Blue Gene/Q User Workshop

Performance analysis

= Code Profiling — Linux tools
— GNU Profiler (Gprof)
— bfdprof

= Hardware Performance counter Monitors

= |BM Blue Gene/Q performances tools
— Internal mpitrace Library
— IBM HPC toolkit

= Major Open-Source Tools
— SCALASCA (fully ported and developed on BG/Q — Juelich Germany)
—TAU

» Tracing functions in your code

— Writing tracing functions — example in X| Optimization and Programming guide
« func_trace_enter is the entry point tracing function.
« func_trace exit is the exit point tracing function.
« func_trace_catch is the catch tracing function.

— Specifying which functions to trace with the -gfunctrace option.

Standard code profiling

= Purpose
— ldentify most-consuming routines of a binary
* In order to determine where the optimization effort has to take place

» Standard Features
— Construct a display of the functions within an application
— Help users identify functions that are the most CPU-intensive
— Charge execution time to source lines

» Methods & Tools
— GNU Profiler, Visual profiler, addr2line linux command, ...
— new profilers mainly based on Binary File Descriptor library and opcodes
library to assemble and disassemble machine instructions
— Need to compiler with -g
— Hardware counters

= Notes
— Profiling can be used to profile both serial and parallel applications
— Based on sampling (support from both compiler and kernel)

= Compile the program with options: -g —qfullpath + -pg (for gno profiler)
— Will create symbols required for debugging / profiling

= Execute the program
— Standard way

= Execution generates profiling files in execution directory
— gmon.out.<MPI Rank>
 Binary files, not readable
— Necessary to control number of files to reduce overhead

= Two options for output files interpretation
— GNU Profiler (Command-line utility): gprof
+ gprof <Binary> gmon.out.<MPI Rank> > gprof.out.<MPI Rank>

— Graphical utility / Part of HPC Toolkit GUI: Xprof

» Advantages of profiler based on Binary File Descriptor versus gprof
— Recompilation not necessary (linking only)
— Performance overhead significantly lower

Using GNU profiling

/bgsys/drivers/ppcfloor/gnu-linux/bin/powerpc64-bgqg-linux-gprof

BG_GMON_RANK_ SUBSET=N /* Only generate the gmon.out file for rank N. */
BG_GMON_RANK SUBSET=N:M /* Generate gmon.out files for all ranks from N to M. */

BG_GMON_RANK SUBSET=N:M:S /* Generate gmon.out files for all ranks from N to M. Skip
S; 0:16:8 generates gmon.out.0, gmon.out.8, gmon.out.16 */

The base GNU toolchain does not provide support for profiling on threads

Profiling threads
— BG_GMON_START THREAD_ TIMERS
» Set this environment variable to “all” to enable the SIGPROF timer on all threads
created with the pthread_create() function.
* “nocomm” to enable the SIGPROF timer on all threads except the extra threads that are
created to support MPI.
— Add a call to the gmon_start_all thread_timers() function to the program, from the main
thread
— Add a call to the gmon_thread_timer(int start) function from the thread to be profiled
1 to start, 0 to stop

Hardware performance monitors

= Definition
— Extra logic inserted in the processor to count specific events
— Updated at every cycle
— Strengths
* Non-intrusive
» Very accurate
* Low overhead
— Weakness
» Provides only hard counts
 Specific for each processor
» Access is not well documented
 Lack of standard and documentation on what is counted
=> useful to use a higher level software

» Purpose of a high level software (like IBM HPM)
— Provides comprehensive reports of events that are critical to performance on
IBM systems

— Gathers critical hardware performance metrics
* Number of misses on all cache levels
» Number of floating point instructions executed
» Number of instruction loads that cause TLB misses

— Helps to identify and eliminate performance bottlenecks

= BG/P

— 256 64bit counters on Blue Gene/P

» 72 of these counters are core specific while 184 counters are shared across the four
PowerPC 450 cores

» Max 4t — 288 independent core counts per process
» shared counters measure events related to L2 cache, memory and network

