<|lI!

IBM XL Fortran for Blue Gene/Q), V14.1

Getting Started with XL Fortran

Version 14.1

GC14-7366-00

<|lI!

IBM XL Fortran for Blue Gene/Q), V14.1

Getting Started with XL Fortran

Version 14.1

GC14-7366-00

Note
FBefore using this information and the product it supports, read the information in|[“Notices” on page 31|

First edition

This edition applies to IBM XL Fortran for Blue Gene/Q, V14.1 (Program 5799-AH1) and to all subsequent releases
and modifications until otherwise indicated in new editions. Make sure you are using the correct edition for the
level of the product.

© Copyright IBM Corporation 1996, 2012.
US Government Users Restricted Rights — Use, duplication or disclosure restricted by GSA ADP Schedule Contract
with IBM Corp.

Contents

About this document .

Conventions

Related 1nformat10n .
IBM XL Fortran mformatlon .
Standards and specifications .
Other IBM information.

Technical support .

How to send your comments

Chapter 1. Introducing XL Fortran
About the Blue Gene architecture
Commonality with other IBM compilers .
Operating system support .

A highly configurable compiler .
Language standard compliance .

Source-code migration and conformance checkmg

Tools, utilities, and commands
Program optimization .
Shared memory parallelization
Diagnostic listings

Symbolic debugger support

Chapter 2. What's new for IBM XL

Fortran for Blue Gene/Q, V14.1.

Blue Gene/Q features
Quad Processing Extension support
Speculative execution of threads .
Transactional memory . .

Compiler options and directives support
Debug optimized program using -g. .
Compiler options or directives for Blue Gene/ Q
Other new or changed compiler options and
directives

© Copyright IBM Corp. 1996, 2012

. ix
. ix
. xi
. xi

NN UT W WNNR R =,

O o 00 00 NN NN

O

Language support enhancements .
Fortran 2008 features .
Other XL Fortran language- related updates
OpenMP 3.1 . . .
Performance and optlmlzatlon .
New diagnostic reports

Chapter 3. Setting up and customizing
XL Fortran .

Using custom compiler confrguratron frles .

Chapter 4. Developing appllcatlons
with XL Fortran .
The compiler phases
Editing Fortran source files .
Compiling with XL Fortran .
Invoking the compiler .
Compiling parallelized XL Fortran apphcatlons
Specifying compiler options . o
XL Fortran input and output files .

Linking your compiled applications with XL Fortran
. 29
. 29
. 30

Dynamic and static linking .
Running your compiled application
XL Fortran compiler diagnostic aids .

Debugging compiled applications .

.12
.12
. 15
. 16
. 16
.17

.21
.21

. 23
.23
.23
.24
.26

26

.27

. 28
28

. 30

Determining what level of XL Fortran is 1r1stalled 30

Notices .
Trademarks and service marks .

Index

. 31
.33

. 35

iii

iv XL Fortran: Getting Started

About this document

This document contains overview and basic usage information for the IBM® XL
Fortran for Blue Gene®/Q, V14.1 compiler.

Who should read this document

This document is intended for Fortran developers who are looking for introductory
overview and usage information for XL Fortran. It assumes that you have some
familiarity with command-line compilers, a basic knowledge of the Fortran
programming language, and basic knowledge of operating system commands.
Programmers new to XL Fortran can use this document to find information on the
capabilities and features unique to XL Fortran.

How to use this document

Throughout this document, the bgxlf compiler invocation is used to describe the
actions of the compiler. You can, however, substitute other forms of the compiler
invocation command if your particular environment requires it, and compiler
option usage will remain the same unless otherwise specified.

While this document covers information on configuring the compiler environment,
and compiling and linking Fortran applications using the XL Fortran compiler, it
does not include the following topics:

* Compiler installation: see the XL Fortran Installation Guide for information on
installing XL Fortran.

* Compiler options: see the XL Fortran Compiler Reference for detailed information
on the syntax and usage of compiler options.

* The Fortran programming language: see the XL Fortran Language Reference for
information on the syntax, semantics, and IBM implementation of the Fortran
programming language.

* Programming topics: see the XL Fortran Optimization and Programming Guide for
detailed information on developing applications with XL Fortran, with a focus
on program portability and optimization.

Conventions

© Copyright IBM Corp. 1996, 2012

Typographical conventions

The following table shows the typographical conventions used in the IBM XL
Fortran for Blue Gene/Q, V14.1 information.

Table 1. Typographical conventions

Typeface Indicates Example

bold Lowercase commands, executable | The compiler provides basic
names, compiler options, and invocation commands, bgxlf, along
directives. with several other compiler

invocation commands to support
various Fortran language levels and
compilation environments.

vi

Table 1. Typographical conventions (continued)

procedures. Uppercase letters may
also be used to indicate the
minimum number of characters
required to invoke a compiler
option/suboption.

Typeface Indicates Example
italics Parameters or variables whose Make sure that you update the size
actual names or values are to be parameter if you return more than
supplied by the user. Italics are the size requested.
also used to introduce new terms.
underlining The default setting of a parameter |nomaf | maf
of a compiler option or directive.
monospace Programming keywords and To compile and optimize
library functions, compiler builtins, | myprogram.f, enter: bgx1f
examples of program code, myprogram.f -03.
command strings, or user-defined
names.
UPPERCASE | Fortran programming keywords, |The ASSERT directive applies only to
bold statements, directives, and intrinsic | the DO loop immediately following

the directive, and not to any nested
DO loops.

Qualifying elements (icons and bracket separators)

In descriptions of language elements, this information uses icons and marked
bracket separators to delineate the Fortran language standard text as follows:

Table 2. Qualifying elements

Bracket

Icon separator text |Meaning

N/A The text describes an IBM XL Fortran implementation of

the Fortran 2008 standard.

Fortran 2003 The text describes an IBM XL Fortran implementation of
begins / ends | the Fortran 2003 standard, and it applies to all later

standards.

IBM extension | The text describes a feature that is an IBM XL Fortran
begins / ends |extension to the standard language specifications.

Note: If the information is marked with a Fortran language standard icon or
bracket separators, it applies to this specific Fortran language standard and all later
ones. If it is not marked, it applies to all Fortran language standards.

Syntax diagrams

Throughout this information, diagrams illustrate XL Fortran syntax. This section
will help you to interpret and use those diagrams.

¢ Read the syntax diagrams from left to right, from top to bottom, following the
path of the line.

The »—— symbol indicates the beginning of a command, directive, or statement.

XL Fortran: Getting Started

The — symbol indicates that the command, directive, or statement syntax is
continued on the next line.

The »— symbol indicates that a command, directive, or statement is continued
from the previous line.

The —>< symbol indicates the end of a command, directive, or statement.
Fragments, which are diagrams of syntactical units other than complete
commands, directives, or statements, start with the |— symbol and end with
the —| symbol.

IBM XL Fortran extensions are marked by a number in the syntax diagram with
an explanatory note immediately following the diagram.

Program units, procedures, constructs, interface blocks and derived-type
definitions consist of several individual statements. For such items, a box
encloses the syntax representation, and individual syntax diagrams show the
required order for the equivalent Fortran statements.

Required items are shown on the horizontal line (the main path):

»>—keyword—required argument »<

Optional items are shown below the main path:

»>—keyword »<
I—opt ional_argumen t—l

Note: Optional items (not in syntax diagrams) are enclosed by square brackets ([
and [). For example, [UNIT=]u

If you can choose from two or more items, they are shown vertically, in a stack.

If you must choose one of the items, one item of the stack is shown on the main
path.

»—keyword—[requi red_argumentl ><
required_argumen t2—|

If choosing one of the items is optional, the entire stack is shown below the
main path.

»»>—keyword
|:Zptiona l_argumen t]:‘

ptional_argument2

\4
A

An arrow returning to the left above the main line (a repeat arrow) indicates
that you can make more than one choice from the stacked items or repeat an
item. The separator character, if it is other than a blank, is also indicated:

v

v
A

»»—keyword

repeatable_argument

The item that is the default is shown above the main path.

efault_argumen t—|
»»—keyword lternate_argument

v
A

About this document Vil

* Keywords are shown in nonitalic letters and should be entered exactly as shown.

* Variables are shown in italicized lowercase letters. They represent user-supplied

names or values. If a variable or user-specified name ends in _list, you can
provide a list of these terms separated by commas.

* If punctuation marks, parentheses, arithmetic operators, or other such symbols

are shown, you must enter them as part of the syntax.

Sample syntax diagram

The following is an example of a syntax diagram with an interpretation:

(1) [

»»—EXAMPLE char_constant |_a_| Y e——name_list ><
b —C—
L g—
Notes:
1 IBM extension

Interpret the diagram as follows:

Enter the keyword EXAMPLE.
EXAMPLE is an IBM extension.

Enter a value for char_constant.

Enter a value for a or b, but not for both.
Optionally, enter a value for ¢ or 4.

Enter at least one value for e. If you enter more than one value, you must put a
comma between each.

Enter the value of at least one name for name_list. If you enter more than one value,
you must put a comma between each. (The _list syntax is equivalent to the previous
syntax for e.)

How to read syntax statements

Syntax statements are read from left to right:

Individual required arguments are shown with no special notation.

When you must make a choice between a set of alternatives, they are enclosed
by { and } symbols.

Optional arguments are enclosed by [and] symbols.
When you can select from a group of choices, they are separated by | characters.
Arguments that you can repeat are followed by ellipses (...).

Example of a syntax statement
EXAMPLE char_constant {a|b}[c|dle[,el... name_list{name_list}...

The following list explains the syntax statement:
* Enter the keyword EXAMPLE.
e Enter a value for char_constant.

¢ Enter a value for a or b, but not for both.

viii XL Fortran: Getting Started

* Optionally, enter a value for c or 4.

* Enter at least one value for e. If you enter more than one value, you must put a
comma between each.

* Optionally, enter the value of at least one name for name_list. If you enter more
than one value, you must put a comma between each name.

Note: The same example is used in both the syntax-statement and syntax-diagram
representations.

