
The challenges of massively parallel
computations and the petaflop
systems: the case of Supernova
Research in Astrophysics

IDRIS, March 3rd

Computer Centre of Max-Planck Society

Andreas Marek

Content

IDRIS, March 3, 2011 Andreas Marek, RZG

 What is a supernova?

 The VERTEX code in a nutshell

 Porting to Bluegene/P

 Summary

• Observational facts
• A simple model
• Why are they interesting

• Determining the used memory
• Handling of look-up tables
• The usage of pointers
• IO: parallel HDF5
• Debuging on Bluegene
• Scaling of VERTEX
• MPI communications

• Algorithmic approach
• Parallelization

IDRIS, March 3, 2011 Andreas Marek, RZG

What is a supernova? (Observations I)

A single supernova does outshine an entire galaxy with its
~1010 stars

IDRIS, March 3, 2011 Andreas Marek, RZG

What is a supernova? (Observations II)

A single supernova does outshine an entire galaxy with its
~1010 stars, and it appears at the position of an ordinary
star

IDRIS, March 3, 2011 Andreas Marek, RZG

What is a supernova? (Observations III)

and leaves behind expanding remnants

IDRIS, March 3, 2011 Andreas Marek, RZG

What is a supernova? (Observations IV)

SN 1987a in Large Magellanic
Cloud (~105 Lyr):

19 neutrinos in IMB, Baksan,
 and Kamikokande II were
 detected

 => Principle idea of Core Collapse
 supernovae confirmed

IDRIS, March 3, 2011 Andreas Marek, RZG

Some observational facts

 Only ~ 10% of galactic supernovae are visible in light (dust)

 Extra-galactic SNe can be observed (due to extrem brightness)
 Often a remnant is left behind and pulsars (-> neutron stars) can be found

Masses and radii: Mstar > 8 Msolar , Rstar ~109 km
RIronCore ~5000 km
MNeutronStar ~ 1.4 Msolar, RNeutronStar ~ 10 km

Energy budget: Released gravitational binding energy: ~ 1053erg
Kinetic explosion energy: ~ 1051 erg
Energy emitted in photons: ~ 1049 erg

The rest is in neutrinos!

IDRIS, March 3, 2011 Andreas Marek, RZG

What is a supernova? – a simple model

A supernova does not mark the birth of a ``new super star´´ but rather
the death of an old star:

During it`s life a star subsequently
fusions (``burns´´) light elements
(starting from hydrogen) to heavier
onces.

This energy release produces enough
pressure to counteract the pull of
gravity of the self-gravitating plasma
ball

Once, the inner centre has been
burnded to iron, energy release
ceases and the star dies in a
supernova

IDRIS, March 3, 2011 Andreas Marek, RZG

What is a supernova? – a simple model

A supernova does not mark the birth of a ``new super star´´ but rather
the death of an old star:

The inner iron core begins to
collapse, while the outer shells
still continue to do nuclear
burning

The collapse and thus rising
density in the inner core
cause enhanced neutrino
emission

IDRIS, March 3, 2011 Andreas Marek, RZG

What is a supernova? – a simple model

A supernova does not mark the birth of a ``new super star´´ but rather
the death of an old star:

When densities reach around
1012 g/ccm neutrinos become
trapped in the collapsing
material

At the same time the composition
evolves from iron to heavier
 nuclei

IDRIS, March 3, 2011 Andreas Marek, RZG

What is a supernova? – a simple model

A supernova does not mark the birth of a ``new super star´´ but rather
the death of an old star:

When matter reaches nuclear
matter density (~1014 g/ccm),
a proto NS is formed, and the
collapse stops abruptly
(= bounce)

A shock wave forms and travels
outwards through still collapsing
material.

IDRIS, March 3, 2011 Andreas Marek, RZG

What is a supernova? – a simple model

A supernova does not mark the birth of a ``new super star´´ but rather
the death of an old star:

A huge amount of neutrinos is
released (neutrino burst),
which could be detected

At the same time the shock
wave loses it`s energy due
to photo-disintegration of
matter falling through the
shock front

IDRIS, March 3, 2011 Andreas Marek, RZG

What is a supernova? – a simple model

A supernova does not mark the birth of a ``new super star´´ but rather
the death of an old star:

On the time-scale of half a
second, neutrinos emitted in
the vicinity of the proto NS
heat the matter and revive
the shock expansion.