— Mode 0: cores 0 & 1

— Mode 1: cores 2 & 3

= BG/Q
— Much more complex
— Collects data from all cores, L1P Units, L2, Message Unit, 10 Unit, CNK Unit (virtual)
— 600 events (414 core specific)
— 24 counters are available per core
— Can handle hardware threads
« Can provide per-thread counts of processor events
« But the 24 counters must be shared between threads
» 4 Hw Threads — 6 counters per thread
» Max 64t — 384 independent core counts per process
— Supports multiplexing
— Provides ability to count more than the set (24) number of events
— Basic Idea: Start with one set of events, after a time interval, set another event set

10

= Provides ability to count more than the set (24) number of events

= Basic ldea: Start with one set of events, after a time interval, set another event set
— Counter architecture identifies conflicts
— Saves counts of conflicted events
— Clears the counters and sets them to count new event
— After another time interval switches back to original

= Advantage: Can collect a lot more data in a single run

» Disadvantage: Multiplexed counter accuracy is comprimsed
— The counts are not correct unless the windows equally cover the code.
— One set may only register events from one part of the algorithm
— You cannot add/compare counts from events in the different groups

= Use to get general overview of the counter values to see if they should be
investigated in more detail

11

= UPC
— Universal Performance Counting
 Hardware and low-level software

= BGPM
— Blue-Gene Performance Monitor
» Mid-Level software providing access to counters

= HPM from IBM HPC toolkit
— Hardware Performance Monitor
» High-Level software providing access to counters (for devs)

= Counter types

= AXU, QPX, QFPU
— All refer to the Quad FP Unit

= XU, FXU
— The Execution Unit (Fixed-Point Unit)
— In PAPI FXU means floating-point unit!

= U
— The instruction unit (Front-End of pipeline)

12

BG/Q Counter Related Software Layers

High level software (IBM HPCT, IBM mpitrace, Scalasca

&

IBEM HPM

e

| (T Te] | SCOM

Network) | MC

Separate HFM Monitored
Devices

Hardware

13

= PAPI-C library - performance application programming interface (PAPI)

= The PAPI-C features that can be used for the Blue Gene/Q system include:

— A standard instrumentation API that can be used by other tools.

— A collection of standard preset events, including some events that are derived
from a collection of events. The BGPM API native events can also be used
through the PAPI-C interfaces.

— Support for both a C and a Fortran instrumentation interface.

— Support for separate components for each of the BGPM API unit types:

 Punit counter is the default PAPI-C component.
» L2, 1/0O, Network, and CNK units require separate component instances in
the PAPI-C interface.

— See PAPI and BGPM docs for which BGPM events map to PAPI events

14

= BGPM API functions to program, control, and access counters and events from the four
integrated hardware units and the CNK software counters.

= Doxygen documentation gives detailed information on BGPM and counter architecture
— /bgsys/drivers/ppcfloor/bgpm/docs/html/index.html

= 4 main collection sources
— Processor (Punit)
» 24 Counters. Thread Aware. Multiple units e.g. Load-Store, Floating-Point, L1p ..
- L2
» 6 counters per slice. Not thread/core aware
» Usuallly operate in combined mode
— 10 Unit (MU, PCIE, DevBus)
» Counts static set of events. Not thread/core aware
— Network Unit
» 6 counters per link (10 torus links, 1 I/O link)
« Each link can only be counted by a single thread

= 3 major modes of operation:

— Software distributed mode
» Each software thread configures and controls its own Punit counters

— Hardware distributed mode
» A single software thread can configure and simultaneously control all Punit counters for

all cores

— Low latency mode

» Provides faster start and stop access to to the Punit counters

15

Instructions

— Either XU or AXU depending on which pipeline they pass through

— Instructions can be microcoded — Made up of 2+ ucode sub-operations

— Total instructions = Non-Ucoded + Ucoded + Ucoded sub-ops

— Events couting instructions can
« Count only non-microcoded instructions (1 instruction == 1 operation)
» Count microcoded instructions — but not the sub-operations
» Count suboperations only
» Various combinations of the above