Examples in this information

The examples in this information, except where otherwise noted, are coded in a
simple style that does not try to conserve storage, check for errors, achieve fast
performance, or demonstrate all possible methods to achieve a specific result.

The examples for installation information are labelled as either Example or Basic
example. Basic examples are intended to document a procedure as it would be
performed during a basic, or default, installation; these need little or no
modification.

Notes on the terminology used

Some of the terminology in this information is shortened as follows:
* The term free source form format often appears as free source form.

* The term fixed source form format often appears as fixed source form.
* The term XL Fortran often appears as XLF.

Related information
The following sections provide related information for XL Fortran:

IBM XL Fortran information

XL Fortran provides product information in the following formats:
* README files

README files contain late-breaking information, including changes and
corrections to the product information. README files are located by default in
the XL Fortran directory and in the root directory of the installation CD.

* Installable man pages
Man pages are provided for the compiler invocations and all command-line
utilities provided with the product. Instructions for installing and accessing the
man pages are provided in the IBM XL Fortran for Blue Gene/Q, V14.1 Installation
Guide.

* Information center
The information center of searchable HTML files can be launched on a network
and accessed remotely or locally. Instructions for installing and accessing the
online information center are provided in the IBM XL Fortran for Blue Gene/Q,
V14.1 Installation Guide.

The information center of searchable HTML files is viewable on the web at
[http:/ /pic.dhe.ibm.com /infocenter/compbg/v121v141/index.jsp}

¢ PDF documents

About this document ~ 1X

http://pic.dhe.ibm.com/infocenter/compbg/v121v141/index.jsp

PDF documents are located by default in the /opt/ibmemp/xlf/bg/14.1/doc/
en_US/pdf/ directory. The PDF files are also available on the web at
http:/ /www.ibm.com /software/awdtools/fortran /xlfortran / features/bg /|

librarz Vi i

The following files comprise the full set of XL Fortran product information:

Table 3. XL Fortran PDF files

PDF file
Document title name Description
IBM XL Fortran for Blue install.pdf Contains information for installing XL Fortran
Gene/Q, V14.1 Installation and configuring your environment for basic
Guide, GC14-7367-00 compilation and program execution.
Getting Started with IBM | getstart.pdf |Contains an introduction to the XL Fortran
XL Fortran for Blue product, with information on setting up and
Gene/Q, V14.1, configuring your environment, compiling and
GC14-7366-00 linking programs, and troubleshooting
compilation errors.
IBM XL Fortran for Blue compiler.pdf |Contains information about the various
Gene/Q, V14.1 Compiler compiler options and environment variables.
Reference, GC14-7368-00
IBM XL Fortran for Blue langref.pdf |Contains information about the Fortran
Gene/Q, V14.1 Language programming language as supported by IBM,
Reference, GC14-7369-00 including language extensions for portability
and conformance to nonproprietary standards,
compiler directives and intrinsic procedures.
IBM XL Fortran for Blue proguide.pdf | Contains information on advanced
Gene/Q, V14.1 Optimization programming topics, such as application
and Programming Guide, porting, interlanguage calls, floating-point
5C14-7370-00 operations, input/output, application
optimization and parallelization, and the XL
Fortran high-performance libraries.

To read a PDF file, use the Adobe Reader. If you do not have the Adobe Reader,

ou can download it (subject to license terms) from the Adobe website at
http:/ /www.adobe.co

More information related to XL Fortran including IBM Redbooks® publications,
white papers, tutorials, and other articles, is available on the web at:

Ihttp: / /www.ibm.com /software/awdtools/fortran/xlfortran/features/bg /library / |

Standards and specifications

XL Fortran is designed to support the following standards and specifications. You
can refer to these standards for precise definitions of some of the features found in
this information.

American National Standard Programming Language FORTRAN, ANSI X3.9-1978.

American National Standard Programming Language Fortran 90, ANSI X3.198-1992.
ANSI/IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Std 754-1985.
Federal (USA) Information Processing Standards Publication Fortran, FIPS PUB 69-1.

Information technology - Programming languages - Fortran, ISO/IEC 1539-1:1991 (E).
(This information uses its informal name, Fortran 90.)

Information technology - Programming languages - Fortran - Part 1: Base language,
ISO/IEC 1539-1:1997. (This information uses its informal name, Fortran 95.)

X XL Fortran: Getting Started

http://www.ibm.com/software/awdtools/fortran/xlfortran/features/bg/library/
http://www.ibm.com/software/awdtools/fortran/xlfortran/features/bg/library/
http://www.adobe.com
http://www.ibm.com/software/awdtools/fortran/xlfortran/features/bg/library/

* Information technology - Programming languages - Fortran - Part 1: Base language,
ISO/IEC 1539-1:2004. (This information uses its informal name, Fortran 2003.)

* Information technology - Programming languages - Fortran - Part 1: Base language,
ISO/IEC 1539-1:2010. (This information uses its informal name, Fortran 2008.)

 Military Standard Fortran DOD Supplement to ANSI X3.9-1978, MIL-STD-1753
(United States of America, Department of Defense standard). Note that XL
Fortran supports only those extensions documented in this standard that have
also been subsequently incorporated into the Fortran 90 standard.

* OpenMP Application Program Interface Version 3.1, available at
[http:/ / www.openmp.org]

Other IBM information
* Blue Gene/Q Hardware Ouverview and Installation Planning, SG24-7872, available at
[http:/ / www.redbooks.ibm.com /redpieces/abstracts /sg247872.htm1?Open|

* Blue Gene/Q Hardware Installation and Maintenance Guide, SG24-7974, available at
[http: / /www.redbooks.ibm.com /redpieces /abstracts /sg247974.htm1?Open|

* Blue Gene/Q High Availability Service Node, REDP-4657, available at
[http: / /www.redbooks.ibm.com/redpieces/abstracts /redp4657.htm1?Open|

* Blue Gene/Q System Administration, SG24-7869, available at |Ettp: // |
[www.redbooks.ibm.com/redpieces/abstracts /sg247869.htm1?Open|

* Blue Gene/Q Application Development, SG24-7948, available at
[http: / /www.redbooks.ibm.com /redpieces/abstracts /sg247948 htm1?Open|

* Blue Gene/Q Code Development and Tools Interface, REDP-4659, available at
[http:/ /www.redbooks.ibm.com /redpieces /abstracts / redp4659.html?Open|

Technical support

Additional technical support is available from the XL Fortran Support page at
http:/ /www.ibm.com /software/awdtools/fortran /xlfortran / features /bg /|
support/| This page provides a portal with search capabilities to a large selection
of Technotes and other support information.

If you cannot find what you need, you can send email to compinfo@ca.ibm.com.

For the latest information about XL Fortran, visit the product information site at
http:/ /www.ibm.com /software /awdtools/ fortran / xlfortran / features /bg /|

How to send your comments

Your feedback is important in helping to provide accurate and high-quality
information. If you have any comments about this information or any other XL
Fortran information, send your comments by email to compinfo@ca.ibm.com.

Be sure to include the name of the information, the part number of the

information, the version of XL Fortran, and, if applicable, the specific location of
the text you are commenting on (for example, a page number or table number).

About this document X1

http://www.openmp.org
http://www.redbooks.ibm.com/redpieces/abstracts/sg247872.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg247974.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/redp4657.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg247869.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg247869.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg247948.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/redp4659.html?Open
http://www.ibm.com/software/awdtools/fortran/xlfortran/features/bg/support/
http://www.ibm.com/software/awdtools/fortran/xlfortran/features/bg/support/
http://www.ibm.com/software/awdtools/fortran/xlfortran/features/bg/

xil XL Fortran: Getting Started

Chapter 1. Introducing XL Fortran

IBM XL Fortran for Blue Gene/Q, V14.1 is an advanced, high-performance
compiler that can be used for developing complex, computationally intensive
programs, including interlanguage calls with C and C++ programs.

This section discusses the features of the XL Fortran compiler at a high level. It is
intended for people who are evaluating the compiler, and for new users who want
to find out more about the product.

About the Blue Gene architecture

The IBM Blue Gene/Q solution is the third generation machine in IBM's Blue
Gene® program. It adheres to the key design strategies of the Blue Gene program,
providing petaflop scale performance in a package that is efficient in terms of
power, cooling and floor space, thereby reducing the total cost of ownership.

Compared to Blue Gene®/L and Blue Gene®/P, Blue Gene/Q extended
performance through an increase of processor cores and frequency, and added
4-way SMP functionality, hardware DMA, 10 Gb Ethernet, and aggressive power
management. The solution typically combines multiple racks of 1024 compute
nodes, each containing an SMP PowerPC® A2 processor. Each processor contains 16
cores for use by the application and one core for use by the system.

Blue Gene/Q provides a standard programming and cross compiling environment,
and supports a wide range of IBM and open source software libraries and
middleware. The Front End nodes contain the Linux Red Hat Enterprise Linux 6.2
(RHEL 6.2) operating system for developing, compiling, and debugging the high
performance applications that run on Blue Gene/Q compute nodes.

For more information about the Blue Gene solution, see "IBM System Blue Gene
Solution: Blue Gene/Q Application Development" available at [http:/ /]
www.redbooks.ibm.com /redpieces/abstracts /sg247948 . htm1?Open|

Commonality with other IBM compilers

IBM XL Fortran for Blue Gene/Q, V14.1 is part of a larger family of IBM C, C++,
and Fortran compilers.

XL Fortran, together with XL C/C++, comprise the family of XL compilers.

These compilers are derived from a common code base that shares compiler
function and optimization technologies for a variety of platforms and
programming languages. Programming environments include IBM AIX®, IBM Blue
Gene/P, IBM Blue Gene/Q, IBM i, selected Linux distributions, IBM z/0OS®, and
IBM z/VM?®. The common code base, along with compliance with international
programming language standards, helps support consistent compiler performance
and ease of program portability across multiple operating systems and hardware
platforms.

