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Agenda

� Code Profiling – Linux tools

– GNU Profiler (Gprof)

– bfdprof

� Hardware Performance counter Monitors

� IBM Blue Gene/Q performances tools

– Internal mpitrace Library

– IBM HPC toolkit

� Major Open-Source Tools

– SCALASCA (fully ported and developed on BG/Q – Juelich Germany)

– TAU

� IBM System Blue Gene/Q Specifics

– Personality
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Using Xl compiler wrappers

� Tracing functions in your code

– Writing tracing functions – example in Xl Optimization and Programming guide

• __func_trace_enter is the entry point tracing function.

• __func_trace_exit is the exit point tracing function.

• __func_trace_catch is the catch tracing function.

– Specifying which functions to trace with the -qfunctrace option.



Standard code profiling
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Code profiling

� Purpose

– Identify most-consuming routines of a binary

• In order to determine where the optimization effort has to take place

� Standard Features

– Construct a display of the functions within an application

– Help users identify functions that are the most CPU-intensive

– Charge execution time to source lines

� Methods & Tools

– GNU Profiler, Visual profiler, addr2line linux command, …

– new profilers mainly based on Binary File Descriptor library and opcodes

library to assemble and disassemble machine instructions 

– Need to compiler with -g

– Hardware counters

� Notes

– Profiling can be used to profile both serial and parallel applications

– Based on sampling (support from both compiler and kernel)
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GNU Profiler (Gprof) | How-to | Collection

� Compile the program with options: -g –qfullpath + -pg (for gno profiler)
– Will create symbols required for debugging / profiling

� Execute the program
– Standard way

� Execution generates profiling files in execution directory
– gmon.out.<MPI Rank>

• Binary files, not readable
– Necessary to control number of files to reduce overhead 

� Two options for output files interpretation
– GNU Profiler (Command-line utility): gprof

• gprof <Binary> gmon.out.<MPI Rank> > gprof.out.<MPI Rank>

– Graphical utility / Part of HPC Toolkit GUI: Xprof

� Advantages of profiler based on Binary File Descriptor versus gprof
– Recompilation not necessary (linking only)
– Performance overhead significantly lower
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Using GNU profiling

/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgq-linux-gprof

� BG_GMON_RANK_SUBSET=N /* Only generate the gmon.out file for rank N. */

� BG_GMON_RANK_SUBSET=N:M /* Generate gmon.out files for all ranks from N to M. */

� BG_GMON_RANK_SUBSET=N:M:S /* Generate gmon.out files for all ranks from N to M. Skip 
S; 0:16:8 generates gmon.out.0, gmon.out.8, gmon.out.16 */

� The base GNU toolchain does not provide support for profiling on threads

� Profiling threads
– BG_GMON_START_THREAD_TIMERS 

• Set this environment variable to “all” to enable the SIGPROF timer on all threads 
created with the pthread_create() function.

• “nocomm” to enable the SIGPROF timer on all threads except the extra threads that are 
created to support MPI.

– Add a call to the gmon_start_all_thread_timers() function to the program, from the main 
thread

– Add a call to the gmon_thread_timer(int start) function from the thread to be profiled
• 1 to start, 0 to stop



Hardware performance monitors
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Hardware Counters

� Definition
– Extra logic inserted in the processor to count specific events
– Updated at every cycle
– Strengths

• Non-intrusive
• Very accurate
• Low overhead

– Weakness
• Provides only hard counts
• Specific for each processor
• Access is not well documented
• Lack of standard and documentation on what is counted
=> useful to use a higher level software

� Purpose of a high level software (like IBM HPM)
– Provides comprehensive reports of events that are critical to performance on 

IBM systems
– Gathers critical hardware performance metrics

• Number of misses on all cache levels
• Number of floating point instructions executed
• Number of instruction loads that cause TLB misses

– Helps to identify and eliminate performance bottlenecks
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BG/P versus BG/P Hardware Counters

� BG/P
– 256 64bit counters on Blue Gene/P

• 72 of these counters are core specific while 184 counters are shared across the four 
PowerPC 450 cores