OpCodes v Unit Events
— The opcode counter counts completed operations — looking at the end of the pipeline
— The unit events are counted by the units themselves — internal
— OpCode counter can discrimate sub-ops — provide counts equivalent to instructions

Instructions and Opcodes are associated with the pipeline
— Events couting them come from U, XU, AXU, Opcode counter

Events in the other units (LSU,MMU,L1P) are not directly pipeline related
— Result of instructions in the pipeline
— e.g. Load instructions go through XU pipeline and then are dispatched to LSU

Events can be divided into three main groups based on how they realted to processor cycles
— Cycle Only Events e.g. Number of cycles pipeline stalled
— Single cycle events — events and cycles are synonymous.
* Instruction and opcode counting

— Multi-cycle events — Only can count the occurances of the event — no cycle information
16

» Processor has a number of sources

— Instruction Unit (IU) — 35 events

— Floating Point Unit (AXU) — 9 events

— Execution Unit (XU) — 35 events

— Load-Store Unit (LSU) — 32 events

— Memory-Managment Unit (MMU) — 31 events

— L1P — 66 events

— Wake Up Unit (WU) — 2 events

— Opcode Counter — Counts operations by related “groups”
» 24 XU groups, 25 AXU groups
» 6 AXU FLOP groups - > since 1 op — multiple flops
« 6 AXU Inst groups (giving the instructions counts related to above)

The main units (IU, AXU, XU, LSU, MMU) can track max 8 events (4 threads — 2 per thread)

When counting unit events the 24 counter are hardware thread specific (software distributed)
— Each thread can only count max 12 unit events!
— Due to wiring/hardware considerations

However the OpCode counter can use all 24 counters.

L1P unit is most complicated in terms of what can/can't be counted at the same time
— Because it does prefectching plus interfaces between L2 and core
— 4 modes — list, stream, base, switch (requests to crossbar)

17

= Check the BGPM Tips Page!
— Docs/bgpm_event_tips.html

» Gives a detailed mapping of cycles to events
— how the total number of cycles can be broken into different events
—e.g. Total Cycles - IU Issues + IU Stall = IlU Empty
« PEVT_CYCLES - PEVT_IU_TOT _ISSUE_COUNT +
PEVT IU IS1_STALL CYC = IU Empty

= Gives a (fairly) detailed explanation of the pipeline/event relationships
— Look at this in more detail tomorrow

18

= HPM Principle

— IBM HPM Library provides a very easy use of HPM
» Allows access to most relevant hardware counters

— Provides pre-set groups of events that can be counted together
» And counter on a per-hardware thread basis

— Handles multiplexing for groups that require it

— Handles overflows and other counter related issues

— Outputs data in easy to read file-format

— Can collect data on multiple parts of a code simultaneously

= HPM provides “readable” names for BGPM events, However it does not tell you the underlying
BGPM name (see HPCT docs for map)

= Default group detail:
— Total Loads - PEVT_LSU_COMMIT_LD_CACHABLE_LOADS
XU Instructions - PEVT_INST_XU_ALL
AXU Instructions - PEVT_INST_QFPU_ALL
L1 Data Cache Miss - PEVT_LSU_COMMIT_LD_MISSES

— L1P Misses - PEVT_L1P_BAS_MISSES
— FLOPS - PEVT_INST_QFPU_FPGRP1_INSTR
— Total Cycles - PEVT_CYCLES

» The readable names are closely related to the description strings of the events which helps

19

= Add hpminit & hpmTerminate statements to code
— Directly after/before MPI Init/Finalize
— Need to add header files (hpm.h, f_hpm.h)

= Bracket routines to be profiled with hpmStart(hame) and hpmStop(name)
—You can nest calls

= Link with IBM HPM Library — libhpc or libhpc_r (for threaded)

= Execute with following environment variables
—HPM_EVENT_GROUP=

= Execution produces one HPM file per MPI task
—hpmCount_(Process Id).*

= HPM Environment Variables
— HPM_OUTPUT_PROCES (all/root)
— HPM_SCOPE (process|node)
— HPM_ASC_OUTPUT=yes (write output filed for peekperf)
— HPM_METRICS (yes|no) — Print derived metrics
— HPM_EXCLUSIVE (yes|no) — Outer nested regions counted separately to inner

20

= All HPM output gives total cycles between start/end profiled region

= Groups — Each HPM group provides different set of processor events
— Default (-1) — See below - Non-multiplexed
— 0: Instructions & LSU events
— 1: Branch-Prediction
— 2: Floating-Point breakdown
— 3: Large mix of counters
— 4: L1 Stream Prefetching
— 5: Pipelining

= Default Group (Per Thread)
— Total Loads
— Total XU Instructions
— Total AXU Instructions
— L1 Data Cache Misses
— L1P Misses
— FLOPS
— MFLOPS (derived)

= All Groups Provide
— L2 Hits
— L2 Misses
— L2 Lines Loaded From Main Memory
— L2 Lines Stored To Main Memory

21

= Total Instructions — Total XU + Total AXU
— Can calculate instruction mix from this
— Non-Load Instructions (Total XU - Loads)

= Throughput
—Ins/Cycle (Total Inst/Total Cycles)
— % Max issue rate (Ins/Cycle)/2.0

» L1 Hit %: (Loads — L1 Misses)/Loads
= L1P Hit %: (L1Misses — L1PMisses)/Loads

» | 2 Hit %: (L1PMisses — L2Misses)/Loads
— Not cannot use L2 Hits due to prefetch engine

= RAM Hit %: (L2 Misses)/Loads

= RAM Traffic: (L2 Lines Stored/Loaded)*128/Total Cycles
— Max traffic is 13 Bytes/Cycle (average).

22

= Counters tell you exactly what code is doing
— Don't tell you if what its doing is sub-optimal
— You might find the reason for poor performance — and that you can't do anything
about it

= Two ways in which you can have issues:
— Compiler or hardware details make the algorithm act differently than expected
« HC can help identify this
— You have non-optimal implementation of the algorithm
» More difficult — HC can possible point you in right direction

= Need to have a good idea of what you expect the algorithm to be doing

= Usually have a base set of operations that is being iterated many times
— Work out details of this base set
 FLOPS
» Misses (Min/Max) — i.e. expected loads from various levels
» Code Balance: (Floating Point Instructions/Ops)/Loads (choose level)

= Divide counters by number of iterations of base calculation
— Makes counters more understandable

23

= Check instruction mix:
— Is there anyway you can lessen the non-FP instructions?
» Eliminate loads (from any level)
» Reduce pointer related calculations
— Less instructions — less cycles — better performance

= Check misses
— Are there more misses/hits to lower cache levels than you expect?
— Compare actual v expected code-balance

» Calculate average latency per load
— (Cycles — Instructions)/Loads
— Is it higher than expected?
— Compare to (L1Hit%)*L1Lat + (L2Hit%)*L2Lat etc.

» The above two measures can indicate punit resource contention e.g.
— L1 Cache lines (Cache Thrashing)
— Load/Store queue
— L1P contention

= With hardware threads compare 1 thread to 4 threads to see changes
— Also 4t on one core to 4t on separate cores

= Note: L2 Hits is misleading due to the L1P

24

IBM MPI communications tracing
library (mpitrace)

» MPI wrappers for BlueGene have a number of optional features that can be controlled by setting environment
variables

= Capabilities:
* MPI Trace Features

Collects all MPI communications of an application

Measures time spent in the MPI routines

Provides call graph for communication subroutines

Collective imbalacing

BG/Q infos: block shape, task and 10 bridge coordinates, # of 10 nodes

Access to hardware counters

Code Profiling (gprof and bfdprof), including hardware counters

Posix 10 traces

» There is one combined wrapper-set for apps that use Fortran and C:
— libmpitrace.a : wrappers for MPI
— libmpihpm.a : wrappers for MPI + hardware counters for pure
MPI applications

— libmpihpm_smp.a : wrappers for MPI + hardware counters for mixed
MPI + OpenMP applications

To enable 10 traces

— libmpitraceio.a : wrappers for MPIl and 1O only

— libmpihpmio.a : wrappers for MPI + IO + hardware counters for pure
MPI applications

— libmpihpm_smpio.a : wrappers for MPI + IO + hardware counters for mixed
MPI + OpenMP applications

= IBM HPC Took provides similar functions with more features (openmp, output control, code sections,
...), customable + graphic interface, (different for IO traces), but with some limitations — use most of the

same env variables 06

. Usage — compile code with —g : allows translation from instruction address to source-file and line
number
— Link with library for the 10 version
» -WI,-wrap,open -WI,-wrap,close -WI,-wrap,read -WI,-wrap,write -WI,-wrap,fopen -WI,-
wrap,fclose -WI,-wrap,fread -WI,-wrap,fwrite
<Install Directory>/libmpitrace.a
— for libmpihpm.a and libmpihpm_smp.a add in the link
» /bgsys/drivers/ppcfloor/bgpm/lib/libbgpm.a
/bgsys/drivers/ppcfloor/spi/lib/libSPI_upci_cnk.a

= Qutput Files
— mpi.profile.<Process ID>.#rank
— hpm_process_summary. .<Process ID >.#rank
— hpm_job_summary. .<Process ID >.#rank
— Pattern. .<Process ID>.#rank
— events.trc
— Gmon.out or vmon.out .#rank

— To avoid <Process ID> suffix : export TRACE_OMIT_JOBID=yes

27

MPI Routine #calls avg. bytes time (sec)
MPI_ Comm_size 1 0.0 0.000
MPI_ Comm_rank 1 0.0 0.000
MPI_Isend 5738 2398.6 0.050
MPI_Irecv 2163 2738.7 0.010
MPI_Waitall 1919 0.0 0.028
MPI_Reduce 3 8.0 0.000

total communication time =
total elapsed time
user cpu time
system time
maximum memory size =

0.087 seconds.
3.922 seconds.
3.890 seconds.
0.030 seconds.
30012 KBytes.

Message size distributions:

MPI Isend #ficalls

2389

3349

MPI Irecv #calls

721
1442

MPI_ Reduce #calls

3

avg. bytes
8.0
4104.0

avg. bytes
8.0
4104.0

avg. bytes
8.0

time (sec)
0.012
0.038

time (sec)
0.001
0.008

time (sec)
0.000

28

= By default trace from MPI_Init to MPI_Finalize
= Controlling by region

MPI
— C example: Fortran
summary_start(); call summary_start()
do_work();
summary_stop(); call summary_stop()
CPU Profiling

vprof_start(), vprof stop()

Hardware-counters
HPM_ Start(“timesteps”), HPM_Stop(“timesteps”);

10
jio_start(), jio_stop()

Event-tracing
trace_start(), trace_stop()

29

= Controling output
—export PROFILE_ACTIVE=no
—export SAVE_ALL TASKS=yes
—export SAVE_LIST=0,2,4,6,8,10, TRACE_MAX_ RANK
— export TRACE_DIR=/path/to/your/profile/files
— Export TRACE_DISABLE LIST=

= Export TRACE_SEND_PATTERN=yes
— for each message sent, the MPI wrappers will identify the source and destination
torus coordinates, and keep track of the total number of byte-hops for each
destination rank.

= |0
—export PROFILE_JIO=yes
« JIO LEVEL=SUMMARY
« JIO_LEVEL=DETAILED
* JIO_LEVEL=TRACE - traces *every* I/O. Don't use it :-) traces in stderr

= CPU profiling
— Gmon profiling: Refer to documentation for gmon control on BG/Q
—vmon profiling
—export VPROF_PROFILE=yes
— cprof or bfdprof command your.exe vmon.out.n > cprofile_n.txt &
« Profile tips per file, function and code annotations

30

— Event tracing
— TRACE_ALL EVENTS=yes

— MPI collective imbalacing
—export PROFILE_IMBALANCE=yes
— export PROFILE_IMBALANCE_MPIO=yes

— Hardware counter
— Can change group using HPM_GROUP
— Can change scope to per_process using HPM_SCOPE

— HPM_SCOPE=[node, process, thread]
— HPM_MASK=10000000 | 01111111 ; master thread | all except master thread
—HPM_GROUP=2
— count all FPU-related instructions
— HPM_GROUP=5
— All possible integer/load/store instructions

31

Can do profiling via timer interrupts : -pg or user-callable profil() routine.
Interrupts occur at 100 per sec ... so each hit corresponds to 0.01 sec.

Can also do profiling with hardware counters ... best bet is with A2 events.
Set the BGPM event, and set the threshold value ... get an interrupt when the
counter increments by the threshold value, trap the address, build a histogram.

The basic profiling data is a histogram of “hits” as a function of instruction
address.

bfdprof your.exe vmon.out.N > profile.N (typical use)

bfdprof example : gyro BGPM event = cycle

counter

Got a total of 156543 hits at 7476 program-counter locations.
HPM sampling using event = 211, threshold = 1600000. 1000 samples/sec

HHAAHH BB RAAHHHRRAAHHH R R
Function-level profile:
HHAAHH BB RAAHHHRRAAHHH BB
tics function-name
37843 gyro_field_interpolation$$oL$$2
32739 gyro_operators_on_h$$oL$$1 OpenMP codes have

15009 gyro_nl_direct$$oL$$1 different functions for

7944 zmv4vfe :
5736 gyro_moments_plot$$oL$$1 each parallel region.
5113 zlnrsvfa

4726 gyro_field_interpolation$$oL$$1

4691 gyro_velocity_sum$$oL$$1

4640 zunrsvfa

2894 gyro_rhs_total$$0L$$2

2800 gyro_get_delta_he$$oL$$1

2588 gyro_collision_kernel$$0L$$2

2541 gyro_timestep_implicit

2170 blend_f

1520 gyro_get_he_implicit$$oL$$1

1308 gyro_tau_derivative$$oL$$1

bfdprof example : gyro BGPM event = cycle
counter

HAHBHHHAHRHAHAHRRRHAHRRSHH
Source-file profile:
HUBHHRHHARHHARRH AR AR RS

tics

source-file

/gpfs/bgq0/walkup/projects/gacode/gyro/src/gyro_field_interpolation.f90
/gEfs/bqu/wa1kup/prOJects/gacode/gyro/src/gyro_operators_on_h.f90
nknown
/gpfs/bggq0/walkup/projects/gacode/gyro/src/gyro_nl_direct.f90
/9pfts/bgq0/walkup/projects/gacode/gyro/src/gyro_moments_plot.f90
/gpfs/bgq0/walkup/projects/gacode/gyro/src/gyro_velocity_sum.f90
/gpfs/bgq0/walkup/projects/gacode/gyro/src/gyro_rhs_total.f90
/9pfs/bgq0/walkup/projects/gacode/gyro/src/gyro_collision_kernel.f90
/9pfts/bgq0/walkup/projects/gacode/gyro/src/gyro_get_delta_he.f90
/gpfs/bgq0/walkup/projects/gacode/gyro/src/gyro_timestep_implicit.f90
/gpfs/bgq0/walkup/projects/gacode/gyro/BLEND/BLEND_F.f90 o
/9pfts/bgq0/walkup/projects/gacode/gyro/src/gyro_get_he_implicit.f90
/gpfs/bgq0/walkup/projects/gacode/gyro/src/gyro_tau_derivative.f90
/gpfs/bgq0/walkup/projects/gacode/gyro/BLEND/BLEND_f3.f90
/9pfs/bgq0/walkup/projects/gacode/gyro/src/gyro_g_squared.f90