© Copyright IBM Corp. 1996, 2012 1

http://www.redbooks.ibm.com/redpieces/abstracts/sg247948.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg247948.html?Open

Operating system support

IBM XL Fortran for Blue Gene/Q, V14.1, along with the compiler related tools,
supports the Red Hat Enterprise Linux 6.2 (RHEL 6.2) operating system on Blue
Gene/Q Front End nodes.

See the README file and |'Before installing XL Fortran"|in the XL Fortran
Installation Guide for a complete list of requirements.

The generated object programs and runtime libraries are run on Blue Gene/Q
compute nodes with the required software and disk space. Blue Gene/Q compute
nodes support the Blue Gene Compute Node Kernel (CNK) operating system.

To exploit the various supported hardware configurations, the compiler provides
options to tune the performance of applications specific to the type of hardware
that will be used to execute the compiled applications.

A highly configurable compiler

You can use a variety of compiler invocation commands and options to tailor the
compiler to your unique compilation requirements.

Compiler invocation commands

XL Fortran provides several different commands that you can use to
invoke the compiler, for example, bgxlf, bgx1f90, bgx1f95, bgx1£2003, and
bgx1£2008. Each invocation command is unique in that it instructs the
compiler to tailor compilation output to meet a specific language level
specification. Compiler invocation commands are provided to support all
standardized Fortran language levels, and many popular language
extensions as well.

The compiler also provides corresponding "_r" versions of most invocation
commands, for example, bgxlf_r. The "_r" invocations instruct the compiler
to link and bind object files to thread safe components and libraries, and
produce thread safe object code for compiler-created data and procedures.

For more information about XL Fortran compiler invocation commands,
see ['Compiling XL Fortran programs'|in the XL Fortran Compiler Reference .

Compiler options

You can choose from a large selection of compiler options to control
compiler behavior. Different categories of options help you to debug your
applications, optimize and tune application performance, select language
levels and extensions for compatibility with non-standard features and
behaviors supported by other Fortran compilers, and perform many other
common tasks that would otherwise require changing the source code.

XL Fortran lets you specify compiler options through a combination of
environment variables, compiler configuration files, command line options,
and compiler directive statements embedded in your program source.

For more information about XL Fortran compiler options, see |'Summary of]

lcompiler options'|in the XL Fortran Compiler Reference.

Custom compiler configuration files

2 XL Fortran: Getting Started

The installation process creates a default compiler configuration file
containing stanzas that define compiler option default settings.

Your compilation needs may frequently involve specifying compiler option
settings other than the default settings provided by XL Fortran. If so, you

can use makefiles to define your compiler option settings, or alternatively,
you can create custom configuration files to define your own sets of
frequently used compiler option settings.

For more information about using custom compiler configuration files, see
[“Using custom compiler configuration files” on page 21/

Language standard compliance

This section provides language standard compliance information for IBM XL
Fortran for Blue Gene/Q, V14.1.

The compiler supports the following programming language specifications for
Fortran:

* ANSI X3.9-1978 (referred to as FORTRAN 77)

* ISO/IEC 1539-1:1991(E) and ANSI X3.198-1992 (referred to as Fortran 90 or
F90)

* ISO/IEC 1539-1:1997 (referred to as Fortran 95 or F95)
» ISO/IEC 1539-1:2004 (referred to as Fortran 2003 or F2003)

* DPartial support for ISO/IEC 1539-1:2010 (referred to as Fortran 2008 or
F2008)

In addition to the standardized language levels, XL Fortran supports language
extensions, including:

* OpenMP Application Program Interface V3.1
* Language extensions to support vector programming

¢ Common Fortran language extensions defined by other compiler vendors,
in addition to those defined by IBM

* Industry extensions that are found in Fortran products from various
compiler vendors

* Extensions specified in SAA Fortran

See |'Language standards'|in the XL Fortran Language Reference for more
information about Fortran language specifications and extensions.

Source-code migration and conformance checking

XL Fortran helps protect your investment in your existing Fortran source code by
providing compiler invocation commands that instruct the compiler to inspect your
application for conformance to a specific language level and warn you if constructs
and keywords are found that do not conform to the specified language level.

You can also use the -qlanglvl compiler option to specify a given language level,
and the compiler will issue warnings if language elements in your program source
do not conform to that language level. Additionally, you can name your source
files with common filename extensions such as .f77, .f90, {95, .f03, or .f08, then use
the generic compiler invocations such as bgxlf or bgxlf_r to automatically select
the appropriate language level appropriate to the filename extension.

See in the XL Fortran Compiler Reference for more information.

Chapter 1. Introducing XL Fortran 3

Tools, utilities, and commands

This topic introduces the main tools, utilities, and commands that are included
with XL Fortran. It does not contain all compiler tools, utilities, and commands.

Utilities
new_install

The new_install utility configures IBM XL Fortran for Blue Gene/Q, V14.1
for use on your system, after you install the compiler.

xIf_configure
The xIf_configure utility creates custom compiler configuration files
containing your own custom sets of compiler option default settings. For
more information, see [Running the xIf_configure utility directly (for|
ladvanced users)|in the XL Fortran Installation Guide.

Commands

genhtml command
The genhtml command converts an existing XML diagnostic report
produced by the -qlistfmt option. You can choose to produce XML or
HTML diagnostic reports by using the -qlistfmt option. The report can
help with finding optimization opportunities. For more information about
how to use this command, see jgenhtml command|in the XL Fortran
Compiler Reference.

Program optimization

XL Fortran provides several compiler options that can help you control the
optimization and performance of your programs.

With these options, you can perform the following tasks:
¢ Select different levels of compiler optimizations.
* Control optimizations for loops, floating point, and other types of operations.

* Optimize a program for a particular class of machines or for a very specific
machine configuration, depending on where the program will run.

Optimizing transformations can give your application better overall execution
performance. XL Fortran provides a portfolio of optimizing transformations
tailored to various supported hardware. These transformations offer the following
benefits:

* Reducing the number of instructions executed for critical operations

* Restructuring generated object code to make optimal use of the Blue Gene
architecture

* Improving the usage of the memory subsystem

* Exploiting the ability of the architecture to handle large amounts of shared
memory parallelization

For more information, see these related topics:

* ['Optimizing your applications'|in the XL Fortran Optimization and Programming
Guide

* ['Optimizing and tuning options'|in the XL Fortran Compiler Reference

4 XL Fortran: Getting Started

Shared memory parallelization

XL Fortran supports application development for multiprocessor system
architectures.

You can use any of the following methods to develop your parallelized
applications with XL Fortran:

¢ Directive-based shared memory parallelization

* Instructing the compiler to automatically generate shared memory
parallelization

* Message passing based shared or distributed memory parallelization (MPI)

For more information, see [Parallel programming with XL Fortran'|in the XL
Fortran Optimization and Programming Guide.

OpenMP directives

OpenMP directives are a set of API-based commands supported by XL Fortran and
many other IBM and non-IBM C, C++, and Fortran compilers.

You can use OpenMP directives to instruct the compiler how to parallelize a
particular loop. The existence of the directives in the source removes the need for
the compiler to perform any parallel analysis on the parallel code. OpenMP
directives require the presence of Pthread libraries to provide the necessary
infrastructure for parallelization.

OpenMP directives address three important issues of parallelizing an application:

1. Clauses and directives are available for scoping variables. Frequently,
variables should not be shared; that is, each processor should have its
own copy of the variable.

2. Work sharing directives specify how the work contained in a parallel
region of code should be distributed across the processors.

3. Directives are available to control synchronization between the processors.

As of XL Fortran for Blue Gene/Q, V14.1, XL Fortran supports all features of the
OpenMP API Version 3.1 specification. See|"OpenMP 3.1” on page 16| for an
overview of the support provided by this feature.

Speculative execution of threads

Thread-level speculative execution uses hardware support that dynamically detects
thread conflicts and rolls back conflicting threads for re-execution. You can get
significant performance gains in your applications by adding the compiler
directives of thread-level speculative execution without rewriting the program
code.

For details, see [Thread-level speculative execution|

Transactional memory

Transactional memory is a model for controlling concurrent memory accesses in
the scope of parallel programming. It is also called lock-free synchronization and is

Chapter 1. Introducing XL Fortran 5

an alternative to lock-based synchronization. Transactions are implemented
through regions of code that you can designate to be single operations for the
system.

For details, see [Transactional memory]

For more information about program performance optimization, see:

» ['Optimizing your applications"|in the XL Fortran Optimization and Programming
Guide

Www.openmp.org]

Diagnostic listings

The compiler output listings and the XML or HTML reports provide important
information to help you develop and debug your applications more efficiently.

Listing information is organized into optional sections that you can include or
omit. For more information about the applicable compiler options and the listing
itself, see ['Understanding XL Fortran compiler listings'|in the XL Fortran Compiler
Reference.

It is also possible to get information from the compiler in XML or HTML format
about some of the optimizations that the compiler was able to perform and also
which optimization opportunities were missed. This information can be used to
reduce programming effort when tuning applications, especially high-performance
applications. The report is defined by an XML schema and is easily consumable by
tools that you can create to read and analyze the results. For detailed information

about this report and how to use it, see ['Using reports to diagnose optimization|
in the XL Fortran Optimization and Programming Guide.

Symbolic debugger support

You can instruct XL Fortran to include debugging information in your compiled
objects by using different levels of the -g or -qdbg compiler option.

For details, see |§| or in XL Fortran Compiler Reference.

The debugging information can be examined by gdb or any other symbolic
debugger that is supported on Blue Gene/Q to help you debug your programs.
For how to use gdb remotely on the Blue Gene/Q compute nodes, see "Blue
Gene/Q Application Development" available at |http:/ /www.redbooks.ibm.com /|
fredpieces/abstracts /sg247948. html1?Open|

6 XL Fortran: Getting Started

http://www.openmp.org
http://www.redbooks.ibm.com/redpieces/abstracts/sg247948.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg247948.html?Open

Chapter 2. What's new for IBM XL Fortran for Blue Gene/Q,
V141

This section describes features and enhancements added to the compiler in IBM XL
Fortran for Blue Gene/Q, V14.1.