• Max 4t → 288 independent core counts per process
• shared counters measure events related to L2 cache, memory and network

– Mode 0: cores 0 & 1
– Mode 1: cores 2 & 3

� BG/Q
– Much more complex
– Collects data from all cores, L1P Units, L2, Message Unit, IO Unit, CNK Unit (virtual)
– 600 events (414 core specific)
– 24 counters are available per core
– Can handle hardware threads

• Can provide per-thread counts of processor events
• But the 24 counters must be shared between threads
• 4 Hw Threads → 6 counters per thread
• Max 64t → 384 independent core counts per process 

– Supports multiplexing
– Provides ability to count more than the set (24) number of events
– Basic Idea: Start with one set of events, after a time interval, set another event set
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Multiplexing

� Provides ability to count more than the set (24) number of events

� Basic Idea: Start with one set of events, after a time interval, set another event set

– Counter architecture identifies conflicts 

– Saves counts of conflicted events

– Clears the counters and sets them to count new event

– After another time interval switches back to original

� Advantage: Can collect a lot more data in a single run

� Disadvantage: Multiplexed counter accuracy is comprimsed

– The counts are not correct unless the windows equally cover the code.

– One set may only register events from one part of the algorithm

– You cannot add/compare counts from events in the different groups

� Use to get general overview of the counter values to see if they should be 

investigated in more detail
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Nomenclature

� UPC
– Universal Performance Counting

• Hardware and low-level software

� BGPM
– Blue-Gene Performance Monitor

• Mid-Level software providing access to counters

� HPM from IBM HPC toolkit
– Hardware Performance Monitor 

• High-Level software providing access to counters (for devs)

� Counter types
� AXU, QPX, QFPU

– All refer to the Quad FP Unit
� XU, FXU

– The Execution Unit (Fixed-Point Unit)
– In PAPI FXU means floating-point unit!

� IU 
– The instruction unit (Front-End of pipeline)
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BG/Q Counter Related Software Layers

High level software (IBM HPCT, IBM mpitrace, Scalasca
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Performance Application Programming Interface (PAPI)

� PAPI-C library - performance application programming interface (PAPI)

– http://icl.cs.utk.edu/papi

� The PAPI-C features that can be used for the Blue Gene/Q system include:

– A standard instrumentation API that can be used by other tools.

– A collection of standard preset events, including some events that are derived 

from a collection of events. The BGPM API native events can also be used 

through the PAPI-C interfaces.

– Support for both a C and a Fortran instrumentation interface.

– Support for separate components for each of the BGPM API unit types:

• Punit counter is the default PAPI-C component. 

• L2, I/O, Network, and CNK units require separate component instances in 

the PAPI-C interface.

– See PAPI and BGPM docs for which BGPM events map to PAPI events
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BGPM (Blue-Gene Performance Monitor) | Details

� BGPM API functions to program, control, and access counters and events from the four 
integrated hardware units and the CNK software counters.

� Doxygen documentation gives detailed information on BGPM and counter architecture
– /bgsys/drivers/ppcfloor/bgpm/docs/html/index.html

� 4 main collection sources
– Processor (Punit) 

• 24 Counters. Thread Aware. Multiple units e.g. Load-Store, Floating-Point, L1p ..
– L2

• 6 counters per slice. Not thread/core aware
• Usuallly operate in combined mode

– IO Unit (MU, PCIE, DevBus) 
• Counts static set of events. Not thread/core aware

– Network Unit 
• 6 counters per link (10 torus links, 1 I/O link)
• Each link can only be counted by a single thread

� 3 major modes of operation:
– Software distributed mode

• Each software thread configures and controls its own Punit counters
– Hardware distributed mode

• A single software thread can configure and simultaneously control all Punit counters for 
all cores

– Low latency mode
• Provides faster start and stop access to to the Punit counters
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BGPM  | Events, Instructions, OpCodes

� Instructions
– Either XU or AXU depending on which pipeline they pass through
– Instructions can be microcoded – Made up of 2+ ucode sub-operations
– Total instructions = Non-Ucoded + Ucoded + Ucoded sub-ops
– Events couting instructions can