The development of instabilites
and turbulent motion plays
a crucial role

IDRIS, March 3, 2011 Andreas Marek, RZG

Why are supernovae interesting?

 Supernova explosions are among
 the most energetic events in the
 Universe (energy release
 ~1053 erg)

 Supernova mix the heavy
 fusioned elements outwards
 and enrich the galactic and
 intergalactic medium with
 elements beyond H, and He

every heavy element on Earth
 was processed in at least on star
 and expelled by a supernova !

IDRIS, March 3, 2011 Andreas Marek, RZG

The need for simulations

One cannot fly to a supernova, or do them in a laboratory (and it

would not be healty anyway…)

Optical observations (at best): hours or days after the event

started (-> scale problem), and only sparse carries of other

information (e.g. neutrinos)

=> limited information ``black box´´ car analogy

 a car where you cannot look under the hood
  you just know it needs fuel (SN: stellar material)
 you have to start it (SN: it starts somehow)
 the car gets warm, moves, expels some gas
 (SN: get an explosion)

Take the car appart, solve problem by thinking and if it gets
 to complex, build a simulation and match with your observables

But how does it work ?

IDRIS, March 3, 2011 Andreas Marek, RZG

Simulations: The challenges I: scales

The scale problem: range at least 104 -> timestep limitations

R = 10 km

X 70

Neutron Star

IDRIS, March 3, 2011 Andreas Marek, RZG

The challenges II: physical complexity

Complexity Problem: in the last 4 decades it become clear

 that one has to include in the simulations

 multi-dimensional hydrodynamics (stellar plasma, instabilities,
 turbulence)
 Gravity : general-relativity or at least reasonable approximation
 Nuclear physics:

 multi-dimensional spectral neutrino radiation transport
 (main sink of energy, responsible for driving explosion)

• High density matter (NS description)
• Nuclear reaction network (Composition changes, energy
 source term)

• detailed kernels for neutrino-matter

 interactions

IDRIS, March 3, 2011 Andreas Marek, RZG

The challenges III: The curse of dimensions

► 3D hydro + 6D direct discretization of Boltzmann Eq.

(no serious attempt yet)

► 2D hydro + 5D direct discretization of Boltzmann Eq.

(planned by DoE's TSI/SSC, abandoned)

► 2D or 3D hydro + “ray-by-ray-plus” variable

Eddington factor method (MPA, RZG)

r

- Boltzmann equation determines neutrino
distribution function in phase space

- Integration over momentum space yields
source terms for hydrodynamics

Solution approach Required resources

● >= 10 PFlops (sustained!)

● >= 10-100 TFlops/TBytes

● >= 1TFlops – 1PFlops,










f(r,,,,,,t)

Q(r,,,t), dYe(r,,,t)/dt

●1 -100 TByte

IDRIS, March 3, 2011 Andreas Marek, RZG

“Ray-by-ray plus” variable Eddington factor method

► Use angular moments to

deal with integrodifferential

character of Boltzmann eq.

► Use operator splitting:

► Consider lateral  -

advection and  - pressure

gradients

(transp_advect_theta)

► Do radial transport

(transp_r) “ray-by-ray”

f(r,,,,,,t) -> J, H, K, L(r,,,,t)

 ri: / t ... +  /   ... = 0

 j:  /  t ... +  /  r ... +  /   ... = 0

IDRIS, March 3, 2011 Andreas Marek, RZG

“Ray-by-ray plus” variable Eddington factor method
(contd.)

► More moments than

moment eqs. (ME) of Boltzmann eq.

(BE)

► closure by Eddington factors

► On each ray, obtain closure by iterative

solution of moment equations, and a

“model” Boltzmann equation whose

rhs depends only on

f K K J , f L L J

Eddington factors
 converged?

J , H

Yes

No

ME BE

ME + update of

energy and lepton
number

transp_r (J, H, K, L)

J, H

IDRIS, March 3, 2011 Andreas Marek, RZG

Moment Equations (ME)

• To order in

comoving frame and on a

radial ray:

f k= K / J , f L= L / J
• System is hyperbolic for reasonable Eddington

factors

• Speed of light and stiff source term
severely restrict explicit time step!