The XL compiler for Blue Gene/Q contains some significant enhancements since
XL Fortran, V11.1 that supported Blue Gene/L and Blue Gene/P. It also contains
many enhancements that are in common with the compilers on the AIX and Linux
platforms.

Blue Gene/Q features

This section describes the Blue Gene/Q new features added to the compiler in IBM
XL Fortran for Blue Gene/Q, V14.1.

Quad Processing Extension support

This release of the compiler supports the Quad Processing eXtension (QPX)
instruction set of the Blue Gene/Q platform.

With the -qsimd=auto option enabled by default, the compiler can automatically
take advantage of QPX vector instructions.

New data types and intrinsic procedures are introduced to support the QPX
instructions. With the QPX intrinsic procedures, you can efficiently manipulate
vector operations in your application.

The QPX data type is twice larger than the data type of the Double Hummer
instruction set present in the Blue Gene/L and Blue Gene/P platforms: four
double-precision floating-point values instead of two double-precision
floating-point values. It is automatically enabled when you compile your program
for the Blue Gene/Q architecture.

You can use the -qflttrap=qpxstore option to enable the detection of floating-point
exceptions in QPX vectors.

For more information about the QPX data types and intrinsic procedures, see
in the and [Vector intrinsic procedured in the XL Fortran Language Reference.

Speculative execution of threads

Thread-level speculative execution uses hardware support that dynamically detects
thread conflicts and rolls back conflicting threads for re-execution.

You can get significant performance gains in your applications by adding the
compiler directives of thread-level speculative execution without rewriting the
program code.

Thread-level speculative execution is enabled with the ['-qgsmp=speculative'
compiler option.

© Copyright IBM Corp. 1996, 2012 7

Related information

:

* [Thread-level speculative execution|

¢ [SPECULATIVE DO / END SPECULATIVE DO|
+ |SPECULATIVE SECTIONS|

+ |Routines for thread-level speculative execution|

+ [Environment variables for thread-level speculative execution|

Transactional memory

Transactional memory is a model for controlling concurrent memory accesses in
the scope of parallel programming. It is also called lock-free synchronization and is
an alternative to lock-based synchronization.

In Blue Gene/Q, the transactional memory model is implemented in the hardware
to access all the memory up to the 16 GB boundary.

Transactions are implemented through regions of code that you can designate to be
single operations for the system.

The transactional memory is enabled with the compiler option.

Related information

* [Transactional memory]|

* [IM_ATOMIC

* [Routines for transactional memory|

+ |[Environment variables for transactional memory]|

Compiler options and directives support

This section describes new and changed compiler options and directives for IBM
XL Fortran for Blue Gene/Q, V14.1.

You can specify compiler options on the command line. You can also modify
compiler behavior through directives embedded in your application source files.
See the XL Fortran Compiler Reference for detailed descriptions and usage
information for these and other compiler options.

Debug optimized program using -g
The -g compiler option generates debugging information for use by a symbolic

debugger. You can use -g to debug optimized code by viewing or possibly
modifying accessible variables at selected source locations in the debugger.

The -g option has been extended to have different levels (-g0 - -g9) so that you can
balance between debug capability and compiler optimization. Higher levels
provide a more complete debug support, at the cost of runtime or possible
compile-time performance, while lower levels provide higher runtime performance,
at the cost of some capability in the debugging session.

You can use -g to debug optimized code at -O2 by viewing or possibly modifying
accessible variables at selected source locations in the debugger.

For details, see |§| or

8 XL Fortran: Getting Started

Compiler options or directives for Blue Gene/Q

This section summarizes new or changed compiler options and directives that
support Blue Gene/Q specific features.

Blue Gene/Q specific compiler options

-qarch -qarch specifies the processor architecture where the code may run.
-qarch=qp produces object code that runs on the Blue Gene/Q platform. It
is enabled by default.

-qtune -qtune tunes instruction selection, scheduling, and other
architecture-dependent performance enhancements to run best on a specific
hardware architecture. -qtune=qp specifies that optimizations are tuned for
the Blue Gene/Q platform. It is enabled by default.

-gstaticlink
When -gstaticlink is in effect, the compiler links only static libraries with
the object file being produced. It is enabled by default. You can specify
-qnostaticlink to dynamically link your programs.

-qtm -qtm enables support for transactional memory.
-qsmp -qsmp=speculative enables support for thread-level speculative execution.

-qflttrap
-qflttrap=qpxstore detects and traps on not-a-number (NaN) or infinity
values in Quad Processing eXtension (QPX) vectors. The exceptions only
occur on QPX store instructions.

-qsimd
-qsimd=auto enables automatic generation of QPX vector instructions. It is
enabled by default at all optimization levels. To disable automatic
generation of QPX instructions, use -qsimd=noauto.

Blue Gene/Q specific directives

SPECULATIVE DO / END SPECULATIVE DO
The SPECULATIVE DO directive instructs the compiler to speculatively
parallelize a DO loop.

SPECULATIVE SECTIONS / END SPECULATIVE SECTIONS
The SPECULATIVE SECTIONS directive instructs the compiler to
speculatively parallelize sections of the code. In code blocks delimited by
SPECULATIVE SECTIONS and END SPECULATIVE SECTIONS, you
can use the SPECULATIVE SECTION directive to delimit program code
segments.

TM_ATOMIC / END TM_ATOMIC
The TM_ATOMIC directive indicates a transactional atomic region.

Other new or changed compiler options and directives

This section summarizes other new or changed compiler options and directives
since V11.1 of the XL Fortran compiler.

New or changed compiler options

-8 -qdbg
The -g or -qdbg option is extended to have new different levels to improve
the debugging of optimized programs.

-qassert

Chapter 2. What's new for IBM XL Fortran for Blue Gene/Q, V14.1 9

New suboptions have been added for -qassert to provide more information
about the characteristics of the files that can help to fine-tune
optimizations.

The -qassert=contig option tells the compiler that all array pointers are
associated with contiguous targets, and that all assumed-shape arrays are
associated with contiguous actual arguments.

The -qassert=refalign option tells the compiler that all pointers only point
to naturally-aligned data.-qassert=minitercnt=r and -qassert=maxitercnt=n
are added to specify the expected minimum and maximum iteration counts
of the loops in the program.

-gbindcextname
Controls whether the -qextname option affects BIND(C) entities.

-qfunctrace
Inserts calls to user-defined tracing procedures at procedure entry and exit.
You can specify module procedures and module names.

-qfunctrace_xlf_catch, -qfunctrace_xlf_enter, and -qfunctrace_xIf exit
specify the name of the catch, entry, and exit tracing subroutines.

-qhaltonmsg
Stops compilation before producing any object files, executable files, or
assembler source files if a specified error message is generated.

-ghot

The -qhot=[no]simd option has been deprecated and replaced by the
-q[nolsimd option. For details, see

In addition, the -qhot=fastmath option has been added to allow your
applications to use fast scalar versions of math functions.

-qinitalloc
The new option -qinitalloc is added to initialize allocatable and pointer
variables that are allocated but not initialized.

-qinline
Attempts to inline functions instead of generating calls to those functions,
for improved performance.

-qlanglvl
The following suboptions are added or updated:

-qlanglvl=2008std

-qlanglvl=2008pure
These two new suboptions are added to enable language level
checking for supported Fortran 2008 features.

-qlibmpi
Tunes code based on the known behavior of the Message Passing Interface
(MPI) functions.

-qlistfmt
The -qlistfmt option is enhanced to generate HTML reports as well as
XML reports, containing information about optimizations performed by the
compiler and missed optimization opportunities.

The default behavior of -qlistfmt has changed. In this release, if you do not
specify a particular type of content, the option generates all the available
content, rather than generating none.

10 XL Fortran: Getting Started

-qmaxerr
-qmaxerr stops compilation when the number of error messages of a
specified severity level or higher reaches a specified number.

-qmkshrobj
Creates a shared object from generated object files.

-qoptfile
The new option -qoptfile specifies a file containing a list of additional
command line options to be used for the compilation.

-qpic -qpic=large now enables large TOC access and prevents TOC overflow
conditions when the Table of Contents is larger than 64 Kb.

-qreport
When used together with compiler options that enable automatic
parallelization or vectorization, the -qreport option now reports the
number of streams in a loop and produces information when loops cannot
be SIMD vectorized due to non-stride-one references.

-qsmp=omp
When -qsmp=omp is in effect, some of the additional functionality of
OpenMP API 3.1 is now available. For more information, see

B.1” on page 16

-gstackprotect
Protects your applications against malicious code or programming errors
that overwrite or corrupt the stack.

-qstrict

Many suboptions have been added to the -qstrict option to allow more
control over optimizations and transformations that violate strict program
semantics. For details, see [“Performance and optimization” on page 16.]

-gstrict=vectorprecision disables vectorization in loops where it might
produce different results in vectorized iterations than in nonvectorized
ones.

-qtimestamps
This option can be used to remove timestamps from generated binaries.

-qx1£2008
The new suboption -qx1f2008=checkpresence is added so that you can
check dummy argument presence according to the Fortran 2008 standard.

-qx1£2003
The new suboption -qx1f2003=dynamicacval is added to control whether
you can use unlimited polymorphic entities for array constructors, and
whether dynamic types of array constructor values are used.

New or changed directives

ALIGN
Using the ALIGN directive, you can specify the alignment for your
variables in memory.

ASSERT
You can use assertions MINITERCNT(1z) and MAXITERCNT(#) to specify
the minimum and maximum number of iterations for a given loop.

Chapter 2. What's new for IBM XL Fortran for Blue Gene/Q, V14.1 11

EXECUTION_FREQUENCY
The EXECUTION_FREQUENCY directive marks source code that you expect will
be executed very frequently or very infrequently.

IGNORE_TKR
The IGNORE_TKR directive facilitates portability of code written for other
compilers. It simplifies the writing of generic interfaces, especially for
system libraries by directing the compiler to ignore type, kind and rank of
dummy arguments.

Language support enhancements

This section describes language enhancements added to the compiler in IBM XL
Fortran for Blue Gene/Q, V14.1.