• Count only non-microcoded instructions (1 instruction == 1 operation)
• Count microcoded instructions – but not the sub-operations
• Count suboperations only
• Various combinations of the above

� OpCodes v Unit Events
– The opcode counter counts completed operations – looking at the end of the pipeline
– The unit events are counted by the units themselves – internal
– OpCode counter can discrimate sub-ops → provide counts equivalent to instructions

� Instructions and Opcodes are associated with the pipeline
– Events couting them come from IU, XU, AXU, Opcode counter

� Events in the other units (LSU,MMU,L1P) are not directly pipeline related
– Result of instructions in the pipeline 
– e.g. Load instructions go through XU pipeline and then are dispatched to LSU

� Events can be divided into three main groups based on how they realted to processor cycles
– Cycle Only Events e.g. Number of cycles pipeline stalled
– Single cycle events – events and cycles are synonymous. 

• Instruction and opcode counting
– Multi-cycle events – Only can count the occurances of the event – no cycle information
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BGPM | Processor Unit Counters

� Processor  has a number of sources
– Instruction Unit (IU) – 35 events
– Floating Point Unit (AXU) – 9 events
– Execution Unit (XU) – 35 events
– Load-Store Unit (LSU) – 32 events
– Memory-Managment Unit (MMU) – 31 events
– L1P – 66 events
– Wake Up Unit (WU) – 2 events
– Opcode Counter – Counts operations by related “groups”

• 24 XU groups, 25 AXU groups
• 6 AXU FLOP groups - > since 1 op → multiple flops
• 6 AXU Inst groups (giving the instructions counts related to above)

� The main units (IU, AXU, XU, LSU, MMU) can track max 8 events (4 threads → 2 per thread)

� When counting unit events the 24 counter are hardware thread specific (software distributed)
– Each thread can only count max 12 unit events! 
– Due to wiring/hardware considerations

� However the OpCode counter can use all 24 counters.

� L1P unit is most complicated in terms of what can/can't be counted at the same time
– Because it does prefectching plus interfaces between L2 and core
– 4 modes – list, stream, base, switch (requests to crossbar)
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BGPM | Tips

� Check the BGPM Tips Page!

– Docs/bgpm_event_tips.html

� Gives a detailed mapping of cycles to events

– how the total number of cycles can be broken into different events

– e.g. Total Cycles - IU Issues + IU Stall = IU Empty

• PEVT_CYCLES - PEVT_IU_TOT_ISSUE_COUNT + 

PEVT_IU_IS1_STALL_CYC = IU Empty

� Gives a (fairly) detailed explanation of the pipeline/event relationships

– Look at this in more detail tomorrow
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BGPM | HPM (IBM High Performance Monitoring) part of HPC 
Toolkit

� HPM Principle
– IBM HPM Library provides a very easy use of HPM

• Allows access to most relevant hardware counters
– Provides pre-set groups of events that can be counted together

• And counter on a per-hardware thread basis
– Handles multiplexing for groups that require it
– Handles overflows and other counter related issues
– Outputs data in easy to read file-format
– Can collect data on multiple parts of a code simultaneously

� HPM provides “readable” names for BGPM events, However it does not tell you the underlying
BGPM name (see HPCT docs for map)

� Default group detail:
– Total Loads - PEVT_LSU_COMMIT_LD_CACHABLE_LOADS
– XU Instructions         - PEVT_INST_XU_ALL

– AXU Instructions       - PEVT_INST_QFPU_ALL

– L1 Data Cache Miss  - PEVT_LSU_COMMIT_LD_MISSES

– L1P Misses                - PEVT_L1P_BAS_MISSES

– FLOPS                       - PEVT_INST_QFPU_FPGRP1_INSTR
– Total Cycles - PEVT_CYCLES

� The readable names are closely related to the description strings of the events which helps
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HPM | How-To

� Add hpmInit & hpmTerminate statements to code

– Directly after/before MPI Init/Finalize

– Need to add header files (hpm.h, f_hpm.h)

� Bracket routines to be profiled with hpmStart(name) and hpmStop(name)