O( = v/c)

c-1  U /  t +   U /  t + r-2  (r2F(U))/ r -  G(U)/  = S(U)
























































Jf
tc

Jf
r

fH
r

H
tcr

Jf
rUG

Jf

H
UF

H

J
U

KLL

K

K





1

)(

1
)1(

)(,)(,

S(U)

IDRIS, March 3, 2011 Andreas Marek, RZG

Implicit discretization

 Discretize MEs with backward time

differencing (e.g. Euler, Gear, etc.):

 Newton-Raphson:

 Linearize the algebraic equations:

 Solve the linear system for

 Iterate to convergence

 Sructure of Jacobian for moment eqs.

in PROMETHEUS/VERTEX supernova

code:

Dense Blocks: Coupling in energy, due to
 source terms
 (collision term of Boltzmann
 eq.)

Diagonals: Coupling in radius

Un+1=Un- t R(Un+1)

[I+ t  R/  U] U = - t R(Un)
  U = Un+1- Un

IDRIS, March 3, 2011 Andreas Marek, RZG

Inversion of block-pentadiagonal matrix

► Among the major computational

kernels

► Three direct solvers implemented

at present

► THOMAS: Block-Thomas

algorithm vectorized over

energy (i.e. within the blocks,

using LAPACK, BLAS)

► CYCLIC: Block-Cyclic-

Reduction vectorized over

energy

► VCYCLIC: Block-Cyclic-

Reduction vectorized over

radius (i.e. along the

diagonals)

for calls within ME/BE iteration

for final call

Block length:

2 x Nr + 1

2 x N +2

4 x N +2

Size of matrix ~ 600002
 => in 3D : 20000 rays
 corresponds to 20000 inversions

IDRIS, March 3, 2011 Andreas Marek, RZG

Flowchart of algorithm

hydro transport

next-neighbour
communication

reduction operation

transport is almost
communication free

IDRIS, March 3, 2011 Andreas Marek, RZG

The VERTEX code : Setup

Hybrid MPI/OpenMP parallelism in multidimensional version of VERTEX

 Hydro module
 fully MPI parallized
 Transport module
 OpenMP parallized along
 ``angular rays´´

VERTEX works on a spherical grid

Only next neighbour communication
at least 4 hydro zones per MPI-task
(ghost zones)

The VERTEX code: programing

IDRIS, March 3, 2011 Andreas Marek, RZG

 Coded in Fortran 95 (and elements of Fortran 2003)
 and C

 Our major choice of programming language is
 Fortran, however, if the need arises we use C

 we use Fortran/C together with Python unit test

 at each SVN commit tests are done and
 depending on them commit is accepted or rejected

IDRIS, March 3, 2011 Andreas Marek, RZG

Mapping to the processor grid

 Hybrid MPI/OpenMP
requires SMP mode on BG

Node 1

1 MPI-Task

4 Threads

per Node: at least 4x4 hydro zones, 1 transport ray per core

IDRIS, March 3, 2011 Andreas Marek, RZG

The need for high-performance computing

The 1D and 2D version of VERTEX so far ran succesfully on

 Desktop PC (< 4 cores)
 NEC SX5, SX6, SX8, SX9 (< 256 cores)
 IBM Power4, Power5, Power6 (< 6200 cores)
 SGI Altix 3700, Altix 4700 (< 2048 cores
 Linux clusters (< 8000 cores)

all systems up to now < 10000 cores!

However, a 3D modell with 1° resolution has 64800 transport rays,
and needs at least 64000 cores

 Bluegene architecture is at the moment the only option

but VERTEX is very memory hungry…

IDRIS, March 3, 2011 Andreas Marek, RZG

Porting VERTEX to BLUEGENE/P: memory

Our biggest problem: memory, memory, memory

we started with the need of 1.5 GB/core

First issue: where do we need how much memory?

we instrumented every memory allocation in a module, such
that it gives the memory allocated

replace Fortran ``allocate(foo(1:n))´´ -> ``my_allocate(foo(1:n)) ´´
which prints how much memory is allocated

we found arrays that could be resized or removed
 refactoring from time to time seems useful 

IDRIS, March 3, 2011 Andreas Marek, RZG

Determining the memory consumption

Our biggest problem: memory, memory, memory

we still had to know, where how much memory is used,
e.g. in subroutines are there temporary copies created by compiler?

How can you measure the memory needs of a code?