Fortran 2008 features
XL Fortran implements selected features of the Fortran 2008 standard.

This version of XL Fortran provides support for the following Fortran 2008
features:

* ALLOCATE enhancements

* Complex part designators

* Implied-shape arrays

* Internal procedures as actual arguments or procedure pointer targets
¢ Intrinsic types in the TYPE() type specifier

* Pointer dummy argument enhancement

* The declaration of multiple type-bound procedures in a single procedure
statement

* The -qx1f2008=checkpresence suboption

¢ The BLOCK construct

* The CONTIGUOUS attribute and IS_CONTIGUOUS intrinsic function
e The END statement for internal and module subprograms
* The EXIT statement

* The HYPOT intrinsic procedure

¢ The ISO_FORTRAN_ENYV intrinsic module

* The LEADZ and TRAILZ intrinsic procedures

¢ The math intrinsic procedures extension

* The NEWUNIT= specifier

* The POPCNT and POPPAR inquiry intrinsic functions

* The RADIX= argument

¢ The STOP and ERROR STOP statements

ALLOCATE enhancements
The MOLD= specifier has been added to the ALLOCATE statement. In addition,

you can omit the bounds in the ALLOCATE statement if you provide source_expr
in the SOURCE= or MOLD-= specifier.

12 XL Fortran: Getting Started

Complex part designators

Complex part designators have been added in Fortran 2008. Using complex part
designators, you can directly access the real or imaginary part of complex entities.
You can use the designators instead of the REAL() and IMAG() intrinsics.

Implied-shape arrays

Implied-shape arrays have been added in Fortran 2008. An implied-shape array
inherits its shape from the constant expression in its declaration.

Internal procedures as actual arguments or procedure pointer
targets

To conform with the Fortran 2008 standard, procedure pointers can now point to
internal procedures. In addition, you can use internal procedures and pointers to
internal procedures as actual arguments.

Intrinsic types in the TYPE() type specifier

The TYPE() type specifier has been extended to declare entities of both derived
type and intrinsic type.

Pointer dummy argument enhancement

In Fortran 2008, a dummy argument that has the POINTER and INTENT(IN)
attributes can be argument associated with a nonpointer actual argument that has
the TARGET attribute.

The declaration of multiple type-bound procedures in a single
procedure statement

In Fortran 2008, you can declare multiple type-bound procedures using one
type-bound procedure statement.

The -qxIf2008=checkpresence suboption

The -qx1f2008=checkpresence suboption has been introduced to check the
allocation status or pointer association status of actual arguments during argument
association of optional dummy arguments.

The BLOCK construct

The BLOCK construct has been added in Fortran 2008. It defines an executable
block that can contain declarations.

The CONTIGUOUS attribute and IS_CONTIGUOUS intrinsic
function

The CONTIGUOUS attribute specifies that the array elements in an array pointer
or an assumed-shape array are not separated by other data objects, which
guarantees that the array object is stored in contiguous memory.

The IS_CONTIGUOUS intrinsic function is used to test whether an array is stored

in contiguous memory.

Chapter 2. What's new for IBM XL Fortran for Blue Gene/Q, V14.1 13

The END statement for internal and module subprograms

In Fortran 2008, you can omit the FUNCTION and SUBROUTINE keywords on
the END statements for internal and module subprograms.

The EXIT statement

The EXIT statement can now be used to terminate execution of one of the
following constructs:

* ASSOCIATE
* BLOCK

« DO

* IF

* SELECT CASE
* SELECT TYPE

The HYPOT intrinsic procedure

The HYPOT intrinsic procedure is introduced to calculate the Euclidean distance
between two values.

The ISO_FORTRAN_ENYV intrinsic module

The following constants are added:

* CHARACTER_KINDS

* INTS, INT16, INT32, and INT64

* INTEGER_KINDS

* IOSTAT_INQUIRE_INTERNAL_UNIT
* LOGICAL_KINDS

* REAL32, REAL64, and REAL128

* REAL_KINDS

The following functions are added:
* COMPILER_OPTIONS
* COMPILER_VERSION

The LEADZ and TRAILZ intrinsic procedures

The LEADZ and TRAILZ intrinsic procedures are introduced to count the number
of leading and trailing zeros in an integer.

The math intrinsic procedures extension

The following new intrinsic procedures have been introduced:
* ACOSH

* ASINH

* ATANH

* ERFC_SCALED

* LOG_GAMMA

Notes:

14 XL Fortran: Getting Started

1. The LOG_GAMMA intrinsic procedure is the Fortran 2008 standard compliant
alias of the LGAMMA intrinsic procedure.

2. The ERF, ERFC, and GAMMA intrinsic procedures are now Fortran 2008
standard compliant.

Complex arguments are now supported in the following intrinsic procedures:
+ ACOS

* ASIN

* ATAN

+ COSH

* SINH

+ TAN

- TANH

Note: The ATAN intrinsic procedure can now optionally take two arguments,
ATAN(Y, X), and have the same results as the ATAN2 intrinsic procedure.

The NEWUNIT= specifier

The OPEN statement has been updated with the NEWUNIT= specifier to specify
the unit number automatically. In the BACKSPACE, CLOSE, ENDFILE, FLUSH,
INQUIRE, OPEN, READ, REWIND, and WRITE statements, the range of unit
values now includes the NEWUNIT value.

The POPCNT and POPPAR inquiry intrinsic functions

The POPCNT and POPPAR functions have been updated to conform with the
Fortran 2008 standard. They can be used in constant expressions now.

The RADIX= argument

A RADIX= argument has been added to the SELECTED_REAL_KIND and
IEEE_SELECTED_REAL_KIND intrinsic procedures.

The STOP and ERROR STOP statements

The STOP statement has been enhanced to take an integer or character constant
expression as stop code. The STOP statement initiates normal termination of a
program while the ERROR STOP statement initiates error termination.

Other XL Fortran language-related updates
XL Fortran fully implements the Fortran 2003 standard.

Fortran 2003 compliance

XL Fortran fully implements the Fortran 2003 standard. This version of XL Fortran
provides the following features:

* Support for parameterized derived types, including kind and length parameters.
* Support for generic interfaces with the same name as derived types.

e The OPEN and INQUIRE statements have been updated with the ENCODING=
specifier to indicate the encoding form of the file.

For more information, see [Fortran 2003

Chapter 2. What's new for IBM XL Fortran for Blue Gene/Q, V14.1 15

IEEE module enhancements

The IEEE_ARITHMETIC module defines a new constant, IEEE_OTHER_VALUE, and
three new functions:

« IEEE_SET_UNDERFLOW_MODE
« IEEE_GET_UNDERFLOW_MODE
« IEEE_SUPPORT UNDERFLOW_MODE

OpenMP 3.1

IBM XL Fortran for Blue Gene/Q, V14.1 supports the OpenMP Application
Program Interface Version 3.1 specification. The XL Fortran implementation is
based on IBM's interpretation of the OpenMP Application Program Interface
Version 3.1.

OpenMP 3.1 includes the following updates to OpenMP 3.0:
* Adds FINAL and MERGEABLE clauses to the TASK construct to support optimization.

* Adds the TASKYIELD construct to allow users to specify where in the program
can perform task switching.

e Adds the omp_in_final runtime library routine to support specialization of final
task regions.

e Extends the ATOMIC construct to include READ, WRITE, and CAPTURE forms; adds
the UPDATE clause to apply the existing form of the ATOMIC construct.

* Allows dummy arguments with the INTENT(IN) attribute to be specified on the
FIRSTPRIVATE clause.

* Allows unallocated allocatable arrays to be specified on the COPYIN clause.
* Allows Fortran 90 Pointers to be specified on the FIRSTPRIVATE clause.

* Adds the OMP_PROC_BIND environment variable to control whether OpenMP
threads are allowed to move between processors.

* Extends the OMP_NUM_THREADS environment variable to specify the number of
threads to use for nested parallel regions.

Related information

* ['Parallel programming with XL Fortran"|in the XL Fortran Optimization and
Programming Guide

* [www.openmp.org]

Performance and optimization

Additional features and enhancements assist with performance tuning and
application optimization.

Enhancements to -gstrict

Many suboptions have been added to the -qstrict option to allow more
fine-grained control over optimizations and transformations that violate strict
program semantics. In previous releases, the -gstrict option disabled all
transformations that violate strict program semantics. This is still the behavior if
you use -qstrict without suboptions. Likewise, in previous releases -qnostrict
allowed transformations that could change program semantics. Because a higher
level of optimizations might require relaxing strict program semantics, the addition
of the suboptions relaxes selected rules to get specific benefits of faster code
without turning off all semantic verifications.

16 XL Fortran: Getting Started

http://www.openmp.org

You can use 16 new suboptions separateli or use a suboption group. For detailed

information about these suboptions, see ['-gstrict'| in the XL Fortran Compiler
Reference.

Reports about compiler optimizations

There are a number of enhancements to the listing reports to give you more
information about how the compiler optimized your code. You can use this
information to get further benefits from the optimization capabilities of the

compiler. For more details about these enhanced reports, see ['New diagnostid|

Performance-related compiler options and directives

The entries in the following table describe new or changed compiler options and
directives.

Information presented here is a brief overview. For detailed information about
these options, directives, and other performance-related compiler options, see
['Optimization and tuning options'|in the XL Fortran Compiler Reference.

Table 4. Performance-related compiler options and directives

-qinline=level=number A new option is added to -ginline to provide guidance
to the compiler about the relative value of inlining in
relation to the default value of 5.number is a range of
integer values 0 - 10 that indicates _the level of inlining
you want to use. For details, see in the XL
Fortran Compiler Reference.

-qfloat Some -qfloat suboptions are affected by the new
suboptions for -gstrict.
EXECUTION_FREQUENCY The EXECUTION_FREQUENCY directive marks source code

that might be executed very frequently or very
infrequently. When optimization is enabled, the
directive is used as a hint to the optimizer.