– You can nest calls 

� Link with IBM HPM Library – libhpc or libhpc_r (for threaded)

� Execute with following environment variables

– HPM_EVENT_GROUP=

� Execution produces one HPM file per MPI task

– hpmCount_(Process Id).*

� HPM Environment Variables

– HPM_OUTPUT_PROCES (all/root)

– HPM_SCOPE (process|node)

– HPM_ASC_OUTPUT=yes (write output filed for peekperf)

– HPM_METRICS (yes|no) – Print derived metrics

– HPM_EXCLUSIVE (yes|no) – Outer nested regions counted separately to inner
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HPM | Groups

� All HPM output gives total cycles between start/end profiled region

� Groups – Each HPM group provides different set of processor events
– Default (-1) – See below - Non-multiplexed

– 0: Instructions & LSU events

– 1: Branch-Prediction

– 2: Floating-Point breakdown

– 3: Large mix of counters

– 4: L1 Stream Prefetching

– 5: Pipelining

� Default Group (Per Thread)
– Total Loads

– Total XU Instructions

– Total AXU Instructions 

– L1 Data Cache Misses

– L1P Misses 

– FLOPS

– MFLOPS (derived)

� All Groups Provide
– L2 Hits

– L2 Misses

– L2 Lines Loaded From Main Memory

– L2 Lines Stored To Main Memory
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HPM | Derived Metrics

� Total Instructions – Total XU + Total AXU

– Can calculate instruction mix from this

– Non-Load Instructions (Total XU - Loads)

� Throughput

– Ins/Cycle (Total Inst/Total Cycles)

– % Max issue rate (Ins/Cycle)/2.0

� L1 Hit %:  (Loads – L1 Misses)/Loads

� L1P Hit %: (L1Misses – L1PMisses)/Loads

� L2 Hit %: (L1PMisses – L2Misses)/Loads

– Not cannot use L2 Hits due to prefetch engine

� RAM Hit %: (L2 Misses)/Loads

� RAM Traffic: (L2 Lines Stored/Loaded)*128/Total Cycles

– Max traffic is 13 Bytes/Cycle (average).
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Hardware Counters (HC) | Tips

� Counters tell you exactly what code is doing 

– Don't tell you if what its doing is sub-optimal

– You might find the reason for poor performance – and that you can't do anything 

about it

� Two ways in which you can have issues:

– Compiler or hardware details make the algorithm act differently than expected

• HC can help identify this

– You have non-optimal implementation of the algorithm

• More difficult → HC can possible point you in right direction

� Need to have a good idea of what you expect the algorithm to be doing

� Usually have a base set of operations that is being iterated many times

– Work out details of this base set

• FLOPS

• Misses (Min/Max) – i.e. expected loads from various levels

• Code Balance: (Floating Point Instructions/Ops)/Loads (choose level)

� Divide counters by number of iterations of base calculation

– Makes counters more understandable
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Hardware Counters (HC) | Tips

� Check instruction mix:

– Is there anyway you can lessen the non-FP instructions?

• Eliminate loads (from any level)

• Reduce pointer related calculations

– Less instructions → less cycles → better performance

� Check misses

– Are there more misses/hits to lower cache levels than you expect?

– Compare actual v expected code-balance

� Calculate average latency per load

– (Cycles – Instructions)/Loads

– Is it higher than expected?

– Compare to (L1Hit%)*L1Lat + (L2Hit%)*L2Lat etc.

� The above two measures can indicate punit resource contention e.g.