On Bluegene IBM helps here by specific system calls!
(see e.g. www.redbooks.ibm.com/redbooks/pdf/sg247287.pdf)

Kernel_GetPersonality(&mybgp, sizeof(_BGP_Personality_t));

procMB = BGP_Personality_DDRSizeMB(&mybgp);

Kernel_GetMemorySize(KERNEL_MEMSIZE_STACK , &memory_size);

Kernel_GetMemorySize(KERNEL_MEMSIZE_STACKAVAIL, &memory_size);

Kernel_GetMemorySize(KERNEL_MEMSIZE_HEAP , &memory_size);

Kernel_GetMemorySize(KERNEL_MEMSIZE_HEAPAVAIL , &memory_size);

 we wrote a library to instrument any part of the code and get
 the memory usage in this segment and performed a detailed analysis

IDRIS, March 3, 2011 Andreas Marek, RZG

Handling of look-up tables

Vertex needs look-up tables (e.g. for determining state of NS matter)

for state variables (density, temperature, composition) values are
looked-up and interpolated from table

Problem: size of tables ~ 300 Mb (per node)

but: not all table data points are
needed at all times, i.e the
``trajectories´´ evolve through the
tables

Solution: dynamically load table as
 envelope around trajectories

At one timestep ~ 1% to 4% of table
data is needed

IDRIS, March 3, 2011 Andreas Marek, RZG

Handling of look-up tables (cont.)

On sytems with virtual memory, that is easy!

Solution: dynamically load table as envelope around
 trajectories

Replace ``normal´´ Fortran read instruction with C mmap call:

mem = mmap(NULL, stat.st_size, PROT_READ, MAP_SHARED, fd, 0);

However, system call ``mmap´´ limited, since Bluegene does not support
virtual memory

=> We had to program a dynamical table loader by hand 

This required Fortran C-bindings, since tables are
best handled in C

IDRIS, March 3, 2011 Andreas Marek, RZG

Handling of look-up tables (cont.)

Sketch of dynamic loader:

! check whether the given points are still located in currently loaded sub-table

out_subtable(:) = out_of_local_subtable()

if (any(out_subtable(:)) then

 ! set semaphore lock: we do not want to reload table if a thread is in it

 call omp_set_nest_lock()

 ! determine new necessary sub-table dimensions

 call determine_subtable_dimensions()

 ! unload sub-table

 err = flush_subtable()

 ! reload sub-table

 call load_subtable()

 ! remove semaphore lock

 call omp_unset_nest_lock()

endif

continue with evaluating the table and obtain look-up values

IDRIS, March 3, 2011 Andreas Marek, RZG

Saving memory by using pointers

OpenMP parallelisation of rays is natural to implement with local copies

module data

 real, allocatable :: rimlag(:,:,:,:,;,;)

 real, allocatable :: rim (:,:,:,:)

!$omp threadprivate(rim)

end module

subroutine get_sect(j,k)

! get local data of ray j,k to work on

do i=1,isma
 do ie=1,iemax
 do i=0,iemax
 do kk=cmin,i
 rim(i,kk,ie,is) = rimlag(i,kk,ie,is,j,k)
 enddo
 enddo
 enddo
 enddo

O(100 Mb)

O(25 Mb) per thread

both arrays exist twice!
~400 Mb = 20 % of memory
 per node

stores global intensity

stores intensity on
ray

get ray data and later
copy back

IDRIS, March 3, 2011 Andreas Marek, RZG

Saving memory by using pointers

OpenMP parallelisation of rays is natural to implement with local copies

module data

 real, allocatable, target :: rimlag(:,:,:,:,;,;)

 real, pointer :: rim (:,:,:,:)

!$omp threadprivate(rim)

end module

subroutine get_sect(j,k)

! get local data of ray j,k to work on

rim => rimlag(:,:,:,:,j,k)

O(100 Mb)

O(0 Mb)

200 Mb per node

=> 50 % savings!

This only works if

compiler does not introduce

a temporary copy!

