,3,4,6,6,5,2,1,5,4)
In general terms, this storage technique can be expressed as follows:

For each a; # 0, for i =1, mand j = 1, n
there exists k, where 1 = k = ne, such that:

IA(k) = i
IAK) = j
where:

a; are the elements of the m by n sparse matrix A.
Arrays AR, IA, and JA each have ne elements.

Storage-by-Columns: For a sparse matrix, A, storage-by-columns uses three
one-dimensional arrays to define the sparse matrix storage, AR, IA, and JA. Given
the m by n sparse matrix A having ne nonzero elements, the arrays are set up as
follows:

* AR of (at least) length ne contains the ne nonzero elements of the sparse matrix A,
stored contiguously. The columns of matrix A are stored consecutively from 1 to
n in AR. The elements in each column of A are stored in any order in AR.

* IA an integer array of (at least) length ne contains the corresponding row
numbers of each nonzero element, a@jj, in matrix A.

e JA, an integer array of (at least) length n+1 contains the relative starting position
of each column of matrix A in array AR; that is, each element JA(j) of the column
pointer array indicates where column j begins in array AR. If all elements in
column j are zero, then JA(j) = JA(j+1). The last element, JA(n+1), indicates the
position after the last element in array AR, which is ne+1.

Consider the following as an example of a 6 by 6 sparse matrix A and how it can
be stored in arrays AR, IA, and JA.

Given the following matrix A:

11 0 13 0 0 0
21 22 0 24 0 O
06 32 3 0 0 0
0 0 43 44 0 46
6 06 06 0 0 O
61 62 0 0 0O 66

the arrays are:
AR = (11, 61, 21, 62, 32, 22, 13, 33, 43, 44, 24, 46, 66)

IA=(1,6,2,6,3,2,1,3,4,4,2,4,6)

JA = (1, 4, 7, 10, 12, 12, 14)

In general terms, this storage technique can be expressed as follows:

112  ESSL for AIX, 5.1, and ESSL for Linux on POWER, 5.1.1: Guide and Reference



For each a; # 0, for i =1, mand j =1, n
there exists k, where 1 = k = ne, such that

AR(K) = a;
IAKK) = i

And for j =1, n,

JA() = k, where a;, in AR(k), is the first element stored in AR for column j
JA(j) = JA(j+1), where all a; = 0 in column j

JA(n+1) = ne+1

where:

a; are the elements of the m by n sparse matrix A.
Arrays AR and IA each have ne elements.

Array JA has n+1 elements.

Storage-by-Rows: The storage mode used for sparse matrices stored by rows has
three variations, depending on whether the matrix is a general sparse matrix or a
symmetric sparse matrix. This explains these variations.

For a general sparse matrix A, storage-by-rows uses three one-dimensional arrays
to define the sparse matrix storage, AR, IA, and JA. Given the m by n sparse matrix
A having ne nonzero elements, the arrays are set up as follows:

* AR of (at least) length ne contains the ne nonzero elements of the sparse matrix A,
stored contiguously. The rows of matrix A are stored consecutively from 1 to m
in AR. The elements in each row of A are stored in any order in AR.

e IA, an integer array of (at least) length m+1 contains the relative starting position
of each row of matrix A in array AR; that is, each element IA(7) of the row pointer
array indicates where row i begins in array AR. If all elements in row i are zero,
then IA(7) = IA(i+1). The last element, IA(m+1), indicates the position after the
last element in array AR, which is ne+1.

e JA, an integer array of (at least) length ne contains the corresponding column

numbers of each nonzero element, a;, in matrix A.

Consider the following as an example of a 6 by 6 general sparse matrix A and how
it can be stored in arrays AR, IA, and JA.

Given the following matrix A:

11 0 13 0 06 ©0
21 22 0 24 0 0O
0 32 33 0 0 0
0 0 43 44 0 46
6 6 0 0 0 0
61 62 0 0 0O 66

the arrays are:
AR = (11, 13, 24, 22, 21, 32, 33, 44, 43, 46, 61, 62, 66)

IA = (1, 3, 6, 8, 11, 11, 14)

JA

(1’ 3, 4! 2! 1’ 2, 3’ 4’ 3’ 6, 1! 2! 6)
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For a symmetric sparse matrix of order m, storage-by-rows uses the same storage
technique as for the general sparse matrix, except that only the upper or lower
triangle and diagonal elements are used in setting up arrays AR, IA, and JA.

Consider the following as an example of a symmetric sparse matrix A of order 6
and how it can be stored in arrays AR, IA, and JA using upper-storage-by-rows,
which stores only the upper triangle and diagonal elements.

Given the following matrix A:

11 0 13 0
0 22 23 24
13 23 33 0
0 24 0 44
6 0 3 0
6 0 0 46

o1 w
[N N NS, Nl

[cNoNe NoNoNo)

the arrays are:
AR = (11, 13, 22, 24, 23, 33, 35, 46, 44, 55)

IA = (1, 3, 6, 8, 10, 11, 11)

JA

(1, 3, 2’ 39 4’ 3’ 5’ 4’ 6, 5)

Using the same symmetric matrix A, consider the following as an example of how
it can be stored in arrays AR, IA, and JA using lower-storage-by-rows, which stores
only the lower triangle and diagonal elements:

AR = (11, 22, 23, 33, 13, 24, 44, 55, 35, 46)

IA=(1, 2, 3, 6, 8, 10, 11 )

JA

(]‘, 2, 2’ 3’ 1, 2’ 4’ 5, 3, 4)
In general terms, this storage technique can be expressed as follows:

For each a; = 0,

for i =1, m and j = 1, n for general sparse matrices
or
for i
or
fori =1, m and j = 1, i for symmetric sparse matrices using the upper triangle

1, m and j = i, m for symmetric sparse matrices using the lower triangle

there exists k, where 1 = k = ne, such that
AR(k) = a;
JAK) = j

And fori =1, m,

IA(i) = k, where a;, in AR(k), is the first element stored in AR for row i
IA() = IA(i+1), where all 4; = 0 in row i

IA(m+1) = ne+1

where:

* aj; are the elements of sparse matrix A, which is either an m by n general sparse
matrix or a symmetric sparse matrix of order m containing ne nonzero elements.

* Arrays AR and JA each have ne elements.
e Array IA has m+1 elements.
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Diagonal-Out Skyline Storage Mode: The diagonal-out skyline storage mode
used for sparse matrices has two variations, depending on whether the matrix is a
general sparse matrix or a symmetric sparse matrix. Both of these variations are
explained here.

For a general sparse matrix A, diagonal-out skyline storage mode uses four
one-dimensional arrays to define the sparse matrix storage, AU, IDU, AL, and IDL.
Given the sparse matrix A of order n, containing nu+nl-n elements under the top
and left profiles, the arrays are set up as follows:

* AU of (at least) length nu contains the upper triangle of the sparse matrix A,
where the columns are stored consecutively from 1 to 7 in AU in the following
way. For each column, the elements starting at the diagonal element and ending
at the topmost nonzero element in the column are stored contiguously in AU. The
elements stored may include zero elements along with the nonzero elements. If
all elements in the column to be stored are zero, the diagonal element, a;;, having
a value of zero, is stored in AU for that column. A total of nu elements are stored
for the upper triangle of A.

* IDU, an integer array of (at least) length n+1 contains the relative position of each
diagonal element of matrix A in array AU; that is, each element IDU(i) of the
diagonal pointer array indicates where diagonal element g, is stored in array AU.
One-origin is used, so the first element of IDU is always 1. The last element,
IDU(n+1), indicates the position after the last element in array AU, which is nu+1.

* AL of (at least) length nl contains the lower triangle of the sparse matrix A,
where the rows are stored consecutively from 1 to 7 in AL in the following way.
For each row, the elements starting at the diagonal element and ending at the
leftmost nonzero element in the row are stored contiguously in AL. The elements
stored may include zero elements along with the nonzero elements. If all
elements in the row to be stored are zero, the diagonal element, a;, having a
value of zero, is stored in AL for that row. A total of nl elements are stored for
the lower triangle of A. The values of the diagonal elements are meaningless, so
you can store any values in those positions in AL.

* IDL, an integer array of (at least) length n+1 contains the relative position of each
diagonal element of matrix A in array AL; that is, each element IDL(i) of the
diagonal pointer array indicates where diagonal element a; is stored in array AL.
One-origin is used, so the first element of IDL is always 1. The last element,
IDL(n+1), indicates the position after the last element in array AL, which is n/+1.

Consider the following as an example of a 6 by 6 general sparse matrix A and how
it is stored in arrays AU, IDU, AL, and IDL.

Given the following matrix A:

06 12 13 0 0 0
21 22 0 24 0 ©
31 0 33 34 0 36
41 42 43 44 45 0

6 0 0 54 55 56

0 0 63 0 65 66

the arrays are:
AU = (0, 22, 12, 33, 0, 13, 44, 34, 24, 55, 45, 66, 56, 0, 36)
v = (1, 2, 4, 7, 10, 12, 16) where nu=15
AL = (x, =, 21, *, 0, 31, *, 43, 42, 41, =, 54, *, 65, 0, 63)
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IbL = (1, 2, 4, 7, 11, 13, 17) where nl=16
and where “*” means you do not have to store a value in that position in the
array. However, these storage positions are required.

For a symmetric sparse matrix of order 7, diagonal-out skyline storage mode uses
the same storage technique as for the upper triangle and diagonal elements of the
general sparse matrix; therefore, only the AU and IDU arrays are needed.

Consider the following as an example of a symmetric sparse matrix A of order 6
and how it is stored in arrays AU and IDU.

Given the following matrix A:

06 12 13 0 0 0
12 22 0 24 0 ©
13 0 33 34 0 36

0 24 34 44 45 0

6 0 0 45 55 56

0 0 36 0 56 66

the arrays are:
AU = (0, 22, 12, 33, 0, 13, 44, 34, 24, 55, 45, 66, 56, 0, 36)

v = (1, 2, 4, 7, 10, 12, 16) where nu=15
In general terms, this storage technique can be expressed as follows:
For general sparse matrices and symmetric sparse matrices:

For each a; for j = 1, n and i = j, k,

where g;; is the topmost a; # 0 in each column j,
there exists m, where 1 = m = nu, such that
AU(m+j-i) = a;

IDU(j) = m for each a;

IDU(n+1) = nu+l

Also, for general sparse matrices:

For each a@; fori=1nand i =j, k

where a; is the leftmost a; # 0 in each row i,
there exists m, where 1 = m = nl, such that
AL(m+ij) = a;

IDL(i) = m for each a;;

IDL(n+1) = nl+1

where:

a; are the elements of sparse matrix A, of order n.
Array AU has nu elements.
Array AL has nl elements.

Arrays IDU and IDL each have n+1 elements.

Profile-In Skyline Storage Mode: The profile-in skyline storage mode used for
sparse matrices has two variations, depending on whether the matrix is a general
sparse matrix or a symmetric sparse matrix. Both of these variations are explained
here.
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For a general sparse matrix A, profile-in skyline storage mode uses four
one-dimensional arrays to define the sparse matrix storage, AU, IDU, AL, and IDL.
Given the sparse matrix A of order 7, containing nu+nl-n elements under the top
and left profiles, the arrays are set up as follows:

AU of (at least) length nu contains the upper triangle of the sparse matrix A,
where the columns are stored consecutively from 1 to 7 in AU in the following
way. For each column, the elements starting at the topmost nonzero element in
the column and ending at the diagonal element are stored contiguously in AU.
The elements stored may include zero elements along with the nonzero
elements. If all elements in the column to be stored are zero, the diagonal
element, a;, having a value of zero, is stored in AU for that column. A total of nu
elements are stored for the upper triangle of A.

IDU, an integer array of (at least) length n+1 contains the relative position of each
diagonal element of matrix A in array AU; that is, each element IDU(7) of the
diagonal pointer array indicates where diagonal element g, is stored in array AU.
One-origin is used, so the first element of IDU is always 1. The last element,
IDU(n+1), indicates the position after the last element in array AU, which is nu+1.

AL of (at least) length nl contains the lower triangle of the sparse matrix A,
where the rows are stored consecutively from 1 to # in AL in the following way.
For each row, the elements starting at the leftmost nonzero element in the row
and ending at the diagonal element are stored contiguously in AL. The elements
stored may include zero elements along with the nonzero elements. If all
elements in the row to be stored are zero, the diagonal element, a;, having a
value of zero, is stored in AL for that row. A total of nl elements are stored for
the lower triangle of A. The values of the diagonal elements are meaningless, so
you can store any values in those positions in AL.

IDL, an integer array of (at least) length n+1 contains the relative position of each
diagonal element of matrix A in array AL; that is, each element IDL(i) of the
diagonal pointer array indicates where diagonal element g, is stored in array AL.
One-origin is used, so the first element of IDL is always 1. The last element,
IDL(n+1), indicates the position after the last element in array AL, which is nl+1.

Consider the following as an example of a 6 by 6 general sparse matrix A and how
it is stored in arrays AU, IDU, AL, and IDL.

Given the following matrix A:

6 12 13 0 0 0
21 22 0 24 0 ©
31 0 33 34 0 36
41 42 43 44 45 0O

0 0 0 54 55 56

6 0 63 0 65 66

the arrays are:

and where

AU = (0, 12, 22, 13, O, 33, 24, 34, 44, 45, 55, 36, 0, 56, 66)

Ibu = (1, 3, 6, 9, 11, 15, 16) where nu=15
AL = (*, 21, %, 31, 0, *, 41, 42, 43, =, 54, %, 63, 0, 65, *)

L = (1, 3, 6, 10, 12, 16, 17) where nl=16

"y
*

means you do not have to store a value in that position in the

array. However, these storage positions are required.
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For a symmetric sparse matrix of order n, profile-in skyline storage mode uses the
same storage technique as for the upper triangle and diagonal elements of the
general sparse matrix; therefore, only the AU and IDU arrays are needed.

Consider the following as an example of a symmetric sparse matrix A of order 6
and how it is stored in arrays AU and IDU.

Given the following matrix A:

6 12 13 0 0 0
12 22 0 24 0 0
13 0 33 34 0 36

0 24 34 44 45 0

6 0 0 45 55 56

06 0 36 0 56 66

the arrays are:
AU = (o, 12, 22, 13, 0, 33, 24, 34, 44, 45, 55, 36, 0, 56, 66)

Iou = (1, 3, 6, 9, 11, 15, 16) where nu=15
In general terms, this storage technique can be expressed as follows:

For general sparse matrices and symmetric sparse matrices:
For each a@; forj=1nand i =k, j,

where g;; is the topmost a; # 0 in each column j,

there exists m, where 1 = m = nu, such that

AU(m-j+i) = a;

IDU(j) = m for each a;

IDU(n+1) = nu+l

Also, for general sparse matrices:

For each a@; fori=1nandj =k i

where a; is the leftmost a; # 0 in each row i,
there exists m, where 1 = m = nl, such that
AL(m-i+j) = a;

IDL(i) = m for each a;

IDL(n+1) = nl+1

where:

a; are the elements of sparse matrix A, of order n.
Array AU has nu elements.

Array AL has nl elements.

Arrays IDU and IDL each have n+1 elements.

Sequences

A sequence is an ordered collection of numbers. It can be a one-, two-, or
three-dimensional sequence. Sequences are used in the areas of sorting, searching,
Fourier transforms, convolutions, and correlations.

Real and Complex Elements in Storage

Sequences can contain either real or complex data. For sequences containing
complex data, a special storage arrangement is used to accommodate the two
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parts, a and b, of each complex number, a+bi, in the array. For each complex
number, two sequential storage locations are required in the array. Therefore,
exactly twice as much storage is required for complex sequences as for real
sequences of the same precision. See["How Do You Set Up Your Scalar Data?” onl
page 44 for a description of real and complex numbers, and [“How Do You Set Up|
Your Arrays?” on page 44| for a description of how real and complex data is stored
in arrays.

One-Dimensional Sequences

A one-dimensional sequence appears symbolically as follows, where the subscripts
indicate the element positions within the sequence:

(xq, X3 Xz o X,)

One-Dimensional Sequence Storage Representation
A one-dimensional sequence is stored in an array using stride in the same way a
vector uses stride. For details, see|[“How Stride Is Used for Vectors” on page 74.|

Two-Dimensional Sequences

A two-dimensional sequence appears symbolically as a series of columns of
elements. (They are represented in the same way as a matrix without the square
brackets.) The two subscripts indicate the element positions in the first and second
dimensions, respectively:

oo 9o1 - - . Qop
Qo A - - - Ay
=10 Gn-11 " ° " Ay 1

Two-Dimensional Sequence Storage Representation

A two-dimensional sequence is stored in an array using the stride for the second
dimension in the same way that a matrix uses leading dimension. In the simplest
form, it uses a stride of 1 for the first dimension; however, certain subroutines may
allow you to specify a stride for the first dimension that is greater than 1. For
detail