– L1 Cache lines (Cache Thrashing)

– Load/Store queue

– L1P contention

� With hardware threads compare 1 thread to 4 threads to see changes

– Also 4t on one core to 4t on separate cores

� Note: L2 Hits is misleading due to the L1P



IBM MPI communications tracing
library (mpitrace)
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IBM MPI Trace library | Principles

• MPI wrappers for BlueGene have a number of optional features that can be controlled by setting environment 
variables

� Capabilities:
• MPI Trace Features
• Collects all MPI communications of an application
• Measures time spent in the MPI routines
• Provides call graph for communication subroutines
• Collective imbalacing
• BG/Q infos: block shape, task and IO bridge coordinates, # of  IO nodes
• Access to hardware counters
• Code Profiling (gprof and bfdprof), including hardware counters
• Posix IO traces

� There is one combined wrapper-set for apps that use Fortran and C:
– libmpitrace.a : wrappers for MPI
– libmpihpm.a : wrappers for MPI + hardware counters for pure

MPI applications

– libmpihpm_smp.a : wrappers for MPI + hardware counters for mixed
MPI + OpenMP applications

To enable IO traces
– libmpitraceio.a : wrappers for MPI and IO only

– libmpihpmio.a : wrappers for MPI + IO + hardware counters for pure
MPI applications

– libmpihpm_smpio.a : wrappers for MPI + IO + hardware counters for mixed
MPI + OpenMP applications

� IBM HPC Took provides similar functions with more features (openmp, output control, code sections, 
…), customable + graphic interface, (different for IO traces), but with some limitations – use most of the 
same env variables
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IBM MPI Trace library | Principles

� Usage – compile code with –g : allows translation from instruction address to source-file and line 
number

– Link with library for the IO version
• -Wl,-wrap,open -Wl,-wrap,close -Wl,-wrap,read -Wl,-wrap,write -Wl,-wrap,fopen -Wl,-

wrap,fclose -Wl,-wrap,fread -Wl,-wrap,fwrite
<Install Directory>/libmpitrace.a

– for libmpihpm.a and libmpihpm_smp.a add in the link
• /bgsys/drivers/ppcfloor/bgpm/lib/libbgpm.a

/bgsys/drivers/ppcfloor/spi/lib/libSPI_upci_cnk.a

� Output Files
– mpi.profile.<Process ID>.#rank
– hpm_process_summary. .<Process ID >.#rank
– hpm_job_summary. .<Process ID >.#rank
– Pattern. .<Process ID>.#rank
– events.trc
– Gmon.out or vmon.out .#rank

– To avoid <Process ID> suffix : export TRACE_OMIT_JOBID=yes
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IBM MPI Trace library | Sample output

----------------------------------------------------------------

MPI Routine                 #calls     avg. bytes time(sec)

----------------------------------------------------------------

MPI_Comm_size 1            0.0          0.000

MPI_Comm_rank 1            0.0          0.000

MPI_Isend 5738         2398.6          0.050

MPI_Irecv 2163         2738.7          0.010

MPI_Waitall 1919            0.0          0.028

MPI_Reduce 3            8.0          0.000

----------------------------------------------------------------

total communication time = 0.087 seconds.

total elapsed time       = 3.922 seconds.

user cpu time            = 3.890 seconds.

system time              = 0.030 seconds.

maximum memory size      = 30012 KBytes.

----------------------------------------------------------------

Message size distributions:

MPI_Isend #calls     avg. bytes time(sec)

2389           8.0          0.012

3349        4104.0          0.038

MPI_Irecv #calls     avg. bytes time(sec)

721           8.0          0.001

1442        4104.0          0.008

MPI_Reduce #calls     avg. bytes time(sec)

3           8.0          0.000
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IBM MPI Trace library

� By default trace from MPI_Init to MPI_Finalize

� Controlling by region
MPI
– C example: Fortran

summary_start(); call summary_start()
do_work();

summary_stop();                           call summary_stop()

CPU Profiling
vprof_start(), vprof_stop()

Hardware-counters
HPM_Start(“timesteps”), HPM_Stop(“timesteps”);

IO
jio_start(), jio_stop()

Event-tracing
trace_start(), trace_stop()
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Mpitrace env variables

� Controling output
– export PROFILE_ACTIVE=no
– export SAVE_ALL_TASKS=yes
– export SAVE_LIST=0,2,4,6,8,10, TRACE_MAX_RANK
– export TRACE_DIR=/path/to/your/profile/files
– Export TRACE_DISABLE_LIST=

� Export TRACE_SEND_PATTERN=yes
– for each message sent, the MPI wrappers will identify the source and destination 

torus coordinates, and keep track of the total number of byte-hops for each 
destination rank.