Luckily on BLUEGENE it works 

IDRIS, March 3, 2011 Andreas Marek, RZG

Saving memory: using parallel HDF5

Formerly, all data was gathered by proc = 0 and then written to file
(communication and memory intensive) using parallel HDF5 solved
that problem…

512 1024 2048 4096 8192 16384 #cores

Bandwidth MB/s 822 746 702 728 785 776

A typical setup on 16k cores would write 80 GB output files
and 500 GB restart files ~103 to 512 s for write

A 1° resolution run (> 65k cores) would already need ~400 to
2000 s for write (and only if writing scales) 

But writing data an petaflop machines will be a problem

IDRIS, March 3, 2011 Andreas Marek, RZG

Scaling behaviour

Up to know we were able to run on 32k Bluegene cores, and
on Power6 and Linux clusters of much smaller size

Weak scaling Strong scaling

IDRIS, March 3, 2011 Andreas Marek, RZG

Scaling behaviour

We had one chance to test on higher core numbers for ~30 min.
Code hang up: redirect every stdout , stderr to a single file 

Weak scaling Strong scaling

Debuging on Bluegene

IDRIS, March 3, 2011 Andreas Marek, RZG

It`s a bit cumbersome:

 large numer of cores
 debuggers available?
 long times for partitioning
 lack of possibility to test on single cores
 turn-around time for > 8k

Special features of Bluegene:

 core files are simple ascii-files
 addr2line tool is useful
 IBM-coreprocessor tool quite usefull:
 /bgsys/drivers/ppcfloor/tools/coreprocessor

Getting a Bluegene overwiew: llview

IDRIS, March 3, 2011 Andreas Marek, RZG

Developed at Research center Juelich

IDRIS, March 3, 2011 Andreas Marek, RZG

Analyzing MPI-communications

We found IBM libmpitrace extremly helpfull to get a feeling for
the MPI-communication and to analyze it:

It gives the statistics of used communication

 message lengths
 min/max/median communication times

and detailed information per task (if you want)

a graphical tool (from IBMs hpctoolkit) helps to interpret the data

IDRIS, March 3, 2011 Andreas Marek, RZG

Analyzing MPI-communications

Going beyond 32k cores

IDRIS, March 3, 2011 Andreas Marek, RZG

We were able to participate in the „Juelich Extreme Scaling Workshop 2011“
and to do measurements on a Bluegene/P up to 300k cores

On this size it is a whole new game and problems become visible:

 Partitioning of system (can take up to 40 mins!)
 Communication that works fine on <32k cores
 suddenly hangs
 debugging even worse 

 wall-clock time is an issue

We were not able to run the full code, but instead to measure different
subroutines, kernels etc.

Issues with Bluegene/P

IDRIS, March 3, 2011 Andreas Marek, RZG

 The memory per core (500 Mb) is very limiting

 The small number of cores per node is a problem with VERTEX
 Remember: we need at least 4x4 zones per MPI task (=node)
 => the fraction of ghost-zones to compute zones is larger on
 BG than on a 8 cores/node system

 The low frequency of cores, though energy efficient, is a limiting
 factor: One needs ~ 8 times the #cores of a Intel Nehalem system

 No single-core available to check optimizations

Speculations: the future

IDRIS, March 3, 2011 Andreas Marek, RZG

Systems with #cores O(100000) will have to be energy
 efficient

 => Bluegene architecture will be more and more important

Bluegene/Q (from what one can hear at the moment)

 18 cores per node (favoured by VERTEX)
 ~ 1.7 GHz frequency => 2x times faster than Bluegene/P
 (helps every application)
 propably at least 1GB memory per core. Wow, that really
 helps

IDRIS, March 3, 2011 Andreas Marek, RZG

Summary

 The VERTEX-code has been recently modified to run on massively
 parallel computer systems
 IBMs Bluegene system is at the moment the only system available
 to us with a sufficient number of cores

 we are working on a still better scalable version and hope for
 computing time on up-coming HPC systems

 the small amount of memory per core turned out to
 be a though problem

 we analyzed the MPI communication pattern and
 found some unfavorable code
 at the moment we achieve good scaling on up to 32k cores

 we measured (detailed) the memory needs of VERTEX
 we reduced the memory consumption by changing the memory
 layout
 we also introduced a dynamical table loader
 The usage of pointers als helped

IDRIS, March 3, 2011 Andreas Marek, RZG

Summary cont´d

 beyond 32k cores everything becomes cumbersome…
 at each new number of cores unforseen problems may arise,
 which require new debuging

 => ``wish-list´´ for application enabeling on this size

 easier debuging  But how?

 easy access to needed core size in a fast
 turn-around way
 in case of Bluegene: lower partitioning times

IDRIS, March 3, 2011 Andreas Marek, RZG

Questions ?

