Calculs ab initio en chromodynamique quantique sur Blue Gene

Laurent Lellouch

CPT Marseille

for the Budapest-Marseille-Wuppertal (BMW) collaboration

Dürr, Fodor, Frison, Hoelbling, Katz, Krieg, Kurth, Lellouch, Portelli, Ramos, Szabo, Vulvert

Supercomputers courtesy of GENCI (IDRIS & CCRT) & FZ Jülich

Laurent Lellouch Séminaires de l'IDRIS, Orsay, 24 juin 2010

What is quantum chromodynamics (QCD)?

Fundamental theory of the strong force whose d.o.f. are quarks and gluons:

- ordinary matter: (u, d), g
- two more families: (c, s) and (t, b)

Responsible for a wealth of phenomena

- Binding of quarks into nucleons
 → 99% of the mass of the visible Universe
- Atomic nuclei (fusion, fission)
- Early universe: $t \sim 10^{-6}$ sec (quarks \rightarrow nucleons) $\overrightarrow{t} \sim 3$ min (end of nucleosynthesis)
- Exotic phases in neutron star cores

Only 4 parameters for ordinary matter: g, mu, md, ms

. . .

What is QCD? (cont'd)

The SU(3) in the $SU(3) \times SU(2) \times U(1)$ gauge theory of the Standard Model

Generalization of QED:

$$\mathcal{L} = -\frac{1}{2g^2} \operatorname{tr}[F_{\mu\nu}F_{\mu\nu}] + \sum_{q=\{u,d,s,c,b,t\}} \bar{\psi}_q[\gamma_\mu(\partial_\mu + A_\mu) + m_q]\psi_q$$

QED

 ψ_q in fundamental rep. of U(1) A_μ in algebra of U(1) $F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu$

 ψ_q in fundamental rep. of SU(3) A_μ in algebra of SU(3) $F_{\mu\nu} = \partial_\mu A_\nu - \partial_\nu A_\mu + [A_\mu, A_\nu]$

Asymptotic freedom and infrared slavery

Asymptotic freedom:

interaction between quarks & gluons weakens as their relative momenta increase

(Gross, Wilczek, Politzer '73)

Infrared slavery: quarks & gluons are **confined** within **hadrons**

Difficult to describe mathematically: the theory must produce a "sticky magna" of quarks & gluons

 \rightarrow numerical simulations

 $(\leftarrow$ D. Leinweber)

What is lattice QCD (LQCD)?

To describe ordinary matter, QCD requires 104 numbers at every point of spacetime

- $ightarrow \infty$ number of numbers in our continuous spacetime
- \rightarrow must temporarily "simplify" the theory to be able to calculate
- \Rightarrow Lattice gauge theory \longrightarrow mathematically sound definition of NP QCD:
 - UV (and IR) cutoffs and a well defined path integral in Euclidean spacetime:

$$\langle O \rangle = \int \mathcal{D} U \mathcal{D} \bar{\psi} \mathcal{D} \psi \, e^{-S_G - \int \bar{\psi} D[M] \psi} \, O[U, \psi, \bar{\psi}]$$

=
$$\int \mathcal{D} U \, e^{-S_G} \det(D[M]) \, O[U]_{\text{Wick}}$$

DUe^{-S_G} det(*D*[*M*]) ≥ 0 and finite # of dof's
 → evaluate numerically using stochastic methods

LQCD is QCD when $m_q \rightarrow m_q^{\rm phys}$, $a \rightarrow 0$, $L \rightarrow \infty$ (and stats $\rightarrow \infty$)

Why is LQCD so numerically difficult?

- # of d.o.f. ~ $\mathcal{O}(10^9)$ and large overhead for $\det(D[M])$ (~ $10^9 \times 10^9$ matrix)
- cost of simulations increases rapidly when $m_{u,d} \rightarrow m_{u,d}^{\text{phys}}$ & $a \rightarrow 0$

Wilson fermions (≤ 2004)

- $cost \sim N_{conf} V^{5/4} m_{u,d}^{-3} a^{-7}$ (Ukawa '02)
- Serious cost wall
- \Rightarrow can physical $m_{u,d}$ ever be reached?

Observe very long-lived autocorrelations of topological charge vs MC time (Schaefer et al '09)

 $\Rightarrow a \rightarrow 0$ may be even harder than anticipated

$N_f = 2+1$ Wilson fermions à la BMW

Dürr et al, PRD79 '09

 $N_f = 2 + 1$ QCD: degenerate u & d quarks w/ mass $m_{ud} \equiv (m_u + m_d)/2$ and s quark w/ mass $m_s \sim m_s^{\rm phys}$

1) Highly optimized algorithms (see also Urbach et al '06) and discretization which balances improvement in gauge/fermionic sector and CPU cost:

- Hybrid Monte Carlo (HMC) for u and d and Rational HMC (RHMC) for s
- mass preconditioning (Hasenbusch '01)
- multiple timescale integration of molecular dynamics (MD) (Sexton et al '92)
- Higher-order (Omelyan) integrator for MD (Takaishi et al '06)
- mixed precision acceleration of inverters via iterative refinement
- tree-level $O(a^2)$ -improved gauge action (Lüscher et al '85)
- tree-level O(a)-improved Wilson fermion (Sheikholeslami et al '85) with gauge-link smearing (Morningstar et al '04, Hasenfratz et al '01, Capitani et al '06)
 - \Rightarrow approach to continuum is improved ($O(\alpha_s a, a^2)$) instead of O(a))
- 2) Highly optimized codes for Blue Gene

Why BG/P is so good for LQCD?

In LQCD interactions only connect nearest neighbor (NN) sites of a periodic 4d spacetime lattice (e.g. Wilson action)

 \Rightarrow perfect match for BG/P communication hardware

- 3 dimensions along torus directions
- local transfers for 4th dimension:

$$\begin{array}{ccc} \text{Core0} & \leftrightarrow & \text{Core1} \\ \uparrow & & \uparrow \\ \text{Core2} & \leftrightarrow & \text{Core3} \end{array}$$

 \longrightarrow 4d torus with only NN communications

Why BG/P is so good for LQCD? (cont'd)

DMA controller has rich set of features and is programmable w/ SPI: (Krieg & Lippert '08-'10)

- → set up persistent communications
- \rightarrow overlap computation and communication

Virtually no communication overhead:

- \longrightarrow near perfect strong scaling
- \longrightarrow perfect weak scaling

In addition, "double hummer" FPU and assembly optimizations of serial code (Krieg & Lippert '08-'10)

 \Rightarrow 37% of absolute peak for compute intensive application of Wilson-Dirac operator D[M] on a vector

Parameters reached by major LQCD collaborations

For a controlled calculation, crucial to get close enough to physical point $m_{ud} \rightarrow m_{ud}^{\text{phys}}$, $m_s \rightarrow m_s^{\text{phys}}$, $L \rightarrow \infty \& a \rightarrow 0 \quad [M_{\pi}^2 \leftrightarrow m_{ud} \& (2M_K^2 - M_{\pi}^2) \leftrightarrow m_s]$

m_s vs m_{ud}

L vs m_{ud}

Only 2 collaborations have reached the physical mass point:

- PACS-CS, in a small volume $L \sim 3 \text{ fm w} / \sigma_{FV} \geq 1\% \dots$, at 1 $a \sim 0.09 \text{ fm}$
- BMW (thanks to Blue Genes at IDRIS and FZ Jülich), in large volumes $L \sim 6 \text{ fm}$ w/ $\sigma_{FV} < 0.1\%$, at 3 a: 0.116 \rightarrow 0.076 fm & and a 4th, $a \sim 0.055 \text{ fm w}/M_{\pi} \sim 220 \text{ MeV}$

Some of the questions that we would like to answer

- Can one show that the mass of ordinary matter comes from QCD?
- What are the masses of the light u, d (and s) quarks which are the building blocks of ordinary matter?
- Is our understanding of quark flavor mixing and the fundamental asymmetry between matter and antimatter, which it leads to, correct?
- Does dark matter couple strongly enough to ordinary matter to make it visible with current detectors?
- Can one show that QCD and QED explain why the proton is lighter than the neutron? (If it were not, there would be no atoms . . .)

Heisenberg's uncertainty principle allows the creation of particle-antiparticle pairs which can induce the decay of other particles (e.g. vac. → ūu ⇒ ρ → ππ)
 Does QCD describe ρ → ππ correctly?

Can a confining gauge theory such as QCD explain electroweak symmetry breaking and the masses of elementary particles? (Technicolor at LHC?)

Where does the mass of ordinary matter come from?

- Matter of visible universe: protons, neutrons & electrons
- More than 99% of the mass of this matter is in the form of protons & neutrons $(m_{\text{proton}} \simeq m_{\text{neutron}} \sim 2000 \times m_{\text{electron}})$
- Mass of object is usually the sum of the mass of its constituents
- Not true for light hadrons

Light hadron masses are generated by QCD through the energy imparted to the quarks and gluons via:

$$m = E/c^2$$

Ab initio calculation of light hadron masses

Dürr et al, Science 322 (2008) 1224

- Use our '08 data sets ($M_{\pi} \rightarrow 190 \text{ MeV}$, $a \approx 0.065 \div 0.125 \text{ fm}$, $L \rightarrow 4 \text{ fm}$) to confirm fully quantitatively QCD's mechanism of mass generation
- Correct treatment of resonant states (see below)
- Perform 432 independent full analyses of our data

 \Rightarrow systematic error distributions for the hadron masses by weighing each result w/ its fit quality

- Median \rightarrow central value
- Central 68% CI \rightarrow systematic error
- Repeat procedure for 2000 independent bootstrap samples

 → statistical error from central 68% CI of bootstrap distribution of medians

Ab initio calculation of light hadron masses (cont'd)

Dürr et al, Science 322 (2008) 1224

(Partial calculations by MILC '04-'09, RBC-UKQCD '07, Del Debbio et al '07, JLQCD '07, QCDSF '07-'09, Walker-Loud et al '08, PACS-CS '08-'10, ETM '09, Gattringer et al '09, . . .)

Quark flavor mixing constraints on New Physics

Test SM paradigm of quark flavor mixing and CP violation and look for new physics

Unitary CKM matrix (Kobayashi & Maskawa, Nobel '08)

Here, $|V_{us}/V_{ud}|$ is determined from ratio of $K \to \mu \bar{\nu}(\gamma)$ and $\pi \to \mu \bar{\nu}(\gamma)$ rates

Then, test CKM unitarity/quark-lepton universality and constrain NP using

$$\frac{G_q^2}{G_{\mu}^2} |V_{ud}|^2 \left[1 + |V_{us}/V_{ud}|^2 + |V_{ub}/V_{ud}|^2 \right] = \left[1 + O\left(\frac{M_W^2}{\Lambda_{NP}^2}\right) \right]$$

• $|V_{ud}| = 0.97425(22)$ [0.02%] from nuclear β decays (Hardy & Towner '08) • $|V_{ub}| = 3.79(42) \cdot 10^{-3} [11\%]$ (CKMfitter '09)

$|V_{us}/V_{ud}|$ from $K, \pi \rightarrow \mu \overline{\nu}(\gamma)$

In experiment see

 \propto V_{ud} $\langle 0|ar{u}\gamma_{\mu}\gamma_{5}d|\pi^{-}
angle \propto$ V_{ud} F_{\pi}

Have (Marciano '04, Flavianet '08)

$$\frac{\Gamma(K \to \mu \bar{\nu}(\gamma))}{\Gamma(\pi \to \mu \bar{\nu}(\gamma))} \longrightarrow \frac{|V_{us}|}{|V_{ud}|} \frac{F_{K}}{F_{\pi}} = 0.2760(6) \ [0.22\%]$$

 \Rightarrow need high precision nonperturbative calculation of F_K/F_{π}

- Use our '08 data sets ($M_{\pi} \rightarrow 190 \text{ MeV}$, $a \approx 0.065 \div 0.125 \text{ fm}$, $L \rightarrow 4 \text{ fm}$) to compute F_{κ}/F_{π}
- Perform 1512 independent full analyses of our data

 \Rightarrow systematic error distribution for F_{κ}/F_{π} (as above)

• Get statistical error from bootstrap analysis on 2000 samples

 F_{K}/F_{π} in QCD

Dürr et al, PRD81 '10

Main source of sytematic error: extrapolation $m_{ud} \rightarrow m_{ud}^{\text{phys}}$; then $a \rightarrow 0$

F_{K}/F_{π} summary and CKM unitarity

Find

$$\frac{G_q^2}{G_\mu^2} |V_{ud}|^2 \left[1 + |V_{us}/V_{ud}|^2 + |V_{ub}/V_{ud}|^2 \right] = 1.0001(9) \left[0.09\% \right]$$

If assume true result within 2σ then, naively, $\Lambda_{NP} \ge 1.9 \text{ TeV}$

Sigma term and strange content of the nucleon

A. Ramos, S. Dürr (BMW coll.), Lattice 2010

Definitions (and Feynman-Hellman theorem):

$$\sigma_{\pi N} \equiv m_{ud} \langle N(p) | \overline{u}u + \overline{d}d | N(p) \rangle = m_{ud} \frac{\partial M_N}{\partial m_{ud}}$$
$$\sigma_{(s\bar{s})N} \equiv m_s \langle N(p) | \overline{s}s | N(p) \rangle = m_s \frac{\partial M_N}{\partial m_s}$$
$$y = \frac{2 \langle N | \overline{s}s | N \rangle}{\langle N | \overline{u}u + \overline{d}d | N \rangle}$$

Important for:

- Direct detection of dark matter (DM)
- Gives leading quark-mass dependence of nucleon mass
- Strange sea quark/antiquark content of the nucleon
- π -N & K-N scattering amplitudes
- m_s/m_{ud}

Preliminary results on '08 & partial '10 data sets w/ $190 \text{ MeV} \le M_{\pi} \le 460 \text{ MeV}$

Sigma term ... preliminary partial results

Systematic error distribution from 576 independent analyses

Obtain:

- $\sigma_{\pi N} = 49(10)_{\text{stat}}(11)_{\text{syst}} \,\text{MeV}$
- $\sigma_{(s\bar{s})N} = 49(37)_{stat}(26)_{syst} \, MeV$
- $y = 0.08(7)_{stat}(4)_{syst}$

Dominant systematic from $m_{ud} \rightarrow m_{ud}^{\text{phys}}$

ref.	$\sigma_{\pi N}$ [MeV]	
BMW '10	49(15)	
using π - N experiment		
Koch '82	64(8)	
Gasser et al '88	59(2)	
Hadzimeh. et al '07	71(2)	
Hite et al '05	81(6)	

(See also JLQCD '08-'09, Young et al '09, MILC '09)

Strange content is low \longrightarrow bad for direct DM detection

Anticipate $\sigma_{\pi N} = XX(7)_{\text{stat}}(6)_{\text{syst}}$ MeV from full data set down to physical mass point

A. Portelli, Lattice 2010

Isospin symmetry (i.e. symmetry $u \leftrightarrow d$) is broken because:

- masses $m_u \neq m_d$ (strong breaking): $\sim (m_d m_u)/M_{\rm QCD} \lesssim 1\%$
- electric charges $e_u \neq e_d$ (electromagnetic (EM) breaking): $\sim \alpha \simeq 1/137. \leq 1\%$

	U	d
m _q	1.5 to 3.3 MeV	3.5 to 6 MeV
e_q	$\frac{2}{3}e$	$-\frac{1}{3}e$

- Isospin breaking must explain $M_p < M_n$ and thus stability of matter
- Here, first step: *EM turned on* for valence quarks (quenched QED), but $m_u = m_d$
- Begin with EM splittings $\Delta_{\rm EM} M_\pi^2 \equiv M_{\pi^\pm}^2 M_{\pi^0}^2$ and $\Delta_{\rm EM} M_K^2 \equiv M_{K^\pm}^2 M_{K^0}^2$
- Determine corrections to Dashen's theorem: $\Delta_{\rm EM} M_{\rm K}^2 = \Delta_{\rm EM} M_{\pi}^2 + O(\alpha m_s, \alpha^2)$

QED on the lattice

EM field of a point charge cannot be made periodic & continuous

Introduce small modification of QED $\sim 1/L^3$ which makes this possible

- To avoid photon self-interactions, use non-compact QED (Duncan '96)
 must fix gauge consitent w/ BCs
- non-compact QED acting on valence quarks only (quenched)
 - \Rightarrow free theory for the photon
 - \Rightarrow QED field configurations are very cheap

QCD + QED on the lattice: preliminary partial results

Preliminary results on 4 of the '10 data sets w/ 200 MeV $\leq M_{\pi} \leq$ 420 MeV and $a \simeq 0.116$ fm

... and similarly for K^+ and K^0

 $\Delta_{\rm EM} M_{\pi} = 5.1 \pm 1.1_{\rm stat} \pm ??_{\rm syst} \, {\rm MeV}$

 $\Delta_{\rm EM} M_{\rm K} = 2.2 \pm 0.2_{\rm stat} \pm ??_{\rm syst} \, {\rm MeV}$

$rac{\Delta_{\mathrm{EM}}M_K^2}{\Delta_{\mathrm{EM}}M_\pi^2}-1$	ref.
0.80	Donoghue'93
1.02 ± 0.30	Bijnens'93
0.26	Baur'95
$\textbf{0.87} \pm \textbf{0.39}$	Bijnens'96
0.68	Gao'97
0.74	Bijnens'07
0.39	Duncan'96
$\textbf{0.30} \pm \textbf{0.08}$	RBC'07
$\textbf{0.60} \pm \textbf{0.14} \pm \ref{eq:syst}$	This work

(See also MILC '08, Blum et al '10)

- Expect large improvement with full data set
- Investigate EM effects in other hadronic observables
- Unquench and include $m_u \neq m_d$

Widths of unstable particles

J. Frison, Lattice 2010

Big breakthrough in LQCD these last years \rightarrow realistic inclusion of quantum vacuum fluctuations into quark pairs

- Hadron masses only indirect information about these fluctuations
- To observe these pairs materialize \rightarrow strong decays of hadrons such as

 $\rho^0 \to \pi^+ \pi^-$

 ρ is a "resonance" characterized by a mass, $M_{\rho} \approx 775 \,\mathrm{MeV}$ and a width, $\Gamma_{\rho} \approx 150 \,\mathrm{MeV}$

If ho were not coupled to $\pi\pi$

- M_{ρ} constant up to exponentials
- $\pi\pi$ are quantized with momenta $2\pi/L \cdot \vec{n}$
- For some box sizes ρ and $\pi\pi$ will cross

Turning interaction on

- Avoided crossing
- ρ and $\pi\pi$ mix
- Information on coupling strength
- Theory complex but understood (Lüscher '86,'91)
- Excited state extraction difficult but possible (Lüscher et al '90)

Experimentally: $g_{\pi\pi\rho} \simeq 6.0$

Correlation functions computed

Exploratory work on 2 of the '10 data sets:

- $M_{\pi} \simeq 200 \text{ MeV}, a \simeq 0.116 \text{ fm}, L \simeq 3.7 \text{ fm}, \vec{P} = (0, 0, 0)$
- $M_{\pi} \simeq 340$ MeV, $a \simeq 0.116$ fm, $L \simeq 2.8$ fm, $\vec{P} = (0, 0, 1)$

Very preliminary partial results

Light hadron mass analysis (Dürr et al, Science '08) $ightarrow g_{\pi\pi
ho} = 9.5 \pm 4.6$

All combined
$$\rightarrow g_{\pi\pi\rho} = 6.6 \pm 2.0$$

Very early stages \rightarrow can only improve! (see also Aoki et al '07, Feng et al '09)

Conclusions

- After \sim 30 years of efforts from scientists around the world simulations have become possible at physical mass point
- Achieved thanks to important theoretical and algorithmic developments and to the arrival of the Blue Genes
- Final results presented here were obtained w/ '08 data sets with $M_{\pi} \ge 190 \,\mathrm{MeV}$
- Sufficient for fully controlled calculations of:
 - light hadron masses w/ few % errors
 - F_K/F_π w/ 0.8% error
- Many more results are on the way which will make use of the '10 data sets, produced directly at the physical mass point ($M_{\pi} \simeq 135 \,\text{MeV}$):
 - expect m_{ud} , m_s w/ errors < 5% (not discussed here)
 - accurate determination of sigma term and strange content of octet baryons
 - inclusion of EM and isospin violating effects
 - widths of hadronic resonances
 - . . .