� IO
– export PROFILE_JIO=yes

• JIO_LEVEL=SUMMARY
• JIO_LEVEL=DETAILED
• JIO_LEVEL=TRACE - traces *every* I/O. Don't use it :-) traces in stderr

� CPU profiling
– Gmon profiling: Refer to documentation for gmon control on BG/Q
– vmon profiling
– export VPROF_PROFILE=yes
– cprof or bfdprof command your.exe vmon.out.n > cprofile_n.txt &

• Profile tips per file, function and code annotations
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Some mpitrace env variables

– Event tracing

– TRACE_ALL_EVENTS=yes

– MPI collective imbalacing

– export PROFILE_IMBALANCE=yes 

– export PROFILE_IMBALANCE_MPIO=yes 

– Hardware counter

– Can change group using HPM_GROUP

– Can change scope to per_process using HPM_SCOPE

– HPM_SCOPE=[node, process, thread]

– HPM_MASK=10000000 | 01111111 ; master thread | all except master thread

– HPM_GROUP=2

– count all FPU-related instructions

– HPM_GROUP=5

– All possible integer/load/store instructions



Profiling Basics

Can do profiling via timer interrupts : -pg  or user-callable profil() routine.

Interrupts occur at 100 per sec … so each hit corresponds to 0.01 sec.

Can also do profiling with hardware counters … best bet is with A2 events.

Set the BGPM event, and set the threshold value … get an interrupt when the 

counter increments by the threshold value, trap the address, build a histogram.

The basic profiling data is a histogram of “hits” as a function of instruction 

address.

bfdprof your.exe vmon.out.N > profile.N (typical use)



Blue Gene Application Performance IBM Corporation

bfdprof example : gyro  BGPM event = cycle 
counter

Got a total of 156543 hits at 7476 program-counter locations.
HPM sampling using event = 211, threshold = 1600000.

##########################
Function-level profile:
##########################

tics   function-name
--------------------------

37843  gyro_field_interpolation$$OL$$2
32739  gyro_operators_on_h$$OL$$1
15009  gyro_nl_direct$$OL$$1
7944  zmv4vfe
5736  gyro_moments_plot$$OL$$1
5113  zlnrsvfa
4726  gyro_field_interpolation$$OL$$1
4691  gyro_velocity_sum$$OL$$1
4640  zunrsvfa
2894  gyro_rhs_total$$OL$$2
2800  gyro_get_delta_he$$OL$$1
2588  gyro_collision_kernel$$OL$$2
2541  gyro_timestep_implicit
2170  blend_f
1520  gyro_get_he_implicit$$OL$$1
1308  gyro_tau_derivative$$OL$$1

1000 samples/sec

OpenMP codes have 

different functions for 

each parallel region.
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bfdprof example : gyro  BGPM event = cycle 
counter

##########################
Source-file profile:
##########################

tics   source-file
--------------------------

42587  /gpfs/bgq0/walkup/projects/gacode/gyro/src/gyro_field_interpolation.f90
32744  /gpfs/bgq0/walkup/projects/gacode/gyro/src/gyro_operators_on_h.f90
23022  unknown
15021  /gpfs/bgq0/walkup/projects/gacode/gyro/src/gyro_nl_direct.f90
5827  /gpfs/bgq0/walkup/projects/gacode/gyro/src/gyro_moments_plot.f90
4730  /gpfs/bgq0/walkup/projects/gacode/gyro/src/gyro_velocity_sum.f90
3127  /gpfs/bgq0/walkup/projects/gacode/gyro/src/gyro_rhs_total.f90
2994  /gpfs/bgq0/walkup/projects/gacode/gyro/src/gyro_collision_kernel.f90
2800  /gpfs/bgq0/walkup/projects/gacode/gyro/src/gyro_get_delta_he.f90
2541  /gpfs/bgq0/walkup/projects/gacode/gyro/src/gyro_timestep_implicit.f90
2170  /gpfs/bgq0/walkup/projects/gacode/gyro/BLEND/BLEND_F.f90
1521  /gpfs/bgq0/walkup/projects/gacode/gyro/src/gyro_get_he_implicit.f90
1308  /gpfs/bgq0/walkup/projects/gacode/gyro/src/gyro_tau_derivative.f90
1184  /gpfs/bgq0/walkup/projects/gacode/gyro/BLEND/BLEND_f3.f90
1089  /gpfs/bgq0/walkup/projects/gacode/gyro/src/gyro_g_squared.f90