Functions compiled without -g have “unknown” source file. Typical
examples are math library routines. This app uses ESSL.

bfdprof example : gyro BGPM event = cycle counter

HUHHHHBHBHHHHBHRHB AR HHHHHH
Annotated source for file: /gpfs/../gyro_operators_on_h.f90
HUHHHHBHBHHHHBHRHB AR HHHHHH

tics | source

| .
if (n_field < 3) then

do 1 = ibeg, iend

|
|
1] do m=1,n_stack
28| temp = (0.0,0.0)
36| do i_diff=-m_gyro,m_gyro-i_gyro
32129| temp = temp + w_gyro(m,i_diff,i,p_nek_loc,is)*hh(m,i+i_diff)
192 | enddo ! i_diff
5] gyro_h(m,i,p_nek_loc,i1s) = temp
25| enddo ! m
33| enddo ! 1

Inner loop over i_diff has bad stride. Can re-order the loops, make the “m”
loop innermost ... get stride-1 but will have more load/store instructions.

bfdprof example : gyro BGPM event = L1P

misses

Got a total of 22962 hits at 1159 program-counter locations.
HPM sampling using event = 146, threshold = 30000.

RERBRBRBRRRAHAAAAAAAAAAAAH
Function-level profile:
HEHBHHHHHRRBHHHRRHHHHRRHHH
tics function-name
12217 gyro_operators_on_h$$oL$$1
1549 gyro_moments_plot$$oL$$1
1422 zmv4vfe
1201 gyro_field_interpolation$$oL$$1
1013 gyro_nl_direct$$oL$$1
860 zunrsvfa
562 zlnrsvfa
387 gyro_field_interpolation$$oL$$2
318 gyro_g_squared$$oLs1l
305 gyro_tau_derivative$$oL$$1
219 gyro_rhs_total$$0L$$2
201 gyro_collision_kernel$$oL$$2
195 gyro_conserve_number$$oL$$1
183 gyro_nonlinear_flux$$oL$$1
170 gyro_get_delta_he$$oL$$1
124 MPIDO_Barrier
117 gyro_collision_kernel$$oL$$1

Most of the L1P misses are in gyro_operators_on_h().

bfdprof example : gyro BGPM event = L1P
misses

Original code:

HAHBRAAB R A AR R R AR R RAHBRAHRH
Annotated source for file: /gpfs/../gyro_operators_on_h.f90
RERBRBRHRRRAHAAAAAAAAAAAAH

tics | source

| ..
if (n_field < 3) then

|
|
| do 1 = ibeg, 1end

| do m=1,n_stack

| temp = (0.0,0.0)

| do i_diff=-m_gyro,m_gyro-i_gyro
|

|

|

|

|

12208 temp = temp + w_gyro(m,i_diff,i,p_nek_loc,is)*hh(m,i+i_diff)
enddo ! i_diff
gyro_h(m,1i,p_nek_loc,is) = temp
enddo ! m
7 enddo ! 1

No surprise : L1P misses are due to bad stride in the “i_diff” loop.

bfdprof example : gyro BGPM event = L1P
misses
Tuned code:

HAHBRAAB R A AR R R AR RAHBRAHRH
Annotated source for file: /gpfs/../gyro_operators_on_h.f90
RERBRBRHRRRAHAAAAAAAAAAAAH

tics | source

| ..
if (n_field < 3) then

I
|
| do 1 = ibeg, 1end

| gyro_h(:,i,p_nek_loc,is) = (0.0,0.0)
| do i_diff=-m_gyro,m_gyro-i_gyro

| do m =1, n_stack

|

|

|

|

|

24 gyro_h(m,1,p_nek_loc,is) = gyro_h(m,1,p_nek_loc,is) &
+ w_gyro(m,i_diff,i,p_nek_loc,is)*hh(m,i+i_diff)
end do ! m
enddo ! i_diff
2 enddo ! 1

L1P misses are almost all gone. Time in this routine improved from 0.328 to
0.195 seconds per call ... overall app impact ~10% improvement.