For additional information about performance tuning and program optimization,
see 'Optimizing your applications"|in the XL Fortran Optimization and Programming
Guide.

New diagnostic reports

The new diagnostic reports can help you identify opportunities to improve the
performance of your code.

Compiler reports in XML or HTML format

It is now possible to get information in XML or HTML format about the
optimizations that the compiler was able to perform and also which optimization
opportunities were missed. This information can be used to reduce programming
effort for tuning applications, especially high-performance applications.

The -qlistfmt option and its associated suboptions can be used to generate the

XML or HTML report. By default, this option now generates all the available
content if you do not specify the type of content.

Chapter 2. What's new for IBM XL Fortran for Blue Gene/Q, V14.1 17

To view the HTML version of an XML report that has been already generated, you
can now use the genhtml tool. For more information about how to use this tool,
see [genhtml command|in the XL Fortran Compiler Reference.

For detailed information about this report and how to use it, see|'Using reports to]
ldiagnose optimization opportunities'| in the XL Fortran Optimization and
Programming Guide.

Report of data reorganization

The compiler can generate the following information in the listing files:

* Data reorganizations (a summary of how program variable data gets reorganized
by the compiler)

* The location of data prefetch instructions inserted by the compiler

To generate data reorganization information, specify the optimization level
-qipa=level=2 or -O5 together with -qreport. The data reorganization messages for
program variable data are added to the data reorganization section of the listing
file with the label DATA REORGANIZATION SECTION during the IPA link pass.
Reorganizations include:

* common block splitting

* array splitting

* array transposing

* memory allocation merging

* array interleaving

* array coalescing

To generate information about data prefetch insertion locations, use the
optimization level of -ghot, or any other option that implies -qhot together with
-qreport. This information appears in the LOOP TRANSFORMATION SECTION of the
listing file.

Additional loop analysis

A new suboption has been added to -qhot to add more aggressive loop analysis.
-qhot=level=2 together with -qsmp and -qreport add information about loop nests
on which the aggressive loop analysis was performed to the LOOP TRANSFORMATION
SECTION of the listing file. This information can also appear in the XML listing file
created with the -qlistfmt option.

New and enhanced diagnostic options

The entries in the following table describe new or changed compiler options and
directives that give you control over compiler listings.

The information presented here is a brief overview. For detailed information about
these and other performance-related compiler options, see ['Listings, messages and|
lcompiler information'| in the XL Fortran Compiler Reference.

18 XL Fortran: Getting Started

Table 5. Listings-related compiler options and directives

Option/directive

Description

-qlistfmt

The -qlistfmt option has been enhanced to generate
HTML reports as well as XML reports, containing
information about optimizations performed by the
compiler and missed optimization opportunities.

The default behavior of this option has changed. Now,
if you do not specify a particular type of content, the
option generates all the available content, rather than
generating none.

Chapter 2. What's new for IBM XL Fortran for Blue Gene/Q, V14.1 19

20 XL Fortran: Getting Started

Chapter 3. Setting up and customizing XL Fortran

For complete prerequisite and installation information for XL Fortran, refer to
['Before installing'|in the XL Fortran Installation Guide.

Using custom compiler configuration files

You can customize compiler settings and options by modifying the default
configuration file or by creating your own.

You have the following options to customize compiler settings:

* The XL Fortran compiler installation process creates a default compiler
configuration file. You can directly modify this configuration file to add default
options for specific needs. However, if you later apply updates to the compiler,
you must reapply all of your modifications to the newly installed configuration
file.

* You can create your own custom configuration file that either overrides or
complements the default configuration file. The compiler can recognize and
resolve compiler settings you specify in your custom configuration files together
with compiler settings specified in the default configuration file. Compiler
updates that might later affect settings in the default configuration file does not
affect the settings in your custom configuration files.

For more information, see "Using custom compiler configuration files" in the XL
Fortran Compiler Reference.

© Copyright IBM Corp. 1996, 2012 21

22 XL Fortran: Getting Started

Chapter 4. Developing applications with XL Fortran

Fortran application development consists of repeating cycles of editing, compiling
and linking (by default a single step combined with compiling), and running.

Notes:

1. Before you can use the compiler, you must first ensure that XL Fortran and the
Blue Gene/Q tool chain are properly installed and configured. For more
information, see the XL Fortran Installation Guide.

2. To learn about writing Fortran programs, refer to the XL Fortran Language
Reference.

The compiler phases

A typical compiler invocation executes some or all of these activities in sequence.
For link time optimizations, some activities will be executed more than once
during a compilation. As each program runs, the results are sent to the next step in
the sequence.

1. Preprocessing of source files

2. Compilation, which may consist of the following phases, depending on what
compiler options are specified:

Front-end parsing and semantic analysis
Loop transformations
High-level optimization

Low-level optimization

® 2o 0 T o

Register allocation
f. Final assembly

3. Assemble the assembly (.s) files, and the unpreprocessed assembler (.S) files
after they are preprocessed

4. Object linking to create an executable application

To see the compiler step through these phases, specify the -v compiler option when
you compile your application. To see the amount of time the compiler spends in
each phase, specify -qphsinfo.

Editing Fortran source files

To create Fortran source programs, you can use any text editor available to your
system.

Source programs must be saved using a recognized file name suffix. See
[Fortran input and output files” on page 28 for a list of suffixes recognized by XL
Fortran.

For a Fortran source program to be a valid program, it must conform to the
language definitions specified in the XL Fortran Language Reference.

© Copyright IBM Corp. 1996, 2012 23

Compiling with XL Fortran

XL Fortran is a command-line compiler. Invocation commands and options can be
selected according to the needs of a particular Fortran application.

Compiling Fortran 2008 programs

The Fortran 2008 language standard is partially supported in this release. Use the
following invocations (or their variants) to conform more closely to their
corresponding Fortran language standards:

Fortran 2008
bgf2008, bgx1f2008, bgx1f2008_r

These compiler invocations accept Fortran 90 free source form by default. To use
fixed source form with these invocations, you must specify the -qfixed
command-line option.

By default, these invocation commands do not conform completely to the Fortran
2008 language standard supported in this release. If you need full compliance,
compile with the following additional compiler option settings:

-qTanglv1=2008std -gnodirective -gnoescape -gextname
-gfloat=nomaf:nofold -gnoswapomp -gstrictieeemod

Also, specify the following run time options before running the program, with a
command similar to the following:

export XLFRTEOPTS="err_recovery=no:1langlvi=2008std:
iostat_end=2003std:internal_nldelim=2003std"

The default settings are intended to provide the best combination of performance
and usability, so you might change them only when absolutely required. Some of
the options mentioned above are only required for compliance in very specific
situations. For example, you might need to specify -qextname only when an
external symbol, such as a common block or subprogram, is named main.

Compiling Fortran 2003 programs

Use the following invocations (or their variants) to conform more closely to their
corresponding Fortran language standards:

Fortran 2003
bgf2003, bgx1f2003, bgx1f2003_r

These compiler invocations are the preferred compiler invocation commands that
you should use when creating and compiling new applications.

They accept Fortran 90 free source form by default. To use fixed source form with
these invocations, you must specify the -qfixed command-line option.

By default, these invocation commands do not conform completely to the Fortran
2003 language standard. If you need full compliance, compile with the following
additional compiler option settings:

-qTanglv1=2003std -gnodirective -gnoescape -gextname
-qfloat=nomaf:nofold -gnoswapomp -gstrictieeemod

Also, specify the following run time options before running the program, with a
command similar to the following:

24 XL Fortran: Getting Started

export XLFRTEOPTS="err_recovery=no:langlvi=2003std:
iostat_end=2003std:internal_nldelim=2003std"

The default settings are intended to provide the best combination of performance
and usability, so you should change them only when absolutely required. Some of
the options mentioned above are only required for compliance in very specific
situations. For example, you would need to specify -qextname only when an
external symbol, such as a common block or subprogram, is named main.

-gxI1f2003 compiler option

The -qx1£2003 compiler option provides compatibility with XL Fortran V10.1 and
the Fortran 2003 standard for certain aspects of the language.

When compiling with the Fortran 2003 or Fortran 2008 compiler invocations, the
default setting is -qx1f2003=polymorphic. This setting instructs the compiler to
allow polymorphic items such as the CLASS type specifier and SELECT TYPE
construct in your Fortran application source.

For all other compiler invocations, the default is -qx1f2003=nopolymorphic.
Compiling Fortran 95, or Fortran 90 programs

Use the following invocations (or their variants) to conform more closely to their
corresponding Fortran language standards:

Fortran 95
bgf95, bgxlf95, bgx1f95_r

Fortran 90
bgfo0, bgx1f90, bgx1f90_r

These compiler invocations accept Fortran 90 free source form by default. To use
fixed source form with these invocations, you must specify the -qfixed
command-line option.

I/0 formats are slightly different between these commands and the other
commands. I/O formats for the Fortran 95 compiler invocations are also different
from those of Fortran 90 invocations. We recommend that you switch to the
Fortran 95 formats for data files whenever possible.

By default, these invocation commands do not conform completely to their
corresponding Fortran language standards. If you need full compliance, compile
with the following additional compiler option settings:

For full Fortran 90 compliance:
-gqlanglv1=90std -gnodirective -gnoescape -gextname
-qfloat=nomaf:nofold -qnoswapomp
For full Fortran 95 compliance:
-gqlanglv1=95std -gnodirective -gnoescape -gextname

-gqfloat=nomaf:nofold -gqnoswapomp

Also, specify the following runtime options before running the program, with a
command similar to the following:

For full Fortran 90 compliance:

Chapter 4. Developing applications with XL Fortran 25

export XLFRTEOPTS="err_recovery=no:langlvi=90std"

For full Fortran 95 compliance:
export XLFRTEOPTS="err_recovery=no:langlvi=95std"

The default settings are intended to provide the best combination of performance
and usability, so you should change them only when absolutely required. Some of
the options mentioned above are only required for compliance in very specific
situations. For example, you would need to specify -qextname only when an
external symbol, such as a common block or subprogram, is named main.

Invoking the compiler

The compiler invocation commands perform all necessary steps to compile Fortran
source files, assemble any .s and .S files, and link the object files and libraries into
an executable program.

To compile a source program, use any of the available XL Fortran for Blue Gene/Q
compiler invocation commands. The bg-prefixed invocation commands on the Blue
Gene/Q Front End node (RHEL 6.2) are for cross-compiling applications for use on
the Blue Gene/Q compute node. The invocation commands that are not prefixed
with bg create executable programs targeted for RHEL 6.2 on POWER® platforms,
and are provided only for testing and debugging purposes. For the development of
applications targeted for the Front End node, IBM provides the IBM XL Fortran for
Linux, V14.1 product. As well, only the compiler options which are supported by
the bg cross-compiler commands are supported when using these compiler
invocations to create executable files for Blue Gene/Q.

To specify an invocation command, use the following basic syntax:

»»—hgx1f—~ B] input_file >
compiler_option

For most applications, you should compile with bgxlf or a thread safe counterpart.

Additional invocation commands are available to meet specialized compilation
needs, primarily to provide explicit compilation support for different levels and
extensions of the Fortran language. See['Compiling XL Fortran programs'|in the
XL Fortran Compiler Reference for more information about compiler invocation
commands available to you.

When working with source files whose filename extensions indicates a specific
level of Fortran, such as .f08, .f03, .f95, .f90, or .f77, compiling with bgxlf, or
corresponding generic thread safe invocations will cause the compiler to
automatically select the appropriate language-level defaults.

Compiling parallelized XL Fortran applications

XL Fortran provides thread-safe compiler invocation commands that you can use
when compiling parallelized applications for use in multiprocessor environments.

26 XL Fortran: Getting Started

These invocations are similar to their corresponding base compiler invocations,
except that they link and bind compiled objects to thread-safe components and
libraries. The generic XL Fortran thread-safe compiler invocation is:

* bgxlf r

XL Fortran provides additional thread-safe invocations to meet specific compilation
requirements. See ['Compiling XL Fortran programs'|in the XL Fortran Compiler
Reference for more information.

Note: Using any of these commands alone does not imply parallelization. For the
compiler to recognize OpenMP directives and activate parallelization, you must
also specify -qsmp compiler option. In turn, you should specify the -qsmp option
only in conjunction with one of these thread-safe invocation commands. When you
specify -qsmp, the driver links in the libraries specified on the smp libraries line in
the active stanza of the configuration file.

For more information on parallelized applications, see ['Parallel programming'| in
the XL Fortran Optimization and Programming Guide.

POSIX Pthreads API support

XL Fortran supports thread programming with the IEEE 1003.1-2001 (POSIX)
standard Pthreads APL

Specifying compiler options
Compiler options perform a variety of functions, such as setting compiler

characteristics, describing the object code to be produced, controlling the diagnostic
messages emitted, and performing some preprocessor functions.

You can specify compiler options:
* On the command-line with command-line compiler options
* In your source code using directive statements
* In a makefile
* In the stanzas found in a compiler configuration file

* Or by using any combination of these techniques

It is possible for option conflicts and incompatibilities to occur when multiple
compiler options are specified. To resolve these conflicts in a consistent fashion, the
compiler usually applies the following general priority sequence to most options:

1. Directive statements in your source file override command-line settings
2. Command-line compiler option settings override configuration file settings

3. Configuration file settings override default settings

Generally, if the same compiler option is specified more than once on a
command-line when invoking the compiler, the last option specified prevails.

Note: Some compiler options do not follow the priority sequence described above.
For example, the -I compiler option is a special case. The compiler searches any
directories specified with -I in the xlIf.cfg file before it searches the directories

specified with -I on the command-line. The option is cumulative rather than
preemptive.

Chapter 4. Developing applications with XL Fortran 27

See the XL Fortran Compiler Reference for more information about compiler options
and their usage.

Other options with cumulative behavior are -R and -1 (lowercase L).
You can also pass compiler options to the linker, assembler, and preprocessor. See

'Specifying options on the command line'|in the XL Fortran Compiler Reference for
more information about compiler options and how to specify them.

XL Fortran input and output files
These file types are recognized by XL Fortran.

For detailed information about these and additional file types used by the
compiler, see['Types of input files'|in the XL Fortran Compiler Reference and

Igf output files"|in the XL Fortran Compiler Reference.
Table 6. Input file types

Filename extension Description
£, .F, £77, F77, .£90, .F90, |Fortran source files
95, F95, .f03, .F03, .f08,
.F08
.mod Module symbol files
.0 Object files
.S Assembler files
.50 Shared object or library files

Table 7. Output file types

Filename extension Description
a.out Default name for executable file created by the compiler
.mod Module symbol files
Ist Listing files
.0 Object files
S Assembler files
.50 Shared object or library files

Linking your compiled applications with XL Fortran

By default, you do not need to do anything special to link an XL Fortran program.
The compiler invocation commands automatically call the linker to produce an
executable output file.

For example, running the following command:
bgx1f filel.f file2.o0 file3.f

compiles filel.f and file3.f to produce the object files filel.o and file3.o,

then all object files (including file2.0) are submitted to the linker to produce one
executable.

28 XL Fortran: Getting Started

Compiling and linking in separate steps

To produce object files that can be linked later, use the -c option.

bgx1f -c filel.f # Produce one object file (filel.o)
bgx1f -c file2.f file3.f # Or multiple object files (file2.o, file3.0)
bgx1f filel.o file2.o0 file3.0 # Link object files with default libraries

For more information about compiling and linking your programs, see|'Linking XL
[Fortran programs'|in the XL Fortran Compiler Reference.

Dynamic and static linking

XL Fortran allows your programs to take advantage of the operating system
facilities for both dynamic and static linking.

Dynamic linking means that the code for some external routines is located and
loaded when the program is first run. When you compile a program that uses
shared libraries, the shared libraries are dynamically linked to your program by
default. Dynamically linked programs take up less disk space and less virtual
memory if more than one program uses the routines in the shared libraries. During
linking, they do not require any special precautions to avoid naming conflicts with
library routines. They may perform better than statically linked programs if several
programs use the same shared routines at the same time. They also allow you to
upgrade the routines in the shared libraries without relinking.

Static linking means that the code for all routines called by your program becomes
part of the executable file. On Blue Gene/Q platforms, static linking is enabled by
default.

Statically linked programs can be moved to run on systems without the XL Fortran
runtime libraries. They may perform better than dynamically linked programs if
they make many calls to library routines or call many small routines. They do
require some precautions in choosing names for data objects and routines in the
program if you want to avoid naming conflicts with library routines. They also
may not work if you compile them on one level of the operating system and run
them on a different level of the operating system.

Related information

e The compiler option

Running your compiled application

The default file name for the program executable file produced by the XL Fortran
compiler is a.out. You can select a different name with the -o compiler option.

To run a program on Blue Gene/Q, use runjob and enter the name of the program
executable file with any runtime arguments on the command line. For details
about the runjob command, see "Blue Gene/Q Application Development" available at
lhttp: / /www.redbooks.ibm.com /redpieces /abstracts /sg247948.htm]?Open|

Canceling execution

To cancel a running program on Blue Gene/Q, you can cancel the runjob
command. For details, see "Blue Gene/Q Application Development" available at
http:/ /www.redbooks.ibm.com /redpieces / abstracts /sg247948 html?Open|

Chapter 4. Developing applications with XL Fortran 29

http://www.redbooks.ibm.com/redpieces/abstracts/sg247948.html?Open
http://www.redbooks.ibm.com/redpieces/abstracts/sg247948.html?Open

You can press the Ctrl+C key to stop the job that is specified by runjob.
Setting runtime options

You can use environment variable settings to control certain runtime options and
behaviors of applications created with the XL Fortran compiler. Other environment
variables do not control actual runtime behavior, but can have an impact on how
your applications will run.

For more information on environment variables and how they can affect your
applications at run time, see the XL Fortran Installation Guide.

XL Fortran compiler diagnostic aids

XL Fortran issues diagnostic messages when it encounters problems compiling
your application. You can use these messages and other information provided in
compiler output listings to help identify and correct such problems.

For more information about listing, diagnostics, and related compiler options that
can help you resolve problems with your application, see the following topics in
the XL Fortran Compiler Reference:

* ['Understanding XL Fortran compiler listings']

* |"Error checking and debugging options']

+ |'Listings, messages, and compiler information options'|

Debugging compiled applications

You can use a symbolic debugger to debug applications compiled with XL Fortran.

At compile time, you can use the -g or -qlinedebug option to instruct the XL
Fortran compiler to include debugging information in compiled output. For -g, you
can also use different levels to balance between debug capability and compiler
optimization. For more information about the debugging options, see
ichecking and debugging'|in the XL Fortran Compiler Reference.

You can then use gdb or any other symbolic debugger to step through and inspect
the behavior of your compiled application.

Optimized applications pose special challenges when debugging. When debugging
highly optimized applications, you should consider using the -qoptdebug compiler

option. For more information about optimizing your code, see ['Optimizing your|
in the XL Fortran Optimization and Programming Guide.
Determining what level of XL Fortran is installed

When contacting software support for assistance, you will need to know what level
of XL Fortran is installed on your machine.

To display the version and release level of the compiler you have installed on your
system, invoke the compiler with the -qversion compiler option.

For example, to obtain detailed version information, enter the following at the
command line:

bgx1f -qversion=verbose

30 XL Fortran: Getting Started

Notices

This information was developed for products and services offered in the U.S.A.
IBM may not offer the products, services, or features discussed in this document in
other countries. Consult your local IBM representative for information on the
products and services currently available in your area. Any reference to an IBM
product, program, or service is not intended to state or imply that only that IBM
product, program, or service may be used. Any functionally equivalent product,
program, or service that does not infringe any IBM intellectual property right may
be used instead. However, it is the user's responsibility to evaluate and verify the
operation of any non-IBM product, program, or service.

IBM may have patents or pending patent applications covering subject matter
described in this document. The furnishing of this document does not give you
any license to these patents. You can send license inquiries, in writing, to:

IBM Director of Licensing
IBM Corporation

North Castle Drive
Armonk, NY 10504-1785
US.A.

For license inquiries regarding double-byte (DBCS) information, contact the IBM
Intellectual Property Department in your country or send inquiries, in writing, to:

IBM World Trade Asia Corporation
Licensing

2-31 Roppongi 3-chome, Minato-ku
Tokyo 106, Japan

The following paragraph does not apply to the United Kingdom or any other
country where such provisions are inconsistent with local law:
INTERNATIONAL BUSINESS MACHINES CORPORATION PROVIDES THIS
PUBLICATION "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER
EXPRESS OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, THE IMPLIED
WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY OR FITNESS
FOR A PARTICULAR PURPOSE. Some states do not allow disclaimer of express or
implied warranties in certain transactions, therefore, this statement may not apply
to you.

This information could include technical inaccuracies or typographical errors.
Changes are periodically made to the information herein; these changes will be
incorporated in new editions of the publication. IBM may make improvements
and/or changes in the product(s) and/or the program(s) described in this
publication at any time without notice.

Any references in this information to non-IBM websites are provided for
convenience only and do not in any manner serve as an endorsement of those
websites. The materials at those websites are not part of the materials for this IBM
product and use of those websites is at your own risk.

IBM may use or distribute any of the information you supply in any way it
believes appropriate without incurring any obligation to you.

© Copyright IBM Corp. 1996, 2012 31

Licensees of this program who wish to have information about it for the purpose
of enabling: (i) the exchange of information between independently created
programs and other programs (including this one) and (ii) the mutual use of the
information which has been exchanged, should contact:

Lab Director

IBM Canada Ltd. Laboratory
8200 Warden Avenue
Markham, Ontario L6G 1C7
Canada

Such information may be available, subject to appropriate terms and conditions,
including in some cases, payment of a fee.

The licensed program described in this document and all licensed material
available for it are provided by IBM under terms of the IBM Customer Agreement,
IBM International Program License Agreement or any equivalent agreement
between us.

Any performance data contained herein was determined in a controlled
environment. Therefore, the results obtained in other operating environments may
vary significantly. Some measurements may have been made on development-level
systems and there is no guarantee that these measurements will be the same on
generally available systems. Furthermore, some measurements may have been
estimated through extrapolation. Actual results may vary. Users of this document
should verify the applicable data for their specific environment.

Information concerning non-IBM products was obtained from the suppliers of
those products, their published announcements or other publicly available sources.
IBM has not tested those products and cannot confirm the accuracy of
performance, compatibility or any other claims related to non-IBM products.
Questions on the capabilities of non-IBM products should be addressed to the
suppliers of those products.

All statements regarding IBM's future direction or intent are subject to change or
withdrawal without notice, and represent goals and objectives only.

This information contains examples of data and reports used in daily business
operations. To illustrate them as completely as possible, the examples include the
names of individuals, companies, brands, and products. All of these names are
fictitious and any similarity to the names and addresses used by an actual business
enterprise is entirely coincidental.

COPYRIGHT LICENSE:

This information contains sample application programs in source language, which
illustrates programming techniques on various operating platforms. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM, for the purposes of developing, using, marketing or distributing application
programs conforming to the application programming interface for the operating
platform for which the sample programs are written. These examples have not
been thoroughly tested under all conditions. IBM, therefore, cannot guarantee or
imply reliability, serviceability, or function of these programs. You may copy,
modify, and distribute these sample programs in any form without payment to
IBM for the purposes of developing, using, marketing, or distributing application
programs conforming to IBM's application programming interfaces.

32 XL Fortran: Getting Started

Each copy or any portion of these sample programs or any derivative work, must
include a copyright notice as follows:

© (your company name) (year). Portions of this code are derived from IBM Corp.
Sample Programs. © Copyright IBM Corp. 1998, 2010.

This software and documentation are based in part on the Fourth Berkeley
Software Distribution under license from the Regents of the University of
California. We acknowledge the following institution for its role in this product's
development: the Electrical Engineering and Computer Sciences Department at the
Berkeley campus.

Trademarks and service marks

IBM, the IBM logo, and ibm.com are trademarks or registered trademarks of
International Business Machines Corp., registered in many jurisdictions worldwide.
Other product and service names might be trademarks of IBM or other companies.
A current list of IBM trademarks is available on the web at|“Copyright and|
ftrademark information”|at |http:/ /www.ibm.com /legal / copytrade.shtml|

Adobe, the Adobe logo, PostScript, and the PostScript logo are either registered
trademarks or trademarks of Adobe Systems Incorporated in the United States,
other countries, or both.

Linux is a registered trademark of Linus Torvalds in the United States, other
countries, or both.

Microsoft and Windows are trademarks of Microsoft Corporation in the United
States, other countries, or both.

Cell Broadband Engine is a trademark of Sony Computer Entertainment, Inc. in the
United States, other countries, or both and is used under license therefrom.

UNIX is a registered trademark of The Open Group in the United States and other
countries.

Other company, product, or service names may be trademarks or service marks of
others.

Notices 33

http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml
http://www.ibm.com/legal/copytrade.shtml

34 XL Fortran: Getting Started

Index

Special characters

.a files 28
fand .F files 28
i files 28

Ist files 28
.mod files 28
.o files 28

s files 28

S files 28
.so files 28

A

archive files 28
assembler
source (.s) files 28
source (.S) files 28

B

basic example, described ix
bgf2003 command
description 24
level of Fortran standard
compliance 24
bgf2008 command
description 24
level of Fortran standard
compliance 24
bgf77 command
description 24
level of Fortran standard
compliance 25
bgfo0 command
description 24
bgf95 command
description 24
bgfort77 command
description 24
bgxlf command
description 24
level of Fortran standard
compliance 24, 25
bgxlf_r command
description 24
for compiling SMP programs 27
level of Fortran standard
compliance 25
bgx1f2003 command
description 24
level of Fortran standard
compliance 24
bgx1f2003_r command
description 24
level of Fortran standard
compliance 24
bgx1f2008 command
description 24
level of Fortran standard
compliance 24

© Copyright IBM Corp. 1996, 2012

bgx1f2008_r command
description 24
level of Fortran standard
compliance 24
bgx1f90 command
description 24
level of Fortran standard
compliance 25
bgx1f90_r command
description 24
for compiling SMP programs 27
level of Fortran standard
compliance 25
bgxlf95 command
description 24
bgxlf95_r command
description 24
for compiling SMP programs 27
level of Fortran standard
compliance 25

C

code optimization 4
compilation

sequence of activities 23
compiler

architecture 1

controlling behavior of 27

invoking 24

running 24
compiler directives

new or changed 9
compiler options

conflicts and incompatibilities 27

new or changed 9

specification methods 27
compiling

SMP programs 27

D

debugger support 30

output listings 30

symbolic 6
debugging 30
debugging compiled applications 30
debugging information, generating 30
dynamic linking 29

E

editing source files 23
executable files 28
executing a program 29
executing the linker 29

F

files

editing source 23

input 28

output 28
Fortran 2003

compiling programs written for
Fortran 2008

compiling programs written for
Fortran 90

compiling programs written for
Fortran 95

compiling programs written for

input files 28

invocation commands 26
invoking a program 29
invoking the compiler 24

L

language standards 3

language support 3

level of XL Fortran, determining 30
libraries 28

linking
dynamic 29
static 29

linking process 28
listings 28

M

migration

source code 27
mod files 28
multiprocessor systems 5

O

object files 28
creating 29
linking 29

OpenMP 5

optimization
programs 4

output files 28

P

parallelization 5
performance
optimizing transformations 4
POSIX Pthreads
API support 27
problem determination 30

24
24
25

25

35

programs
running 29

R

running the compiler 24
runtime

libraries 28
runtime options 30

S

shared memory parallelization 5
shared object files 28
SMP
programs, compiling 27
SMP programs 5
source files 28
source-level debugging support 6
static linking 29
symbolic debugger support 6

-

tools 4
configuration file utility 4
new install configuration utility 4
new_install utility 4
xIf_configure 4

U

utilities 4
new_install 4
xIf_configure 4

\'}

vac.cfg file 27

36 XL Fortran: Getting Started

Product Number: 5799-AH1

Printed in USA

GC14-7366-00

	Contents
	About this document
	Conventions
	Related information
	IBM XL Fortran information
	Standards and specifications
	Other IBM information

	Technical support
	How to send your comments

	Chapter 1. Introducing XL Fortran
	About the Blue Gene architecture
	Commonality with other IBM compilers
	Operating system support
	A highly configurable compiler
	Language standard compliance
	Source-code migration and conformance checking

	Tools, utilities, and commands
	Program optimization
	Shared memory parallelization
	Diagnostic listings
	Symbolic debugger support

	Chapter 2. What's new for IBM XL Fortran for Blue Gene/Q, V14.1
	Blue Gene/Q features
	Quad Processing Extension support
	Speculative execution of threads
	Transactional memory

	Compiler options and directives support
	Debug optimized program using -g
	Compiler options or directives for Blue Gene/Q
	Other new or changed compiler options and directives

	Language support enhancements
	Fortran 2008 features
	Other XL Fortran language-related updates
	OpenMP 3.1

	Performance and optimization
	New diagnostic reports

	Chapter 3. Setting up and customizing XL Fortran
	Using custom compiler configuration files

	Chapter 4. Developing applications with XL Fortran
	The compiler phases
	Editing Fortran source files
	Compiling with XL Fortran
	Invoking the compiler
	Compiling parallelized XL Fortran applications
	Specifying compiler options
	XL Fortran input and output files

	Linking your compiled applications with XL Fortran
	Dynamic and static linking

	Running your compiled application
	XL Fortran compiler diagnostic aids
	Debugging compiled applications
	Determining what level of XL Fortran is installed

	Notices
	Trademarks and service marks

	Index
	Special characters
	A
	B
	C
	D
	E
	F
	I
	L
	M
	O
	P
	R
	S
	T
	U
	V