Functions compiled without -g have “unknown” source file.  Typical 

examples are math library routines.  This app uses ESSL.
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bfdprof example : gyro  BGPM event = cycle counter

##########################
Annotated source for file: /gpfs/…/gyro_operators_on_h.f90
##########################
tics | source

| …
|   if (n_field < 3) then
|
|     do i = ibeg, iend
1|       do m=1,n_stack
28|         temp = (0.0,0.0)
36|         do i_diff=-m_gyro,m_gyro-i_gyro

32129|           temp = temp + w_gyro(m,i_diff,i,p_nek_loc,is)*hh(m,i+i_diff)
192|         enddo ! i_diff
5|         gyro_h(m,i,p_nek_loc,is) = temp
25|       enddo ! m
33|     enddo ! i

Inner loop over i_diff has bad stride.  Can re-order the loops, make the “m”

loop innermost … get stride-1 but will have more load/store instructions.
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bfdprof example : gyro  BGPM event = L1P 
misses

Got a total of 22962 hits at 1159 program-counter locations.
HPM sampling using event = 146, threshold = 30000.

##########################
Function-level profile:
##########################

tics   function-name
--------------------------

12217  gyro_operators_on_h$$OL$$1
1549  gyro_moments_plot$$OL$$1
1422  zmv4vfe
1201  gyro_field_interpolation$$OL$$1
1013  gyro_nl_direct$$OL$$1
860  zunrsvfa
562  zlnrsvfa
387  gyro_field_interpolation$$OL$$2
318  gyro_g_squared$$OL$$1
305  gyro_tau_derivative$$OL$$1
219  gyro_rhs_total$$OL$$2
201  gyro_collision_kernel$$OL$$2
195  gyro_conserve_number$$OL$$1
183  gyro_nonlinear_flux$$OL$$1
170  gyro_get_delta_he$$OL$$1
124  MPIDO_Barrier
117  gyro_collision_kernel$$OL$$1

Most of the L1P misses are in gyro_operators_on_h().
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bfdprof example : gyro  BGPM event = L1P 
misses

##########################
Annotated source for file: /gpfs/…/gyro_operators_on_h.f90
##########################
tics | source

| …
|   if (n_field < 3) then
|
|     do i = ibeg, iend
|       do m=1,n_stack
|         temp = (0.0,0.0)
|         do i_diff=-m_gyro,m_gyro-i_gyro

12208|           temp = temp + w_gyro(m,i_diff,i,p_nek_loc,is)*hh(m,i+i_diff)
|         enddo ! i_diff
|         gyro_h(m,i,p_nek_loc,is) = temp
|       enddo ! m
7|     enddo ! i

No surprise : L1P misses are due to bad stride in the “i_diff” loop.

Original code:
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bfdprof example : gyro  BGPM event = L1P 
misses

##########################
Annotated source for file: /gpfs/…/gyro_operators_on_h.f90
##########################
tics | source 

| …
|   if (n_field < 3) then
|
|     do i = ibeg, iend
|       gyro_h(:,i,p_nek_loc,is) = (0.0,0.0)
|       do i_diff=-m_gyro,m_gyro-i_gyro
|         do m = 1, n_stack

24|           gyro_h(m,i,p_nek_loc,is) = gyro_h(m,i,p_nek_loc,is) &
|             + w_gyro(m,i_diff,i,p_nek_loc,is)*hh(m,i+i_diff)
|         end do ! m
|       enddo ! i_diff
2|     enddo ! i

L1P misses are almost all gone.  Time in this routine improved from 0.328 to 

0.195 seconds per call … overall app impact ~10% improvement.

Tuned code:


